

Ecole Nationale d’ingénieurs de Tarbes - France

2011-2012

European Project Semester

“Multilevel Inverter”
EPS

Javier Pérez Germán

2

INDEX

1. INTRODUCTION Page numbers:

1.1 Primes 3

1.2 Original assignment from Enit 4

1.3 Clients and requirements 6

1.4 Scope 6

2. POWER MODULE

2.1 Research information 7

2.2 State of art 9

2.3 Choose the structure 13

2.4 Choose the components 16

2.5 Simulation circuit in PSIM software 18

2.6 Design the circuit to print circuit board 19

2.7 Ensemble the power components 21

2.8 Power Tests 22

3. CONTROL MODULE

3.1 Research information 23

3.2 Accommodate values 26

3.3 Chose components 27

3.4 Acquire software 27

3.5 Designing and testing the C Software 28

4. COOLING MODULE

4.1. Why do we need a cooling system? 34

4.2. Finding the right components 35

4.3. Calculations of the Thermal Resistance 36

4.4. Modelling 38

4.5. Prototype 39

5. MECHANICAL MODULE

5.1 Research information 40

5.2 State of art 40

5.3 Choose materials 41

5.4 Choose the components 41

5.5 Define the final frame 42

5.6 Make a 3D model 42

5.7 Build the frame 43

6. MANAGEMENT

6.1 Define Phases and tasks 44

6.2 Define deliverables and assign them to the tasks 45

6.3 Define Milestones 45

6.4 Assign the dates and resources to the tasks 45

6.5 Risks 45

6.6 Get the results 46

7. CONCLUSION 48

8. BIBLIOGRAPHY 49

9. Appendix 50

3

1. INTRODUCTION

1.1 Primes

1.2 Original assignment from Enit

1.3 Clients and requirements

1.4 Scope

1.1 PRIMES

This report is about the current progress made by the Primes Project Group consisting

of:

• Alex van den Biggelaar

• Javier Pérez

• Diana Sant Hernando

• Mateu Vallès Gómez

Our technical supervisor is Mr. Paul Vidal and our management supervisor is Mr.

Thierry Desmaison.

This project is given by us from the ENIT in collaboration with the Primes Group. The

ENIT is short for Ecole Nationale d’Ingénieurs du Tarbes, France. In Tarbes the

university is located and so is our office and laboratory. The Primes Group is a platform

of different companies that have similar business interests and more or less exchange

their resources to improve the sector.

1.2 ORIGINAL ASSIGNMENT FROM ENIT

Project dates: October – February 2011

Title: Multilevel inverter

Project activity areas

Power Electronics

Tutor’s name and coordinates

Industrial tutor : To be defined

ENIT Supervisor : Paul-Etienne VIDAL

Paul-etienne.vidal@enit.fr

Project technical background:

The PRIMES laboratory is a common platform shared by academics and

power electronics problems such as high temperature packaging or power electronics reliability.

Because of its new development, new equipments have to be defined.

In the field of power electronics, a multilevel inverter has to be desi

The main objective of this EPS project is to design the multilevel inverter. Some tasks could be :

1. Choice of the power converter architecture,

2. Simulation of the system,

3. Choice of components,

4. Prototype,

ORIGINAL ASSIGNMENT FROM ENIT

European Project Semester

PROJECT OUTLINE

February 2011

Subjects

Static converter, multilevel inverter,

prototyping

Tutor’s name and coordinates

Industrial tutor : To be defined

Etienne VIDAL

etienne.vidal@enit.fr

Project origin

To be defined

Project technical background:

The PRIMES laboratory is a common platform shared by academics and

power electronics problems such as high temperature packaging or power electronics reliability.

Because of its new development, new equipments have to be defined.

In the field of power electronics, a multilevel inverter has to be designed.

The main objective of this EPS project is to design the multilevel inverter. Some tasks could be :

Choice of the power converter architecture,

Simulation of the system,

Choice of components,

4

Static converter, multilevel inverter,

The PRIMES laboratory is a common platform shared by academics and industrialists around

power electronics problems such as high temperature packaging or power electronics reliability.

Because of its new development, new equipments have to be defined.

gned.

The main objective of this EPS project is to design the multilevel inverter. Some tasks could be :

5

Project dates: October – February 2011

Title: Multilevel inverter

Project activity areas

Power Electronics

Subjects

Static converter, multilevel inverter,

prototyping

This subject will take place inside the PRIMES laboratory.

Study topics :

The following topics may be treated within the project :

• Power electronics

• Simulation,

• Industrial informatics, microcontroller.

6

1.3 CLIENTS AND REQUIREMENTS

Our clients are the ENIT and the Primes Group, they require a prototype of a 1kV*A

multilevel inverter. And with the prototype they require a datasheet and manual. And

the ENIT requires two written reports and two presentations.

1.4 SCOPE

After knowing the requirements from our clients we started to work out what the

requirements meant for us. We figured out that we have to produce a 1kV*A

multilevel inverter, that has 100V input, that is provided by the ENIT, and a load that

can conduct 10A, also provided by the ENIT.

Our responsibilities lie with producing an operational rectifying electronic structure

that can dissipate its own heat, have an external control module to create the

sinusoidal wave output, and all of this should fits in a box so that is a one piece

prototype.

Our starting budget is €300,- for the parts and assembly.

This is the final report, after sixteen weeks of working on the project in this document

you will find all the information about every phase. Along with this document go the

user manual, the data sheet and the appendix where you could find all specific

information about primes project group.

2. POWER MODULE

2.1 Research information

2.2 State of art

2.3 Choose the structure

2.4 Choose the components

2.5 Simulation circuit in PSIM

2.6 Design the circuit to

2.7 Print the Circuit board

2.8 ensemble the power components

2.9 Power Tests

2.1 RESEARCH INFORMATION

What is an inverter? And a multilevel inverter? (in power electronics)

We are starting explain what is a DC current

charge. It is produced by such sources as

commutator-type electric machines of the

Direct current may flow in a

through semiconductors, insulators

beams. The electric charge

And the alternative current t

direction. AC is the form in which

residences.

The usual waveform of an AC power

different waveforms are used, such as

An inverter is an electrical device that converts

current (AC); the converted AC can be at any required voltage and frequency with the

use of appropriate transformers

Summary of types:

• Modified sine wave:

o Similar to a squa

or negative.

o Simple and low cost

o Not compatible with sensitive or specialized equipment

2.1 Research information

2.3 Choose the structure

2.4 Choose the components

2.5 Simulation circuit in PSIM software

the circuit to print circuit board

Print the Circuit board

2.8 ensemble the power components

2.1 RESEARCH INFORMATION

What is an inverter? And a multilevel inverter? (in power electronics)

hat is a DC current. This is the unidirectional flow of

is produced by such sources as batteries, thermocouples,

type electric machines of the dynamo type.

Direct current may flow in a conductor such as a wire, but can also flow

insulators, or even through a vacuum as in

electric charge flows in a constant direction.

And the alternative current the movement of electric charge periodically reverses

direction. AC is the form in which electric power is delivered to businesses and

AC power circuit is a sine wave. In certain applications,

different waveforms are used, such as triangular or square waves.

electrical device that converts direct current (DC) to

rted AC can be at any required voltage and frequency with the

transformers, switching, and control circuits.

Modified sine wave:

Similar to a square wave output but the output goes switching positive

or negative.

Simple and low cost

Not compatible with sensitive or specialized equipment

7

What is an inverter? And a multilevel inverter? (in power electronics)

the unidirectional flow of electric

, solar cells, and

such as a wire, but can also flow

 electron or ion

periodically reverses

is delivered to businesses and

applications,

(DC) to alternating

rted AC can be at any required voltage and frequency with the

re wave output but the output goes switching positive

Not compatible with sensitive or specialized equipment

8

o Efficiency 80%

• Pure sine wave:

o Produces a nearly perfect sine wave output (<3% total harmonic

distortion)

o Complex and costs

o Compatible with all AC electronic devices

• Grid tie inverter:

o It is a sine wave inverter designed to inject electricity into the electric

power distribution system.

Inverter Applications:

• DC power source utilization: DC->AC, micro-inverters (solar panels into AC for

the electric grid)

• Uninterruptible power supplies (UPS): Uses batteries (rectifier supplies DC

power to recharge it) and inverter to supply AC power

• Induction heating: Inverters convert low frequency main AC power to higher

frequency for use in induction heating. Method AC->DC->AC.

• HVDC power transmission

• Variable-frequency drives

• Electric vehicle drives

• Air conditioning

• The general case

What does multilevel mean?

Multilevel means that the inverter has more than one group of switches.

Provide another approach to harmonic cancellation.

Provide an output waveform that exhibits multiple steps at several voltage levels

Example of a multilevel inverter:

9

2.2 STATE OF THE ART

For the state of the art we looked for the main multilevel topologies in the industry

and these are classified into three categories: diode clamped inverters, flying capacitor

inverters, and cascaded inverters. After these, other structures can be derived.

We describe them writing the point out good and bad of such structure and de

possible applications.

Note that the different structures can be implemented for rectifying operation as well.

a) Cascaded H-bridges converter with separate dc sources.

Each inverter level can generate three different voltage outputs, +Vdc, 0, and –Vdc by

different combinations of the four switches, S1, S2, S3, and S4.

The number of output phase voltage levels m in a cascade inverter is m = 2s+1, where s

is the number of separate dc sources.

Advantages:

• The number of possible output voltage levels is more than twice the number of

dc sources (m= 2s+1).

• The series of H-bridges makes for modularized layout and packaging. This will

enable the manufacturing process to be done more quickly and cheaply.

Disadvantages:

• Separate dc sources are required for each of the H-bridges. This will limit its

application to products that already have multiple SDCSs readily available.

Applications:

• Static var generation

• Interface with renewable energy sources

• Battery-based applications

b) Diode clamped inverte

A single-phase six-level diode

Each of the two phases of the inverter shares a common dc bus, which has been

subdivided by five capacitors into six levels.

The voltage across each capacitor is Vdc.

device is limited to Vdc through the clamping diodes.

Table 31.1 lists the output voltage levels possible for one phase of the

negative dc rail voltage V0 as a reference. (State condition 1 means the switch is on,

and 0 means the switch is off.)

Each phase has five complementary switch pairs such that turning on one of the

switches of the pair require

phase leg “a” are (Sa1, Sa’1), (Sa2, Sa’2), (Sa3, Sa’3), (Sa4, Sa’4), and (Sa5, Sa’5).

Figure 31.3 Diode clamped inverter topology

inverter topology.

level diode-clamped inverter is shown in following figure.

Each of the two phases of the inverter shares a common dc bus, which has been

subdivided by five capacitors into six levels.

capacitor is Vdc. The voltage stress across each switching

device is limited to Vdc through the clamping diodes.

Table 31.1 lists the output voltage levels possible for one phase of the inverter with the

negative dc rail voltage V0 as a reference. (State condition 1 means the switch is on,

and 0 means the switch is off.)

Each phase has five complementary switch pairs such that turning on one of the

require that the other complementary switch be turned off.

phase leg “a” are (Sa1, Sa’1), (Sa2, Sa’2), (Sa3, Sa’3), (Sa4, Sa’4), and (Sa5, Sa’5).

Figure 31.3 Diode clamped inverter topology

10

clamped inverter is shown in following figure.

Each of the two phases of the inverter shares a common dc bus, which has been

The voltage stress across each switching

inverter with the

negative dc rail voltage V0 as a reference. (State condition 1 means the switch is on,

Each phase has five complementary switch pairs such that turning on one of the

ther complementary switch be turned off. For

phase leg “a” are (Sa1, Sa’1), (Sa2, Sa’2), (Sa3, Sa’3), (Sa4, Sa’4), and (Sa5, Sa’5).

11

The Figure 31.6 shows one of the two line-line voltage waveforms for a six-level

inverter. The line voltage Vab consists of a phase-leg a voltage and a phase-leg b

voltage.

The resulting line voltage is an 11-level staircase waveform.

Each active switching device is required to block only a voltage level of Vdc,

the clamping diodes require different ratings for reverse voltage blocking. As an

example, when all the lower switches Sa’1 through Sa’5 are turned on, D4 must block

four voltage levels, or 4Vdc. Similarly, D3 must block 3Vdc, D2 must block 2Vdc, and D1

must block Vdc. If each blocking diode has the same voltage rating as the active

switches, Dn will require n diodes in series.

Advantages:

• All of the phases share a common dc bus, which minimizes the capacitance

requirements of the converter. For this reason, a back-to-back topology is not

only possible but also practical for uses such as a high-voltage back-to-back

inter-connection or an adjustable speed drive.

• The capacitors can be pre-charged as a group.

