

Q5E-UM-100A AUGUST-2006

Q5 Evaluation Board User Manual August 2006

ANAGRAM Technologies SA ZI Le Trési 6A 1028 Préverenges Switzerland

> Phone: + 41 21 804 1960 Fax: + 41 21 804 1961 info@anagramtech.com

Abstract Q5 asynchronous sample rate converter evaluation board user manual.

Copyright © Anagram Technologies SA

All rights reserved. No part of this work covered by Anagram Technology SA copyright may be reproduced or copied in any form or by any means (graphic, electronic or mechanical, including photocopying, recording, taping or information retrieval systems) without the written permission of Anagram Technology SA.

Submit Documentation Feedback

Document History

No.	Primary Author(s)	Description of Version	Date Completed
100A	TLn	Initial revision	30-08-2005

Related Documentation

Part Number	Description
Q5M-PB-100A	Q5 product brief.
Q5M-DS-100A	Q5 evaluation board user manual.

Ordering Information

Part Number	Description	Package
Q5M-PL-100A	Asynchronous sample rate converter.	Plastic

Release Notice

This document is under configuration control and updates will only be issued as a replacement document with a new version number.

Preface

About This Manual

This document provides the information needed to setup and operate the Q5 evaluation board. For a more detailed description of this product, please refer to the product data sheets available from the ANAGRAM Technologies web site at http://www.anagramtech.com. Support documents are listed in the section of this guide entitled Additional Documentation.

Company Address

ANAGRAM Technologies SA ZI Le Trési 6A 1028 Préverenges Switzerland

Phone +41 21 804 1960 Fax +41 21 804 1961

Notice

ANAGRAM Technologies S.A. provides the enclosed product(s) under the following conditions:

This evaluation kit being sold by ANAGRAM Technologies is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not considered by ANAGRAM Technologies to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive. Should this evaluation kit not meet the specifications indicated in the Evaluation Board User's Guide, the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies ANAGRAM Technologies from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. **EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES**. ANAGRAM Technologies currently deals with a variety of customers for products, and therefore our arrangement with the user is **NOT EXCLUSIVE**. ANAGRAM Technologies assumes **NO LIABILITY FOR APPLICATIONS ASSISTANCE, CUSTOMER PRODUCT DESIGN,**

SOFTWARE PERFORMANCE, OR INFRINGEMENT OF PATENTS OR SERVICES DESCRIBED HEREIN.

Please read the Evaluation Board User's Guide and, specifically, the Evaluation Board Warnings and Restrictions notice in the Evaluation Board User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the ANAGRAM Technologies customer support. Persons handling the product must have electronics training and observe good laboratory practice standards. No license is granted under any patent right or other intellectual property right of ANAGRAM Technologies covering or relating to any machine, process, or combination in which such ANAGRAM Technologies products or services might be or are used.

Evaluation Board Warnings and Restrictions

It is important to operate this Evaluation Board within the specified input and output ranges described in the Evaluation Board User's Guide. Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the Evaluation Board. If there are questions concerning the input range, please contact a ANAGRAM Technologies customer support prior to connecting the input power. Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the Evaluation Board. Please consult the Evaluation Board User's Guide prior to connecting any load to the Evaluation Board output. If there is uncertainty as to the load specification, please contact ANAGRAM Technologies customer support.

During normal operation, some circuit components may have case temperatures greater than 60°C. The Evaluation Board is designed to operate properly with certain components above 60°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, digital to analog converters, and current sense resistors. These types of devices can be identified using the Evaluation Board schematic located in the Evaluation Board User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

How to Use This Manual

Throughout this document, the abbreviation Q5-EVB and the term *evaluation board* are synonymous with the Q5 Module Evaluation Board.

Chapter 1 provides an overview of the Q5-EVB block diagram and primary features are discussed.

Chapter 2 provides general information regarding evaluation board handling and unpacking, absolute operating conditions, and the default switch and jumper configuration.

Chapter 3 is the hardware setup guide for the evaluation board, providing all of the necessary information needed to configure the evaluation board switches and jumpers for product evaluation.

Chapter 4 gives How-to instructions to perform advanced tasks with the Evaluation Board.

Chapter 5 includes the evaluation board electrical schematic, PCB layout, and the Bill of Materials.

Information About Cautions and Warnings

A **NOTE** provides additional or special information to assist operation. Disregarding a **NOTE** may cause inconvenience but will not result in personal injury or equipment damage.

Caution		
	A CAUTION is provided in a procedure whenever electrical or mechanical damage may occur. Failure to heed a CAUTION may result in some form of damage to the equipment; however, personal injury is unlikely.	

Additional Documentation

The following documents provide information regarding selected non–ANAGRAM components, which are used in the assembly of the Evaluation Board. These documents are available from the corresponding manufacturers.

Component	Manufacturer
CS8416	Cirrus Logic, http://www.cirrus.com
DIT4192	Texas Instruments, http://www.ti.com
PIC18F8722	Microchip, http://www.microchip.com
GXO-U102	Golledge, http://www.golledge.com

If You Need Assistance

If you have questions regarding either the use of this evaluation board or the information contained in the accompanying documentation, please contact the ANAGRAM Technologies Customer Support +0041 (21) 804-1960 or visit the ANAGRAM Technologies web site at http://www.anagramtech.com.

Repair and Maintenance

Routine maintenance is not required. This product named as Q5 Module Evaluation Board is warranted to be free of any defect with respect to performance, quality, reliability and workmanship for a period of SIX (6) months from the date of shipment from ANAGRAM Technologies SA.

In the event that your product proves to be defective in any way during this warranty period, we will gladly repair or replace this piece of equipment with a unit of equal or superior performance characteristics.

Should you find this Q5 Module Evaluation Board has failed after your warranty period has expired, we will repair your defective piece of equipment for as long as suitable replacement component are available. You, the owner, will bear any labor/or component costs incurred in the repair or refurbishment of said equipment, beyond the SIX (6) months

warranty period. Any attempt to repair this product by anyone during this period other than by ANAGRAM Technologies SA or any authorized 3rd party, will void your warranty.

