CIO-DAS802/16

User's Manual

MEASUREMENT COMPUTING.

Revision 4 August, 2001

LIFETIME WARRANTY

Every hardware product manufactured by Measurement Computing Corp. is warranted against defects in materials or workmanship for the life of the product, to the original purchaser. Any products found to be defective will be repaired or replaced promptly.

LIFETIME HARSH ENVIRONMENT WARRANTY $^{\mbox{\tiny TM}}$

Any Measurement Computing Corp. product which is damaged due to misuse may be replaced for only 50% of the current price. I/O boards face some harsh environments, some harsher than the boards are designed to withstand. When that happens, just return the board with an order for its replacement at only 50% of the list price. Measurement Computing Corp. does not need to profit from your misfortune. By the way, we will honor this warranty for any other manufacture's board that we have a replacement for!

30 DAY MONEY-BACK GUARANTEE

Any Measurement Computing Corp. product may be returned within 30 days of purchase for a full refund of the price paid for the product being returned. If you are not satisfied, or chose the wrong product by mistake, you do not have to keep it. Please call for a RMA number first. No credits or returns accepted without a copy of the original invoice. Some software products are subject to a repackaging fee.

These warranties are in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular application. The remedies provided herein are the buyer's sole and exclusive remedies. Neither Measurement Computing Corp., nor its employees shall be liable for any direct or indirect, special, incidental or consequential damage arising from the use of its products, even if Measurement Computing Corp. has been notified in advance of the possibility of such damages.

MEGA-FIFO, the CIO prefix to data acquisition board model numbers, the PCM prefix to data acquisition board model numbers, PCM-DAS08, PCM-D24C3, PCM-DAC02, PCM-COM422, PCM-COM485, PCM-DMM, PCM-DAS16D/12, PCM-DAS16S/12, PCM-DAS16D/16, PCM-DAS16S/16, PCI-DAS6402/16, Universal Library, *Insta*Cal, *Harsh Environment Warranty* and Measurement Computing Corp. are registered trademarks of Measurement Computing Corp.

IBM, PC, and PC/AT are trademarks of International Business Machines Corp. Windows is a trademark of Microsoft Corp. All other trademarks are the property of their respective owners.

Information furnished by Measurement Computing Corp. is believed to be accurate and reliable. However, no responsibility is assumed by Measurement Computing Corp. neither for its use; nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or copyrights of Measurement Computing Corp.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording or otherwise without the prior written permission of Measurement Computing Corp.

Notice

Measurement Computing Corp. does not authorize any Measurement Computing Corp. product for use in life support systems and/or devices without the written approval of the President of Measurement Computing Corp. Life support devices/systems are devices or systems which, a) are intended for surgical implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in injury. Measurement Computing Corp. products are not designed with the components required, and are not subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.

© Copyright 2001, Measurement Computing Corp.

Table of Contents

Table of Contents	
1: INSTALLATION	
1.1 SOFTWARE INSTALLATION	1
1.2 INSTALLATION SWITCH SETTINGS	1
1.3 BASE ADDRESS	1
1.4 DIFFERENTIAL/SINGLE-ENDED INPUT SELECTION	
1.5 INTERRUPT LEVEL SELECT	
1.7 WAIT STATE	4
1.8 INSTALLING THE BOARD IN THE COMPUTER	4
1.9 CALIBRATION AND TEST	4
2: SIGNAL CONNECTION	5
2.1 CONNECTOR DIAGRAM	5
2.1 ANALOG INPUTS	5
2.2 SINGLE-ENDED	
2.3 FLOATING DIFFERENTIAL	6
2.4 FULLY DIFFERENTIAL	
2.5 DIGITAL OUTPUTS & INPUTS	6
3: REGISTER ARCHITECTURE	7
4: PACER/COUNTER/TIMER CIRCUIT	
5: SPECIFICATIONS	

This page is blank.

1: INSTALLATION

The CIO-DAS802/16 boards are an extension of the popular CIO-DAS08 architecture. The CIO-DAS802/16 has a set of registers identical to the CIO-DAS08, and an additional set of registers for the extended features. Software written for the DAS08 will work without modification, but will not provide access to the extended features. The connector is nearly identical to the CIO-DAS08, and more closely resembles the CIO-DAS08-PGA.

