Will Vaughan
Taylor Kimmett
Computer Science 4240

27 April 2014
Milestone 3

Introduction

For our project, we installed and set up our Virtual Machines to support a mostly
unknown version control system, known as Fossil. Installing and setting up Fossil
on our machines was not very difficult because one of the strongest attributes of
Fossil is its ease of use. Because Fossil’s easy nature to get up and running, we
needed to take our project a bit further. We developed a web page to display to the
user an arbitrary number of Fossil repositories, as well as allow them to create new
repositories on the fly from the web page. This will help a user to easily see what
repositories they have access to, as well as provide a link to the built-in web
interface served by Fossil. Before we did this, we had to use the command line to
check on the status and contents of our repositories, which for most users is a

difficult hassle.

Background

In order to better understand the purpose of this project some background
about Fossil is necessary. Although it is relatively unknown, Fossil is a very
streamlined and easy-to-setup version control software not unlike more popular

systems like Git and Mercurial. Being a ‘distributed’ version control system, Fossil

does not require a central server (as in software like SVN), and users commit
changes to a local repository where typical source control actions can be performed.
One unique feature provided by Fossil is its integrated bug tracking. Fossil stores
bug reports within each check-in and calls them ‘tickets.” By using the check-ins to
track bugs, Fossil is able to keep developers aware of whatever bugs may be
showing up, without having to directly communicate with the user. This can allow a
developer to fix a problem or bug quicker, providing a more seamless user
experience. Another useful resource provided by Fossil is their wiki information,
which can be found on their website. This serves as a reference for developers to
make the experience even easier as they use Fossil. One of Fossil’s strongest
features is its built-in web interface, where information such as development
timeline, wiki information, and bug tickets can be viewed. A screenshot of the

current Fossil webpage can be found below.

S,
e
LY .
™ - Mot ed
rest BUg-Tracking In Fossil 201405 s 8528
Home Timeline Downlbad Code Documentation Branches Tags Tickets Wk Login

Introduction

A bug-report in fossil is called a "ticket”. Tickets are tracked separately from code check-ins.

Some sther distributed bug-tracking systems stare tickets as files within the source tree and thereby leverage the syncing and
merging capabilities of the versioning system to sync and merge tickets. This approach is rejected in fossil for three reasons

1. Check-ins in fossil are immutable. So if tickets were part of the check-in, then there would be no way to add new tickets to a
check-in a5 new bugs are discovered

2. Any project of rezsonable size and complexity will generate thousands and thousands of tickets, and we do not want zll those
ticket files cluttering the source tree.

w

. We want tickets to be managed from the web interface and to have a permission system that is distinct from check-in
permissions. In other words, we do not want to restrict the creation and editing of tickets to developers with check-in
privileges and an installed copy of the fossil executable. Casual passers-by on the internet should be permitted to create
tickets

Recall that a fossil repository consists of an unordered collection of artifacts. (See the file format document for details.} Some
artifacts have a special format, and among those are Ticket Change Artifacts. One or mare ticket change artifacts are associated
with each ticket. A ticket is created by a ticket change artifact. Each subseguent modification of the ticket is a separate artifact.

The "push”, "pull’, and “sync” algarithms share ticket change artifacts between repositaries in the same way as every other artifact.
In fact, the sync algorithm has no knowledge of the meaning of the artifacts it is syncing. As far as the sync algorithm is concerned,
all artifacts are alike. After the sync has occurs, the individual repositories must make sense of the meaning of the various artifacts
for themselves.

Interpretation Of Ticket Change Artifacts
Nate: The following is implementation detail which can be safely ignared by casual users of fassil
Every ticket change artifact contains (among other things)

+ atimestamp,
* aticket 1D, and
* oneor more namefvalue pairs

The current state of a ticket is found by replaying all ticket change artifacts with the same ticket ID in timestamp order. For a given
ticket, all values are initially NULL. As each ticket change artifact is encountered, values are either replaced or appended, according
to a flag on the name/value pair. The current values for the fields of a ticket are the values that remain at the end of the replay
process.

Tao create a new ticket, one inserts a ticket change artifact with a new ID. The ticket 1D is a random 40-character lower-case
hexadecimal number. The "tktnew" page in the fossil web interface creates new ticket IDs using 2 good source of randomness to
insure unigueness. The name/value pairs on the initial ticket change artifact are the initial values for the fields in the ticket.

Amending a ticket means simply creating a new artifact with the same ticket [D and with name/value pairs for those fields which are
changing. Fields of the ticket which are not being modified should nat appear as namefvalue pairs in the new artifact

This approach to storing ticket state means that independently entered changes are automatically merged together when artifacts
are shared between repositories. Tickets do not branch. This approach also makes it trivial to track the histeric progression of
changes to a ticket.

