
ANA Project
Autonomic Network Architecture

ana
autonomic network architecture

Sixth Framework Programme
Priority FP6-2004-IST-4

Situated and Autonomic Communications (SAC)

Project Number: FP6-IST-27489

Deliverable D.1.11

ANA Core Documentation

All you need to know
to use and develop ANA software

ANA Project
Autonomic Network Architecture

ana
autonomic network architecture

Project Number FP6-IST-27489

Project Name ANA - Autonomic Network Architecture

Document Number FP6-IST-27489/WP1/D.1.11

Document Title ANA Core documentation

Workpackage WP1

Editor Ghazi Bouabene (UBasel)

Authors Ghazi Bouabene (UBasel)

Christophe Jelger (UBasel)

Ariane Keller (ETHZ)

Daniel Rodriguez Fernandez (UiO)

Dissemination level Public

Contractual delivery date 31st December 2008

Delivery date No delivery date: document is updated frequently

Version Version 0.3

Abstract:
This document is the companion of the software deliverable D.1.11 due on month
36 of the project. It is a guideline helping ANA users and developers to bootstrap
with the ANA Core software. This document contains instructions on how to run
the ANA Core software as a simple user. It also contains instructions, in a “how to”
fashion, helping developers in their first steps with the ANA Core libraries. Finally,
this document contains some inner, low-level details about the ANA Core machinery.

Keywords:
ANA Core user manual, ANA development tutorial, ANA Core inner details.

Table of content

1 Introduction 8
1.1 Where and how do I get the latest version of this document? 8

1.2 Who should read this document? . 8

1.3 Files and directories: “who’s who” . 9

1.4 Compiling the code . 10

1.4.1 Tuning the compilation . 10

1.5 Running ANA . 11

1.5.1 MINMEX in user-space mode 11

1.5.1.1 attaching bricks to a user-space minmex : 11

1.5.1.2 detaching bricks from a user-space minmex : 12

1.5.1.3 stopping a user-space MINMEX : 13

1.5.2 MINMEX in kernel-space mode 13

1.5.2.1 attaching bricks to a kernel-space minmex : 13

1.5.2.2 detaching bricks from a kernel-space minmex : 14

1.5.2.3 stopping a kernel MINMEX : 14

1.5.3 Debugging levels : . 14

2 Overview 15
2.1 Plugin vs Gates mode . 16

2.1.1 Plugin mode . 16

2.1.1.1 case of a user-space minmex 16

2.1.1.2 case of a kernel-space minmex 16

2.1.2 Gates mode . 16

2.1.2.1 case of a user-space minmex 16

2.1.2.2 case of a kernel-space minmex 17

2.2 Communication between the bricks . 17

2.2.1 Data reception in plugin mode 18

3

2.2.2 Data reception in gates mode 18

3 MINMEX 19
3.1 Brick Table . 19

3.1.1 Brick’s heartbeat and Garbage collection 19

3.2 Information Dispatch Table . 20

3.2.1 IDT Views . 20

3.2.2 Garbage collection . 21

3.3 Key Value Repository . 21

3.3.1 Garbage collection . 21

3.4 Notification Table . 22

3.4.1 Garbage Collection . 22

3.5 More details for running the minmex 22

3.6 Extensibility of the minmex via plugins 23

3.6.1 Gates plugin . 23

3.6.1.1 Shadow Dispatch Table 23

4 How to develop a brick 25
4.1 Recommended Skeleton for the brick’s code 25

4.1.1 brick template.h file . 25

4.1.2 Required functions . 25

4.2 How to change my brick’s name in the minmex ? 26

4.3 How to pass auxiliary arguments to my brick ? 26

4.3.1 auxiliary arguments for stand-alone user-space bricks 27

4.3.2 auxiliary arguments for .so plugin user-space bricks 27

4.3.3 auxiliary arguments for kernel module bricks 27

4.3.4 access the auxiliary arguments within brick’s code 27

4.4 How to terminate my brick from within the code 28

4.5 How to create IDPs . 28

4.5.1 In AL2 . 28

4.5.1.1 Callback functions for AL2 28

4.5.2 In AL1 . 29

4.5.2.1 Callback functions for AL0 and AL1 29

4.5.2.2 Registering Callback functions in AL0/1 30

4.6 How to delete IDPs from the minmex 32

4.7 How to receive messages on an IDP 32

4.8 How to temporarily block/unblock message reception 34

4.9 How to send a message to an IDP: . 35

4.10 How to publish a service in a compartment 37

4.10.1 In AL2 . 37

4.10.2 In AL1 . 39

4.10.3 Node compartment example 43

4.11 How to lookup/resolve services in compartments 44

4.11.1 Resolve request . 44

4.11.2 lookup request . 46

4.12 How to unpublish services from compartments 49

4.13 How to release an IDP . 50

4.13.1 In AL2 . 50

4.13.2 In AL1 . 51

4.14 How to get/set information about an IDP 51

4.14.1 More details on the binding union 52

4.14.2 Getting information about an IDP 53

4.14.3 Setting information about an IDP 54

4.15 How to subscribe/notify about events 56

4.15.1 Subscription to events . 57

4.15.2 Unsubscription from events 59

4.15.3 Notify subscribers about occurence of an event 59

4.16 How to interpret error codes . 60

4.17 XRP details . 61

4.17.1 Format of XRP messages . 61

4.17.2 Defined constants . 61

4.17.3 XRP API . 62

4.18 I’m building a compartment provider brick, what requirements should I
follow ? . 64

4.18.1 Visibility in the node Compartment 64

4.18.2 Handling the common generic commands 64

4.18.3 Forwarding incoming messages to a “higher layer” 69

4.19 How to compile my brick . 70

4.19.1 User space compilation . 70

4.19.2 Kernel compilation . 71

4.20 How to instantiate a brick from wihtin the code 72

4.20.1 To instatiate a .so plugin brick 72

4.20.2 To instatiate a standalone brick 72

5 Virtual link support 73
5.1 What is it? . 73

5.2 Files, compilation . 74

5.3 How does it work? . 74

5.4 The vlconfig command . 75

5.5 The vlink API . 76

5.6 Virtual MAC address . 77

5.7 Example . 78

6 Generic ANA Threads 80
6.1 What is it? . 80

6.2 Why should I use ANA threads? . 80

6.3 Files . 80

6.4 How shall I use anaThreads? . 81

6.5 The anaThread API . 81

6.6 Example . 81

7 Generic ANA timers 82
7.1 What is it? . 82

7.2 Files . 82

7.3 How shall I use anatimers? . 83

7.4 The anatimer API . 83

7.5 Example . 84

8 Quick Repository 85
8.1 What is it? . 85

8.2 Files . 85

8.3 How shall I use Quickrep? . 85

8.4 Entries structure . 86

8.5 The Quickrep API . 86

9 Generic ANA Locks 91
9.1 What is it? . 91

9.2 Files . 91

9.3 How shall I use ANA locks? . 91

9.4 The ANA lock API . 92

9.5 Example . 92

10 Miscellanous functions of the API 93
10.1 Wrapper functions . 93

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 7

Chapter 1

Introduction

1.1 Where and how do I get the latest version of this
document?

This document is included in the latest version of the ANA Core software. To download
the latest version please check our download webpage :
http://www.ana-project.org/web/software/start

This document is also available via the main ANA code repository which is managed
with the subversion software. To initially create/download your local (i.e. on your PC)
ANA code repository use the following command:

‘svn co https://subversion.cs.unibas.ch/repos/ana/ana-core/stable/’

The documentation can be found in the stable/doc directory. The document is
updated as any other file in the repository. Use ‘svn update’ to get the latest version.

1.2 Who should read this document?

This document is the main documentation of the ANA Core software. It is intended for
both users and developers of the ANA software. A standard user probably only needs
to read chapter 1 while a developer should typically read chapters related to his/her own
development, however reading all the chapters and especially chapter 2 is probably a
good idea before one starts developing new code for ANA.

Note that while the core developers will always try to maintain this manual updated,
the documentation may evolve with some delay compared to the code. Hence the code
itself (and the comments it contains), and the doxygen website
(http://www.ana-project.org/doxygen/doxygen/html/index.html) are the most up-
to-date documentation.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 8

1.3 Files and directories: “who’s who”

This section provides an overview of all the files and directories of the current code.
If you are a developer and you are looking for the right place to put your files you
should definitely read this section! We strongly advise you to create a directory for
your own code in the C/bricks subdirectory if you are developing a new brick. In the
very rare case where you need system specific code, you can create more subdirectories
like e.g. the 3 “standard” sub-directories common, kernel, and userspace of the MINMEX,
AL0 API, and vlink brick. Your main directory should also include the adapted tem-
plate Makefile(s) to compile your code. Finally, any C header file (*.h) that is not
shared with other bricks should remain within your brick’s directory (i.e. Do not put in
C/include).

The freshly checked out directory should contain the following file, sub-directories:

• Makefile, config.txt.template : the top-level makefile for compiling the code.
See section 1.4 for details on how to use it.

• README : contains some basic indication to help you start with the core ANA soft-
ware.

• Makefile*.template : templates to be used in case you are compiling your own
developed brick

• bin/ : after successful userspace compilation it will contain all the executable
files.

• so/: after successful plugin userspace compilation it will contain all the .so plugin
files.

• C/ : the top-level directory for the development in C language.

• doc/ : contains the code documentation i.e., what you are reading right now, plus
the doxygen documentation

• lib/ : after successful userspace compilation it will contain some function li-
braries (e.g. the level 0 and level 1 APIs for GATES mode)

• modules/ : after successful kernel compilation it will contain the loadable Linux
kernel modules.

• log/ : directory where the log files of your excuted bricks will be stored

• test ana/ : contains scripts to test the ANA software.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 9

1.4 Compiling the code

To be able to compile the core ANA software you need to have standard development
tools installed such as gcc and make. The current code is developed for Linux systems
only. For Linux kernel compilation, you also need to have the C sources of your run-
ning kernel: these are usually stored in /usr/src/linux-??? where ??? is obtained by
running ‘uname -r’. If you do not have the right kernel sources, try to install the appro-
priate package (depends on your Linux distribution) or compile a fresh kernel from the
sources. You cannot compile the kernel version of ANA if you do not have the Linux
kernel sources!

To make sure you start with a clean compilation, in the main directory, i.e. the
directory containing the main Makefile and the C/, bin/ directories, etc., run ‘make

clean’. This will remove any previously compiled modules and binaries. To compile
the ANA Core software :

1. in the main directory move the config.txt.template to config.txt

2. type: ‘make’

As a result, the compiled minmex and bricks, standalone programs, .so plugins and
kernel modules will be respectively saved in the bin/, so/ and modules/ directories.

1.4.1 Tuning the compilation

If you don’t require all the elements of the ANA Core software or are interested in
compiling it only for user-space or kernel-space, you can tune the compilation process
by modifying the config.txt file.

This file contains the following variables :

• ‘COMPILE USER MINMEX = yes’ or ‘COMPILE USER MINMEX = no’ to indicate wether you
want the minmex to be compiled as a user-space application or not.

• ‘COMPILE KERNEL MINMEX = yes’ or ‘COMPILE KERNEL MINMEX = no’ to indicate wether
you want the minmex to be compiled as a kernel module or not.

• ‘USER PROCESS BRICKS’ : this variable contains the list of the bricks that will be
compiled as standalone applications (i.e using the gates mechanisms). You can
remove elements from the list or leave it empty (by putting nothing after the =) if
you do not wish to have standalone bricks.

• ‘USER PLUGIN BRICKS’ : this variable contains the list of the bricks that will be com-
piled as .so plugin that can be loaded by the minmex. You can remove elements
from the list or leave it empty (by putting nothing after the =) if you do not wish
to have plugin bricks.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 10

• ‘KERNEL MODULE BRICKS’ : this variable contains the list of bricks to be compiled as
kernel modules using the gates mechansisms

• ‘KERNEL PLUGIN BRICKS’ : this variable contains the list of bricks to be compiled as
kernel modules directly interacting with the minmex

1.5 Running ANA

After a successful compilation, it is time to run your ANA software. Note that while the
kernel version provides better performance in terms of execution time and processing
power, and although the core development team is doing its best to avoid bugs, we
cannot guarantee that the code is 100% safe. This means: in non-tested cases it might
crash your running kernel. Please report any bugs to the ana-dev mailing list so that we
decrease the probability of kernel crashes. If possible, check if the crash is repeatable
and report your setup and sequence of events so that we can try to track down the
problem and fix it. Thanks very much in advance!

1.5.1 MINMEX in user-space mode

To run the MINMEX as a userspace application the following steps need to be executed:

• set a shell environment variable ‘$ANA BASE DIR’ with as value the path of the
ANA core main directory, i.e the directory containing the main Makefile and the
config.txt file.

• type ‘./minmex’ in the $ANA BASE DIR/bin directory.

The output of the minmex will be directed to the $ANA BASE DIR/log/ directory in the
file : ?? anaMinmex where ?? stands for the PID of the minmex process.

1.5.1.1 attaching bricks to a user-space minmex :

The bricks that can attach to a user-space minmex are the ones compiled for user-space
either as .so plugins or as standalone applications using the gates(IPCs).

attaching .so bricks to a user-space minmex To attach a .so plugin to the minmex,
use the $ANA BASE DIR/bin/mxconfig command in the following way :
mxconfig load brick FULL_PATH_to_so_plugin

Where FULL PATH to so plugin is the complete path to the .so plugin file. For exam-
ple, for the vlink brick, this path should be (unless you moved it)
$ANA BASE DIR/so/vlink.so.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 11

On a successfull load, the minmex prints out in its running terminal standard output
(NOT in its logfile), the full path to the log file in which the output(debug) messages
of the loaded brick will be written. Otherwise an error message is printed out by the
mxconfig command.

attaching standalone bricks to a user-space minmex In order to be able to attach
standalone process bricks, you need first to load the gates .so plugin that implements
the gates (IPC) functionality. To do so :
mxconfig load brick $ANA_BASE_DIR/so/gatesPlug.so

When launched without options, the default communication gates between the MIN-
MEX and the bricks use unix sockets. To learn more about gates, please read chapter 2.
The gates plugin then prints out, in its log file, the control socket it uses: by default, this
is the unix socket /tmp/anaControl gatesPlug ?? with ?? standing for the PID of the
minmex.

To run a brick, one then simply needs to give the gates plugin control gate as an
argument of the brick with the -n option: for example, one would type ‘./brick name -n

unix:///tmp/anaControl gatesPlug ??’ (where ?? stands for the PID of the minmex). If
needed, it is also possible to specify the control gate and data gate of either the gates
plugin or a brick with respectively the -c and -d options. For example, this permits to
run the MINMEX on one host and bricks on another host and have them communicate
via UDP.

1.5.1.2 detaching bricks from a user-space minmex :

detaching .so bricks from a user-space minmex In order to detach (i.e. by user
intervention) a .so plugin brick from the minmex, you can use the ‘mxconfig’ command
in the following way :
mxconfig unload brick brick_name

Where brick name is the name of the brick you want to detach. This name can also be
obtained by using the ‘mxconfig’ command:
mxconfig show bricks

That displays the list of names of all the bricks attached to the minmex.

detaching standalone bricks from a user-space minmex In order to detach a stan-
dalone brick from the minmex, just type the ‘CTRL-C’(interrupt) key combination in the
terminal running your brick. The interruption signal will be captured by the ANA library
and your brick will exit correctly.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 12

1.5.1.3 stopping a user-space MINMEX :

Stopping the user-space minmex is also done by typing the ‘CTRL-C’(interrupt) key com-
bination in the terminal running the minmex. This should first trigger the attached plugin
bricks to exit properly and alert the remote (standalone) bricks of minmex shutdown.

1.5.2 MINMEX in kernel-space mode

To run the MINMEX as a kernel module the following steps need to be executed:

• The “super module” anaControl needs to be loaded, this can be done by typing in
$ANA BASE DIR/modules/ as root : ‘insmod anaControl.ko’

• If the anaControl loaded succesfully, the minmex module can now be loaded by
typing in $ANA BASE DIR/modules/ as root : ‘insmod anaMinmex.ko’

The debug output of the minmex will be written either in /var/log/messages or
/var/log/kern.log (depending on the linux distribution).

1.5.2.1 attaching bricks to a kernel-space minmex :

attaching kernel plugin bricks to a kernel-space minmex : To load a kernel plugin
brick, one needs to type as root in $ANA BASE DIR/modules/:
insmod brick_module_file

Where brick module file, is the file of the brick kernel module (e.g. vlink.ko). When
compiled as kernel code, communication between the MINMEX and the bricks uses by
default direct functions calls. The function pointers are dynamically exchanged via the
“super” module called the ANA Control (this was also developed to allow one to run
multiple ANA nodes on a host).

attaching user-space standalone bricks to a kernel-space minmex : In order to at-
tach standalone user-space bricks, two communication modes between the minmex and
the bricks are possible that are UDP and generic netlink. To enable one of these modes,
you first need to load the gates plugin kernel module by typing in $ANA BASE DIR/modules/

as root:
insmod anaGates.ko a=c=udp://127.0.0.1:6666,d=udp://127.0.0.1:6667

In this case, we are indicating to the gates plugin that it should open a UDP control
gate (via the option c=) on port 6666 and a UDP data gate (via the option d=) on
port 6667. For generic netlink gates, replace the UDP url with something similar to
‘genericnetlink://arbitrary name’.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 13

1.5.2.2 detaching bricks from a kernel-space minmex :

detaching kernel plugin bricks from a kernel-space minmex : To detach a kernel
plugin brick use the system command as root :
rmmod brick_module_file_name

Where brick module file name stands for the name of the kernel module file without the
.ko extension (e.g. ‘rmmod vlink’).

detaching standalone user-space bricks from a kernel-space minmex : The same
CTRL-C key combination described for the user-space case can be applied here too.