• Efficiency is high for fundamental frequency switching.

Disadvantages:

• Real power flow is difficult for a single inverter because the intermediate dc

levels will tend to overcharge or discharge without precise monitoring and

control.

• The number of clamping diodes required is quadratically related to the number

of levels, which can be cumbersome for units with a high number of levels.

Applications:

• As static var compensation,

• High-voltage system interconnections

• As an interface between a high-voltage dc transmission line and an ac

transmission line

• As a variable speed drive for high-power medium-voltage (2.4 kV to 13.8 kV)

motors

c) Flying capacitors

In a few words to flying capacitors inverter is to say that is the main components after

the triacs are the capacitors as you can see in the figure 31.7.

Advantages:

• It has redundancies for inner voltage levels. (two or more valid switch

combinations can synthesize an

the combinations)

• The flying-capacitor inverter does not require all of the switches that are on

(conducting) be in a consecutive series.

• The flying-capacitor inverter has phase redundancies, whereas the dio

clamped inverter has only line

choice of charging/discharging specific capacitors and can be incorporated in

the control system for balancing the voltages across the various levels.

• Phase redundancies are av

capacitors.

• The large number of capacitors enables the inverter to ride through short

duration outages and deep voltage sags.

Disadvantages:

• Control is complicated to track the voltage levels for all of t

precharging all of the capacitors to the same voltage level and startup are

complex.

• Switching utilization and efficiency are poor for real power transmission.

• The large numbers of capacitors are both more expensive and bulky than

clamping diodes in multilevel diode

difficult in inverters with a high number of levels.

Applications:

• static var generation

o flying capacitors inverter is to say that is the main components after

the triacs are the capacitors as you can see in the figure 31.7.

It has redundancies for inner voltage levels. (two or more valid switch

combinations can synthesize an output voltage, in the table shows a list of all

capacitor inverter does not require all of the switches that are on

(conducting) be in a consecutive series.

capacitor inverter has phase redundancies, whereas the dio

clamped inverter has only line-line redundancies. These redundancies allow a

choice of charging/discharging specific capacitors and can be incorporated in

the control system for balancing the voltages across the various levels.

Phase redundancies are available for balancing the voltage levels of the

The large number of capacitors enables the inverter to ride through short

duration outages and deep voltage sags.

Control is complicated to track the voltage levels for all of the capacitors. Also,

precharging all of the capacitors to the same voltage level and startup are

Switching utilization and efficiency are poor for real power transmission.

The large numbers of capacitors are both more expensive and bulky than

amping diodes in multilevel diode-clamped converters. Packaging is also more

difficult in inverters with a high number of levels.

static var generation

12

o flying capacitors inverter is to say that is the main components after

It has redundancies for inner voltage levels. (two or more valid switch

output voltage, in the table shows a list of all

capacitor inverter does not require all of the switches that are on

capacitor inverter has phase redundancies, whereas the diode-

line redundancies. These redundancies allow a

choice of charging/discharging specific capacitors and can be incorporated in

the control system for balancing the voltages across the various levels.

ailable for balancing the voltage levels of the

The large number of capacitors enables the inverter to ride through short

he capacitors. Also,

precharging all of the capacitors to the same voltage level and startup are

Switching utilization and efficiency are poor for real power transmission.

The large numbers of capacitors are both more expensive and bulky than

clamped converters. Packaging is also more

13

2.3 CHOOSE THE STRUCTURE

The main multilevel topologies have been classified into three categories: diode

clamped inverters, flying capacitor inverters, and cascaded inverters as we have

mention in the point 2.2. In a three-phase inverter system, the number of main

switches of each topology is equal. Comparing with the number of other components,

for example, clamping diodes and dc-link capacitors having the same capacity per unit,

diode clamped inverters have the least number of capacitors among the three types

but require additional clamping diodes. Flying capacitor inverters need the most

number of capacitors. And cascaded inverters are considered as having the simplest

structure but with more cost.

For that characteristic we decided to use a diode clamped structure.

Analyzing the topology chosen:

The general structure of the multilevel inverter is to synthesize a sinusoidal voltage

from several levels of voltages, typically obtained from capacitor voltage sources. The

so-called “multilevel” starts from three levels. A three-level inverter, also known as a

“neutral-clamped” inverter, consists of two capacitor voltages in series and uses the

centre tap as the neutral. Each phase leg of the three-level inverter has two pairs of

switching devices in series. The centre of each device pair is clamped to the neutral

through clamping diodes, see figure 5.1.

Figure 5.1. PSIM Simulation of three level diode clamped

The diode clamped inverter, particularly the three-level of this project, has drawn

much interest in motor drive applications because it needs only one common voltage

source. Also, simple and efficient PWM algorithms have been developed for it, even if

it has inherent unbalanced dc-link capacitor voltage problem.

Considering the trade-offs between the number of levels and the voltage rating of the

devices will generally lead the designer to choose an appropriate value for each.

14

Considering the three-level converter in Figure 5.3, connected to voltage level V1 are

the anode of D1 and the cathode of D2. D1 must be able to block Vdc, and D2 must

block Vdc; the sum of their voltage blocking capabilities is 2Vdc.

Figure 5.3. Three-level converter.

Therefore, the total voltage blocking capability per phase of an m-level converter is

(m-2)(m-1)Vdc=2Vdc as you can see in table 5.1.

Table 5.1. Diode-clamped three level inverter voltage levels and corresponding switch

states

- The nominal RMS voltage rating, Vnom, of the electrical system to which the diode

clamped power conditioner will be connected. The dc link voltage must be at least as

high as the amplitude of the nominal line-neutral voltage at the point of connection,

√2Vnom.

- Increasing the number of levels does not affect the total voltage blocking capability of

the active devices in each phase leg because lower device ratings can be used.

Some of the benefits of using more than the minimum required number of levels in a

diode clamped inverter are as follows:

1. Voltage stress across each device is lower. Both active devices and dc link

capacitors could be used that have lower voltage ratings (which sometimes are

much cheaper and have greater availability).

2. The inverter will have a lower EMI because the dV/dt during each switching will

be lower.

15

3. The output of the waveform will have more steps, or degrees of freedom,

which enables the output waveform to more closely track a reference

waveform.

4. Lower individual device switching frequency will achieve the same results as an

inverter with a fewer number of levels and higher device switching frequency.

Or the switching frequency can be kept the same as that in an inverter with a

fewer number of levels to achieve a better waveform.

The drawbacks of using more than the required minimum number of levels are as

follows:

1. Six active device control signals (one for each phase of the parallel inverter and

the series inverter) are needed for each hardware level of the inverter – i.e.,

6(m-1) control signals. Additional levels require more computational resources

and add complexity to the control.

2. If the blocking diodes used in the inverter have the same rating as the active

devices, their number increases dramatically because 6(m-2)(m-1) diodes

would be required for the back-to-back structure.

16

2.4 CHOOSE THE COMPONENTS

Specifications:

Our inverter should switch 100V max and 10A maximal output current. The power

inverter is 1kVA.

Components of the power electronics:

- Mosfets

- Clamping Diodes

- Power electrical Wires

- Connectors

- Current sensor

- Protector devices (input fuse)

How we have calculated high power components:

� Mosfets.

We know that the voltage is 100V and the current will be 10A, we decided to

use two parallel mosfet to divide the power dissipation to comply with safety

regulations and we find a mosfet n.channel logic FET with 12A and 100V.

Component Code

Mosfet

295-703

RFP12N10L 12A

100V

� Number of levels and voltage rating of active devices.

V��� = 100V

V�	
��		
������

∙ �m − 1� ≥ V��� ∙ D�	����	
������

= 100V	 ∙ 1.5 = 150V

150V

	V���
= 1.5	levels	of	voltage

We have decided to use three levels for the specifications and we can see the

calculus look us that is enough.

17

-Increasing the number of levels does not affect the total voltage blocking capability

of the active devices in each phase leg because lower device ratings can be used.

Some of the benefits of using more than the minimum required number of levels in

a diode clamped inverter are as follows:

1. Voltage stress across each device is lower. Both active devices and dc link capacitors

could be used that have lower voltage ratings (which sometimes are much cheaper

and have greater availability).

2. The inverter will have a lower EMI because the dV/dt during each switching will be

lower.

3. The output of the waveform will have more steps, or degrees of freedom, which

enables the output waveform to more closely track a reference waveform.

4. Lower individual device switching frequency will achieve the same results as an

inverter with a fewer number of levels and higher device switching frequency. Or

the switching frequency can be kept the same as that in an inverter with a fewer

number of levels to achieve a better waveform.

The drawbacks of using more than the required minimum number of levels are

as follows:

1. Six active device control signals (one for each phase of the parallel inverter and the

series inverter) are needed for each hardware level of the inverter – i.e., 6�(m-1)

control signals. Additional levels require more computational resources and add

complexity to the control.

2. If the blocking diodes used in the inverter have the same rating as the active devices,

their number increases dramatically because 6�(m-2)�(m-1) diodes would be

required for the back-to-back structure.

� Number and voltage rating of clamping diodes.

�m − 1� ∙ �m − 2� Clamping diodes are required for an m-level converter with

the same voltage rating as the active devices.

D2 must block 2Vdc

D1 must block 1Vdc

V�'��(
����'

= 1leg ∙ �m − 2� ∙ �m − 1� ∙ V�� = 2 ∙ V�� = 2 ∙ 75V = 150V

Per unit

Voltage

Rating

Blocking

Voltage Required

Voltage Rating

of Diode Used

Nº Diodes

Per leg

1Vdc 75V 75V 1

2Vdc 150V 75V 2

 Total: 3

18

� Power electrical Wires.

The normative Electricity of France recommend the following table:

1.5mm 10A

2.5mm 15A

4mm 20A

6mm 25A

With 5A/mm2 will be enough chosen 4mm of section.

APPLICATIONS:

• Motor drive

2.5 Simulation circuit in PSIM software

Thanks to this software can try to do different tests to validate the prototype.

In the following figure 2.51 you can see a structure using a three level diode clamped.

Figure 2.51 Three level diode clamped simulation in PSIM software.

19

The waveform obtained from a three-level inverter is a quasi-square wave output if

fundamental frequency switching is used as we can see in figure 2.52.

Figure 2.52 Output simulation of three level diode clamped inverter in PSIM software.

2.6 Design the circuit to Print the Circuit Board

You could start to design a power electronic circuit in several types of software.

Usually some people use to Pspice and Layout to find the PCB require but there

are a mount of them. A possibility that our supervisor give us was to use EAGLE

software to receive help in case necessary of the technician.

Have chosen Eagle software and after learn the running we work to achieve our

goal. In a first time we design the power circuit schematic. Four PCB and

routing them but before print them we won’t see necessary to do that and

decided make only one PCB for the control components with their supplies.

We explain a little bit this process although the correct place will be in the

control module but we decided put in the power module because the

responsible of this module was in charge of his building and assemble.

Follow you can see a bit pictures that explain this process.

First of all the schematic view (figure2.61.a) in eagle software and the board

view (figure2.61.b).

20

Figure 2.61 a. Schematic view and b. Board view.

Later the process to obtain the PCB, When the layout is done, the board layers

are printed onto special toner transfer paper with a laser printer.

This board "image" is transferred to the bare copper board with a laminating

machine, or a hot clothes iron. See figure 2.62.

Figure 2.62 Laminating machine.

After laminating, the board with the paper stuck to it is soaked to remove the

paper, leaving only the toner behind. See figure 2.63.

Figure 2.63 soak the PCB.

21

Above is a photo of the raw copper board with toner remaining, after the transfer

paper has been soaked off.

Inside the etch tank and after, the toner is removed with solvent and the board is

tinned using a soldering iron and a small piece of tinned solderwick. Tinning isn't

absolutely necessary but it improves the appearance of the board, and prevents the

copper from oxidizing before it's time to solder the parts to the board.

At this point, holes are drilled for our leaded components and mounting holes like you

can see in the picture 2.64.

Figure 2.64 Dilling PCB.

2.7 Ensemble the power components

To the ensemble the power components we didn’t use PCB. Instead of that we use

wires like show the following figure 2.71 to make the connections required.

Figure 2.71 Weling the mosfets.

22

And like a final view in figure 2.72.

Figure 2.72 Final view of the different connections.

But to ensemble the control components, regulators and the other component

necessary to have the correct supply we used the PCB design explained. Then I will

explain this process with a quick figures 2.73a, b and c where we can find the PCB

finished completly.

Figure 2.73 a. Weling components. b. Assembling board and c. Final view.

2.8 Power Tests

To realize the power tests would be necessary use simple software to make to run the

several mosfet that conform this module but this was not possible. Instead of that we

tested the joins and connections done and the Results of this have been POSITIVE.