1.1 SOFTWARE INSTALLATION

Before you open your computer and install the board, install and run *Insta*Cal, the installation, calibration and test utility included with your board. *Insta*Cal will guide you through switch and jumper settings for your board. Detailed information regarding these settings can be found below. Refer to the *Software Installation* manual for *Insta*Cal installation instructions.

1.2 INSTALLATION SWITCH SETTINGS

There are two banks of switches and two jumpers to set on the CIO-DAS802/16 before installing your board into your computer.

- 1. BASE ADDRESS SWITCH. A base address must be chosen and selected via switches.
- 2. INPUT SELECT SWITCHES. Analog inputs are differential or single ended. You may choose either on a channel by channel basis. The set of DIP switches on the board, labeled S2, 0 through 7, correspond to the channels 0 to 7 of the analog inputs.
- 3. INTERRUPT SELECT JUMPER. In order to take advantage of high speed transfers, you must provide the board with an interrupt that is not used by other devices in your computer. Use the IR jumper to select an interrupt level between 2 and 7 or to disable interrupts (X).
- 4. WAIT STATE JUMPER. A wait state jumper allows you to slow down a potentially too-fast computer bus, but we have not seen the need for it yet. Set jumper WS1 to "ON" to enable wait states.

1.3 BASE ADDRESS

The base address of the CIO-DAS802/16 is set by switching a bank of DIP switches on the board. This bank of switches is labeled ADDRESS and numbered 9 to 3. Refer to the *Software Installation Manual* for instructions for using *Insta*Cal as an aid in setting the base address switches.

Ignore the word ON and the numbers printed on the switch.

The switch works by adding up the weights of individual switches to make a base address. A switch is active when down. In Figure 1-1, switches 9 and 8 are down, all others are up. Weights 200h and 100h are active, totaling 300h base address.

Table 1-1 lists PC I/O assignments.

BASE ADDRESS SWITCH - Address 300H shown here.

Figure 1-1. Base Address Switch

HEX	FUNCTION	HEX	FUNCTION
RANGE		RANGE	
000-00F	8237 DMA #1	2C0-2CF	EGA
020-021	8259 PIC #1	2D0-2DF	EGA
040-043	8253 TIMER	2E0-2E7	GPIB (AT)
060-063	8255 PPI (XT)	2E8-2EF	SERIAL PORT
060-064	8742 CONTROLLER (AT)	2F8-2FF	SERIAL PORT
070-071	CMOS RAM & NMI MASK (AT)	300-30F	PROTOTYPE CARD
080-08F	DMA PAGE REGISTERS	310-31F	PROTOTTYPE CARD
0A0-0A1	8259 PIC #2 (AT)	320-32F	HARD DISK (XT)
0A0-0AF	NMI MASK (XT)	378-37F	PARALLEL PRINTER
0C0-0DF	8237 #2 (AT)	380-38F	SDLC
0F0-0FF	80287 NUMERIC CO-P (AT)	3A0-3AF	SDLC
1F0-1FF	HARD DISK (AT)	3B0-3BB	MDA
200-20F	GAME CONTROL	3BC-3BF	PARALLEL PRINTER
210-21F	EXPANSION UNIT (XT)	3C0-3CF	EGA
238-23B	BUS MOUSE	3D0-3DF	CGA
23C-23F	ALT BUS MOUSE	3E8-3EF	SERIAL PORT
270-27F	PARALLEL PRINTER	3F0-3F7	FLOPPY DISK
2B0-2BF	EGA	3F8-3FF	SERIAL PORT

Table 1-1. PC I/O Assignments

1.4 DIFFERENTIAL/SINGLE-ENDED INPUT SELECTION

The CIO-DAS802/16 has differential analog inputs. Differential inputs are 3-wire analog hookups consisting of a signal high, signal low and chassis ground. The benefits of differential inputs are the ability to reject noise which affects both signal high and low, and the ability to compensate for ground loops or potentials between signal low and chassis ground. Although differential inputs are often preferable to single ended inputs, there are occasions when the floating nature of a differential input can confound attempts to make a reading. In such cases, the CIO-DAS802/16 inputs are converted to single-ended or modified differential.

