
NUMBERING SYSTEMS
APPENDIX

IIII
AA PPENDIXPPENDIX

In this Appendix

Introduction .I–2

Binary Numbering System .I–2

Hexadecimal Numbering System .I–3

Octal Numbering System .I–4

Binary Coded Decimal (BCD) Numbering SystemI–5

Real (Floating Point) Numbering System .I–5

BCD/Binary/Decimal/Hex/Octal -What is the Difference? I–6

Data Type Mismatch .I–7

Signed vs. Unsigned Integers .I–8

AutomationDirect.com Products and Data Types I–9

Introduction
As almost anyone who uses a computer is somewhat aware, the actual operations of a
computer are done with a binary number system. Traditionally, the two possible states for a
binary system are represented by the digits for "zero" (0) and "one" (1) although "off" and
"on" or sometimes "no" and yes" are closer to what is actually involved. Most of the time a
typical PC user has no need to think about this aspect of computers, but every now and then
one gets confronted with the underlying nature of the binary system.

A PLC user should be more aware of the binary system specifically the PLC programmer.
This appendix will provide an explanation of the numbering systems most commonly used
by a PLC.

Binary Numbering System
Computers, including PLCs, use the Base 2 numbering system, which is called Binary and
often called Decimal. Like in a computer there are only two valid digits a PLC relies on, zero
and one, or off and on respectively. You would think that it would be hard to have a
numbering system built on Base 2 with only two possible values, but the secret is by encoding
using several digits.

Each digit in the base 2 system when referenced by a computer is called a bit. When four bits
are grouped together, they form what is known as a nibble. Eight bits or two nibbles would
be a byte. Sixteen bits or two bytes would be a word (Table 1). Thirty-two bits or two words
is a double word.

Binary is not “natural” for us to use since we grow up using the base 10 system. Base 10 uses
the numbers 0-9, as we are all well aware. From now on, the different bases will be shown as a
subscripted number following the number. Example; 10 decimal would be 1010.

Table 2 shows how base 2 numbers relate to their decimal equivalents.

A nibble of 10012 would be equal to a decimal number 9 (1*23 + 1*20 or 810 + 110). A byte of
110101012 would be equal to 213 (1*27 + 1*26 +1*24 + 1*22 +1*20 or 12810 + 6410 + 1610 +
410 + 110).

DL05 Micro PLC User Manual, 6th Edition, Rev. CI–2

Appendix I: Numbering Systems

1

2

3

4

E

6

7

H

I
10

11

12

13

14

A

B

C

D

Word
Byte Byte

Nibble Nibble Nibble Nibble
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1

Binary/Decimal Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Power 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Decimal
Bit Value

Max Value 6553510

32
67

8

16
38

4

81
92

40
96

20
48

10
24

51
2

25
6

12
8

64 32 816 24 1

Table 2

Hexadecimal Numbering System
The binary numbering system can be difficult and cumbersome to interpret for some users.
Therefore, the hexadecimal numbering system was developed as a convenience for humans
since the PLC (computer) only understands pure binary. The hexadecimal system is useful
because it can represent every byte (8 bits) as two consecutive hexadecimal digits. It is easier
for us to read hexadecimal numbers than binary numbers.

The hexadecimal numbering system uses 16 characters (base 16) to represent values. The first
ten characters are the same as our decimal system, 0-9, and the first six letters of the alphabet,
A-F. Table 3 lists the first eighteen decimal numbers; 0-17 in the left column and the
equivalent hexadecimal numbers are shown in the right column.

Note that “10” and “11” in hex are not the same as “10” and “11” in decimal. Only the first
ten numbers 0-9 are the same in the two representations. For example, consider the hex
number “D8AF”. To evaluate this hex number use the same method used to write decimal
numbers. Each digit in a decimal number represents a multiple of a power of ten (base 10).
Powers of ten increase from right to left. For example, the decimal number 365 means 3x102

+ 6x10 + 5. In hex each digit represents a multiple of a power of sixteen (base 16). Therefore,
the hex number D8AF translated to decimal means 13x163 + 8x162 + 10x16 + 15 = 55471.
However, going through the arithmetic for hex numbers in order to evaluate them is not
really necessary. The easier way is to use the calculator that comes as an accessory in
Windows. It can convert between decimal and hex when in “Scientific” view.

