i 8 The Official Publication of The Embedded Systems Conferences and Embedded.com

VOLUME 21, NUMBER 1 JANUARY 2008
CMP

Embedde

United Business Media

pe

)

90% CUT IN EMISSIONS

AND 50% CUT IN DEVELOPMENT TIME.

0_/* The MathWorks

Accelerating the pace of engineering and science

THAT’S MODEL-BASED DESIGN.

To meet a tough performance
target, the engineering

team at Nissan used dynamic
system models instead of
paper specifications.

The result: 50% time savings,
the first car certified to meet
California’s Partial Zero
Emissions Vehicle standard,
and a U.S. EPA award.

To learn more, visit
mathworks.com/mbd

TLAB
IMULINK" -

- ©2005 The MathWorks, Inc.

Need to make sure they line up for
your product first?

...|||II|\H‘HM‘"“H“HM.

Green Hills

*SOFTWARE. INC. -

With more than half of the product development cycle consumed by debugging, finding bugs faster
means your product will get to market first.

Green Hills Software provides premier tools that pinpoint the most elusive bugs in minutes, instead
of hours or days. With the MULTI®development environment’s time-saving code analysis tools, errors
in code are automatically found, long before the debugging process begins.

MULTI and the TimeMachine™debugger allow developers to easily find every bug so that shipping a
product with known problems becomes a thing of the past.

With Green Hills Software’s sophisticated technology you'll produce a better product and get it out
the door long before your competition.

Call 800-765-4733 or visit us on the web www.ghs.com to learn more.

Copyright © 2006 Green Hills Software, Inc. Green Hills, the Green Hills logo, MULTI and TimeMachine, are trademarks or registered trademarks of

Green Hills Software, Inc. in the U.S. and/or internationally. All ather trademarks are the property of their respective owners.

Perforce | Fast Software Configuration Management

Perforce Time-lapse View

PERFORCE

SOFTWARE

Introducing Time-lapse View,

a productivity feature of Perforce SCM.

Time-lapse View lets developers see every edit ever made to a file in a
dynamic, annotated display. At long last, developers can quickly find
answers to questions such as: ‘Who wrote this code, and when?’ and

‘What content got changed, and why?’

Time-lapse View features a graphical timeline that visually recreates

the evolution of a file, change by change, in one fluid display. Color

gradations mark the aging of file contents, and the display’s timeline
can be configured to show changes by revision number, date, or

changeset number.

Time-lapse View is just one of the many productivity tools that come
with the Perforce SCM System.

Download a free copy of Perforce, no questions
asked, from www.perforce.com. Free technical support is
available throughout your evaluation.

THE OFFICIAL PUBLICATION OF THE EMBEDDED SYSTEMS CONFERENCES AND EMBEDDED.COM

Embedded
Systems Design

www.embedded.com

JANUARY 2008

VOLUME 21, NUMBER 1

Cover Feature:
The art of FPGA construction

BY GINA R. SMITH
Working with FPGAs isn’t intimidating when you know the
basic techniques and options.

AP T

Is symmetric
multiprocessing
for you?

BY DAVID N. KLEIDERMACHER
Multicore architectures can provide
the performance boost you're looking

for, but the software is certainly more
complicated.

Debugging embedded C

BY ROBIN KNOKE

Has debugging embedded C changed in 20 years? You betcha.
But the process will never change: stabilize, isolate, correct, and
retest. Here’s an article from the 1988 premiere issue of
Embedded Systems Programming, with some comments from the
author, Robin Knoke.

«34

EMBEDDED SYSTEMS DESIGN (ISSN 1558-2493 print; ISSN 1558-2507 PDF-electronic) is published monthly by CMP Media LLC., 600 Harrison Street,
5th floor, San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address.

SUBSCRIPTION RATE for the United States is $55 for 12 issues. Canadian/Mexican orders must be accompanied by payment in U.S. funds with additional
postage of $6 per year. All other foreign subscriptions must be prepaid in U.S. funds with additional postage of $15 per year for surface mail and $40 per year
for airmail. POSTMASTER: Send all changes to EMBEDDED SYSTEMS DESIGN, P.O. Box 3404, Northbrook, IL 60065-9468. For customer service,
telephone toll-free (877) 676-9745. Please allow four to six weeks for change of address to take effect. Periodicals postage paid at San Francisco, CA
and additional mailing offices. EMBEDDED SYSTEMS DESIGN is a registered trademark owned by the parent company, CMP Media LLC. All material
published in EMBEDDED SYSTEMS DESIGN is copyright © 2005 by CMP Media LLC. All rights reserved. Reproduction of material appearing
in EMBEDDED SYSTEMS DESIGN is forbidden without permission.

<z

columns
programming
pointers 9

Storage class specifiers
and storage duration

BY DAN SAKS

Storage class specifiers don’t
specify scope but combine
with scope to determine stor-
age duration. Here’s the sec-
ond part in a series on scope,
storage allocation, and linkage.

break points 45

Twenty years on

BY JACK G. GANSSLE

Twenty years is a long time in
human terms and even longer
in the microprocessor indus-
try. Here’s a look at what’s
transpired.

depariments
| #include 4

Acquisitions to enhance
coverage

BY RICHARD NASS
Acquisitions will bring more
tear downs and insight into
semiconductors.

advertising index ({43
marketplace q7

in person

San Jose Convention Center
April 14-18, 2008
www.embedded.com/esc/sv/

on-ine
www.embedded.com

Web archive:
www.embedded.com/archive

Article submissions:
www.embedded.com/wriguide

Forum discussions:
www.embedded.com/forum

#include

Acquisitions to

BY Richard Nass

enhance coveruge

mbedded systems designers

can now gain from the experi-

ence of their peers, thanks to
an abundance of Tear Downs.

CMP, the company that owns this
magazine, Embedded.com, and the
Embedded Systems Conferences
(along with lots of other publications
and Web sites, including EE Times
and TechOnline), recently made two
acquisitions. Normally, I wouldn’t
mention events that occurred on the
business side of the house in these
pages. However, these two acquisi-
tions could have a great affect on the
coverage that you'll see in these
pages.

The two acquisitions are Semi-
conductor Insights (www.semiconduc
tor.com) and Portelligent (www.tear
down.com). If you're not familiar with
one or both of these companies, let
me shed some light on them.

The Portelligent acquisition was
finalized in November. The compa-
ny’s claim to fame is doing Tear
Downs. By doing that, they gain in-
telligence into the design of mobile,
wireless, personal, and consumer
electronics. With this information,
designers can make faster, better, and
more cost-effective decisions about
their competitive positioning, tech-
nology options, investment strategy,
intellectual property (IP) position,
and marketplace opportunities.
Portelligent was formed in 2000 as a
spinoff of an Austin-based research
consortium.

Richard Nass is
editor in chief of
Embedded Systems
Design. You can
reach him at
rnass@cmp.com.

We’ve worked with the Portelli-
gent team for years. You may have
noticed that the company’s Tear
Downs have been appearing in our
pages and on Embedded.com for
some time now, as well as in EE
Times and on TechOnline. You may
also recognize the Portelligent name
from the Prius Tear Downs we per-
formed live at the Embedded Systems
Conferences. The company had a big
hand in that project.

The acquisition of Semiconduc-
tor Insights, which occurred last July,
has a similar meaning to our group.
Semiconductor Insights is also
known for its Tear Downs, but they
perform them at the IC level rather
than at the system level. For example,
the company was the first to tear
apart and analyze Intel’s latest micro-
processor, the Penryn 45-nm device.

Semiconductor Insights also
serves as a global IP and patent tech-
nical advisor. They have the ability to
perform technical investigations of
patents, ICs, and electronic systems.
One division of the company bench-
marks competing devices, improves
time to market, and solves technical
problems, while a second division
helps technology companies and le-
gal professionals evaluate, develop,
and monetize their IP.

Together, the two companies will
offer a combined searchable database
of over 40,000 components and ICs,
which is an invaluable resource for
designers.

Richard Nass
rnass@cmp.com

JANUARY 2008 | embedded systems design | www.embedded.com

Embedded
Systems Design

Editor in Chief
Richard Nass
(201) 288-1904
rnass@cmp.com

Managing Editor
Susan Rambo
srambo@cmp.com

Contributing Editors
Michael Barr

John Canosa

Jack W. Crenshaw
Jack G. Ganssle
Dan Saks

Larry Mittag

Art Director
Debee Rommel
drommel@cmp.com

European Correspondent
Colin Holland
colin.holland@btinternet.com

Embedded.com Site Editor
Bernard Cole
beeole@acm.org

Production Manager
Pete Scibilia
pscibili@cmp.com

Director of Audiences Services
Kristi Cunningham
keunningham@cmp.com

Subscription Customer Service

P.O. Box 2165, Skokie, IL 60076

(800) 577-5356 (toll free), Fax: (847) 763-9606
bedded desien@halldata.com

service.com

www.embedded: T

Back Issues

Kelly Minihan

(800) 444-4881 (toll free),
Fax: (785) 838-7566

Arlicle Reprints, E-prints, and Permissions
PARS International Corp.

102 West 38th Street, Sixth Floor

New York, NY 10018

(212) 221-9595, Fax: (212) 221-9195
reprints@parsintl.com
www.magreprints.com.quickquote.asp

Publisher

David Blaza
(415) 947-6929
dblaza@cmp.com

Editorial Review Board
Michael Barr

Jack W. Crenshaw
Jack G. Ganssle

Bill Gatliff
Nigel Jones
Niall Murphy
Dan Saks
Miro Samek
CMP
United Business Media
Corporate
David Levin Chairman
Scott Mozarsky Chief Financial Officer
Tony Uphoff President, CMP Business Technology
Group
Robert Faletra President, CMP Channel
Paul Miller President, CMP Electronics Group.
Philip Chapnick President, CMP Game, Dobb's, ICMI

Group
Anne Marie Miller Corporate Senior Vice President, Sales
Marvlieu Jolla Hall Senior Vice President, Human
Resources
Marie Myers Senior Vice President, Manufacturing
Alexandra Raine Senior Vice President,
Communications

E, MARS!

‘manages camera software
| -to NASA mission

vV 10

MRO spacecraft depicted in Mars orbit: NASA

| The Mission

= When they wrote the embedded software that controls the cameras aboard the Mars
Reconnaissance Orbiter (MRO), a team of Ball Aerospace and Technology Corp.
engineers led by Steve Tarr knew they only had

one chance to get it right. If there was a seri-

ous flaw anywhere in the software, the $720 THREAD X
million spacecraft might have no more value

than a digital camera dropped in a bathtub.

