
SquareWear 2.0 User Manual 

 SquareWear 2.0 comes with a pre-flashed demo program. Clicking on the push-button will cycle 

through all available demos in the program. Additional demos are available in the SquareWear 2.0 

Arduino library. Instructions can be found at the beginning of each program’s source code. 

   

 Hardware Interface 

o Original Version (brown battery holder): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o Revised Version (white battery holder): 
 

 

 

 

 

 

 

 

 

 

 

 



 Technical Spec 

o ATmega328 running at 3.3V, 12MHz, pre-flashed with USBasp bootloader. 

o MCP1700 3.3V / 250mA LDO linear regulator. 

o MCP73831 lithium charging chip (configured to charge at 35mA). 

o MCP9700 temperature sensor, 10K photo-resistor (light sensor). 

o 5mm color (RGB) LED, 8.5mm SMT buzzer, 6mm SMT tactile button. 

o LIR2032 (20mm) rechargeable lithium coin battery (45mAh capacity). 

o 2.0mm JST connector for external lithium battery. 

o Four BSS138 MOSFETs, SMT mini-USB port, and power switch. 

 

 Power Options (IMPORTANT!!! Please READ!!!) 

o SquareWear 2.0 has a built-in 45mAh rechargeable lithium coin battery (LIR2032). Every 

time you plug in the mini-USB cable, it charges the battery automatically. Do NOT use it 

with non-rechargeable batteries such as CR2032. 

o You can also power SquareWear by an external Lithium-Polymer (LiPo) battery (such as 

http://rayshobby.net/cart/accessories/acc-batteries/lipo-700). When using external LiPo, 

please remove the built-in coin battery. 

o To remove the built-in LIR2032, carefully push back the metal tap on 

the battery holder, until you can lift the battery up. DO NOT force 

lifting the battery as it may break the battery holder. If it ever breaks, 

use some hot glue to fix it back in place. 

o The build-in lithium charger (MCP73831) is set to charge at 40mA per 

hour (the charging current can be modified by changing a resistor). This will fully charge the 

coin battery in 1 hour. The charging time for external LiPo varies depending on the battery 

capacity. The green indicator LED will turn off when battery is fully charged. 

o SquareWear has a built-in LDO (MCP1700) to provide regulated 3.3V from battery. When 

battery voltage drops below 2.7V, the microcontroller will stop running. In this case, you 

should plug in a USB cable and charge the battery for 15 minutes before using it again. 

o Keep battery plugged in at all times. Certain functionality, such as buzzer and USB 

bootloader, may not work reliably if the battery is removed. 
 

  Pin Names and Functions (SquareWear uses the same pin names as Arduino) 

o Digital I/O pins: the board has 8 available digital I/O pins 

 D0 / D1 (also serial RX / TX pin) 

 D3 / D5 / D6 (MOSFET pins***, support PWM*) 

 D10 / D11 (support PWM*)  

 D13 (internally wired to blue LED**)  

http://rayshobby.net/cart/accessories/acc-batteries/lipo-700


 

* PWM (Pulse Width Modulation), also referred to as analog output, provides adjustable level of 

voltage. You can use PWM to control the brightness of the LED, the speed of a motor etc. All PWM 

pins can function as standard digital I/O pins, but additionally you can use Arduino’s analogWrite 

function to set analog voltage levels. 
 

** D13 is internally connected to the blue LED. Setting this pin HIGH will light up the blue LED. 
 

*** MOSFET Pins 

D3, D5, D6 support PWM, and in addition they are internally wired through MOSFETs. The MOSFETs 

function as ‘Power Sinks’. This means setting the pins to logical high will connect them to GND, and 

setting them low will disconnect them from GND. Therefore, in order to use MOSFET pins, such as 

for controlling an LED, you need to connect the positive lead of the LED to VCC, and negative lead to 

one of these Power Sink pins. By setting the pin high or low, you can control the LED. 