For the other hand, we have done the test necessary to the PCB that follow and show

with pictures the results:

Input supply after the alternative wave transformer. Our value theorical was 18Vac

and the result is 17.291Vac. See figure 2.81.

23

Figure 2.81 Test AC supply voltage.

The second tests were the supply for the fans and the DSC outside of the prototype to

12Vdc like we can see in the measurements:

The third tests were for the supply for the optocouplers and drivers that need 5Vdc to

run normally:

And the last tests were for the current sensor supply to +15Vdc and -15Vdc and the

results were 14.73Vdc and -15.192Vdc respectively.

24

3. CONTROL MODULE

3.1 Research information

3.2 Accommodate values

3.3 Choose components

3.5 Acquire software

3.5 Design C module

3.6 Test modules

3.1 RESEARCH INFORMATION

To start the project the first step was to figure out what type of topology and structure

we were going to use as prototype. After the decision was made for the diode clamped

single phase structure I was able to start brainstorming for possibilities for controlling

the MOS-FET’s. This led to a few options like a microcontroller or a digital signal

processor. With the collaboration of Mr. Vidal we chose for a Digital Signal Controller

(DSC), which combines the strong points of the microcontroller and digital signal

processor. Below is the associated research document.

Choice of Digital Signal Processor

There are several types of controlling digital signals, with microcontrollers, with DSP

(Digital Signal Processing), DSC (Digital Signal Controller) and FPGA (Field-

Programmable-Gate-Array).

A microcontroller is basically a microprocessor, RAM and a clock

combined. So you could say it’s a small computer. It has also

various options for peripherals that a programmable so you could

design the function of the microcontroller with software.

Microcontrollers are often used in embedded systems.

DSP is usually to measure, filter and/or compress continuous real-time analog signals.

DSP is concerned about the processing of these signals. By sampling the signal it’s

converted from an analog to digital signal. After processing the signal, often times it

needs to be an analog signal again. So why would we use DSP? DSP provides many

advantages like: data compression, error detection and correction. The use of DSP has

a wide spectrum. New technologies have enabled to specify DSP to it use, such as a

more powerful general purpose, DSC.

DSC can be considered as an hybrid component. The DSC has both characteristics of

microcontrollers and DSP’s. Such as the microcontroller the DSC has fast interrupt

responses and offer control

DSC has got multiply-accumulate units (MAC). Multiply

these kinds of calculations:

A accumulator stores these results in a register instead of writing them in the memory,

which enables the clock frequency to be higher. The DSC are currently marketed as

green technologies for their potential to reduce power consumption in electric motors

and power supplies, which are the main targets for application of DSC’s.

FPGA’s are intergraded circuits that function as a “empty computer” for the customer.

You will buy the circuit and afterwards you are going to define and configure the

functions of the FPGA yourself. FPGA’s are commonly used when:

The software is too slow

I/O-interfaces

Signal processing

FPGA’s use logic blocks to define the function of one desired cycle. In such logic blocks,

as a designer state that e.g. the logic gate 1 and 2 are t

these logic blocks the designer can combine a very complex circuit of combinational

functions.

So at this point I knew that I have a DSC to control eight MOS

was to think of a secure way to led th

through comparing the start and end values of these components with the Power

Module we could start researching for securing the components. We focused on

optical isolation of the components because we were point

the associated research document.

Optical Isolation

Optocoupler

can be considered as an hybrid component. The DSC has both characteristics of

microcontrollers and DSP’s. Such as the microcontroller the DSC has fast interrupt

responses and offer control-oriented peripherals (PWM). More similar to the DSP, the

accumulate units (MAC). Multiply-accumulate units can perform

these kinds of calculations:

accumulator stores these results in a register instead of writing them in the memory,

which enables the clock frequency to be higher. The DSC are currently marketed as

green technologies for their potential to reduce power consumption in electric motors

nd power supplies, which are the main targets for application of DSC’s.

are intergraded circuits that function as a “empty computer” for the customer.

You will buy the circuit and afterwards you are going to define and configure the

he FPGA yourself. FPGA’s are commonly used when:

FPGA’s use logic blocks to define the function of one desired cycle. In such logic blocks,

as a designer state that e.g. the logic gate 1 and 2 are the inputs for the flip

these logic blocks the designer can combine a very complex circuit of combinational

So at this point I knew that I have a DSC to control eight MOS-FET’s. The following step

was to think of a secure way to led these components interact with each other. So

through comparing the start and end values of these components with the Power

Module we could start researching for securing the components. We focused on

optical isolation of the components because we were pointed in that direction. Below

the associated research document.

25

can be considered as an hybrid component. The DSC has both characteristics of

microcontrollers and DSP’s. Such as the microcontroller the DSC has fast interrupt

similar to the DSP, the

accumulate units can perform

accumulator stores these results in a register instead of writing them in the memory,

which enables the clock frequency to be higher. The DSC are currently marketed as

green technologies for their potential to reduce power consumption in electric motors

nd power supplies, which are the main targets for application of DSC’s.

are intergraded circuits that function as a “empty computer” for the customer.

You will buy the circuit and afterwards you are going to define and configure the

FPGA’s use logic blocks to define the function of one desired cycle. In such logic blocks,

he inputs for the flip-flop 3. In

these logic blocks the designer can combine a very complex circuit of combinational

FET’s. The following step

ese components interact with each other. So

through comparing the start and end values of these components with the Power

Module we could start researching for securing the components. We focused on

ed in that direction. Below

26

An optocoupler is an electronic device designed to transfer electrical signals by utilizing

light waves to provide coupling with electrical isolation between its input and output.

The main purpose of a optocoupler is to prevent high voltages or rapidly changing

voltages on one side of the circuit to damaging components or distorting transmissions

on the other side. The optocoupler consists out of an emitter, a closed optical channel

and a photo-sensor. The emitter is usually a LED that converts the electrical input signal

into light.

The closed optical channel is simply the blocking of the surrounding light, so that it

wouldn’t infect the signals of the emitter and collector. This can simply be a black

plastic box, as long as it doesn’t enable light to shine through.

The photo-sensor is the component that detects the light from the emitter. The photo-

sensor can either converts this directly into electrical energy or modulate the electric

current flowing from a different power supply.

Solid State Relay (SSR)

A SSR is an electronic switching device where a small input voltage controls a larger

load current or voltage. An SSR is a type of optocoupler. The SSR has no moving parts

hence the name solid. The output of the switch can produce either AC or DC to the load.

Many of the current SSR’s use optical coupling to isolate the input from the output.

After the optical isolation the only problem was the power level of the components

because still after isolation the values were too low for the MOS-FET’s. This resulted in

thorough research off the electronic components internet providers catalogues. Again

with the help of Mr. Vidal we made the best decision. The sites used:

Finally to finish the research I studied C++ document to be able to construct a C file so

that the DSC can control the Power Module

3.2 ACCOMMODATE VALUES

The research for the isolation for the components was made possible by

communicating with the Power Module about the values that we would use. Beginning

at the gates of the MOS-FET’s we could search for the components that would ensure

smooth operation of the prototype. We originally tried it from the gates to the DSC but

actually it we met in the middle. The problem was that there are countless options for

amplifying the DSC signal. So we worked our way from the DSC through the optical

isolation and then knew 3,3Vin and 10Vgate.

27

3.3 CHOOSE COMPONENTS

Choosing the components after all the research wasn’t that an easy task. The DSC was

easy, hence being it recommended by Mr. Vidal. The driver between the optocoupler

and the MOS-FET’s created a few problems. One that there is an enormous source of

drivers to choose from and second that most of them had small deviations which

wasn’t desirable. But finally we choose a driver that suited our requirements. Here is

an overview of the components ordered by the Control Module.

4 x 1.5A Dual High-Speed Power MOSFET Drivers TC4427A from Microchip

Features:

• High Peak Output Current – 1.5A

• Wide Input Supply Voltage Operating Range:

- 4.5V to 18V

• Space-saving 8-Pin MSOP and 8-Pin 6x5 DFN

2 x High Density Mounting Type Photocoupler LTV-817 Series from Liteon

Features

• Current transfer ratio

• (CTR : MIN. 50% at IF=5mA, VCE=5V)

• High input-output isolation voltage:

1 x MC56F8006DEMO: Demonstration Board for MC56F8006 Digital Signal Controller

from Freescale. Features:

• Complete pin-out available including a 40 pin header compatible with all

56F80xx boards

• Supply voltage options from USB connector, direct power supply in J1 and using

standard power jack

• MC56F8006 Demo board with USB connectivity

• JTAG control and debug of MC56F8006

• BDM control and debug of MC9S08JM60

• Serial Communications port ready for RS-232

• 6 LEDs, connected to PWM channels

3.4 ACQUIRE SOFTWARE

For completing the Control Module we needed software to help us make the

simulations, calculations and programming. So even before the order placement we

acquired Psim software to simulate the values at the gates of the MOS-FET’s. And with

the use of EAGLE software we were able to design and printed-circuit-boards. And last

but not least, the Code Warrior IDE for programming the DSC.

28

3.5 Designing and testing the C software

Designing the C file started with getting familiar with the Codewarrior IDE software.

The program has included a few tutorials on how to start a project. You start with a

project and not a C file, because a project includes the initialization of the CPU, the

main files and the targets.

The CPU, short for central processing unit, is the component that preforms all the

instructions of the DSC. These instructions include basic arithmetical and logical

operations. You can say that is your computer who sends signals to your monitor or in

this case I/O ports.

The main file is where the programmer writes the instructions in C language. Here the

programmer can tell the CPU what to do. The Main file is can contain instructions what

to do during normal operation e.g. count to hundred and back. If during that basic

arithmetical operation a signal is received that gives new information there are several

things that can happen. The new information doesn’t affect the calculation or it

requires a to be handled with directly. If the newly found information, in the form a

signal, doesn’t affect the normal routine, the routine continues. If otherwise the signal

interferes, a condition can be fulfilled changing the routine. Or it can trigger an

interruption causing the freeze the main routine and forcing a different routine to

finish. This is called a interrupt.

When creating a new project it proved that putting the settings in the desired way

proved to be a problem, being that the computer wouldn’t detect the right

components on the DSC and thus not be able to download the project correctly to the

DSC. So instead of creating a new project form the beginning, we used the

DEMO_LABS files that were included on the CD-ROM of the DSC. In the DEMO_LABS

there was a project that simply emitted the LED’s one after one. The project used a

counter and six if statements that would compare the value of the counter to a

predetermined value. If those would match the corresponding LED would emit, but

only then.

if (count&1)

 LED1_Toggle();

 if (count&2)

 LED2_Toggle();

 if (count&4)

 LED3_Toggle();

 if (count&8)

 LED4_Toggle();

 if (count&16)

 LED5_Toggle();

 if (count&32)

 LED6_Toggle();

 count++ ;

29

The next step was to alter the order and speed of the Toggle() function to test how to

program would respond to changes. This was no problem at all and that enabled me to

start doing other tests.

The second test was to create a counter that adds and subtracts. This triangle

shape, would be compared to a static reference value. If the counter was

below the reference value the first three LED’s would be lit trough the interruption.

And if the counter was above the reference value the last three LED’s would be lit. The

condition of the interruption was like this:

If(count < RefVal)

{

LED1_On();

LED6_Off();

}

Else If(count > RefVal)

{

LED1_Off();

LED6_On();

} end if;

Since that worked the next step was to make the static reference value variable. The

purpose of this test was to create a continuous changing duty cycle, as the duty cycle

in the last test was precisely 50%. The reason that we want a every changing duty cycle

is to link the duty cycle’s value with different output signals. For example if the duty

cycle would be 35% we would like to see that two LED’s would it, being 35% of 6 LED’s

would be two. That resulted in having a variable called counter and RefVal that both

would add and subtract until two predefined values. Constantly comparing the two

values and comparing that result to the number of LED’s gave a variable duty cycle. All

of this code was written in the interrupt.

The next step was using

the buttons on the board.

This meant adding the

button to the project. This

is done in the Processor

Expert view of

CodeWarrior IDE. In the

window shown, you can

see that you can select the

button with the Bean

Selector. The Bean

Selector is the window

where you can select all the ‘Beans’ of the DSC. The beans are the I/O ports, the

buttons, the Timers etc. Adding a bean enables the programmer to create new

30

functions and difficult algorithms within a few minutes. When a new bean is added to

the Processor Expert you can select which GPIO, which functions and other kind of

settings. When you have chosen all of your desired settings the programmer must add

the bean to the project. This is done by the ‘make file’ option. This option

automatically adds the bean to the project by generated it’s c.file and it’s h.file plus of

all it selected functions. With the newly added button-bean the programmer can write

a routine that includes the new bean, e.g. :”void Button_Clr();” which clears the signal

coming from the button. After adding two buttons to the project, I made one button1

function to alter the reference value. This means making the previous variable

reference value static once again, so that the user can manually alter the duty cycle.