Tarr and his team wrote 20,000 lines of code and used Express Logic's ThreadX RTOS.
The software has worked flawlessly, resulting in history-making photographs such as
the one to the left that shows the Opportunity rover traversing the surface of Mars.

Images courtesy NASA: http://mars.jpl.nasa.gov/mro

The Technology

With its intuitive API, rock-solid reliability, small memory footprint, and high-perfor-
mance, ThreadX delivered the goods for NASA's MRO. ThreadX is in over 450 million
electronic devices from NASA's MRO to HP's printers and digital cameras. Which RTOS
will you choose for YOUR next project?

Small Memory Footprint e Fast Context Switch e Fast Interrupt Response
Preemption-Threshold™ Technology e Picokernel™ Design e Event Chaining™
Broad Tools Support e Supports All Leading 32/64-bit Processors e Easy to Use
Full Source Code e Royalty-Free

Order today on Amazon
Real-Time Embedded

Multithreading
Using ThreadX and ARM For a free evaluation copy, visit

]
by Edward L. Lamie www.rtos.com ¢ 1-888-THREADX exp ress I ogl c

Copyright © 2007, Express Logic, Inc.
ThreadX is a registered trademark of Express Logic, Inc. All other trademarks are the property of their respective owners.

Get the Complete Embedded Solution

E
!

Linux 2.6

www.xilinx.com/processor

e —
o

o —
2 %
WIRTEX"
| —

Unlock your future

hg01 00001 01001100480

Enter the New Era of Configurable
Embedded Processing

Adapt to changing algorithms, protocols and interfaces, by creating
your next embedded design on the world s most flexible system
platform. With the latest processing breakthroughs at your fingertips,
you can readily meet the demands of applications in automotive,
industrial, medical, communications, or defense markets.

Architect your embedded vision

e Choose MicroBlaze]" the only 32-bit soft processor with a configurable
MMU, or the industry-standard 32-bit PowerPC® architecture

e Select the exact mix of peripherals that meet your I/O needs, and stitch
them together with the new optimized CoreConnect™ PLB bus

Build, program, debug . . . your way

e Port the OS of your choice including Linux 2.6 for PowerPC or MicroBlaze

e Reduce hardware/software debug time using Eclipse-based IDEs
together with integrated ChipScope™ analyzer

Eliminate risk & reduce cost

e No worry of processor obsolescence with Xilinx Embedded Processing
technology and a range of programmable devices

e Reconfigure your design even after deployment, reducing support cost
and increasing product life

Order your complete development kit today, and unlock the future
of embedded design.

S XILINX

www.xilinx.com/processor

At the Heart of Innovation

©2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

www.embedded.com/farum

ice article (Jack Ganssle, “The

transistor: sixty years old and

still switching,” December
2007, p. 53). One minor point: before
the galena and cat’s whiskers, there
was the “coherer,” a strange concoc-
tion of metal filings between two elec-
trodes. It exhibited a large resistance
drop when subjected to an RF signal
from the antenna that

would sound a bell and vi-
brate the device back to its
high-resistance state (for
CW only, of course, not telephony.) A
Google search on “coherer” yields
some fascinating references, including
DIY coherers for the curious—they
actually work! After the coherer came
the “magnetic detector”™—IIRC, a
moving band of iron.

—Roger Jones

My father worked for RCA as an engi-
neer from the ’50s through the ’70s.
One year at the open house during the
Christmas holidays, they gave us all an
inhouse history of RCA. The founder
of RCA, David Sarnoff, was a teenage
telegrapher for the Marconi company
and was on duty when RMS Titanic
went down. He manned his key for
many hours, compiling lists of the sur-
vivors, the missing, and the dead. This
story, along with many others, encour-
aged me to enter this field. How far we
have come in just the 60 years of the
transistor and the 100 years or so of
electronics? What will the next 100
years hold?

—Thomas Mazowiesky

While I was working at Bell Laborato-
ries in the late 1970s, a story was going
around about the invention of the
transistor. It seems that one day Bill
Shockley was sitting in his office read-
ing a magazine when a technician ran
in to his office screaming “Mr. Shock-

Remembering transistor history

ley! Mr. Shockley! I connected p mate-
rial to n material to p material, inject-
ed some current, and I am getting am-
plification!” Shockley looked over the
top of his magazine and said “Con-
gratulations! You just discovered the
Shockley Effect!”

—Ed Wozniak

“Congratulations!

Shockley Effect!”

In 1968, I was a sophomore engineer-
ing physics major at the University of
Illinois. Bardeen was teaching E&M.
Articulate, lucid, and very friendly—
he put the material at the right level
and pulled us along through a course
that was universally dreaded. Acade-
mia could use a few thousand more
professors with his ability to teach and
engage young minds.

—David Barr

It’s not all about Linux
The statement that “an estimated 70%
of new semiconductor devices are Lin-

ux-enabled” seems quite impossible
(Hadi Nahari and Jim Ready, “Employ]|
a secure flavor of Linux,” October
2007, p. 20). A lot of LED and diodes
are being made, even today. Even if
“semiconductor devices” is changed to
read “microprocessor,” it seems very
unlikely to be true, given the quanti-
ties of low-end controllers shipped in
small gadgets. Can you point to any
justification for this statement?
—Craig Cherry

It’s not all about operating systems
Mr. Carbone could not possibly have
an “ax to grind,” could he? (John Car-
bonne, “Embedded OS trends points
to Linux . .. sometimes,” online Guest
Editor column, 12/11/07.) After all, he
hails from Express Logic, which sells

parity bit

the Thread-X RTOS. I have seen over

a dozen surveys that show the exact

opposite of the one cited in this arti-

cle—where the use of Linux is on the
rise in embedded devices and (espe-
cially) in small handheld devices that
must display rich-content from the

Internet.

Linux as applied to embedded sys-
tems has a steep learning
curve. Once you're past that,
it’s smooth sailing. But, Linux
has its place. Personally, I like

OpenBSD, because of its focus on cor-

rectness and security. OpenBSD will

only run (at this time) on machines
that have an MMU, so it will not fit
well on certain desirable platforms.

There’s a place for assembly, for C, for

a FORTH-based system, for a “home

grown” RTOS, for a commercial

RTOS, for a free RTOS, and of course

for Linux (and its BSD sisters and

brothers). Remember the old saying:

“If all you have is a hammer, then

every problem looks like a nail.” One

should not fall in love with any one
technique.

Linux is not for tiny microcon-
trollers—you need at least a 32-bit ma-
chine with at least tens of megabytes of
memory. (However, the trend in mi-
crocontrollers is to migrate to 32-bits
and memory is becoming very inex-
pensive). Linux is great if what you
want is a standard (and open) plat-
form with extensive networking sup-
port, and lots of already written and
ready-to-go standard applications.
That’s why Linux is becoming very
popular on upscale cellular phones
and handheld PCs. If all you need to
do is read a sensor and send a packet
somewhere over TCP/IP, there are bet-
ter solutions, (and not all of them cost
a lot of money like the Thread-X
RTOS).

CONTINUED ON PAGE 43

www.embedded.com | embedded systems design | JANUARY 2008 7

http://www.embedded.com/design/opensource/202103438
http://embedded.com/columns/guest/204801349

The Newest
Embedded Technologies

New Products from:

- . T .
WiFI \ m . , - VDIP1 Module

WLAN = NETWORK —

A AL

Bk

RCM4000
RabbitCore® Modules
WWWw.mouser.com/
rabbitsemi/a

MatchPort™ b/g
Embedded Device Server
Www.mouser.com/
lantronix/a

The ONLY New Catalog Every 90 Days

Experience Mouser’s time-to-market
advantage with no minimums and same-day
shipping of the newest products from more
than 335 leading suppliers.

B a tti company
Flexis™ DemoQE128 Demo Board
www. mouser.com/freescale/a

™™,

The Newest Products
For Your Newest Designs

SWww.mouser.com
g Over 900,000 Products Online

(800) 346-6873

BY Dan Saks

Storage class specifiers
and storage duration

declaration is
a source
code con-
struct that
associates at-
tributes with names. A
declaration either intro-
duces a name into the
current translation unit or
redeclares a name intro-
duced by a declaration
that appeared earlier in
the same translation unit.
A declaration might also
be a definition, which pro-
vides not just some of the
attributes of a name, but
rather all the information
the compiler needs to cre-
ate the code for that name.
Among the attributes that

Storage class

programming poinkers

scope as it applies to C
and C++.° In essence,
the scope of a name is
that portion of a trans-
lation unit in which the
name is visible. C and
C++ each support sev-
eral different kinds of
scope, summarized in
the sidebar entitled
“Scope regions in C
and C++” (see page
10).

Scope is closely re-
lated to, but nonethe-
less distinct from, the
concepts of storage du-
ration and linkage. The
storage duration for an
object determines how and
when the storage for that ob-

a name may have are its type, scope combine ject comes and goes. Linkage
scope, storage duration, and . determines whether declara-
linkage. Not every name has all with tions in different scopes can re-
of these attributes. For exam- duration. fer to the same object or func-
ple, a function name has a series tion. It’s easy to confuse these
type, a scope, and a linkage, concepts because they’re so in-
but no storage duration. A Scope, Storage tertwined.

statement label name has only Iinkage. Much of the confusion

a scope.

An object’s type determines
the object’s size and memory address alignment, the val-
ues the object can have, and the operations that can be
performed on that object. A function’s type specifies the
function’s parameter list and return type. I've discussed
the concept of data types in prior columns.!?

I devoted my November column to the concept of

Dan Saks is president of Saks & Associates,
a C/C++ training and consulting company. For
more information about Dan Saks, visit his
website at www.dansaks.com. Dan also wel-
comes your feedback: e-mail him at
dsaks@uwittenberg.edu.

stems from the complex se-
mantics of storage class speci-
fiers, keywords such as extern and static. For exam-
ple, the precise meaning of static depends on the scope
in which it appears. Sometimes, declaring an object
static affects the object’s storage duration. It can also
affect the object’s linkage. Understanding these distinc-
tions can help you program more effectively.

This month, I'll explain the syntax of storage class
specifiers and the concept of storage duration in C and
C++. I'll also show you how they’re related to the con-
cept of scope.

