
October 2011 8063762 Rev 9 1/246

UM1294
User manual

ST200 Micro Toolset

Introducing the ST200 Micro Toolset

The ST200 Micro Toolset is a cross-development system for developing and debugging C 
and C++ embedded applications on STMicroelectronics’ range of products integrating the 
ST200 cores. All ST200 devices include the debug support unit (DSU), available through the 
JTAG port of the device, which provides access to on-chip debugging capabilities such as: 
code and data breakpoints, watchpoints and memory peeking and poking.

The ST200 Micro Toolset provides an integrated set of tools to support the development of 
embedded applications.

This user manual provides detailed information to:

● enable users to run and debug code built for the ST200 family of processors on silicon 
and simulated targets

● enable users to customize and extend the support of the ST200 Micro Toolset for new 
hardware platforms that use ST200 processors

www.st.com

http://www.st.com


Contents ST200

2/246  8063762 Rev 9

Contents

Introducing the ST200 Micro Toolset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Document identification and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

License information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ST200 documentation suite  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Conventions used in this guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Toolset overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Toolset features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Distribution content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Configuration scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4 Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Libraries delivered  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 The C library (newlib) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 The C++ library (libstdc++)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 The libdtf library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.4 The syscalls low-level I/O interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Release directories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 The documents directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 GDB command scripts directory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 The examples directory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Introducing OS21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 OS21 features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Code development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Toolset overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 st200cc command line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



ST200 Contents

8063762 Rev 9 3/246

4 Board target configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Configuring the run-time code for a target  . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 The sysconf code module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Generating code for a board target  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Understanding target dependent settings  . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Toolset configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Configuration matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Customizing board targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Overriding the memory layout of an existing board target . . . . . . . . . . . 34

4.3.2 Modifying the memory protection settings . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Defining a custom board target and compiling a program . . . . . . . . . . . 35

4.3.4 Building and debugging a program on a custom board target . . . . . . . . 37

4.4 Customizing SoC targets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Defining a custom SoC target  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Cross development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Loading and executing a target program  . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Target code structure and initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Target address space usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.2 Initialization sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.3 Start parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.4 Other initializations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.5 Initialization hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 The GNU debugger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Using GDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 The .lxgdbinit file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.3 Connecting to a running target  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.4 GDB command line reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.5 GDB command quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.6 ST200 GDB commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Using st200xrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.1 Setting the environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.2 st200xrun command line reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.3 st200xrun command line examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Contents ST200

4/246  8063762 Rev 9

6 Using STWorkbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Getting started with STWorkbench  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.1 The STWorkbench workbench  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 STWorkbench tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 ST200 System Analysis tutorials and reference pages  . . . . . . . . . . . . . . 63

7 Using Insight  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Launching Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Using the Source Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.1 Source Window toolbar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.2 Context-sensitive menus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3 Debugging a program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4 Changing the target  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.5 Configuring breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.5.1 The Breakpoints window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.6 Using the help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.7 Using the Stack window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.8 Using the Registers window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.9 Using the Memory window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.9.1 Displaying multiple Memory windows  . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.10 Using the Watch window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.11 Using the Local Variables window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.12 Using the Console Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.13 Using the Function Browser window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.14 Using the Processes window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.15 Using the ST200 Statistics window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.16 Using the Performance Monitoring window  . . . . . . . . . . . . . . . . . . . . . . . 81

7.17 Using the Debug Support Unit Window  . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.17.1 Editing a DSU register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



ST200 Contents

8063762 Rev 9 5/246

8 ST200 simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1 Simulator pack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1.1 Customized simulator targets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1.2 Simulated boards naming convention  . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.3 Simulator targets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2 Target configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.3 The sample device plugin for the ST200 simulator  . . . . . . . . . . . . . . . . . 90

8.3.1 Callbacks into the simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3.2 Building and running the plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9 OS21 source guide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.1 Configurable options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.1.1 Configurable options in the standard OS21 libraries . . . . . . . . . . . . . . . 93

9.2 Building the OS21 board support libraries . . . . . . . . . . . . . . . . . . . . . . . . 94

9.2.1 Adding support for new boards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.3 GDB OS21 awareness support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.3.1 Generation of the shtdi server data tables . . . . . . . . . . . . . . . . . . . . . . . 95

10 Booting OS21 from Flash ROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.1 Overview of booting from Flash ROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

11 OS21 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11.1 User trace records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11.1.1 os21usertrace host tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11.1.2 User definition file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11.1.3 os21usertracegen host tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.1.4 os21usertracegen example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.2 Print a string to the OS21 Trace buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.3 Building an application for OS21 Trace  . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.4 Running the application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.4.1 Trace buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.5 Analyzing the results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.5.1 Usage of the -m mode option  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.5.2 os21decodetrace control file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



Contents ST200

6/246  8063762 Rev 9

11.6 Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.6.1 OS21 activity and OS21 API trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.6.2 User API and user activity trace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.7 Trace overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.8 Structure of trace binary files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.8.1 os21trace.bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.8.2 os21trace.bin.ticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.8.3 os21tasktrace.bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.9 GDB commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.9.1 Buffer full action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.9.2 Enable OS21 Trace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.9.3 Enable trace control commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.9.4 Enable OS21 activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.9.5 Enable OS21 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.9.6 Enable OS21 activity event  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.9.7 Enable OS21 API function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.9.8 Enable task information logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.9.9 Dump buffer to file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.9.10 Flush buffers and reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.9.11 Type and event enables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.10 User GDB control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.10.1 User activity control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.10.2 User API control commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.10.3 Miscellaneous commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11.11 Trace library API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.12 Variables and APIs that can be overridden  . . . . . . . . . . . . . . . . . . . . . . 138

11.13 User trace runtime APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.13.1 User activity control APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.13.2 User API control APIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

11.13.3 User activity APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.14 Correspondence between GDB commands and APIs . . . . . . . . . . . . . . 142

11.15 Trace always on  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



ST200 Contents

8063762 Rev 9 7/246

12 Relocatable loader library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

12.1 Run-time model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

12.2 Relocatable run-time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

12.2.1 The relocatable code generation model . . . . . . . . . . . . . . . . . . . . . . . . 148

12.3 Relocatable loader library API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

12.3.1 rl_handle_t type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

12.4 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.4.1 Memory allocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.4.2 File management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.5 Building a relocatable library or main module  . . . . . . . . . . . . . . . . . . . . 161

12.5.1 Importing and exporting symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

12.5.2 Optimization options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

12.6 Debugging support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

12.7 Profiling support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.8 Memory protection support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

12.9 Load time decompression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

13 Dynamic OS21 profiling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

13.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

13.2 Building an application for dynamic OS21 profiling  . . . . . . . . . . . . . . . . 168

13.3 Running the application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

13.4 GDB commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

13.5 Analyzing the results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.7 Profiler library API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.7.1 Function definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.7.2 Overrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Appendix A Toolset tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.1 Managing memory partitions with OS21 . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.2 Memory managers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.3 OS21 scheduler behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.4 Managing critical sections in OS21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.4.1 task / interrupt critical sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.4.2 task / task critical sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Contents ST200

8/246  8063762 Rev 9

A.5 Access to uncached memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.6 Debugging with OS21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.6.1 Understanding OS21 stack traces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.6.2 Identifying a function that causes an exception  . . . . . . . . . . . . . . . . . . 184

A.6.3 Catching program termination with GDB  . . . . . . . . . . . . . . . . . . . . . . . 186

A.7 General tips for GDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.7.1 Handling target connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.7.2 Windows path names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.7.3 Power up and connection sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.8 Polling for keyboard input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.9 Just in time initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.10 Using Cygwin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.11 Watchpoint support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Appendix B ST200 board support package (BSP). . . . . . . . . . . . . . . . . . . . . . . 191

B.1 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.2 Caches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.2.1 Managing the caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.2.2 Cache header file: machine/bsp/cache.h . . . . . . . . . . . . . . . . . . . . . . . 192

B.2.3 L2 cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.3 Memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.3.1 Initial memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.3.2 Managing the MMU  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.3.3 MMU header file: machine/bsp/mmu.h . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.3.4 Speculative control unit (SCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.4 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.4.1 Input clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.4.2 Tick duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.4.3 Reading the current time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.4.4 ST200 timer assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.4.5 Timer header file: machine/bsp/timer.h. . . . . . . . . . . . . . . . . . . . . . . . . 197

B.5 Performance monitor (PM)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B.5.1 Hardware abstraction layer for the PM module. . . . . . . . . . . . . . . . . . . 198

B.6 Exception handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B.6.1 Exceptions types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B.6.2 Exceptions header file: machine/bsp/core.h . . . . . . . . . . . . . . . . . . . . . 199



ST200 Contents

8063762 Rev 9 9/246

B.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.7.1 Interrupt handler installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.7.2 Interrupts header file: machine/bsp/interrupt.h . . . . . . . . . . . . . . . . . . . 200

B.8 User handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B.9 Retrieving internal run-time data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.10 BSP function definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Appendix C Branch trace buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

C.1 Branch trace buffer modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

C.2 The branchtrace command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

C.3 Output format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Appendix D Profiler plugin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

D.1 Profiler plugin reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D.2 Trace profile output format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

D.3 Range profile output format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

D.4 ST Micro Connect configuration options . . . . . . . . . . . . . . . . . . . . . . . . . 231

D.5 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Appendix E ST TargetPack plugin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

E.1 The targetpack command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Appendix F GDB os21_time_logging user command. . . . . . . . . . . . . . . . . . . . 235

Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240



Preface ST200

10/246  8063762 Rev 9

Preface

Comments on this manual should be made by contacting your local STMicroelectronics 
sales office or distributor.

Document identification and control
Each book carries a unique identifier of the form:

nnnnnnn Rev x

where nnnnnnn is the document number, and x is the revision.

Whenever making comments on this document, quote the complete identification 
nnnnnnn Rev x.

License information
The ST200 Micro Toolset is based on a number of open source packages. Details of the 
licenses that cover all these packages can be found in the file license.htm. This file is 
located in the doc subdirectory and can be accessed from index.htm.

ST200 documentation suite
The ST200 documentation suite comprises the following volumes:

ST200 Micro Toolset user manual (8063762)

This manual describes the overall contents of the ST200 Micro Toolset, including brief 
introductions to the code development tools, the OS21 run-time kernel library and the 
STWorkbench interactive development environment. It describes in detail the 
cross-development tools used to run and debug an ST200 binary executable on an ST200 
simulator or on a silicon target system including an ST200 CPU core. It describes the target 
libraries available and also how to configure the toolset to support a new type of target.

ST200 Micro Toolset compiler manual (7508723)

This manual provides a detailed guide to using the ANSI C and C++ compiler drivers for 
compiling and linking source code to produce an executable binary. The compiler drivers 
are introduced in terms of how they fit into the complete ST200 toolchain. The manual then 
concentrates on the facilities provided by the compiler drivers to produce efficient code. It 
covers: command line options, predefined macros, supported pragmas, compiler 
optimization techniques, GNU C and C++ language extensions and asm construct, the 
assembly language and intrinsic functions.

ST200 Run-time architecture manual (7521848)

This manual describes the common software conventions for the ST200 processor run-time 
architecture.



ST200 Preface

8063762 Rev 9 11/246

OS21 user manual (7358306)

This manual describes the royalty free, light weight, OS21 multitasking operating system.

OS21 for ST200 user manual (7410372)

This manual describes the use of OS21 on ST200 platforms. It describes how specific 
ST200 facilities are exploited by the OS21 API. It also describes the OS21 board support 
packages for ST200 platforms.

ST200 ELF specification (7932400)

This document describes the use of the ELF file format for the ST200 processor. It provides 
information needed to create and interpret ELF files and is specific to the ST200 processor.

ST231 Core and instruction set architecture (7645929)

This manual describes the architecture and the instruction set of the ST231 core as used by 
STMicroelectronics.

ST240 Core and instruction set architecture (8059133)

This manual describes the architecture and the instruction set of the ST240 core as used by 
STMicroelectronics.

Terminology
The first ST Micro Connect product was named the “ST Micro Connect”; it is now known as 
the “ST Micro Connect 1” and the term “ST Micro Connect” is used to refer to the family of 
ST Micro Connect devices. The “ST Micro Connect 2” replaces the “ST Micro Connect 1”. 
These names are abbreviated to “STMC”, “STMC1” and “STMC2”.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:

● sample code, keyboard input and file names,

● variables, code variables and code comments,

● equations and math,

● screens, windows, dialog boxes and tool names,

● instructions.