The second button was designed to be an emergency button. If the button would be

pressed the whole project would come to a stop. That means disabling the interrupts

and stopping the main() routine. This was done by adding the functions in the Bean

Inspector window, for all of the included beans (LED’s, Buttons and Interrupts). The

both buttons functions were interrupts, if one of the buttons would be pressed the

button has got the highest priority and will be executed immediately. So to revise, the

project now has a starting duty cycle of 50%, comparing the counter to the reference

value would lit the six specific LED’s and one button alters the duty cycle while the

other button freezes the project. Then there is a third button which the DSC has as its

own safety measure. This button restarts the whole project. So if you would have a

program that count up to sixty and each time it passes ten, twenty, thirty, forty and

fifty it lights up a led, let’s say the counter is at 33 that means three LED’s are on. If the

third button would be pressed the counter will start at zero again and the LED’s would

turn of.

So now back to the signal we want on the output of the DSC. We need two internal

signals, one triangular signal, mentioned before, and sine wave that acts as a reference

value. The triangular signal is a counter that goes up and down with the help of a

polarity check. If the counter reaches its maximum value an if statement would detect

that and change the polarity of the counter by inverting the polarity check value. The

same happens when the counter reaches its minimal value. Then the variable

reference value will also go up and down in the spectrum of the counter. The middle

point is the zero point of the reference value. If the reference value is above the

middle point of the counter, it will send only signals to the positive side of the MOS-

FET’s. So if the reference value is at 78 out of scale of 100 the duty cycle signal to the

positive MOS-FET’s would be 56% and 0% to the negative side. In this picture it will

become more clear.

As you can see the blue triangular signal is constantly compared with the red sine

wave. And below the corresponding duty cycle. Now is this picture actually not perfect

because we want to use a counter that isn’t set to zero every time it reaches it

maximum value. Why? Because we want to use the middle point as reference for

positive or negative output.

Then the testing using several small projects and compiling them to the Digital Signal

Controller enabled me to test the performance of the software. I wrote my

that all of the signals would be sent to the LED’s or the GPIOE port of the DSC. The

GPIOE port of the DSC is an eight

for eight signals for the MOS

Digital Storage Oscilloscope that was provided by the laboratory of ENIT Tarbes. Using

the number three pin on the forty

to the GPOIE port. Testing the DEMO_LED_LAB first I could see that the freq

the was nowhere near the desired 1kHz. After testing several project and files, I

encountered the problem that I was not able to send the signals at the 1kHz value. This

was a difficult problem. After numerous hours of trying to find out where the

signal came was coming from and looking for the right way to write the code the

solution wasn’t found. So together with Mr. Vidal we together looked at this problem,

but unfortunately the two of us weren’t able to figure it out. The TimerInterrupt w

used could be set to 1000kHz. Only whenever there was more than two lines of code

within the interrupt handler the frequency would drop non

Count + bitNegVal() >> 784kHz

Count + bitNegVal() + LED1_Toggle() >> 633kHz

Count + bitNegVal() + LED1_Toggle() + LED2_Toggle() >> 531kHz

Count + bit1NegVal() + bit2NegVal()>> 632 kHz

u can see the blue triangular signal is constantly compared with the red sine

wave. And below the corresponding duty cycle. Now is this picture actually not perfect

because we want to use a counter that isn’t set to zero every time it reaches it

lue. Why? Because we want to use the middle point as reference for

positive or negative output.

Then the testing using several small projects and compiling them to the Digital Signal

Controller enabled me to test the performance of the software. I wrote my

that all of the signals would be sent to the LED’s or the GPIOE port of the DSC. The

GPIOE port of the DSC is an eight-pin connector. That perfectly matched with the need

for eight signals for the MOS-FET’s. I used the Tektronix TDS 2014B Four

Digital Storage Oscilloscope that was provided by the laboratory of ENIT Tarbes. Using

the number three pin on the forty-pin GPIO strip as a ground, I connected two probes

to the GPOIE port. Testing the DEMO_LED_LAB first I could see that the freq

the was nowhere near the desired 1kHz. After testing several project and files, I

encountered the problem that I was not able to send the signals at the 1kHz value. This

was a difficult problem. After numerous hours of trying to find out where the

signal came was coming from and looking for the right way to write the code the

solution wasn’t found. So together with Mr. Vidal we together looked at this problem,

but unfortunately the two of us weren’t able to figure it out. The TimerInterrupt w

used could be set to 1000kHz. Only whenever there was more than two lines of code

within the interrupt handler the frequency would drop non-linear. Example:

Count + bitNegVal() >> 784kHz

Count + bitNegVal() + LED1_Toggle() >> 633kHz

() + LED1_Toggle() + LED2_Toggle() >> 531kHz

Count + bit1NegVal() + bit2NegVal()>> 632 kHz

31

u can see the blue triangular signal is constantly compared with the red sine

wave. And below the corresponding duty cycle. Now is this picture actually not perfect

because we want to use a counter that isn’t set to zero every time it reaches it

lue. Why? Because we want to use the middle point as reference for

Then the testing using several small projects and compiling them to the Digital Signal

Controller enabled me to test the performance of the software. I wrote my software so

that all of the signals would be sent to the LED’s or the GPIOE port of the DSC. The

pin connector. That perfectly matched with the need

FET’s. I used the Tektronix TDS 2014B Four Channel

Digital Storage Oscilloscope that was provided by the laboratory of ENIT Tarbes. Using

pin GPIO strip as a ground, I connected two probes

to the GPOIE port. Testing the DEMO_LED_LAB first I could see that the frequency of

the was nowhere near the desired 1kHz. After testing several project and files, I

encountered the problem that I was not able to send the signals at the 1kHz value. This

was a difficult problem. After numerous hours of trying to find out where the clock

signal came was coming from and looking for the right way to write the code the

solution wasn’t found. So together with Mr. Vidal we together looked at this problem,

but unfortunately the two of us weren’t able to figure it out. The TimerInterrupt we

used could be set to 1000kHz. Only whenever there was more than two lines of code

linear. Example:

32

As you can see in the previous pictures the Interrupt period is supposed to be 1000kHz

with these settings. What seemed to be the problem was that the Periodic interrupt

source shouldn’t be a TMR or PIT, but the RTI, Real Time Interrupt. The Real Time

Interrupt would be able to produce signals at such frequency’s, only every time it

empty’s it’s memory. That means you can run it once. This very delicate methods were

the red line in the control module.

33

So what finally became the software wasn’t ready to be implemented as operational

within the prototype. The last test of the software led to this output:

This is the measurement of the GPIOE port. The frequency wasn’t able to go any higher

than 423 Hz without losing if statements or signals. The blue and yellow lines represent

two signals that only switch according to this if statement:

If(counter <= 125)

{

 Bits1_PutBit(0, 1);

Bits2_PutBit(1,0);

}

All of the other tests and software will be included in the appendix.

34

4. Cooling Module

Now let’s leave aside the electronic section of the project and let’s move onto the

mechanical part. As stated earlier this section will contain the cooling system of the

multilevel inverter in detailed.

First of all let me start by stating the tasks related to the cooling system.

 4.1 Why do we need a cooling system?

 4.2 Finding the right components

 4.3 Calculations of the Thermal Resistance

 4.4 Modelling

 4.5 Prototype

 4.1 WHY DO WE NEED A COOLING SYSTEM?

 It is important to understand the reason why we need a cooling system. This

reason is that there are some electronic components that dissipate heat but those

components would break at such elevated temperatures. Therefore, we looked at how

we could come up with the solution and what we found was that we needed to cool

the mosfets that are the ones that dissipate more heat.

The ever growing electronic industry is in a constant search for new ways to cool the

components. From giant fans to liquid nitrogen, industry is continually striving for

better and more quiet and reliable cooling methods.

Various techniques are currently used to cool electronic components such as Mosfets,

which can reach temperatures high enough to cause permanent damage or even break

if they are not kept at a safe temperature in an appropriate form.

Air cooling

Passive cooling is probably the most ancient and common method for cooling not just

electronic components but anything. The idea is that a heat exchange occurs between

the air at ambient temperature and the cooling element, at higher temperature.

The system is as common that is not in any way the invention of man and nature use it

all the time. Then, the technique for cooling electronic components is increasing the

contact surface between the air and the component in order to maximize the heat that

can be removed. Just in order to maximize the contact surface, heat sinks consists of

hundred of thin fins. The more fins the more heat dissipation as well as thinner the

better.

35

Passive air cooling; the main advantages of passive heat dissipation are its simplicity

(since it is basically a large piece of metal), its durability (as there are no moving parts)

and its low cost. Besides the above, they don’t produce any noise. The major

disadvantage is its limited ability to disperse large amount of heat rapidly.

Forced air cooling; is basically taking a passive system and adding an element to

accelerate the flow of air through the fins of the heat sink. This element is usually a fan

but variants have been used in a kind of turbine.

In passive cooling tend to happen that the air surrounding the heat sink gets hot, and

their ability to evacuate heat from the heat sink decreases. Even though natural

convection moves the hot air, is much more efficient to incorporate a mechanism to

force a flow of fresh air through the heat sink fins, and is exactly what forced air

cooling does.

Liquid cooling

A more complex and less common is water cooling. Water has a specific heat and a

better thermal conductivity than air, so it can transfer heat more efficiently and at

larger distances than gas. Pumping water around the transistors can remove large

amount of heat from it in a short time and then be dissipated by a radiator located

somewhere near the inverter. The main advantage of liquid cooling is the ability to

cool even the hottest components of the inverter.

These types of cooling methods mentioned are the ones that are commonly used and

more straightforward.

 4.2 FINDING THE RIGHT COMPONENTS

 We decided that we were going to use forced air-cooling instead of liquid

cooling because it’s cheaper and therefore it fits better with our budget and it

endangers less the circuit as it has no water that could be really hazardous for the

electronic components.

It is quite obvious that the more surface the heat sink has the better would be its

dissipation, but is also true that any intermediary in any cycle, despite how perfect it

may be, is a hindrance. It’s like when you add cables between a stereo and speakers,

the more cables, the more signal deteriorates, and this occurs by simple entropy even

if you use gold wires. So what is the benefit of using a heat sink? Why wouldn’t it be

better to let the electronic component to deal directly with the air? This is because in

addition of the surface, involved in this phenomenon there is a property called thermal

conductivity of a materials ability to channel the heat.

After all the research we eventually decided that the components selected were heat

sinks and fans.

36

The modern heat sinks are usually manufactured in copper or aluminium, which are

excellent conductors of heat and are relatively cheap to produce. That’s the reason

why we have used an aluminium heat sink so that it fits with our budget.

4.3 CALCULATIONS OF THE THERMAL RESISTANCE

 To star with the technical aspects, let’s get into details about the calculations of

the thermal Resistance which are needed to select the right heat sink.

In the circuit below you can see the two different paths of the heat dissipation from

the mosfet to the air. Then, let me explain the components of the circuit.

 Firstly I will start by the fastest path which is directly

 from the mosfet to the air (left hand side of the

circuit). In the circuit is shown as the air resistance.

 Then the other path is from the

mosfet through the heat dissipation

paste, then the heat sink and finally to

 the air (Right hand side of the

circuit).

The source of the heat is the junction of the mosfet which is at

85°C and then it goes to the case of the mosfet. In the circuit

appears as Rm that stands for Mosfet Resistance.

Then, the heat goes through the paste for heat dissipation to the

heat sink. In the circuit appears as Rp that stands for paste

resistance.

Finally, it goes through the heat sink to the air reaching a working

temperature of 50°C.

 Rm Rp Rhs

85°C 50°C

 Mosfet

 Paste

 Heat Sink

Ambient

37

Assumptions:

 - Neglect Rp as its value is so small is not worth taking into account.

 - Ta=50°C, which is going to be the working temperature inside the frame.

 - We will use fans besides the heat sink.

 - Current changed from 10A to 5A.

 Tj Tj

 10A

 5A 5A

 Tc Tc

Where TC is the Temperature of the case of the mosfet.

Equations used during the calculations

*+ = *, + *. + *ℎ0 =
12 − 1+

34

34 = 2 ∙ �*4� ∙ �546�

34 = 2 ∙ �0.2 ∙ 1.25� ∙ �56� = 12.57

*, + *. + *ℎ0 = 	
12 − 1+

34
→

2.085

2
+ 0 + *ℎ0 =

35℃

12.57 ∙ 2

*ℎ0 = 0.36℃/7

38

After all the calculations we finally obtained that the Thermal Resistance for the Heat

Sink is 0.36°C/W.