STORAGE CLASS SPECIFIERS
Storage class specifiers are keywords you can use in decla-

www.embedded.com | embedded systems design | JANUARY 2008

———

SCOPE REGIONS IN C AND C++.

scope regions. Although the C and C++ stan-
different verbiage to define those regions, the
regions:

® In C, a name has file scope if it's
declared in the outermost scope of
a translation unit. C++ extends the
concept of file scope to the broader
concept of namespace scope. In
C++, a name has namespace
scope if it's declared either in a
namespace definition or in what C
calls file scope. The C++ standard
refers to the C concept of file scope
as global namespace scope, of just
global scope.

® A name (other than a statement la-
bel) has block scope if it's declared
within a function definition or a
block nested therein.

® A name has function prototype
scope if it's declared in the function
parameter list of a function declara-
tion that is not also a definition.

® Each statement label has function
scope, which spans the body of the
function containing the label.

® A name in C++ has class scope if
it's declared within the brace-en-
closed body of a class definition.
Classes in C++ include structures
and unions, so a member of a C++
structure or union has class scope
as well. The C standard doesn't
have a corresponding notion of
structure scope, but rather says that
each structure or union has a sepa-
rate name space for its members.
Despite the different verbiage in
their respective standards, C and
C++ look up structure and union
members in much the same way.

C and C++ each support five different kinds of
dards use different names for some regions and

two languages support essentially the same five

programming pointers —

rations to control storage duration and linkage. First I'll
show you how they fit into the syntax. Then I'll explain
their impact on semantics.

Every declaration in C and C++ has two principal
parts: a sequence of zero or more declaration specifiers,
and a sequence of zero or more declarators, separated by
commas.

For example:

static unsigned long int *x[N];

declaration specifiers
declarator

A declarator is the name being declared, possibly
surrounded by operators such as *, [1, (), and (in the
case of C++) &. In the previous example, *x[N] is a de-
clarator indicating that x is an “array of N pointers to ...”

Each object one
storage durations:
static, automatic, dynamic.

something, where that something is the type specified in
the declaration specifiers.

A declarator may contain more than one identifier.
The declarator *x[N] contains two identifiers, x and N.
Only one of those identifiers is the one being declared
and it’s called the declarator-id. The other(s), if any,
must have been declared previously. The declarator-id in
*x [N] is x.

(The term declarator-id comes from the C++ stan-
dard. The C standard makes do without it, but I find it
to be a useful concept.)

Some of the declaration specifiers leading up to a
declarator can be type specifiers such as int, unsigned,
Tong, const, or a user-defined type name. They can also
be storage class specifiers such as extern or static, or
function specifiers such as inline.

The type specifiers contribute to the type of the de-
clarator-id; the other specifiers provide non-type infor-
mation that applies directly to the declarator-id. For ex-
ample:

static unsigned long int *x[N];
declares x as an object of type “array of N pointers to

unsigned Tong int” The keyword static specifies
X’s storage class.

10 | JANUARY 2008 | embedded systems design | www.embedded.com

NI LabVIEW.

Limited Only by Your Imagination.

Build and program robots
with LEGO® MINDSTORMS®
NXT using software powered
by NI LabVIEW

Develop your human machine
interface (HMI) display

Independently control
multiple servo motors

Target 32-bit
microprocessors
and FPGAs

Communicate via
multiple protocols
including Bluetooth

Graphically program
concurrent, real-time
applications

Real-Time and Embedded

Signal Processing

High-Performance Test

Industrial Control

LabVIEW Real-Time Module

LabVIEW FPGA Module

LabVIEW Microprocessor SDK

NI CompactRIO Embedded
Hardware Platform

When the LEGO Group needed parallel programming
and motor control tools intuitive enough for children,

it selected graphical software powered by NI LabVIEW.
With LabVIEW graphical system design, domain experts
can quickly develop complex, embedded real-time
systems with FPGAs, DSPs, and microprocessors.

>> Expand your imagination with technical resources at ni.com/imagine

866 337 5041

‘7 NATIONAL
’ INSTRUMENTS'

———

The C standard lists five storage class specifiers:

auto, extern, register, static, and typedef; howev-
er, C considers typedef to be a storage class specifier for

syntactic convenience only. C++ doesn’t consider type-
def as a storage class, so I won't either.
The C++ standard lists mutab1e as another storage

class specifier, but this, too, is more for syntactic conven-

ience than anything else. Unlike the other storage class
specifiers, mutable has no impact on storage duration
or linkage. I don’t consider it a storage class specifier for
the purpose of this discussion.

A declaration need not have any storage class specifi-
er and can have no @ e

more than one.

Allocating storage

STORAGE DURATION
The storage duration of
an object determines
the lifetime of the stor-
age for that object. That
is, it determines that part of program execution during

which storage for the object must exist. Programmers of-

ten use the term storage allocation instead of storage du-
ration, but both the C and C++ standards favor the lat-
ter. Only objects have storage duration. Enumeration
constants, functions, labels, and types don’t.

Each object in C and C++ has one of the following
three storage durations: static, automatic, and dynamic.
(The C standard lists the third kind of storage duration
as “allocated” rather than “dynamic” but then never uses
the term after that. I'll call it dynamic.)

An object declared at file scope (in C) or namespace
scope (in C++), or declared with the storage class speci-
fier extern or static, has static storage duration. The
lifetime of the storage for that object is the entire time
that the program is executing.

An object declared at block scope, and without the
storage class specifier extern or static, has automatic
storage duration. The lifetime of the storage for that ob-
ject begins upon entry into the block immediately en-

Storage duration for objects in C and C++.

costs nothing

programming poinlers —

closing the object’s declaration and ends upon exit from
the block. Entering an enclosed block or calling a func-
tion suspends, but doesn’t end, the execution of a block.
When a program allocates storage for an object by
calling an allocation function, such as malloc in C or an
operator new in C++, that object has dynamic storage
duration. The lifetime of the object’s storage lasts until
the program passes the address of that object to a corre-
sponding deallocation function, such as free in C or an
operator delete in C++.
Table 1 shows how C and C++ determine the storage
duration for an object based on the storage class specifi-
er in the object’s
declaration and the
scope in which the

typic al |y declaration appears.
For example, the
first row (below the
_______________ ® column headings)

says that an object
declared with no storage class specifier at block scope
has automatic storage duration, but if it appears at file
scope in C or at namespace scope in C++, it has static
storage duration. If it appears as a structure or class
member, then it has the storage duration of the structure
or class object of which it’s a member.

None of the entries in Table 1 specify dynamic stor-
age allocation. Unlike objects with static or automatic
storage duration, a program can’t declare any objects
with dynamic storage duration. A program can create
them by calling an allocation function; it just can’t de-
clare them.

THE MECHANICS OF STORAGE ALLOCATION

The exact manner in which static storage is allocated and
deallocated depends on the target platform. However, al-
locating storage for an object with static storage dura-
tion typically costs nothing at run time because the com-
piler, linker, and loader together determine the size and
address of the object before the program starts running.

Storage At At As a
class block file scope (in C) or structure member (in C) or
specifier scope namespace scope (in C++) at class scope (in C++)
none automatic static storage allocated as part of enclosing object
auto automatic invalid invalid
extern static static invalid
register automatic invalid invalid
static static static invalid in C; static in C++
Table 1

12

JANUARY 2008 | embedded sustems design | www.embedded.com

From the running program’s perspective, an object with
static storage duration is always there.

Typical C and C++ programs allocate automatic
storage on a run-time stack, often the same stack that
they use for storing function-call return addresses. Allo-
cating storage for a local object isn’t free, but it’s usually
dirt cheap—just one machine instruction. For example,
m:

int foo(int v)
{

int m;

return m;

} D —

function foo has a
single local object, m.
The compiler deter-
mines m’s size from its
type, typically 2 or 4
bytes. When it com-
piles foo, the compil-
er simply generates an
instruction such as:

costs

sub sp, 4

as one of the first instructions in the function body to
carve room for an int on the stack. (This example as-
sumes that an int object occupies 4 bytes and that the
stack grows downward from higher addresses to lower
addresses.)

Allocating automatic storage for several local objects
costs more stack space, but no more run time, than allo-
cating storage for just one. For example, in:

int foo(int v)
{
int m;
double d;

return m + n;

}

the function has two local objects, m and d. In this case,
when it compiles the function, the compiler determines
the size of m, still 4, and the size of d, say 8. Rather than
generate a separate instruction to allocate storage for
each object, the compiler simply adds up the sizes and
uses the sum in a single instruction, such as:

sub sp, 12

automatic storage

no more runtime,

A function may also declare local objects in nested
blocks. For example, in:

int foo(int n)
{

char *p;

if (p !'= NULL)
{

int v;

}

return n;

}

function foo has a
block nested within
the if statement. That
block declares a local
object v. In this case,
the lifetime of the
storage for v begins
upon entry into the
nested block and ends
upon exiting the block. However, many compilers will
generate code for foo to allocate the storage for v along
with all the other local objects upon entering the func-
tion and deallocate the storage for v upon exiting foo.
Thus, a compiler might generate code that extends the
actual lifetime of the storage for a local object, but it’s
very hazardous for programs to try to exploit these
longer lifetimes.

Dynamic allocation is typically much slower than
automatic allocation. It often involves executing tens of
instructions, possibly more than a hundred. Nonethe-
less, you can use it to manage memory very economical-
ly, and so it may be worth the price.

more space,

LINKAGE ON THE HORIZON

As I mentioned earlier, not only can a declaration specify
type, scope, and storage duration, it can also specify
linkage. I thought linkage would be the subject of this
column until I started writing and realized that I needed
to cover storage duration first. I'll get there yet. M

ENDNOTES:

Saks, Dan, "A New Appreciation for Data Types,” Embedded
Systems Programming, May, 2001, p. 59.

2. Saks, Dan, “Cast with caution,” Embedded Systems Design, July,
2006, p. 15.
B. Saks, Dan, “Scope regions in C and C++,” Embedded System
Design, November, 2007, p. 15.

www.embedded.com | embedded systems design | JANUARY 2008

13

http://embedded.com/columns/programmingpointers/9900129
http://embedded.com/columns/programmingpointers/191600535
http://embedded.com/columns/programmingpointers/202600398

~ cover fealure’

The art of

FPGA

construction

14

BY GINA R. SMITH Working with

FPGAs isn't
infimidating

ver the last several years, the use of FPGAs has h

greatly increased in military and commercial when you)

products. They can be found in primary and sec- kI'IOW 1he bUSIC

ondary surveillance radar, satellite communica- 1echniques und

tion, automotive, manufacturing, and many other i

types of products. While the FPGA development process is second oprons.

nature to embedded systems designers experienced in implement-
ing digital designs on an FPGA, it can be confusing and difficult
for the rest of us. Good communication is important when techni-
cal leads, supervisors, managers, or systems engineers interface
with FPGA designers.