Note that a hex number such as “365” is not the same as the decimal number “365”. Its
actual value in decimal terms is 3x162 6x16 + 5 = 869. To avoid confusion, hex numbers are
often labeled or tagged so that their meaning is clear. One method of tagging hex numbers is
to append a lower case “h” at the end. Another method of labeling is to precede the number
with 0x. Thus, the hex number “D8AF” can also be written “D8AFh”, where the lower case
“h” at the end is just a label to make sure we know that it is a hex number. Also, D8AF can be
written with a labeling prefix as “0xD8AF”.

DL05 Micro PLC User Manual, 6th Edition, Rev. C I–3

Appendix I: Numbering Systems

1

2

3

4

E

6

7

H

I
10

11

12

13

14

A

B

C

D

Table 3

Decimal Hex Decimal Hex
0 0 9 9
1 1 10 A
2 2 11 B
3 3 12 C
4 4 13 D
5 5 14 E
6 6 15 F
7 7 16 10
8 8 17 11

Octal Numbering System
Many of the early computers used the octal numbering system for compiled printouts. Today,
the PLC is about the only device that uses the Octal numbering system. The octal numbering
system uses 8 values to represent numbers. The values are 0-7 being Base 8. Table 4 shows the
first 31 decimal digits in octal. Note that the octal values are 0-7, 10-17, 20-27, and 30-37.

This follows the DirectLOGIC PLCs. Refer to Chapter 3 bit maps and notice that the
memory addresses are numbered in octal, as well as each bit. The octal system is much like
counting in the decimal system without the digits 8 and 9 being available.

The general format for four digits of the octal number is:
(d x 80) + (d x 81) + (d x 82) + (d x 83)

where “d” means digit. This is the same format used in the binary, decimal, or hexadecimal
systems except that the base number for octal is 8.

Using the powers of expansion, the example below shows octal 4730 converted to decimal.

DL05 Micro PLC User Manual, 6th Edition, Rev. CI–4

Appendix I: Numbering Systems

1

2

3

4

E

6

7

H

I
10

11

12

13

14

A

B

C

D

Table 4

Octal Decimal Octal Decimal
0 0 20 16
1 1 21 17
2 2 22 18
3 3 23 19
4 4 24 20
5 5 25 21
6 6 26 22
7 7 27 23
10 8 30 24
11 9 31 25
12 10 32 26
13 11 33 27
14 12 34 28
15 13 35 29
16 14 36 30
17 15 37 31

4 7 3 0

512 64 8 1

0 x 80 = 0 x 1 = 0
3 x 81 = 3 x 8 = 24
7 x 82 = 7 x 64 = 448
4 x 83 = 4 x 512 = 2048

2520

positional
 value

decimal
equivalent

Binary Coded Decimal (BCD) Numbering System
BCD is a numbering system where four bits are used to represent each decimal digit. The
binary codes corresponding to the hexadecimal digits A-F are not used in the BCD system.
For this reason numbers cannot be coded as efficiently using the BCD system. For example, a
byte can represent a maximum of 256 different numbers (i.e. 0-255) using normal binary,
whereas only 100 distinct numbers (i.e. 0-99) could be coded using BCD. Also, note that
BCD is a subset of hexadecimal and neither one does negative numbers.

One plus for BCD is that it reads like a decimal number, whereas 867 in BCD would mean
867 decimal. No conversion is needed; however, within the PLC, BCD calculations can be
performed if numbers are adjusted to BCD after normal binary arithmetic.

Real (Floating Point) Numbering System
The terms Real and floating-point both describe IEEE-754 floating point arithmetic. This
standard specifies how single precision (32 bit) and double precision (64 bit) floating point
numbers are to be represented as well as how arithmetic should be carried out on them. Most
PLCs use the 32-bit format for floating point (or Real) numbers which will be discussed here.

Floating point numbers which DirectLOGIC PLCs use have three basic components: sign,
exponent and mantissa. The 32 bit word required for the IEEE standard floating point
numbers is shown in Table 6. It is represented as a number from 0 to 31, left to right. The
first bit (31) is the sign bit, the next eight bits (30-23) are the exponent bits and the final 23
bits (22-0) are the fraction bits.

In summary:
The sign bit is either “0” for positive or “1” for negative;
The exponent uses base 2;
The first bit of the mantissa is typically assumed to be “1.fff ”, where “f ” is the field of
fraction bits.