Before doing the calculations, we decided the components we were going to use but

we still had to determine the amount of them.

Our initial idea was to use one big heat sink for the 8 mosfets, but we needed to take

into account the result for the thermal resistance calculated before, so that lead us to

determine that the final number of heat sinks used was going to be 4.

After that to be certain that the heat was dissipated properly and that it wasn’t

accumulating we installed fans. The number of fans was decided according to the

dimensions of the heat sinks, to cover all the length of them. To be more specific,

there were installed 2 fans.

It is important to understand how the ventilation is working. Firstly the fans take air

from the outside part of the frame and then the air goes through the inner part taking

out the heat and releasing warm air.

The front and back are completely opened to ease the ventilation, so that the heat is

dissipated properly.

39

4.4 MODELLING

 Next, we made the 3D models of the components which allowed us to start

with the 3D modelling of the whole prototype.

We used a program called Solidworks that helped us to either create the pieces or

download them from a specific Solidworks library on the internet.

In this case, the heat sink was done in solidworks and the fan was downloaded.

 4.5 PROTOTYPE

 Furthermore, the last task was to assemble the cooling components in order to

build the whole prototype.

Because of the changes done in the mechanical module, the cooling module was

affected and so it had to be changed as well.

The only change that needed to be done was to join the fans to the bottom layer

instead of the front layer. In the initial design we did in Solidworks the fans where

attached to the front layer by screws and nuts. In the real design the fans are attached

to the bottom layer by 4 L-shaped blackest and screws and nuts.

The heat sinks were placed in the same position and in the same way as in the design.

We used 8 big screws to join the heat sinks with the bottom layer and with the

corresponding nuts and washers.

These changes do not affect the operation of the cooling system, as the air is forced

throughout the inner part of the multilevel inverter. Now there is more space for the

air to enter the inner part of the frame so the flow will be smoother.

40

5. MECHANICAL MODULE

5.1 Research information

5.2 State of art

5.3 Choose materials

5.4 Choose the components

5.5 Define the final frame

5.6 Make a 3D model

5.7 Build the frame

5.1 RESEARCH INFORMATION

At the beginning of the mechanical module it was very important to have a first look

at many inverters or multilevel inverters. The aim of this research was to know exactly

the physical appearance of the device we want to build.

The responsible of the mechanical module with the help of another team member

basically used internet for doing this task. We looked online at different technical

websites. Apart from the web, our technical supervisor also facilitated us some useful

documents where we could distinguish several designs of multilevel inverters.

We came across some difficulties when browsing the web. The results we obtained

were sometimes really different. For example we obtained simple car inverters that

use the 12V from the integrated car lighter. So this result wasn’t useful as what we

were looking for was high power multilevel inverters. To solve this problem we

narrowed the search in order to get more precise results.

 Fortunately we then obtained images of multilevel inverters for railway purpose

which were indeed high power devices. About the appearance of these right

multilevel inverters we can say they were big and robust. We checked that the

materials used were basically metals.

5.2 STATE OF ART

This section has to do a lot with the research of information. So this task was actually

done in parallel with the browsing on the web. The state of the art is a very important

part when facing any project, design or investigation. The aim of the state of the art is

to check the actual technology, what is used at the moment of the beginning of the

project or design.

In our case, we focused on the mechanical structure of high power multilevel

inverters. We realised that multilevel inverters were used for vehicle, railway, solar,

nautical and informatics applications.

The conclusion after this specific research was that the devices were big, robust,

made out of metal, followed their applications rules and fulfilled the security rules of

each purpose.

41

 5.3 CHOOSE MATERIALS

After the global and specific researches we were ready to decide the materials for the

external frame and the fixing components. We could chose between plastic and

metal for doing the frame and also for the components that will give strength to the

frame.

So we decided to use acrylic transparent plastic for the frame and iron and steel for

the fixing components. To make this choice we took into account the budget available

and the sturdiness we wanted for the frame. We thought that thick plastic layers

would fulfil this goal. We also contemplated that making the box transparent would

ease the task of checking the inner cooling and electronic components.

For the fixing components we thought that any metal would give strength to the

structure. Following this condition and taking into account that many screws, nuts

and washers were metallic we decided to use steel.

5.4 CHOOSE THE COMPONENTS

As mentioned before we will use plastic layers for the frame. Their thickness will be

6mm to have a robust case as a result.

We decided to use iron L-shaped brackets to join the plastic layers. To fix these pieces

with the layers we will use steel screws, nuts and washers.

For the inner cooling components such as the heat sinks we will use large screws that

will cover the whole height of the multilevel inverter. As there are 8 big screws for

attaching the heat sinks to the frame they will definitely give a lot of strength to the

structure.

STEEL

8 big screws with no head M6x175

24 socket head Allen screws M4x12

8 socket head Allen screws M3x16

56 nuts M6

24 nuts M4

8 nuts M3

56 washers M6

24 washers M4

8 L-shaped brackets

PLASTIC

2 plastic layers 500x300 mm

2 plastic layers 300x150 mm

42

5.5 DEFINE THE FINAL FRAME

Taking into account all the aspects mentioned before, some done in parallel, we were

able to decide the final appearance of external frame and the fixing components for

the inner layout.

The frame will be a plastic parallelepiped that will measure 465x280x164mm

approximately. These dimensions are slightly to be different in the real prototype due

to possible changes in the inner layout.

The front plastic layer will have two squared holes for putting the fans. The back

plastic layer will have the shape of a U, because we want to ease the ventilation of

the box. Then the plastic underneath will not have any big holes, apart from the ones

for the screws, to ensure stability. Finally, the top layer will also have the shape of a

big U to let the heated air of the heat sinks go upwards.

In order to fix all the layers we will use the 18 L-shaped brackets that, with the help of

the screws, nuts and washers we will obtain an optimum structure.

5.6 MAKE A 3D MODEL

What helped the members in charge of the mechanical module was the engineering

software Solidworks. It is a program that enables to make 3D models of any piece and

also assemblies.

 We made a model of each piece of the multilevel inverter with their real sizes in

order to know the dimensions of the external frame. We also were able to know if

the inner layout of the cooling and electronic components was feasible.

As a result we now have a file of the whole device which is no more than a big

assembly of smaller assemblies. This design will be indeed a very good guide for us

while making the real prototype.

43

5.7 BUILD THE FRAME

We have followed the design to build the external frame, even though there are

some changes in compare with the first design. The main differences are that the first

design was going to need 6 plastic layers whereas in the real prototype there are only

4: The top, bottom and lateral layers.

The plastic layers were cut using a specific big saw that worked efficiently, even

though it is needed to say that we had some difficulties trying to cut the layers with

other smaller saws before.

After we had the four layers cut we drilled the holes for the screws that will attach

the heat sinks, the fans and of course, the L-shaped brackets to join the layers.

Once the layers had being worked out we assembled the layers with the screws, the

L-shaped brackets, the nuts and washers. At that point we were ready to add the

other components of the other modules such as the fans, the heat sinks and the PCB.

6. MANAGEMENT

Every project needs to be managed. So, for our project we decided at first to

use an excel template in order to have a management file. When we learnt how to use

this template we realised that it was too simple and it did not have the characteristics

we were looking for. We needed more powerful software.

During the European Project Semester all of us, the students, were taught MS Project.

When we had the knowledge and the skills we decided to start a new file in this

program. These are the steps we followed in order to be successful;

6.1 Define Phases and tasks

6.2 Define deliverables and assign them to the tasks

6.3 Define Milestones

6.4 Assign the dates and resources to the tasks

6.5 Risks

6.6 Get the results

Here is the description of the different steps:

44

6.1 DEFINE PHASES AND TASKS

The tasks are the different things that have to be done during the project. Then we

have the phases, which are a group of tasks encompassed in a subject or department.

Phases Duration in days Person in charge

Team working 80 All

Milestones 41 All

Management 78 Diana, Mateu

Power module 64 Javi

Control module 36 Alex

Cooling module 20 Diana

Mechanical module 32 Mateu

6.2 DEFINE DELIVERABLES AND ASSIGN THEM TO THE TASKS

The deliverables are the work or documents that can be shown or delivered at

some point of the project. So, in other words, a deliverable is a term used in project

management to describe a tangible or intangible object produced as a result of the

project that is intended to be delivered to an internal costumer as ENIT or an external

costumer as PRIMES. A deliverable could be a report, a document, a server upgrade, or

any other building block of an overall project.

6.3 DEFINE MILESTONES

Within the framework of project management, a milestone is a special item that

receives special attention. It is often falsely put at the end of a stage to mark the

completion of a work package of phase. But milestones are rather to be put before the

end of a phase so that corrective actions in case of problems can still be met and the

deliverable can be completed in time.

6.4 ASSIGN THE DATES AND RESOURCES TO THE TASKS

The resources are the people involved in the project. In the MS project it is needed

to link the resources with the tasks. Furthermore, we have to assign the dates for each

task.

45

6.5 RISKS

 After the initiation stage where the research is done, the project is planned to

an appropriate level of detail. The main purpose is to plan time, cost and resources

adequately to estimate the work needed and to effectively manage risk during project

execution.

As with the Initiation and planning processes group, it is better to spend time in this

step to make sure the Project is going in the right direction. If you do not do this

correctly at the beginning you would move forward in the project but in the assembly

and monitoring processes you could have problems and you would need to start the

planning again.

6.6 GET THE RESULTS

 Before doing the MS project file we decided to estimate the overall budget by

doing some rough calculations considering the following data.

16 weeks

5 days/week

5 h/day

4 engineers

80€/h∙engineer

1>,?	@AB4?4 = 14@??D0 ∙ 5 4+E0
@??DF ∙ 5 ℎ

4+EF ∙ 4?GH>G??B0 = 1400ℎ

1>,?	@ABD?4	>G	14+E = 14+E ∙ 5 ℎ
4+EF ∙ 4?GH>G??B0 = 20ℎ

IJ4H?K	1	4+E = 20ℎ ∙
80€

h ∙ engineer
= 1600€

46

1AK+P	K>,?	@ABD?4 = 1400 − 24+E0 ∙ 20ℎ = 1360ℎ

IJ4H?K	?GH>G??B0 = 1360ℎ ∙ 80€/h ∙ engineer = 108800€

Prototype= 300€

1AK+P	QJ4H?K = 108800€ + 	300€ = 109100€

Furthermore, it is also truly important to mention the budget when calculating the

total cost of the project. We had a budget of 300€ at the beginning of the Project, but

unfortunately looking at the prices when making the list of components we realized

that we exceeded 300€. So, with this list we went to the client and they exceeded the

budget to 400€ so that we could be able to build the prototype.

At the end of the file, the MS project provides a final document with all the result

including the start and finishing date, the resources and the budget. Bear in mind that

we took the work load into account the budget but also the hours worked. The price

the clients agreed to pay was 80€ per hour per engineer. Adding all hours worked for

the 4 engineers we get 73424€.

Now, adding the prototype money and the workload we get 73824€ as you can see in

the following table;

Description

Initial budget for components 300€

New budget for components 400€

Estimated budget for the workload of the project in

MS Project

73424€

Total budget 73824€

So, as you can see there is a big different between the estimation and the final result

for the total cost, luckily the real cost is lower. It is important to mention as well that

the prototype cost is almost nothing in comparison with the total cost of the project.

47

7. CONCLUSION

To conclude this document, we have done all the necessary research to choose a

direction for our project. The direction being a single phased, diode clamped 1KV*A

Multilevel Inverter.

Following the research came the sketches and simulations of the casing and circuits.

Most of the simulations and calculations were executed with software like Eagle, Psim

and Solidworks.

After each department made their first design, the collaboration resulted in the first

order of components. Validating the designs and list of components allowed each

member of the team to work more specifically on their department.

The team managed to join the work from the four technical modules being successful

in the assembly of the prototype.

For the engineers that want to continue this project we have the following

suggestions:

• Find a good solution, software-wise, to make sure the clock speed of the DSC

on the I/O output is correct. Try using the RTI-clock.

• After the new software design and tests of the software, implement it with the

prototype and test the whole prototype and document this.

• If the budget allows it, you might consider making a three-phase Multilevel

Inverter.

• Advice: if a second Multilevel Inverter would be build, either be careful when

assembling the prototype, or use a stronger plastic material.

48

Bibliography:

http://www.chw.net/2007/03/distintos-tipos-de-refrigeracion/

http://www.geocities.ws/djbolanos/RESUMENDISIPA.PDF

http://www.kabytes.com/tutoriales/como-elegir-un-cooler-para-nuestra-pc/

SERI LEE. Advanced Thermal Engineering.Aavid Thermal Technologies, Inc.Laconia,

New Hampshire 03247.How to select a heat sink.

http://www.wikipedia.org/

49

Appendix

Here are all the related documents, datasheets and information that relate to the final report.