1.5.2.3 stopping a kernel MINMEX :

Stopping the kernel module minmex is also done by the use of the ‘rmmod’ function.
However due to module dependancy, you must first remove all kernel module bricks,
then the MINMEX and finally the ANA Control module.

1.5.3 Debugging levels :

While running ANA, it is also possible to specify the debugging level. There are
currently five debugging levels, ranging from no debug information to maximum de-
bug: ANA NONE, ANA EMERG (emergency situations, fatal errors), ANA ERR (er-
ror messages but can still work), ANA NOTICE (important information), ANA DEBUG
(full debug). The default debugging level is ANA DEBUG. To change the debuging
level, use the -D option in userspace (e.g. -D ANA NONE) and debug option with kernel
modules (e.g. debug="ANA NONE").

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 14

Chapter 2

Overview

The ana core software is composed of the two following elements:

brick 2 brick 1

ANA Node

Minmex
Playground

Ethernet brick

IP brick

IDT

Table
Brick
Table

Notif

KVR

Figure 2.1: Overview of an example ANA node

• Bricks: a brick is the most atomic element providing and using ANA functionnal-
ities. It is an implementation of an atomic funtional block, and can therefore be
itself, or a member of, a bigger funtional block implementing a compartment, an
information channel, etc. Together all the bricks form the Playground of an ANA
node.

• MINMEX: the minmex is the element allowing the bricks to interact. It contains
all the management units allowing a brick to discover other local bricks and to
exchange messages and instructions.

In the current implementation, the bricks and the minmex can run in user-space
and kernel-space. This is made possible through a set of wrapper functions that we
will depict in a further chapter.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 15

2.1 Plugin vs Gates mode

In the current implementation, the ANA bricks can be attached to the minmex either in
plugin mode or in the gates mode.

MINMEX

brick

plugin

plugin

brick brick

plugin

gates
plugin

stand−alone
brick

Control gate

Data gate

message

passing

Figure 2.2: Brick attachment to minmex

2.1.1 Plugin mode

2.1.1.1 case of a user-space minmex

When bricks attach to the user-space minmex in plugin mode, their code (available in a
.so file) is dynamically loaded by the minmex process. In such a configuration, the ANA
software runs in a single process that is the MINMEX process. Each brick code runs
however in a separate thread within the MINMEX context. Communication between the
MINMEX and the bricks in such a configuration is done through direct function calls.

2.1.1.2 case of a kernel-space minmex

In this case, both the MINMEX and the brick are loaded as Linux kernel modules.
Therefore they can communicate via direct function calls through a “super module”
called anaControl.

2.1.2 Gates mode

2.1.2.1 case of a user-space minmex

In this mode, communication between the MINMEX and the stand-alone brick is done
by message passing via IPCs. Therefore, we provide a plugin, called gates plugin,
extending the functionality of the minmex with what we call communication gates.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 16

Communication Gates paradigm For message reception, a brick or a minmex listens
on a communication gate. We call communication gate any mean of message reception,
be it a UDP or UNIX socket or any other kind of IPC. Basically each ANA Brick and
gates plugin has two different communication channels, and therefore two communica-
tion gates: one for data and one for control information. The gates plugin however, is
allowed to provide several communication channels for data and for control information
simultaneously. This permits different types of Bricks to connect to the MINMEX.

Note that what is being described below is the “internal message exchange machin-
ery” of the ANA core software. This is implemented in the MINMEX and in the ANA
AL0 API. Brick developers do not need to re-develop this machinery: this is “invisible”
to brick developers and is only described here such that developers better understand the
underlying machinery of the ANA core software.

The available IPC support for communication gates between the brick and the user-
space MINMEX are: UDP, named PIPES and UNIX sockets.

When specifying communication gates arguments (via the -d, -c, -n arguments,
one has to provide a URL description of the gate including the mode and the name of the
gate. For example:

• UDP: ‘udp://ip:port. Example: udp://127.0.0.1:6666’

• PIPES: ‘pipe://absolute path to pipe. Example: pipe:///tmp/pipeFile’

• UNIX: ‘unix://absolute path to sock. Example: unix:///tmp/sockFile’

2.1.2.2 case of a kernel-space minmex

The same gates plugin depicted above can be compiled as a kernel module in order to
extend the kernel MINMEX with communication gates support. The available commu-
nication gates in kernel space are UDP and generic netlink. The generic netlink URLs
are of the form : ‘genericnetlink://arbitrary name’.

2.2 Communication between the bricks

We would like to insist on the fact that all communication between bricks goes through
the MINMEX which operates like a micro-kernel environment for bricks. In the current
implementation of ANA, two bricks cannot communicate together directly. A brick can
only send and receive messages on IDP labels.

Figure 2.3 shows a data message format sent from the brick to the minmex and from
the minmex to the brick owning the IDP.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 17

PDULabel

Figure 2.3: Data messages between bricks

2.2.1 Data reception in plugin mode

Both for user-space and kernel-space minmex, the data communication between the
minmex and the bricks is done via message queues. The data sent from a brick A to
a brick B is copied by the minmex and deposited on B’s data message queue. B then
pops the data copy out of its queue. Although an optimization might be possible where
B pops the original data (since in user-space plugin mode, the memory between brick’s
code is shared), we think that such an optimization will introduce concurrence problems
on the data access and prefer to adopt the copy approach that is more inline with usual
message passing model.

2.2.2 Data reception in gates mode

In gates mode the data sent from a brick A to a brick B is copied by the minmex into
a message buffer and sent via IPCs to brick B. It is then processed by B’s Shadow
Dispatch Table as described in subsection 3.6.1.1.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 18

Chapter 3

MINMEX

This chapter provides some insights on the inner-details of the ANA Core software.
Knowledge of such details is not mandatory for users nor for developers. However, a
better understanding of the ANA Core inner mechanisms might prove useful to users
and developers to deal with some “difficult” situation they might encounter.

The MINMEX implements the management units allowing all brick interactions: it
is something like the micro-kernel of the ANA node. The components of the MINMEX
are detailed in the following sections.

3.1 Brick Table

The brick table holds the information about each brick attached to the minmex. It is
a hash table with a size defineable upon program startup. The brick table stores the
pointers to the message queues of all the bricks attached to the minmex. The brick table
also stores the number of permanent and volatile IDPs owned by each brick in order
to insure that no brick exceeds the default allowed quotas. With the brick table, the
minmex knows how to send data and notification messages to all the bricks attached to
it. The bricks can change the content of this table only via 2 actions: attachment and
detachment to the minmex available through the API level 0 that will be detailed in a
further chapter. Figure 3.1 shows an example brick table.

3.1.1 Brick’s heartbeat and Garbage collection

The age field in figure 3.1 is used for garbage collection. Periodically, each brick sends
a “keep alive” message to the minmex. This is an automated task internal to the ANA
library and brick developers don’t have to care about that. Upon receiving this message,
the minmex resets the brick’s age to 0. If the brick gives no life sign to the minmex, its
age keeps increasing periodically until it reaches a fixed (constant) threshold, at which
point the brick will be considered unreachable. The minmex will then free all resources

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 19

allocated to this brick.

Name

Brick X

....

....

Handle(id)

random

Message queue pointer

0xAABBCC

Age

0

Nb volatile IDP

15

Nb perm IDP

2

Figure 3.1: Example Brick Table

3.2 Information Dispatch Table

The information dispatch table (IDT) holds the information on the registered informa-
tion dispatch points (IDPs). At the minmex level, the IDT is used to map a label to a
brick. Figure 3.2 shows an example of IDT usage. Upon the arrival of a labeled mes-
sage, the IDT is consulted to know to which brick this IDP label belongs. With the
help of the previously described brick table, the minmex knows then how to forward the
message to this brick. In case of information channel IDPs, the IDT might also hold the
information channel details (MTU, destination context, destination service, etc.)

3.2.1 IDT Views

The IDT has a concept of private and public views. When creating an IDT entry (IDP),
a brick can decide wether the IDP is public (accessible by all other bricks), or private
(restricted to a single brick). The bricks can modify the content of this table through
some API level 0 functions that allow to create, delete, redirect and modify information
about IDT entries and also to change their public/private status. These functions will be
detailed in a further chapter.

PDUABC

Label

ABC brick Y

Minmex

Dest Age

0

....

....Brick Y
to brick Y

X’s IDT View

Brick X Callee

Figure 3.2: Example of IDT Usage

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 20

3.2.2 Garbage collection

The age field in figure 3.2 is used for garbage collection. Each time a volatile entry of the
IDT is used (accessed), the minmex resets its age to 0. If a volatile entry is not used for
a while, its age is increased periodically until it reaches a constant threshold at which
point it will be considered as deprecated. The minmex will then free the entry from
the IDT and notify its owner and viewer through their notification channel. There is a
possibility for bricks to create permanent IDT entries through the API level 0 functions,
i.e entries remaining in the IDT eventhough not used.

As an initial policing attempt, each brick attached to the minmex is authorized to
create 128 permanent and 1024 volatile entries, over which creation of new IDt entries
will be forbidden to the brick. Please note that these numbers are a rough estimate and
can be easily increased if ANA core users estimate that they are too restrictive.

3.3 Key Value Repository

The key value repository (KVR), is a simple tool allowing bricks to discover each other
locally on an ANA node. Using the KVR, a brick can publish an IDP which typically
maps to a service the brick wants to offer. The KVR can be seen as a small database
where an entry has an IDP as value and a set of keywords allowing to retrieve the value.
An example entry is shown in figure 3.3 where an Ethernet brick called eth-brick has
published an IDP labeled 0xABCDE that can be retrieved by other bricks by using any
of the keywords in the list.

Owner

eth_brick

Value(IDP)

0xABCDE

Keywords

eth_send, Ethernet, interface

Age

0 ...

Figure 3.3: Example Key Value Repository

The functions allowing interaction between the KVR and the bricks (publication and
retrieval of entries) are detailed in a further chapter.

3.3.1 Garbage collection

The KVR has a garbage collection mechanism similar to the one of the IDT where un-
used entries are deleted after a timeout. However, since the KVR entries are related
to IDT entries (that they consider as a value), the KVR has an extra garbage collec-

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 21

tion mechanism. That is, the minmex periodically checks for each KVR entry that the
published IDP is still present in the MINMEX IDT. If not, the KVR entry is deleted.

3.4 Notification Table

This table stores all the subscriptions of bricks to ANA events. In the current imple-
mentation, the events concern only IDPs and bricks and express changes that happened
regarding those IDPs or Bricks (e.g. Brick attachent/detachemnt event, IDP deletion,
IDP redirection, etc.). When an event regarding a specific object (IDP, or Brick) is trig-
gered, the MINMEX checks the notification table to forward the event notification to
the bricks subscirbed to that particular event. Figure 3.4 shows a simplified view of the
notification mechanism.

Minmex

Brick X Object

ABC UNPUBLISHED

EventId Dest

bricks Y, Z

to brick Y

to brick Znotify(ABC,
UNPUBLISHED_EVENT)

Notification Table

Figure 3.4: Simplified notification mechanism

3.4.1 Garbage Collection

Since subscriptions to an event are linked to a particular object (IDP or Brick), when-
ever the object disappears, the subscriptions become obsolete and should therefore be
cleaned to save resources. Therefore whenever a brick is detached, or an IDP removed,
all subscriptions regarding that particular brick or IDP are deleted from the notification
table. Also whenever a brick detaches from the minmex, all its subscriptions regarding
ohter bricks and IDP events are deleted from the notification table.

3.5 More details for running the minmex

While running the minmex via the command line (shell), one can tune multiple options
that we list below :

• choose the hash mask and array size for the Information Dispatch Table with −t

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 22

flag for userspace and t = for kernel. Note that the array allocated for the dispatch
table will be 2mask where mask is the value you tranmitted with −t.

• choose the hash mask and array size for the Bricks Table with−b flag for userspace
and b = for kernel. Note that the array allocated for the brick table will be 2mask

where mask is the value you tranmitted with −b.

• choose which debug mode to run the minmex in with −D flag for userspace and
D = for kernel

3.6 Extensibility of the minmex via plugins

The current design of the MINMEX allows to easily extend its functionalitiy by incor-
porating additional plugins. In the current version, we only provide the gates plugin that
extends the minmex with communication gates support. More plugins might appear in
future revisions.

3.6.1 Gates plugin

This plugin allows the minmex to offer its functionality to separate (i.e. not plugin)
bricks. The gates plugin acts on behalf of the separate bricks by relaying data and
control between the minmex and the bricks with message passing techniques via IPCs
as depicted in Figure 2.2.

The Gates plugin maintains a list of the remote bricks as well as how to reach them
(i.e. their data and control gate, notification label, etc.) as shown in Figure 3.5.

Brick handle

0xDEFGH udp://127.0.0.1:6666

Control gate Data gate

udp://...

Notif label

0xABCDE

Figure 3.5: remote brick’s table at gates plugin

3.6.1.1 Shadow Dispatch Table

In order to inter-operate with the gates plugin, each independant ANA brick has a
hidden management unit called the shadow dispatch table (SDT). The SDT’s role is to
map IDP labels to real actions i.e functions. Upon message reception from the gates
plugin, ANA libraries will map the IDP label to an action, i.e. a callback function.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 23

PDUABC

Label

ABC

....

....

Brick Y

SDT

Function

fctX()

Aux args

NULL

gates plugin

control gate

data gate

Figure 3.6: Example SDT usage

The function pointer and auxiliary argument fields are stored in the SDT when a
new callback IDP is instanciated. Note that the API functions that allow to interact with
the minmex’s IDT also transparently do the necessary changes in the SDT. That is, the
developer of a brick never interacts directly with the SDT.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 24

Chapter 4

How to develop a brick

4.1 Recommended Skeleton for the brick’s code

4.1.1 brick template.h file

When creating a brick we recommend to include the file C/include/brick template.h

in the brick’s code. The advantage of using brick template.h is that it will hide all
minmex attachment details from you. Also, another main advantage is that it permits to
easily write bricks that are able to run both in user space, kernel(after being recompiled).
Indeed, the file brick template.h contains a main function for standalone userspace
execution, an initialization function for .so plugin mode and an init and exit functions
for kernel mode. All these initialization functions do the same following tasks:

1. Parsing the arguments passed at execution (data/control gates (in case of gates
mode execution), auxiliary args).

2. In case of stand-alone (gates mode) execution, the main() function takes care
of attaching to the minmex on the control gate specified in execution arguments
(initialization of the data listening threads).

3. Calling the brick initialization function brick start().

Please note that if you include brick template.h, your brick code should not con-
tain any other main or init functions. The system agnostic “main” function (i.e. the
starting point) of each brick is brick start().

4.1.2 Required functions

Each brick using ANA libraries and including brick template.h is expected to have at
least the two following functions:

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 25

• ‘int brick start()’: this function is the starting point of your brick. It is called at
at the end of the ”real” initialization function that is specified in brick template.h.
As you can see from the function prototype it does not take any arguments. Please
keep in mind that when the brick start function is called, your brick is already at-
tached to the minmex and you can directly start “ANA business” (creating, delet-
ing, publishing IDPs, sending data, etc).

• ‘void brick exit()’: this function is called by the default ANA library exiting
function. It is meant to allow you to execute some final tasks before your brick
terminates. Although all your created IDPs and entries in the KVR should be
collected by the garbage collection mechanism at the minmex, we recommend
that you explicitely unpublish and delete them in the brick exit function. Note
that this is very critical for IDPs published in network compartments other than
the node compartment as they might not necessarily not receive a notification of
your brick termination.

As a general recommendation, we suggest that you try to keep your brick code the
most generic possible by using the wrapper functions provided by the ANA library
(these are detailed in a further chapter). Indeed, as soon as you start using mode specific
functions (printf in user space for example), cross compilation of your brick to another
execution mode (kernel) will fail.

4.2 How to change my brick’s name in the minmex ?

In case you want to launch multiple similar bricks on the same minmex, each instance
of the brick code should have a different name from the others. By name, we mean
the brick identifier stored at the minmex’s brick table, that is showed as a result of the
‘mxconfig show bricks’ command.

Each brick code contains a hard-coded default name that can be redefined at launch
time the following way :

• in case of a user-space independant (gates mode) brick : this can be done with
the -N option followed by the new name value. Example : ‘./brickBinary -n

unix:///tmp/anaControl gatesPlug ?? -N newName’

• in case of a .so polugin: this can be done the N= option followed by the new name
value. Example : ‘mxconfig load brick PATH TO SO N=newName’

4.3 How to pass auxiliary arguments to my brick ?

This section is specific for the cases where your brick is including the file
brick template.h (i.e using our predefined main or init function).

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 26

4.3.1 auxiliary arguments for stand-alone user-space bricks

In order to pass arguments to an independant user-space brick at execution time, you
can specify them in the command line with the “-a” flag in front. Example:

‘./brick template -a arg1 -c unix:///tmp/anaControl anaMinmex 4321 -a arg2’.

Note that you can specify the arguments anywhere in the command line, however the
order in which you declare them matters when being retrieved inside the brick (in a
similar way as argv[id] for common user space programs).

4.3.2 auxiliary arguments for .so plugin user-space bricks

In order to pass arguments to a .so plugin brick, you can specify them while loading the
brick with ‘mxconfig’:

‘$ANA BASE DIR/bin/mxconfig load brick FULL PATH TO PLUGIN arg1 arg2 ..’.