In order for this scheme to work, the system clocks on machines that add new ticket changes artifacts have to be set close to
reality. It is OK for a ticket chanae artifact timestamn to be off bv a few minutes or even a few hours. But if a timestamo on a ticket

Motivations/Objectives

As today’s technology world progresses and the development of software is
not as much left to the big companies, reliable version control software will become
more important. Fossil provides an easy to use and easy to set up option that will
allow developers to focus on actually developing their software and not the
distribution of their work. The overall goal of this project is to create a web interface
that allows access to an arbitrary number of Fossil repositories on the server
machine. The general end result of this project will be a web interface (web page)
served from our Ubuntu virtual machine, which lists and allows access to any Fossil
repository that is designated public. An example interaction with our web interface
may entail a user navigating to the page, clicking one of the listed repository links,
and subsequently being directed to that repository’s web interface as generated by
Fossil. Users will also be able to add repositories through our web page. Our
machine will act as a Fossil server, allowing developers a centralized repository
from which they can pull software changes from others as well as push their own

changes.

Methodology

The tools we will use to create the web server and subsequent Fossil server
include Apache, PHP, and of course Fossil. Before we could start installing Fossil
and setting it up, we needed to set up PHP and Apache on our machine, for our
machine to act as local servers for our repositories. Below, you can see a test page

we used to check if PHP and Apache were set up correctly on our Virtual Machines.

Ubuntu (Snapshot 2) [Running] - Oracle VM VirtualBox - B

Firafox Web Browser

®m W Ty 4 w0sPM A Taar 03
#illa Firefox

Testing Apache + PHP

Today's date: Thursday 27th of March 2014 10:06:12 PM

@07 Jad @6 Right Al

29 ALl
7 p r— = 10:06 PM

As you can see, a simple PHP page is used to display the date and time that the page
is called. By doing this, we can assure that our Virtual Machines are ready and able
to install and setup Fossil and the subsequent server. Our next step was to make
sure we could serve and interact with Fossil repositories over HTTP. This

screenshot demonstrates our successful setup of serving Fossil repositories over

HTTP using Apache.

Ubuntu (Snapshot 2) [Running] - Oracle VM VirtualBox - B

W Mty taepn A Tagar £

ElE S IR [E]

Unnamed Fossil
Project
Timeline

02:42 (378a70ka20) Leaf: Added 2 more files (user: tgimmet. tags:

0215 Ebfb] Added scme files! (user: tkimmat. tags: tunk)
Befc] indtial empty check-in (user: tkimmet, tags: tunk

Thit pge mad qeessrabed i atoul 00058 by Fonad vinlon [J049004547] S014-01-27 132344

As indicated by the top right terminal window, we have a directory containing
several Fossil repositories, including ‘new-repo.fossil’, which is the repository from
the previous screenshot. In the right terminal window, ‘test-repo’ is cloned using its
remote URL. Note that the same username (tkimmet) and password (848b00) that
the repository was created with are used here to clone it. This, coupled with
instructing Fossil to remember the password, will allow us later to push changes to
the remote repository. The next step is to open the cloned repository, ‘cloned.repo’
as shown in the screenshot. This command opens a checkout for that repository and
builds the working tree, which in this case consists of two files: ‘file1’ and ‘file2’.
Now we create two new files called ‘file3’ and ‘file4’. These files are set to be tracked
using the addremove command once again. Finally, we again commit these

changes (addition of two files) to the repository. Since the autosync setting is

enabled, the commit command will also push our changes to the remote repository as
well as our local cloned repository.
As you can see, our Fossil server is functioning properly. We are able to clone a
remote repository, commit changes, and view the repository web page, all over
HTTP.
User’s Manual

For users of Ubuntu, Fossil can actually be installed using apt-get (sudo
apt-get install fossil). However, installation through a package manager
is not necessary. The ‘official’ installation method for Fossil is to simply download
the archive for your target platform, unpack the archive, and move the Fossil binary
to a directory that is in your PATH environment variable. Once Fossil is installed,
you must first initialize a Fossil repository with the ‘fossil init’ command. An

example of this command can be seen below.

repa. Fossli

Once your repository is initialized, you can open it with the fossil open
command. This command requires the desired name of the repository as input, and
creates a repository with the name provided. Another important command is the
‘open’ command. The ‘open’ command is used to build what is called a working
checkout from an existing repository. A working checkout consists of all the files
and directories that have been committed and stored in the repository thus far. You

can think of it as ‘unpacking’ the contents of the repository. Below is an example of

the fossil open command.

fhgme f Tk Lmmet

vome [TeELnmet

vome | thinmet] .