All of the make and generated code:

/*
** ###
**
** This file was created by Alex van den Biggelaar
** for the Prototype of the Primes Project Group 2011/2012.
** Constant Duty Cycle
**
** ###
*/

int Check = '1'; //This variable is there to determine if we are going to count up- or downwards.
int Group1; //This variable represents 4 MOS-FET's or LEDS.
int Group2; //This variable represents the other 4 MOS-FET's or LEDS.
int cnt = 0; //This variable is the counter.
int RefValue = 100; //This is the Reference Value to determine if the output should be '1' or '0'.

int main() //Start routine.
{
 if (Check == '1') //If Check is true then proceed.
 {
 Group1 = '1'; //Make Group1 true, 4 LEDS/MOSFETS are enabled.
 cnt += 1; //Counter +1.
 }

 else //If Check is false then proceed.
 {
 Group2 = '1'; //Make Group2 true, the other 4 LEDS/MOSFETS are enabled.
 cnt += 1; //Counter +1.

 }

 if (cnt == RefValue && Check == '1') //If counter has reached the Reference Value and Check is true
proceed.
 {
 Check = '0'; //Make Check is false.
 cnt = 0; //Reset counter.
 Group1 = '0'; //Disable Group1 LEDS.
 }

 //When this function is run, the first 4 LEDS are disabled and the second if statement is enabled.

 else if (cnt == RefValue && Check == '0')//If counter has reached the Reference Value and Check is false
proceed.
 {
 Check = '1'; //Make Check is true;
 cnt = 0; //Reset counter.
 Group2 = '0'; //Disable Group2 LEDS.
 }
 //When this function is run, the second 4 LEDS are disabled and the first if statement is enabled.

 if (Group1 == '1')
 {

 //Here you can turn on LEDS or something else.
 }

 else
 (

 //Here you can turn on LEDS or something else.
)
/* END Constant Duty Cycle. */

/*

50

/*
** ###
**
** This file was created by Alex van den Biggelaar
** for the Prototype of the Primes Project Group 2011/2012.
** Linear Variable Duty Cycle
**
** ###
*/
int RefValue = 1; //This variable represents the variable reference value, start at one.
int cnt = 0; //This is the counter, start at 0.
boolean Check; //This variable is to determine addition or substraction of the counter.
boolean PolCh1 = true; //This variable is to determine addition or substraction of the RefVal, is
true.
int RefValue0 = 0; //This variable is to compare the result of RefVal.
int RefVal1 = 250; //This variable is to compare the result of RefVal.
int RefVal2 = 500; //This variable is to compare the result of RefVal.
int RefVal3 = 750; //This variable is to compare the result of RefVal.
int RefValue4 = 1000; //This variable is to compare the result of RefVal.

int main() //Start routine.
{

if(PolCh1 == true; Check == true) //If PolCh1 and Check are true.
{
 RefValue += 1; //RefValue plus one.
 cnt += 1; //Counter plus one.
}

if(PolCh1 == false; Check == true) //If PolCh1 is false and Check is true.
{
 RefValue -= 1; //RefValue minus one.
 cnt += 1; //Counter plus one.
}

if(PolCh1 == true; Check == false) //If PolCh1 is true and Check is false.
{
 RefValue += 1; //RefValue plus one.
 cnt -= 1; //Counter minus one.
}

if(PolCh1 == false; Check == false) //If PolCh1 and Check are false.
{
 RefValue -= 1; //RefValue minus one.
 cnt += 1; //Counter plus one.
}

if(cnt == 1000) //If counter equals 1000.
{
 Check = false; //Set Check to false, start counting counter backwards.
}

if(cnt == 0) //If counter equals 0.
{
 Check = true; //Set Check to true, start counting counter upwards.
}

if(RefValue == RefValue4) //If RefValue equals to RefValue4.
{
 PolCh1 = false; //Set PolCh1 to false, start counting RefValue downwards.
}

if(RefValue == RefValue0) //If RefValue equals to RefValue0.
{
 PolCh1 = true; //Set PolCh1 to true, start counting RefValue upwards.
}

//Here follow all if functions to compare the RefValue to the RefValue 0,1,2,3,4 following a specific signal.

if(PolCh1 == true; RefValue >= RefVal0)
{
 //signal1 on, all order signals off
}

if(PolCh1 == true; RefValue >= RefVal1)

51

{
 //signals 1,2 on, all order signals off
}

if(PolCh1 == true; RefValue >= RefVal2)
{
 //signals 1,2,3 on, all order signals off
}

if(PolCh1 == true; RefValue >= RefVal3)
{
 //signals 1,2,3,4 on, all order signals off
}

if(PolCh1 == false; RefValue <= RefVal4)
{
 //signal8 on, all order signals off
}

if(PolCh1 == false; RefValue <= RefVal3)
{
 //signals 7,8 on, all order signals off
}

if(PolCh1 == false; RefValue <= RefVal2)
{
 //signals 6,7,8 on, all order signals off
}

if(PolCh1 == false; RefValue <= RefVal1)
{
 //signals 5,6,7,8 on, all order signals off
}

}
/* END Linear Duty Cycle. */

/*

/** ###
** THIS BEAN MODULE IS GENERATED BY THE TOOL. DO NOT MODIFY IT.
** Filename : Cpu.C
** Project : MC56F8006_LED_LAB
** Processor : MC56F8006_48_LQFP
** Beantype : 56F8006_48_LQFP
** Version : Bean 01.016, Driver 02.01, CPU db: 3.00.177
** Datasheet : MC56F8006RM,Rev. 0 Draft B,09/2007
** Compiler : Metrowerks DSP C Compiler
** Date/Time : 13/01/2002, 03:23
** Abstract :
**
** Settings :
**
** Contents :
** EnableInt - void Cpu_EnableInt(void);
** DisableInt - void Cpu_DisableInt(void);
** SetWaitMode - void Cpu_SetWaitMode(void);
** SetStopMode - void Cpu_SetStopMode(void);
**
** ###*/

/* MODULE Cpu. */
#include "LED1.h"
#include "Inhr6.h"
#include "LED2.h"
#include "Inhr5.h"
#include "LED3.h"
#include "Inhr4.h"
#include "LED4.h"
#include "Inhr3.h"
#include "LED5.h"
#include "Inhr2.h"
#include "LED6.h"
#include "Inhr1.h"
#include "TI1.h"

52

#include "Bits1.h"
#include "Bits2.h"
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"
#include "Events.h"
#include "Cpu.h"

/* Global variables */
volatile word SR_lock = 0; /* Lock */
volatile word SR_reg; /* Current value of the SR register */
/*
** ===
** Method : Cpu_Interrupt (bean 56F8006_48_LQFP)
**
** Description :
** The method services unhandled interrupt vectors.
** This method is internal. It is used by Processor Expert only.
** ===
*/
#pragma interrupt alignsp
void Cpu_Interrupt(void)
{
 asm(DEBUGHLT); /* Halt the core and placing it in the debug processing state */
}

/*
** ===
** Method : Cpu_DisableInt (bean 56F8006_48_LQFP)
**
** Description :
** Disables all maskable interrupts
** Parameters : None
** Returns : Nothing
** ===
*/
/*
void Cpu_DisableInt(void)

** This method is implemented as macro in the header module. **
*/

/*
** ===
** Method : Cpu_EnableInt (bean 56F8006_48_LQFP)
**
** Description :
** Enables all maskable interrupts
** Parameters : None
** Returns : Nothing
** ===
*/
/*
void Cpu_EnableInt(void)

** This method is implemented as macro in the header module. **
*/

/*
** ===
** Method : Cpu_SetStopMode (bean 56F8006_48_LQFP)
**
** Description :
** Sets low power mode - Stop mode.
** For more information about the stop mode see this CPU
** documentation.
** Parameters : None
** Returns : Nothing
** ===
*/
/*
void Cpu_SetStopMode(void)

** This method is implemented as macro in the header module. **
*/

/*

53

** ===
** Method : Cpu_SetWaitMode (bean 56F8006_48_LQFP)
**
** Description :
** Sets low power mode - Wait mode.
** For more information about the wait mode see this CPU
** documentation.
** Release from wait mode: Reset or interrupt
** Parameters : None
** Returns : Nothing
** ===
*/
/*
void Cpu_SetWaitMode(void)

** This method is implemented as macro in the header module. **
*/

/*
** ===
** Method : _EntryPoint (bean 56F8006_48_LQFP)
**
** Description :
** Initializes the whole system like timing and so on. At the end
** of this function, the C startup is invoked to initialize stack,
** memory areas and so on.
** This method is internal. It is used by Processor Expert only.
** ===
*/
extern void init_56800_(void); /* Forward declaration of external startup function declared in startup file */

/*** !!! Here you can place your own code using property "User data declarations" on the build options tab. !!! ***/

void _EntryPoint(void)
{
 #pragma constarray off

 /*** !!! Here you can place your own code before PE initialization using property "User code before PE initialization" on
the build options tab. !!! ***/

 /*** ### MC56F8006_48_LQFP "Cpu" init code ... ***/
 /*** PE initialization code after reset ***/
 /* System clock initialization */
 setRegBitGroup(OCCS_OCTRL, TRIM, (word)getReg(FM_OPT1) & 0x03FF); /* Set the trim osc freq with factory
programmed value */
 setRegBit(OCCS_OCTRL, CLK_MODE); /* Select an internal oscillator mode */
 clrRegBit(OCCS_CTRL, PRECS); /* Select an internal clock source for the CPU core */
 setReg(OCCS_CTRL, (OCCS_CTRL_LCKON_MASK | OCCS_CTRL_ZSRC0_MASK)); /* Enable PLL, LCKON and
select clock source from prescaler */
 /* OCCS_DIVBY: LORTP=2,COD=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
 setReg16(OCCS_DIVBY, 0x2000); /* Set the clock prescalers */
 while(!getRegBit(OCCS_STAT, LCK0)){} /* Wait for PLL lock */
 setReg(OCCS_CTRL, (OCCS_CTRL_LCKON_MASK | OCCS_CTRL_ZSRC1_MASK)); /* Select clock source from
postscaler */
 /* FM_CLKDIV: ??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,DIVLD=0,PRDIV8=0,DIV=0x28 */
 setReg16(FM_CLKDIV, 0x28); /* Set the flash clock prescaler */
 /*** End of PE initialization code after reset ***/

 /*** !!! Here you can place your own code after PE initialization using property "User code after PE initialization" on the
build options tab. !!! ***/

 setRegBit(SIM_PCE, COP); /* Enable COP peripheral clocks */
 setReg(COP_CTRL, 0); /* Disable COP running after reset */
 clrRegBit(SIM_PCE, COP); /* Disble COP peripheral clocks */
 asm(JMP init_56800_); /* Jump to C startup code */
}

/*
** ===
** Method : PE_low_level_init (bean 56F8006_48_LQFP)
**
** Description :
** Initializes beans and provides common register initialization.
** The method is called automatically as a part of the
** application initialization code.
** This method is internal. It is used by Processor Expert only.
** ===
*/
void PE_low_level_init(void)