ANAGRAM Technologies SA reserves the right to assess any modifications or repairs made by you and decide if they fall within warranty limitations, should you decide to return your product for repair. In no event shall ANAGRAM Technologies SA be liable for direct, indirect, special, incidental, or consequential damages (including loss and profits) incurred by the use of this product. Implied warranties are expressly limited to the duration of this warranty.

A Return Material Authorization Number (RMA) will be issued to you, as well, as specific shipping instructions, should you wish our factory to repair your Evaluation Board. A temporary replacement, if required, will be made available for a nominal charge. Any shipping costs incurred, will be the responsibility of the customer. All products shipped to you from ANAGRAM Technologies SA, will be shipped collect.

Copyright

© 2006 ANAGRAM Technologies SA. All right reserved

Contents of this publication may be not reproduced in any form without the written permission of ANAGRAM Technologies SA. Reproduction and / or reverse engineering of copyrighted software is prohibited.

LIST C	DF FIGURES	9
LIST C	OF TABLES	10
1 IN	TRODUCTION	11
1.1	Evaluation Board Features	11
1.2	Functional Block Diagram	11
1.3	Clock Synchronization	12
1.4	Custom Digital Hardware Interface	12
2 GE	ETTING STARTED	14
2.1	Electrostatic Discharge Warning	14
2.2	Absolute Maximum Operating Conditions	14
2.3	Unpacking the Evaluation Board	14
2.4	Default Configuration	15
3 SE	ETUP GUIDE	16
3.1	Connector Block Diagram	16
3.2	Power Supply Configuration	17
3.3	S/PDIF Input and Output Connector	17
3.4	External Audio-In	18
3.5	External Audio-Out 1	18
3.6	External Audio-Out 2	19
3.7	ICSP Programming Connector	19
3.8	PIC External Interface 1	20
3.9	PIC External Interface 2	20
3.10	PIC External Interface 3	21
3.11	PIC External Interface 4	22
3.12	LED Definition	22
3.1	12.1 Assigned LED	23
3.1	12.2 Programmable LED	23
3.13	Master Clock Selection	24
3.14	Audio Input Data Format	25
3.15	Audio Output Data Format & Frequency	20 27
3.10		21
4 П	Decommonded Test Satur	
4.1 1 0	Recommended Test Setup	29
4.Z	Stanuaru QS Module Setup	
4.2		

Q5[™]

Q5[™]

4.2.2 Configuration	31
4.3 Connecting an external master clock	32
4.3.1 Functional description	32
4.3.2 Configuration	33
4.4 Connecting an External PCM Audio Source	33
4.4.1 Functional mode	
Configuration	34
4.5 Connecting an External DSD Audio Source	35
4.5.1 Functional mode	35
Configuration	36
5 SCHEMATICS AND BILL OF MATERIALS	
5.1 Physical Dimensions	38
5.2 Schematic	38
5.3 Bill of Materials	45

List of Figures

Figure 1: Q5-EVB functional block diagram	12
Figure 2: Clock domain block diagram illustrating DSS™	12
Figure 3: Evaluation board with mayor components and connector locations	16
Figure 4: Test setup for performance measurement	29
Figure 5: Test setup for audio listening	30
Figure 6: Standard setup functional block diagram	31
Figure 7: Standard hardware setting	31
Figure 8: External master clock functional description	32
Figure 9: External master clock board configuration	33
Figure 11: External PCM Audio Source board configuration.	34
Figure 13: External DSD Audio Source board configuration	36
Figure 14: Evaluation board physical dimension.	38
Figure 15: Digital Audio Schematics-1.	39
Figure 16: MCU & Clock circuitry schematics-2.	40
Figure 17: Power Supply schematics-3.	41
Figure 18: Layout Silk Screen schem-4	42
Figure 19: Layout TOP schem-5.	43
Figure 20: Layout BOTTOM schem-6.	44
Figure 21: Evaluation board bill of materials	46

List of Tables

Table 1: Absolute maximum ratings	14
Table 2: Evaluation board connector types.	17
Table 3: S/PDIF input connector.	17
Table 4: S/PDIF output connector	17
Table 5: Digital input connector pin out.	18
Table 6: External Audio-Out 1 connector pin out	19
Table 7: External Audio-Out 1 connector pin out	19
Table 8: ICSP connector pin out.	19
Table 9: PIC External Connector 1 pin out.	20
Table 10: PIC External Connector 2 pin out.	21
Table 11: PIC External Connector 3 pin out.	22
Table 12: PIC External Connector 4 pin out.	22
Table 13: Led definition 1 st group	23
Table 14: Led definition 2 nd group.	23
Table 15: Master clock selection.	24
Table 16: Audio input data format selections	25
Table 17: Audio output data format selections.	26
Table 18: Audio output data frequency selections	26
Table 19: Word length selection	27
Table 20: Dither selection.	28
Table 21: Standard clock selection.	28
Table 22: OWW selection.	28

1 Introduction

This chapter gives a brief introduction to the features and principle technologies behind the Q5 Module Evaluation Board (Q5-EVB).

1.1 Evaluation Board Features

The Q5-EVB is an all digital platform for testing and evaluating sample rate converters and upsamplers for consumer audio applications. Key features for the Q5-EVB include:

- 2-Channel digital audio input via CS8416 receiver.
- Audio extension connector supports asynchronous audio streams from USB, HDMI, or SACD in I2S or DSD formats
- Selection of master clock source, local 24.5760MHz oscillator or external clock via BNC connector.
- Dual digital output via DIT4196 transmitter and extension connector.
- Output formats: 48 to 192kHz I2S and 384kHz DSP mode.
- Complete board control over SPI bus with onboard PIC18F8722.
- User programmable LEDs and jumpers.
- Connector interface to all PIC18F8722 pins.

1.2 Functional Block Diagram

The Q5-EVB is designed to function with ANAGRAM Technologies modules such as the Q5[™] asynchronous sample rate converter. It features a digital receiver (CS8416) and transmitter (DIT4192) that provide digital audio input and output connectivity, as well as external connector for interfacing to your own digital source. The Q5-EVB functional block diagram, as shown in Figure 1, illustrates the main data flow between elements of the board.