Hardware notation

The following conventions are used for hardware notation:

● REGISTER NAMES and FIELD NAMES,

● PIN NAMES and SIGNAL NAMES.



Preface ST200

12/246  8063762 Rev 9

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF) unless otherwise 
specified.

● Terminal strings of the language, that is those not built up by rules of the language, are 
printed in teletype font. For example, void.

● Non-terminal strings of the language, that is those built up by rules of the language, are 
printed in italic teletype font. For example, name.

● If a non-terminal string of the language starts with a non-italicized part, it is equivalent 
to the same non-terminal string without that non-italicized part. For example, 
vspace-name.

● Each phrase definition is built up using a double colon and an equals sign to separate 
the two sides (‘::=’).

● Alternatives are separated by vertical bars (‘|’).

● Optional sequences are enclosed in square brackets (‘[’ and ‘]’).

● Items which may be repeated appear in braces (‘{’ and ‘}’). 

Mathematical notation

A range of values can be shown using square braces, [], and round braces, (). Square 
braces mean the nearest value is included, and round braces mean the nearest value is not 
included.

For example:

Acknowledgements
Microsoft®, MS-DOS® and Windows® are registered trademarks of Microsoft Corporation in 
the United States and/or other countries. 

Linux® is a registered trademark of Linus Torvalds. 

Red Hat® is a registered trademark and RPMTM and InsightTM are trademarks of Red Hat 
Software, Inc.

CygwinTM and InsightTM are trademarks of Red Hat Software, Inc.

UNIX® is a registered trademark of The Open Group.

[1 .. 3] is the values 1, 2, 3

[1 .. 3) is the values 1, 2

(1 .. 3] is the values 2, 3

(1 .. 3) is the value 2 only



ST200 Toolset overview

8063762 Rev 9 13/246

1 Toolset overview

The ST200 Micro Toolset is a cross-development system for developing and debugging C 
and C++ embedded applications on STMicroelectronics’ range of products integrating the 
ST200 family of cores. 

All ST200 devices include the debug support unit (DSU), available through the JTAG port of 
the device, for on-chip debugging capabilities such as: code and data breakpoints, 
watchpoints and memory peeking and poking.

The ST200 Micro Toolset provides an integrated set of tools to support the development of 
embedded applications.

1.1 Toolset features
The ST200 Micro Toolset has the following features.

● Supported host platforms
The toolset is available on Windows XP and Windows 7 and Red Hat Linux Enterprise 
Workstation Version 4.0 and 5.0 for x86. 

● Code development tools (assembler, compiler and linker) 
Program development is supported by the GCC compatible optimizing C and C++ 
compilers, GNU assembler, linker and archiver (librarian) tools.

● The ST200 simulator
This provides an accurate software simulation of the entire family of 
STMicroelectronics’ ST200 CPU cores.

● Cross development with GDB
The GNU debugger (GDB) supports both the ST200 simulator and the hardware 
development boards. GDB also includes a text user interface and the Insight GUI as a 
graphical user interface on all supported host platforms. The st200xrun tool is also 
available to provide a command line driven interface to simplify downloading and 
running applications on the supported targets using GDB.

● STWorkbench Integrated Development Environment (IDE)
The STWorkbench is built on the Eclipse IDE. The framework is extended using the 
CDT (C/C++ Development Tools) and ST200 specific plugins which provide a fully 
functional C and C++ IDE for STWorkbench. This allows the user to develop, execute 
and debug ST200 applications interactively. Additionally, the ST Profiler and Coverage 
features enable profiling and coverage analysis to be collected.

● OS21 real-time kernel
The software design of embedded systems is supported by a real-time kernel (OS21) 
which facilitates the decomposition of a design into a collection of communicating tasks 
and interrupt handlers. 

● A C/C++ run-time system 
The newlib C library provides ANSI C/C++ run-time functions including support for C 
I/O using the facilities of the host system. The C++ run-time system is provided by the 
GNU GCC libstdc++ library which includes support for the STL and iostream ISO C++ 
standard libraries.

● File I/O is provided as well as terminal I/O



Toolset overview ST200

14/246  8063762 Rev 9

● Trace and statistical data analysis tools
The ST200 simulator provides tools to visualize performance information and for the 
ST240, GDB branch trace facilities are supported.

● Rebase tool
The st200-rebase tool enables the memory layout of an application to be changed 
after linking and is described in the ST200 Micro Toolset compiler manual (7508723).

● Flash ROM examples
Several Flash ROM examples are provided. These create applications which are able 
to boot from ROM on the supported targets.

● Support for the ST Micro Connect
Provides the download route to the board through the JTAG interface. The ST Micro 
Connect supports download through Ethernet from any host machine. The ST Micro 
Connect interface is connected to the DSU unit of the target device, which is used to 
control and communicate with the device during development. 

● ST TargetPacks
ST TargetPacks are a method of describing target systems based on SoC devices. ST 
TargetPacks provide a single, definitive description of a target system for use by 
various tools within the development environment (such as st200xrun).

● Profiler support
Performance data can be obtained when running an application on an ST200 simulator 
and used to generate statistical and trace information. Performance data can also be 
acquired from an application running on a target board connected to an ST Micro 
Connect. The data can be analyzed using STWorkbench or a tool such as st200gprof.

The targets supported by the ST200 toolset are:

● STMicroelectronics development boards
These boards provide development platforms for the STMicroelectronics 
system-on-chip devices which use the ST200 cores.

● ST200 simulator

GDB command scripts for simulator targets can be found in the directory lx-elf32.

1.2 Distribution content
The ST200 Micro Toolset distribution includes tools, libraries, configuration scripts and 
examples.

1.2.1 Tools

From the binutils GNU package

st200as GNU assembler

st200ld GNU linker

st200addr2line Convert addresses into file names and line numbers 

st200ar Create, modify, and extract from archives

st200++filt Demangle encoded C++ symbols 

st200gprof GNU profiler



ST200 Toolset overview

8063762 Rev 9 15/246

From the GNU make package

From the GCC GNU package

From the GDB/Insight GNU package

Others

1.2.2 Libraries

There are libraries for each of the possible target configurations supported by st200cc: one 
version for each permutation of the ST200 specific compiler options that affect code 
generation and for the Application Binary Interface (ABI), such as floating-point and 
endianness. Therefore, whatever permutation a user program is compiled against, a library 

st200nm List symbols from object files 

st200objcopy Copy and translate object files

st200objdump Display information from object files

st200ranlib Generate index to archive contents

st200readelf Display the contents of ELF format files

st200size List file section sizes and total size

st200strings List printable strings from files

st200strip Discard symbols

mingw32-make GNU make (only on MS Windows)

gcov GNU test coverage tool

gcov-dump GNU tool to print coverage files content

st200gdb GNU target debugger

st200insight Graphical User Interface for the debugger

st200c++ GCC compatible optimizing C++ compiler

st200cc GCC compatible optimizing C compiler

st200xrun ST200 target loader

os21decodetrace Decode tool for OS21 Trace

os21prof OS21 profiler (implemented as a Perl script)

st200-rebase Enables the application’s memory layout to be changed after linking.

st200rltool Relocatable library tool (implemented as a Perl script)

st200version Display of the ST200 toolset version

st200symbolise

st240symbolise

Augment the simulator STISS trace information



Toolset overview ST200

16/246  8063762 Rev 9

with the same permutation (except for optimizations) exists and is automatically selected by 
the compiler driver.

Compiler run-time libraries

An ISO/ANSI C run-time library (libc and libm) and header files. The run-time libraries also 
provide support for low-level I/O and additional math functions.

The low-level I/O is implemented by the libdtf library (libdtf, see Section 1.3.3 on page 18.), 
and a run-time library (libgprof) is also provided to support profiling with st200gprof.

An ISO/ANSI C++ run-time library (libstdc++) and header files supporting I/O streams and 
the standard templates library (the STL).

Compiler support libraries

Compiler intrinsic libraries (libgcc and variants) and a run-time library libgcov to support 
code coverage with st200gcov are also provided. 

Others

● The OS21 real-time kernel library and header files, and OS21 board support libraries 
for the various supported platforms.

● The relocatable loader library and header files.

1.2.3 Configuration scripts

st200gdb, st200insight and st200xrun need a set of GDB command scripts to establish 
connections to:

● hardware targets supported by ST TargetPacks (supplied with the ST Micro 
Connection Package)

● hardware targets not supported by a TargetPack, in this case the configuration scripts 
implement the connection procedures

● simulator targets

To retrieve the configuration scripts, st200gdb, st200insight and st200xrun 
automatically, read the GDB startup script file (.lxgdbinit) found in the subdirectory 
lx-elf32/stdcmd of the ST200 Toolset installation directory.

Note: ST TargetPack, the connection support package for ST200 hardware platforms, is 
described in the ST TargetPack user manual (8020851). The simulator pack, which has the 
same role for simulated targets, is described in Section 8.1: Simulator pack on page 84.

1.2.4 Sources

This package contains full sources for the OS21 real-time kernel library. The combined 
source package containing the open source components of the ST200 Micro Toolset can be 
found on the ftp site from which the toolset was obtained.

1.2.5 Examples

Various example applications including those using OS21 and illustrating the construction of 
Flash ROM systems are supplied, see Section 1.5: The examples directory on page 20. 



ST200 Toolset overview

8063762 Rev 9 17/246

1.3 Libraries delivered
ANSI/ISO C and C++ run-time libraries and header files are shipped with the ST200 Micro 
Toolset supporting both OS21 and bare machine applications for various target application 
configurations. 

Note: A bare machine application is a non-OS21 application built without real-time kernel libraries.

Figure 1. The relationship between the libraries

The header files shipped with the toolset are located in the include subdirectory of the 
release installation directory and include the header files for OS21 support. The OS21 
header files are located under include/os21. The target specific libraries are made 
available including the header file include/platform.h.

1.3.1 The C library (newlib)

newlib implements a version of the C library that is suitable for use in embedded systems. 
newlib supports the most common functions used in C programs, but not the more 
specialized features available in standard operating systems such as networking support. 

Note: Wide character support is not enabled in the supplied version of newlib.

newlib assumes a minimal set of OS interface functions (the syscalls API). These provide 
all the I/O, and process entry and exit control functions required by programs using newlib. 
The syscalls API is implemented by the libdtf library.

Application

C++
Program
code

Back end
interface

Communication

System

libstdc++.a
OS21

libos21.a libbsp.a

Relocatable loader
librl.a librl_s.so

syscalls

Data transfer format

ST200 simulator Hardware

Target-specific 
libraries

libcore.a 
libsoc.a 

libboard.sa

newlib
libc.a 
libm.a

Compiler 
intrinsic library

iibgcc.a 

libgcc_eh.a



Toolset overview ST200

18/246  8063762 Rev 9

1.3.2 The C++ library (libstdc++)

The C++ library is part of GNU Compiler Collection and uses the underlying C library for its 
basic functionality.

1.3.3 The libdtf library

libdtf is intended to be the newlib backend library. To enable access to I/O and other 
system resources through a standardized trap interface recognized by the GNU GDB 
simulator, libdtf implements the interface between newlib and the underlying system.

The data transfer format (DTF) component

The DTF component of the libdtf library implements the POSIX I/O mechanism used with 
the ST Micro Connect or the ST200 simulator. It implements most of the basic file I/O 
features required by the C library. The debug link performs the I/O and requires the correct 
host side software to be present (the supplied GDB connection commands handle this 
automatically).

1.3.4 The syscalls low-level I/O interface

The syscalls low-level I/O interface consists of the following functions. The functions are:

_chmod, _chown, _close_r, _creat, _execv, _execve_r, _exit, _fork_r, 
_fstat_r, _getenv, _getpid_r, _gettimeofday_r, _kill_r, _link_r, 
_lseek_r, _open_r, _pipe, _pollkey, _raise, _read_r, _readenv_r, 
_rename_r, _sbrk_r, _stat_r, _system_r, _times_r, _unlink_r, 
_utime, _wait_r, _write, __setup_argv_and_call_main, __writev, 
isatty.

The syscalls functions provide all the I/O, entry and exit, and process control routines that 
newlib requires.

DTF provides four additional functions: 

opendir, closedir, readdir, rewinddir.

The example provided with the toolset contains minimal implementations of the functions. 
These versions are sufficient to compile, link and execute an application (see the syscalls 
directory in the examples directory). However, the application cannot perform I/O or utilize 
any of the services that these functions provide until fully implemented versions are 
provided.

