ECED 3204 — Microprocessors — Lab #4. Timers

ECED3204 - Lab #4

STUDENT NAME(s):

STUDENT NUMBER(s): B00O

Pre-Lab Information
It is recommended that you read this entire lab ahead of time. Doing so will save you considerable time
during the lab, as you will be required to write some simple C code during this lab!

Overall Objective
This lab has several main objectives:

e Learn about using timers for event timing
e Learn about Pulse Width Modulation (PWM)
e Learn about Input Capture mode to measure pulse width

NOTE: This lab has a video overview at http://www.youtube.com/watch?v=0EyghfrgMgo&hd=1

ECED 3204 — Microprocessors — Lab #4. Timers

Part #1: Timing Events

Objective
e Familiarize yourself with using a timer and interrupt.

Required Materials
e Microprocessor Module with Programmer
e Breadboard
e USB Cable
e Power Supply
e Computer with Atmel Studio 6.2 and Programmer Utility installed
e Push Button

Background

The timer system in the ATMega644P can be used for a variety of purposes. In this first part of the lab
we will use the ‘overflow interrupt’ of the timer. The timer system has an 8-bit or 16-bit register
(depending on the timer being used), which is incremented on a rate you can choose. See Chapter 11 of
the course textbook for more information.

TOVn

—
DATA BUS (Int.Req)
- 7y -
' Clock Select
count Edge
<1 Tn
clk Detector
TCNTn qﬂ Control Logic |a—=
diraction
(From Prescaler)
bottom T Ttop
Procedure

1. Build a similar circuit from Part #1 of Lab #3, except connect the switch to PORTD.6. For
reference the schematic is shown below —we will only use the LED in Part 1 and Part 2, but will
use the switch in Part 3.

ECED 3204 — Microprocessors — Lab #4. Timers

¥ R4
Afiyfy POz

LED1L 33AR PO&
— Pos
— P04
GHND — ro3
— FO2
— pot
— poa
— pcy
— prs
— pcs
— pC4
— pc3
— pco
— Pt
— pca
o1 — pE7
—1 PEc
—1 pBS
1 gt — pe4

2 — PEZ

— FBZ

— pe1

— PEB

GHND — RESET
— 1 AREF

— 1 AGND

— pa7

GHO

+LIIN

ALHOUSIE MICRO BOARD

Which might look as follows:

- —

;:m::qaaeowoannnannann:::acsa
'JI'_ bl s b eedd i F .o

LI IR L S
R ™ LS RAUEE LY
. "

B R SR EA LML N RS
' B EABLAN AN ALLTR &L (O O S S EEE. S
R R R R R HE R O O O O U Ol VA T W T e S
A A AW ED EE AL . b LARLLE
llan.”f'rannaonancnonn Mok wE
R] | L b
mEEr s e sEmaw FE B SAEES TTAAY O vawoaow
sees Axmes w=w " ARSET TIITLY TeNEe

2. Start a new C/C++ project (see Lab #1 for details), copy the following template into it:

#include <avr/io.h>

ECED 3204 — Microprocessors — Lab #4. Timers

#include <avr/interrupt_h>
volatile unsigned iInt tick;

#define LED_ON() PORTD |= 1<<7
#define LED_OFF() PORTD &= ~(1<<7)

int main(void)
DDRD |= 1<<7;

//Timer configuration

TCCROA = ?

TCCROB = ?

//1Interrupt mask enables
TIMSKO = ?

//Enable global interrupts
sei(Q);

while(l);

}

ISR(SPECIFY_NAME_HERE)

//Code here

3. Before being able to compile this code, we need to finish a few things. The first is to determine
the setup of TCCROA and TCCROB. We want the timer to overflow somewhere between 100-
5000 times per second.

The clock source for the AVR is a 14745600Hz crystal (we learned this in Lab #1). If you used this
to directly drive an 8-bit counter, the counter would overflow at the rate of 14745600 + 28 =
14745600 + 256 = 57600 times per second. That is too fast!

Finding Table 13-9, you can see some prescaler settings:

Table 13-9. Clock Select Bit Description (Continued)

CSo02 CSo01 CS00 | Description

0 1 1 clk;,5/64 (From prescaler)

1 0 0 clk;,o/256 (From prescaler)

Using a prescaler of 64 would mean the timer now overflows 900 times per second. This tells us
the setting for two bits in the TCCROB register, as these CS00/CS01/CS02 bits are present in this
register:

ECED 3204 — Microprocessors — Lab #4. Timers

7 6 5 4 3 2 1 0
I FOCOA FOCoB = - WGMo2 Ccso2 csot CS00 TCCRoB

We will use the default (all-0) settings for TCCROA:

7 6 5 4 3 2 1 0
I COMoA1 COMoAD COMoB1 COMoBO - - WGMo1 WGMoo I TCCRoA

See the datasheet for a description of those bits. This means our setup area of the code looks
like this:

//Timer configuration
TCCROA
TCCROB

0;
(1 << CS00) | (1 << CS01);

4. Next you need to fill in the SPECIFY_NAME_HERE section of the code, which is the interrupt
vector. This routine will get called every time the interrupt occurs. You can find a list of all the
names at http://www.nongnu.org/avr-libc/user-manual/group _avr__interrupts.html - you

must be VERY CAREFUL to ensure you use a hame that exists on the ATmega644P device! In this
case look for the TIMERO_OVF_vect name, as shown in the following:

2 mvisaaw_wvav_ v My s vy L sy v [e P dy FRL ML L, FAA WAL ST SR LY £2 LA Ly £

IAT9051200. AT90S2333, AT9054414, AT9054433, AT90S4434, AT90S8515,
IAT90S8535, AT90PWM216, ATOOPWM2B, ATO0PWM316, AT20PWM3B,
IAT90PWM3, AT90PWM?2, AT90PWMI1, AT90CAN128. AT90CAN32,
IAT90CANG4, ATmegal03, ATmegal?8. ATmegal284P, ATmegal6,
|ATmegalél, ATmegal62, ATmegal63, ATmegal63, ATmegal65P,
|ATmegal68P. ATmegal69. ATmegal69P, ATmega32, ATmega323.
|ATmega323, ATmega3250. ATmega3230P, ATmega328P. ATmega329,
TIMERO_OVF _vect SIG_OVERFLOWO Timer/Counter0 Overflow |ATmega3290, ATmega3290P. ATmega32HVB. ATmega48P, ATmegab4.
IATmega645, ATmega6450, ATmega649, ATmega6490, ATmega$8,
|IATmega83515, ATmega8535. ATmega88P. ATmegal68. ATmegad8 ATmega88,
|ATmega640. ATmegal280. ATmegal281, ATmega2560. ATmega2561.
|ATmega324P, ATmegal64P, FNV eI L), ATmega644, ATmegal6HVA,
\ATtiny11, ATtiny12, ATtiny15. ATtiny2313, ATtiny28, ATtiny48, ATtny261,
(ATtiny461, ATtiny861, ATOOUSB162, ATS0USBE2, AT90USB1287,
IAT90USB1286. AT90USB647, AT90USB646

5. Finally, you need to enable the ‘overflow’ interrupt, which is done by setting bit 1 of the TIMSKO

register:
7 6 5 4 3 2 1 0
I - - - - - OCIEOB QCIEOA TOIEO I TIMSKO
R R R R R RW RW R/W
0 0 0 0 0 0 0 0

6. At this point, your code should look similar to this:
int main(void)
DDRD |= 1<<7;
//Timer configuration

TCCROA = 0;
TCCROB = (1 << CS00) | (1 << CSO1);

//Interrupt mask enables

ECED 3204 — Microprocessors — Lab #4. Timers

TIMSKO |= 1 << TOIEO;

//Enable global interrupts
seiQ);

while(1);

ISR(TIMERO_OVF_vect)

//Code here

}

7. Finally, program the interrupt service routine (ISR) to toggle the LED. An example
implementation is as follows, using the ‘tick’ variable to keep track of how many runs through
the interrupt routine have occurred:

ISR(TIMERO_OVF_vect)
{

tick++;

if(tick == 1){

LED_ ONQ);

} else if (tick == 400){
LED OFF(Q);

} else 1T (tick > 900){
tick = 0;

}

8. Adjust the delay to blink 5 seconds on, 5 seconds off.

ECED 3204 — Microprocessors — Lab #4. Timers

Part #2: PWM Output

Objective
e Generate a PWM signal with a variable duty cycle.

Required Materials
e Setup from Part #1

Background

The timer system in the ATMega644P can be used for a variety of purposes. In this first part of the lab
we will use the ‘overflow interrupt’ of the timer. The timer system has an 8-bit or 16-bit register
(depending on the timer being used), which is incremented on a rate you can choose. See Chapter 11 of
the course textbook for more information.

Procedure
1. Build the same circuit from Part #1 of this lab, or if you just completed Part #1 leave your circuit
as-is.
2. Using Timer 2, generate a Pulse Width Modulation (PWM) signal of around 2-10 kHz. Output this
on in PD7 (which is the OC2A pin). You will need the following references in the datasheet:
O Section 15.11.1 — TCCR2A Register
0 Section 15.11.2 — TCCR2B Register

You should configure timer/counter 2 as the following:
0 PWM, Phase Correct (WGM2 =0, WGM1 =1, WGMO = 0)
0 Clock divider = 10Clock / 8
0 OC2A pin operating in non-inverting mode

The following shows the basic operating instructions:

#include <avr/io.h>
int main(void)
DDRD |= 1<<7;

//Set clock divider to be /8
TCCR2B = ??

//Set waveform generation mode
TCCR2A |= ?7?