4.3.3 auxiliary arguments for kernel module bricks

In order to pass arguments to a kernel module brick, you can specify them while loading
the brick with ‘insmod’:

‘insmod PATH TO KERNEL MODULE FILE a=arg1,arg2,arg3..’

Where ”a=“ indicates the start of the auxiliary arguments list. Please note the ”,“
separator between the different arguments and the absence of any spaces between the
arguments.
Important: For kernel module bricks, the number of auxiliary arguments that can be
passed is limited to 10.

4.3.4 access the auxiliary arguments within brick’s code

To access an auxiliary argument you can use the following function:
char * getAuxArg(int index);

where index is the order of declaration of the argument you are interested in. The index
count starts at 0.

Please note that the auxiliary arguments can be accessible from everywhere in your
brick’s code, meaning not only from the brick start function. Indeed, they are allocated
as global variables by the initialization function in brick template.h. Once you are done
with these arguments, you can free them by calling the function :
void freeAuxArgs();

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 27

4.4 How to terminate my brick from within the code

If you want to terminate the brick’s execution from within the brick’s code (i.e. this is
different from brick unload via mxconfig), please use the following function for proper
exit :
void anaL0_stopANA(int ret);

Where ret is an exit error code to be transmitted to the minmex in case of Plugin mode,
or to the running shell in case f independant user-space bricks. This function, will first
call your brick exit function, detach itself properly from the minmex and then terminate
all timers and threads of your brick.

4.5 How to create IDPs

4.5.1 In AL2

Creation of IDPs, i.e the association of a callback function to an IDP label is done
automatically by the AL2 library when you publish a service (a callback function) in
a compartment (see section How to publish a service in a compartment). Apart from
this, there is no other way in AL2 to create IDT and SDT entries except using AL0/1
techniques (using AL0/1 functions in your AL2 brick is possible since AL2 includes
AL0 and AL1).

4.5.1.1 Callback functions for AL2

Since AL2 is based on AL0 and AL1, in the bricks using AL2, you can define your
callback function in AL0/1 style as will be shown below.

However, in that case, when your callback function receives an XRP encoded data
message (i.e that was encoded with anaL1 encData that can be seen in a further sec-
tion), you would have to parse it to extract for e.g IDP labels, sender context, sender
description, which goes against the user-friendliness that we want for AL2. Therefore
in AL2, the library does the parsing for you (if the received message is encoded with
anaL1 encData) before calling your callback function.

The callback function in AL2 must be of the following prototype:
void AL2CallbackExample(struct anaL2_message *msg);

Where msg is a pointer to the following structure :
struct anaL2_message{

int dataLen;
void *data;
struct context_s *senderContext;

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 28

struct service_s *senderService;
anaLabel_t idp;
anaLabel_t responseLabel;
void *bufferPointer;

};

Where :

• dataLen is the length of the data in the received message (this is different from
the length of the received message). This is equivalent to the size of the PDU .

• data points to the data included in the message. This is equivalent to the PDU of
the received message.

• senderContext indicates the context of the sender, i.e. its name/address/identifier
in the compartment. For example if we received a message from a chat brick run-
ning over Ethernet directly, the context could (the context field is not necessarily
filled) be the MAC address of the sender.

• senderService is the description of the service who sent the message. For the
previous example of chat over Ethernet, this would be the description that the
Chat brick has published in the Ethernet compartment.

• idp is the IDP label on which the messasge was received.

• responseLabel is an IDP label in case the receiver is supposed to reply on a sep-
cific IDP.

• bufferPointer is the pointer to the unparsed buffer containing the fields above.

Please note that not all the fields in the above structure are necessarily filled when
your callback function receives a message. Wether these fields are filled or not depends
on the compartment brick forwarding the message to you, i.e for the example of the chat
over Ethernet, your local Ethernet brick can decide to indicate to you the MAC address
of the sender or not depending on local configuration or compartment policy.

4.5.2 In AL1

4.5.2.1 Callback functions for AL0 and AL1

As we saw previously, each IDP is associated to a callback function and the mapping is
done hiddenly by the ANA library. In order for your AL0/AL1 callback functions to be
called correctly by the library, they must follow the following C prototype:
typedef void (*anaCallback_t)(void *data ,

int len,
anaLabel_t input ,
void *aux);

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 29

Where:

• data will be set by the library to point to the received message (PDU after IDP
label).

• dataLen will be set by the library to indicate the size in bytes of the received data

• input will be set with the label of the IDP from which the message was received
(useful in case a callBack function can be triggereed by multiple IDPs)

• aux is an auxiliary argument that can be set when a callBack function is created.
It can be used to pass extra arguments to the function being called.

4.5.2.2 Registering Callback functions in AL0/1

By registering we mean creating a new entry in the minmex’s Information Dispatch
Table and, in case of stand-alone bricks, in the brick’s Shadow Dispatch Table. To
create IDPs in a brick using only API levels 0 and 1, use the following function:
anaLabel_t anaL0_registerCallback(anaCallback_t funct , void *aux,

copyAuxFunction copyAux ,
freeAuxFunction freeAux ,
anaHandle_t viewer ,
int permanent , int thread);

Where:

• f unct is a pointer to the callBack function you want to register. This function will
handle the incoming messages destined to the newly created IDP.

• aux is an auxiliary argument that is passed to the callBack function each time it is
triggered. This argument is copied in the IDT in case of plugin bricks and in the
SDT in case of stand-alone bricks. Please note that since a copy of this argument
is stored, the programmer can dispose of the original argument as he wishes,
i.e it is possible to free it, the callback function will keep receiving the copy as
an argument anyway. In case you need to pass multiple auxiliary arguments to
your function, you will need to create a wrapper structure containing all those
arguments.

• copyAux the function to be used to copy the aux argument in the SDT/IDT. This
is useful in case the auxiliary argument you want to pass is a structure contain-
ing pointers to other memory slots (char * pointers for example). Your copyAux
function should allocate and copy the aux argument correctly and return a pointer
to the copy, i.e. its prototype is
void * fct(void *);

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 30

• f reeAux the function to be used to free the copy of aux from the SDT/IDT when
the IDP is being deleted. Indeed since in some cases the auxiliary argument can be
a structure containing pointers to other memory slots, you would need to provide
a function to free the copy of aux correctly. In case your auxiliary argument does
not contain any pointers, indicating the standard function f ree as f reeAux would
do the trick. The prototype of the freeAux function should be :
void fct(void *);

• viewer allows to define a specific viewer brick for the IDP. If you want the new
IDP to be public (visible by all bricks), set this argument to 0. If you want it to
be viewable only by a specific brick, you need to specify its handle i.e the brick’s
identifier in the minmex. The ANA Core software design, does not provide any
mean to extract bricks identifiers (this is done on purpose). To know the handle
(id) of a brick, you need to organize (i.e. program both bricks) so that the brick
sends you its handle.

• permanent defines whether or not the IDP should be permanent in the IDT. Use
the constant value IDP PERM for permanent, 0 for volatile. Note that the number
of permanent IDPs a brick can create is limited in this version to 128. can create.
Also, the delay of deletion of an unused volatile IDP is dependant on the minmex’s
configuration.

• thread defines whether the callback function f unct should be executed in a ded-
icated thread. Recommendation: thread = 1, if your callback function executes
”for a long time” or if it wants to receive further packets (e.g. with an AL2 func-
tion). thread = 0, if its execution is fast (e.g. non blocking, no loops, no sleep
etc.). Important : For callback functions that block waiting for incoming mes-
sages, you must set the thread flag to 1. Indeed, callback functions are executed
among the thread expecting data messages, therefore if this thread is blocked,
further message reception is impossible and lead to a deadlock situation!

On success the function returns the label of the newly created IDP. On error, 0 is
returned and the error value is set the ANA errno equivalent variable and can be retrieved
via the function anaPerror that will be described in a further chapter.

Example :

void callBackFct(char *data , int len, anaLabel_t input , void *aux) {
anaPrint(ANA_NOTICE , "callBack received: %s, \n", data);

}

int brick_start() {

anaLabel_t callBackIDP;

callBackIDP = anaL0_registerCallback((anaCallback_t) callBackFct ,
NULL , NULL , NULL ,
0, IDP_PERM , 0);

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 31

if(callBackIDP ==0)
anaPerror(ANA_NOTICE , "Register Failed");

}

Here, we ask the minmex to create a permanent (IDP PERM), public (viewer=0)
callBack IDP. Messages received at this IDP will locally trigger the callBack function
callBackFct with a NULL auxiliary argument. Here since the thread flag is set to
0, the callBack function callBackFct will be triggered on the same thread waiting for
messages.

4.6 How to delete IDPs from the minmex

By deleting here we mean removing an entry in the minmex’s Information Dispatch
Table and the brick’s Shadow Dispatch Table. The procedure explained here is valid for
the API levels 0 and 1 and 2. To delete an IDP, use the AL0 function:

int anaL0_unregisterCallback(anaLabel_t label , anaHandle_t viewer)

Where :

• label is the label of the IDP you want to delete

• viewer specifies the IDT view to which the IDP label belongs. If the IDP you
want to delete is public, use 0 for this argument. To delete an IDP that was priorly
created for a specific brick IDT view, use the handle (identifier at the minmex) of
this brick for this argument.

Please note that you must be the owner of the IDP, i.e you priorly created it using
the anaL0 registerCallback or anaL2 publish function with the same viewer argument,
in order for the minmex to delete it. Otherwise, the deletion would fail.

On success, this function would result in the deletion of the corresponding remote
entry in the IDT (minmex) and local SDT entry and 0 is returned. On failure a negative
error value is returned.

4.7 How to receive messages on an IDP

If your brick is using only the API levels 0 and 1, reception of messages can only be done
in “callback style”. By “callback style” we mean that messages are always received in
independant functions (the callback functions). Therefore, an instruction sequence as
(pseudo-code):
message1 = receive(IDP1);
message2 = receive(IDP2);
someAction(message1 , message2);

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 32

is not possible while using only API levels 0 and 1. To have the same result, using API
levels 0 and 1, you will need global variables and two callback functions, as follows:

void *message1;

void callback1(char *data , int len, anaLabel_t input , void *aux){
message1 = (void *) malloc(len);
memcpy(message1 , data , len);

}

void callback2(char *data , int len, anaLabel_t input , void *aux){
someAction(message1 , data);

}

As shown here, this style of execution (cascading callback functions) can be tricky
to code sequential tasks. Therefore, in AL2 in addition to the usual “callback-style”
reception, we propose the following function :
struct anaL2_message * anaL2_receive(const anaLabel_t input ,

struct timespec *timeout);

Where:

• input is the label of the IDP to receive data on.

• timeout is a pointer to a timespec allowing to specify the duration of the blocking
period in seconds and nanoseconds.

In case the timeout argument is NULL, your execution thread will be blocked until a
message is received on the input IDP.

On successfull message reception, the function returns a pointer to a struct anaL2 message
(see How to create IDPs section for more details on this structure). On error (i.e time-
out) a NULL pointer is returned.

Important:

• Please note that using the previous function on IDPs that you associated to some
callback functions will always fail (return a NULL message). Indeed in order to
be able to receive messages on IDPs using the anaL2 receive functions, the IDPs
must not be priorly associated to a callback function of your own, but rather to a
default library callback function that will queue the messages received on these
IDPs. To create IDPs that are associted to this default queing function, you must
indicate a NULL callback function pointer in your anaL2 publish call. See How
to publish a service in a compartment section for more details.

• If you receive messages with anaL2 receive you must free the allocated memory
for the message once you are done with it. To do so use the function :

void anaL2_freeMsg(struct anaL2_message *msg);

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 33

Where:

– msg is the anaL2 message structure to free.

Please note that there is no need to use anaL2 f reeMsg in your AL2 callback
functions, since freeing the message is done for you by the library.

• As for any AL2 function call, this function should not be used in a Callback
function unless the callback is executed in a separate thread. Otherwise the
receive function will always timeout and reception always fails.

The sequential pseudo-code example shown above is then expressed in AL2 as fol-
lows:
int brick_start() {

struct anaL2_message *message1 = anaL2_receive(IDP1);
struct anaL2_message *message2 = anaL2_receive(IDP2);
someAction(message1 ->data , message2 ->data);
anaL2_freeMsg(message1);
anaL2_freeMsg(message2);

}

4.8 How to temporarily block/unblock message recep-
tion

In case you need to temproarily block reception of messages on a callback IDP (without
deleting the IDP), you can use the following function :

int anaL0_setIDPbusy(anaLabel_t label , anaHandle_t viewer , int busyflag);

Where :

• label : is the IDP label that you want to declare busy

• viewer : is the view to which the IDP belongs

• busyflag : is the status that you want the IDP to be in. 1 indicates that the IDP is
busy i.e. message reception is blocked. 0 sets the IDP to be available again.

Note that changing the status (busy vs available) of an IDP will emit an IDP BUSY EVENT
or IDP AVAIL EVENT event at the node compartment level in order to inform interested
bricks of the change.

Also, as a result of setting an IDP be busy, the bricks sending messages on that IDP
i.e. calling anaL0 send() on the IDP, will receive an error ANA IDP BUSY ERROR.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 34

4.9 How to send a message to an IDP:

In all API levels, to send data to an IDP you can use the AL0 function
int anaL0_send(anaLabel_t label , void *data , int dataLen);

Where:

• label is the identifier of the IDP to send data to

• data is the pointer to the data to send to the IDP

• dataLen is the size in bytes of the data to send

In case the message you want to send is an XRP encoded one, to which you expect
a response, you can use the requestReply functionnality as follows:

For API level 2: Using the function anaL1 requestReply (shown in next parargraph)
is possible in bricks using API level 2. However the reception of reponses in that case
can only be done in “callback-style”: this means that responses are received in a function
different from the one where the request message was sent and therefore, sequential
tasks are hard to code as it was previously shown in the How to receive messages on an
IDP section. Therefore, in AL2 we propose a function that handles the response in the
same function where the message is being sent. This function is the following:
char *anaL2_requestReply(const anaLabel_t dest ,

xrpMsg_t msg, int reqlen ,
int * respLen , struct timespec *timeout):

Where:

• dest is the label of the IDP to send the request(data) to

• msg is the message to send. Note that this must be an XRP encoded message
for the anaL2 requestReply to work.

• reqlen is the size in bytes of the XRP message msg

• respLen is a pointer to an integer that will be filled with the size in bytes of the
received response.

• timeout is a pointer to a timespec structure allowing to specify the duration of the
blocking period in seconds and nanoseconds.

This function waits for an incoming response for the period indicated in timeout. In
case timeout is NULL, a default timeout of 1 second will be used. On success a pointer
to the received response is returned and the field pointed by respLen indicating the size
in bytes of the response message is filled with the correct size. In case of error a NULL
pointer is returned and the ”ANA errno“ equivalent variable is set to the proper error
code.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 35

For API level 1: To receive responses on a specific callback function, you can send
your XRP encoded data, using the following function:
int anaL1_requestReply(const anaLabel_t label ,

void* msg, int len,
anaCallback_t fct, void *aux,
copyAuxFunction copyAux ,
freeAuxFunction freeAux , int thread);

Where :

• label is the label of the IDP to send data to

• msg is a pointer to the XRP encoded data to send

• len is the size in bytes of the data to send

• f ct is the callback function that will handle the response

• aux is an auxiliary argument that will be passed along to the function f ct

• copyAux is the function to be used to copy the aux to the IDT/SDT. This is useful
in case the auxiliary argument you want to pass is a structure containing pointers
to other memory slots (char * pointers for example). Your copyAux function
should allocate and copy the aux argument correctly and return a pointer to the
copy, i.e. its prototype is
void * fct(void *);

• f reeAux the function to be used to free the copy of aux from the IDT/SDT. Indeed
since in some cases the auxiliary argument can be a structure containing pointers
to other memory slots, you would need to provide a function to free the copy
of aux correctly.In case your auxiliary argument does not contain any pointers,
indication the standard f ree function would do the trick. freeAux prototype is :
void fct(void *);

• thread defines whether the callback function f ct should be executed in a dedi-
cated thread.

The anaL1 requestReply function, first registers a callback IDP (through a call to
anaL0 registerCallback) mapped to the f ct callback function meant to handle the re-
sponse. Upon reception of the newly created IDP’s label, it adds it to the end of the
XRP message msg and sends it.

The anaL1 requestReply function returns the number of bytes sent in case of suc-
cess, or -1 if an error occurred. Errors can be for example due to the failure to create a
new IDP for the response handler or inability to add the response handler’s IDP to the
message (not enough space in buffer).

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 36

4.10 How to publish a service in a compartment

4.10.1 In AL2

Contrarily to AL1, in AL2 the IDPs are created when the publish command is called.
This means that the anaL2 publish call, that we will detail below, does the call to
anaL0 registerCallBack for you.

To create and publish IDPs to compartments in AL2, use the following function:
anaLabel_t anaL2_publish(const anaLabel_t compIDP ,

struct context_s *context ,
struct service_s *service ,
AL2Callback_t function ,
int separateThread ,
struct timespec *timeout);

Where:

• compIDP is the IDP label of the compartment provider functional block to whom
we want to send the publish request.

• context defines a subset of the compartment in which you want to publish the
IDP. Note that the values taken by this field are mostly compartment specific. For
example, if you are addressing this publish command to an Ethernet compartment,
the context can be a MAC address. However, there are 2 values common to all
compartment provider functional blocks:

– “*” : this character string containing a single ‘*’ character indicates to the
compartment provider functional block, that you want to publish the service
associated to your IDP to the maximum scope this FB can reach (in some
case like Ethernet this means the entire compartment).