The example implementation provides an overview of each function but for further 
information the POSIX standard should be used as a reference.

Note: It is not required to implement all functions.



ST200 Toolset overview

8063762 Rev 9 19/246

1.4 Release directories
Table 1 lists the directories of the installation. Some of these directories are described in 
more detail in the following sections.

         

1.4.1 The documents directory

Several HTML files are provided to navigate the documentation. These can all be accessed 
from the index.htm file in the release installation directory. Table 2 lists the main pages.

         

Table 1. The release directories

Directory Contents

bin The tools.

doc
The documentation set, see Section 1.4.1: The 
documents directory.

examples Example applications.

include C/C++ library header files.

lib/cmplrs Host compiler library files.

lib/<core>/<endianess>/<runtime> Run-time library files.

lx-elf32/stdcmd
GDB command script files, see Section 1.4.2: GDB 
command scripts directory.

man man manual pages.

microprobe ST Micro Connect support files.

share GDB GUI configuration files.

src ST200 source files for OS21.

target Target libraries.

Table 2. The HTML files in the doc directory

File Description

acknow.htm The acknowledgements page.

acroread.htm Instructions on installing and using Acrobat Reader.

buglist.htm Known bugs list.

cdmap.htm An index of the information provided.

docbug.htm
Instructions on how to get support on the toolset and report 
problems in the documentation.

docs.htm
A list of the documentation supplied with the toolset. Each 
document can be accessed from this page by clicking on the 
relevant link.

installation_linux.htm Instructions on installing under Linux.

installation_win.htm Instructions on installing under Windows.

licence.htm
Links to each of the licence files that the software is shipped 
under.



Toolset overview ST200

20/246  8063762 Rev 9

1.4.2 GDB command scripts directory

The directory lx-elf32/stdcmd contains GDB command script files for a selection of 
target evaluation boards supplied by STMicroelectronics for which the TargetPack is not 
available and for the simulator targets, see Chapter 8: ST200 simulator on page 83.

1.5 The examples directory
The examples directory has a set of subdirectories with examples of programs that use the 
bare run-time. 

release.htm Release notes.

STS-toolsReg.htm ST200 registration.

versionIDs.htm ST200 cores version identifiers.

Table 2. The HTML files in the doc directory (continued)

File Description

bsptest Usage of the bare run-time (cannot run in OS21 mode).

clock_example Possible implementation of the posix clock() call based on 
ST200 run-time. The clock() function is obtained using the 
bsp_timer_now() function.

cpuclock Contains an example that shows how to measure elapsed 
time between two C-code lines of a ST200 program.

hello Contains a simple “Hello World” program.

hellomulti Contains an example of parallel debugging on multiple ST200 
cores.

lpng125 Contains an implementation of the png library. This is an 
example of a nontrivial application that includes two static 
libraries.

profiling How to build an application for profiling, and how to use 
st200gprof.

sleep Illustrates the use of the system function to execute a 
sleep <seconds> command on the host.

symbolise Illustrates the use of the 
st200symbolise/st240symbolise tool to augment the 
simulator STISS trace with a large amount of information 
delivered from the trace.

syscalls Contains a sample implementation of the syscalls low level 
I/O interface (see Section 1.3.4: The syscalls low-level I/O 
interface on page 18).



ST200 Toolset overview

8063762 Rev 9 21/246

OS21 examples

The examples/os21 subdirectory contains some examples of programs using the features 
of OS21.

os21/autostart Illustrates extending the .init section of an application to 
automatically initialize and start OS21 before main.

os21/dynamic How to build a simple application that loads a dynamic library 
from the host file system.

os21/failsafe Illustrates the use of a “fail-safe application” in the flash layout.

os21/mandelbrot A multi-tasking example that generates a Mandelbrot pattern.

os21/profilingos21 How to use the profiling feature of OS21.

os21/romdynamic How to use the Relocatable Loader Library to load a dynamic 
library from Flash ROM from an application that is boots out of 
Flash ROM.

os21/rombootram Demonstrates how a simple boot from ROM, execute from 
RAM application may be created and written to Flash memory.

os21/rombootrom Demonstrates how a simple boot from ROM, execute from 
ROM application may be created and written to Flash 
memory.

os21/soaktest A simple stress test program, designed to act as a confidence 
test for OS21 running on the target platform.

os21/timer How the OS21 API can implement a simple timer. Tasks are 
able to create timer objects, which have a programmable 
duration, and can run in one shot or periodic mode. When a 
timer fires, a user supplied callback function is called in the 
context of a high priority task. The example contains the 
source for the timer library, and a small test program that uses 
the library.

os21/os21_trace Demonstrates how to extract OS21 system trace information 
from a simple OS21 example using tasks. The example 
makes use of the os21trace library and tools for decoding 
trace output into several readable formats including 
STWorkbench.

 os21/walklight How to use OS21 in a C++ application.



Introducing OS21 ST200

22/246  8063762 Rev 9

2 Introducing OS21

OS21 is a royalty-free, lightweight, multi-tasking operating system developed by 
STMicroelectronics. It is an evolution of the OS20 API and is intended for applications 
where a small footprint and excellent real-time responsiveness are required. It has a multi-
priority preemptive scheduler, with low context switch and interrupt handling latencies.

OS21 assumes an unprotected, single address-space model and is easily portable between 
chip architectures.

OS21 provides an OS20-compatible API to handle task, memory, messaging, 
synchronization and time management. In addition, OS21 enhances the OS20 memory API 
and introduces API extensions to control mutexes, event flags and target-specific APIs for 
interrupts and caches.

OS21 aware debugging is available through GDB.

Multi-tasking is widely accepted as the optimal method of implementing real-time systems. 
Applications can be broken down into a number of independent tasks that co-ordinate their 
use of shared system resources such as memory and CPU time. External events arriving 
from peripheral devices are made known to the system through interrupts.

The OS21 real-time kernel provides comprehensive multi-tasking services. Tasks 
synchronize their activities and communicate with each other through semaphores, event 
flags, mutexes and message queues. Real world events are handled through interrupt 
routines and communicated to tasks using semaphores and event flags. Memory allocation 
for tasks is selectively managed by OS21, the C run-time library or the user. Tasks can be 
given priorities and are scheduled accordingly. Timer functions are provided to implement 
time and delay functions.

An OS21 application is a single executable image(a) that can be loaded on the target either 
through a debug port or from Flash ROM. This single executable is typically written in C and 
statically linked with the C run-time library, the OS21 library and the OS21 board support 
library. The application author has control of initializing the OS21 kernel and switching on 
preemptive multi-tasking support. When the OS21 kernel starts, the full OS21 API can be 
used.

A very simple OS21 application (test.c) is shown below:

#include <os21.h> 
#include <os21/st200.h> 
#include <stdio.h> 

void my_task (char * message) 
{ 
 printf("Hello from the child task.\nMessage is '%s'\n", message); 

} 

int main (void) 
{ 
 task_t * task; 

 kernel_initialize(NULL); 
 kernel_start(); 

a. This executable can load relocatable libraries, see Chapter 12: Relocatable loader library on page 145.



ST200 Introducing OS21

8063762 Rev 9 23/246

 printf("Hello from the root task\n"); 

 task = task_create((void (*)(void*))my_task, 
         "Hi ya!", 
         OS21_DEF_MIN_STACK_SIZE, 
         MAX_USER_PRIORITY, 
         "my_task", 
         0); 

 task_wait(&task, 1, TIMEOUT_INFINITY); 

 printf("All tasks ended. Bye.\n"); 

 return 0; 
} 

To compile and run this program on the ST231 processor of an IPBR1100 platform (mb424) 
connected to an ST Micro Connect with IP address <STMC IP address>:

$> st200cc -mruntime=os21 -mcore=st231 -msoc=sti5300 -mboard=mb424 -o test.out test.c
$> st200xrun -c st200tp -t <STMC IP address>:mb424:st231 -e test.out

The output is:

Hello from the root task
Hello from the child task.
Message is ’Hi ya!’
All tasks ended. Bye.

For more information on OS21, see the OS21 user manual (7358306) and the OS21 for 
ST200 user manual (7410372).



Introducing OS21 ST200

24/246  8063762 Rev 9

2.1 OS21 features
The following summarizes the key features of OS21.

● OS21 is a simple, royalty-free multi-tasking package.

● There is a single address space and single name space (the application has one 
executable image).

● There is a 256 level, priority-based FIFO scheduler.

● It has optional timeslicing.

● It has inter-task synchronization.

● Counting semaphores:

– can be initialized to any count

– can be signalled from interrupts

– for FIFO semaphores, the longest waiting task gets the semaphore

– for priority semaphores, the highest priority task gets the semaphore

● Mutexes can:

– create critical sections between tasks

– be recursively acquired by the owning task without deadlock

– for FIFO mutexes, the longest waiting task gets the mutex

– for priority mutexes, the highest priority task gets the mutex, supports priority 
inheritance to avoid priority inversion

● Event flags where:

– tasks can poll, or wait for all or any event flag within a group

– events can be posted from a task or interrupt

● There is inter-task communication that uses simple FIFO message queues.

● There are user-installable interrupt handlers.

● There are user-installable exception handlers.

● It has extensive cache API.

● The memory management has:

– heaps

– a fixed block allocator

– a simple (non-freeable) allocator

– user-definable allocators

– system heap managed by OS21 or C run-time

● There is task-aware profiling. The OS21 profiler enables profiling of a single task, a 
single interrupt level or the system as a whole

● The Board support package (BSP) libraries enable customization for new boards.

● OS21 is based on the GNU toolset, using newlib C run-time library.



ST200 Code development tools

8063762 Rev 9 25/246

3 Code development tools

This is a brief introduction to the code development tools. For detailed information please 
refer to the ST200 Micro Toolset compiler manual (7508723).

The code development tools are invoked through the st200cc compilation driver tool. Its 
purpose is to manage the stages of the compilation process: preprocessing, compiling into 
assembly language, assembling and linking. 

The assembler file is compiled using st200as and linked using st200ld to provide an ST200 
binary image. All these phases are hidden using the driver tool st200cc. A GNU C++ 
compiler is provided by the driver tool st200c++.

3.1 Toolset overview
The ST200 Micro Toolset is a set of tools that enable C and C++ programs compiled for an 
ST200 target to be simulated on a host workstation or executed on an ST200 target. 

Supported platforms are: 

● RedHat Enterprise Linux 4.0 and 5.0

● Windows XP and Windows 7

The ST200 Micro Toolset is intended for tool developers, for operating system development 
and for applications that require modeling interrupts and real-time behavior. It includes the 
complete set of tools for manipulating ST200 object files and includes the:

● ST200 assembler

● compiler

● linker

● load/run tool

● debugger 

● archiver

ST200 assembler files are translated to ST200 object files that the linker merges to produce 
an ST200 executable image. This image file does not run natively on the host workstation 
and requires an interpreter to be executed. Figure 2 shows the main components of the 
ST200 Micro Toolset.



Code development tools ST200

26/246  8063762 Rev 9

Figure 2. Components of the ST200 Micro Toolset interfaces

Figure 2 does not include the binary optimizer tool (instruction cache placement, dead code 
and dead data elimination) or the profiling feedback optimization (PFO) or the 
interprocedural analysis optimization (IAO).

3.2 st200cc command line
The st200cc compiler driver tool has a large number of command line options, although a 
minimal set of them is required to identify and configure the binaries with the desired 
run-time libraries for a specific target. A minimal command line for st200cc, which 
generates the executable hello.out from the hello.c source file, has the following form.

$> st200cc -mcore=<core> -msoc=<soc> -mboard=<board> -o hello.out hello.c

Where <core>, <soc> and <board> are the system configuration parameters that specify 
the core variant (ST231 or ST240), the system on chip (SoC) and the board for which the 
program is been built. These options are used by the linker, (see Chapter 4: Board target 
configuration on page 27).

This example compiles hello.c using the default run-time library (bare) to be linked with 
the executable and the default mode of endianness (little endianness) used for code 
generation. The endianness can be selected by adding -EB or -EL to the command line. 
The run-time can be selected by adding -mruntime=bare or -mruntime=os21, see 
Appendix B: ST200 board support package (BSP) on page 191 and Chapter 2: Introducing 
OS21 on page 22.