The key to good communication is having an understanding of
the development process. A solid understanding will help you
comprehend and extract relevant information for status reports,
define schedule tasks, and allocate appropriate resources and time.
There have been many times when my FPGA knowledge has al-
lowed me to detect and correct errors, such as wrong part numbers
or misuse of terms and terminology found in requirements and
other documents.

Regardless of your final product, FPGA designers must follow
the same basic process. The FPGA development stages are design,
simulation, synthesis, and implementation, as shown in Figure 1.
The design process involves converting the requirements into a for-
mat that represents the desired digital function(s). Common design
formats are schematic capture, hardware description language
(HDL), or a combination of the two. While each method has its ad-
vantages and disadvantages, HDLs generally offer the greatest design
flexibility.

JANUARY 2008 | embedded sustems design | www.embedded.com

et W05 50
AR LR v S

RSN

v

3% ,..«_A. AR
NS AR
J N .\.\ A
SO

\,

The FPGA development process can be divided into four
functions: design, synthesis, simulation, and implementalion.

Design

HDL design entry Schematic capture

Editors are text based.‘ OR '

Combination

-OR-

Register
transfer level

|

Synthesis
Logic reduction Estimated timing

3rd-party tools 1st-party tools

=
]

Implementation
® Design's logic placed & routed in FPGA
* Manual or automated pin assignment
® Programming file generated

Tools

S
|
M
U
L
A
T
|
o
Functional N
Tools
Gate-level ModelSim
Riviera
Quartus Il
Timing back
annotated

Figure 1

SCHEMATIC CAPTURE

Schematic capture, the graphical de-
piction of a digital design, shows the
actual interconnection between each
logic gate that produces the desired
output function(s). Many of these log-
ic-gate symbols involve proprietary in-
formation making them available to
the designer only through the specific
vendor’s component library. Schematic
capture designs that mainly consist of
proprietary symbols make the design
unrecognizable by competitors’ FPGA
development tools. The proprietary
nature of this type of design makes it
vendor dependent, and the entire de-

sign process must be repeated if a dif-
ferent vendor is used.

Examples of schematic capture
tools are Viewlogic’s ViewDraw and
HDL’s EASE. The main advantage of
schematic capture is that the graphical
representation is easy to understand.
However, its major drawback is an in-
crease in cost and time to reproduce a
design for different vendors due to the
design’s proprietary nature.

HDL METHOD

Hardware description languages
(HDLs) use code to represent digital
functions. “Firmware” often refers to

16 | JANUARY 2008 | embedded systems design | www.embedded.com

the resulting HDL code. HDLs are a
common and popular approach to
FPGA design. You can create the
source code with any text editor. Spe-
cial HDL editors like CodeWright and
Scriptum (a free HDL text editor by
HDL Works) offers features such as
HDL templates and highlighting re-
served words not found in ordinary
text editors. HDLs can be generic
(supported by multiple simulation and
synthesis tool sets) like Verilog or
VHDL (Very High Speed IC HDL), or
vendor-specific like Altera’s Hardware
Description Language (AHDL), which
is only recognizable by Altera’s design
tool set.

There are two writing styles for
HDL designs, structural or behavioral.
Structural firmware is the software
equivalent of a schematic capture de-
sign. Like schematic capture, structural
designs instantiates or uses vendor-
specific components to construct the
desired digital functions. This type of
HLD firmware is vendor-dependent
like its graphical counterpart and has
the same disadvantages. Like schemat-
ic capture designs, repeating the de-
sign process is necessary for different
vendors.

Behavioral HDL firmware describes
digital functions in generic or abstract
terms that are generally vendor inde-
pendent. This provides enough flexi-
bility for code reuse in different ven-
dor’s FPGAs so little or no code
modification is required. Advantages
of behavioral designs are its flexibility
and time and cost-savings, and it of-
fers little to no vendor dependence.
For designs that require vendor specif-
ic resources, such as RAM, only those
components must change for different
vendors.

VHDL and Verilog are the most
popular HDL languages. VHDL files
consist of three main parts: library dec-
laration, entity declaration, and archi-
tecture section. While not required by
VHDL, an optional heading section
should be included. This section
should contain pertinent information,
such as the designer’s name, filename,
a brief summary of the code, and a re-

2.5A, 42V SIMPLE SWITCHER® Synchronous

Step-Down Regulators

national.com/switcher

Constant-on-Time (COT) LM310x Regulators from the PowerWise® Family Need No Loop
Compensation and Are Stable with Ceramic Capacitors

Vin = 4.5V to 42V

Efficiency vs Load Current
Vo=1.8V

[

Non-sync, Vin = 24V

VOUT > 0.6V

o 9~

LM310x

=1

Efficiency (%)

1 15
Load Current (A)

Product ID V,, Range (V) Current (A) Frequency (MHz) Packaging

LM3100 45t0 36 15 0.8 Upto1 eTSSOP-20

LM3102 45t042 25 0.8 Upto1 eTSSOP-20

LM3103 45t042 0.75 0.6 Upto 1 eTSSOP-16
LM310x Features

* COT control provides lightning-fast transient response

» Stable with ceramic capacitors

* Near-constant frequency operation from unregulated supplies

* No loop compensation reduces external component count

* Pre-bias startup

¢ Discontinuous Conduction Mode (DCM) operation for a light load
* Enabled in National’s WEBENCH® online design environment

Applications

Embedded systems, industrial controls, automotive telematics and body electronics, point-of-load regulators, storage systems,
and broadband infrastructure

For FREE samples, datasheets, and online design tools visit:
national.com/switcher
Or call: 1-800-272-9959
National

Semiconductor
The Sight & Sound of Information

© National Semiconductor Corporation, 2007. National Semiconductor, &, PowerWise, SIMPLE SWITCHER, and WEBENCH are registered trademarks of National Semiconductor Corporation. All rights reserved.

Oplional heading section

Library
declaration

Entity
declaration

Architecture section

Listing 1 The various seclions of a VHDOL source file are illustrated here.

** Header Section **

Name H Beckie Smith
Date : January 28, 2005
Filename H Door_monitor.vhd
Description:

This circuit is responsible for enabling an external door chime circuit 10 clock
cycles or about 500ns after door_status goes high.

Revision History
Date Initials Description
2-17-05 BCS Changed chime delay from 1 minute to 500ns.

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE 1ieee.std_logic_signed.all;

ENTITY monitor IS PORT(

reset : IN std_logic; -- set internal gates to initial state
door_status : IN std_Togic; -- closed = Tow

clock_20mhz : IN std_logic; -- 1input clock_20mhz 20HZ
door_chime_en : OUT std_Togic); -- signal used to sound door chime

END monitor;

ARCHITECTURE door_monitor OF monitor IS

SIGNAL start_500ns_timer : std_logic; -- enables 500ns timer

SIGNAL reset_start_timer : std_logic; -- reset 500ns timer

SIGNAL timer_500ns : std_logic_vector(3 DOWNTO 0); -- 500ns counter

SIGNAL chime_enable : std_logic; -- sets external door chime

Concurrent statement

BEGIN /

door_chime_en <= chime_enable; -- signal used to sound door chime
checking_door_status: PROCESS (reset, clock_20mhz, reset_start_timer) ———— Sensitivity list

-- This process detects when the door has been opened and then starts the
-- 500ns timer.

BEGIN

IF (reset = "1") OR (reset_start_timer = '1') THEN
start_500ns_timer <= '0"; -- clear 500ns timer

ELSIF(rising_edge (clock_20mhz)) THEN
IF door_status = '1' THEN -- door 1is opened

start_500ns_timer <= '1' after 2 ns; -- enable 500ns timer

END IF;

END IF;

END PROCESS;

set_alarm_enable: PROCESS (reset, clock_20mhz)
-- This process set the alarm enable 500ns after the door has been opened
BEGIN

IF reset = "1" THEN
chime_enable <= '0"; -- clear chime enable
reset_start_timer <= "'0"; -- clear timer reset signal
timer_500ns <= (OTHERS => ('0")); -- clear chime timer
ELSIF (rising_edge (clock_20mhz)) THEN
[IF start_500ns_timer = '1' THEN -- door has been opened
timer_500ns <= timer_500ns + '1' after 2 ns; -- start counting 500nsec
. + IF timer_500ns = "1010" THEN -- test for 500ns
Sequential chime_enable <= '1' after 2 ns; -- set door chime enable
statements reset_start_timer <= 'l' after 2 ns; -- reset door chime timer
END IF; .
ELSE Injected delay
chime_enable <= '0' after 2 ns; -- don't set door chime circuit
END IF;
END IF;

END PROCESS;

END door_monitor;

18

JANUARY 2008 | embedded sustems design | www.embedded.com

vision history. Listing 1 shows an ex-
ample of a VHDL file’s behavior. Be-
cause HDLs are similar to software,
firmware designers should follow
some of software development rules.

HDL GUIDELINES

1. Use comments to provide code
clarity.

2. Indicate active low signals by n, _n,

_b, *at the end of the name.

3. Signal names should be relatively
short but descriptive. For example:

e A good signal name would be
CEn for an active low chip en-
able.

e A bad signal name would be
active_low_chip_enable.

e Use underscores in name
description for clarity.

e Synchronize signals to
change on a clock edge.

e Process, routes, modules,
and so forth, should per-
form a single function.

e Use formatting, such as tabs
and spaces, to provide read-
ability of code.

e Include a header section for
each file or module. Suggestive
header information designer’s
name, file description, and re-
vision or history record.