– “.” : this indicates to the compartment provider functional block that you
want to publish your service in its local repository only. This way only the
compartment users that are running on the same ANA node as the compart-
ment provider functional block can access your service..

• service is the description of the service provided by the IDP we want to publish.
This will the used by remote peers to discover this published IDP.

• f unction is the callback function providing the service we want to publish. Note
you don’t necessarily have to specify a callback function here. Indeed you can
set this argument to NULL, in which case the messages that are received by the
library on this IDP will be queued. You will be able to access them when needed,
in order of their arrival, by calling the function anaL2 receive depicted in section
How to receive messages on an IDP.

• separateT hread is a flag indicating wether you wish the callback function service
to be launched in a separate thread or not.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 37

Very Important: if your callback function uses AL2 function calls like publish
or lookup (etc), if it is blocking, or also if it takes a long time to execute then
your callback function MUST be launched in a separate thread. Indeed, if you
set the separateThread flag to 0, the callback function will be executed by the
thread expecting messages. Therefore, if the function blocks waiting for incoming
messages (as required by AL2 publish, lookup etc), the thread receiving incoming
messages is blocked and reception of messages becomes impossible ⇒ deadlock
!

• timeout is a pointer to a timespec structure allowing to specify the duration of the
blocking period waiting for publish response in seconds and nanoseconds. In case
this argument is NULL a default timeout of 1 second is applied.

This function does the following tasks for you:

1. Creation of the IDP (anaL0 registerCallback call)

2. Encoding and sending of an XRP publish message to the compartment provider
functional block

3. Block until reception of publish response

4. Publish response parsing to determine if the publication went right or wrong

anaL2 publish returns the label of the created and published IDP in case of suc-
cess. In case of error, the function returns 0 and sets the ”ANA errno equivalent“ to the
appropriate negative value. The error can be displayed using the anaPerror function.

struct context s : This structure is meant to hold the context of a service within a
compartment (i.e. its MAC address in case of Ethernet, IP address in case of IP com-
partment). the structure is defined as follows :
struct context_s {

void *value;
int valueLen;

};

Where :

• value: points to the value of the context (i.e. the IP, MAC address, etc.)

• valueLen: is the size in bytes of the context value

struct service s : This structure is meant to hold the description of a service published
within a compartment (i.e. how the service wants to be called in the compartment
context). the structure is defined as follows :

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 38

struct service_s {
void *value;
int valueLen;

};

Where :

• value: points to the value of the service description

• valueLen: is the size in bytes of the value

4.10.2 In AL1

If your brick uses only API levels 0 and 1, then the IDPs you want to publish must have
been priorly created with the AL0 function anaL0 registerCallback described above.
To publish a previously created IDP in a compartment, the following steps need to be
filled:

• First, allocate memory to store the publish command message that will be sent to
the compartment provider functional block.

• Second, encode and store in the previously allocated slot, an XRP encoded publi-
cation message containing the new entry’s context, description and the IDP label.

• Third, send this encoded message to the compartment provider functional block
while indicating a response handler function.

To allocate memory to store the publication message in (First step), use the AL1
function:
xrpMsg_t anaL1_allocateMessage(void);

This function takes no argument, allocates a memory slot with the convenient size
and returns a pointer to it. The pointer is of type the xrpMsg t that is a wrapper to
void ∗. Do not forget to free this pointer once you’re done with it (after sending the
command to the compartment provider functional block).

To encode the publish message (Second Step), use the AL1 function:
int anaL1_encCompartmentPublish (xrpMsg_t msg, const anaLabel_t idp,

struct context_s *ctxt ,
struct service_s *srv, int permanent)

Where:

• msg is the previously allocated memory slot for the message

• id p is the label of the previously created IDP we want to publish

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 39

• ctxt is the context in which to publish the service

• srv is the service description within the compartment context

• permanent is a flag indicating wether you want your published entry to be volatile
i.e. removeable by garbage collection mechanisms, or permanent. Note that each
compartment can have specific restrictions on permanent entries (for example,
some might just forbid them). Set the value to 0 for volatile and IDP PERM for
permanent.

This function will fill the memory slot pointed by msg with the XRP encoded publish
message. The function returns the size of the message in case of success and -1 if an
error occurred. Errors can be due for example to a large description field that does not
fit into the message buffer.

To fulfill the Third Step, i.e. send the encoded publish message to the compart-
ment provider functional block, two ways are possible. The first option is to use the
anaL0 send function shown above to send the message to the IDP of the compartment
provider functional block. However by sending the publish command this way, you will
not indicate any reply IDP to the target functional block. Therefore you won’t be able to
receive any confirmation/error message and you would have no way to determine if the
publish was successful or not. Moreover, some compartment provider functional blocks
might require that you expect a response and therefore drop the publish commands sent
with anaL0 send.

Therefore we recommend to use the requestReply function for AL1 anaL1 requestReply,
that was described in the How to send data to an IDP subsection, in order to know
whether the publication succeeded or not.

We now show an example with all the three steps of a publish request, using the
requestReply function:

int brick_start() {

xrpMsg_t msg; /* pointer to the publish message*/
struct context_s ctxt;
struct service_s srv;
anaLabel_t IDP1;
int lenMsg , ret;

/* description of the service to publish */
memset(&srv, 0, sizeof(struct service_s));
srv.value = "service description";
srv.valueLen = strlen("service description") + 1;

/* we set the context to "*", i.e All */
memset(&ctxt , 0, sizeof(struct context_s));
ctxt.value = "*";
ctxt.valueLen = 2;

/*we create the IDP first */
IDP1 = anaL0_registerCallback((anaCallback_t)

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 40

callbackFct , NULL , NULL , NULL ,
0, IDP_PERM , 0);

/* Step 1 */
msg = anaL1_allocateMessage();

/* Step 2 */
lenMsg = anaL1_encCompartmentPublish(msg, IDP1 ,

&ctxt , &srv, IDP_PERM);
if (lenMsg <0) {

anaPrint(ANA_ERR , "problem encoding publish request!\n");
}

/*Step 3*/
/* CPE_IDP is the IDP label to reach the compartment

provider functional block */
ret = anaL1_requestReply(CPE_IDP , msg, lenMsg ,

(anaCallback_t) handlePublishReply ,
NULL , NULL , NULL , 0);

if (ret <0) {
anaPrint(ANA_ERR , "problem sending publish request!\n");

}

free(msg); /* Do not forget to free the encoded message buffer once
you’re done with it */

Please note that we stored the publish message size returned by
anaL1 encCompartmentPublish and we passed it as argument of message size to the
anaL1 requestReply function. The code for the reponse handler function
handlePublishReply will be shown in the next paragraph where we explain how to parse
AL1 response messages.

What does the publish response look like : In case of success of your request, the
compartment provider functional block will send back the exact same XRP request mes-
sage as a response. In case of failure, it sends an error message containing all the argu-
ments included in your request. An anaL1 isError call on this message would recognize
that it is an error one (as we will show later).

How to parse AL1 XRP publish responses Let us consider the code to handle the
compartment provider functional block’s response to the publish command emitted in
the example above:
void handlePublishReply(char *data , int len, anaLabel_t input ,

void *aux) {
char *name=NULL;
int nameLen = anaL1_decResponse(data , XRP_CLASS_SRC_SRV ,

0, (void**)&name);

if(anaL1_isError(data)) {/*if ERROR command*/
if(name!=NULL)

anaPrint(ANA_ERR , "Publish of entry %s Failed\n",
description);

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 41

else
anaPrint(ANA_ERR , "Publish Error\n");

return;
}

if(name != NULL)
anaPrint(ANA_DEBUG , "Publish of entry %s succeeded\n",

description);
else

anaPrint(ANA_DEBUG , "Publish Success\n");
}

In this example we used two AL1 functions to parse the response. First there is :
int anaL1_isError(xrpMsg_t msg)

This function takes an XRP message, i.e. an ANA AL1 message as argument and deter-
mines if it is an error message or not. It returns 1 if the reply is an error message and 0
otherwise.

The second function is :
int anaL1_decResponse(xrpMsg_t msg, xrpClass_t className ,

int occurence , void** ptPtval);

Where:

• msg is the received message to parse

• className is the XRP class of the argument you want to extract from the mes-
sage. The XRP class can be seen as an equivalent to the variable type in program-
ming languages. The most common XRP classes (that you would have to deal
with frequently) are the following constants :

– XRP CLASS LABEL : that is the class describing IDP labels

– XRP CLASS SRC SRV : that is the class describing source service descrip-
tions passed along publish, lookup and data messages.

– XRP CLASS DST SRV : that is the class describing destination service de-
scriptions passed along lookup and data messages.

– XRP CLASS SRC CXT : that is the class describing source context argu-
ments passed along publish, lookup and data messages.

– XRP CLASS DST CXT : that is the class describing destination context ar-
guments passed along lookup and data messages.

For more details on XRP classes, we recommend you to see the dedicated section
further in this document.

If you are interested in extracting an IDP label from an AL1 response message
the corresponding XRP class would then be the constant XRP CLASS LABEL.
For the decription of the published service, XRP CLASS SRC SRV can be used as
shown in the example above.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 42

• occurence indicates which occurrence of the XRP class argument we are inter-
ested in, in case many are present in the same message (for example many IDP
labels in a AL1 message). The occurrence counting starts with 0.

• ptPtval is a pointer to the pointer where the value of the argument we are in-
terested in will be stored. On successfull termination of the function, the field
pointed by ptPtval should contain the pointer to the argument value.

On success, ptPtval is filled conveniently and the function returns the argument’s
size. On failure, i.e. when there is no argument of the corresponding XRP class and
occurence in the AL1 message, −1 is returned.

IMPORTANT: the anaL1 decResponse function does not return a copy of the
wanted value but rather a pointer to it inside the reponse message. If you need to use
the value outside of the context of the function handling the response, you need to copy
it elsewhere. Otherwise it will be crashed by the next incoming message.

4.10.3 Node compartment example

The two methods shown above can be applied to the node compartment to publish some
IDP in the Key Value Repository. For both cases of AL1 and AL2, you just have to
indicate the node compartment’s IDP label as a destination for the publish request while
following the same instructions above. The node compartment’s IDP label can be ob-
tained using the Macro : NODE LABEL

As seen in a previous chapter, IDPs published to the node compartment are stored
in the Key Value repository where they have a list of keywords to look them up with

In your AL1 or AL2 publish request to the node compartment you can indicate the
list of keywords in the service description argument you pass.
Example: To publish an IDP in the node compartment with the keywords service1, kw1
and kw2, the service description argument should be initialized the following way :
struct service_s srv;
memset(&srv, 0, sizeof(struct service_s));
srv.value = "service1+kw1+kw2";
srv.valueLen = strlen("service1+kw1+kw2") + 1;

Please note the + character that separates the different keywords. It is important to
use + and no other character since the minmex will use + to parse the description field.
Note that the first keyword of the list willbe considered as the name of the entry and has
to be unique (publication will fail otherwise). The order of the rest of the keywords then
does not matter. Please note also that for the node compartment, the context argument
is not relevant since the scope of this compartment is local by definition.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 43

4.11 How to lookup/resolve services in compartments

To access the services published in a compartment, two commands are available:

• resolve : constructs an Information Channel to the queried target service

• lookup : returns more information about the queried target service

4.11.1 Resolve request

In AL2: To send a resolve request in AL2 use the following function :
anaLabel_t anaL2_resolve(anaLabel_t compIDP ,

struct context_s *context ,
struct service_s *service , char chanType ,
struct service_s *querierDescription ,
struct timespec *timeout);

Where :

• compIDP is the IDP label of the compartment to which you want to address the
resolve request.

• context delimits a subset of the compartment in which to look for the service

• service is the description of the service you want to resolve.

• chanType determines the type of channel you want to open to the service(s). The
possible channel types are, unicast, anycast, multicast, broadcast. Indeed in case
the request matches multiple different services in the compartment, this chan-
nel type will indicate to the compartment provider functional block what kind of
channel to build in that case. The possible values are ‘m’ for Multicast, ‘u’ for
Unicast, ‘a’ for Anycast, ‘b’ for Broadcast, ‘c’ for Concast.

• querierDescription is an optional argument. It corresponds to your description.
This description might be passed along to the target service(s) so that they can
reach you back.

• timeout is a pointer to a timespec structure allowing to specify a timeout in sec-
onds and nanoseconds for this operation. In case this argument is set to NULL, a
default timeout of 1 second will be applied.

This function encodes an XRP resolve message, sends it to the compIDP label, and then
blocks for the indicated timeout period waiting for the compartment provider’s response.
When a response is received, the function parses it before returning.

anaL2 resolve returns an IDP label to contact the created information channel in
case of success. In case of error, 0 is returned and the ”ANA errno“ equivalent value is
set to the proper negative error value. The error message can be printed out using the
anaPerror function as will be shown in a further section.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 44

In AL1: The same 3 steps described in section How to publish an IDP in a compart-
ment, for AL1 apply also here. Step 1 is exactly the same. Step2 is however different
since it is a resolve request that we should encode this time.

To encode an XRP resolve request use the function :
int anaL1_encResolve(xrpMsg_t msg, struct context_s *ctxt ,

struct service_s *srv, char chanType ,
struct service_s *queryingService);

Where:

• msg is the previously allocated memory slot for the message

• ctxt delimits a subset of the compartment in which to look for the service

• srv is the description of the service you want to resolve.

• chanType determines the type of channel to the service(s) you want to open.

• queryingService is an optional argument. It corresponds to your description. This
description might be passed along to the target service(s) so that they can reach
you back.

This function returns the size of the encoded message in case of success or -1 in case
of error.

In Step 3, since we expect a response with an IDP to reach the target, sending of the
resolve request can then only be done with anaL1 requestReply.

What does the resolve response look like : In case of error in the resolve request,
the Compartment Provider Functional Block (CPFB) sends back an error message with
the same arguments that were included in the query. The function anaL1 isError would
then determine in that case that the reply is an error message. In case of success of the
resolve command, and once the information channel is built, the CPFB sends back a
message containing the IDP label to reach that channel. The message is headed by the
resolve XRP command XRP CMD RESOLVE.

Resolve response parsing in AL1: The resolve reply sent by the CPFB can be parsed
using the same functions presented above (in parsing publish reply) i.e. anaL1 isError
and anaL1 decResponse. The IDP label of the information channel can be extracted
by using the function anaL1 decResponse, with the XRP class XRP CLASS LABEL at
occurence 0.

Please note that similar to the publish request, the response here is received in a
separate callback function (i.e. different from where the request was made).

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 45

4.11.2 lookup request

In AL2: to send a lookup request in AL2, use the following function :
int anaL2_lookup(anaLabel_t compIDP , struct context_s *context ,

struct service_s *service ,
struct anaL2_lkpResponse **result ,
struct service_s *querierDescription ,
struct timespec *timeout);

Where the arguments have the same semantics as for the anaL2 resolve command, ex-
cept for the additional result argument. result is a pointer to a pointer to an
anaL2 lkpResponse structure that will be allocated by the anaL2 lookup function. The
structure anaL2 lkpResponse is as follows :
struct anaL2_lkpResponse{

void *description;
int descLen;
anaLabel_t label;

struct anaL2_lkpResponse *next;
};

Where :

• description is a complementary description of the service matching the query

• descLen is the size in bytes of the description field.

• label is an IDP label allowing to reach the service. This might not be always
provided, depends on CPFB’s will.

• next is a pointer to the next found service matching the lookup query

We will show later how to use this structure to interpret the node compartment’s
lookup response.
Important: This structure might not be suited for the lookup responses of different
compartments. Therefore we introduce it here as a temporary solution for the node
compartment’s needs. This structure might then change in future.

The anaL2 lookup function returns the number of matching reponses in case of suc-
cess (and fills the result pointer) or a negative error code in case of failure.

In AL1: The same steps detailed for the resolve case can be applied also here, except
the encoding of the request that changes (step 2).

To encode an XRP lookup request, use the function:
int anaL1_encLookup(xrpMsg_t msg, struct context_s *ctxt ,

struct service_s *srv,
struct service_s *queryingService);

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 46

Where the arguments have the exact same significance as for anaL1 encResolve
shown above. This function returns the size of the encoded message in case of success
or -1 in case of error.

What does the lookup response look like We do not propose any parsing strategy
here since we did not fix yet a model for the lookup replies. We will later show the
Lookup response of the node compartment, but that can not be applied to all compart-
ments. This section will be filled after we do more experimentation.

Node compartment example

Lookup/Resolve query expressions : The lookup/resolve query addressed to the
node compartment is a character string expressing keywords combination with the help
of the following boolean operators:

• OR : expressed in the query string with the character ‘+’. This is a low prior-
ity operator. With this operator we can express that we are interested in entries
matching either the first operand or the second. The order of operands is not
relevant.

• AND : expressed in the query string with the character ‘*’. This is the highest
priority operator. With this operator we can express that we are interested in
entries matching both of the first and second operand. The order of operands is
not relevant.

• MINUS : expressed in the query with the character ‘-’. This is a low priority oper-
ator. With this operator we can express that we are interested in entries matching
the first operand and not matching the second. The order of operands in this
case is relevant.

It is also possible to use parentheses to enforce a certain priority of operations.