The CIO-EXP16 and CIO-EXP32 were designed to interface to a single-ended input. Failure to set the switches to single-ended when an EXP is connected will result in floating, unstable readings from the EXP.

The analog inputs of the CIO-DAS802/16 may be set up as single ended or differential. There are two ways to select between them.

The first method of selecting between the single ended and differential inputs is via a set of eight switches located near the connector and labeled 0-7 in white lettering on the board. In the down, or off position, the input associated with that switch is in differential mode. In the up, or on position the input associated with that switch is single ended.

Figure 1-2. Differential-to-Single-Ended Switching

Figure 1-2 is a diagram of one analog input and the single-ended/differential switch. It shows the switch in the Open position, so the input mode is differential.

The second method of converting the inputs to single ended is to install a SIP resistor pack at position RN2. This

package of 10K resistors provides a reference to ground for each of the eight Low Input lines. This type of input behaves like a single ended input in that there is a reference to ground and floating sources may be measured, and it also is able to reject a certain amount of noise.

Figure 1-3 shows an analog input line with the SIP resistor installed.

Note that the SIP resistor is installed to all eight lines so none of the analog inputs are fully differential after the SIP is installed.

Figure 1-3. Differential-to-Single-Ended

If you intend to use an EXP board with the CIO-DAS802/16, do not install the SIP resistor but you should set the SE/DI switch to ON for both the EXP channel and the CJC channel.

1.5 INTERRUPT LEVEL SELECT

The interrupt jumper need only be set if the software you are using requires it. The Universal Library and other programs which take advantage of the REP-INSW high speed transfer capability

of the board require and interrupt. If you do set the interrupt jumper, please check your PC's current configuration for interrupt conflicts.

There is a jumper block on the CIO-DAS802/16 located just above the PC bus interface (gold pins). The factory default setting is that no interrupt level is set (the jumper is in the 'X' position).

Figure 1-4. Interrupt Level Jumper

Refer to Table 1-2 for typical IRQ assignments.

	14010 1 211		iteri op to
NAME	DESCRIPTION	NAME	DESCRIPTION
NMI	PARITY	IRQ8	REAL TIME CLOCK (AT)
IRQ0	TIMER	IRQ9	RE-DIRECTED TO IRQ2 (AT)
IRQ1	KEYBOARD	IRQ10	UNASSIGNED
IRQ2	RESERVED (XT)	IRQ11	UNASSIGNED
	INT 8-15 (AT)		
IRQ3	COM OR SDLC	IRQ12	UNASSIGNED
IRQ4	COM OR SDLC	IRQ13	80287 NUMERIC CO-P
IRQ5	HARD DISK (XT)	IRQ14	HARD DISK
	LPT (AT)		
IRQ6	FLOPPY DISK	IRQ15	UNASSIGNED
IRQ7	LPT	No	ote: IRQ8-15 are AT only

Table 1-2. Hardware Interrupts

1.7 WAIT STATE

A wait state can be enabled on the CIO-DAS802/16 by selecting WAIT STATE ON at the jumper provided on the board. Enabling the wait state causes the personal computer's bus transfer rate to slow down whenever the CIO-DAS802/16 is written to or read from. The wait state jumper is provided in you have a computer has an I/O bus transfer rate that is too fast for the CIO-DAS802/16. If your board were to fail sporadically in random ways, try using it with the wait state ON.

1.8 INSTALLING THE BOARD IN THE COMPUTER

1. Turn the power off.

2. Remove the cover of your computer. Be careful not to dislodge any of the cables installed on the boards in your computer as you slide the cover off.

3. Locate an empty expansion slot in your computer.

4. Insert and push the board firmly down into the expansion bus connector. If it is not seated fully it may fail to work and could short circuit the PC bus power onto a PC bus signal. This could damage the motherboard in your PC as well as the board.

