Dynamic Programming User Manual v1.0
Anton E. Weisstein, Truman State University
Aug. 19, 2014

Dynamic programming is a group of mathematical methods used to sequentially
split a complicated problem into simpler sub-problems. The overall solution is then
generated by appropriately combining solutions to each sub-problem. In
bioinformatics, dynamic programming is mainly used to align nucleotide and amino
acid sequences, and to predict RNA and protein folding from primary sequence data.

The Excel workbook “Dynamic Programming” demonstrates this method’s
application to the problem of nucleotide sequence alignment. Once the user selects
an alignment type (global, semiglobal, or local), sets scoring parameters, and enters
two short DNA sequences, the workbook then computes a matrix of scores from
which it determines the optimal alignment. By adjusting the scoring system and
switching among different types of alignment, the user can explore how these
changes affect the inferred alignment. The workbook is designed to permit manual
computation at key steps, and to automatically check the user’s work.

1. Scoring Matrix

The first sheet in the workbook, named “Scoring Matrix”, demonstrates the
calculations needed to fill in the dynamic programming (DP) matrix and calculate
the optimal alignment score (Figure 1). First, the user enters two short DNA
sequences (the query and the subject sequence) and defines a scoring system. The
workbook uses this information to fill in the first few cells of the DP matrix: the user
then manually completes the rest of the matrix. The workbook automatically flags
any errors by highlighting them in red.

Choice of
alignment type
=7 A B C D E G I J L M| O P R S AD | AE | AG | AH
— Alignment Type:
. 3 @® Global D NA
4
Scoring | ¢ Semiglobal sequences
6
SyStem 7/ Local \ Subject sequence

& =] G A C| G T| \
1 \ "— 0 -6 6| 12 -12 -18| -42 -48
13 [Match Bonus: 5 o B[2 -12[-1 _-18|
14 |Mismatch Penalty: -2 5| A 6 12 2 8 4 =1/ -31 -37| .
16 |Gap Penalty: -6| < 2| 8 8| 4 7| Dynamlc
1/ gl c 2| 18 8| 14 -4 4 -20 -26) .
19 H programming
20 H C| -18| -14| -10| 1 =9 -15 .
22 8 matrix
23 C -24 -20) -16) -5 -5| -1
25 |Length of subject sequence: 8
2b |Length of query sequence: 6 Al -30 -26 -15 -11 6 0
28)
Z? T -36) -32 -21 -17| 10 11

Figure 1. Screenshot of the Scoring Matrix sheet, indicating user-
controlled parameters. See accompanying text for details.

Page 1 of 9

The radio buttons in the “Alignment Type” box (Cells A2-B7) control how the two
DNA sequences are compared against each other. Global alignments (implemented
by the Needleman-Wunsch algorithm) are used to compare the entire query
sequence with the entire subject sequence, such as when comparing two complete
genes. By contrast, semiglobal or “glocal” alignments are used to compare a short
query sequence with a much longer subject sequence, such as when aligning a single
gene with an entire genome. Finally, local alignments (implemented by the Smith-
Waterman algorithm) are used to search for short regions of similarity within both
the query and subject sequences (e.g., to find shared motifs). For example, BLAST
(Basic Local Alignment Search Tool) is a local alignment algorithm (Figure 2) while
CLUSTAL is a global alignment algorithm. The choice of alignment type entails key
assumptions about the biological interpretation and the mathematical treatment of
any gaps at the end of the DNA sequences: these assumptions may substantially
affect which alignments are considered optimal.

» NCBI/ BLAST/ blastn suite Standard Nucleotide BLAST
‘ blastn | blastp blastx tblastn tblastx

BLASTN programs search nucleotide databases using a nucleotide query. more...

Enter Query Sequence

Enter accession number(s), gi(s), or FASTA sequence(s) & Clear Query subrange &
From
To
Or, upload file Browse... | No file selected. o
Job Title

Enter a descriptive title for your BLAST search &)

Align two or more sequences &

Figure 2. Screenshot of the NCBI BLASTN page, used to compare a nucleotide query
sequence to a nucleotide database. BLAST combines dynamic programming with
heuristic methods that greatly reduce computational time. Different BLAST programs are
available at http://blast.ncbi.nlm.nih.gov/Blast.cgi for nucleotide and protein searches.