ST200 C/C++ Compiler

ST200 assembler
files (.s)

ST200 assembler

ST200 object file ST200 librariesST200 object file

ST200 linker (st200ld)

ST200 binary (.elf)

ST200 debuggerST200 load/run tool 

(st200as)

(st200xrun) (st200gdb)

target board
boot and sysconf

files

.c source files .cxx source files



ST200 Board target configuration

8063762 Rev 9 27/246

4 Board target configuration

In the context of the ST200 toolset, a board target (or board) identifies:

● a silicon target composed of one core processor on a specific System on Chip (SoC)

● a specific system board

● all the resources assigned to the processor, including:

– the assigned RAM address space (by hardware or software design choices)

– peripherals

For example, the STi7109-Mboard (MB442) is based on one STi7109 SoC, that has one 
ST40 core, two ST231 cores and a complex set of on-chip peripherals. Therefore, this 
system board hosts a number of boards (as intended in the ST200 development system 
terminology) identified as: mb442_audio, mb442_video, mb442_7109_audio, 
mb442_7109_video, mb442_se_7109_audio and mb442_se_7109_video. The toolset 
supports all of these boards.

This chapter describes:

● how to configure the run-time for a board

● the contents of the toolset target-dependent structure and how to configure it with the 
-mcore, -msoc and -mboard toolset options

● how to customize an existing board for customer needs

● how to configure a new board or SoC for an ST200 family core

4.1 Configuring the run-time code for a target
As stated in Section 3.2: st200cc command line on page 26 there are three system 
configuration parameters that are required by st200cc to compile and link an application for 
a specified board target:

● core level

The settings that are related to a core type and independent of either the SoC in which 
the core is embedded, or the board on which the SoC is used.

● SoC level

The settings necessary for a given SoC, independent of any board.

● board level 

The settings required to configure a given board target. For each board, several board 
targets can exist, one for each ST200 CPU.

To configure the execution of the user program so that it is specific for the board target, the 
run-time must be aware of the sysconf parameters. These parameters are hardware 
parameters (such as the core and bus clock frequency) that, together with the handling of 
their access, are found in the sysconf.c module. By default, the sysconf module linked 
with the application fits the needs of all simulator targets. For hardware boards, a dedicated 
sysconf module specific to each board must override the default sysconf.



Board target configuration ST200

28/246  8063762 Rev 9

Note: To load and run an application on a target board or simulator, a detailed description of the 
target system in the form of an ST TargetPack or simulator pack is specified to st200xrun, 
see Chapter 5: Cross development tools on page 40 for details.

To get valid results and for benchmarking purposes, time functions such as clock() 
require a correct run-time configuration.

4.1.1 The sysconf code module

The toolset delivers a set of sysconf code modules located in the 
<tools-dir>/target/board directory. Within the board directory there is one 
subdirectory for each board.

A template directory within the board directory contains a template for sysconf.c The 
template shows where to add code to create a new board target used by the toolset.

The sysconf parameters can be accessed directly from a user program. For example:

#include <stdio.h>
#include <machine/sysconf.h>
main()
{

unsigned int fclock, pclock, ramsize, rambase;
fclock = sysconf(_SC_LX_CORE_CLOCK_FREQ);
pclock = sysconf(_SC_LX_PERIPH_CLOCK_FREQ);
ramsize = sysconf(_SC_LX_RAMSIZE);
rambase = sysconf(_SC_LX_RAMBASE);
printf("cpu clock %dMhz periph clock %dMhz ramsize 0x%8.8x
rambase 0x%8.8\n", clock/1000000, pclock/1000000, ramsize,
rambase);

}

4.1.2 Generating code for a board target

To address an application for a given board target, a specific option must be given at link 
time when generating the application.

src/sysconf.c The module managing sysconf parameters for the corresponding
board target.

board.ld The board target-specific linker directives, including the memory map
definition. It defines the memory configuration for the board target.

makefile The makefile to rebuild bootboard.o and libboard.a.

-mcore=<core_target> Enables the selection of a core target (a specified core 
type). This option automatically adds the bootcore.o and 
libcore.a files to the list of object files to link together and 
automatically selects the core-specific core.ld linker file. If 
the -mcore option is missing, the compiler driver assumes 
“ST231” settings. 



ST200 Board target configuration

8063762 Rev 9 29/246

When the linker is invoked, the selected core.ld, soc.ld and board.ld are 
automatically combined through a general platform.ld file to provide an entire and 
consistent linker script. For example, the command:

<tools-dir>/bin/st200cc -o hello.out -mcore=st231 -msoc=sti7200 
-mboard=mb519_audio0 hello.c

is equivalent to:

<tools-dir>/bin/st200cc -o hello.out \
-EL \
-nostdlib \
-L<tools-dir>/target/core/st231/le/bare \
-L<tools-dir>/target/soc/sti7200/st231/le/bare \
-L<tools-dir>/target/board/mb519_audio0/st231/le/bare \
-L<tools-dir>/lib/st231/le/bare \
<tools-dir>/lib/st231/le/bare/crt1.o \
<tools-dir>/lib/st231/le/bare/crti.o \
<tools-dir>/lib/st231/le/bare/crtbegin.o \
<tools-dir>/target/core/st231/le/bare/bootcore.o \
-I<tools-dir>/target/core/st231 \
-I<tools-dir>/target/soc/sti7200 \
-I<tools-dir>/target/board/mb519_audio0 \
hello.c \
-lc -ldtf -lboard -lsoc -lcore -lgcc \
<tools-dir>/lib/st231/le/bare/crtend.o \
<tools-dir>/lib/st231/le/bare/crtn.o \
-T <tools-dir>/target/platform.ld

-msoc=<soc_target> Enables the selection of a SoC target. This option 
automatically adds the libsoc.a file (located in the 
target/core/<core_target>/<endianness>/<run-
time> directory) to the list of object files to link together and 
automatically selects the core-specific soc.ld linker file. If 
the -msoc option is missing, the compiler driver assumes 
“default” settings. 

-mboard=<board_target> Enables the selection of a board target. This option 
automatically adds the libboard.a file (located in the 
target/board/<board_target>/core/<endianness
>/<run-time> directory) to the list of object files to link 
together and automatically selects the board-specific 
board.ld linker file. If the -mboard option is missing, the 
compiler driver assumes “default” settings. The “default” 
[core, soc, board, endianness] combination chosen by the 
toolset corresponds to [st231, default, default, LE]. 



Board target configuration ST200

30/246  8063762 Rev 9

4.2 Understanding target dependent settings
This section describes the target-dependent contribution to the toolset (that is, core, SoC 
and board contributions). The board/<my_board> directory contains the majority of the 
target-dependent information.

4.2.1 Toolset configuration

To control the executable generation and execution there are three options:

● -mcore adds the core type specific contribution

● -msoc adds the SoC specific contribution

● -mboard adds the board contribution

When one of the options is not defined, the default value is used.

The configuration data related to the target configuration is in the <tools-dir>/target 
directory. 

Table 3 lists the parameters managed by the toolset and how they interact with each other.

         

Table 3. ST200 toolset parameters

Item Set-up by Used by

Core include path Compiler driver C Preprocessor

SoC include path Compiler driver C Preprocessor

Board include path Compiler driver C Preprocessor

Macros (for example, __ST231__...) Compiler driver C Preprocessor

crt1.o Compiler driver Linker

crti.o Compiler driver Linker

crtn.o Compiler driver Linker

crtbegin.o Compiler driver Linker

crtend.o Compiler driver Linker

Core initialization library Compiler driver Linker

Core library search path Compiler driver Linker

SoC initialization library Compiler driver Linker

SoC library search path Compiler driver Linker

Board initialization library Compiler driver Linker

Board library search path Compiler driver Linker

DEFAULT_RAMEND Linker script Linker/loader

DEFAULT_RESET_ADDRESS Linker script Linker/Run-time

DEFAULT_BOOT_ADDRESS Linker script Linker/Run-time

DEFAULT_TEXT_BASE Linker script Linker/Run-time

STACK_POINTER Linker script Linker/Run-time

CPU clock Run-time/simulator Run-time



ST200 Board target configuration

8063762 Rev 9 31/246

The following sections describe the toolset target-dependent settings and how and where to 
configure them. 

Note: In Table 4, Table 5 and Table 6, <endianness> is either le or be, <run-time> is either 
bare or os21 and <my_core> is the core name. 

Core contribution

The -mcore=<my_core> option controls the core contribution. Only cores delivered in the 
toolset can be referenced using the -mcore option. 

         

Bus clock Run-time/simulator Run-time

.bootreset section address DEFAULT_RESET_ADDRESS Linker

.boot section address DEFAULT_BOOT_ADDRESS Linker

Program sections address
(.text, .rodata, .data, .bss) 

DEFAULT_TEXT_BASE Linker

bootcore.o Compiler driver Linker

Hardware memory map Linker script Linker/Loader

Early hardware initialization TargetPack(1) Loader

1. See ST TargetPack user manual (8020851).

Table 3. ST200 toolset parameters (continued)

Item Set-up by Used by

Table 4. Core contribution

Item Value Parameter location

Include search path
-I<tools-dir>/target/core/
<my_core> 

Macros
-D__<my_core>__ 
-D__<MY_CORE>__ 

crt1.o crt1.o 
<tools-dir>/lib/<my_core>/<endianness>
/<run-time>/crt1.o 

crti.o crti.o 
<tools-dir>/lib/<my_core>/<endianness>
/<run-time>/crt1.o 

crtn.o crtn.o 
<tools-dir>/lib/<my_core>/<endianness>
/<run-time>/crt1.o 

crtbegin.o crtbegin.o 
<tools-dir>/lib/<my_core>/<endianness>
/<run-time>/crt1.o 

crtend.o crtend.o 
<tools-dir>/lib/<my_core>/<endianness>
/<run-time>/crt1.o 

Core library search 
path 

-L<tools-dir>/lib/<my_core>/
<endianness>/<run-time> 

Core initialization 
library

-lcore (libcore.a) 
<tools-dir>/target/core/<my_core>/ 
<endianness>/<run-time> 



Board target configuration ST200

32/246  8063762 Rev 9

SoC contribution

The -msoc=<my_soc> option controls the SoC contribution. 

         

Board contribution

The -mboard=<my_board> option controls the board contribution.

         

bootcore.o 
<tools-dir>/target/core/<my_core>/ 
<endianness>/<run-time>/bootcore.o 

Core initialization __init_core() function
<tools-dir>/target/core/<my_core>/ 
<endianness>/<run-time>/libcore.a 

Table 4. Core contribution (continued)

Item Value Parameter location

Table 5. SoC contribution

Item Value Parameter location

Include search path
-I<tools-dir>/target/soc/
<my_soc> 

SoC library search 
path

-L<tools-dir>/target/soc/
<my_soc>/<my_core>/
<endianness>/<run-time> 

SoC initialization 
library

-lsoc (libsoc.a) 
<tools-dir>/target/soc/<my_soc>/
<my_core>/<endianness>/<run-time> 

SoC initialization __init_soc() function
<tools-dir>/target/soc/<my_soc>/
<my_core>/<endianness>/<run-time>/
libsoc.a 

Table 6. Board contribution

Item Value Parameter location

Include search path 
-I<tools-dir>/target/board/
<my_board> 

Board library search 
path 

-L<tools-dir>/target/board/
<my_board>/<my_core>/
<endianness>/<run-time>/ 

Board initialization 
library

-lboard (libboard.a) 
<tools-dir>/target/board/<my_board>/
<my_core>/<endianness>/<run-time> 

Board initialization __init_board() function
<tools-dir>/target/board/<my_board>/
<my_core>/<endianness>/<run-time>/
libboard.a 

Memory map 
definitions

FLASH, RAM area definition 
<tools-dir>/target/board/<my_board>/
board.ld 

DEFAULT_RESET_A
DDRESS 

Definition is needed at linking time 
only if the .boot and .boot_reset 
are linked

<tools-dir>/target/board/<my_board>/
board.ld



ST200 Board target configuration

8063762 Rev 9 33/246

4.2.2 Configuration matrix

Table 7 lists the interaction between the -mcore, -msoc, -mboard options and the 
different level of contribution in the <tools-dir>/target directory.