54

{
 /* GPIO_A_DRIVE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,DRIVE7=0,DRIVE6=0,DRIVE5=0,DRIVE4=0,DRIVE3=0,DRIVE2=0,DRIV
E1=0,DRIVE0=0 */
 setReg16(GPIO_A_DRIVE, 0x00); /* Set High/Low drive strength on GPIOA pins according to the CPU bean
settings */
 /* GPIO_B_DRIVE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,DRIVE7=0,DRIVE6=0,DRIVE5=0,DRIVE4=0,DRIVE3=0,DRIVE2=0,DRIV
E1=0,DRIVE0=0 */
 setReg16(GPIO_B_DRIVE, 0x00); /* Set High/Low drive strength on GPIOB pins according to the CPU bean
settings */
 /* GPIO_C_DRIVE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,DRIVE7=0,DRIVE6=0,DRIVE5=0,DRIVE4=0,DRIVE3=0,DRIVE2=0,DRIV
E1=0,DRIVE0=0 */
 setReg16(GPIO_C_DRIVE, 0x00); /* Set High/Low drive strength on GPIOC pins according to the CPU bean
settings */
 /* GPIO_D_DRIVE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,DRIVE3=0,DRIVE2=0,DRIVE1=0,DRIVE0=0 */
 setReg16(GPIO_D_DRIVE, 0x00); /* Set High/Low drive strength on GPIOD pins according to the CPU bean
settings */
 /* GPIO_E_DRIVE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,DRIVE7=0,DRIVE6=0,DRIVE5=0,DRIVE4=0,DRIVE3=0,DRIVE2=0,DRIV
E1=0,DRIVE0=0 */
 setReg16(GPIO_E_DRIVE, 0x00); /* Set High/Low drive strength on GPIOE pins according to the CPU bean
settings */
 /* GPIO_F_DRIVE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,DRIVE3=0,DRIVE2=0,DRIVE1=0,DRIVE0=0 */
 setReg16(GPIO_F_DRIVE, 0x00); /* Set High/Low drive strength on GPIOF pins according to the CPU bean
settings */
 /* GPIO_A_IFE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,IFE7=0,IFE6=0,IFE5=0,IFE4=0,IFE3=0,IFE2=0,IFE1=0,IFE0=0 */
 setReg16(GPIO_A_IFE, 0x00); /* Set the input filter on GPIOA pins according to the CPU bean settings */
 /* GPIO_B_IFE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,IFE7=0,IFE6=0,IFE5=0,IFE4=0,IFE3=0,IFE2=0,IFE1=0,IFE0=0 */
 setReg16(GPIO_B_IFE, 0x00); /* Set the input filter on GPIOB pins according to the CPU bean settings */
 /* GPIO_C_IFE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,IFE7=0,IFE6=0,IFE5=0,IFE4=0,IFE3=0,IFE2=0,IFE1=0,IFE0=0 */
 setReg16(GPIO_C_IFE, 0x00); /* Set the input filter on GPIOC pins according to the CPU bean settings */
 /* GPIO_D_IFE: ??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,IFE3=0,IFE2=0,IFE1=0,IFE0=0 */
 setReg16(GPIO_D_IFE, 0x00); /* Set the input filter on GPIOD pins according to the CPU bean settings */
 /* GPIO_E_IFE:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,IFE7=0,IFE6=0,IFE5=0,IFE4=0,IFE3=0,IFE2=0,IFE1=0,IFE0=0 */
 setReg16(GPIO_E_IFE, 0x00); /* Set the input filter on GPIOE pins according to the CPU bean settings */
 /* GPIO_F_IFE: ??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,IFE3=0,IFE2=0,IFE1=0,IFE0=0 */
 setReg16(GPIO_F_IFE, 0x00); /* Set the input filter on GPIOF pins according to the CPU bean settings */
 /* GPIO_A_SLEW:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,SLEW7=1,SLEW6=1,SLEW5=1,SLEW4=1,SLEW3=1,SLEW2=1,SLEW1=
1,SLEW0=1 */
 setReg16(GPIO_A_SLEW, 0xFF); /* Set the input filter on GPIOA pins according to the CPU bean settings */
 /* GPIO_B_SLEW:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,SLEW7=1,SLEW6=1,SLEW5=1,SLEW4=1,SLEW3=1,SLEW2=1,SLEW1=
1,SLEW0=1 */
 setReg16(GPIO_B_SLEW, 0xFF); /* Set the input filter on GPIOB pins according to the CPU bean settings */
 /* GPIO_C_SLEW:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,SLEW7=1,SLEW6=1,SLEW5=1,SLEW4=1,SLEW3=1,SLEW2=1,SLEW1=
1,SLEW0=1 */
 setReg16(GPIO_C_SLEW, 0xFF); /* Set the input filter on GPIOC pins according to the CPU bean settings */
 /* GPIO_D_SLEW:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,SLEW3=1,SLEW2=1,SLEW1=1,SLEW0=1 */
 setReg16(GPIO_D_SLEW, 0x0F); /* Set the input filter on GPIOD pins according to the CPU bean settings */
 /* GPIO_E_SLEW:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,SLEW7=1,SLEW6=1,SLEW5=1,SLEW4=1,SLEW3=1,SLEW2=1,SLEW1=
1,SLEW0=1 */
 setReg16(GPIO_E_SLEW, 0xFF); /* Set the input filter on GPIOE pins according to the CPU bean settings */
 /* GPIO_F_SLEW:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,SLEW3=1,SLEW2=1,SLEW1=1,SLEW0=1 */
 setReg16(GPIO_F_SLEW, 0x0F); /* Set the input filter on GPIOF pins according to the CPU bean settings */
 /* SIM_PCR:
TMR_CR=0,??=0,PWM_CR=0,SCI_CR=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
 setReg16(SIM_PCR, 0x00); /* Set the TMR; PWM; SCI module clock rates */
 /* SIM_PCE:
CMP2=0,CMP1=0,CMP0=0,ADC1=0,ADC0=0,PGA1=0,PGA0=0,I2C=0,SCI=0,SPI=0,PWM=0,COP=0,PDB=0,PIT=1,T
A1=0,TA0=0 */
 setReg16(SIM_PCE, 0x04); /* Set up the peripheral clock enable register */
 /* SIM_SDR:
CMP2=0,CMP1=0,CMP0=0,ADC1=0,ADC0=0,PGA1=0,PGA0=0,I2C=0,SCI=0,SPI=0,PWM=0,COP=0,PDB=0,PIT=0,T
A1=0,TA0=0 */
 setReg16(SIM_SDR, 0x00); /* Set up the STOP disable register */

55

 /* SIM_CTRL:
??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,ONCEEBL=0,SWRST=0,STOP_DISABLE=0,WAIT_DISABLE
=0 */
 setReg16(SIM_CTRL, 0x00); /* Set up the SIM control register */
 /* SIM_CLKOUT: ??=0,??=0,CLKDIS1=1,??=0,??=0,CLKOSEL1=0,??=0,??=0,CLKDIS0=1,CLKOSEL0=0 */
 setReg16(SIM_CLKOUT, 0x2020); /* Set up the SIM clock output select register */
 /* PMC_SCR:
OORF=0,LVDF=0,PPDF=0,PORF=0,OORIE=0,LVDIE=0,LVDRE=1,PPDE=0,LPR=0,LPRS=0,LPWUI=0,BGBE=0,LVD
E=0,LVLS=0,PROT=0 */
 setReg16(PMC_SCR, 0x0200);
 /* Common initialization of the CPU registers */
 /* GPIO_A_IENR: IEN5=0,IEN4=0,IEN3=0,IEN2=0,IEN1=0,IEN0=0 */
 clrReg16Bits(GPIO_A_IENR, 0x3F);
 /* GPIO_A_IESR: IES5=1,IES4=1,IES3=1,IES2=1,IES1=1,IES0=1 */
 setReg16Bits(GPIO_A_IESR, 0x3F);
 /* GPIO_A_DR: D5=0,D4=0,D3=0,D2=0,D1=0,D0=0 */
 clrReg16Bits(GPIO_A_DR, 0x3F);
 /* GPIO_A_DDR: DD5=1,DD4=1,DD3=1,DD2=1,DD1=1,DD0=1 */
 setReg16Bits(GPIO_A_DDR, 0x3F);
 /* GPIO_A_PER: PE5=0,PE4=0,PE3=0,PE2=0,PE1=0,PE0=0 */
 clrReg16Bits(GPIO_A_PER, 0x3F);
 /* GPIO_E_IENR: IEN7=0,IEN6=0,IEN1=0,IEN0=0 */
 clrReg16Bits(GPIO_E_IENR, 0xC3);
 /* GPIO_E_IESR: IES7=1,IES6=1,IES1=1,IES0=1 */
 setReg16Bits(GPIO_E_IESR, 0xC3);
 /* GPIO_E_DR: D7=0,D6=0,D1=0,D0=0 */
 clrReg16Bits(GPIO_E_DR, 0xC3);
 /* GPIO_E_DDR: DD7=1,DD6=1,DD1=1,DD0=1 */
 setReg16Bits(GPIO_E_DDR, 0xC3);
 /* GPIO_E_PER: PE7=0,PE6=0,PE1=0,PE0=0 */
 clrReg16Bits(GPIO_E_PER, 0xC3);
 /* ### TimerInt "TI1" init code ... */
 TI1_Init();
 __EI(0); /* Enable interrupts of the selected priority level */
}

/* END Cpu. */

/*

/*
** ###
**
** This file was created by Alex van den Biggelaar
** for the Prototype of the Primes Project Group 2011/2012.
** Main.C
**
** ###
*/

/** ###
** Filename : MC56F8006_LED_LAB.C
** Project : MC56F8006_LED_LAB
** Processor : MC56F8006_48_LQFP
** Version : Driver 01.13
** Compiler : Metrowerks DSP C Compiler
** Date/Time : 1/12/2009, 1:28 PM
** Abstract :
** Main module.
** This module contains user's application code.
** Settings :
** Contents :
** No public methods
**
** ###*/
/* MODULE MC56F8006_LED_LAB */

/* Including needed modules to compile this module/procedure */
#include "Cpu.h"
#include "Events.h"
#include "LED1.h"
#include "Inhr6.h"
#include "LED2.h"
#include "Inhr5.h"
#include "LED3.h"
#include "Inhr4.h"
#include "LED4.h"

56

#include "Inhr3.h"
#include "LED5.h"
#include "Inhr2.h"
#include "LED6.h"
#include "Inhr1.h"
#include "TI1.h"
#include "Bits1.h"
#include "Bits2.h"
/* Including shared modules, which are used for whole project */
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"

void main(void)
{
 /* Write your local variable definition here */

 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /* Write your code here */

}

/* END Main. */

/*

/** ###
** THIS BEAN MODULE IS GENERATED BY THE TOOL. DO NOT MODIFY IT.
** Filename : TI1.C
** Project : MC56F8006_LED_LAB
** Processor : MC56F8006_48_LQFP
** Beantype : TimerInt
** Version : Bean 02.157, Driver 02.00, CPU db: 3.00.177
** Compiler : Metrowerks DSP C Compiler
** Date/Time : 13/01/2002, 03:10
** Abstract :
** This bean "TimerInt" implements a periodic interrupt.
** When the bean and its events are enabled, the "OnInterrupt"
** event is called periodically with the period that you specify.
** TimerInt supports also changing the period in runtime.
** The source of periodic interrupt can be timer compare or reload
** register or timer-overflow interrupt (of free running counter).
** Settings :
** Timer name : PIT (16-bit)
** Compare name : PIT_Modulo
** Counter shared : No
**
** High speed mode
** Prescaler : divide-by-1
** Clock : 32000000 Hz
** Initial period/frequency
** Xtal ticks : 80
** microseconds : 10
** seconds (real) : 0.00001
** Hz : 100000
** kHz : 100
**
** Runtime setting : none
**
** Initialization:
** Timer : Enabled
** Events : Enabled
**
** Timer registers
** Counter : PIT_CNTR [F2E2]
** Mode : PIT_CTRL [F2E0]
** Run : PIT_CTRL [F2E0]

57

** Prescaler : PIT_CTRL [F2E0]
**
** Compare registers
** Compare : PIT_MOD [F2E1]
**
** Flip-flop registers
** Contents :
** No public methods
**
** ###*/

/* MODULE TI1. */

#include "Events.h"
#include "TI1.h"

/* Internal method prototypes */
static void SetCV(word Val);
static void SetPV(byte Val);

/*
** ===
** Method : SetCV (bean TimerInt)
**
** Description :
** Sets compare or preload register value. The method is called
** automatically as a part of several internal methods.
** This method is internal. It is used by Processor Expert only.
** ===
*/
static void SetCV(word Val)
{
 setReg(PIT_MOD,Val); /* Store given value to the compare register */
}

/*
** ===
** Method : SetPV (bean TimerInt)
**
** Description :
** Sets prescaler value. The method is called automatically as a
** part of several internal methods.
** This method is internal. It is used by Processor Expert only.
** ===
*/
static void SetPV(byte Val)
{
 setRegBitGroup(PIT_CTRL,PRESCALER,Val); /* Store given value to the prescaler */
}

/*
** ===
** Method : TI1_Init (bean TimerInt)
**
** Description :
** Initializes the associated peripheral(s) and the beans
** internal variables. The method is called automatically as a
** part of the application initialization code.
** This method is internal. It is used by Processor Expert only.
** ===
*/
void TI1_Init(void)
{
 /* PIT_CTRL: ??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,PRESCALER=0,PRF=0,PRIE=1,CNT_EN=0 */
 setReg(PIT_CTRL,0x02); /* Set up control register */
 SetCV((word)0x0140); /* Store appropriate value to the compare register according to the selected high
speed CPU mode */
 SetPV((byte)0x00); /* Set prescaler register according to the selected high speed CPU mode */
 setRegBit(PIT_CTRL,CNT_EN); /* Run counter */
}

/*
** ===
** Method : TI1_Interrupt (bean TimerInt)
**
** Description :
** The method services the interrupt of the selected peripheral(s)