Node compartment’s Lookup response parsing in AL1: The lookup reply sent
by the minmex can be parsed using the same functions presented before i.e anaL1 isError
and anaL1 decResponse. For each entry matching the query, the minmex sends back the
entry’s first keyword (i.e. the first keyword passed in the publish request) and the IDP
label stored in it. The matching results are listed in the reponse message the following
way :

Where, first there is the first keyword and IDP of the first matching KVR entry, then
first keyword and IDP of the second and so on. This order is important to know since
we have to use the occurence argument correctly to extract the wanted aguments.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 47

AL1 header IDP 2IDP 1keyW 1 keyW 2

Figure 4.1: Lookup reply message

static void handleLookupReply(char *data , int len, anaLabel_t input ,
void *aux) {

char *name = NULL;
anaLabel_t *labelP = NULL;
anaLabel_t label;
int labelSize ,i;

if(anaL1_isError(data)) { /*if ERROR command*/
anaPrint(ANA_ERR , "Lookup Failed\n");
return;

}
i=0;
while(anaL1_decResponse(data , XRP_CLASS_LKP_DESCR ,

i, (void**)&name)>0)
{

labelP = NULL;
labelSize = anaL1_decResponse(data , XRP_CLASS_LABEL ,

i, (void**)&labelP);
if(name!=NULL && labelP !=NULL){

anaPrint(ANA_DEBUG , "found entry: %s\n", name);
label = *labelP;

}
name = NULL;
i++;

}
}

Please note in the example above that we access the different results of the lookup query
by incrementing the occurence argument that we pass to anaL1 decResponse

Node compartment’s Lookup response parsing in AL2: In AL2 you do not
need to do any XRP parsing since it is handled for you by the library. On success of the
lookup query the struct anaL2 lkpResponse *result passed as argument to anaL2 lookup
points now to a filled structure. The first matching KVR entry’s keyword can then be
accessed at result → description and the matching IDP label at result → label. The
next entry matching the lookup query can be accessed at result → next i.e. the lookup
responses are stored in a chained list. To stop walking the chain, you can either check
if result → next becomes NULL or use the number of responses that was returned by
anaL2 lookup function.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 48

4.12 How to unpublish services from compartments

If you want your service to be removed from a given compartment, you can send an un-
publish command to the compartment provider functional block (CPFB). This operation
is different for API levels 1 and 2.

In AL2: To unpublish a service in AL2, use the following function :
int anaL2_unpublish(anaLabel_t compIDP , anaLabel_t label ,

struct context_s *ctxt ,
struct service_s *service ,
struct timespec *timeout);

Where :

• compIDP is the IDP label of the compartment provider functional block you want
to unpublish the service from

• label is the IDP label associated to the service you want to unpublish

• context is the compartment context in which the service was published

• service is the description of the service to unpublish

• timeout indicates the timeout value for this operation. In case set to NULL, a
default timeout of 1 second will be used.

This function encodes an XRP unpublish message, sends it to the CPFB, waits for
a response and parses it before returning. In case of success it returns 0 otherwise a
negative error code is returned.

Note that this function does not remove the IDP from the minmex (i.e the callback
function could still be activated). Therefore, if you want to deactivate a service, you
need to follow the instructions in previous subsection How to delete IDPs from the
minmex

In AL1: The same 3 steps depicted for other AL1 commands are also needed here, i.e.,
allocating an AL1 message buffer, encoding an AL1 unpublish command and sending
it to the CPFB.

To encode an AL1 unpublish command (Step 2), use the AL1 function:
int anaL1_encCompartmentUnpublish(xrpMsg_t msg, anaLabel_t idp,

struct context_s *ctxt ,
struct service_s *srv);

Where:

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 49

• msg is the pointer to the allocated memory slot where to store the XRP encoded
message

• label is the IDP label corresponding to the service you want to unpublish

• ctxt is the compartment context in which the service was published

• srv is the description of the service to unpublish

This function returns the size of the XRP encoded message in case of success and
-1 if an error occurred.

To send the unpublish command to the CPFB, the two ways described for the publish
command are possible i.e anaL1 requestReply by specifying a response handler func-
tion or anaL0 send in which case the CPFB won’t be able to send a confirmation/error
report.

The response parsing is done in a similiar way than the previously described AL1
functions (lookup, resolve, publish), with the help of the two functions
anaL1 decResponse and anaL1 isError.

Please note that unpublishing a service does not delete the IDP that is associated to
it. Indeed other bricks priorly knowing the IDP can still activate the associated callback
function even though the IDP has been unpublished. Therefore if you want to deactivate
a service, you need to follow the instructions depicted in How to delete IDPs from the
minmex subsection.

4.13 How to release an IDP

This functionality concerns IDPs used by your brick and belonging to (owned by) other
bricks as for example Information Channels IDPs that your brick is using. In case you
are done with such an IDP, you can inform its owner brick that you no longer require
the services of the IDP. This will allow the owner brick to free some resources in case
the IDP is no longer needed by any other bricks.

4.13.1 In AL2

To release an IDP, you can use the following function :
int anaL2_release(anaLabel_t IDP);

Where IDP is the label of the IDP to release. This function returns 0 on success or a
negative error value otherwise.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 50

4.13.2 In AL1

The same 3 steps depicted for other AL1 commands are also needed here, i.e., allocat-
ing an AL1 message buffer, encoding an AL1 release command and sending it to the
interested brick.

To encode an AL1 release command (Step 2), use the AL1 function:
int anaL1_encRelease(xrpMsg_t msg, anaLabel_t label);

Where:

• msg is the pointer to the allocated memory slot where to store the XRP encoded
message

• label is the label of the IDP to release

This function returns the size of the XRP encoded message in case of success and
-1 if an error occurred.

To send the release command to the interested brick, use the anaL0 send function.
Note that in this case the anaL1 requestReply function is not needed since there is no
reponse to be expected.

4.14 How to get/set information about an IDP

In oder to allow for ”intelligent“ composition of functionnalities (notably through a
Functional composition Brick), it is possible in ANA to set and obtain information about
existing IDPs.

The IDP information is stored in a structure IDPinfo s defined as follows :
struct IDPinfo_s {

anaLabel_t label;
anaHandle_t viewer;
anaHandle_t owner;
char permFlag; /* 1 for permanent */

char ICflag; /* 1 for IC*/
struct context_s destContext;
struct service_s destService;
uint16_t MTU;
char chanType;
anaLabel_t controlIDP;

char IDPtype;
union destination_u {struct calleeBrick_s brick;

struct nextIDP_s *IDPs;} binding;
};

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 51

Where:

• label is the label of the IDP concerned by the info

• viewer is the view to which this IDP belongs. If equal to 0, than the IDP is public.

• owner indicates the handle (i.e. brick identifier) of the brick that created the IDP

• permFlag is a flag indicating if the IDP is permanent or volatile. 0 for volatile, 1
for permanent

• IC f lag is a flag indicating wether the IDP is the start of an information channel
or not. 1 for yes, 0 for no

• destContext in case the IDP is the start of an IC, this might (optional) indicate the
destination context within the compartment

• destService in case the IDP is the start of an IC, this might (optional) indicate the
destination service description within the compartment

• MTU in case the IDP is the start of an IC, this might (optional) indicate the
Maximum Transmission Unit authorized on this channel

• chanType in case the IDP is the start of an IC, this might (optional) indicate the
type of the channel. ’m’ for Multicast, ’b’ for Broadcast, ’a’ for Anycast, ’u’ for
Unicast and ’c’ for Concast.

• controlIDP indicates the control IDP (API calls handler) of the brick owning this
IDP

• IDPtype indicates the type of the IDP, i.e either it is attached to a brick or it is
a redirected IDP or a forked IDP. This field takes the values on an enumeration
containing the following constants: BRICK=0, REDIRECT=1, FORK=2

• binding this union indicates the next step within the ANA node. Depending on
the IDP type, one of the union elements is filled.

4.14.1 More details on the binding union

Case of an IDP attached to a brick in case the IDP is of type BRICK, the field brick
in the binding union is filled. This field is of struct calleeBrick s structure defined as
follows :
struct calleeBrick_s {

anaHandle_t handle;
anaLabel_t outputIDP;

};

Where :

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 52

• handle is the identifier of the brick at which this IDP triggers a callback function

• out putIDP might(optional) indicate to which IDP the brick identified with handle
forwards the data after treating it

Case of a redirected or forked IDP In case the IDP is redirected or forked (i.e. if
IDPtype equals REDIRECT or FORK) the union field IDPs is filled. This field is a
pointer to a structure struct nextIDP s defined as follows :
struct nextIDP_s {

anaLabel_t label;
anaHandle_t viewer;
struct nextIDP_s *next; /* in case it is a fork */

};

Where :

• label is the IDP label of the destination of the fork or redirection

• viewer is the view to which belongs the destination

• next is a pointer to another element of the same structure. This pointer is filled in
case the IDP is of type FORK in which case the IDP leads to multiple other IDPs
that are stored in a chained list. In case the IDP is of type REDIRECT, this pointer
is NULL.

4.14.2 Getting information about an IDP

To get information about a specific IDP, you can use the following function :
int anaL0_getIDPinfo(anaLabel_t label , anaHandle_t viewer ,

struct IDPinfo_s *result);

Where :

• label is the label of the IDP to extract information about

• viewer is the IDT view to which the IDP belongs

• result is a pointer to the IDPinfo s structure to be filled by the function.
Important : this structure must be allocated prior to the call to anaL0 getIDPinfo

This function returns 0 in case of success and fills the pointed result structure appro-
priately. Note that on success, all the fields of the IDPinfo structure are not necessarily
filled (example if the IDP is not an IC, the destContext, destService and MTU fields are
empty). In case of error a negative error code is returned.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 53

Important : In case the IDP you got information about is of type REDIRECT or
FORK, the binding.IDPs field of the IDPinfo s structure has been allocated by the li-
brary to hold the chained list of IDPs. Therefore, you must free these properly when
you are done with them, by calling :
int anaL0_clearIDPinfo(struct IDPinfo_s *info);

Where info points to the struct IDPinfo s that was filled by anaL0 getIDPinfo. Note
that this fuction frees the allocated binding.IDPs fields but does not free the structure
pointed by info.

4.14.3 Setting information about an IDP

Setting some information about an IDP is done in 2 steps :

1. prepare the struct IDPinfo s containing the information you want to set

2. submit this structure to the minmex via the anaL0 setIDPinfo function.

Step 1, preparing the information structure : The information that you can set
about a certain IDP(belonging to your brick) is :

• Indicating the label and viewer of the IDP you are setting information about by
filling the corrsponding fields in the struct IDPinfo s

• Indicating the control IDP of the brick owning the IDP you are setting information
about by filling the corrsponding field in the struct IDPinfo s

• Indicating wether it is an Information channel or not. This can be done by setting
ICflag of the struct IDPinfo s to 1. If your IDP is a start of an IC, you can choose
(not mandatory) to set the following information too :

– The destination context of the IC: by filling the struct context s structure that
is part of the struct IDPinfo s

– The destinaton service of the IC: by filling the struct service s structure that
is part of the struct IDPinfo s

– The Channel type (Unicast, Multicast. etc.) of your IC by filling the chan-
Type field of the struct IDPinfo s with one of the values depicted above (’u’,
’a’, ’m’, ’b’, ’c’)

– The MTU supported by your IC by filling the MTU field of the struct ID-
Pinfo s with the appropriate value

• Indicating to which IDP within the ANA node you forward the data (after treat-
ment) received on the IDP you are setting information about. This is very useful
for Functional composition and can be done by filling the binding.brick.outputIDP
field of the struct IDPinfo s with the label of the next IDP.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 54

Step 2, submitting the information to the minmex Once you have prepared the
struct IDPinfo s structure, you can submit it to the minmex (i.e. do the information
setting) using the following function:
int anaL0_setIDPinfo(struct IDPinfo_s *info)

This function returns 0 in case of success or a negative error code in case of failure.

Important : you need to be the owner of the IDP in order to be able to set information
regarding it, otherwise this function will return an ”Unauthorized“ error.

Example of setting an IDP information In this example, we first publish an IDP and
then set some information about it :
int brick_start() {

struct service_s service;
struct context_s context;
struct timespec timeout;

struct IDPinfo_s info;

int ret ;

memset(&service , 0, sizeof(struct service_s));
memset(&context , 0, sizeof(struct context_s));

anaL2_initDefault();

context.value = ".";
context.valueLen = 2;

service.value = "service1";
service.valueLen = strlen("service1")+1;

memset(&timeout , 0, sizeof(struct timespec));
timeout.tv_sec = 5;

/* we publish then a service with a callback function */
serviceIDP = anaL2_publish(NODE_LABEL , &context ,

&service , (AL2Callback_t) &recvData2 ,
1, &timeout);

if(serviceIDP == 0)
anaPerror(0,"---> publish failed , error ");

else
anaPrint(ANA_NOTICE , "---> publish ok IDP:%d\n",

serviceIDP);

/* we set Some info about the IDP */

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 55

memset(&info , 0, sizeof(struct IDPinfo_s));

info.label = serviceIDP;
info.viewer = 0;

info.ICflag = 1;
info.destContext.value = "192.168.0.1";
info.destContext.valueLen = strlen("192.168.0.1") + 1;

info.destService.value = "chat";
info.destService.valueLen = strlen("chat") + 1;

info.MTU = 1500;
info.chanType = ’u’; /* Unicast channel */

/* here we suppose that nextIDP is the label to which
our brick forwards data (after treatment) received
on serviceIDP

*/
info.binding.brick.outputIDP = nextIDP;

ret = anaL0_setIDPinfo(&info);
if(ret < 0)

anaPrint(ANA_DEBUG , "*** setIDPinfo failed \n");

return 1;

}

Note that in this example the AL0 library will hiddenly fill some other fields of the
struct IDPinfo s, notably setting the IDPtype to BRICK and the binding.brick.callee
with the handle of our brick.

4.15 How to subscribe/notify about events

In ANA, in order to allow bricks to be reactive to some events regarding IDPs and other
bricks, we put in place a notification system that can alert about the following events:

• Deletion of an IDP : this event is identified by the constant IDP DELETED EVENT

• IDP is temporarily busy : this event is identified by the constant IDP BUSY EVENT

• IDP is back to be available : this event is identified by IDP AVAIL EVENT

• Redirection of an IDP : this event can be triggered whenever an IDP is redirected
(via anaL0 redirect function) towards another IDP. This event is identified by the
constant IDP REDIRECTED EVENT

• Unpublication of an IDP : whenever a compartment provider brick unpublishes
an IDP from its compartment, it can alert the IDP owner of this fact by triggering
this event. This event is identified by the constant IDP UNPUBLISHED EVENT

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 56

• Information update about an IDP : in case a brick changes the information re-
garding one of its IDPs (via the anaL0 setIDPinfo function), it can alert the other
bricks interested in this information by triggering this event so that they fetch the
new info. This event is identified by the constant IDP INFOUPDATED EVENT

• Attachment of a brick : this event can be triggered whenever a brick is attached to
the minmex. This event is identified by the constant BRICK ATTACHED EVENT.

• Detachement of a brick : this event can be triggered whenever a brick is detached
from the minmex. This event is identified by the constant
BRICK DETACHED EVENT.

4.15.1 Subscription to events

In order to subscribe to events, 2 steps need to be filled :

1. preparing the subscription structure

2. submitting it to the minmex

Step 1, preparing the subscription structure This structure is defined as follows :
struct anaEventSub_s {

uint32_t eventMask;

anaLabel_t label;
anaHandle_t viewer;

char *name;
};

Where :

• eventMask indicates to which events the subscription is being done. The sub-
scription can be done to multiple events as long as they concern the same ob-
ject (Brick or IDP). Indeed, events can be combined with the binary OR op-
erator in a similar way flags are combined in file system calls. For example
‘IDP DELETED EVENT|IDP UNPUBLISHED EVENT|IDP REDIRECTED EVENT’ is a valid mask
for subscription to the three events at the same time.
Important : As mentionned priorly , the combination of events must concern the
same object (IDP or Brick). Therefore event masks susch as
‘IDP DELETED EVENT|BRICK ATTACHED EVENT’ do not make sense and will be rejected
by the minmex when submitted.

• label, viewer should be filled if you are subscribing to an event regarding a spe-
cific IDP. If you are subscribing to a Brick event, or to events regarding all IDPs
(e.g. you want to know about every IDP being deleted), these fields should be left
empty.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 57

• name is the name of the Brick you are interested in, in case you are subscrib-
ing about an event concerning a specific Brick. In case of an IDP event, or an
event regarding all Bricks (e.g. you want to know about every Brick attached or
detached), this field should be left empty (NULL).

Step 2, submitting the subscription To submit the subscription, you can use the
function :
int anaL0_eventSubscribe(struct anaEventSub_s* sub,

eventHandler_t handler , int threadFlag);

Where:

• sub points to the subscription structure filled in Step 1

• handler is a function pointer of the function that will be triggered upon reception
of this event. we describe these handlers in more details in the next paragraph

• threadFlag indicates wether your event handler should be triggered in a separate
thread or not.
Very Important: if your event handler function uses AL2 function calls like
anaL2 publish or anaL2 resolve (etc), if it is blocking, or also if it takes a long
time to execute then your event handler function MUST be launched in a sepa-
rate thread. Indeed, if you set the separateThread flag to 0, the function will be
executed by the thread expecting messages. Therefore, if the function blocks wait-
ing for incoming messages (as required by AL2 publish, lookup etc), the thread
receiving incoming messages is blocked and reception of messages becomes im-
possible ⇒ deadlock !