         

DEFAULT_BOOT_
ADDRESS

Definition is needed at linking time 
only if the .boot and .boot_reset 
are linked

<tools-dir>/target/board/<my_board>/
board.ld

DEFAULT_TEXT_
BASE 

Definition is mandatory
<tools-dir>/target/board/<my_board>/
board.ld

DEFAULT_RAMEND Definition is mandatory
<tools-dir>/target/board/<my_board>/
board.ld

STACK_POINTER Definition is mandatory
<tools-dir>/target/board/<my_board>/
board.ld

Table 6. Board contribution (continued)

Item Value Parameter location

Table 7. Configuration matrix

Item Default -mcore -msoc -mboard Location

Core include path <tools-dir>/target/core/st231 X Compiler driver

SoC include path <tools-dir>/target/soc/default X Compiler driver

Board include path <tools-dir>/target/board/default X Compiler driver

Macros __ST231__, __st231__,... X Compiler driver

crt1.o ST231 X Compiler driver

crti.o ST231 X Compiler driver

crtn.o ST231 X Compiler driver

crtbegin.o ST231 X Compiler driver

crtend.o ST231 X Compiler driver

Core initialization library N/A X libcore.a 

Core library search path N/A X Compiler driver

SoC initialization library N/A X libsoc.a 

SoC library search path N/A X Compiler driver

Board initialization library N/A X libboard.a 

Board library search path N/A X Compiler driver

DEFAULT_RESET_
ADDRESS 

N/A X board.ld 

DEFAULT_BOOT_
ADDRESS 

N/A X board.ld 

DEFAULT_TEXT_BASE N/A X board.ld 

DEFAULT_RAMEND N/A X board.ld 

STACK_POINTER N/A X board.ld 



Board target configuration ST200

34/246  8063762 Rev 9

4.3 Customizing board targets
This section describes different ways to create and debug custom board targets.

By default, the libboard.a and board.ld files are taken from the 
<tools-dir>/target/board/default/ directory, according to the core type and the 
run-time.

Note: During a toolset update, the entire <tools-dir>/target directory is overwritten and if 
any changes have been made in this location, they are lost. Target dependent libraries as 
well as memory and run-time settings in the board.ld file are no longer available.

4.3.1 Overriding the memory layout of an existing board target

The memory layout for a given board is defined in the linker script file:

<tools-dir>/target/board/targetboard/board.ld

by the following linker variables:

● __rambase

● __ramsize

● __rombase

● __romsize

● _stack

The default values of these variables can be overridden for a particular application build by 
using the following st200cc option:

-Wz,--defsym,<variable>=<new_value>

This option passes the <new_value> to the link phase.

It is also necessary to use an alternate linker script called platform_nomem.ld using the 
st200cc -T option.

For example:

To change the default memory layout of an MB424 board to start the RAM at 0xD0000000 
and make the RAM size 0x100000, use the following command:

st200cc -mcore=st231 -msoc=sti5301 -mboard=mb424 
-Wz,--defysm,__rambase=0xD0000000 -Wz,--defysm,__ramsize=0x100000 
-T <tools>/target/platform_nomem.ld -o hello -c hello.c

Alternatively, define custom board.ld and companion board_nomem.ld files, using the 
custom values in the directory:

<tools-dir>/target/board/targetboard/<configuration_directory>

For example:

<tools-dir>/target/board/targetboard/st231/le/bare



ST200 Board target configuration

8063762 Rev 9 35/246

4.3.2 Modifying the memory protection settings

It is possible to override the default setting of the memory protection so that it is set before 
the main() function execution. Use the startup initialization hook mechanism, see 
Section 5.2.4: Other initializations on page 42.

The default memory protection setting is found in:

<tools-dir>/target/core/<core>/src/mmu.c

The memory translation and protection unit implements the memory protection settings, see 
the ST231 Core and instruction set architecture manual (7645929) and ST240 Core and 
instruction set architecture manual (8059133).

To simplify the user settings, there are two bare run-time functions, 
bsp_mmu_memory_map() and bsp_mmu_memory_unmap(), see Section B.10: BSP 
function definitions on page 204.

Note: For ST231 onward, any address area unknown to the core and outside the program RAM 
usage (from __text_start to _ramend) requires an explicit mapping. For example, before 
accessing the 0x08900000 device address, use the following C code:

int * device_control = 0x08900000;
#include <machine/mmu.h>
...
bsp_mmu_memory_map(0x08900000, 0x100,
PROT_SUPERVISOR_WRITE|PROT_SUPERVISOR_READ, 0,
0x08900000);
*device_control = 0;

4.3.3 Defining a custom board target and compiling a program

The following procedure describes how to define a board target and to keep the changes 
during an update.

1. Create a new target directory outside the <tools-dir> directory (for example, 
<new_target_dir>) containing a board directory with a subdirectory for each board 
target (for example, <my_board>).

The new target tree is: 

~/new_target_dir/board/my_board

2. Copy the file <tools-dir>/target/defines.mkf into the new target directory 
<new_target_dir> and edit the file, changing the value of the variable 
ST200TOOLS_DIR with the path of the toolset <tools-dir>.

3. Recursively copy the files from the <tools-dir>/target/board/template 
directory to the newly created subdirectory, for example <my_board>.

(Alternatively, instead of using the template directory, use an existing board directory 
that is similar to the required new directory).

4. If required, modify the mapping settings in the linker script file board.ld. The 
board.ld file is located in the <new_target_dir>/board/<my_board> and 
contains the following mappings: 

__rambase, __ramsize, __rombase, __romsize



Board target configuration ST200

36/246  8063762 Rev 9

For example, to define a board with 16 Mbytes of RAM at address 0x12000000 and 4 
Mbytes of Flash at address 0x00000000, enter the following definitions:

___rambase = DEFINED(___rambase) ? ___rambase : 0x12000000;
...
___ramsize = DEFINED(___ramsize) ? ___ramsize : 16M ;
...
___rombase = DEFINED(___rombase) ? ___rombase : 0x0;
...
___romsize = DEFINED(___romsize) ? ___romsize : 4M ;

Replicate the same information in the MEMORY section, for example:

{

reset_flash : ORIGIN = 0x0,       LENGTH = 0x10000

boot        : ORIGIN = 0x1000,    LENGTH = 4M - 0x10000 

ram         : ORIGIN = 0x12000000, LENGTH = 16M

}

The two entries reset_flash and boot only need to be modified if the application is 
built to start from Flash and does not use the standard configuration for Flash (which 
can be viewed in the /template/..../os21/board.ld file).

board_nomem.ld contains similar information but does not contain the MEMORY 
section and is only needed in association with:

 <tools-dir>/target/platform_nomem.ld.

5. Edit the makefile changing the value of the variable LIST_CONFIG with the required 
configuration and modify the path to include the defines.mkf file in 
<toolset_dir>/target/defines.mkf.

The valid values for LIST_CONFIG have the following format:

<core>-<endianess>-<runtime>

For example:

LIST_CONFIG = st231-le-bare

LIST_CONFIG = st231-le-os21

6. Update the src/sysconf.c and src/init.c files with the board-specific code. The 
file sysconf.c contains the _sys_custom_sysconf function pointer, which must 
point to the board specific function <boardname>_sys_custom_sysconf(). This 
function is also contained in sysconf.c, and returns the board configuration 
parameter of choice. The init.c file contains two functions, which can be 
customized, and that are executed respectively at the beginning and at the end of the 
execution.

7. Build the board library running make in the board directory, for example:

a) Navigate to ~/new_target_dir/board/my_board

b) > make

A new directory tree is created to contain the libraries for the selected configurations.

For example, if the only selected configuration is st231-le-bare (see step 5.) the 
following directory is created:

~/new_target_dir/board/my_board/st231/le/bare. 

This directory contains libboard.a, used when building an application for this board.



ST200 Board target configuration

8063762 Rev 9 37/246

8. Create new TargetPack and simulator pack files for the new board to adjust the 
memory initialization for hardware and simulator targets, this is mandatory for ST200 
program execution. TargetPacks are provided with the ST Micro Connection Package. 
They are described in the ST TargetPack user manual (8020851) together with 
instructions about how to customize them. Simulator packs are described in 
Section 8.1: Simulator pack on page 84.

4.3.4 Building and debugging a program on a custom board target

For a simulated target, a generated program can be executed without having to carry out 
additional steps. For a hardware board, define the new custom board <my_board> (see 
Section 4.3.3: Defining a custom board target and compiling a program) and define its new 
TargetPack, see ST TargetPack user manual (8020851).

To build and run the hello.c application, the st200cc option -mtargetdir is used to 
specify an alternative directory where new SoC and board directories are searched first.

Use the following commands:

<tools-dir>/bin/st200cc -mcore=<core> -mboard=<my_board> 
-msoc=<my_soc> -mtargetdir=<full path>/new_target_dir -o hello.out 
hello.c

To run the application use the commands:

<tools-dir>/bin/st200xrun -c st200tp -t 
<IPaddress>:<my_boardtype>:<my_targetcore> -e hello.out -a 
<arguments>

4.4 Customizing SoC targets
In the majority of cases a new SoC can be targeted, by simply building with the default SoC 
definition:

<tools-dir>/bin/st200cc -mcore=<core> -mboard=<my_board> 
-msoc=default -mtargetdir=<full path>/new_target_dir -o hello.out 
hello.c

The only case where a new SoC definition must be created is when specific SoC translation 
look aside buffer (TLB) entries are required for the SoC. In this case a custom SoC may be 
build using a similar procedure to that used to create a custom board definition. 

(See Appendix B: ST200 board support package (BSP) on page 191 for more information 
about TLBs). 



Board target configuration ST200

38/246  8063762 Rev 9

4.4.1 Defining a custom SoC target

The following procedure describes how to define a custom SoC target and to keep the 
changes during an update.

1. Create a new target directory outside the <tools-dir> directory (for example, 
<new_target_dir>) containing a SoC directory with a subdirectory for each SoC 
target (for example, <my_soc>).

The new target tree is:

~/new_target_dir/soc/my_soc

2. Copy the file <tools-dir>/target/defines.mkf into the new target directory 
<new_target_dir> and edit the file, changing the value of the variable 
ST200TOOLS_DIR with the path of the toolset <tools-dir>.

3. Recursively copy the files from the <tools-dir>/target/soc/template directory 
to the newly created subdirectory, for example <my_soc>.

4. Modify the file src/init.c to create TLB entries in the initialization of the memory 
areas, which are defined in the table of SoCs.

The memory map table is defined as an array of structures of type 
bsp_memory_map_t, terminated by a NO_MAP element. The bsp_memory_map_t 
structure has the following format:

typedef struct bsp_memory_map_s
{
  void * addr;
  size_t len;
  int page_size;
  int policy;
  int user_prot;
  int super_prot;
} bsp_memory_map_t;

Where addr and len are the starting point and the length of the memory area to be 
mapped. The page_size parameter specifies the preferred size of the page to be 
used for the TLBs; allowed values are:

– PAGE_256MB Page size of 256 MBytes

– PAGE_4MB     Page size of 4 MBytes

– PAGE_8KB     Page size of 8 KBytes

– PAGE_4KB     Page size of 4 KBytes (ST240 only)

The policy parameter can have the following values:

– LXTLB_ENTRY0_POLICY_UNCACHED   0   Uncached mode

– LXTLB_ENTRY0_POLICY_CACHED  1   Cached mode

– LXTLB_ENTRY0_POLICY_WCUNCACHED   2   Write combining uncached

The parameters user_prot and super_prot define the protection rating for the area 
used for user and supervisor applications. Allowed values are:

– LXTLB_PROT_EXECUTE  1  Execute permission

– LXTLB_PROT_READ        2  Read (Prefetch & Purge) permission

– LXTLB_PROT_WRITE      4  Write permission

For example, the following code will create a TLB entry in bare runtime initialization

int STIxxxx_PERIPHERAL_BASE_PMA= 0xf0000000; /* Periph at 0xf0000000 */
int STIxxxx_PERIPHERAL_SIZE = 0x10000000; /* 256 MB,  */



ST200 Board target configuration

8063762 Rev 9 39/246

bsp_memory_map_t STIxxxx_maps [] = {
              {
                 (void *)&STIxxxx_PERIPHERAL_BASE_PMA,
                 &STIxxxx_PERIPHERAL_SIZE,
                 PAGE_256MB,
                 LXTLB_ENTRY0_POLICY_UNCACHED,
                 LXTLB_PROT_READ | LXTLB_PROT_WRITE,
                 LXTLB_PROT_READ | LXTLB_PROT_WRITE
              },
                 NO_MAP
            };

bsp_memory_map_t *bsp_map_init(void)
{  

return STIxxxx_maps;
}

5. Edit the makefile changing the value of the variable LIST_CONFIG with the required 
configuration and modify the path to include the defines.mkf file in 
<toolset_dir>/target/defines.mkf.