VHDL SYNTAX RULES
Now for some VHDL specifics, includ-
ing data types:

e Std_logic can have values of
high 1, low 0, unknown X, unini-
tialized U, high impedance Z, weak
unknown W, weak 0 L, weak 1 H,
and don’t care - to represent a sin-
gle data bit.

e Std_logic_vector can have the
same values as std_Tog1ic; howev-
er it represents multiple bits.

e A Dbit can only have a value of high
1 or low 0, and it represents one
data bit.

e Boolean represents true or false.

e Comments are denoted by double
dash marks --.

e Comments continue after -- until
a carriage return.

e Each statement ends with a semi-
colon ; .

e VHDL is not case sensitive.
No specific format is required.
Reserved words aren’t valid signal
names.

e Signal names must start with a let-
ter; numbers are not acceptable.

Library declaration

The library declaration is the first sec-
tion in the source file. This is where
you place the library and package call-
out statements. Libraries and packages
define and store components, define
signal types, functions, procedures, and
so forth. Packages and libraries are

designer

formulas
multiple modules

create a custom package.

standardized, such as the IEEE library,
and defined by a user (designer) or
vendor. The IEEE library offers several
packages, such as standard, textio, and
std_logic_1164. Each of these packages
defines various types, attributes, proce-
dures, files, and so on. Here’s an abbre-
viated list of selected IEEE packages:

e standard defines types (such as
boolean, bit, time, and integer),
subtypes (such as natural and pos-
itive), and the attribute foreign.

e textio package defines types (such
as line and text), files (such as in-
put and output), and procedures
(such as read, readline write, and
writeline).

e Std_logic_1164 package defines
types (such as std_ulogic and
std_ulogic_vector) and functions
(such as nand, and, or, nor).

The work library serves as a place
to add or delete designs. Designs
stored in the work library get analyzed
during synthesis and simulation. Vari-

ous tools handle libraries in different

specific constants,

ways. Therefore, users should consult
the tool’s documentation for correct
use. To use what’s in a library or pack-
age, the library must be made visible
by using the keywords Library and
Use clause. The IEEE std_logic_1164
package contains the types used in
Listing 1. Therefore, the LIBRARY
IEEE; statement makes it visible and
USE IEEE.std_Tlogic_1164.al1;
tells the tools to use all the contents in
the std_logic_1164 package.

When a designer has specific con-
stants, formulas, processes, and proce-
dures that are used by multiple mod-
ules or submodules within their
design, he or she can create a custom
package. By doing
this, the functions
in the user-defined
package can be
shared with other
designers and proj-
ects. A user-defined
library/package is
an easy way to re-
peatedly use spe-
cific HDL elements in multiple files
with the luxury of only defining its el-
ements once. Assuming a designer cre-
ates a package called my_package and
stores this package in the library called
Test, the following command would
make the package visible, thereby al-
lowing its contents to be used in the
source file.

LIBRARY Test;
USE Test.my_package.ALL;

User/designer-defined packages are
similar to those supplies by vendors,
such as Xilinx, whose packages contain
elements such as RAMs, counters, and
buffers. Xilinx’s “vcomponents” pack-
age contains constants, attributes,
types, and components that become
available once the library and package
are visible to the design. The package
contains components like AND3, which
is a three-input AND gate, and
NAND3, a three-input NAND gate. The
“vcomponent” package provides timing
information, the I/O port names (used
to instantiate components in design),

www.embedded.com | embedded systems design | JANUARY 2008 | 19

Mulfiple source files are created for each function and are
interconnected through a hierarchical file structure.

Security system.vhd

Monitor.vhd

l

Alert.vhd

Internal.vhd

Kitchen.vhd

Bedrooms.vhd

Figure 2

and other information used by synthe-
sis and simulation tools. The vendor’s
package becomes visible in the same
manner as the standard and
user-defined libraries. To

use the elements in Xilinx’s
“vcomponent” package, de-

signers must make the li-

brary visible. For example,

the following command

makes the “Xilinx” library

with vcomponent package

visible to the design:

LIBRARY Xilinx;
USE Xilinx.vcomponents.ALL;

Once all the libraries and packages
are visible, this section is complete.

Entity declaration

The entity declaration section immedi-
ately follows the library declaration.
Each entity has an assigned name;
Monitor is the entity name of the
VHLD code in Listing 1. Just as the li-
brary declaration section makes li-
braries and packages visible to the de-
sign, the entity section makes the I/Os
visible to other source files and the de-
sign and can represent the I/Os as phys-
ical FPGA pins. VHDL designs can con-
tain one source file or a hierarchy of
multiple files. Hierarchical file structures

External.vhd Processor.vhd

Doors.vhd

consist of several files connected

through the signals declared in their
entities. Figure 2 shows a simplified hi-

gether to develop the desired func-
tions. Like the entity, each architecture
must have an assigned name. The for-
mat for declaring the architecture is
the reserved word Architecture fol-
lowed by its name Door_moni tor,
then the reserved word Of, then the
entity’s name Mon1i tor. Signals not de-
fined in the entity section are defined
in this section.

The signal assignment format con-
sists of the reserved word Signal fol-
lowed by the signal name and then the
data type (such as std_logic and
std_logic_vector), as in Listing 1.
Like names defined in the entity, each
signal name must be unique and have
a data type. This section is also for de-
claring constants, variables, and other
data types.

Signals can be thought of as wires
used to connect functions and store
values. After defining all the design’s
signals, the designer is ready to devel-

op the code that de-

o i scribes the desired
one flle, functions. The re-
tOp-lEVEl defines served word Begin sig-
I /0 nifies the start of the
. . next subsection, which
physmal pins. combines the concur-

erarchical file structure for a home se-
curity system.

On the other hand, if the design is
only one file, the top-level entity decla-
ration defines all of the I/O that repre-
sents physical FPGA pins. All I/O sig-
nals defined in this section must have
unique names, indicated signal direc-
tion (input or output), and number of
bits reserved for the signal. From List-
ing 1, reset is an input, only one data-
bit wide and is a std_logic data type.
The keyword END followed by the enti-
ty’s name signifies the end of the entity.
All entities must be associated with an
architecture section.

Architecture section

The architecture section, which con-
tains the circuit description, is the
body of the VHDL source code. The li-
braries, packages, and signals work to-

JANUARY 2008 | embedded sustems design | www.embedded.com

rent and sequential

statements. Concurrent
statements update or change value at
anytime. The signal assignment imme-
diately following the first reserved
word BEGIN in Listing 1 is an example
of a concurrent statement. Sequential
statements update or change value
when signals in the sensitivity list (see
Listing 1) change state. Signals in
“processes” are sequential statements.
Most processes have a sensitivity list,
process name, and circuit description
(HDL code) between reserve words
BEGIN and END PROCESS. The process
name precedes the reserved word
Process, and the sensitivity list is en-
closed in the parenthesis.

Listing 1 contains two processes.
The first is checking_door_status,
which has a sensitivity list that contains
three signals: reset, clock_20mhz, and
reset_start_timer. The second
process is set_alarm_enable, which

Microcontroller
Development
Tools

Cx51

Keil Cx51 is the de-facto industry standard for all
classic and extended 8051 device variants.
C51 Version 8.5 includes the latest devices such as
XC800,ADE7169, and C805 | F4xx - F6xx.

>KEIL

An ARM® Company

ARM Microcontroller Solution

ARM Powered® Microcontrollers — available from many silicon
vendors; offer high computing performance along with rich peripherals.
Turn ARM Microcontrollers into your solution for cost-sensitive
powerful applications — with Keil Development Tools.

More information: www.keil.com/c51

C/C++ Development Kit

The RealView Microcontroller Development
Kit (MDK) is the complete software development

JTAG Debugger

ULINK2® connects to
the JTAG or 2-wire debug

environment for ARM7/9 and Cortex-M|/M3.

MDK is easy to learn and use, yet powerful

interface and supports
on-the-fly debugging and

RealView® Microcontroller
Development Kit

RealView C/C++ Compiler

RTX RTOS Kernel Library

pVision
Device Database & IDE

pVision
Debugger & Analysis Tools

Examples and Templates

11

Complete Device Simulation

enough for the most demanding embedded ARM
application. The integrated Device Database®
simplifies tool configuration and includes more
than 250 ARM Powered Microcontroller
variants for your embedded project.

Flash programming.

RUN
Uge -

CON -

o e

‘ AID Converter ‘ /O Ports H
L L

Interrupt System

Timer/Counter

ARMa

CPU

e

RealView”
Real-Time Library

RTX RTOS Source Code

TCPnet Networking Suite

Flash File System

USB Device Interface

Examples and Templates

CAN Interface

SD/MMC
Interface

Ethernet

rCIspl j
La L2 k 4
‘ um ‘ can H

RTOS and Middleware

The RealView Real-Time Library (RL-ARM)

solves the real-time and communication
challenges of your ARM project and expands
MDK with essential components for
sophisticated communication and interface
peripherals.

Learn more about RealView MDK, RL-ARM, and ULINK2. Download a free
evaluation version from www.keil.com/demo or call 1-800-348-8051.

C166

Keil C166 is the complete software development
environment for Infineon C166, XC|66, XC2000
and ST Microelectronics ST 10 with debug and
programming support via ULINK2.

More information: www.keil.com/cl166

RealView MDK combines the best-in-class
ARM C/C++ Compiler, the genuine Keil pVision
IDE/Debugger/Simulator, and the royalty-free
RTX RTOS Kernel.

More information: www.keil.com/arm

Keil MCB evaluation boards come with code
size limited tools and extensive example
projects that help you get up and running
quickly with your own embedded application.

More information: www.keil.com/boards

-- Name

* Header Section **

Listing 2 VHDL Testbench is used to provide stimulus fo the VHDL source code.

Beckie Smith
-- Date January 28, 2005
‘ -- Filename tb_door_monitor.vhd
Optional L
Ziiﬁ?ng -- Description:
-- This testbench is used to verify door_chime_en signal is set high 500ns after
-- door_status goes high.
-- Revision History
-- Date Initials Description
Library LIBRARY IEEE;
declaration USE IEEE.std_Togic_1164.ALL;
Entity ENTITY testbench IS
oeclarafion END testbench;
ARCHITECTURE tb_monitor OF testbench IS
COMPONENT monitor PORT(
reset IN std_logic; -- power on reset
door_status IN std_logic; -- door closed = Tow
clock_20mhz : IN std_Togic; -- 20MHz clock
door_chime_en : OUT std_logic); -- external door chime enable
END COMPONENT;
SIGNAL reset std_logic = '1"; -- reset initially set high
SIGNAL door_status std_logic ='0"; -- door initially closed
SIGNAL clock_20mhz std_logic = '0"; -- 20MHz clock starts Tow
SIGNAL door_chime_en std_logic;
Architecture CONSTANT clock_20mhz_time time 25.0 ns; -- half 20MHz clock period
seclion BEGIN
display: monitor
PORT MAP (
reset => reset,
door_status => door_status,

clock_20mhz
door_chime_en

reset

create_clk: PROCESS

-- This process generates the

BEGIN

WAIT FOR clock_20mhz_time;
clock_20mhz

END PROCESS;

<=

door_status
END tb_monitor;

clock_20mhz,
door_chime_en);

'0" AFTER 50.00 ns;
20MHz input clock

NOT clock_20mhz;

'1l" AFTER 200.00 ns;

-- door 1is opened

only has two signals, reset and
clock_20mhz, in its sensitivity list. Sig-
nals in a process that update or change
following a clock edge are called syn-
chronous signals. Start_500ns_timer
in the checking_door_status process
is an example of a synchronous signal.
The architecture section closes by using

the reserved word END followed by the
architecture’s name.