Digital input is handled by the CS8416 receiver which can receive and decode digital audio with sample rates up to 192kHz. Alternatively digital audio input can be supplied by an external connector, which bypasses the receiver and enters directly into the Q5 Module if required. This can, for example, be used to support asynchronous audio streams from USB or HDMI sources in I2S format or DSD signals from SACD sources.

Digital output features the same architecture as the input, where by the DIT4192 transmitter can send and encode the digital audio via S/PDIF up to 192kHz. Alternatively the external connector allows the audio signals to be taken before the transmitter for interfacing directly to your custom digital hardware.

Dual digital outputs allow the simultaneous driving of high performance 384kHz capable D/A converters in dual differential configuration, while at the same time providing an upsampled digital output for digital audio connectivity.

Introduction

Figure 1: Q5-EVB functional block diagram.

1.3 Clock Synchronization

The Q5-EVB employs a concept of clock management called DSS[™] synchronization which allows the system to handle a variety of sampling rates and data formats. DSS[™] provides an elegant, cost effective, and future proof solution by synchronizing the complete audio system to a selectable clock source and unifying data to a single sampling rate as show in Figure 2.

Figure 2: Clock domain block diagram illustrating DSS™.

1.4 Custom Digital Hardware Interface

The Q5-EVB employs two digital audio ports that can be interfaced to custom digital audio hardware. In addition one of the ports interfaces directly to a digital transmitter up to 192kHz, the second is typically used to interface to high performance DACs operating at 384kHz. If you require interfacing to custom audio hardware either of these ports may be used.

Note

Pi su m da 34 po //

Philips I2S, Left-Justified, or Right-Justified audio formats do not support frequencies greater than 192kHz, to interface to a Q5 module port at greater than 192kHz please consult the appropriate data sheet of the Q5 module in question. Typically the format of 384kHz, for example, will correspond to that used by high performance DAC's from Analog Devices, Wolfson Electronics, or TI / Burr Brown.

2 Getting Started

This chapter identifies important information regarding your Q5-EVB that you should know before getting your evaluation board up and running.

2.1 Electrostatic Discharge Warning

Many of the components on the Q5-EVB are susceptible to damage by electrostatic discharge (ESD). Customers are advised to observe proper ESD handling precautions when unpacking and handling the Q5-EVB, including the use of a grounded wrist strap at an approved ESD workstation.

	Caution
Ń	Failure to observe ESD handling procedures may result in damage to the evaluation board components.

2.2 Absolute Maximum Operating Conditions

The user should be aware of the absolute maximum operating conditions for the Q5-EVB. Exceeding these conditions may result in damage to the Q5-EVB. Table 1 summarizes the critical data points.

Parameter	Maximum Condition
Power Supply +9V	+8V / +45 V
Input S/PDIF	-0.3 to +3.6V
Input Digital Connector	0V to +3.6V

Table 1: Absolute maximum ratings.

Caution		
Ń	Failure to respect the Absolute Maximum Operating conditions may result in damage to the Q5-EVB components.	

2.3 Unpacking the Evaluation Board

Upon opening the Q5-EVB package, please check to make sure that the following items are included:

- Q5 module evaluation development board (including Q5 module).
- International 9V power supply and outlet cable.
- CDROM containing source code of the microcontroller, user manual (this document) with complete schematics and BOM.

If any of these items are missing, please contact the ANAGRAM Technologies Customer Support.

2.4 Default Configuration

The factory default jumper settings result in the following Q5-EVB configuration:

- Operating with high quality local clock at 24.5760MHz.
- Input data format I2S.
- Output data format I2S.
- Word length output 24bit.
- Digital output via S/PDIF at 48kHz.

3 Setup Guide

This chapter provides a step–by–step guide to configuring the Q5-EVB. Follow the sections to walk through the each connector setup. Please note that this section assumes the board is in its default factory configuration as described in Section 2.4.

3.1 Connector Block Diagram

Figure 3: Evaluation board with mayor components and connector locations.

Connector	Name	Connector Type	Description
RX0-PORT	Ext Audio-In	IDC	Digital audio input
TX1-PORT	Ext Audio-Out 1	IDC	Digital audio output
TX0-PORT	Ext Audio-Out 2	IDC	Digital audio output

J11	PIC External Connector 1	IDC	PIC external interface
J10	PIC External Connector 2	IDC	PIC external interface
J7	PIC External Connector 3	IDC	PIC external interface
J9	PIC External Connector 4	IDC	PIC external interface
ICSP CONN	PIC ISCP	Barrette	PIC programming connection
Audio-In	S/PDIF Audio-In	RCA	Digital audio in via S/PDIF
Audio-Out	S/PDIF Audio-Out	RCA	Digital audio out via S/PDIF

Table 2: Evaluation board connector types.

3.2 Power Supply Configuration

The Q5-EVB is designed to function with digital only voltages and thus only requires a single +9.0V regulated DC power supply. The power supply is provided with your Q5-EVB, although the connecting cable may not be compatible with your local wall outlet.

3.3 S/PDIF Input and Output Connector

The S/PDIF input is a 75-ohm coaxial cable (with signal levels of 0.5 volts) and RCA connectors. The minimal input level of S/PDIF interface is 200 mVpp, which allows for some cable losses. There is no real need for special quality cable as long as the cable is made of 75-ohm coaxial cable (a good video accessory cable works also as good S/PDIF cable).

Connector	Description	Electrical Characteristics		
S/PDIF Audio-In	Audio Signal RX	S/PDIF (0V +0.5V Digital signal input, 3.3V tolerant)		

Table 3: S/PDIF input connector.

Connector	Description	Electrical Characteristics
S/PDIF Audio-Out	Audio Signal TX	SPDIF (0V +0.55V Digital signal output)

Table 4: S/PDIF output connector.

Note					
\widehat{i}	The S/PDIF signal is independent of polarity, which means that you do not have to concern with absolute polarity.				

3.4 External Audio-In

This connector allows the DM_EVB to process an external audio stream provided by any I2S PCM compatible audio source. This connector is also used for providing DSD signals to the Q5 module.