The Internet can provide a more in-depth explanation of the floating point numbering
system. One website to look at is:

http://www.psc.edu/general/software/packages/ieee/ieee.html

DL05 Micro PLC User Manual, 6th Edition, Rev. C I–5

Appendix I: Numbering Systems

1

2

3

4

E

6

7

H

I
10

11

12

13

14

A

B

C

D

Real (Floating Point 32) Bit Pattern
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Sign Exponent Mantissa

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mantissa (continues from above)

BCD Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Power 103 102 101 100

Bit Value 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1
Max Value 9 9 9 9

Table 5

Table 6

BCD/Binary/Decimal/Hex/Octal -
What is the Difference?

Sometimes there is confusion about the differences between the data types used in a PLC.
The PLC’s native data format is BCD, while the I/O numbering system is octal. Other
numbering formats used are binary and Real. Although data is stored in the same manner (0’s
and 1’s), there are differences in the way that the PLC interprets it.

While all of the formats rely on the base 2 numbering system and bit-coded data, the format
of the data is dissimilar. Table 7 below shows the bit patterns and values for various formats.

As seen in Table 7, the BCD and hexadecimal formats are similar, although the maximum
number for each grouping is different (9 for BCD and F for hexadecimal). This allows both
formats to use the same display method. The unfortunate side effect is that unless the data
type is documented, it’s difficult to know what the data type is unless it contains the letters
A-F.

DL05 Micro PLC User Manual, 6th Edition, Rev. CI–6

Appendix I: Numbering Systems

1

2

3

4

E

6

7

H

I
10

11

12

13

14

A

B

C

D

32
67

8

16
38

4

81
92

40
96

10
24

51
2

25
6

12
8

64 32 816 24 1

20
48

Binary/Decimal Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Decimal
Bit Value

Max Value 65535
Hexadecimal Bit Pattern

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Decimal
Bit Value 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

Max Value F F F F
BCD Bit Pattern

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Decimal
Bit Value 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

Max Value 9 9 9 9

Octal Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit Value 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1
Max Value 1 7 7 7 7 7

Real (Floating Point 32) Bit Pattern
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Sign Exponent Mantissa

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mantissa (continued from above)

Table 7

32
67

8

16
38

4

81
92

40
96

20
48

10
24

51
2

25
6

12
8

64 32 816 24 1

Data Type Mismatch
Data type mismatching is a common problem when using an operator interface. Diagnosing
it can be a challenge until you identify the symptoms. Since the PLC uses BCD as the native
format, many people tend to think it is interchangeable with binary (unsigned integer)
format. This is true to some extent, but not in this case. Table 8 shows how BCD and binary
numbers differ.

As the table shows, BCD and binary share the same bit pattern up until you get to the
decimal number 10. Once you get past 10, the bit pattern changes. The BCD bit pattern for
the decimal 10 is actually equal to a value of 16 in binary, causing the number to jump six
digits by when viewing it as the BCD. With larger numbers, the error multiplies. Binary
values from 10 to 15 Decimal are actually invalid for the BCD data type.

Looking at a larger number, such as the value shown in Table 9, both the BCD bit pattern
and the decimal bit pattern correspond to a base 10 value of 409510. If bit patterns are read,
or interpreted, in a different format than what is used to write them, the data will not be
correct. For instance, if the BCD bit pattern is interpreted as a decimal (binary) bit pattern,
the result is a base 10 value of 1653310. Similarly, if you try to view the decimal (binary) bit
pattern as a BCD value, it is not a valid BCD value at all, but could be represented in
hexadecimal as 0xFFF.

Look at the following example and note the same value represented by the different
numbering systems.

DL05 Micro PLC User Manual, 6th Edition, Rev. C I–7

Appendix I: Numbering Systems

1

2

3

4

E

6

7

H

I
10

11

12

13

14

A

B

C

D

Data Type Mismatch
Decimal 0 1 2 3 4 5 6 7 8 9 10 11
BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 0001 0000 0001 0001
Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 0000 1010 0000 1011

Base 10 Value BCD Bit Pattern Binary Bit Pattern
4095 0100 0000 1001 0101 1111 1111 1111

Table 9

Table 8

0100 0011 Binary

1 0 3 Octal

4 3 Hex
6 7 Decimal

0110 0111 BCD

0001 0010 0011 0100 Binary

0100 0110 0110 0000 BCD
1 1 0 6 4 Octal

1 2 3 4 Hex
4 6 6 0 Decimal

Signed vs. Unsigned Integers
So far, we have dealt with unsigned data types only. Now we will deal with signed data types
(negative numbers). The BCD and hexadecimal numbering systems do not use signed data
types.

In order to signify that a number is negative or positive, we must assign a bit to it. Usually,
this is the Most Significant Bit (MSB) as shown in Table 10. For a 16-bit number, this is bit
15. This means that for 16-bit numbers we have a range of -32767 to 32767.