1.9 CALIBRATION AND TEST

The CIO-DAS802/16 is supplied with *Insta*Cal, software for calibration and test. If you have not done so, install this software in order to test your board and, when necessary, calibrate it.

Every board is fully tested and calibrated before shipment. For normal environments, a calibration interval of 6 months to one year is recommended. If frequent variations in temperature or humidity are common, re-calibrate at least once every three months. It takes less than 30 minutes to calibrate the CIO-DAS802/16.

2: SIGNAL CONNECTIONS

Signal connection can be one of the most challenging aspects of applying a data acquisition board. In addition to just plain wrong connection, which is the most common cause of customer calls to tech support, is the possibility of ground loops, floating signal sources and excessive common mode voltage. Please follow the examples shown here and use care with grounding between the PC and the signal source. Refer to Figure 2-1.

2.1 CONNECTOR DIAGRAM

The analog connector is a male 37-pin, D-type connector accessible from the rear of the PC through the expansion backplate. The connector accepts female 37-pin, D-type connectors, such as those on the C73FF-2, 2 foot cable with connectors. The connector pin names Ch# High and Ch# Low are the differential inputs.

If frequent changes to signal connections or signal conditioning is required, please refer to the information on the CIO-TERMINAL and CIO-MINI37 screw terminal boards. If additional channels or signal conditioning is required, refer to the information on the CIO-EXP32, 32 channel analog multiplexer / amplifier. Isolation amplifiers may be mounted using the ISO-RACK08 and 5B isolation modules.

2.1 ANALOG INPUTS

The analog inputs may be configured in three different ways:

Figure 2-1. 37-Pin Analog Connector

- 1. True differential inputs. For sources with a separate ground, common to the PC.
- 2. Pseudo-differential inputs used for floating sources has noise rejection capability.
- 3. Single ended inputs. Also used for floating sources.

The manner of configuring the analog inputs and the schematic of those configurations is explained earlier in the manual. This section covers the implications of a given connection and shows how to make that connection

WARNING - PLEASE READ

Measure the voltage potential (difference) between the ground signal at the signal source and the PC. Use a volt meter and place the red probe on the PC ground and the black probe on the signal ground. If there is more the 10 volts, do not connect the board to this signal source because you will not be able to make any reading. If it is more than 30 volts, DO NOT connect this signal to the board because it will damage the board and possibly the computer.

2.2 SINGLE-ENDED

A single-ended input is two wires connected to the board; a channel high (CH# High) and a Low Level Ground (LLGND). The LLGND signal *must be the same ground the PC is on*. The CH# High is the voltage signal source. Single-ended mode is selected by closing a switch.

2.3 FLOATING DIFFERENTIAL

A floating differential input is two wires from the signal source and a 10K ground reference resistor installed at the board input. The two signals from the signal source are Signal High (CH# High) and Signal Low (CH# Low). The reference resistor is connected between the CH# Low and LLGND pins. This is done with the SIP resistor pack

A floating differential hookup is useful when the signal source is floating with respect to ground, such as a battery.

WARNING: Check it with a voltmeter that the signal source really floating before risking the board and PC.

2.4 FULLY DIFFERENTIAL

A differential signal has three wires from the signal source. There is Signal High (CH# High), Signal Low (CH# Low) and Signal Ground (LLGND).

A differential connection allows you to connect the board to a signal source with a ground that is different from the PC ground, but less than 10V difference, and still make a true measurement of the signal between CH# High and CH# Low.

EXAMPLE: A laboratory instrument with its own wall plug. There are sometimes voltage differences in wall grounds between outlets.

2.5 DIGITAL OUTPUTS & INPUTS

All the digital inputs and outputs are TTL level. TTL is an electronics industry term, short for Transistor Transistor Logic, with describes a standard for digital signals which are either at TTL low or TTL high; levels which are detected by all other TTL devices. For a listing of the TTL level specifications for these digital lines, please see the specifications at the end of this manual.

There are four digital outputs and three digital inputs. The digital outputs are controlled by a register on the board and are updated each time the register is written to. The digital inputs are buffered by a register on the board and each time the register is read from, the current high/low state of the digital I/O lines is obtained. The lines are pulled high so a logical one is read when no signal is connected to an input

The digital lines also are used to control external EXP boards (all four outputs) and to trigger and gate A/D conversions (Digital In 1).