Connector	Pin	Description	Electrical Characteristics
G SD1	1	RX0_BITCLK, DSD_ BITCLK	$ \begin{array}{l} VIN_{HIGH} = 2 \ V_{MIN} - 5 \ V_{MAX} \\ \\ VIN_{LOW} = 0.8 \ V_{MAX} \end{array} $
	2	GND	Ground
	3	GND	Ground
G FS	4	GND	Ground
GG	5	RX_FSYNC	$VIN_{HIGH} = 2 V_{MIN} - 5 V_{MAX}$ $VIN_{LOW} = 0.8 V_{MAX}$
	6	GND	Ground
	7	GND	GND
	8	RX_SDATA1, DSD_L	$ \begin{array}{l} VIN_{HIGH} = 2 \ V_{MIN} - 5 \ V_{MAX} \\ VIN_{LOW} = 0.8 \ V_{MAX} \end{array} $
	9	RX_SDATA2, DSD_R	$ \begin{array}{l} VIN_{HIGH} = 2 \; V_{MIN} - 5 \; V_{MAX} \\ VIN_{LOW} = 0.8 \; V_{MAX} \end{array} $
	10	GND	Ground

 Table 5: Digital input connector pin out.

3.5 External Audio-Out 1

This connector allows the DM_EVB to interface the digital output 1 of the Q5 module to another hardware board provided in I2S PCM audio format.

Connector	Pin	Description	Electrical Characteristics
BCK G	1	TX0_BITCLK	$ \begin{array}{l} VIN_{HIGH} = 2 \; V_{MIN} - 5 \; V_{MAX} \\ VIN_{LOW} = 0.8 \; V_{MAX} \end{array} $
	2	GND	Ground
	3	GND	Ground
FS G	4	GND	Ground
G 8D1	5	TX0_FSYNC	$ \begin{array}{l} VIN_{HIGH} \ = 2 \ V_{MIN} \ - 5 \ V_{MAX} \\ \\ VIN_{LOW} \ = 0.8 \ V_{MAX} \end{array} $
	6	GND	Ground
100 233	7	GND	GND
	8	TX0_SDATA1	$ \begin{array}{l} VIN_{HIGH} \ = 2 \ V_{MIN} \ - 5 \ V_{MAX} \\ \\ VIN_{LOW} \ = 0.8 \ V_{MAX} \end{array} $
	9	TX0_SDATA2	$ \begin{array}{l} VIN_{HIGH} = 2 \; V_{MIN} - 5 \; V_{MAX} \\ VIN_{LOW} = 0.8 \; V_{MAX} \end{array} $
	10	GND	Ground

Table 6: External Audio-Out 1 connector pin out.

3.6 External Audio-Out 2

This connector allows the DM_EVB to interface the digital output 2 of the Q5 module to another hardware board provided in I2S audio format.

Connector	Pin	Description	Electrical Characteristics
BCK G	1	TX0_BITCLK	$ \begin{array}{l} VIN_{HIGH} \ = 2 \ V_{MIN} \ - 5 \ V_{MAX} \\ \\ VIN_{LOW} \ = 0.8 \ V_{MAX} \end{array} $
	2	GND	Ground
	3	GND	Ground
FS G	4	GND	Ground
G SD1	5	TX0_FSYNC	$ \begin{array}{l} VIN_{HIGH} = 2 \; V_{MIN} - 5 \; V_{MAX} \\ VIN_{LOW} = 0.8 \; V_{MAX} \end{array} $
	6	GND	Ground
100 233	7	GND	GND
	8	TX0_SDATA1	$ \begin{array}{l} VIN_{HIGH} = 2 \; V_{MIN} - 5 \; V_{MAX} \\ VIN_{LOW} = 0.8 \; V_{MAX} \end{array} $
	9	TX0_SDATA2	$ \begin{array}{l} VIN_{HIGH} \ = 2 \ V_{MIN} \ - 5 \ V_{MAX} \\ \\ VIN_{LOW} \ = 0.8 \ V_{MAX} \end{array} $
	10	GND	Ground

Table 7: External Audio-Out 1 connector pin out.

3.7 ICSP Programming Connector

This connector is used for serial programming of the PIC18F8722 microcontroller and is for programming and testing purposes.

Connector	Pin	Description	Electrical Characteristics	
1	1	MCLR	$\begin{array}{l} \mbox{Active Low} \\ \mbox{VIN}_{\mbox{HIGH}} &= 2 \ \mbox{V}_{\mbox{MIN}} - 5 \ \mbox{V}_{\mbox{MAX}} \\ \mbox{VIN}_{\mbox{LOW}} &= 0.8 \ \mbox{V}_{\mbox{MAX}} \end{array}$	
2	2	POWER	+3.3V	
3	3	GND	Ground	
5	4	PGD	ICSP™ data pin.	
6	5	PGC	ICSP™ clock pin.	
	6	Not Connected	Floating	

Table 8: ICSP connector pin out.

3.8 PIC External Interface 1

This connector is used for accessing the pins 1-20 on the PIC18F8722 microcontroller. Some ports on the microcontroller are free and maybe customised to your application purposes, others are used to provide board functionality.

Connector	Pin	Name	Description	Used By
	1	MCU Pin 1	Port - RH2	LED_DSD_pin1
2468101214161820 135791113151719	2	MCU Pin 2	Port - RH3	SW25_Pin2
	3	MCU Pin 3	Port – RE1	SW23_Pin3
J11	4	MCU Pin 4	Port – RE0	SW22_Pin4
IDC2x10	5	MCU Pin 5	Port – RG0	
	6	MCU Pin 6	Port – RG1	
	7	MCU Pin 7	Port – RG2	
	8	MCU Pin 8	Port – RG3	
	9	MCU Pin 9	MCLR	ICSP
	10	MCU Pin 10	Port – RG4	
	11	Not Connected	Floating	
	12	Not Connected	Floating	
	13	MCU Pin 13	Port – RF7	SW21_Pin13
	14	MCU Pin 14	Port – RF6	SW20_Pin14
	15	MCU Pin 15	Port – RF5	SW18_Pin15
	16	MCU Pin 16	Port – RF4	SW17_Pin16
	17	MCU Pin 17	Port – RF3	SW15_Pin17
	18	MCU Pin 18	Port – RF2	SW14_Pin18
	19	MCU Pin 19	Port – RH7	SW13_Pin19
	20	MCU Pin 20	Port – RH6	SW12_Pin20

 Table 9: PIC External Connector 1 pin out.