The valid values for LIST_CONFIG have the following format:

<core>-<endianess>-<runtime>

For example:

LIST_CONFIG = st231-le-bare

6. Build the board library running make in the board directory, for example:

a) Navigate to ~/new_target_dir/soc/my_soc

b) > make

A new directory tree is created to contain the libraries and linker scripts for the selected 
configurations.

For example, if the only selected configuration is st231-le-bare (see step 5.) the 
following directory is created:

~/new_target_dir/soc/my_soc/st231/le/bare

This directory contains libsoc.a and the linker script that are used when building an 
application for this SoC.



Cross development tools ST200

40/246  8063762 Rev 9

5 Cross development tools

The cross development tools enable an executable created by the code development tools 
(see ST200 Micro Toolset compiler manual (7508723)) to run on a variety of simulator and 
hardware platforms through the GNU debugger (GDB).

GDB has been enhanced in the ST200 configuration to provide better support for the ST200 
simulator and silicon targets, see Section 5.3: The GNU debugger on page 43.

ST TargetPacks are used to configure a target through an ST Micro Connect 2 or an 
ST Micro Connect 1, see the ST TargetPack user manual (8020851). Simulation packs 
provide configuration data for simulated targets and are described in Chapter 8: ST200 
simulator on page 83.

For a complete list of the ST TargetPacks supplied with the ST Micro Connect, see the ST 
Micro Connect Release Notes and follow the link to the ST TargetPacks. This also lists the 
elements that form the TargetString that is used to specify a particular TargetPack. See 
Connecting to a target in Section 5.3.1: Using GDB on page 43.

5.1 Loading and executing a target program
To build the program a.out for the IPBR1100 target platform (mb424) from the source file 
hello.c:

st200cc -mcore=st231 -msoc=sti5300 -mboard=mb424 -o a.out hello.c

The following example uses st200xrun to execute the a.out application on an IPBR1100 
connected to an ST Micro Connect with the network IP address IP_address, see 
Section 5.4: Using st200xrun on page 55.

st200xrun -c st200tp -t IP_address:mb424:st231 -e a.out

The option -c specifies the connection procedure to be used. In this case st200tp 
specifies that a TargetPack rather than a simulator pack is to be used. 

The option -t specifies the target string.

The option -e specifies the name of the executable.

Note: -c st200tp is an st200xrun default and so need not be specified, it is included here for 
completeness.

Further information about TargetPacks and TargetStrings can be found in the
ST TargetPack user manual (8020851) supplied with the ST Micro Connect.

To launch the a.out application on the ST200 simulator configured to simulate the 
IPBR1100, use the following command:

st200xrun -c st200sp -t mb424sim -e a.out



ST200 Cross development tools

8063762 Rev 9 41/246

5.2 Target code structure and initialization
This section describes the Target address space usage, initialization sequence and start 
parameters.

5.2.1 Target address space usage

By default, the toolset is configured for the program to load and execute in 8 Mbytes of LMI 
RAM memory (from 0x08000000 to 0x08800000). Figure 3 shows how the toolset uses the 
ST200 address space to load and execute a C program when the program is compiled and 
executed with the default options.

In order to change the memory location where the program is loaded and executed, memory 
settings must be changed in the board.ld linker script located in 
<tools-dir>/target/board/<my_board>. 

When DEFAULT_RAMEND, DEFAULT_TEXT_BASE and memory mapping are modified, build 
and run the program as usual. An example provided in <tools-dir>/examples/hello. 
shows how they are modified. See the README file for more information.

Board configuration is flexible, so that it is possible to add a custom board with different 
memory and run-time settings, see Section 4.3: Customizing board targets on page 34.

Figure 3. ST200 address space usage

Note: During normal execution the stack pointer points to the top of the stack, and a 16-byte 
scratch area is required by the ABI for the initial context saving between function calls. 
Similarly, the kernel stack identifies the stack used during trap handling and a 16-byte 
corresponding scratch space is necessary. Refer to ST200 Run-time architecture manual 
(7521848) for details.

Memory Space Comments

.text

0x08000000
TEXT_BASE

.data

.bss

scratch area

kernel stack

scratch area

stack_pt -->

kstack_pt -->

RAMEND0x08800000
_ramend

0xffffffff

Section loaded
It contains the __start() entry point of the program.

Section loaded. Initialized C global variables are 
directly mapped at these addresses.

Not loaded. Initialized to 0 at __start() execution, 
as per ANSI C standard.

During the execution, the stack grows towards the 
default area where sections are loaded and the heap 
for malloc grows from the end of the .bss section 
towards the stack.

16 bytes aligned area to setup the stack.

16 bytes reserved for the kernel stack.

16 bytes aligned are to setup the kernel stack.

This base address is configurable through the 
board.ld script link dedicated to the target.



Cross development tools ST200

42/246  8063762 Rev 9

5.2.2 Initialization sequence

Core registers are initialized after the program loads and before the program execution 
starts. Software initialization parameters (main() arguments and environment variables) 
are passed to the host by the __start() entry point function. This configuration is done 
according to st200xrun options or st200gdb commands.

After the program starts and before the main() function is called, the program executes the 
internal real time run-time initialization.

5.2.3 Start parameters

int argc 
char **argv 

These are the arguments passed to the ST200 program from the st200xrun command line 
(st200xrun -a [ARGUMENTS]) or st200gdb commands (set args). They are passed 
through a syscall during the execution of the __start() function.

5.2.4 Other initializations

Internal C run-time initialization

At the execution of the __start() function, before the BSP initialization, the kernel stack is 
set up.

The C run-time initialization sequence is located in the crti.o module linked with the 
program. 

The C run-time initialization invokes the BSP initialization (calling the three hooks 
__init_core(), __init_board() and __init_soc()) before calling main(). 

Run-time initialization

Before calling main(), the following default initialization is performed in __init_core():

● the ST200 exception handler is setup

● the hardware is initialized for clock function setting (in bare mode only)

● the memory access units and dismissable loads behavior are set to a default value

● performance monitor initialization (for ST240 targets)

The default setting for the memory access unit is iis initialized to enable the use of the data 
cache for all memory access between __text_start and _ramend and prevents any 
dismissable load in the peripheral control register area.

The default initialization sequence is located in the libcore.a, libboard.a and 
libsoc.a modules linked with the program. The source code for the initialization sequence 
is in the following directories:

<tools-dir>/target/core/<st2xy>/src
<tools-dir>/target/board/<board>/src
<tools-dir>/target/soc/<soc>/src



ST200 Cross development tools

8063762 Rev 9 43/246

5.2.5 Initialization hook

If it is necessary to change the behavior of the init sequence before main() (for example, 
peripheral initialization or target environment setup), use the hook mechanism put in place 
in the startup phase of the run-time. 

To enable user initialization of hardware or software before executing the main program, 
there are two types of hooks. 

● The bsp_user_start_handle() and bsp_user_end_handle() are invoked from 
the libcore.a library in the BSP initialization respectively at the start and the end of 
the BSP initialization, see Section B.10: BSP function definitions on page 204.

● The __init_soc() and __init_board() functions are located in the libsoc.a 
and libboard.a libraries respectively.

5.3 The GNU debugger
The GNU debugger (GDB) supports the downloading and debugging of applications on:

● silicon (using the ST Micro Connect)

● the ST200 simulator

Although the GDB supplied includes the text user interface (TUI) and the Insight GUI, this 
section describes only the standard command line interface. Details of the TUI are provided 
in the GNU Debugging with GDB manual and the Insight GUI is described in Chapter 7: 
Using Insight on page 64. The STWorkbench IDE is also provided to build and debug, see 
Chapter 6: Using STWorkbench on page 58.There are several tools supplied with the GDB 
for debugging applications:

The following GDB tools support the ST200 simulators and silicon:

● st200gdb 

● st200insight 

st200insight is identical to st200gdb except that it defaults to starting the Insight GUI 
instead of the command line interface. Therefore, wherever st200gdb is referenced the 
same also applies to st200insight.

5.3.1 Using GDB

GDB can execute any program, but it can only be used effectively to debug programs 
compiled with debugging information (using the -g compilation option).

When a program is compiled, start GDB as follows:

st200gdb executable 

GDB shows a message describing its version and configuration followed by a command 
prompt (gdb).

There are many GDB commands available. For full instructions on all these commands use 
the GDB help command or refer to the GNU Debugging with GDB manual.

All of the commands can be abbreviated to the shortest name that is still unique. The GDB 
command line supports auto-completion of both commands and, where possible, 
parameters. In addition, many of the most common commands have single letter aliases. 
Most of the commands serve no purpose until GDB has connected to and initialized a 
target.



Cross development tools ST200

44/246  8063762 Rev 9

Connecting to a target

There is a range of different target types that can be used to debug the executable. The 
connection command varies according to this type.The connection commands for st200gdb 
have three forms, based on the following line:

(gdb) <connection command> <TargetString>

● Connections to several silicon targets are supported by the ST200 TargetPack, for 
these targets the <connection command> is st200tp.

The ST TargetPack notation is the recommended method for describing target systems 
based on ST system-on-chip (SoC) devices. It is part of the ST Micro Connection 
Package, the software companion of the ST Micro Connect host-target interface (some 
legacy silicon targets are not supported). For example, to connect st200gdb to an 
IPBR1100 board through an ST Micro Connect having the IP address <address>, the 
connection command is:

 (gdb) st200tp <address>:mb424:st231

In this case <address>:mb424:st231 is the <TargetString>.

● The ST200 simulator connects to st200gdb using the st200sp (ST200 simulator 
pack) <connection command>. The ST200 simulator pack is the set of st200gdb 
procedures that enable the usage of st200gdb on the ST200 simulator. For example, 
to connect st200gdb to the ST200 simulator set up for the IPBR1100 board (mb424) 
use the following connection command:

 (gdb) st200sp mb424sim

In this case, mb424sim is the <TargetString>.

● Some silicon targets are not supported by the ST200 TargetPack. For these targets a 
<connection command> exists for each board target, and the <TargetString> is 
the IP address of the ST Micro Connect used for the connection. For example, to 
connect st200gdb to an mb392_audiodec board target through an ST Micro Connect 
that has the IP address <address>, the connection command is:

 (gdb) mb392_audioenc <address>

In this case, <address> is the <TargetString>.

Executing the program

If the program loads and executes immediately, it simply runs until it reaches completion or 
an error. To ensure that the program stops at a point of interest, set a breakpoint to enable 
inspection or single-stepping of the program state. 

Breakpoints can be set on specific functions, lines or addresses using the break command, 
for example:

(gdb) break main
(gdb) break 21
(gdb) break *0xc0000408

Download the program, set any arguments (if required) and start the program on the target 
by invoking the continue command:

(gdb) load
(gdb) set args argument1 argument2 argument3...
(gdb) continue



ST200 Cross development tools

8063762 Rev 9 45/246

The program runs until it completes, hits a breakpoint, is interrupted by the user with a 
Ctrl+C or encounters an error. When the program stops, a short explanatory message is 
displayed and the GDB prompt returns. To resume execution, invoke the continue 
command again.

The following commands step execution a line, or a machine instruction at a time.

Examining the target

All the GDB commands for interrogating targets are available.

To view the register set, use the info registers command. For a more compact display, 
use the regs command.

To disassemble the current function, use the disassemble command. 

To disassemble the current instruction, use the (gdb) x/i $pc command.

To inspect the memory, use the x (examine) command, for example:

(gdb) x 0xC0000000

For other formats, use the / modifier. For example, strings:

(gdb) x/s 0x08001234

To view by name any variable currently in scope, use with the print (or p) command. It 
can also be used with expressions, for example:

(gdb) p foo+bar*2

To format the displayed information, use the printf command, for example:

(gdb) printf "%s %d %d\n", 0x8001234, foo, foo+bar*2

Changing the state of the program

To alter memory locations, registers and variables, use the set command:

(gdb) set variable i = 0

The expression syntax is similar to C (or C++ depending what is being debugged), but there 
are some extensions, see the GNU Debugging with GDB manual.

Exiting GDB

When the debug session is complete, use the quit (or q) command to exit GDB.

step Moves on to the next source line (even if it is in a different function). Abbreviated 
to s.

stepi Moves on a single machine instruction before pausing the program again. 
Abbreviated to si.

next This is the same as step, but moves to the next line in the current function 
rather than the next line in the program and steps over any function calls. 
Abbreviated to n.

nexti The machine code equivalent of next, it moves to the next instruction in the 
sequence even if the current one is a call.