This function returns 0 in case of successfull subscription

Event handler functions The event notification handler functions must be of the fol-
lowing prototype :
void exampleHandler(struct anaEventNotif_s *notif)

Where notif points to a structure containing the notification info, defined as follows :
struct anaEventNotif_s {

uint32_t eventID;

anaLabel_t label;
anaHandle_t viewer;

anaLabel_t destLabel;
anaHandle_t destViewer;

char *name;
};

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 58

Where:

• eventID is the constant identifying the event that was triggered. Not that in this
case this field is not a mask (i.e. a combination of events) but rather a unique
event value.

• label, viewer these fields are filled in case the received notification is regarding
an IDP event and indicate which specific IDP it concerns. In case of an event
regarding a brick, these fields are empty.

• destLabel, destViewer are filled in case the notification is about a redirection of an
IDP (i.e. eventID = IDP REDIRECTED EVENT). These fields indicate towards
which destination IDP the redirection was done. In case of an event regardint a
brick, these fields are empty.

• name indicates the name of the brick being attached or detached in case of a no-
tification regarding a brick event. Also, in case of IDP UNPUBLISHED EVENT
this field might contain the name of the brick that unpublished the IDP.

Important : the struct anaEventNotif s structure is freed hiddenly by the library, so
there is no need to free it at the end of your handler functions.

4.15.2 Unsubscription from events

Unsubscription is also done in 2 steps as for the subscription. The first step is exactly
identical to the subscription case. The second step (unsubscription submission) can be
performed by using the following function :
int anaL0_eventUnsubscribe(struct anaEventSub_s* sub);

Where sub points to the structure filled in step 1. This function returns 0 in case of
success or a negative error code in case of error.

4.15.3 Notify subscribers about occurence of an event

Your brick can notify other bricks about the following events :
IDP REDIRECTED EVENT, IDP UNPUBLISHED EVENT,
IDP INFOUPDATED EVENT. The rest of the events
(IDP DELETED EVENT and brick events) are triggered automatically by the minmex
whenever they occur.

The notification is also done in 2 steps:

1. filling the struct anaEventNotif s notification structure

2. submitting it to the minmex

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 59

Step 1, filling the notification structure Step 1 is done in a symetric way to notifi-
cation reception by the handler, i.e. you fill a struct anaEventNotif s structure with the
fields regarding your event.

• in case of IDP REDIRECTED EVENT, set the eventID field of the structure to
IDP REDIRECTED EVENT, and fill in the label and viewer of both the IDP being
redirected and the destination IDP.

• in case of IDP UNPUBLISHED EVENT, set the eventID field of the structure to
IDP UNPUBLISHED EVENT, and fill in the label and viewer of the IDP being
unpublished. you can also indicate the name of your brick in the field name of the
struct anaEventNotif s structure.

• in case of IDP INFOUPDATED EVENT, set the eventID field of the structure
to IDP INFOUPDATED EVENT, and fill in the label and viewer of the IDP of
which the info is being updated.

Step 2, submitting the notification to the minmex This can be done using the foll-
wing function :

int anaL0_eventNotify(struct anaEventNotif_s *notif);

Where notif points to the structure that was filled in Step 1.

4.16 How to interpret error codes

In case of functions returning negative error codes (such as anaL0 eventSubscribe,
anaL0 redirect, anaL0 setIDPinfo, etc.) the corresponding error message can be printed
out using the function :
char *getErrorString(int ret)

Where ret is the error code to which you want to map a ”human“ understandable error
message.

There are some functions however that do not return a negative error code since
their prototype does not allow it. For example, anaL0 registerCallback, anaL2 publish,
anaL2 resolve, etc., all return an IDP label that is by definition a positive non null value.
For error report in these function, we defined in ANA, a system similar to the standard
C errno + perror one. Following this system, functions like (anaL0 registerCallback)
can set the ANA errno equivalent for their threads. This error code can then be retrieved
and its error message printed using the ANA perror equivalent :
void anaPerror(int level , char * str)

Where :

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 60

• level indicates the debugging level (e.g. ANA DEBUG, ANA NOTICE, etc.) to be
passed to the anaPrint function

• str is the character string you want to print out before the error message (i.e. the
output is ”str : error message“)

4.17 XRP details

4.17.1 Format of XRP messages

Figure 4.2 shows an XRP encoded message where :

Command Nb Args Arg1 class Arg1 size Arg1 Arg2 class ...

Figure 4.2: XRP message

• Command determines the purpose of the message (For example if it is a Publish
or Lookup command). We will give later the list of the default most common
command constants.

• Nb Args is the number of XRP arguments attached to this command.

• Arg1class is the XRP class of the first argument attached to this command. By
class we mean a known description (meta-data) about the nature of the argument.
This can be seen as an equivalent to types in programming languages. We will
also give later an enumeration of the default class constants.

• Arg1size is the size in bytes of the first argument value.

• Arg1 is the value of the first argument associated to the XRP command.

4.17.2 Defined constants

XRP Commands The most common XRP commands you could have to handle are
the following:

• XRP CMD PUBLISH : this constant is put in front of the XRP encoded publish
commands (encoded usig anaL1 encPublish)

• XRP CMD RESOLV E : for resolve commands (anaL1 encResolve)

• XRP CMD LOOKUP : for lookup commands (anaL1 encLookup)

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 61

• XRP CMD UNPUBLISH : for unpublish commands (anaL1 encUnpublish)

• XRP CMD DATA : for data forwarding commands (anaL1 encData)

• XRP CMD ERROR : for error messages

See C/include/xrp.h for a full list of XRP COMMAND constants.

XRP Classes As said previously, XRP classes are the type of the arguments passed
along with XRP commands. The most common XRP classes you would have to deal
with are the following:

• XRP CLASS LABEL : this constant is the type of the IDP label arguments that
could be for example passed in publish commands, resolve responses, etc.

• XRP CLASS SRC CXT : for the source context argument passed along with pub-
lish commands, resolve and lookup commands and responses.

• XRP CLASS DST CXT : for the destination context argument passed along with
publish commands, resolve and lookup commands and responses.

• XRP CLASS SRC SRV : for the source service description argument passed along
with resolve, lookup and forward data commands.

• XRP CLASS DST SRV : for the destination service description argument passed
along with resolve, lookup and forward data commands.

• XRP CLASS LKP DESCR : for the complementary service description passed
along in lookup responses.

• XRP CLASS MESSAGE : for the data argument you pass along the forward data
command.

• XRP CLASS CHANTY PE : for the chanType argument you pass along the re-
solve command (anaL1 encResolve)

• XRP CLASS PERMANENT : for the permanent flag argument you pass to the
publish command (anaL1 encPublish)

See trunk/C/include/anaCommon.h for a full list of XRP CLASS constants.

4.17.3 XRP API

The XRP API is composed of the following functions :

• int allocateXRPMsg(xrpMsg_t *msg);

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 62

Where : msg is a pointer to a xrpMsg t. The xrpMsg t type being itself a pointer
to char *. This function allocates a memory slot for an XRP message (with a
default size). On sucess, the pointer pointed by msg now points to an allocated
memory slots, and 0 is returned. on failure -1 is returned.

• int fillXRPCommand (xrpMsg_t msg, xrpCmd_t cmd);

Where :

– msg points to a memory slot allocated by allocateXRPMsg

– cmd is the XRP COMMAND constant corresponding to the command you
want to encode.

This function will store the constant value at the head of the allocated buffer.

• int addXRPArg(xrpMsg_t msg, xrpClass_t xrp_class ,
void *content , unsigned short int len);

Where :

– msg is the allocated buffer for the message

– class is the XRP class constant of your argument

– content is the value of the argument

– len is the size in bytes of the argument value (size of content)

This function adds the argument at the tail of the XRP message (if possible) and
updates the total number of arguments in the message. In case the argument does
not fit in the buffer -1 is returned, otherwise the new size of the XRP message is
returned.

• int getXRPnbArgs(xrpMsg_t msg);

Where msg is the received XRP message. This function returns the number of
arguments contained in msg (by reading the second field of the XRP message).

• void *getXRPArg(xrpMsg_t msg, xrpClass_t xrp_class ,
int *len, int occurence);

Where :

– msg points to the received XRP message

– class is the XRP class constant of the argument you are interested in

– len is a pointer to an allocated integer. On success the pointed field will
contain the size in bytes of the wanted argument.

– occurence is the occurence of the XRP argument of class class that we are
interested in. For example if the received XRP message contains 2 argument
of class XRP CLASS LABEL, setting occurence at 1 means that we are in-
terested in the second IDP label contained in the message (i.e the occurence
count starts at 0).

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 63

int equalXRPCommands(xrpCmd_t cmdA , xrpCmd_t cmdB);

This function compares the two pointed XRP COMMAND values. It returns 1 in
case they are equal, 0 otherwise.

•• int equalXRPClasses(xrpClass_t classA , xrpClass_t classB);

This function compares the two pointed XRP CLASS values. It returns 1 in case
they are equal, 0 otherwise.

4.18 I’m building a compartment provider brick, what
requirements should I follow ?

4.18.1 Visibility in the node Compartment

In order for other bricks to use your compartment services, you should make your brick
visible in the node compartment. You can do so by following the node compartment
example subsection in section How to publish an IDP in a compartment.
Important : To ease the self-association of other bricks to your compartment, please
add the keyword “compartment“ to the description you publish to the Node Com-
partment.
This way, a brick querying the node compartment for all bricks matching the keyword
“compartment“ will be able to know all the networking capabilities of its ANA node.

4.18.2 Handling the common generic commands

The callback function associated to the IDP you published to the node compartment
must be able to parse the incoming generic XRP commands (publish, lookup, etc ..) and
then execute the corresponding function and send an answer.

The command can be identified with the equalXRPCommands function as shown
previously, while the arguments can be extracted with the function anaL1 decResponse
also shown previously. Note that there is no specific way for handling this in AL2, only
AL1 style is available.

void publishedCallBack(char *data , int len,
anaLabel_t input , void *aux) {

/*if your are using AL2 The previous header can be replaced by :*/
/* static void publishedCallBack(struct anaL2_message *msg) */

xrpCmd_t command = data;

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 64

/* xrpCmd_t command = msg->data (for AL2)*/

if (equalXRPCommands(command , XRP_CMD_PUBLISH)) {
/* we extract the description of the service to publish*/

void *description = NULL;
int descLen = anaL1_decResponse(command ,

XRP_CLASS_SRC_SRV , 0, &description);
...

}
}

Note that where anaL1 decResponse was used getXRPArg depicted in the XRP ded-
icated section could also be used.

Abstract layout of received generic common commands: Here we will show the
order of appearance of arguments for the common commands your compartment brick
will receive.

pub label context permanent reply labelservice

Figure 4.3: Arguments order in received publish message

Publish command Figure 4.3 shows the layout of a publish command, where :

• pub is the XRP CMD PUBLISH header

• label is the IDP label of the service to publish. Its XRP class is
XRP CLASS LABEL. The variable type to store this argument in is anaLabel t

• service is the description of the service to publish. Its XRP class is
XRP CLASS SRC SRV The variable type to store this argument in is void *

• context is the context where the service is to be published. Its XRP class is
XRP CLASS SRC CXT. The variable type to store this argument in is void *.
Please do not forget to handle the cases of context “*” and “.”. Context “*” means
that the user wants you to publish the service with the largest possible compart-
ment scope. Context “.” means that the user wants you to publish the service in
your local repository only.

• permanent is the flag to say wether the user wants the publication to be permanent
or not. Its XRP class is XRP CLASS PERMANENT. The presence of the class
XRP CLASS PERMANENT indicates that the flag is on. In case the publication
is not meant to be permanent, there will be no XRP CLASS PERMANENT in the
message.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 65

• reply label is the IDP label to send the publish response to. Its XRP class is
XRP CLASS LABEL. The variable type to store this argument in is anaLabel t.
Pay attention to indicate occurence equal to 1 to anaL1 decResponse in order to
extract this label and not the service IDP Label

rsv context chanType decrip reply labelservice

Figure 4.4: Arguments order in received resolve message

Resolve command Figure 4.4 shows the layout of a received resolve command,
Where :

• rsv is the XRP CMD RESOLVE header

• service is the description of the service the user is looking for. Its XRP class is
XRP CLASS DST SRV. The variable type to store this argument in is void *

• context is the subset of the compartment we will have to look in for the service.
Its XRP class is XRP CLASS DST CXT. The variable type to store this argument
in is void *. Please do not forget to handle the cases of context “*” and “.”.
Context “*” means that the user wants you to look for the service as far as you
can. Context “.” means that the user wants you to look for the service in your
local repository only.

• chanType is the type of Information Channel the user wants to build. Its XRP
class is XRP CLASS CHANTYPE. The variable type to store this argument in is
char

• descrip is the description of the querying user.
Its XRP class is XRP CLASS SRC SRV. The variable type to store this argument
in is void *. Note that this will be included in the message only if the querier
indicated a description. Otherwise there would be no XRP CLASS SRC SRV in
the message.

• reply label is the IDP label to send the publish response to. Its XRP class is
XRP CLASS LABEL. The variable type to store this argument in is anaLabel t.
In this case, you can indicate occurence equal to 0 to anaL1 decResponse since
there is no other argument of class XRP CLASS LABEL in the message.

Lookup command The lookup command is similar to the resolve one except that
the command header changes and there is no chanType argument in lookup

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 66

unp label reply labelcontext service

Figure 4.5: Arguments order in received unpublish message

Unpublish command Figure 4.5 shows the layout of a received unpublish com-
mand, Where :

• unp is the XRP CMD UNPUBLISH header

• label is the IDP label of the service to unpublish. Its XRP class is
XRP CLASS LABEL. The variable type to store this argument in is anaLabel t

• context is the compartment context from which to unpublish the service. Its XRP
class is XRP CLASS SRC CXT. The variable type to store this argument in is void
*

• service is the description of the service the user wants to unpublish. Its XRP class
is XRP CLASS SRC SRV. The variable type to store this argument in is void *

• reply label is the IDP label to send the unpublish response to. Its XRP class is
XRP CLASS LABEL. The variable type to store this argument in is anaLabel t.
In this case, you can indicate occurence equal to 0 to anaL1 decResponse (or
getXRPArg) since there is no other argument of class XRP CLASS LABEL in the
message.

labelrel

Figure 4.6: Arguments order in received release message

Release command Figure 4.6 shows the layout of a received release command,
Where :

• rel is the XRP CMD RELEASE header

• label is the IDP label of the service to unpublish. Its XRP class is
XRP CLASS LABEL. The variable type to store this argument in is anaLabel t

Command answering strategy:

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 67

Error report If the command queried by the user did not for some reason succeed,
and you want to report the error back, all you have to do is replace the previous com-
mand header with the error command header XRP CMD ERROR, and send the message
back to the user on the reply IDP he indicated in the command, as shown in the Example
below:
void publishedCallBack(char *data , int len,

anaLabel_t input , void *aux) {
...
/* first we extract the IDP label to reply on */
/* we suppose this is a publish command, therefore */
/* replyTo label is at second occurence in message*/
/* note that the occurence count starts at 0 */

anaLabel_t *labelP= NULL;
anaLabel_t replyTo;
int labelSize = anaL1_decResponse(data ,

XRP_CLASS_LABEL , 1, &labelP);
replyTo = *labelP;

/* Now we will replace the header of the received */
/* message with XRP_CMD_ERROR */

fillXRPCommand((xrpMsg_t) data , XRP_CMD_ERROR);

/* and we send it back to the user */

anaL0_send(replyTo , data , len);
}

Success report

• For publish and unpublish : you just have to send the command message sent by
the user back to him on the reply label he indicated.
void publishedCallBack(char *data , int len,

anaLabel_t input , void *aux) {
...

anaLabel_t *labelP = NULL;
anaLabel_t replyTo;
int labelSize = anaL1_decResponse(data ,

XRP_CLASS_LABEL , 1, &labelP);
replyTo = *labelP;
/*pay attention to use occurence = 0 for unpublish */
anaL0_send(replyTo , data , len);

}

• For resolve command: the user is expecting back one IDP label of the Information
Channel you constructed for him. The resolve response message is then composed
of an XRP CMD RESOLVE and one argument of class XRP CLASS LABEL. An
example of building such a reponse message is given below.
void publishedCallBack(char *data , int len,

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 68

anaLabel_t input , void *aux) {
...

anaLabel_t *labelP = NULL;
anaLabel_t replyTo;
int msgSize;
xrpMsg_t msg;
int labelSize = anaL1_decResponse(data ,

XRP_CLASS_LABEL , 0, &replyTo);
replyTo = *labelP;
/* we allocate a response message */
allocateXRPMsg(&msg);

/* we first fill the command header */
fillXRPCommand(msg, XRP_CMD_RESOLVE);

/* we then fill the IDP label argument */
/* resLabel is the label you created for the Info Channel */
msgSize = addXRPArg(msg,XRP_CLASS_LABEL ,resLabel ,labelSize);

/* and we send the message back to the user */
anaL0_send(replyTo , msg, msgSize);
free(msg); /* do not forget to free the message once sent */

}

• For lookup command : we did not determine a response format yet.

4.18.3 Forwarding incoming messages to a “higher layer”

On reception, from other compartment peers, of a message destined to a service that
published itself in your compartment brick, you can forward this message to the user
brick (“higher layer” brick) using the following functions:

• For AL2 :
int anaL2_forwardData(anaLabel_t destIDP , void *data ,

int lenData ,
struct context_s *senderContext ,
struct service_s *senderService ,
anaLabel_t responseLabel)

Where :

– destIDP is the IDP to reach the “higher layer” brick.