3.9 PIC External Interface 2

This connector is used for accessing the pins 21-40 on the PIC18F8722 microcontroller. Some ports on the microcontroller are free and maybe customised to your application purposes, others are used to provide board functionality.

Connector	Pin	Name	Description	Used By
33 (3) 33 (3)	21	MCU Pin 21	Port – RH5	SW11_Pin21
	22	MCU Pin 22	Port – RH4	SW10_Pin22
	23	MCU Pin 23	Port – RF1	SW9_Pin23
	24	MCU Pin 24	Port – RF0	SW8_Pin24
	25	Not Connected	Floating	
<u>(1)</u>	26	Not Connected	Floating	

	27	MCU Pin 27	Port – RA3	SW7_Pin27
J10	28	MCU Pin 28	Port – RA2	SW6_Pin28
IDCZXIU	29	MCU Pin 29	Port – RA1	SW5_Pin29
	30	MCU Pin 30	Port – RA0	SW4_Pin30
	31	Not Connected	Floating	
	32	Not Connected	Floating	
	33	MCU Pin 33	Port – RA5	SW3_Pin33
	34	MCU Pin 34	Port – RA4	
	35	MCU Pin 35	Port – RC1	MD_CFG0
	36	MCU Pin 36	Port – RC0	MD_CFG1
	37	MCU Pin 37	Port – RC6	MD_CFG2
	38	MCU Pin 38	Port – RC7	MD_CFG3
	39	MCU Pin 39	Port – RJ4	SW2_Pin39
	40	MCU Pin 40	Port – RJ5	

Table 10: PIC External Connector 2 pin out.

3.10 PIC External Interface 3

This connector is used for accessing the pins 41-60 on the PIC18F8722 microcontroller. Some ports on the microcontroller are free and maybe customised to your application purposes, others are used to provide board functionality.

Connector	Pin	Name	Description	Used By
	41	MCU Pin 41	Port – RJ6	
595755553 NC 49 47 45 43 41 60 585654 52 50 NC 46 44 42	42	MCU Pin 42	Port – RJ7	
	43	MCU Pin 43	Port – RC2	
J7 IDC2x10	44	MCU Pin 44	Port – RC3	RX_SCLK, TX_SCLK, MD_SCLK
	45	MCU Pin 45	Port – RC4	RX_MISO, TX_MISO, MD_MISO
	46	MCU Pin 46	Port – RC5	RX_MOSI, TX_MOSI, MD_MOSI
	47	MCU Pin 47	Port – RB7	ICSP
	48	Not Connected	Floating	
	49	MCU Pin 49	OSC1	MCU_CLK
	50	MCU Pin 50	OSC2	
	51	Not Connected	Floating	
	52	MCU Pin 52	Port – RB6	ICSP
	53	MCU Pin 53	Port – RB5	RX_CS_B
	54	MCU Pin 54	Port – RB4	MD_CS_B
	55	MCU Pin 55	Port – RB3	TX_CS_B

56	MCU Pin 56	Port – RB2	MD_IRQ_B
57	MCU Pin 57	Port – RB1	DBG_RX_GPO0
58	MCU Pin 58	Port – RB0	DBG_RX_GPO1
59	MCU Pin 59	Port – RJ3	BYP_CLK_CTRL
60	MCU Pin 60	Port – RJ2	TX_RST_B

Table 11: PIC External Connector 3 pin out.

3.11 PIC External Interface 4

This connector is used for accessing the pins 61-80 on the PIC18F8722 microcontroller. Some ports on the microcontroller are free and maybe customised to your application purposes, others are used to provide board functionality.

Connector	Pin	Name	Description	Used By
	61	MCU Pin 61	Port – RJ1	MD_RST_B
	62	MCU Pin 62	Port – RJ0	RX_RST_B
88 10 10 10	63	MCU Pin 63	Port – RD7	
73 71 E	64	MCU Pin 64	Port – RD6	
91775	65	MCU Pin 65	Port – RD5	
	66	MCU Pin 66	Port – RD4	
J9	67	MCU Pin 67	Port – RD3	
IDC2x10	68	MCU Pin 68	Port – RD2	
	69	MCU Pin 69	Port – RD1	
	70	Not Connected	Floating	
	71	Not Connected	Floating	
	72	MCU Pin 72	Port – RD0	
	73	MCU Pin 73	Port – RE7	LED_LOCK_pin73
	74	MCU Pin 74	Port – RE6	LED_BYP_pin74
	75	MCU Pin 75	Port – RE5	LED_5_pin75
	76	MCU Pin 76	Port – RE4	LED_6_pin76
	77	MCU Pin 77	Port – RE3	LED_3_pin77
	78	MCU Pin 78	Port – RE2	LED_4_pin78
	79	MCU Pin 79	Port – RH0	LED_1_pin79
	80	MCU Pin 80	Port – RH1	LED_2_pin80

Table 12: PIC External Connector 4 pin out.

3.12 LED Definition

There are two groups of LEDs available on the Q5-EVB. The second group, on the right of the board, is assigned to specific functions while the other is programmable even though the first led on the left is assigned.

3.12.1 Assigned LED

Led bunch	Number	Description
LOCK BYP DSD	D11	ON = Receiver (CS8416) lock.
	D12	ON = Q5 module bypassed
D11 D12 D13	D13	ON = DSD input selected

 Table 13: Led definition 1st group.

3.12.2 Programmable LED

Led bunch	Number	Description
	D5	ON = Q5 module is connected
	D6	Programmable
LED1LED2.ED3LED4LED5LED6 D5 D6 D7 D8 D9 D10	D7	Programmable
	D8	Programmable
	D9	Programmable
	D10	Programmable

 Table 14: Led definition 2nd group.