58

** and eventually invokes the beans event(s).
** This method is internal. It is used by Processor Expert only.
** ===
*/
#pragma interrupt alignsp saveall
void TI1_Interrupt(void)
{
 clrRegBit(PIT_CTRL,PRF); /* Reset interrupt request flag */
 TI1_OnInterrupt(); /* Invoke user event */
}

/* END TI1. */

/*
** ###
**
** This file was created by Alex van den Biggelaar
** for the Prototype of the Primes Project Group 2011/2012.
** Bits1.C
**
** ###
*/

/** ###
** THIS BEAN MODULE IS GENERATED BY THE TOOL. DO NOT MODIFY IT.
** Filename : Bits1.C
** Project : MC56F8006_LED_LAB
** Processor : MC56F8006_48_LQFP
** Beantype : BitsIO
** Version : Bean 02.098, Driver 01.19, CPU db: 3.00.177
** Compiler : Metrowerks DSP C Compiler
** Date/Time : 13/01/2002, 03:23
** Abstract :
** This bean "BitsIO" implements a multi-bit input/output.
** It uses selected pins of one 1-bit to 8-bit port.
** Note: This bean is set to work in Output direction only.
** Settings :
** Port name : GPIOE
**
** Bit mask of the port : 0003
** Number of bits/pins : 2
** Single bit numbers : 0 to 1
** Values range : 0 to 3
**
** Initial direction : Output (direction cannot be changed)
** Initial output value : 0 = 000H
** Initial pull option : off
**
** Port data register : GPIO_E_DR [F201]
** Port control register : GPIO_E_DDR [F202]
** Port function register : GPIO_E_PER [F203]
**
** --
** Bit | Pin | Name
** --
** 0 | 5 | GPIOE0
** 1 | 6 | GPIOE1_ANB9_CMP0_P1
** --
**
** Optimization for : speed
** Contents :
** GetDir - bool Bits1_GetDir(void);
** GetVal - byte Bits1_GetVal(void);
** PutVal - void Bits1_PutVal(byte Val);
** GetBit - bool Bits1_GetBit(byte Bit);
** PutBit - void Bits1_PutBit(byte Bit, bool Val);
** SetBit - void Bits1_SetBit(byte Bit);
** ClrBit - void Bits1_ClrBit(byte Bit);
** NegBit - void Bits1_NegBit(byte Bit);
**
** (c) Copyright UNIS, a.s. 1997-2008
** UNIS, a.s.
** Jundrovska 33
** 624 00 Brno
** Czech Republic
** http : www.processorexpert.com
** mail : info@processorexpert.com
** ###*/

59

/* MODULE Bits1. */

#include "Bits1.h"

/*Include shared modules, which are used for whole project*/
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"

#include "Cpu.h"

static const byte Bits1_Table[2]={
0x01,0x02}; /* Table of mask constants */
/*
** ===
** Method : Bits1_GetMsk (bean BitsIO)
**
** Description :
** Returns pin mask. The method is called automatically as a part
** of bit method.
** This method is internal. It is used by Processor Expert only.
** ===
*/
static byte Bits1_GetMsk(byte Value)
{
 return((byte)((Value<0x02)?Bits1_Table[Value]:0x00)); /* Return appropriate bit mask */
}

/*
** ===
** Method : Bits1_GetVal (bean BitsIO)
**
** Description :
** This method returns an input value.
** a) direction = Input : reads the input value from the
** pins and returns it
** b) direction = Output : returns the last written value
** Note: This bean is set to work in Output direction only.
** Parameters : None
** Returns :
** --- - Input value (0 to 3)
** ===
*/
/*
byte Bits1_GetVal(void)

** This method is implemented as a macro. See Bits1.h file. **
*/

/*
** ===
** Method : Bits1_PutVal (bean BitsIO)
**
** Description :
** This method writes the new output value.
** Parameters :
** NAME - DESCRIPTION
** Val - Output value (0 to 3)
** Returns : Nothing
** ===
*/
void Bits1_PutVal(byte Val)
{
 setReg(GPIO_E_DR,((getReg(GPIO_E_DR)) & ~Bits1_PIN_MASK) | ((word)Val & Bits1_PIN_MASK)); /* Set-up bits
on port */
}

60

/*
** ===
** Method : Bits1_GetBit (bean BitsIO)
**
** Description :
** This method returns the specified bit of the input value.
** a) direction = Input : reads the input value from pins
** and returns the specified bit
** b) direction = Output : returns the specified bit
** of the last written value
** Note: This bean is set to work in Output direction only.
** Parameters :
** NAME - DESCRIPTION
** Bit - Number of the bit to read (0 to 1)
** Returns :
** --- - Value of the specified bit (FALSE or TRUE)
** FALSE = "0" or "Low", TRUE = "1" or "High"
** ===
*/
bool Bits1_GetBit(byte Bit)
{
 register byte Mask=Bits1_GetMsk(Bit); /* Temporary variable - bit mask */

 return((bool)((Mask)?((getReg(GPIO_E_DR)) & Mask) == Mask:0x00)); /* Return input value */
}

/*
** ===
** Method : Bits1_PutBit (bean BitsIO)
**
** Description :
** This method writes the new value to the specified bit
** of the output value.
** Parameters :
** NAME - DESCRIPTION
** Bit - Number of the bit (0 to 1)
** Val - New value of the bit (FALSE or TRUE)
** FALSE = "0" or "Low", TRUE = "1" or "High"
** Returns : Nothing
** ===
*/
void Bits1_PutBit(byte Bit, bool Val)
{
 register byte Mask=Bits1_GetMsk(Bit); /* Temporary variable - bit mask */

 if (Mask) /* Is bit mask correct? */
 if (Val) { /* Is it one to be written? */
 setRegBits(GPIO_E_DR,Mask); /* Set appropriate bit on port */
 }
 else { /* Is it zero to be written? */
 clrRegBits(GPIO_E_DR,Mask); /* Clear appropriate bit on port */
 }
}

/*
** ===
** Method : Bits1_SetBit (bean BitsIO)
**
** Description :
** This method sets (sets to one) the specified bit of the
** output value.
** [It is the same as "PutBit(Bit,TRUE);"]
** Parameters :
** NAME - DESCRIPTION
** Bit - Number of the bit to set (0 to 1)
** Returns : Nothing
** ===
*/
void Bits1_SetBit(byte Bit)
{
 register byte Mask=Bits1_GetMsk(Bit); /* Temporary variable - bit mask */

 if (Mask) { /* Is bit mask correct? */
 setRegBits(GPIO_E_DR,Mask); /* Set appropriate bit on port */
 }
}

/*
** ===

61

** Method : Bits1_ClrBit (bean BitsIO)
**
** Description :
** This method clears (sets to zero) the specified bit
** of the output value.
** [It is the same as "PutBit(Bit,FALSE);"]
** Parameters :
** NAME - DESCRIPTION
** Bit - Number of the bit to clear (0 to 1)
** Returns : Nothing
** ===
*/
void Bits1_ClrBit(byte Bit)
{
 register byte Mask=Bits1_GetMsk(Bit); /* Temporary variable - bit mask */

 if (Mask) { /* Is bit mask correct? */
 clrRegBits(GPIO_E_DR,Mask); /* Clear appropriate bit on port */
 }
}

/*
** ===
** Method : Bits1_NegBit (bean BitsIO)
**
** Description :
** This method negates (inverts) the specified bit of the
** output value.
** Parameters :
** NAME - DESCRIPTION
** Bit - Number of the bit to invert (0 to 31)
** Returns : Nothing
** ===
*/
void Bits1_NegBit(byte Bit)
{
 register byte Mask=Bits1_GetMsk(Bit); /* Temporary variable - bit mask */

 if (Mask) { /* Is bit mask correct? */
 changeRegBits(GPIO_E_DR,Mask); /* Negate appropriate bit on port */
 }
}

/*
** ===
** Method : Bits1_GetDir (bean BitsIO)
**
** Description :
** This method returns direction of the bean.
** Parameters : None
** Returns :
** --- - Direction of the bean (always TRUE, Output only)
** FALSE = Input, TRUE = Output
** ===
*/
/*
bool Bits1_GetDir(void)

** This method is implemented as a macro. See Bits1.h file. **
*/

/* END Bits1. */

62

/*
** ###
**
** This file was created by Alex van den Biggelaar
** for the Prototype of the Primes Project Group 2011/2012.
**
** ###
*/

/** ###
** Filename : Events.C
** Project : MC56F8006_LED_LAB
** Processor : MC56F8006_48_LQFP
** Beantype : Events
** Version : Driver 01.03
** Compiler : Metrowerks DSP C Compiler
** Date/Time : 1/12/2009, 1:28 PM
** Abstract :
** This is user's event module.
** Put your event handler code here.
** Settings :
** Contents :
** TI1_OnInterrupt - void TI1_OnInterrupt(void);
**
** ###*/
/* MODULE Events */

#include "Cpu.h"
#include "Events.h"

int count = 0 ; // use this count to determine what bits to toggle;
 // increment the count and do the toggle at the isr
 // of the timer.
int index = 0;

/*
** ===
** Event : TI1_OnInterrupt (module Events)
**
** From bean : TI1 [TimerInt]
** Description :
** When a timer interrupt occurs this event is called (only
** when the bean is enabled - <Enable> and the events are
** enabled - <EnableEvent>). This event is enabled only if a
** <interrupt service/event> is enabled.
** Parameters : None
** Returns : Nothing
** ===
*/
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers' property */
 /* is set to 'yes' (#pragma interrupt saveall is generated before the ISR) */
void TI1_OnInterrupt(void)
{

 while(index <= 417)
 {
 if(index<125)
 {
 Bits1_PutBit(0, 0);
 Bits1_PutBit(1, 0);
 Bits2_PutBit(0, 1);
 Bits2_PutBit(1, 1);

 index++;
 }
 else if(index>=104 && index<=208)
 {
 Bits1_PutBit(0, 1);
 Bits1_PutBit(1, 1);

 Bits2_PutBit(0, 0);
 Bits2_PutBit(1, 0);

 index++;
 }
 else if(index>=289 && index<=312)
 {
 Bits1_PutBit(0, 0);

63

 Bits1_PutBit(1, 0);

 Bits2_PutBit(0, 1);
 Bits2_PutBit(1, 1);

 index++;
 }
 else if(index>=313 && index<417)
 {
 Bits1_PutBit(0, 1);
 Bits1_PutBit(1, 1);

 Bits2_PutBit(0, 0);
 Bits2_PutBit(1, 0);

 index++;
 }
 else
 {
 index = 0;
 }
 }

}

*/
** ===
** Event : Button_OnInterrupt (module Events)
**
** From bean : Button [ExtInt]
** Description :
** This event is called when an active signal edge/level has
** occurred.
** Parameters : None
** Returns : Nothing
** ===
*/
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers' property */
 /* is set to 'yes' (#pragma interrupt saveall is generated before the ISR) */
void Button_OnInterrupt(void)
{

}
 int ch = 0;

 if(ch == 0)
 {
 RefVal++;
 }

 if(ch == 1)
 {
 RefVal--;
 }

 if(RefVal == Min && ch == 1)
 {
 ch = 0;
 }

 if(RefVal == Max && ch == 0)
 {
 ch = 1;
 }
 /* place your Button interrupt procedure body here

 switch()
 {
 case 1:
 {
 setHz();
 }
 break;

64

 case 2:
 {
 setHz();
 }
 break;

/*
** ===
** Event : Button2_OnInterrupt (module Events)
**
** From bean : Button2 [ExtInt]
** Description :
** This event is called when an active signal edge/level has
** occurred.
** Parameters : None
** Returns : Nothing
** ===
*/
#pragma interrupt called /* Comment this line if the appropriate 'Interrupt preserve registers' property */
 /* is set to 'yes' (#pragma interrupt saveall is generated before the ISR) */
void Button2_OnInterrupt(void)
{
 BitsG1_ClrBit(0);
 BitsG1_ClrBit(1);
 BitsG1_ClrBit(2);
 BitsG1_ClrBit(3);
 BitsG2_ClrBit(4);
 BitsG2_ClrBit(5);
 BitsG2_ClrBit(6);
 BitsG2_ClrBit(7);
 LED6_Set(0);
 LED5_Set(0);
 LED4_Set(0);
 LED3_Set(0);
 LED2_Set(0);
 LED1_Set(0);
 TI1_Disable();
 LED1_Off();
 LED2_Off();
 LED3_Off();
 LED4_Off();
 LED5_Off();
 LED6_Off();
 /* place your Button2 interrupt procedure body here */
}

/* END Events */

On the included CD, Getting Started CD Freescale semiconductor, you will find all the

information of the Digital Signal Controller. That being: training, documentation and more

software.

65