Cells B13-B16 show the scoring system used to align the DNA sequences. These
values represent a hypothesis about the relative frequency of specific types of
mutation since the two sequences diverged from each other (e.g., via speciation,
gene duplication, or horizontal transfer). High positive scores indicate frequent
events, such as nucleotides that are identical between the query and subject; low
scores represent rarer events, such as nucleotide substitutions, insertions, and
deletions. The dynamic programming algorithm is designed to find the alighment
with the highest score (i.e., the optimal alignment between two sequences). These
patterns of sequence similarity can be used to formulate tentative hypotheses about
evolutionary relationships among the sequences.

Page 2 of 9

Cells L9-AH9 and G13-G29 contain the Subject sequence
two DNA sequences to be analyzed. These - G A
cells also bound the dynamic
programming matrix (Cells [10-AH29)
used to compute the score of each potential
alignment. To understand this matrix,
focus first on the 2x2 blocks separated by
thick black lines. Each block represents the
hypothesis that a nucleotide from one DNA
sequence aligns with a specific nucleotide from the other sequence. For example,
Figure 3 shows a block that proposes aligning an A in the subject sequence (top
row) with a C in the query sequence (left-hand column).

aouanbas Aianp

Figure 3. A portion of the dynamic
programming matrix.

The DP matrix is initialized by assigning a score to each block in the top row and
the left-hand column: these blocks represent initial gaps in the subject and query
sequences, respectively. Each block’s score is printed in the colored cell in the
block’s lower right-hand corner. In a global alignment, blocks in the initial row and
column receive scores that are multiples of the gap penalty assigned in Cell B16
(e.g., 0,-6,-12,-18, etc.). Inlocal alignments, initial gaps are not penalized, so each
of these blocks instead receives a score of zero. Finally, glocal alignments penalize
initial gaps only in the query sequence: the left-hand column thus receives multiples
of the gap penalty, while the cells in the top row all have a score of zero.

The white cells within the remaining blocks display that block’s candidate scores.
For each block, the candidate scores represent the different ways in which a
particular alignment can be reached by adding one nucleotide or a gap to the end of
the existing alignment. In other words, each candidate score represents a step to
one block from an adjacent block. Three possibilities must be considered (Table 1;
Figure 4):

Table 1. Summary of alignment procedure.

Score’s Alignment interpretation Calculation of
position in candidate score
block
Upper left- Add one nucleotide to the end of Add match bonus or
hand cell sequence in the previous alignment mismatch penalty
(no gaps)
Upper right- Add one nucleotide to the end of the Add gap penalty
hand cell query sequence, and a gap to the end
of the subject sequence
Lower left- Add one nucleotide to the end of the Add gap penalty
hand cell subject sequence, and a gap to the end
of the query sequence

Page 3 of 9

 The indicated block could have been reached from the block
diagonally above it and to the left, aligning the G in the subject Subject: GA
sequence with the A in the query sequence. This would notadda Query: AC
gap to either sequence, resulting in the partial alignment shown
atright. The candidate score for this path is given by the previous block’s score plus
either a match bonus or a mismatch penalty: in this case, -2 - 2 = -4, as shown in the
upper left-hand cell of the indicated block.

o Alternatively, the indicated block could have been reached Subject: A—
from the block immediately above it, which aligns the A in the Query: AC
subject sequence with the A in the query sequence. For this to
occur, a gap must be added in the subject sequence, resulting in the partial
alignment shown at right. The candidate score for this path is given by the previous

block’s score plus a gap penalty: in this case, -1 - 6 = -7, as shown in the upper right-
hand cell of the indicated block.

e Finally, the indicated block could have been reached from the
block immediately to its left, which aligns the G in the subject
sequence with the C in the query sequence. For this to occur, a
gap must be added in the query sequence, resulting in the partial alignment shown
atright. The candidate score for this path is given by the previous block’s score plus
a gap penalty: in this case, -8 -6 = -14, as shown in the lower left-hand cell of the
indicated block.

Subject: GA
Query: C—

Although all three of these paths are possible, one of these paths is more likely
than others. In particular, the path with the highest candidate score represents the
most likely alignment path and is therefore chosen as the block’s actual score. In
the example above, the indicated block is assigned a score of -4, corresponding to an
alignment that matches the subject sequence’s G with the query’s A, and the subject
sequence’s A with the query’s C (see Figure 4). A block’s actual score is shown in the
lower right-hand cell, and colored to distinguish it from the candidate scores. (Note:
in local alignments, any block that would receive a negative score is instead assigned
a score of zero.)