3.13 Master Clock Selection

The normal operation of the Q5-EVB requires that the master clock come from the on board oscillators of 24.5760MHz. Optionally and external master clock can be used from an external source via the BNC connector.

Master Clock Jumper	Number	State	Mode
	SW16	Closed	External Master Clock
SW20	SW20	Open	The master clock for the Q5- EVB will be sourced from an
SW24	SW24	Open	external clock via the BNC connector.
SW16	SW16	Open	22.5792MHz Master Clock The master clock for the Q5-
SW24	SW20	Closed	EVB will be sourced from an on board oscillator. Warning this frequency is NOT yet
50024	SW24	Open	supported.
SW16	SW16	Open	24.5760MHz Master Clock
SW20	SW20	Open	The master clock for the Q5- EVB will be sourced from an
	SW24	Closed	on board oscillator

Table 15: Master clock selection.

Note		
<u>i</u>	Supported Clock Frequencies : The current version of the Q5 module only supports a master clock of 24.5760MHz	

3.14 Audio Input Data Format

The Q5-EVB has the possibility to interface with the Q5 module in a variety of standard audio formats for both input and output audio streams. Selection of the audio format is carried out by the audio format jumpers.

Audio Input Data Jumper	Number	State	Mode
	SW13	Closed	Right Justified
SW17	SW17	Open	Audio stream input to module in right justified format.
SW21	SW21	Open	Warning this format is NOT
SW25	SW25	Open	wet supported by the Q5 module.
SW13	SW13	Open	Left Justified
	SW17	Closed	Audio stream input to module in left justified format.
SW21	SW21	Open	Warning this format is NOT
SW25	SW25	Open	wet supported by the Q5 module.
SW13	SW13	Open	
SW17	SW17	Open	Philips I2S
	SW21	Closed	in Philips I2S format.
SW25	SW25	Open	
SW13	SW13	Open	
SW17	SW17	Open	DSD 2 Channel
SW21	SW21	Open	in 2 channel DSD format.
	SW25	Closed	

 Table 16: Audio input data format selections.

Note

Supported Input Data Formats: The current version of the Q5 module only supports stereo I2S and DSD data formats.

3.15 Audio Output Data Format & Frequency

The output data format of the Q5 module supports three standard audio formats as well as three frequencies related to FS as described in Table 17: Audio output data format selections.

Audio Output Data Jumper	Number	State	Mode
	SW14	Closed	Philips I2S
SW18	SW18	Open	Audio stream output from
SW22	SW22	Open	module in Philips I2S format.
SW14 SW22	SW14	Open	Left Justified Audio stream output from
	SW18	Closed	module in left justified format. Warning this format is NOT
	SW22	Open	yet supported by the Q5 module.
SW14	SW14	Open	Right Justified Audio stream output from
SW18	SW18	Open	format.
	SW22	Closed	yet supported by the Q5 module.

Table 17: Audio output data format selections.

Ratio Jumper	Number	State	Mode
	SW15	Closed	1xFS
SW19	SW19	Open	Output on TX0-Port is at
SW23	SW23	Open	1xFS sampling frequency.
SW15	SW15	Open	2xFS
	SW19	Closed	Output on TX0-Port is at
SW23	SW23	Open	2xFS sampling frequency.
SW15	SW15	Open	4xFS
SW19	SW19	Open	Output on TX0-Port is at
	SW23	Closed	4xFS sampling frequency.

Table 18: Audio output data frequency selections.

 Note

 Image: Description of the line linte line of the line line of the line linte line of t

3.16 Q5 Module Configuration

All Q5 modules can be configured via the jumpers available on the Q5-EVB. Configuration includes setting the output performance settings such as dithering, output word length, including audio data formats as described in the previous sections, such settings are standard across all Q5 module versions.

Output Word Length Jumper	Number	State	Mode
	SW10	Closed	16bit Output Wordlength
SW11 SW12	SW11	Open	Output on TX0-Port from Q5
	SW12	Open	module is 16bit.
	SW10	Open	20bit Output Wordlength
SW10 SW12	SW11	Closed	Output on TX0-Port from Q5
	SW12	Open	module is 20bit.
	SW10	Open	24bit Output Wordlength
SW10 SW11	SW11	Open	Output on TX0-Port from Q5
	SW12	Closed	module is 24bit.

 Table 19: Word length selection.

Note				
i	The output word length only applies to TX0-Port of the Q5 module. TX1-Port is configured according to the Q5 module data sheet.			

Dither Jumper	Number	State	Mode
SW 6	SW6	Open	No Dither Applied Output on TX0-Port from Q5
SW 9	SW9	Open	module does not have dither applied.
SW 6	SW6	Open	Trinangular PSD Dither Output on TX0-Port from Q5
	SW9	Closed	module has triangular dither applied.

Table 20: Dither selection.

Ratio Jumper	Number	State	Mode
SW 4	SW4	Open	1 Ratio
SW 7	SW7	Open	Specifies a standard 24.5760MHz clock is used.
SW 4	SW4	Open	2 Ratio Specifies a standard 22.5792kHz clock is used.
	SW7	Closed	Warning this ratio is NOT yet supported by the Q5 module.

Table 21: Standard clock selection.

OWW jumper	Number	State	Mode
SW 5	SW5	Open	Not implemented.
SW 8	SW8	Open	Reserved for futur use.

Table 22: OWW selection.

	Note
<u>l</u>	The clock ratio 2 is not yet supported by the Q5 module.

4 How-to Guide

This chapter gives instructions on how to perform advanced tasks with the Q5-EVB.

4.1 Recommended Test Setup

In order to be able to evaluate the performance of Q5 module, we suggest to set the Q5-EVB according to "Standard Q5 Module Setup" (see §4.2 hereafter). It is recommended to wire the Q5-EVB as described in Figure 4 or Figure 5.

Figure 4: Test setup for performance measurement.

Figure 5: Test setup for audio listening.