– data is a pointer to the received data

– lenData is the length of the received data

– senderContext is an optional argument. It corresponds to the subset of the
compartment from which the message came. For example in an Ethernet
compartment this could be the MAC address of the sender. It is up to you
(compartment specific) to decide wether to trasmit or not this information to
the upper “layers”

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 69

– senderService is the service description of the data sender. This argument is
optional too

– responseLabel is also an optional argument. It is meant to be filled in case
you built an information channel back to the sender and want to indicate to
the user brick that it could answer back using that IDP’s label.

This function encodes an XRP CMD DATA and sends it to the IDP destIDP. On
success the number of sent bytes is returned, a negative error code is returned
otherwise.

• For AL1 : forwarding data is done by encoding an XRP CMD DATA command
and sending it to the user brick’s IDP. To encode the data command in AL1 use :
int anaL1_encData(xrpMsg_t msg, void *data , int lenData ,

struct context_s *senderContext ,
struct service_s *senderService ,
anaLabel_t responseLabel);

Where :

– msg is a buffer previously allocated with anaL1 allocateMessage().

– data points to the message you want to forward to the user brick (the mes-
sage you received from the compartment peer).

– lenData is the size in bytes of data

– senderContext is the subset of the compartment from which the message
came.

– senderService is the description that the remote (sender) compartment user
published to the compartment.

– responseLabel is meant to be filled in case you built an information channel
back tot he sender and want to indicate to the user brick that it could answer
back using that IDP’s label.

This function returns the size of the XRP message encoded in msg on success or
-1 in case of error.

4.19 How to compile my brick

4.19.1 User space compilation

In order to compile your brick for user-space execution, 2 steps need to be done :

1. Prepare the user-space specific Makefile at the root of your brick’s directory to
correctly compile your brick

2. Modify the config.txt file (i.e. main compilation system) so that it compiles your
brick too

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 70

Step 1, preparing the user-space Makefile This step is done by copying the right
user-space Makefile template to the root of your brick’s directory. In case your brick
consists of a single “executable” (i.e. one .so and one binary only), you can copy the
Makefile-user-singlebrick.template file at the ANA root directory to your brick’s
directory and rename it to Makefile-user.

If you wish to build a functional block consisting of multiple bricks (i.e. multiple
“executables” as it is the case for the ip brick), you can copy the
Makefile-user-multiplebricks.template file at the ANA root directory to your brick’s
directory and rename it to Makefile-user.

Note that this Makefile will be responsible for compiling your brick in both PLUGIN
(as a .so) and GATES (as a binary) modes. Instructions how to modify the Makefiles
properly are indicated in the templates.

Step 2, modifying config.txt file to compile your brick In order for your brick to be
compiled for user-space when you type ‘make’ from the ANA root directory, you need
to modify the config.txt file in the following way :

• to compile your brick as a .so plugin : add your brick’s (FB’s) directory name
(contained in C/bricks/) to the list of the variable USER PLUGIN BRICKS

• to compile your brick as a standalone application : add your brick’s (FB’s) direc-
tory name contained in C/bricks/) to the list of the variable
USER PROCESS BRICKS

4.19.2 Kernel compilation

The same steps for user-space compilation need to be done here.

Step 1, preparing the kernel-space Makefile For kernel compilation of your code,
you can copy the Makefile-kernel.template, present at the ANA root directory, to your
brick’s directory and rename it to Makefile. Note that, on the contrary to the user-space
case, this template Makefile works for both single brick and multiple bricks Functional
Blocks. Instructions how to modify the Makefile properly are indicated in the template.

Step 2, modifying config.txt file to compile your brick

• to compile your brick as Kernel module in PLUGIN mode (using direct function
calls), add your brick’s directory name to the variable KERNEL PLUGIN BRICKS
in config.txt

• to compile your brick as Kernel module in GATES mode, add your brick’s direc-
tory name to the variable KERNEL MODULE BRICKS in config.txt

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 71

4.20 How to instantiate a brick from wihtin the code

In case your brick requires the services of an additonal brick that is not currently running
on the local node, you can instantiate the brick if the plugin or binary file is available on
your file system. Note that for security reasons, this functionality is available only for
user-space minmex.

4.20.1 To instatiate a .so plugin brick

You can use the following function :
int anaL0_launchSoBrick(char *path , char *auxArgs);

Where :

• path : is the full path to the .so file

• auxArgs : is the character string containing the auxiliary arguments to be passed
to the launched brick. e.g. if you need to pass 2 arguments then
char *auxArgs = "arg1 arg2";

4.20.2 To instatiate a standalone brick

int anaL0_launchGatesBrick(const char *path , char *args , char *envp);

Where :

• path : is the full path to the brick’s binary file.

• args: is the character string containing the auxiliary arguments to be passed to the
launched brick.

• envp : is the character string containing the SHELL environment variables to be
passed to the brick. See man execve for more details.

Note that this functionality might be de-activated in future versions since it allows to
launch any executable (not only bricks) and constitutes therefore a major security threat.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 72

Chapter 5

Virtual link support

5.1 What is it?

Strictly speaking, the vlink subsystem does not belong to the “ANA world” in the sense
that it does not provide any autonomic networking functionality and is not an abstraction
of ANA. Actually, the vlink brick is one (possible) implementation of the abstraction
layer of the ANA Node (as described in the Blueprint): it basically decouples the real
physical world of network interface cards and physical links from the connectivity seen
by ANA entities. The main motivation for developing this brick is to have a flexible and
dynamically re-configurable subsystem for emulating connectivity between ANA nodes
without limitations and constraints imposed by technical issues such as manual cabling.

A key objective was to “virtualize” network connectivity in order to be able to e.g.
emulate link failures without having to physically interfere with network equipments
and without having to physically connect or disconnect network devices. The ability
to virtualize physical links makes it possible to create multiple and “parallel” arbitrary
virtual network topologies on top of the real underlying physical world: it hence be-
comes possible to simultaneously run multiple experimentations which, while sharing
the same physical devices and links, do not interfere with each other in the emulated
environment.

Note that the configuration of vlinks is not automatic nor autonomic: human users
must configure vlinks. In order to perform this task, we have developed a ‘vlconfig’

command with which one can easily configure vlinks locally on a given ANA host;
which means so far one has to have local access to an ANA host in order to locally
configure vlinks. In the future, some partners of WP4 should develop testbed tools
that will allow the configuration of vlinks remotely, possibly via a remote access to the
‘vlconfig’ command tool.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 73

5.2 Files, compilation

Starting from the ANA root directory, the directories and files that form the vlink
implementation are:

• C/include/ana vlink.h : header file for vlink.

• C/include/ana vlinkAPI.h : header file for vlink API: public functions.

• C/bricks/vlink/ : contains all the code for vlink.

• C/bricks/vlink/Makefile : the makefile for Linux kernel 2.6 compilation.

• C/bricks/vlink/Makefile-user : the makefile for userspace compilation.

• C/bricks/vlink/common/ana vlink.c : the basic common code for creating and
manipulating vlink objects.

• C/bricks/vlink/kernel/kernel vlink.c : the code for sending and receiving
packets to/from interfaces inside the Linux kernel.

• C/bricks/vlink/userspace/user vlink.c : the code for sending and receiving
packets to/from interfaces via standard interfaces with RAW sockets.

The vlink brick is compiled by default by the current ANA build system. Note
that when compiled as a .so plugin, the minmex process must be exectued with root
priviledges as it uses a RAW socket (PF PACKET) to send and receive data. Also
when compiled as a userspace application, the vlink brick must be executed with
root priviledges for the same reasons.

5.3 How does it work?

The vlink brick has direct access to the real interfaces and the legacy networking lay-
ers (e.g. UDP) of the host operating system. To distinguish “vlink packets” from
other packets (e.g. IP, ARP, etc), the vlink brick uses a specific Ethernet type field
(ETH P ANAVLINK defined in ana vlink.h) over Ethernet and GRE (Generic Rout-
ing Encapsulation) interfaces. It is also possible to use UDP “tunnels” to interconnect
distant nodes: at the moment the UDP port is fixed (hard-coded as UDP VLINKTUN
in ana vlink.h) but in the future we will allow users to configure this.

A given vlink can be configured to send and receive data via multiple interfaces.
For example, one can configure a vlink to use an Ethernet interface and a GRE or UDP
tunnel in order to emulate an Ethernet link with a subset of the nodes connected to the
real Ethernet link (i.e. those with a vlink configured with the same vlink id) and with
a remote host (via the GRE or UDP tunnel).

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 74

Each vlink is identified by a unique 32-bits ID which is manually configured by a
human user (see below): when sending a packet, this ID is added immediately after the
layer-2 or UDP header and before the ANA data payload. Upon reception of a packet,
the vlink brick checks the value of the vlink id inside the packet against the vlinks
configured locally: if there is a match, the payload is sent to the (higher level) brick that
is bound to the matching vlink. If there is no match, the packet is discarded. Note that
when receiving a packet that contains a valid vlink ID, the vlink brick checks that the
data is coming from an interface or tunnel that is configured in the corresponding vlink
object.

When (manually) configuring vlinks, one has to ensure that the assigned vlink ids
are locally unique among all the ANA nodes running on the host. This is to prevent
unwanted data to be sent to multiple ANA nodes. However, all the ANA nodes that
use a given vlink have to “coordinate” to find a vlink id that is not yet assigned in all
the nodes: while this requirement can be manually solved by the human users configur-
ing the vlinks, the future (distributed) testbed management system developed in WP4
should eventually solve this issue in an automatic way.

5.4 The vlconfig command

The ‘vlconfig’ command permits to configure the vlinks that are configured on a sys-
tem. In the current version, the command connects to the vlink component via a UDP
socket (for both the kernel and userspace versions of the vlink brick). The syntax of the
command is very simple:

Usage: vlconfig { COMMAND } [argument(s)]

where: COMMAND := { help | list | create | delete | up | down |
add_if | rem_if | add_udp | rem_udp }

where

• ‘vlconfig list’ : displays all vlinks

• ‘vlconfig create vlink id’ : create vlink with the given ID

• ‘vlconfig delete vlink name’ : delete vlink with given name

• ‘vlconfig up vlink name’ : activate vlink with given name

• ‘vlconfig down vlink name’ : de-activate vlink with given name

• ‘vlconfig add if vlink name if name’ : add (real) interface to vlink

• ‘vlconfig rem if vlink name if name’ : remove (real) interface from vlink

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 75

• ‘vlconfig add udp vlink name ip:port’ : add remote UDP peer to vlink

• ‘vlconfig rem udp vlink name ip:port’ : remove remote UDP peer from vlink

The following example creates a vlink that sends and receives data via two interfaces
and via a UDP tunnel.

‘vlconfig list’

‘vlconfig create 1234’ // returns say, vlink0
‘vlconfig add if vlink0 eth0’

‘vlconfig add if vlink0 eth1’

‘vlconfig add udp vlink0 10.1.2.3:6789’

‘vlconfig up vlink0’

‘vlconfig list’

5.5 The vlink API

An important design point of the vlink subsystem is that only one brick can send and
receive data via a given vlink. The typical scenario is that an Ethernet brick (or an-
other layer 2 brick) registers with a given vlink and is granted exclusive access to this
resource. This is somehow similar to having an Ethernet network interface card having
exclusive access to the cable linking it to a switch or another Ethernet card. In other
words, the vlink brick “provides the cable” which connects two NICs (“bricks”).

Because ANA provides an autonomic environment, the binding between bricks and
vlinks is dynamic. Typically, each newly created vlink is published in the MIN-
MEX key-val repository (KVR) with some well-known keywords such as “vlink”. This
means interested bricks can periodically check the KVR for resources published with
the “vlink” keyword and, upon a match, start the binding procedure to get exclusive
access to the vlink. The functions used to bind and unbind with a vlink are provided
“inline” in ana vlinkAPI.h: note that these functions are experimental and the format
of messages may (slightly) change in the future.

To bind with a given vlink, one has first to obtain the IDP that each vlink pub-
lishes in the node’s key-val repository. Note that this IDP cannot be used to send data:
its sole use is to allow a brick to bind with the vlink. “Binding” means that the vlink
will send all received data to the brick bound to it, so only one brick can bind with a
given vlink at any time. Before binding with a vlink, a brick has to register with the
MINMEX the callback function (IDP datarecv) that will be used for receiving data,
and another function (IDP replyto) used to treat the reply message sent back during the
binding procedure. The primitive used to bind is:

int vlinkBind(anaLabel_t vlink_idp , anaLabel_t replyto ,
anaLabel_t datarecv)

The function receiving the reply message should call the following function which

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 76

1. changes the view of the datarecv IDP such that only the vlink brick can call it

2. returns the IDP that must be used to send data to the vlink

3. sets the unbind IDP which can be used later to unbind from the vlink

4. saves the virtual MAC address attributed by the vlink in the vl mac variable. Note
that the vl mac pointer must point to a 6 byte allocated field.

anaLabel_t vlinkBindResponse(void *msg, int len,
anaLabel_t dataRecv , anaLabel_t *unbind ,
unsigned char *vl_mac);

To unbind from a given vlink, a brick simply has to send its datarecv IDP to the
unbind IDP. The function performing the unbind inside the vlink brick indeed checks
that the datarecv IDP corrresponds to the vlink. If the check is successful, the vlink
object is reset and re-published in the KVR. To be able to reuse it, one has first to
re-perform the binding procedure.

5.6 Virtual MAC address

As said previously, the bricks directly using vlinks will typically be link-layer bricks
like e.g. Ethernet. Since in a sense, a vlink “emulates a physical device”, each vlink
has to provide device-specific parameters such as hardware address and MTU. How a
brick bound to a given vlink can obtain these parameters is still an open issue and has
not yet been implemented. One solution is to provide some kind of ioctl functions or
to provide such information during the binding procedure.

Because the vast majority of link-layer devices are nowadays Ethernet cards, each
vlink object is configured with a virtual MAC address (vMAC) of length 6 bytes. Note
that among all the nodes using a given vlink, each vMAC must be unique in order to
be able to uniquely identify all destinations. Upon creation of a vlink object, the first
byte of the vMAC is configured as being the internal (locally unique on the node) index
of the vlink object (i.e. the number following vlink names: 1 for vlink1). Hence
for vlink1, the initial vMAC is set to 01:00:00:00:00:00. Note that this encoding
restricts the number of vlinks on a given node as being maximum 255 (which is by far
sufficient).

The next 5 bytes of the vMAC of a vlink object are then generated when the first
real interface or UDP tunnel is configured: in the first case, the bytes are taken from
the MAC address of the real interface and in the second case, the remaining 5 bytes
are randomly generated. If the first interface configured is the loopback interface, the
vMAC is not further configured. Note that while in the two cases the probability that the
vMAC is unique is very high, this is not guaranteed but we believe that vMAC collisions
are very unlikely to occur. However in the future we might change the way vMACs are
generated (and used).

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 77

5.7 Example

/* For simplicity, the code does not contain any error checking */
/* Read code/functions from bottom */

#include "ana_vlinkAPI.h"
anaLabel_t datarecv; /* IDP for receiving data */
anaLabel_t sendtoV; /* IDP to send data via vlink */
anaLabel_t unbind; /* IDP to unbind with vlink */

unsigned char my_vMAC[6]; /* array storing the allocated virtual MAC */

void do_unbind()
{

/* call this function to unbind with vlink */
if (!unbind)

return;

anaL0_send(unbind , &datarecv , sizeof(anaLabel_t));
}

void sendto_vlink(void *data , unsigned int len)
{

/* call this function to send data to vlink */

if (!sendtoV || !data || !len)
return;

anaL0_send(sendtoV , data , len);
}

void handle_bindreply(char *data , int len, anaLabel_t input , void *aux)
{

/* sendto can now be used to send data via the vlink */
sendtoV = vlinkBindResponse(data , len, datarecv , &unbind , my_vMAC);

}

void recv_from_vlink(char *data , int len, anaLabel_t input , void *aux)
{

anaPrint(ANA_NOTICE , "Received %d bytes of data via vlink\n", len);
}

void brick_exit() {

anaPrint(ANA_DEBUG , "Brick EXIT\n");
}

int brick_start()
{

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 78

struct service_s service;
struct context_s context;
struct timespec timeout;
anaLabel_t label;
anaLabel_t bindreply;

memset(&service , 0, sizeof(struct service_s));
memset(&context , 0, sizeof(struct context_s));

anaL2_initDefault();

context.value = ".";
context.valueLen = 2;

service.value = "vlink";
service.valueLen = strlen("vlink")+1;

memset(&timeout , 0, sizeof(struct timespec));
timeout.tv_sec = 5;

label = anaL2_resolve(NODE_LABEL , &context ,
&service , ’u’, NULL , &timeout);

/* bind with vlink found in key-val repository */
datarecv = anaL0_registerCallback(

(anaCallback_t)recv_from_vlink ,
NULL , NULL , NULL , 0, IDP_PERM , 0);

bindreply = anaL0_registerCallback(
(anaCallback_t)handle_bindreply ,
NULL , NULL , NULL , 0, 0, 0);

vlinkBind(label , bindreply , datarecv);

return 1;
}

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 79

Chapter 6

Generic ANA Threads

6.1 What is it?

The ANA core provides a generic thread library. It provides one and the same applica-
tion interface for user space and kernel space programming. Up to now, the ANA thread
library provides a basic interface to start a thread. There is no advanced facility like it is
well known from the posix thread library. Note that kernel threads and userspace threads
are different to handle. Therefore the anaThread library differs from the standard posix
thread library.

6.2 Why should I use ANA threads?

ANA threads should be used whenever a callback function may block for a “long time”.
Blocking in a callback function means that no other message can be processed from that
brick, which is probably not what you want.