 

The main advantage of Power Sink pins is that they can drive a high amount of current, so your LEDs 

will look very bright, your speaker will sound loud, etc. You can also use the MOSFET pins to drive a 

motor, a heat wire, a muscle wire etc. Each MOSFET can drive up to 250mA current. You can 

combine the three MOSFET pins together to drive more current. 

 

o Analog Input pins: SquareWear 2.0 has 4 available analog input pins 

 A2 (also digital D16) 

 A3 (also digital D17) 

 A4 (also digital D18 and I2C SDA pin) 

 A5 (also digital D19 and I2C SCL pin) 
Analog pins are typically used to read analog signals, such as sensor values. They can also function as 

digital I/O pins. 

 

o Internally Assigns Pins (not available for general-purpose applications):  
 D2 / D7: USB D- / D+ 

 D4: push-button (also used to enter bootloader) 

 D8 / D12 / D13: red / green / blue channel of the RGB LED 

 D9: buzzer 

 A0 / A1: light / temperature sensor 

 

o Sewing: SquareWear has large pin holes, allowing you to stitch conductive threads through 

them and attach the board to textile or fabric. You can also solder wires directly to the pin 

pads, or solder sew-on snaps to allow quick attachment to / detachment from textile. 

 



 Programming SquareWear 2.0 

 Pre-Requisites: 

o The recommended way to set up software is by downloading one of the following pre-

configured Arduino installation files: 

 Mac: http://rayshobby.net/software/arduino-1.0.5-squarewear-macos.zip 

 Win: http://rayshobby.net/software/arduino-1.0.5-squarewear-windows.zip 

 Linux32: http://rayshobby.net/software/arduino-1.0.5-squarewear-linux32.zip 

 Linux64: http://rayshobby.net/software/arduino-1.0.5-squarewear-linux64.zip 

o These installation files are based on Arduino 1.0.5 and have pre-installed necessary files to 

get you started. They also contain drivers for Windows, and SqureWear demos. 

o Mac OS users: if the pre-configured software package gives you an error Arduino.app is 

damaged and can’t be opened, this is because the latest OS X requires signed apps. The 

temporary work-around is to turn off this requirement in system settings. The solution is 

described in this page. 

o After installation, run Arduino 1.0.5 from the installed folder. Then in the menu, select 

Tools->Boards->SquareWear 2.0  

o There are many provided example programs, which you can find in File->Examples-

>SquareWear2->… 

 

 Enter Bootloader and Upload a Program (IMPORTANT! PLEASE READ!!): 

o To upload a program, plug in a mini-USB cable to the USB port. First turn off SquareWear 

(i.e. the power switch away from USB). Then press the pushbutton while turning on the 

power switch. At this point, the normal application will stop running, and the controller will 

present itself as a USBasp programmer to the host computer. 

 In Windows, you need to install USBasp driver if you haven’t done so previously. The 

driver is included in the Arduino1.0.5/drivers/usbasp folder.   

 In Linux, you need to create a file in /etc/udev/rules.d/ to give permission to 

the USB device. Alternatively, run Arduino in sudo mode. 

o Next, to upload a program, click on the Upload button in Arduino. Once the program is 

uploaded, the microcontroller will start running the program immediately. 

 If the Arduino output reports the following error: 
avrdude: error: could not find USB device "USBasp" with vid=0x16c0 pid=0x5dc 

That means either you did not successfully enter program mode, or if you are in 

Linux, you don’t have system permission to use the USB device. 

 If the output reports the following warning, it’s normal. Just ignore them: 
avrdude: warning: cannot set sck period. please check for usbasp firmware update. 

avrdude: error: usbasp_transmit: error sending control message: Broken pipe 

o To upload a new program, repeat the above steps. 

http://rayshobby.net/software/arduino-1.0.5-squarewear-macos.zip
http://rayshobby.net/software/arduino-1.0.5-squarewear-windows.zip
http://rayshobby.net/software/arduino-1.0.5-squarewear-linux32.zip
http://rayshobby.net/software/arduino-1.0.5-squarewear-linux64.zip
http://www.baldengineer.com/blog/2012/11/22/how-to-fix-arduino-is-damaged-and-cant-be-opened/


 Using Existing Arduino Programs: 

o Because SquareWear 2.0 is based on Arduino, you can upload any existing Arduino program. 