Cross development tools ST200

46/246  8063762 Rev 9

5.3.2 The .lxgdbinit file

On startup, GDB searches for the.lxgdbinit file, first in the home directory and then in 
the current working directory. If either of these files exist, GDB sources their contents. The 
GDB -nx option prevents GDB from sourcing these files. In addition, if the st200gdb or 
st200insight tools launch GDB, a default .lxgdbinit file is sourced before any other file. 
This file enables support for the ST200 simulator and silicon targets. The -nx option has no 
effect on this file.

Any commands in the .lxgdbinit files that require confirmation assume affirmative 
responses. Any line beginning with # is ignored. 

Using the st200gdb or st200insight tools

When the st200gdb or st200insight tools launch GDB, there is no requirement to create 
any additional .lxgdbinit files. However, the .lxgdbinit files are still useful for setting 
user preferences and defaults.

Using the lx-elf32-gdb, lx-elf32-insight or lx-elf32-gdbtui tools

When the lx-elf32-gdb, lx-elf32-insight or lx-elf32-gdbtui tools launch GDB, a 
user-defined .lxgdbinit file can enable the ST200 simulator and silicon support. Use the 
source command to source the default .lxgdbinit (in the subdirectory 
lx-elf32/stdcmd of the release installation directory). 

The default .lxgdbinit file assumes that the lx-elf32/stdcmd directory is on the GDB 
search path. To display the path, use the GDB show directories command and to set 
the path, use the GDB dir command. 

The standard command files, containing the ST200 configuration and target connection 
mechanisms, are located in the lx-elf32/stdcmd directory and have a .cmd extension. 

5.3.3 Connecting to a running target

The ST200 Micro Toolset supports connecting to a running target attached to either an ST 
Micro Connect 1 or an ST Micro Connect 2. This feature provides the full debugging 
interface that would be available after a standard connect without disrupting the application 
already running on the target.

A typical situation where this would be used, is when an application has been burnt to flash 
and is running after a reboot of the target. In order to debug the application, the “connect to 
a running target” mechanism is used to avoid core reset and memory initialization, that 
would destroy the running process.

Figure 4: Process flows for connecting to a target on page 47 shows the different process 
steps for each connection method and their different characteristics.



ST200 Cross development tools

8063762 Rev 9 47/246

Figure 4. Process flows for connecting to a target

Connecting to a running target with the executable available

The prerequisite for this type of connection is that the application is currently running.

The following command lines show how to launch st200gdb and perform the connect for 
the application sample.out:

$> st200gdb sample.out
   (gdb) st200tp <IP_address>:<board>:><core>,no_reset=1,no_pokes=1
   .
   .

   (gdb)

After the target has been halted it is possible to inspect the code, set breakpoints and 
continue execution.

Application burnt  on target  flash 
and running

Connect to a running target

Debug support initialization

Debug

Standard connect 

Debug support initialization

Core chip reset

Memory initialization

Debug

Application load

Application run

Flow A Flow B



Cross development tools ST200

48/246  8063762 Rev 9

Connecting to a running target without the executable available

Even if the program executing on the target is not known and thus not available on the host 
machine, it is still possible to connect to the running target. The only information that 
st200gdb must be aware of is the target architecture.

The following command lines show how to launch st200gdb, perform the connect, set the 
architecture and disassemble code starting from the current program counter.

$> st200gdb 
   (gdb) st200tp <IP_address>:<board>:><core>,no_reset=1,no_pokes=1
   .
   .

   (gdb) set architecture <st231 | st240>
   (gdb)
   (gdb) disass $pc $pc+10

5.3.4 GDB command line reference

Table 8 lists some of the most useful command line options.

         

Table 8. st200gdb command line options

Option Description

-nw 
-nowindows 

Disables the Insight GUI and uses the command line interface.

Equivalent to the option -interpreter=console.

-n 
-nx 

Prevents GDB from sourcing any .lxgdbinit files or reading the 
.gdbtkinit file (if they exist).
If the environment variable INSIGHT_FORCE_READ_PREFERENCES 
is set, then -nx does not prevent the reading of the .gdbtkinit 
file.

-w 
-windows 

Enables the Insight GUI instead of the command line interface, see 
Chapter 7: Using Insight on page 64.
Equivalent to the option -interpreter=insight.

-tui 
Enables the GDB text user interface (TUI) instead of the command 
line interface. 

Equivalent to the option -interpreter=tui.

-args exe args 
Debugs the program (exe) and passes the command line 
arguments (args) to the program (exe).

-batch 
Processes the command line options (including any scripts from the 
-command option) and then exits.

-batch-silent 
This option is similar to -batch except that the debugger 
suppresses all normal output messages other than errors.

-command file 
-x file 

Sources the commands in the file file. This is useful for setting up 
functions or automating downloads.

-eval-command command 
-ex command 

Executes the specified GDB command, command. This option can 
be specified multiple times to execute multiple commands. When 
used in conjunction with -command, the commands and scripts are 
executed in the order specified on the command line.



ST200 Cross development tools

8063762 Rev 9 49/246

5.3.5 GDB command quick reference

Table 9 lists some of the most useful GDB commands. It does not include any of the 
additional commands for connecting and controlling targets that have been added in the 
ST200 configuration, see Section 5.3.6: ST200 GDB commands on page 51. The GNU 
Debugging with GDB manual provides further details on GDB commands and the GNU 
debugger. 

At the start of every user defined GDB command, an $argc GDB convenience variable is 
automatically defined specifying the number of arguments to the command. This enables a 
command to test how many parameters are passed to it.

         

-interpreter interface 
-ui interface 
-i interface 

Sets the GDB user interface to interface. Standard user 
interfaces are console, tui, insight and mi.

-return-child-result 
The return value given by GDB is the return value from the target 
application (unless an explicit value is given to the GDB quit 
command, or an error occurs). 

Table 8. st200gdb command line options (continued)

Option Description

Table 9. st200gdb command quick reference

Command Description

backtrace n [full] 

Prints a backtrace of all the stack frames (function calls). If n is 
specified and is positive then give the top n frames. If n is specified and 
is negative then give the bottom n frames. If the word full is given 
then it also prints the values of the local variables.
The bt command may be used as an alias for backtrace.

break function|line
 |file:line
|*address 

Sets a breakpoint on the specified function, line or address.

clear function|line
|file:line
|*address 

Clears a breakpoint on the specified function, line or address.

continue Continues execution of the program.

delete [number] Deletes the numbered breakpoint or all breakpoints.

disable [number] Disables the numbered breakpoint or all breakpoints.

disassemble [add1] 
[add2] 

Disassembles the machine code between the addresses add1 and 
add2. If one address is omitted then the code around the one given is 
disassembled. If both are omitted then it uses the program counter as 
the address to use.

disconnect Release the target from GDB control.

file file Uses file as the program to be debugged.

finish Completes the current function.

help GDB commands assistance.

info all-registers Prints the contents of all the registers.



Cross development tools ST200

50/246  8063762 Rev 9

info breakpoints Lists all breakpoints.

info registers 
Prints the contents of the registers. This provides more information than 
regs.

list Lists the next ten source lines.

list - Lists the previous ten source lines.

list function|line
|file:line
|*address
|file:function 

Lists specific source code. Any two arguments separated by a comma 
are required to specify a range.

load [file] [LMA|VMA] 
[offset]

Downloads the file to the target. If no file is given, the executable 
from the GDB command line or the file (or exec-file) command is 
used.

LMA (Load Memory Address) or VMA  (Virtual Memory Address) specify 
the area of memory file is copied to. If unspecified, LMA is assumed.

offset specifies the offset to add to each section loaded into memory. 
The default is 0.

next [n] 
Continues execution to next source line, stepping over functions. If n is 
specified, do this n times.

nexti [n] 
Executes exactly one instruction, stepping over subroutine calls. If n is 
specified, do this n times.

print exp|$r 
Prints the value of the expression exp or contents of the register $r (for 
example, $r0 or $pc).

printf "format", 
arg1,..., argn 

Same as print but with a format-string. It enables more than one 
parameter to be printed. Parameters must be separated by commas.

quit [code] 

Exits GDB with the return value code, if specified. If code is not 
specified, GDB exits with the return value of 0.
Note that the GDB convenience variable $_exitcode is set to the 
return value of the target application and therefore may be used as the 
value for code, for example quit $_exitcode.

rbreak regexp Sets a breakpoint on all functions that match regexp.

regs 
Prints the contents of the registers. info registers provides more 
information.

run [file] args 

Runs the program. The program must already have been downloaded 
(using load) when using the GDB simulator. 
If an executable was given on the command line then file must not be 
given here.

set args [args_list] 
The command set args takes a list of arguments to be passed to the 
application program. Used before starting the program. 

set variable 
var = exp 

Sets the value of a variable or register. 

step [n] 
Continues execution to next source line. If n is specified, do this n 
times.

stepi [n] Executes exactly one instruction. If n is specified, do this n times.

Table 9. st200gdb command quick reference (continued)

Command Description



ST200 Cross development tools

8063762 Rev 9 51/246

5.3.6 ST200 GDB commands

There are several additional features in the supplied st200gdb that are not found in the 
standard version of GDB from the Free Software Foundation (FSF). These are not specific 
to the ST200 configuration, but are generic features that have been added in order to 
provide better support for the implementation of the GDB scripts used for connecting to 
STMicroelectronics simulators and silicon parts. The commands become available only 
after the connection to an ST200 target.

To get online help about these commands, from the GDB command prompt type: 

(gdb) help STM

Table 10 lists the additional st200gdb non-specific GDB commands.

         

set trace-commands 
on|off

Sets trace-commands on/off. Enables the tracing of GDB commands. 
The default is off.

show trace-commands Displays the current state of GDB CLI command tracing.

tbreak function|line
|file:line
|*address 

Sets a temporary (one time only) breakpoint on the specified function, 
line or address.

watch exp Sets a watchpoint for the expression exp.

where n [full] This is identical to the backtrace command.

Table 9. st200gdb command quick reference (continued)

Command Description

Table 10. ST200 st200gdb non-specific commands

Command Description

callplugin Calls an installed target interface plugin.

compare-sections Compares section data on target to the exec file.

console Enables or disables the target I/O console.

installplugin Installs a plugin to drive the target interface layer directly.

msglevel Sets the target debug interface message level.

ondisconnect = none 
| reset | restart

Set the action to perform on disconnecting from the target. The default 
is none.

– none does nothing when disconnecting

– reset, this option resets the target before disconnecting, (this is not 
compatible with the ST Micro Connect 2)

– restart, this option restarts the target from where it was last 
stopped

rtos Enables or disables RTOS awareness.



Cross development tools ST200

52/246  8063762 Rev 9

st200gdb extended features

st200gdb offers also commands for the ST200 simulator and ST200-specific devices, that 
is, the performance monitor block and the DSU interface.

Table 11 lists the simulator and DSU commands.

         

Table 11. Simulator and DSU commands

Command Description

Simulator commands

bus-trace-off Turn off bus traffic tracing.

bus-trace-on Turn on bus traffic tracing.

flush Flush the trace output stream.

get_config config_item Give the value of a specified configuration item.

profile-off Turn profiling off.

profile-on Turn profiling on.

reset-statistics Reset the simulator statistics counter to zero.

set-bus-trace-file Set the current bus tracing file.

set-trace-file Set the current tracing file.

start-statistics Start the simulator statistic counters.

statistics Output the current simulator statistics to screen.

statistics > filename Output the current simulator statistics to file.

statistics >> filename Append the current simulator statistics to file.

stop-statistics Stop the simulator statistic counters.

trace-off Turn tracing off.

trace-on Turn tracing on.



ST200 Cross development tools

8063762 Rev 9 53/246

DSU commands (only available when connected to a silicon target)

enable_dsu
Enables the DSU commands. enable_dsu is 
executed automatically when the host connects to a 
physical ST200 target.

dsu dbreak either lower upper

dsu dbreak in_range lower upper 

dsu dbreak masked lower upper 
dsu dbreak out_range lower upper 

The DBREAK_CONTROL registers determine the 
comparison operations performed on the breakpoint 
addresses.

If the comparison is true then a breakpoint 
exception is signaled. For the data breakpoints, the 
data effective address of loads and stores are used 
for comparison.