There are two ways to encode a negative number: two’s complement and Magnitude Plus
sign. The two methods are not compatible.

The simplest method to represent a negative number is to use one bit of the PLC word as the
sign of a number while the remainder of the word gives its magnitude. It is general
convention to use the most significant bit (MSD) as the sign bit: a 1 will indicate a negative,
and a 0 a positive number. Thus, a 16 bit word allows numbers in the range ±32767. Table 12
shows a representations of 100 and a representation of -100 in this format.

Two’s complement is a bit more complicated. A simple formula for two’s complement is to
invert the binary and add one (see Table 12). Basically, 1’s are being changed to 0’s and all 0’s
are being changed to 1.

More information about 2’s complement can be found on the Internet at the following
websites:

http://www.evergreen.edu/biophysics/technotes/program/2s_comp.htm

DL05 Micro PLC User Manual, 6th Edition, Rev. CI–8

Appendix I: Numbering Systems

1

2

3

4

E

6

7

H

I
10

11

12

13

14

A

B

C

D

MSB LSB
Table 10

Magnitude Plus Sign
Decimal Binary

100 0000 0000 0110 0100
-100 1000 0000 0110 0100

Table 11

Two’s Complement
Decimal Binary

100 0000 0000 0110 0100
-100 1111 1111 1001 1100

Table 12

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AutomationDirect.com Products and Data Types

DirectLOGIC PLCs
The DirectLOGIC PLC family uses the octal numbering system for all addressing which
includes: inputs, outputs, internal V-memory locations, timers, counters, internal control
relays (bits), etc. Most data in the PLC, including timer and counter current values, is in
BCD format by default. User data in V-memory locations may be stored in other data types if
it is changed by the programmer, or comes from some external source, such as an operator
interface. Any manipulation of data must use instructions appropriate for that data type
which includes: Load instructions, Math instructions, Out box instructions, comparison
instructions, etc. In many cases, the data can be changed from one data type to another, but
be aware of the limitations of the various data types when doing so. For example, to change a
value from BCD to decimal (binary), use a BIN instruction box. To change from BCD to a
real number, use a BIN and a BTOR instruction box. When using Math instructions, the
data types must match. For example, a BCD or decimal (binary) number cannot be added to
a real number, and a BCD number cannot be added to a decimal (binary) number. If the data
types are mismatched, the results of any math operation will be meaningless.

To simplify making, number conversions Intelligent Box (IBox) Instructions are available
with DirectSOFT 5. These instruction descriptions are located in Volume 1, Chapter 5, in
the Math IBox group.

Most DirectLOGIC analog modules can be setup to give the raw data in decimal (binary)
format or in BCD format, so it is necessary to know how the module is being used.
DirectLOGIC PID is another area where not all values are in BCD. In fact, nearly all of the
PID parameters are stored in the PLC memory as decimal (binary) numbers.

NOTE: The PID algorithm uses magnitude plus sign for negative decimal (binary) numbers, whereas
the standard math functions use two’s complement. This can cause confusion while debugging a PID
loop.

When using the Data View in DirectSOFT 5, be certain that the proper format is selected for
the element to be viewed. The data type and length is selected using the drop-down boxes at
the top of the Data View window. Also notice that BCD is called BCD/Hex. Remember that
BCD is a subset of hexadecimal so they share a display format even though the values may be
different. This is where good documentation of the data type stored in memory is crucial.

C-more/C-more Micro-Graphic Panels
In the C-more and C-more Micro-Graphic HMI operator panels, the 16-bit BCD format is
listed as “BCD int 16”. Binary format is either “Unsigned int 16” or “Signed int 16”
depending on whether or not the value can be negative. Real number format is “Floating PT
32”.

More available formats are, “BCD int 32”, “Unsigned int 32” and “Signed int 32”.

DL05 Micro PLC User Manual, 6th Edition, Rev. C I–9

Appendix I: Numbering Systems

1

2

3

4

E

6

7

H

I
10

11

12

13

14

A

B

C

D

	Appendix I. Numbering Systems
	Introduction
	Binary Numbering System
	Hexadecimal Numbering System
	Octal Numbering System
	Binary Coded Decimal (BCD) Numbering System
	Real (Floating Point) Numbering System
	BCD/Binary/Decimal/Hex/Octal -What is the Difference?
	Data Type Mismatch
	Signed vs. Unsigned Integers
	AutomationDirect.com Products and Data Types