3: REGISTER ARCHITECTURE

All of the programmable functions of the CIO-DAS802/16 are accessible through the control and data registers. The CIO-DAS802/16 is controlled and monitored by writing to and reading from 16 consecutive 8-bit I/O addresses. The first address, or BASE ADDRESS, is determined by setting a bank of switches on the board.

Register manipulation is best left to experienced programmers as most of the possible functions are implemented in easy-to-use Universal Library routines.

Summaries of the registers and their read and write functions are given on Tables 3-1 through 3-6.

Write											
Function	าร		Data Bits						Funct	tion	
Register	D7	D6	D5	D4	D3	D2	D1	D0			
Base + 0									Start Conve	ersion	
Base + 1									Start Conve	ersion	
Base + 2			Special I	Function -	(Depends	on value	of CS0,1)				
CS1/0=0/0	OP4	OP3	OP2	OP1	INTE	MA2	MA1	MA0	Control Reg	gister 1	
CS1/0=0/1	HCEN	NA	GTEN	EACS	IEOC	DTEN	CASC	ITE	Conversion Control		
CS1/0=1/0	NA	NA	EC2	EC1	EC0	SC2	SC1	SC0	Scan Limits	Scan Limits Register	
Base + 3	CSE	CS1	CS0	ENHF	R3	R2	R1	R0	Range/Con	Range/Control Select	
Base + 4			8254 C/T	8254 C/T 0 Control Register							
Base + 5			8254 C/T	8254 C/T 1 Control Register				A/D Timer			
Base + 6			8254 C/T 2 Control Register Cas					Cascade Pi	re-scaler		
Base + 7			8254 Cou	unter/Timer	Control Re	egister			Register		

Table 3-1. Register Write Functions

Table 3-2. Control Register Select Coding

Control Register Selected					
CS1	CS0	Write Function	Read Function		
0	0	Control Reg # 1	Status Register #2		
0	1	Conversion Control Regis-	Status Register #2		
1	0	Scan Limits Reg	Status Register #2		
1	1	Not defined	ID Register		

Range (Gain) Select:			Range / (Gain)
R2	R1	R0	CIO-DAS802/16
0	0	0	Bip: ±10V (g=1)
0	0	1	Uni: 0 to 10V (g=1)
0	1	0	Bip: ±5V (g=2)
0	1	1	Uni: 0 to 5V (g=2)
1	0	0	Bip: ±2.5V (g=4)
1	0	1	Uni: 0 to 2.5V (g=4)
1	1	0	Bip: ±1.25V (g=8)
1	1	1	Uni: 0 to 1.25V (g=8)

Table 3-3. Range (Gain) Select Codes

Table 3-4. Register Read Functions

Г

READ											
Functions		Data Bits F							Fu	nction	
Register	D7	D6	D5	D4	D3	D2	D1	D0			
Base + 0	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	Low byte r	Low byte read	
Base + 1	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	High byte	read	
Base + 2	EOC	IP3	IP2	IP1	IRQ	MA2	MA1	MA0	Status Reg	gister 1	
Base + 3	EACS	MA2	MA1	MA0	FFOV	R2	R1	R0	Gain/Cont	rol Status	
Base + 4	8254 C/T 0 Status Register										
Base + 5	8254 C/T 1 Status Register										
Base + 6	8254 C/T 2 Status Register										
Base + 7		Function depends on value of CS0/1 bits in Base +3:					3:				
CS1/0= 0/0,0/1,1/0	HCEN	GTEN INTE IEOC DT DTEN CASC ITE Status Register 2					gister 2				
CS1/0 = 1/1	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	ID Reg (801=2, 802=3)		