4.2 Standard Q5 Module Setup

4.2.1 Functional Mode

This is the standard mode with the default factory setting (default jumper setting see § 2.4). The audio signal is entered into the S/PDIF IN input connector to be decoded by the digital receiver (CS8416). The audio is then transmitted to the Q5 module according to the I2S stream. The Q5 module processes the audio data such that the output data is perfectly synchronized with the low jitter reference clock working at 24.5760MHz. The audio data generated by the Q5 module is in I2S format sampled at 24bit / 48kHz. Finally the digital transmitter (DIT4192) is switched ON and delivers an audio signal through the S/PDIF OUT connector. The block diagram hereafter shows the audio data flow.

Figure 6: Standard setup functional block diagram.

No signal of any kind has to be provided on the EXT DIGITAL IN. On the other hand, the DIGITAL OUT2 can be used to interface custom audio hardware like high performance DACs. The output data format is the same as the Q5 module output, namely, I2S format working on 24bit at 48kHz.

4.2.2 Configuration

Please refer to the diagram below for the standard jumper setting

The jumper setting is as following:

SW 2 is ON: The S/PDIF Receiver is enabled.

SW12 is ON: The word length outputs on TX0-port from Q5 module is 24bit.

SW13 is ON: The audio stream input to Q5 module is Philips I2S format.

SW14 is ON: The audio stream output from Q5 module is Philips I2S format.

- SW15 is ON: The sampling frequency ratio output from Q5 module is 1xFs.
- SW24 is ON: The master clock for Q5-EVB (DSS™ Synchronization system) is 24.5760MHz.

All other jumpers are OFF (open) which results in the following:

- No dither applied.
- 24.5760MHz is the standard clock for the Q5 module.
- Q5 module not bypassed.

4.3 Connecting an external master clock

4.3.1 Functional description

The Q5-EVB gives the possibility to connect an external master clock through the EXT-MCLK BNC, therefore the whole board will be driven using that clock including DSP, receiver, transmitter except the MCU which is always clocked by the onboard oscillator. Please note that the board can not be used as a master clock source using this BNC connection due to high performance one way buffers used. Currently the Q5 module only supports a 24.5760MHz clock source.

In the block diagram hereafter, an example of configuration is presented where the whole board is clock by an external master clock. In that example, we enter the audio through the digital receiver and output through the digital transmitter but any other configuration is acceptable.

Figure 8: External master clock functional description.

4.3.2 Configuration

In order to make the Q5-EVB work correctly with an external master clock the external clock signal is supplied through the BNC connector call "EXT-MCLK" (see Figure 9: External master clock board configuration) and the corresponding jumpers must be correctly set. The impedance of the clock source cable has to be 75Ω .

Figure 9: External master clock board configuration.

SW16 is ON: The master clock for Q5-EVB (DSS[™] Synchronization system) is supplied through the "EXT-MCLK" connector.

All remaining jumpers can be configured according to the desired setting.

4.4 Connecting an External PCM Audio Source

4.4.1 Functional mode

An external PCM audio data source can be directly connected to the Q5 module via the RX0 port. In this mode the digital receiver audio stream is disabled and the external data format is configured via the audio interface jumpers. The master clock can come from both, external or internal source.

Figure 10 External PCM functional description.

Configuration

Please refer to the diagram below for the standard jumper setting. On the other hand, the RX0-Port pin description can be found in the § 3.4.

Figure 11: External PCM Audio Source board configuration.

The jumper setting is as following:

SW 2 is OFF: The S/PDIF Receiver is disabled. SW13 on: I2S input format selected. SW17, SW21, SW25 off.

All remaining jumpers can be configured according to the desired setting. In the above example the configuration is as following:

- The audio stream output from Q5 module is Philips I2S format.
- The sampling frequency ratio output from Q5 module is 1xFs.
- No dither applied.
- The master clock for Q5-EVB (DSS[™] Synchronization system) is 24.5760MHz.

Caution

DO NOT Plug connector on RX0-port before having removed jumper SW2. Otherwise electrical damage may occur.

4.5 Connecting an External DSD Audio Source

4.5.1 Functional mode

The Q5 module accepts a Direct Stream Digital (DSD) audio stream at 2.8224MHz as input audio source. The Q5 Module converts the DSD data to PCM format using Anagram's DSF[™] Filtering, then standard PCM audio processing techniques are applied to the input audio. In DSD mode, the digital receiver audio stream is disabled. The master clock can come from both, external or internal source.

Figure 12 External DSD functional description.

Configuration

Please refer to the diagram below for the standard jumper setting. The RX0-Port pin description can be found in the § 3.4.

Figure 13: External DSD Audio Source board configuration.

The jumper setting is as following:

SW2 is OFF: The S/PDIF Receiver is disabled. SW25: DSD input format selected. SW13, SW17, SW21 off.

All remaining jumpers related to the master clock and to the output rate, format, dithering, word length, can be set as preferred. In the example of Figure 13, the settings selected are:

- The audio stream output from Q5 module is Philips I2S format.
- The sampling frequency ratio output from Q5 module is 1xFs.

Caution

- No dither applied.
- The master clock for Q5-EVB (DSS[™] Synchronization system) is 24.5760MHz.

DO NOT Plug connector on RX0-port before having removed jumper SW2. Otherwise electrical damage may occur.

5 Schematics and Bill of Materials

This chapter provides the electrical and physical layout information for the Q5-EVB. The bill of materials is included for component and manufacturer reference.

5.1 Physical Dimensions

The Q5-EVB dimensions adhere to the standard European board size 127 x 180mm as shown in Figure 14: Evaluation board physical dimension. The maximum height of board with all components mounted is 32mm.

Figure 14: Evaluation board physical dimension.

5.2 Schematic

The complete electrical schematics of for the Q5-EVB are shown in Figure 15, Figure 16, Figure 17, and Figure 18

Figure 15: Digital Audio Schematics-1.

Figure 16: MCU & Clock circuitry schematics-2.

Figure 17: Power Supply schematics-3.

Figure 18: Layout Silk Screen schem-4.

Figure 19: Layout TOP schem-5.

Figure 20: Layout BOTTOM schem-6.