Scoring system Subject sequence _
Match 5 — G A
Mismatch -2 8
Gap -6 3 - 0] -6
@ -6 -2
= A 6| -12
g 12| -8
8| c 12| -18

Figure 4. Calculation of candidate and actual scores. Red arrows indicate the
three candidate scores, computed by adding a match bonus or mismatch
penalty (diagonal arrow) or a gap penalty (vertical and horizontal arrows) to
the previous block’s score. The blue arrow shows the actual score, given by
maximum of the candidate scores. See accompanying text for details.

Page 4 of 9

The first few blocks in the dynamic programming matrix have been completed to
show the candidate scores as well as actual block scores. For the rest of the matrix,
only actual scores are shown, allowing the user to practice filling in the candidate
scores manually.

2. Traceback

The workbook’s second sheet, “Traceback”, demonstrates how the block scores
computed on the previous sheet are used to infer the optimum (highest-scoring)
alignment. The user begins by identifying the last block in the alignment path, and
then works backwards through the dynamic programming matrix one block at a
time to the start of the alignment. The user then converts this path into an actual
alignment of the two sequences. As before, the workbook automatically flags any
errors.

The overall process of dynamic programming consists of two steps: completing
the DP matrix and tracing back the optimal path through that matrix. During the
first step, block scores were entered in the forward direction, from the alignment’s
start (the upper left-hand corner of the matrix) to its end (lower right-hand corner).
By contrast, the traceback step is performed in the opposite direction. Moreover,
there is no need to trace back every cell in the DP matrix: it is computationally less
expensive to focus only on the blocks that represent the optimal alignment.

Recall that global alignments are used to compare two complete sequences. An
optimal global alignment thus always begins with block in the DP matrix’s upper
left-hand corner, and ends with the block in the lower right-hand corner. As a
result, the traceback procedure starts at the block in the lower right-hand corner of
the DP matrix, and terminates at the block in the upper left-hand corner.

In contrast, because glocal alignments are used to match a short query sequence
with part of a longer subject sequence, either or both sides of the subject sequence
may extend past the aligned region. These portions of the subject sequence, often
called terminal gaps, should be omitted from the alignment. The traceback for an
optimal glocal alignment therefore begins at the highest-scoring block in the last
row (the query sequence’s last nucleotide), and terminates upon reaching any block
in the DP matrix’s second row (corresponding to the first nucleotide in the query
sequence).

Finally, local alignments are used to find short areas of similarity within longer
sequences. Either or both sequences may therefore contain terminal gaps. The
traceback for an optimal local alignment therefore begins at the highest-scoring
block within the DP matrix, and terminates at the last block to have a positive score.
Table 2 summarizes these rules.

Page 5 of 9

Table 2: Beginning and end points for the traceback procedure for different types of

alignment. Note that the start of the traceback represents the end of the actual alignment,

and vice versa.

Alignment Traceback begins at... Traceback ends at...
type
Global Lower right-hand corner of the | Upper left-hand corner of
traceback matrix traceback matrix
Glocal Highest-scoring block in last Whichever block in the 2nd
(semiglobal) | row of traceback matrix row is reached first when
tracing back the alignment
Local Highest-scoring block in entire | Whichever block is the last to
traceback matrix have a positive score when
tracing back the alignment

Once the dynamic programming algorithm has located the end of the optimal
alignment, the next step is to identify the previous block in the alignment. This is
done by determining which of the current block’s candidate scores were used to
calculate its actual score, then deleting
the unused traceback arrows!. For
example, consider the lower right-hand
block in Figure 5, with a score of -1. As
discussed on pp. 2-3, this block could
have been reached from any of the three
surrounding blocks. However, coming
from block P would have yielded a score
of -4 (block P’s score plus the mismatch
penalty) instead of the observed -1, so the traceback arrow leading to block P has
been removed. Similarly, coming from block R would have yielded a score of -14
(block R’s score plus the gap penalty), so this option is eliminated. Only block Q
yields the correct score, so this traceback arrow is retained. Note that in cases
where multiple blocks yield the correct score, all of the corresponding arrows
should be retained within the traceback matrix: this indicates that several different
alignments produce the same optimal score.

Figure 5. A portion of the traceback matrix.

Once the user has deleted all of the unused arrows within a particular block, the
workbook will automatically color-code that block white, as seen in the lower left-
hand corner of Figure 5. Any traceback arrows that were incorrectly removed can
be replaced by copying and pasting the block in Cells AA4-AB5 into the appropriate
block in the traceback matrix, thereby resetting that block.

" In practice, dynamic programming algorithms store or “memo-ize” the direction from which each block is
reached when calculating scores in the forward pass (pp. 3—4), then use that information to quickly
determine the traceback path. This approach is computationally more efficient, while yielding the same
result as the procedure outlined in this manual.