Table	3-5.	Bit	Definitions
-------	------	-----	-------------

	D	Appled data input (Road low but first)
AD TI:0	ĸ	
CASC*	RW	Cascade AD Pacing Mode Enable (include CT/2)
CS1:0	W	Register Selection (See Table 3.1)
CSE	W	Register Select Enable/Range Select Disable
DT*	R	State of Digital Trigger (1=Trigger occured)
DTEN*	RW	External Digital Trigger Enable (Edge trig if GTEN=0)
EACS*	RW	Enable Auto channel-scan
EC2:0*	W	Channel-scan end value
ENHF*	W	Enable Interrupt on FIFO Half Full (Req. IEOC=1, HCEN must =1 to enable FIFO)
EOC	R	End-of-conversion (1 = busy, 0 = ready)
FFOV*	R	FIFO Overflow (full) =1. 0 if HCEN =0.
GTEN*	RW	Gate Enable (Req. DTEN to enable HW gate)
HCEN	RW	Hardware Convert Enable
IEOC	RW	Interrupt Source (1 = End of Convert, 0 = Ext)
INTE	RW	Interrupt enable (0 = disable, 1 = enable)
IP3:1	R	Digital Input bits.
ITE*	RW	Internal Time Base (8254) Enable
MA2:0	RW	Mux address bits
OP4:1	W	Digital Output bits.
R3:0	RW	AD Range bits (See Table 3.3)
SC2:0*	W	Channel-scan start value.
		* Asterisk indicates that HCEN is required (as a final step) to make this bit functional.

Register					
Conv/Control	HCEN is used as a master enable for AD Pacing				
	Set HCEN last, by itself (i.e., write 80h), set the other bits first				
Scan Limits	Ending cha	annel (n) can be lower than starting channel (m) : m,,6,7,0,1,,n,m			
	Select Sta	art and End Channel before setting EACS			
ID	Only the 1s software	st two bits are needed for software, the upper six are for compatibility with KMB			
	ID 1/0: 0/	0= (DAS800 [KMB only], 0/1= reserved, 1/0= DAS801, 1/1= DAS802			
Gain/Range	Range bits	can be written only when bit 7 is 0			
	CS1/0 bits	can be written only when bit 7 is 1			
	Not all of the	he CIO-DAS08 PGA gains are supported			
Operating Modes					
Pacing	Normal	CTR2 divides the 1 MHz time base; AD converts when CTR2 counts to zero			
	Cascade CTR1 decrements each time CTR2 counts to zero;				
		AD converts when CTR1 counts to zero			
Triggering	Edge Requires DTEN=1, GTEN=0				
Gating	Level	"Gate", Requires DTEN=1, GTEN=0			
Bit					
INT/XCLK	External In	terrupt and External (Pacer) Clock are mutually exclusive			
	External Interrupt is rising edge, External Pacer is falling edge				

Table 3-6. Special Programming Instructions

There is an 82C54 counter/timer on board which can be used to:

- Pace analog conversions
- Measure frequency
- Count events
- Precisely time intervals

The software to support the timer is in the Universal Library. The connections to the hardware are explained here. For detailed information on the 82C54 registers, please refer to the Intel or AMD data sheet for this part if you wish to program the 82C54 registers directly.

The 82C54 contains three counters, each 16 bits wide. Of the three counters, two are dedicated to the pacing of analog to digital conversions. These two, CTR1 and CTR2, when not in use by the A/D are available for other tasks but are limited to some extent by the wiring and access to I/O pins. The first counter, CTR0 is fully available for your use. Figure 4-1 is a simplified block diagram of the 82C54 and related logic functions..