As you can see from the screenshot, Fossil provides some statistics about your
repository upon the ‘open’ call. The information provided by open is just some
general information like repository name, comments, and configuration. In addition
to this information, Fossil will also normally display all the files and directories,
which are built upon calling ‘open’, but in this case there is nothing in the repository
yet. More information about the repositories can be found by using the fossil
status command. Now that you have fossil set up and a repository created, you
can begin adding files to your repository. For our project, we simply created some
example files to show how Fossil works. In reality Fossil would be used for software
version control and not simple files like we use in our examples, however, the
concept is the same. The first step in adding files and changes to a repository is to
tell Fossil that your files need to be tracked. The simplest way to make Fossil start
tracking any untracked files in your checkout is by using the ‘addremove’. The ‘add’
part of this command obviously adds untracked files to the working checkout, but
the ‘remove’ part less obviously removes any files that were previously being
tracked, but are now considered ‘missing’ by Fossil (i.e. they no longer exist in the

file system). This is probably the easiest way to handle updating the files to your

repository. Fossil also provides other options such as ‘add’ and ‘remove’ that let you
do each of these functions on the repository separately. Despite adding your files to
the working checkout so Fossil can track changes in them, you still have not saved
any changes to the repository. To do this you must use the ‘commit’ command.
Running fossil commit will store all of your changes in the repository, creating
a new ‘version’ of the code, or whatever your project happens to be. Below you can
see a commit in action. You can see that two files are created, and then they are
added to the working checkout using ‘addremove’. Finally they are stored in the

repository using ‘commit’:

tkimmet@tkimmet-virtualBox:~/424/ms2/test-clone$ touch file3; touch file4;
tkimmet@tkimmet-virtualBox:~/424/ms2/test-clone$ fossil addremove

ADDED file3

ADDED file4

added 2 files, deleted 0 files

tkimmet@tkimmet-virtualBox:~/424/ms2/test-clone$ fossil commit -m "Added 2 more files"

http://tkimmet@localhost/cgi-bin/repos/new-repo
t 1 Artifacts sent: 0 received: ©
Pull finished with 363 bytes sent, 370 bytes received
New_Version: 378a70ba2013bab06ebc53e1d0c518bc2726d158
Autosync: http://tkimmet@localhost/cgi-bin/repos/new-repo
Round-trips: 1 Artifacts sent: 2 received: 0
[|Sync finished with 620 bytes sent, 396 bytes received

Analysis/Results

As an exercise in extending the basic functionality provided by Fossil, we created a
simple web portal where users can view a list of links to all of the repositories
residing on the server (that are web-facing, that is), as well as create a new
repository right from the web page. The portal is a single PHP page, which examines
the directory where all web-facing Fossil repositories are located, and creates a link
to each one using the filename. The link simply directs the user to the page actually
served by Fossil. From there they can perform any other administrative tasks or

status checks that are necessary.

For the repository creation part of the portal, we use an HTML <form> element
with two fields described below:
1. Repository name - this will be the name of your repository file. Note: the
fossil extension will be added automatically.
2. Password - this is an administrator-defined password, which resides in a text
file in the same directory as the web page (not readable by outsiders). This is
a security precaution to prevent spammers from adding repositories to flood
the system
Once the form is posted back to the PHP page, we perform some validation to ensure
the challenge password matches the password file, and to ensure the specified
repository name is not already in use. Finally, if everything checks out, we execute a

fossil initusing PHP’s exec function to create the user’s repository.

Here is a screenshot of the web portal with the form information filled out:

Fite Edic

@ B re: [fo
4 {

» test

Repository nume: demo
Password: s

Create repository

CLOER I e

N

And here is the page after the information has been submitted. You can see that the

new repository has been added and is also visible in the list:

File Edit Viey History Bookmarks Tools Help 1 m 4)) 11:47PM L%
Re: [fossil-users] Is there an... i Repository Portal

localhost

Available Fossil Repositories

Your repository has been created: admin-user: tsk (initial password is "424d1f")

Repository name:

Create repository

=
e
]
ﬁ Password:
a
2
(]
—

0

Conclusions and Future Work

To conclude, we have extended the capability of the version control software,
Fossil. We have developed a web page to aid users in managing their Fossil
repositories. The web page displays a user’s current Fossil repositories, so that they
can see a current list of their repositories and use command line commands to
manage and edit their repositories. Fossil already provides a plethora of services

and features, which we have discussed earlier. Given more time, we think some

more work could be done to add even more to our Fossil web portal. One feature
we think would be compelling is the ability to specify initialization parameters such
as admin user, and default password straight from the portal. A weakness in our
current setup is that the portal is running over HTTP without SSL. This decision was
made simply for testing purposes. If this were going to be available over the
Internet, we would definitely want to secure it with SSL to prevent security leaks
with the password. The HTTPS work is mainly with the apache web server,

however, and we simply did not do it because we just wanted to test the concept.