SIMULATE OR SYNTHESIZE

One or more designers may be respon-
sible for a design. A number of factors
influence the numbers designers need-
ed, such as design complexity and size;

22 | JANUARY 2008 | embedded systems design | www.embedded.com

the designers’ skill level; and the de-
signers’ schedule and availability. Re-
gardless of the number of designers,
after the design is completed, there are
a couple of options. He or she may
choose to simulate or synthesize the
design. There isn’t a hard and fast rule
stating you must simulate before syn-

thesis. There are advantages to each
option, and designers must determine
which step is most beneficial. In fact,
there may be times when a designer
decided to simulate following the
completion of the initial design while
another time decide to synthesize.
Each option lets the designer detect
and correct different types of errors.

Simulating the design prior to syn-
thesis allows logic errors and design
flaws to be resolved early in the devel-
opment process. Synthesizing lets the
designer resolve synthesis errors prior
to logic errors and design flaws. Ideal-
ly, the designer would perform mini-
mal simulation, leaving the more
stringent testing to a code

under various conditions and states.
The greatest benefit of stimulus is the
ability to apply a wide range of both
valid and invalid input-signal charac-
teristics, test circuit limits, vary signal
parameters (such as pulse width and
frequency), and observe output behav-
ior without damaging hardware. Stim-
ulus can be applied to the design in ei-
ther HDL or graphical/waveform
format. Generally, when a tester or de-
signer speaks of a testbench, he’s refer-
ring to applying stimulus to the design
in the form of HDL. Listing 2 shows
an example of a VHDL stimulus or
testbench file.

The testbench looks similar to the

and Altera’s Quantus II.

There are three levels of simula-
tion: register transfer level (RTL),
functional, and gate level. Each occurs
at a specific place in the development
process. RTL follows the design stage;
functional follows synthesis and after
implementation is completed the gate
level simulation. Generally, the stimu-
lus developed for the RTL simulation
is reusable without modification for
each level of simulation.

SIMULATION

The initial simulation performed im-

mediately after the design stage is the

RTL simulation. This involves directly
applying the stimulus

tester. The original code de- . ¢ .. to the design. RTL
signer shouldn’t test his dESIg ner minimal simulation only lets
own code because he’s less simulation, stringent designers verify that
likely to detect specific de- testi ng tester. the logic is correct. No

sign flaws such as:

1. Misinterpretation of re-
quirements; if the de-
signer misunderstood a
requirement, he or she
will test and evaluate the design
based on that misunderstanding.
2. It’s more difficult for a person to
find his own errors. A third-party
generally tests the code more rig-
orously and is more eager to find
bugs than the original designer.

Regardless of who performs the
simulations, the process is the same.
For the sake of this article, we’re going
to assume the testing is performed by a
code tester, not the original designer.

Simulation is the act of verifying
the HDL or graphical digital designs
prior to actual hardware validation.
The circuit’s input-signal characteris-
tics are described in HDL or in graphi-
cal terms that are then applied to the
design. This lets the code tester ob-
serve the outputs’ behavior. It may be
necessary to modify the source code
during simulation to resolve any dis-
crepancies, bugs, or errors.

Simulation inputs or stimulus are
inputs that mimic realistic circuit I/Os.
Stimulus forces the circuit to operate

designer shouldn’t test his own code

design flaws

actual VHDL design. Hence, the same
VHDL language rules apply. Each tester
has a style in which he or she writes a
testbench, which can be automatic or
manual and can use external files for
simulation and analysis. Automatic
testbenches can analyze simulation data
and provide a final result, output error
data, or other important information.
Manual testbenches require the tester to
manually analyze the data. An example
of an automatic testbench would be
one that reads valid data from an exter-
nal file, compares it with simulation
data, and writes the final pass/fail re-
sults to an external file. External files
are useful for duplicating events seen
on actual hardware.

Data can be taken from the hard-
ware, stored in an external file, then
read into a testbench and used as the
input stimulus. Many simulators ac-
cept both waveform and testbenches as
input stimulus; consult your simulator
user’s manual for acceptable formats.
Some popular simulators are Mentor
Graphics’ ModelSim, Aldec’s Riviera,

realistic timing infor-
mation is available to
the simulator. There-
fore, no serious timing
exists for the design.
The only timing infor-
mation that can be available to the
simulator is tester generated. Much
like input stimulus, a tester can insert
simulated or injected delays into the
original HDL design, as in Listing 1.
Most synthesis tools (discussed later)
will ignore these simulated delays.

Applying test stimulus to the syn-
thesized or optimized netlist produced
by a synthesis tool is a functional simu-
lation. Optimized netlists produced by
non-vendors apply estimated delays
that produce more realistic simulation
output results. The main benefit from
performing functional simulation is
that it lets the tester verify that the
synthesis process hasn’t changed the
design. Many, but not all, third-party
simulation tools accept post-synthesis
netlists.

Gate-level simulation involves ap-
plying stimulus to the netlist created
by the implementation process. All in-
ternal timing delays are included in
this netlist, which provides the tester
with the most accurate design output.
Again, many, but not all, third-party

www.embedded.com | embedded systems design | JANUARY 2008

23

24

simulation tools can perform gate sim-
ulation.

Ideally, each level of simulation is
performed at the appropriate develop-
ment stage. However, if this isn’t possi-
ble, it’s recommended that at a mini-
mum, RTL is performed. As this
simulation is performed, it’s normal
for the original design to require mod-
ifications due to logic errors. Each
simulation level offers various bene-
fits. RTL uncovers logic errors, the
functional level verifies that the pre-
and post-synthesis designs are equiva-
lent, and the gate level uncovers timing
errors.

Some benefits to spend-
ing sufficient time generat-
ing quality testbenches and
simulation are reduced time
troubleshooting hardware
(generally, cheaper to test-
bench troubleshoot than
hardware troubleshoot) and
a decrease in the chance of
damaging hardware resulting in a
faster time to market. Opting to omit
simulation and testbenching will gen-
erally cost the project additional time
and money. Lab testing requires col-
lecting and setting up test equipment
(such as a logic analyzer and oscillo-
scope) and depending on the equip-
ment used, the designer may have a
limited number of signals available.
Or, the desired signal must be made
available on an output, which requires
additional time. Simulation is valuable

and as a guideline, at least 2X the
number of hours spent writing the
code should be spent developing and
testing the code.

DESIGN SYNTHESIS

While some designers prefer to proceed
directly to simulation, I prefer to syn-
thesize the design. Synthesis is the
process that reduces and optimizes the
HDL or graphical design logic. Some
third-party synthesis tools are available
as a part of the FPGA vendor’s com-
plete development package. Synplicity’s
Synplify and Mentor Graphics’ Leonar-

doSpectrum, Precision RTL, and Preci-
sion Physical are examples of third-par-
ty synthesis tools. Xilinx offers ISE
Project Foundation, which is a com-
plete development application that in-
cludes a synthesis tool. Altera has Quar-
tus II Integrated Synthesis, QIS.
Although some FPGA vendors offer
synthesis, they still reccommend using a
third-party’s synthesis tools. The syn-
thesis tool must be set up prior to actu-
ally synthesizing the design. Synplicity’s
Synplify goes through a common set-

The design serves as the inpul to the synthesis process,
resulling in a nellist that's used as the inpul to the place and

route or implementation fool.

Input(s)

e HDL
e Graphical

Figure 3

Output(s)

Netlist
o edif

L4 ,an

Technology view

JANUARY 2008 | embedded sustems design | www.embedded.com

up process, as it involves providing the
design files (completed during design
stage) and information about the
FPGA. FPGA information includes the
vendor’s name, the specific part or fam-
ily, the package type, and the speed. The
synthesis process takes this information
and the user-defined constraints and
produces the output netlist. A con-
straints file specifies information like
the critical signal paths and clock
speeds. After completing set-up, syn-
thesis can begin. General synthesis flow
for tools like Synplicity’s Synplify in-
volves three steps, creating structural
element, optimizing,

i i ¢ and mapping. Figure 3
simulation shows a synthesis flow
benefits. logic errors, diagram.
The first step in
pre-and : .
i i e synthesis process is
post-synthesis equivalent, to take the HDL design
tlming errors. and compile it into
° structural elements.

This means that the
HDL design is technology independent.
Synplify graphically represents this step
as the “RTL Schematic View”, viewable
in Synplify. The next step involves opti-
mizing the design, making it smaller
and faster by removing unnecessary
logic and allowing signals to arrive at
the inputs or output faster. The goal of
the optimizing process is the make the
design perform better without chang-
ing the circuit’s functions.

The final step in the synthesis
process involves mapping or associat-
ing the design to the vendor specific
architecture. The mapping process
takes the design and maps or connects
it using the architecture of the specific
vendor. This means that the design
connects to vendor-specific compo-
nents such as look-up tables and regis-
ters. The optimized netlist is the out-
put of the synthesis process. This
netlist may be produced in one of sev-
eral formats. Edif is a general netlist
format accepted by most implementa-
tion tools, while .xnf format is specific
to Xilinx and is only recognized by
Xilinx’s implementation.