6.3 Files

Starting from the ANA root directory, the directories and files that form the anaThread
implementation are:

• C/include/anaThread.h : header file for anaThread.

• C/shared/anaThread.c : contains all the code for managing anaThreads.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 80

6.4 How shall I use anaThreads?

Since the ANA threads are already used in the default libraries (AL0, AL2), all the
necessary files to use them are included in the default libraries (i.e. you don’t have to
do anything special).

6.5 The anaThread API

The current API consists of the following functions:

unsigned long int anaThread(void * (*start_routine)(void *),
void *arg, char *name);

int anaThreadShouldStop(void);

void anaThread(int (*start routine(void *), void * arg, char *
name)
Starts the function start routine in a separate thread with the argument arg.
The name argument is useful in case of PLUGIN mode execution of your brick. We
strongly encourage you to give significant names to your thread that will help you for
debugging in case of problems.

If name == NULL, the default name “anaThread” is assigned.
On successs anaThread() returns the pid (a non null unsigned integer) of the newly
generated thread. On error 0 is returned.

int anaThreadShouldStop(void)
Returns 1 if the current thread should stop, 0 otherwise.

6.6 Example

int loopingThread(void *data){
while (!anaThreadShouldStop ()){

//do some processing;
}
return 0;

}

static int value;
static int brick_start() {

value = 0;
if(anaThread(loopingThread , &value , "thread1") == 0)

anaPrint(ANA_DEBUG , "Error launching thread 1");
}

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 81

Chapter 7

Generic ANA timers

7.1 What is it?

Probably all algorithms and protocols in networking need timers. This of course holds
for ANA and we quickly realised that the ANA core also needed timers. Actually Linux
already provides 2 different implementations of timers in userspace and at least 2 dif-
ferent ways of scheduling defered work in the kernel. So why bother? Well since one
objective of ANA is that the same code can be used in userspace and kernel, it is clear
that, in order to ease programmers’ life, we needed something to abstract the timer inter-
nal details of the “running platform” upon which ANA is executed. We hence decided
to provide a generic abstraction for handling timers in ANA: how the “real” timer is im-
plemented is hidden and can hence be changed or extended to support new platforms or
future changes. Another advantage of having an extra abstraction layer is that it is pos-
sible to add new functionalities on-demand without having to modify existing system
code.

7.2 Files

Starting from the ANA root directory directory, the directories and files that form the
anatimer implementation are:

• C/include/anatimer.h : header file for anatimer.

• C/shared/anatimer.c : contains all the code for managing anatimers.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 82

7.3 How shall I use anatimers?

Same as for the ANA threads, ANA timers are already used in the AL0, AL2 libraries,
therefore you can directly use the anaTimer API.

7.4 The anatimer API

The current API is very simple and consists of only two initialization functions and three
functions for creating, removing, and restarting timers:

int anatimer_add(long msec , unsigned char period ,
unsigned char fix_clock ,
fct_t action , void *fct_data , int datalen);

int anatimer_del(unsigned int id);
int anatimer_restart(unsigned int id, long msec);
int anatimer_change(unsigned int id, long msec);

To add a timer, one must call anatimer add and provide the delay (msec) after which
the function action must be called with datalen bytes of arguments. A copy of the func-
tion data pointed to by fct data is kept in the anatimer structure (so one can free the ini-
tial memory after calling anatimer add). Calling anatimer add returns a positive timer
ID if successful or -1 otherwise. The field period, when set to ANATIMER PERIODIC,
is used to indicate that the timer should be re-started after it expires; in that case the ID
remains the same. The field fix clock, when set to ANATIMER ABSOLUTE, is used
to indicate that a periodic timer should be re-scheduled exactly msec milliseconds af-
ter the timer was supposed to expire, even if the timer expired with some delay (Linux
timers can expire with some delay). When fix clock is set to 0, the periodic timer is
re-scheduled msec milliseconds after it expired (whatever previous time it was supposed
to expire).

To remove a timer, one must simply call anatimer del with the ID of the timer
to stop. The function anatimer restart permits to restart the (yet unexpired and still
active) timer id after msec from the current time. The function returns the timer ID upon
success or -1. This is similar to deleting the timer id and adding a new timer except that
with anatimer restart the ID remains the same.

Finally anatimer change allows to change the period of the periodic timer identified
by id. This function returns the timer ID upon success or -1.

Note that when a timer expires, the function action is executed as a separate thread.
This ensures that the anatimer subsystem can resume its execution immediately (without
having to wait for action to return).

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 83

7.5 Example

void run_once(void)
{

// do something
// this runs in a separate thread
// handled by the anatimer framework

}

void run_periodic(void *data)
{

anaPrint(ANA_NOTICE , "Data is integer %d\n", *(int *)(data));
}

int brick_start()
{

int tmp = 123;

anatimer_add(2500, 0, 0, run_once , NULL , 0);
anatimer_add(5000, ANATIMER_PERIODIC , ANATIMER_ABSOLUTE ,

run_periodic , &tmp, sizeof(int));
}

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 84

Chapter 8

Quick Repository

8.1 What is it?

The quick repository is a tool that we offer to quickly implement a repository in your
Brick’s code. It is an option that we provide to simplify the programmer’s life in case
he needs to quickly implement a storage repository accepting boolean queries. A pro-
grammer can of course choose to develop his own repository for his brick.

8.2 Files

Starting from the trunk directory, the directories and files that form the Qrep implemen-
tation are:

1. C/bricks/tools/quickRep/QRepos.c : implements the quick repository’s core
functions

2. C/bricks/tools/quickRep/QREPParser.c : implements the boolean queries parser

3. C/include/quickRepository.h : header file for the quick repository

8.3 How shall I use Quickrep?

To be able to use Quickrep, one simply has to include the quickRepository.h header
file in his code and add the QRepos.{c,o} and QREPParser{c,o} files in the Makefile
of the brick in which Quickrep is to be used. An easy way to add those files to the
Makefile is to use the $(QREP FILES) variable as indicated in the Makefile template
‘Makefile-user-singlebrick.template’.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 85

8.4 Entries structure

the Qrep (Quick repository) looks like this:

Name Value

void *

Key words

kw1, kw2, kw3example

Figure 8.1: Quick Repository

Each Qrep entry has a unique name and an unlimited list of keywords with which it
can be looked up. Differences with the KVR are the following:

• The most important difference is the type of the values stored in the QREP. Unlike
KVR, they can be of any kind (the QREP expects a void * pointer). Therefore the
entry values can point to complicated strucutres and are not restricred to IDP
labels.

• There is no owner field for the QREP. Since the QREP is intented to general pur-
pose use, we did not include any ownership strategy since this can vary according
to the Brick(compartment) using the quickRep. If you need to use such strategies,
use a structure as a value with an owner field in it.

• There is no age field since there is no garbage collection strategy (generic purpose
use). Same as for the previous bullet, if you need to have a garbage collection
strategy, add the needed field to the strucure that you use as a value for the QREP
entries.

8.5 The Quickrep API

Internally, the Qrep has two management hash tables, one for storing the entries and
the other to associate keywords to entries. The sizes of the two tables are tuneable at
initialization and may influence on the performance of the Qrep.

Repository initialization : First of all, a QRep is of the following type (defined in
quickRepository.h)

struct QREP exampleQrep;

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 86

This structure contains pointers to the entries table and keyword table mentionned
above. Those tables need to be initialized i.e allocated. To initialize the repository use
the function :
int initQRepository(struct QREP *rep, int hashMaskEntryTab ,

int hashMaskKeyTab);

Where:

• rep points to the struct QREP to be initialized.

• hashMaskEntryTab will define the size of the entries hash table. This size is
2hashMaskEntryTab.

• hashMaskKeyTab will define the size of the keywords to entries mapping hash
table. This size is 2hashMaskKeyTab.

Please note that the two hashTables have a hash collision management mechanism
using chained lists. This implies that even if the size of the hash tables is choosed to be
small, we still can store an unlimited number of entries in the QRep. However, a small
hash table size implies low performance since we would be “travelling” through huge
chained lists.

Repository destruction :

void freeQRepository(struct QREP *exampleRep ,
freeValFunction_t freeValFct);

This function frees the quickREP, i,e the two allocated hash tables, and the entries
they contain. Since the values stored can be in some cases structures, the user must
provide the function to free them correctly. This function must take only one void ∗
argument that is the pointer to the Entry’s value. This function f reeValFct will be
applied to each value member of every QREP entry in the exampleRep QRep. The
f reeQRepository function will then free the two allocated hash Tables.

Repository purge :

void purgeQRepository(struct QREP *exampleRep ,
freeValFunction_t freeValFct);

This function does the same as f reeQRepository except that is does not deallocate the
hash tables. It just frees all the entries they contain. We provide this function in case a
Brick wants to periodically delete all entries as a data refresh strategy.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 87

Adding Qrep entries : To add Qrep entries, first you need to allocate them using :
struct QREPEntry *allocateQREPEntry(char *name , int nameLen ,

void *value , int valueSize);

Where:

• name is the unique name for the Qrep entry. The character string will be copied
to the QRep entry structure, i.e you can later on free the name pointer without
affecting the Qrep entry

• nameLen is the size in bytes of the entry name

• value points to the value associated to this entry. The pointed value is also copied
to the QRep entry structure, i.e you can free the value pointer without affecting
the Qrep entry

• valuesize is the size in bytes of the memory slot pointed by value. This is needed
since we do a copy of the the value to store

This function returns an allocated struct QREPEntry containnig a copy of the names
and value passed as arguments. A NULL pointer is returned in case of error.

Before adding the entry to the QREP, we need to associate a set of keywords to it
that would be used as a way to look the entry up in the QREP. Please note again that
this has to be done before adding the entry to the QREP that we will show later.

To associate a keyword to an entry use the function
int addKeywordToEntry(struct QREPEntry *entry , char *keyWord);

Where:

• entry is a previously allocated QREPEntry to which we want to associate the
keyword

• keyWord is the character string of the keyword

In case you have multiple keywords to associate to the entry, use the
addKeywordToEntry function in a loop. This function returns 0 on success and -1 in
case error occurred.

Now that we have a full QREP entry (name+value+keywords), we add it to the
repository using:

int addQREPEntry(struct QREP *rep, struct QREPEntry *entry);

Where:

• rep is the Qrep to add the entry to.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 88

• entry is the QRep entry to add.

This function returns 0 on success and -1 if error.

Removal of a single entry: To correctly remove an entry from the QREP (i.e with
updates of the keywords to entry mapping) and free the QREPEntry structure use:
int freeQREPEntry(struct QREP *rep, struct QREPEntry *entry ,

freeValFunction_t freeValFct);

Where:

• rep is the Qrep to remove the entry from.

• entry is the QRep entry to free.

• f reeValFct points to the function to correctly free the entry’s value.

QREP querying: There are two ways extract entries from the QREP. If you know the
unique name of the entry you’re interested in, use:

struct QREPEntry * getQREPEntryByName(struct QREP *rep, char *name);

On success (found the entry), this function returns a pointer to the entry in the QREP.
To access the value, of this entry, use the field value of the QREPEntry strucutre. For
example, if you stored the returned pointer in a variable called returnedEntry, the value
would be acessible using returnedEntry− > value. On error (entry not found), the
function returns a NULL pointer.

Another way to get entries from the QREP is to use the boolean queries with this
function:
int QREPfindByQuery(struct QREP *rep, char *query ,

struct QREPKeyObjectList **res);

Where:

• rep is the target QREP

• query is the character string of the boolean query

• res is a pointer to the pointer that will contain the matching entrie’s list

This function returns 0 on success and -1 if error (bad query). The boolean query strings
are expressed in a similar way to those of the KVR with the same operators. On success,
the res pointer now points to the list of entries in the KVR matching this query.

The struct QREPKeyOb jectList defined in quickRepository.h simply a chained
list of QREP entry pointers as you can see below:

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 89

struct QREPKeyObjectList{
struct QREPEntry *entry;
struct QREPKeyObjectList *next;

};

Walk through this chained list using the next pointer (untill hitting a NULL pointer) and
you can access all QREP entries.
Important: Once you are done with the results of the query, do not forget to free the
chain of results, i.e the chained list of QREPKeyOb jectList. To do so , you can use the
following function:
void QREPfreeQueryRes(struct QREPKeyObjectList *list);

this function does not free any entry in the QREP (in fact it receives no pointer to a
QREP), it just frees the chained list of structres used to store pointers to query matching
QREP entries.

Apply a function to all entries values: This is a miscellanous functionnality we pro-
vide in case you need to frequently apply a function to all the QREP entries you stored.
This might be useful for example in case you want to implement a garbage collection
strategy and need to check the “age” of each entry. To do so use the function:
void applyToAllQREPEntries(struct QREP *rep,

valueFunction_t valueFunction , void *aux)

Where:

• rep is the target QREP

• valueFunction is the function to apply to all Entries. To be called correctly, this
function needs to be of the prototype :
typedef void (*valueFunction_t) (void *value , void *aux);

Where value would be the pointer to the Entry and aux an auxillary argument.

• aux is the auxillary argument that will be passed to the called function valueFunction

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 90

Chapter 9

Generic ANA Locks

9.1 What is it?

Since callback functions, threads and timers provide many opportunities for concurrent
data manipulation, the ANA-core provides a generic locking mechanism. It is important
to protect all data structures which may be manipulated by more than one function. E.g.
one function may add an element to a list, whereas another function may delete one.
Without locks, this situation may lead to a race condition, which could end in illegal
memory access or in a destroyed list.

9.2 Files

ANA locks are implemented in a single header file:

• C/include/analock.h : Implementation of ANA locks

9.3 How shall I use ANA locks?

To be able to use ANA locks, one simply has to include the analock.h header file in its
code.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 91

9.4 The ANA lock API

The current API consists of the following functions:

int analock_init(analock_t *mylock);

int analock_lock(analock_t *mylock);

int analock_unlock(analock_t *mylock);

int analock init(analock t *mylock)
Initializes the lock mylock. To be called before the lock mylock is used the first time.
returns 0 on success, -1 otherwise;

int analock lock(analock t *mylock)
analock lock blocks until it is safe to enter the critical section.
returns 0 on success, -1 otherwise (e.g. if the lock was not initilized).

int analock unlock(analock t *mylock)
analock unlock has to be called upon leaving a critical section.
returns 0 on success, -1 otherwise (e.g if the lock was not initialized).

9.5 Example

analock_t lock;

static int brick_start(struct anaMinmexSpecs_s *myminmex) {
analock_init(&lock);
analock_lock(&lock);
//critical section
analock_unlock(&lock);

}

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 92

Chapter 10

Miscellanous functions of the API

10.1 Wrapper functions

All the functions defined in this section can be found in the files
C/include/anaCommon.h, C/include/gatesCommon.h ,C/shared/gatesCommon.c,
bricks/API/AL0/AL0GatesInternal.c/h and C/shared/anaCommon.c. They are used by
both the MINMEX and the bricks.

Because we want to offer to the programmer the possibility to develop a code that
is indifferent to the execution mode (userspace or kernel), we provide a set of wrap-
per functions to some of the most basic C functions. Also because most programmers
are more familiar with userspace programming, we provide the necessary code to sup-
port userspace functions for kernel compilation. For example, one can simply use the
malloc function in a brick: shall it be compiled for the kernel, the function malloc will
be replaced by its kernel equivalent (kmalloc). The functions currently supported are:
malloc, free, random, atoi, inet addr, sleep, gettimeofday.

In addition, some more complex primitives are currently wrapped in functions that
have the ’Wrapper’ suffix in their names. These functions are mostly used for the gates
communication between the gates plugin and the bricks. Note that bricks typically use
the ANA API to communicate so one should not directly use the standard socket API in
ANA.

• int sockCreateWrapper(void *toReturnSock , int domain , int type ,
int protocol);

Wrapper to socket function in user space and sock create in kernel mode.
toReturnSock is the pointer to the socket descriptor to be filled (for userspace,
this would a int ∗ pointer to the integer where to store the descriptor of the new
socket), i.e after calling this function the newly created socket is accessible with
the descriptor toReturnSock. The returned integer is just an error code (not a
result descriptor). The function returns 0 on success and -1 in case of error (bad
arguments);

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 93

• void closeWrapper(void * sock);

Wrapper to userspace close function. Due to the fact that in kernel mode this
function calls sockrelease function, it should be used only to close sockets.

• int bindWrapper(void * sock , struct sockaddr * address , int size);

Wrapper to userspace bind function. Assigns a name to a socket. For user space,
on success, zero is returned , on error, -1 and errno is set ppropriately.

• int setSockOptWrapper(void *sock , int level ,int op, char * optval ,
int optlen);

Wrapper to userspace setsockopt function and kernel sock setsockopt. Manipu-
lates the options associated with a socket. Returns the called native function error
code.

• int readWrapper(void *sock , char * data , int len);

Wrapper to the function read in user space and sock recvmsg for kernel. Attempts
to read up to len bytes from socket sock into the buffer starting at data. Returns
the effetive number of read bytes.

• anaPrint(level , fmt, args...);

Wrapper to the print f and printk functions. The level indicates a debugging
level you choose for your message. This would decide wether your message gets
printed or not according to the debugging level your code will be runned in. The
debug levels are the following :

1. ANA EMERG : emergency, something really bad happend

2. ANA ERR : error condition e.g system drops a packet, a lookup fails

3. ANA NOT ICE : normal situation, worthy to note

4. ANA DEBUG : debuging information

The other anaPrint argument are similar to print f , first the format string then the
needed variables according to the format.

FP6-IST-27489 ANA Project - Deliverable D.1.11 - ANA Core Documentation Page 94