//Set output on OC2A pin
TCCR2A |= 7?7

//5et PWM to half-way (50% duty cycle)
OCR2A = 127;

ECED 3204 — Microprocessors — Lab #4. Timers

while(1);
}

3. The LED should be partially illuminated now. You can also check with an oscilloscope you are
getting an appropriate signal.

4. Set the OCR2A register to various values in the range 0-255, and observe the effect on the
output signal. Use an oscilloscope to measure how the duty cycle changes, and measure the
frequency as well of the PWM output.

5. Add some code to slowly increase the value, and see what happens. For example here is a
complete code listing:

#include <avr/io.h>
#include <util/delay.h>

int main(void)
DDRD |= 1<<7;

//Set clock divider to be /8
TCCR2B = 1<<(CS21;

//Set waveform generation mode
TCCR2A |= 1<<WGM20;

//Set output on OC2A pin
TCCR2A |= 1<<COM2A1;

OCR2A = 0;

while(1){
OCR2A++;
_delay_ms(50);

ECED 3204 — Microprocessors — Lab #4. Timers

Part #3: Input Capture

Objective
e Measure the time a button is pressed using the input capture

Required Materials
e Setup from Part #1
e Push-Button wired into PORTD.6 (should have been done in Part #1)

Background

The timer system in the ATMega644P can be used for a variety of purposes. This section will use the
‘Input Capture’ functionality, which is used to measure the length of a pulse. You can use this for many
features, such as:

1) Measuring the width of a pulse
2) Measuring the duty cycle of a signal
3) Measuring the frequency of a signal

We will measure the length of time a push-button is pressed. If the button is pressed for a length of time
inside our ‘allowed’ range, an LED will light up. If you press the button for too short or too long of a
time, the LED will not light up.

NOTE: This lab has a video overview at http://www.youtube.com/watch?v=0EyqghfrqMgo&hd=1. It
may be useful to see the system operating to understand the push button operation.

Procedure
1. Ensure you have the same setup as previous parts, including the button connect to PORTD.6

2. Start a new project (or re-use the project from the previous parts), and load the following
template:

#include <avr/io.h>
#include <avr/interrupt_h>
#include <stdint.h>
#include <util/delay.h>

#define LED_ON() PORTD |= 1<<7
#define LED_OFF() PORTD &= ~(1<<7)

volatile unsigned char current_edge = O;
volatile uintl6_t starting_cnt;
volatile uintl6_t ending_cnt;

int main(void)
{
//LED as output
DDRD = 1<<7;

//Pull-up on ICP
PORTD |= 1<<6;

ECED 3204 — Microprocessors — Lab #4. Timers

//Defaults
TCCR1A = O;

//Enable noise cancel, look for falling edge
TCCR1B = 2?77

//Clock divided by 1024
TCCR1B |= ?7??

//1Input capture interrupt Enable
TIMSK1 |= ???

//Enable interrupts
sei();

uintlé_t timediff;

while(1){
if(current_edge == 2){
//Check for normal (no wrap-around)
if (starting_cnt < ending_cnt){

//A - B
timediff = ending_cnt - starting_cnt;
} else {

//wrap around
//(OxFFff + A) - B, done without requiring signed

math
timediff = starting_cnt - ending_cnt;
timediff = OxFFff - timediff;
}
if ((timediff > 10000) && (timediff < 30000)){
LED_ONQ);
_delay_ms(5000);
}
LED_OFFQ);
current_edge = 0;
}
}
}
ISR(TIMER1_CAPT_vect)
{

if(current_edge == 0){
//Save timestamp
starting_cnt = ??7?;

//Switch to rising edge
TCCR1B |= 7?7727

current_edge = 1;
} else if (current_edge == 1){
//Save timestamp

ending_cnt = ICR1;

//Switch to falling edge
TCCR1B &= ~(???7?);

current_edge = 2;

10

ECED 3204 — Microprocessors — Lab #4. Timers

}

TIFRL |= (1<<ICF1);
¥

3. Using the register settings for TIMER1 from the ATMega644A datasheet, fill in the blanks above.
The objective of this code is to measure the length of time the push-button signal is low, as
when the button is pressed the input capture line goes low.

11

ECED 3204 — Microprocessors — Lab #4. Timers

Lab Questions

1. InPart 1, we uses an interrupt which is called periodically. What is the fastest number of times
we could call that interrupt using the timer overflow interrupt (i.e. using the lowest possible
clock prescaller, giving you the fastest clock operation)? Would you foresee any issues calling
the interrupt that quickly?

2. What was the frequency of the PWM signal?

3. How would you use the input capture feature to measure the distance to an object if you have a
“Time of Flight” sensor, which generates a pulse indicating how long it took a sound echo to
reflect off an object?

4. In Part 3, the button must be pressed for between 10 000 and 30 000 counts of the input

capture register. Based on the Timerl prescaler settings and the system operating frequency,
what duration does that correspond to?

12