In addition to the optimized
netlist, many synthesis tools like Syn-

SuperH Flash Microcontroller

Supem Reaches Speeds up to 160MHz

Superscalar performance,
high-speed on-chip flash memory access, and much more

Renesas Technology

No. 1* supplier of microcontrollers in the world

proudly presents the SuperH family of devices. SuperH devices equipped
with the SH-2A core offer superscalar performance at speeds of 160MHz,
allowing high-speed access to on-chip FLASH memory and up to 200MHz

CPU performance. Enhanced features that include on board Floating Point Emmmml
|

Unit (FPU), Multiply Accumulate Unit (MAC), High-Speed Barrel Shifter R
and advanced addressing modes deliver DSP-like performance in RISC style ﬂ,mlm_l,mm

[Decoder |[Decod
architecture without the complicated programming associated with a DSP SH-2A PIPELINE R y er‘
engine. The SuperH RISC engine and the SH-2A core are establishing new
performance standards in the industry, and are ideal for systems that

on o
. A Branch ' Integer
demand real-time, high-precision control and require a combination of ooty Point

high performance CPU with high-speed flash. WAV SUPERBCALAR

(

R5F72115D160FPV)

FPU (Select Devices)

U

SuperH MCU Lineup

Multifunction Timer 1
(VST RN B | 160MiHz/32-bit RISC MIGELEX Gch)

(612KB) Superscalar Multifunction Timer 2
(16-bit x 3ch)

. Compare Match Timer
RAM (32KB) Serial (4ch) (16-bit x 2ch)

External Memory 2 .
Interface 1?C (1ch) ADC (12-bit x 8ch)

DMAC (8ch) wDT DAC (8-bit x 2ch)

Top Reasons to Select SuperH
Dhrystone MIPS at

¢ Superscalar Performance
- Two instructions are executed per cycle at 160MHz
- World’s fastest embedded FLASH with 12.5ns read
access time.
¢ Fast Real-Time Control
- Register Bank architecture (15 Banks) for context switching
enables 37.5nsec (6 cycles) interrupt latency time.
¢ High Integration
- 512KB On-Chip Flash / 32KB On-Chip RAM
- Advanced 16-bit PWM timers to drive two motors
simultaneously

F*: Devices with FPU - 1.25 usec 12-bit A/D conversion with 3 sample & hold circuits
U*: Devices with USB
FUE* : Devices with FPU, USB and Ethernet

*Source: Gartner (March 2007) “2006 Worldwide Microcontroller Vendor Revenue” GJ07168

#mcy Get Started Today -

REACH . . . Starter Kit for SH7211F:
Register to qualify for a SuperH MCU Kit ROKS721155000BE
FURTHER USB Emulator:

www.america.renesas.com/ReachSH/c

HS0005KCU11H

RenesasTechnology Corp.

Everywhere you imagine. g z E N ESAS

cover fealure

plify will produce a netlist for gate-lev-
el simulation and other report files.
Stimulus applied to this netlist instead
of the original HDL design produces
the functional-level simulation, which
lets the designer verify that the synthe-
sis process hasn’t changed the design’s
functions. At this point, synthesis is
complete and ready for the implemen-
tation process. Each FPGA vendor has
its own implementation tool, such as
Xilinx’s Project Navigator

and Altera’s Quartus II’s.

DESIGN
IMPLEMENTATION

The final stage in the FPGA
development process is the
design implementation, also
known as place and route
(PAR). If the FPGA vendor has a com-
plete development tool, meaning it can
perform synthesis, and the design is
synthesized using this tool, little or no
set-up is required for PAR. However,

if a third-party synthesis tool is used,
the implementation tool must be set
up, which involves directing the PAR
tool to the synthesized netlist and pos-
sibly a constraint file. The constraint
file contains information such as max-
imum or minimum timing delays for
selected signal(s) and I/O pin assign-
ments.

Pin assignments can be automatic
(performed by the tool) or manual
(dictated by the designer). Automatic
pin assignment is generally the best
option for new designs, as it lets the
tool more effectively route the design
without having fixed pin assignments.
It may be necessary to manually assign
signals to specific pins to achieve easy
board routing, to provide the mini-
mum signal route for timing-critical
signals, or be compatible with legacy
designs.

There are numerous reasons why
manual pin assignments would be nec-
essary. But regardless of the reason, the
designer must make this information
available to the PAR tool, which is
done by creating a user constraint file
that’s used by the PAR tool. After com-
pleting setup, the PAR process can be-

gin. Each PAR tool may have a slightly
different approach to design imple-
mentation, so consult your PAR docu-
mentation. Xilinx’s Foundation or
Project Navigator performs design im-
plementation in three steps, translate,
fit, and generate programming file.
Step one, called translate, involves
verifying that the synthesized netlist is
consistent with the selected FPGA ar-
chitecture and there are no inconsis-

°
final step

programming file,
flash

PROMs

tencies in the constraint file. Inconsis-
tencies would consist of assigning two
different signals to the same pin, as-
signing a pin to a power or ground
pin, or trying to assign a non-existing
design signal to a pin. If the design
fails either check, the translate step
will fail and the implementation
process will be stopped.

Translate errors must be corrected
and the translation step must be error
free before advancing to step two,
which is the fit stage. This step involves
taking the constraints file and netlist
and distributing the design logic in the
selected FPGA. If the design is too
large or requires more resources or
available logic than the selected device
offers, the fitter will fail and halt the
implementation process. To correct
this type of error, replace the current
FPGA with a larger one and re-synthe-
size, and repeat PAR for the design. A
successful fit stage is necessary to pro-
ceed to generate the programming file
stage.

All timing information is available
and many PAR tools will provide the
required files necessary for the simula-
tor to perform a timing simulation.
The final step is to generate the pro-
gramming file, which can be stored in
flash memory, PROMs, or directly
programming into the FPGA. JTAG
and third-party programmers like

JANUARY 2008 | embedded sustems design | www.embedded.com

directly
FPGA.

Data I/O are two programming meth-
ods used to store the programming file
in memory. The appropriate format
depends on the FPGA vendor, the pro-
gramming method, and the device
used to hold the programming.

There are various output formats;
consult your documentation for the
correct one. In addition to the imple-
mentation process creating the pro-
gramming file, there are several output
report files created,
such as a pad file. The
pad file contains in-
formation such as sig-
nal pin assignment,
part number, and part
speed.

BEYOND THE BASICS
This article gives some basic examples
of the FPGA development process, so a
new embedded systems designer, man-
ager, technical lead from other disci-
plines, or someone wanting to diversi-
fy his or her skills can understand
what it takes to develop and imple-
ment a digital design in a FPGA. The
generic process provided here will vary
depending on the FPGA tools since
each vendor may perform some of
these tasks in a slight different manner.
A good resource for furthering
your knowledge is Essential VHDL
RTL Synthesis Done Right (Sundar Ra-
jan, EE. Compton Co, 1998). H

Gina R. Smith is CEO and owner of
Brown-Smith Research and Develop-
ment Laboratory Inc., an engineering
services, technical training and consult-
ing company. She is also a senior sys-
tems engineer, with responsibility for
performing failure mode effect and criti-
cality analysis, requirements analysis
and definition, creating physical and
functional block diagrams, and evaluat-
ing design tool needs. She has a BS in
electrical engineering magna cum
laude from North Carolina A&T State
University and an MS with honors in
systems engineering from Johns Hop-
kins University. Smith can be reached at
Gina_R_Smith@BrownSmithRDL.com.

; OUEL, WIMP?
This time you are energy

depleted history! Oh No! Not again!

When will the boss of
“The Waste Land” learn

that he cant win?! -
: = . Al LR

My heavy duty
Zap-HIM-hard energy rifle feeds -
on 850 rounds a second. It will blast your)
blue suit to cinders with zillions ,
of Watts!!

Fantasi-Fabrikken A'S - Mykle - Wood

1 will show you fear in a
handful of dust”. Have a taste of

[|
| |

MIRR BLL & Even e
, smallest of batteries

are powerful when you know
how to make the most ¢

Learn how to combine the AVR® microcontrollers high performance
with the lowest possible power consumption on www.atmel.com/avrman

Multicore architectures can provide the performance boost you're looking

ric

for, but the software is certainly more complicated.

s symmet

BY DAVID N. KLEIDERMACHER fOI' YO ll?

or the past thirty years, computing has enjoyed con-

tinual boosts in performance, primarily due to in-

creases in clock speed, pipelining efficiency, and

cache size. Recently, however, traditional micro-

processor optimization has hit the proverbial wall.
Although tweaks such as further cache size increases can continue
to nudge system performance, it’s clear that Moore’s gains are be-
hind us. Meanwhile, embedded systems continue to grow in soft-
ware complexity, with consumers expecting that all the bells and
whistles will continue to come in ever shrinking cost, size, weight,
and power footprints.

Microprocessor designers have concluded that the best path to-
ward meeting the growing demand for performance with con-
trolled footprint is to employ multicore architectures, in which the
main premise is to partition the software and parallelize or offload
execution across multiple processing elements. Symmetric multipro-
cessing (SMP) is one such architecture, consisting of homogenous
cores that are tightly coupled with a common memory subsystem,
as shown in Figure 1. SMP is a de facto standard on the desktop, but
adoption in embedded applications has been slow, with recent sur-
veys showing only a small percentage of designs using single-chip
SMP-capable devices.

So if your design is in need of some extra horsepower, how can
you determine whether SMP is a sensible choice? Several key re-
quirements enable you to realize the promise of SMP. First, the soft-
ware must be partitioned and parallelized to take advantage of the
hardware concurrency. Second, operating systems must provide the
load-balancing services required to enable distribution of software

28 | JANUARY 2008 | embedded systems design | www.embedded.com

TV 111]] h
j/j ol l

L

[T]

Ilnuu\\

LLLIrrrri

k|
IERNEER

30

An example of a symmelric multicore system is shown.

Shared memory

SMP operating system
Applications

Figure 1

onto the multiple processing elements.
And finally, you will need to learn and
use development tools specifically tai-
lored to the difficult task of multicore
system debugging so you can find con-
currency problems quickly and avoid
time-to-market delays.