5.3 Bill of Materials

Item	Quantity	Designator TAG	Part	Footprint	Part ID
1	17	C1,C2,C3,C4,C5,C6,C7,C8,	100nF	SM/C_1206	76
		C9,C10,C13,C14,C21,C22,			
		C23,C28,C29			
2	3	C11,C12,C19	10nF	SM/C_1206	80
3	4	C15,C16,C17,C20	470uF/50V low-ES	SR C_D13	274
4	1	C18	10uF/50V	C_D5	72
5	4	C24,C25,C26,C27	10uF	SM/C_1206	298
6	1	D1	10BQ040	SMD/D	237
7	10	D2,D5,D6,D7,D8,D9,D10,	LED 1206	SM/C_1206	342
		D11,D12,D13			
8	1	D3	BAS16	SOT23_123	183
9	1	D4	MBR745	TO220AC	152
10	3	J1,J2,J4	IDC 2x5P	IDC10P	10
11	2	J3,J5	RCA PCB	RCA_PCB	339
12	1	J6	Barrette 6P	M20_6P	16
13	4	J7,J9,J10,J11	IDC 2x10P	IDC20P	279
14	1	J8	CONN BNC	BNC	346
15	2	L2,L1	47uH	SELF_D8	185
16	2	L3,L4	47uH	SM/L_1812	66
17	1	MD1	Module BF532	MODULE_A	341
18					
19	20	R1,R2,R3,R4,R10,R12,R23,	10K	SM/R_1206	102
		R25,R26,R27,R28,R29,R33,			
		R34,R36,R40,R51,R52,R55,			
		R56			
20	1	R5	470R	SM/R_1206	91
21	13	R6,R7,R8,R9,R13,R14,R15,	100R	SM/R_1206	136
		R16,R17,R18,R19,R20,R22			
22	2	R24,R11	2K7	SM/R_1206	106
23	1	R21	300R	SM/R_1206	92
24	13	R30,R31,R32,R38,R41,R42,	0R0	SM/R_1206	347
		R43,R44,R45,R46,R47,R50,			
		R54			
25	1	R35	75R	SM/R_1206	97
26	3	R37,R48,R57	1K	SM/R_1206	95
27	1	R39	390R	SM/R_1206	99
28	2	R49,R53	4x47R	1206_NETWORK	323

29	21	R58,R59,R62,R63,R64,R65, R66,R67,R68,R69,R70,R72, R73,R74,R84,R85,R86,R87,	4K7	SM/R_1206	110
20	4	R88,R89,R90	4:4000		220
30	1		4X100R	1206_NETWORK	329
31	11	R61,R71,R75,R76,R77,R78,	47R	SM/R_1206	93
		R79,R80,R81,R82,R83			
32	1	SW1	RESET SW	SWITCH_FAV	258
33	24	SW2,SW3,SW4,SW5,SW6,SW7,	Switch	M20_2P	135
		SW8,SW9,SW10,SW11,SW12,			
		SW13,SW14,SW15,SW16,SW17,			
		SW18,SW19,SW20,SW21,SW22,			
		SW23,SW24,SW25			
34					
35					
55	2	T2,T1	PULSE	TRANSFO_PULSE	245
36	2 1	T2,T1 U1	PULSE DIT4192	TRANSFO_PULSE SSOP28	245 41
36 37	2 1 1	T2,T1 U1 U2	PULSE DIT4192 CS8416	TRANSFO_PULSE SSOP28 TSSOP28	245 41 316
36 37 38	2 1 1 1 1	T2,T1 U1 U2 U3	PULSE DIT4192 CS8416 LM2672M-5.0	TRANSFO_PULSE SSOP28 TSSOP28 SOIC8	245 41 316 271
36 37 38 39	2 1 1 1 1 1	T2,T1 U1 U2 U3 U4	PULSE DIT4192 CS8416 LM2672M-5.0 DC Jack	TRANSFO_PULSE SSOP28 TSSOP28 SOIC8 DC JACK	245 41 316 271 277
36 37 38 39 40	2 1 1 1 1 1 1	T2,T1 U1 U2 U3 U4 U5	PULSE DIT4192 CS8416 LM2672M-5.0 DC Jack MAX4624	TRANSFO_PULSE SSOP28 TSSOP28 SOIC8 DC JACK SOT23_6	245 41 316 271 277 348
36 37 38 39 40 41	2 1 1 1 1 1 1 1	T2,T1 U1 U2 U3 U4 U5 U6	PULSE DIT4192 CS8416 LM2672M-5.0 DC Jack MAX4624 LM2676T-3.3	TRANSFO_PULSE SSOP28 TSSOP28 SOIC8 DC JACK SOT23_6 TO220-7	245 41 316 271 277 348 343
36 37 38 39 40 41 42	2 1 1 1 1 1 1 1 1 1	T2,T1 U1 U2 U3 U4 U5 U6 U7	PULSE DIT4192 CS8416 LM2672M-5.0 DC Jack MAX4624 LM2676T-3.3 74LCX244	TRANSFO_PULSE SSOP28 TSSOP28 SOIC8 DC JACK SOT23_6 TO220-7 TSSOP20	245 41 316 271 277 348 343 242
36 37 38 39 40 41 42 43	2 1 1 1 1 1 1 1 1 1	T2,T1 U1 U2 U3 U4 U5 U6 U7 U8	PULSE DIT4192 CS8416 LM2672M-5.0 DC Jack MAX4624 LM2676T-3.3 74LCX244 PIC18F8722	TRANSFO_PULSE SSOP28 TSSOP28 SOIC8 DC JACK SOT23_6 TO220-7 TSSOP20 TQFP80	245 41 316 271 277 348 343 242 282
36 37 38 39 40 41 42 43 44	2 1 1 1 1 1 1 1 1 1 1 1	T2,T1 U1 U2 U3 U4 U5 U6 U7 U8 Y1	PULSE DIT4192 CS8416 LM2672M-5.0 DC Jack MAX4624 LM2676T-3.3 74LCX244 PIC18F8722 24.5760MHz (3.3V)	TRANSFO_PULSE SSOP28 TSSOP28 SOIC8 DC JACK SOT23_6 TO220-7 TSSOP20 TQFP80 OSC14\4P	245 41 316 271 277 348 343 242 282 351

Figure 21: Evaluation board bill of materials.