Page 6 of 9

Now that the alignment has been traced backward one step, the procedure is
repeated for the subsequent steps. If multiple traceback arrows were retained at
the previous step, each of the corresponding blocks must be traced back. This
process continues until the traceback reaches a termination condition as specified in
Table 2.

Finally, the traceback path is converted into a pairwise sequence alignment. The
first block in the optimal alighment corresponds to one nucleotide in sequence #1
(Cell L9) and one in sequence #2 (Cell G13): these two nucleotides are aligned with
each other. As the traceback path is followed through the matrix, new nucleotides
and/or gaps are added to each sequence following the rules stated in Table 1 to
obtain the sequence alignment. The user can then enter this alignment into Cells
C28-C29: the workbook will automatically recolor these cells if the user’s proposed
alignment matches the optimal alignment.

In cases where ties occurred during the traceback process, several alignments will
produce the same optimal score. While this scenario is biologically quite plausible
(especially given the simple scoring system that we have defined), it is not handled
correctly by the current version of this workbook. In this case, the warning message
“>1 Optimal Alignment” will display in Cells A31-D32 (Figure 5b).

Sequence #1

d R
2 €
s (S S
3 € €
3#* R R R
» € € €
R R R R
€ <« € €«
R R R R
€« € € €
R R R R
€« € € €
Proposed Alignment
Sequence #1: ACCGCAGT
Sequence #2: ACC-CA-T

Unique Optimal Alignment

Figure 5. (a) A completed traceback matrix for global alignment. The traceback path,
consisting of the blocks containing white cells, identifies the optimal pairwise alignment
between sequences 1 and 2, as given in (b).

Page 7 of 9

Suggested Explorations and Discussions

 Generate global, glocal, and local alignments for the sequences AACGCAGT and
CTCATG. Give examples of specific biological questions for which you would use
each alignment type. Then explain the biological reasons why each alignment type
yields a different optimal alignment for these two sequences.

e The highest-scoring (optimal) alignment corresponds to the relationship
requiring the least amount of evolutionary change between the two sequences
under study. How confident can you be that this alignment accurately reflects the
true evolutionary history of the two sequences? Why might it be useful to report
not only the highest-scoring alignment, but also any alignments whose score is just
slightly lower? (Equivalently, how could you determine that the optimal alignment
is statistically significant?)

e Why is it inappropriate to compare the raw alignment scores for two different
pairs of sequences? How might you adjust these scores to permit a more
meaningful comparison?

e The simple scoring system given in the worksheet ignores many evolutionary
properties of actual DNA sequences. For example, transitions (changes from a
purine to a purine, or from a pyrimidine to a pyrimidine) are usually more likely to
occur than transversions (changes from a purine to a pyrimidine or vice versa).
Similarly, based on parsimony, a single insertion or deletion of 3 consecutive
nucleotides is much more likely than three separate insertions or deletions of one
nucleotide each. Propose a more sophisticated scoring system that accounts for
these characteristics.

Page 8 of 9

3. Terms and Conditions

You may use, reproduce, and distribute this module, consisting of both the
software and this associated documentation, freely for all nonprofit educational
purposes. You may also make any modifications to the module and distribute the
modified version. If you do, you must:

e Give the modified version a title distinct from that of the existing document, and
from all previous versions listed in the "History" section.

e In the line immediately below the title, replace the existing text (if any) with the
text "© YEAR NAME", where YEAR is the year of the modification and NAME is
your name. If you would prefer not to copyright your version, then simply leave
that line blank.

e Immediately below the new copyright line (even if you left it blank), add or
retain the lines:
Original version: Dynamic Programming 1.0 © 2014 Anton E. Weisstein
See end of document for full modification history

e Retain this "Terms and Conditions" section unchanged.

¢ Add to the "History" section an item that includes at least the date, title,
author(s), and a description of the modifications, while retaining all previous
entries in that section.

These terms and conditions form a kind of "copyleft," a type of license designed for
free materials and software. Note that because this section is to be retained, all
modified versions and derivative materials must also be made freely available in the
same way. This text is based on the GNU Free Documentation License v1.2, available
from the Free Software Foundation at http://www.gnu.org/copyleft/.

History
Date: Aug. 19, 2014

Title: Dynamic Programming Manual v1.0

Name: Anton E. Weisstein

Institutions: Washington University and Truman State University

Acknowledgements: This work was supported by a Freiburg Visiting Scholarship
provided by Washington University in St. Louis.

Modifications: None (original version).

Page 9 of 9