[]
PROGRAMMING FOR .
CONCURRENCY : potential
If your software has no po- parallelism
tential for application-level multithreaded, SMP

parallelism (for example, a
simple control system),
then SMP is not for you. If
software has the potential for paral-
lelism but isn’t currently multithread-
ed, then SMP could still be a good fit.
There are two ways to partition
and parallelize software to take advan-
tage of multicore concurrency: manual
and automatic parallelization. Manual
parallelization requires the program-
mer to deduce which parts of the ap-
plication can be parallelized and write
the code such that this parallelism is
explicit. For example, the developer
can place code into threads that will
then be scheduled by an SMP operat-
ing system to run concurrently.
Automatic parallelization involves
using a tool to discover a program’s
“parallelizability” and convert the code
into an explicitly parallelized program.
Some forms of parallelization focus

specifically on loops. This approach is
sensible: loops tend to be execution
bottlenecks and sometimes can be con-
verted into parallelizable iterations.
However, many loops aren’t paralleliz-
able (even with a very smart compiler),
and many applications simply don’t

good fit.

o
benefit from this approach.
Parallelizing compilers do exist,
but the embedded software communi-
ty hasn’t found automatic paralleliza-
tion (autoparallelization, for short)
technology to be of general use due to
the compilers’ focus on data-level par-
allelism. Certainly, a developer would-
n’t take a legacy embedded control ap-
plication running on a unicore
platform and expect a parallelizing
compiler to convert the application
into something that runs optimally on
an SMP. Autoparallelization may in-
deed boost performance in places, es-
pecially when the user can add some
hints and directions to aid the compil-
er (known as semi-automatic paral-
lelization), but a systemwide approach
is required in general. Future innova-

JANUARY 2008 | embedded sustems design | www.embedded.com

tions in autoparallelization could be
more effective.

POSIX

POSIX is a collection of open standard
APIs specified by the IEEE for operat-
ing system services. POSIX threads, or
Pthreads, is the part of the standard that
deals with multithreading. The Pthread
APIs provide interfaces for run control
of threads, synchronization primitives,
and interprocess communication
mechanisms. While other multithread-
ing standards exist, Pthreads is the most
generic, widely applicable standard.
Pthreads are supported by a wide range
of embedded operating systems such as
Integrity, LynxOS, and QNX.

Due to POSIX’s ubiquity, a large
base of application code exists that can
be reused for embedded SMP designs.
Another strong advantage of POSIX is
its independent conformance valida-
tion. The list of POSIX implementa-
tions that have been certified confor-
mant to the latest POSIX specification
can be found at http://get.posixcertified.

ieee.org/cert_prodlist.
tpl?CALLER=index.tpl.
By programming to the
POSIX API, developers
can write multithread-
ed applications that
can be ported to any
multicore platform
running a POSIX conformant operat-
ing system.

In embedded systems, add-on soft-
ware components can often be easily
mapped to individual threads. For ex-
ample, a TCP/IP network stack can exe-
cute within the context of one POSIX
thread; same for a file system server, au-
dio application, and so forth. Because
of this, many embedded software sys-
tems can take advantage of SMP to im-
prove performance without significant
application modifications.

LANGUAGE-LEVEL CONCURRENCY
Because threads are an integral part of
the Java and Ada languages, designing
multithreaded software in these lan-
guages is relatively natural. Java and
Ada programs using language-level

threading can map nicely to SMP. Yet C
and C++ remain the most popular lan-
guages for embedded systems. Surveys
in recent years have shown C and C++
(which lack native thread support) ac-
counting for about 80% of embedded
software, with no significant downward
trend.

If your software base is hopelessly
dependent on a real-time operating sys-
tem (RTOS) that doesn’t support SMP,
then SMP may not be for you. If you
have the freedom to select a new oper-
ating system, your best bet at future
portability is to select one that supports
both POSIX and SMP. An SMP operat-
ing system will simply schedule concur-
rent threads to run on the extra cores in
the system. This automatic load balanc-
ing is the primary advantage of SMP:
adding cores will increase performance,
often dramatically, without requiring
software modifications.

There’s one important exception to
the automatic reusability of multi-
threaded applications on an SMP sys-
tem. Most SMP operating systems will
allow threads at varying priority levels
to execute concurrently on the multiple
cores. Most real-time embedded soft-
ware is written for a strictly priority-
based preemptive scheduler. Trouble
will ensue if the software is using prior-
ity as a means of synchronization. For
example, software may manually raise a
thread’s priority to preempt another
thread. On an SMP system, this pre-
emption won’t occur if the two threads
are the highest priority runnable
threads on a dual-core system. Embed-
ded designers must analyze their sys-
tems to ensure that the SMP scheduling
algorithms won’t pose a problem.

CORE BINDING

If your embedded system has tight real-
time deadlines, than SMP may pose a
problem: context switches can be de-
layed due to the overhead of inter-
processor interrupts (IPIs) and cache
inefficiency. For example, when an in-
terrupt service routine executes on one
core and signals a thread to run, the
SMP scheduler may decide to run the
thread on a different core, requiring an

The high-speed interconnect is the centerpiece of the NUMA
system.

High-speed
interconnect

Real-time operating system
Applications

Figure 2

IPI. If the thread didn’t last run on that
same core, there will be additional
overhead to rewarm the cache with the
thread’s code and data. SMP operating
systems tend to migrate threads, mak-

ing it difficult to predict whether this
overhead will be incurred.

The good news is that most SMP
operating systems provide the ability to
map interrupts and bind threads to

Make the USB connection!

£

USB disk drives

USB serial devices

USB keybds, mice, HIDs
USB-to-Ethernet adapters
USB-to-serial adapters
USB modems {incl WiFi)
USB audio devices

USB printers

USB serial device
USB keyboard & mouse
Ethernet over USB (RNDIS)

to Windows drivers.

Portable Standalone
Host » Device » 0TG

USB Controllers Supported:
ARM, GColdFire, NXP

Full Source Code * No Royalties

[Micro Digital
RTOS INNOVATORS
800.366.2491 sales@smxrtos.com

www.smxrtos.com/ush

www.embedded.com | embedded systems design | JANUARY 2008 | 31

32

specific cores to specific cores. Thus,
real-time performance can be accom-
modated while other software is opti-
mized across the multiple cores as
deemed appropriate by the RTOS. The
bottom line: real-time systems can take
advantage of SMP, but designers should
be prepared to spend time tweaking the
system’s scheduling parameters.

NUMA FOR EMBEDDED

SMP’s single memory-bus architecture
may be a poor fit for memory- and
I/O-bound applications, relative to
compute-intensive systems. The only
way to be sure of the payoff

is to run the software on an

SMP. However, engineers

sitting on the SMP fence

may be excited about the

prospect of NUMA (non-

uniform memory access)

systems. NUMA is similar to

SMP except that the system
contains more than one

memory source, where the

time to access each memory source
varies. This architecture is depicted in
Figure 2.

NUMA represents a compromise in
which code can still be shared and auto-
matically load-balanced in the manner
of an SMP. Yet you can optimize memo-
ry access times by running threads on
the core for which the thread’s memory
references are local. One way to do this
is simply to take advantage of the afore-
mentioned binding capabilities of the
SMP operating system. You can locate
thread-required memory to a core’s lo-
cal memory bank and bind the thread
to the same core. The NUMA-aware op-
erating system may automate this opti-
mization of memory and thread bind-
ing. Although NUMA isn’t available in
mainstream embedded devices, there
are rumors about future parts that
could provide an intriguing alternative
to SMP in the future.

When moving to an SMP platform
for the first time, developers must be
prepared to use tools required in the
multicore development, debugging, and
optimization process. Tightly coupled
multicore processors often provide a

payoff

single on-chip debug port (such as
JTAG) that enables a host debugger,
connected with a hardware probe de-
vice, to debug multiple cores simulta-
neously. With this capability, developers
can perform low-level, synchronized
run control of the multiple cores. Board
bring-up and device-driver develop-
ment are two common uses of this type
of solution.

The development tool lets develop-
ers visualize all the system’s cores and
choose any combination to debug, each
optionally in its own window. At the
same time, the tool provides controls

single memory-bus

poor memory-
only way
run
®

for synchronized running and halting
of the debugged cores.

RUN-MODE MULTICORE
DEBUGGING

Run-mode debugging is also useful for
SMP systems, as the cores are never
stopped. Rather, the debugger controls
application threads using a communi-
cations channel (usually Ethernet) be-
tween the host PC and a target-resident
debug agent.

The SMP operating system typical-
ly provides an integrated debug agent
(and the associated communications
device drivers) that’s operating-sys-
tem—aware and provides flexible op-
tions for interrogating the system. For
example, one operating system comes
with a powerful debug agent that com-
municates with the debugger, provid-
ing the ability to debug any combina-
tion of user threads on any core. The
user can set specialized breakpoints
that enable user-defined groups of
threads to be halted when another
thread hits the breakpoint. Some class-
es of bugs require this fine-grained lev-
el of control.

JANUARY 2008 | embedded sustems design | www.embedded.com

1/0-bound

By collecting a system’s execution
history and making it available for play-
back within debugging tools, even the
most difficult multicore bugs become
easy to find and fix. If you're new to
SMP, choosing a processor with on-
chip trace capabilities may be desirable.

Multicore trace capability is just
starting to arrive on multicore proces-
sors. A major technical challenge that
has kept this hardware feature from
becoming a reality involves finding a
way to keep up with trace data emitted
simultaneously from multiple cores.
An emerging solution is high-speed se-
rial trace (HSST).
HSST replaces the
current generation of
parallel trace ports by
taking advantage of
high-speed serial bus
technology, which en-
SMP. ables higher data
throughput with a
lower pin count. HSST
has been proposed to
the Nexus standards committee. In ad-
dition, ARM has adopted HSST as part
of its CoreSight trace solution.

SMP is a promising technology for
improved performance in an attractive
cost and power footprint. However,
SMP is not a panacea. The application
must have the potential for concurren-
cy, and designers may need to manual-
ly refactor software to unlock this con-
currency. Furthermore, SMP systems
are more difficult to manage and de-
bug than unicore designs. This in turn
may require switching operating sys-
tems and tooling to acquire the load
balancing and multicore debugging
capabilities that go hand in hand with
SMP. B

David Kleidermacher is chief technology
officer at Green Hills Software where he
has been designing compilers, software
development environments, and realtime
operating systems for the past 16 years.
David frequently publishes articles in
trade journals and presents papers at
conferences on topics relating to embed-
ded systems. He holds a BS in computer
science from Cornell University, and can
be reached at davek@ghs.com.

LEARN TODAY.
DESIGN TOMORROW.

Conference: April 14 —18, 2008
Expo: April 15 -17, 2008
McEnery Convention Center, San Jose, CA

Embedded Systems Conference Silicon Valley
delivers a comprehensive technical program

focusing 15+ critical topics that affect your designs.
Learn how to solve your engineering issues today.

register today at www.embedded.com/esc/sv