Figure 4-1. Pacer/Counter/Timer Block Diagram

5: SPECIFICATIONS

Power consumption	
+5V quiescent	430 mA typical, 675 mA max
Analag imput gotion	
<u>Analog input section</u>	AD7005DD Successive Ammenimetion
A/D converter type	AD/805PB, Successive Approximation
Resolution	
Number of channels	
input ranges	$\pm 10^{\circ}$, $\pm 5^{\circ}$, $\pm 2.5^{\circ}$, $\pm 1.25^{\circ}$, 0 to 10^{\circ}, 0 to 5^{\circ}, 0 to 2.5^{\circ}, 0 to 1.25^{\circ}, fully programmable
Polarity	Unipolar/Bipolar software-selectable, 11 ms max switching delay
A/D pacing	Programmable: internal counter or external source (IR Input / XCLK, falling edge) or software polled
A/D Trigger sources	External hardware (Digital In 1 / Trig, rising edge)
Data transfer	Interrupt or software polled from 256 sample FIFO buffer
	1 1 1
Channel configuration	Differential (or pseudo-differential with installation of a SIP resistor)
	or single-ended, switch-selectable for each channel
DMA	None
A/D conversion time	$10 \mu s$ (including signal acquisition time)
Throughput	100 kHz
Accuracy	$\pm 0.0015\%$ of reading ± 1.5 LSB
Differential Linearity error	+1.5/-1 LSB max
Integral Linearity error	±1.5 LSB max
No missing codes (guaranteed)	16 bits
Gain drift (A/D specs)	±10 ppm/°C
Zero drift (A/D specs)	±5 ppm/°C
	. 1017
Common Mode Range	
CMRR @ 60 Hz	90 dB min
Input leakage current (@ 25 deg C)	
Input impedance	10 Mohms
Absolute maximum input voltage	±33 V

Counter section	
Counter type 8	32C54
Configuration 3	3 down counters, 16 bit resolution
Co	unter 0 - independent user counter
	Source: external, user connector (Counter 0 In)
	Gate: external, user connector (Gate 0)
	Output: user connector (Counter 0 Out)
Co	unter 1 - ADC Pacer Lower Divider or independent user counter
	Source: user connector (Counter 1 In) and optionally, Counter Out,
	selectable by software
	Gate: programmable, disabled or user connector (Gate 1)
	Output: user connector (Counter 1 Out) and optionally to A/D start
Co	unter 2 ADC Decer Linner Divider
Co	Source: internel 1 MHz oscillator
	Gate: programmable disabled or user connector (Gate 2)
	Output: user connector (Counter 2 Out) and optionally to Counter 1
	input, software selectable
Clock input frequency	10 MHz mov
High pulse width (clock input)	30 ns min
I ow pulse width (clock input)	50 ns min
Gate width high	50 ns min
Gate width low	50 ns min
Input low voltage	0.8V max
Input high voltage	2.0V min
Output low voltage	0.4V max
Output high voltage	3.0V min
Digital I/O section	
Digital type	Input: FPGA
	Output: 74LS08
Configuration	Two ports, 3 input and 4 output
C	
Input low voltage	0.8V max
Input high voltage	2.0V min
Output low voltage (IOL = 8 mA)	0.25V typical, 0.4V max
Output high voltage (OH = -0.4 mA)	3.4V typical, 2.7V min
Absolute maximum input voltage	-0.5V, +5.5V
Interrupts	Jumper selectable: levels 2, 3, 4, 5, 6, 7, or not connected
	Positive edge triggered
Interrupt enable	Programmable
Interrupt sources	External (IR Input / XCLK), A/D End-of-conversion, A/D FIFO- half-full
Environmental	
Operating temperature range	0 to 50°C
Storage temperature range	-20 to 70° C
Humidity	0 to 90% non-condensing

For your notes.

EC Declaration of Conformity

We, Measurement Computing Corp., declare under sole responsibility that the product:

CIO-DAS802/16 Description

to which this declaration relates, meets the essential requirements, is in conformity with, and CE marking has been applied according to the relevant EC Directives listed below using the relevant section of the following EC standards and other normative documents:

EU EMC Directive 89/336/EEC: Essential requirements relating to electromagnetic compatibility.

EU 55022 Class B: Limits and methods of measurements of radio interference characteristics of information technology equipment.

EN 50082-1: EC generic immunity requirements.

IEC 801-2: Electrostatic discharge requirements for industrial process measurement and control equipment.

IEC 801-3: Radiated electromagnetic field requirements for industrial process measurements and control equipment.

IEC 801-4: Electrically fast transients for industrial process measurement and control equipment.

Carl Haapaoja, Director of Quality Assurance

Measurement Computing Corporation 16 Commerce Boulevard, Middleboro, Massachusetts 02346 (508) 946-5100 Fax: (508) 946-9500 E-mail: info@measurementcomputing.com www. measurementcomputing.com