The Arduino software has numerous example programs. Just make sure that you suitably 

modify the program to match the pins assignment on SquareWear 2.0. 

 

 Temperature Sensor: 

o According to the datasheet of MCP9700, if the temperature sensor reading (analog value) is 

A, the temperature in Celsius is: C = (A * 3.25 / 1024 – 0.5) / 0.01. The conversion from 

Celsius to Fahrenheit is: F = (C – 32) * 5 / 9. 

o Some SquareWears used MCP9701, and the equation is: C = (A * 3.25 / 1024 – 0.4) / 0.0195. 

So if the first equation does not work, try the second equation. 

 

 Using the SoftPWM library: 

o The color LED is not wired to hardware PWM pins, so you cannot  use analogWrite 

directly on the color LED. But the SquareWear library includes a SoftPWM (software PWM) 

library that can simulate PWM on these LEDs.  

o To use the library, you need to include both HIDSerial.h and SoftPWM.h in your 

sketch. In the setup() function, call SoftPWMBegin(); then use SoftPWMSet(pin, 

value)to set a PWM value (0 to 255) to a pin (any digital pin).  

o Check the fade demo for an example use of software PWM. 

 

 Using the HIDSerial library: 

o SquareWear does not have built-in USB-serial converter. Instead, it simulates USB functions 

in software, using the V-USB library. The serial communication is implemented through the 

HID (human interface device) protocol, which requires no driver installation. 

o Check the hidserial demo for example. The library is designed to be compatible with 

Arduino’s Serial class as much as possible. 

o To use the library, you need to include HIDSerial.h in your sketch. 

o Specify a global HIDSerial class variable. For example: HIDSerial serial; 

o In the setup() function, call serial.begin(); 

o Use serial.write(char) to write a single character. Use serial.print or 

println to write a string. 

o Use serial.available() to check if there is an incoming string (from host computer). 

o Then use serial.read to read the incoming string. 

o Important: because the library is not interrupt driven, you must call serial.poll()as 

frequently as possible to handle USB requests in time. This can be done by inserting 

serial.poll() in the inner loop and ensure that it’s called frequently. 



o Host software: to use the HID serial function, you need to run host software called HID 

Serial Monitor. It’s cross-platform. To use the software: 

 First click on the Connect button to connect the device (if unsuccessful, check if 

SquareWear is turned on and if you have followed the above descriptions for calling 

serial.begin() and serial.poll() in your sketch. 

 Once connected, whenever a string is 

transferred from the device to host, it will be 

displayed in the text area. 

 To send a string from the host to the device, 

type the string in the text field, and then click 

on Send. 

 Limitation: due to software limitation, 

do not send a string longer than 32 

characters at a time. Sending a string 

longer than 32 characters may results in 

buffer overflow or an error. 

 You can also pause the device and host 

communication by clicking on the Pause button. 

 

 Simulate Human Interface Devices (HID): 

o Because SquareWear uses the V-USB implementation, you can program it to simulate a 

mouse, a keyboard, or other HID devices. Examples can be found in the V-USB website. 

 

 Using Adafruit’s Neopixel Library: 

o The SquareWear software pack has pre-installed Adafruit’s Neopixel library. You can use it 

to interface with WS2811/2812/2813 LED strips/matrices. The SquareWear examples 

include a few demos (ledpad-xxx). These demo programs assume the LED strip / matrix is 

connected as follows: VCC (red wire), GND (black wire), and pin D1 (white wire).  

 

http://www.obdev.at/products/vusb/index.html