Prefetches and purges do not trigger data 
breakpoints.

dsu dbreak disable
Disables dbreak, if a dbreak was already set, range 
and condition are lost. 

dsu dpeek reg [numregs] 

Read and show the contents of numregs DSU 
registers starting from reg.
If numregs is not specified, only one DSU register 
is read.
If reg and numregs parameters are not specified, 
all DSU registers are read.

dsu dpoke reg DATA 
Write 32-bit word value in hex format (prepend by 
0x) in the DSU register.

dsu flush low_address high_address 

Flush an address range from data and instruction 
caches using the DSU_FLUSH debug ROM 
operation as described in the ST231 Core and 
Instruction Set Architecture Manual (7645929). 
low_address and high_address specify the 
inclusive address range and must be aligned to 
word addresses.

dsu ibreak either lower upper

dsu ibreak in_range lower upper

dsu ibreak masked lower upper

dsu ibreak out_range lower upper

The IBREAK_CONTROLE registers determine the 
comparison operations performed on the breakpoint 
addresses.

If the comparison is true then a breakpoint 
exception is signaled. For the instruction 
breakpoints, the currently executing bundle address 
(PC) is used for comparison.

dsu ibreak disable
Disables ibreak, if an ibreak was already set, range 
and condition are lost. 

Table 11. Simulator and DSU commands (continued)

Command Description



Cross development tools ST200

54/246  8063762 Rev 9

The pmblock st200gdb command

The ST200 cores are equipped with a performance monitoring block. This block is capable 
of recording core-relevant events such as data cache hits, instruction cache hits and several 
others, see the appropriate Core and instruction set architecture manual. The pmblock set 
of commands gives the user access to this block on both simulator and real targets.

         

Table 12. PMblock specific commands

Command Description

enable_pmblock

Enables the performance monitoring  commands. 
enable_pmblock is executed automatically when 
the host connects to a physical ST200 target. When 
connected to a simulated target, this command can 
be executed at anytime.

pmblock listevents List all the available event types.

pmblock reset Reset all counters.

pmblock resetidle Reset idle flag.

pmblock setclock <value> Set the clock counter to <value>.

pmblock setcounter <counter> 
<value>

Set the counter <counter> to <value>.

pmblock setevent <counter> <event> Set the counter <counter> to count <event>.

pmblock show Display the PM block registers content.

pmblock showclock Display the clock counter value.

pmblock showcounter <counter> Display the content of counter <counter>.

pmblock start Enable (starts) the event counting.

pmblock stop Disable (stops) the event counting.



ST200 Cross development tools

8063762 Rev 9 55/246

5.4 Using st200xrun
st200xrun provides a simple batch mode interface to GDB. This enables users to connect 
and configure a target system, then load and execute an application on the target system. 
st200xrun invokes GDB with all the options and scripts required to execute the program.

5.4.1 Setting the environment

The setup of st200xrun is identical to the setup of GDB, see Section 1.2.3: Configuration 
scripts on page 16.

5.4.2 st200xrun command line reference

To display the help, invoke st200xrun with the -h option.

Usage

st200xrun [-c procedure] [-d directory] [-e file] [-f] [-g gdbpath] [-h] [-i 
filename] [-t target] [ -u gdbname] [-v] [-x filename] [-A gdb_command] [-B 
gdb_command] [-C target_opt] [-D] [-T timeout] [-V][-a|-- ][arguments]

Note: The command order is important, -a or -- must always be the last option as this indicates 
that all the following arguments are to be passed to the target application. 

         

Table 13. st200xrun command line options

Option Description

-c procedure 

Specifies the target configuration procedure (GDB command) to be 
invoked.

The two supported configuration procedures are:
st200tp, the ST200 TargetPack, used for silicon targets; this is the 
default used if a procedure is not specified
st200sp, the ST200 simulator pack, used for simulator targets

The configuration procedure must be compatible with the target being 
used.

-d directory 

Add a directory to GDB’s search path. The command dir directory is 
issued to GDB.

This option can be specified more than once.

-e file Specify the executable file to be loaded onto the target(1). 

-f Ignored by st200xrun (included for backward compatibility).

-g gdbpath 
Specify the full path to the GDB executable to be used. This should be a 
version compatible with the version of GDB supplied by 
STMicroelectronics.

-h Display the help for st200xrun.

-i filename 

Execute the GDB script file filename. The command source filename 
is issued to GDB. The GNU Debugging with GDB manual provides 
examples of script file syntax.
This option can be specified more than once.



Cross development tools ST200

56/246  8063762 Rev 9

5.4.3 st200xrun command line examples

To run hello.out on a silicon IPBR1100 target (mb424) with an ST TargetPack, enter the 
following command:

st200xrun -c st200tp -t <IP_address>:mb424:st231 -e hello.out [-a arg1 arg2 ...]

The default configuration procedure is st200tp, so in the previous example the 
-c st200tp could be omitted to give the following command line:

st200xrun -t <IP_address>:mb424:st231 -e hello.out [-a arg1 arg2 ...]

-t targetstring

Specifies the target with which to be connected, in the ST 
TargetPack/SimulatorPack idiom.
For hardware targets, see ST TargetPack user manual (8020851) and for 
simulated targets, see Chapter 4: Board target configuration on page 27.

-u gdbname Specify the name of GDB.

-v Display verbose information.

-x filename Execute filename as the default startup script instead of .lxgdbinit.

-A <gdbcommand>

Execute <gdbcommand> after running the program(2). For example:

st200xrun -c st200sp -t st231simle -A "statistic > 
file.txt" -e hello.out

-B <gdbcommand>

Execute <gdbcommand> before running the program(2). For example:

st200xrun -c st200sp -t st231simle -B "statistic > 
file.txt" -e hello.out

-C  <target_opt>

Sets further target options(2). For example:

st200xrun -c st200sp -t st231sim -C 
"DUMP_CONFIG_FILE=filename.txt" -C "MODE=FAST" -e
hello.out

Targetpack example:

st200xrun -c st200tp -t <ipaddr>:mb424:st231 -C 
"msglvel=info" -e hello.out

-D Debug (verbose information)

-T timeout
The maximum time for executing on the target. timeout is expressed in 
seconds.

-V Display the version of st200xrun.

-a arguments 

-- arguments

Specify that the remainder of the command line arguments are to be 
passed as arguments to the target application. 

This option can only be specified as the final option in the command line.

1. If the -e option is omitted (and the -i option is not used) then st200xrun assumes that the first argument 
in the argument list is the name of the executable file.

2. This option can be issued multiple times. The GDB commands are executed in the order specified in the 
command line, Options passed using -C are handled in the order specified by the sequence of -C calls.

Table 13. st200xrun command line options (continued)

Option Description



ST200 Cross development tools

8063762 Rev 9 57/246

It is also possible to omit the -e, by specifying the following command line:

st200xrun -t <IP_address>:mb424:st231 -- hello.out [-a arg1 arg2 ...]

In this case the -- option is used to specify to st200xrun that the first argument in the list 
following -- is the name of the executable.

To run hello.out on the mb424sim simulator (a profile of the ST231 simulator that 
simulates the IPBR1100), enter the following command:

st200xrun -c st200sp -t mb424sim -e hello.out

To run hello.out using a script file, enter the following command:

st200xrun -i load.rc

Where the contents of the script file, load.rc, could be:

file hello.out
st200tp <IP_address>:mb424:ST231
load
c

To run hello.out with target program arguments, enter the following command:

st200xrun -c st200tp -t <IP_address>:mb424:st231 -e hello.out -a arg1 arg2 arg3 
arg4



Using STWorkbench ST200

58/246  8063762 Rev 9

6 Using STWorkbench

This chapter describes how to use the STWorkbench Integrated Development Environment 
(IDE) for the ST200 Micro Toolset. STWorkbench is available on all supported host 
platforms. 

The STWorkbench is delivered with CDT (C/C++ Development Tooling) included. CDT 
provides a fully functional C and C++ IDE for the STWorkbench platform and enables the 
user to develop, execute and debug applications interactively.

The STWorkbench is built on the Eclipse IDE. The Eclipse development environment and 
related information can be found at the Eclipse website www.eclipse.org. Information on 
CDT can be found at www.eclipse.org/cdt.

Note: STWorkbench is a separate release to the ST200 Micro Toolset. 

6.1 Getting started with STWorkbench
Under Linux, start STWorkbench from the shell by entering stworkbench.

Under Windows, start STWorkbench by selecting the appropriate option from the Start 
menu: Programs > STM Tools > STWorkbench Rn.n.n > STWorkbench, where n.n.n is 
the STWorkbench version number.

Note: The precise menu options displayed are dependant upon the version of STWorkbench you 
are using and the choices made when STWorkbench was installed.

When STWorkbench is launched, the Workspace Launcher dialog is displayed (see 
Figure 5). Use this dialog to enter or select the location of the workspace. The workspace is 
the directory where the project data, files and directories are stored.

Figure 5. Workspace Launcher

If the workspace directory does not already exist, STWorkbench creates it for you.

Note: 1 Do not use spaces in the workspace path and name as it causes problems with the tools.

2 The workspace can be changed at any time by selecting Switch Workspace from the File 
menu.



ST200 Using STWorkbench

8063762 Rev 9 59/246

When STWorkbench is launched for the first time, the C/C++ Projects perspective is 
displayed, with only the Welcome to STWorkbench view visible. See Figure 6.

Figure 6. Welcome view

The icons on this screen allow you to access documentation about STWorkbench, tutorials 
and sample code. If you are a first-time user, then you should take some time to explore the 
documentation to learn more about STWorkbench.

Proceed from the Welcome view to the Workbench by clicking on the curved arrow icon in 
the top right corner of the Welcome screen, circled in red in Figure 6. You can return to the 
Welcome view at any time by selecting Help > Welcome.

A Workbench provides one or more perspectives. A perspective contains editors and 
views, such as the Navigator. Multiple Workbenches can be opened simultaneously.

6.1.1 The STWorkbench workbench

Before using STWorkbench, it is important to become familiar with the various elements of 
the workbench. A workbench consists of:

● perspectives

● views

● editors

A perspective is a predefined group of views and editors in the Workbench. A perspective 
is designed to include all the views necessary for carrying out a specific task. For example, 



Using STWorkbench ST200

60/246  8063762 Rev 9

the C/C++ perspective contains views required for C/C++ development (including the C/C++ 
Projects view and the Outline view) and the Debug perspective contains views required 
when debugging (including the Debug, Variables and Breakpoints views). One or more 
perspectives can exist in a single workbench. Each perspective contains one or more views 
and editors. Each perspective may have a different set of views but all perspectives share 
the same set of editors.

A view is a window within the workbench. It is typically used to navigate through a hierarchy 
of information (such as the resources in the workbench), open an editor, or display 
properties for the active editor. Modifications made in a view are saved immediately.

Several views in the Debug perspective can be duplicated to show multiple views of the 
same type of information, with each locked into different contexts in the Debug view. For 
more information, see STWorkbench Help > Pin and Clone.

The title bar of the Workbench indicates which perspective and workspace is active. In 
Figure 7, the C/C++ Projects perspective is in use, and the workspace is located at 
C:Tutorial\Workspace.

Figure 7. C/C++ perspective

An editor is a visual component within the workbench. It is typically used to edit or browse a 
resource. Multiple instances of an editor may exist within a workbench window.

Depending on the type of file being edited, the appropriate editor appears in the editor area. 
For example, if a .txt file is being edited, a text editor appears. The name of the file 



ST200 Using STWorkbench

8063762 Rev 9 61/246

appears in the editor tab. If an asterisk (*) appears on the left of the tab, it shows the editor 
has unsaved changes. If you try to close the editor or exit the workbench without saving, a 
prompt to save the editor's changes appears.

When an editor is active, the workbench menu bar and toolbar contain operations applicable 
to the editor. When a view becomes active, the editor operations are disabled. However, 
certain operations may be appropriate in a view and remain enabled.

The editors can be stacked in the editor area. Click the tab for a particular editor to use it. 
Editors can also be tiled side-by-side in the editor area so their content can be viewed 
simultaneously.

Changing a perspective’s views

The views that make up a perspective can be changed. For example, to add the 
Disassembly view to the Debug perspective, perform the following steps:

1. If necessary, change to the Debug perspective by selecting Window > 
Open Perspective > Debug or Window > Open Perspective > Other... > Debug. 

2. Select Window > Show View > Disassembly to display the Disassembly view.

3. Select Window > Save Perspective As.... The Save Perspective As... dialog is 
displayed.

Figure 8. Save Perspective As... dialog

4. Select Debug in the Existing Perspectives list and click on OK.

You are prompted:

A perspective with the name ‘Debug’ already exists. Do you want to overwrite? 

5. Click on Yes, to save the Debug perspective with the currently open views.



Using STWorkbench ST200

62/246  8063762 Rev 9

6.2 STWorkbench tutorials
The on-line help provides a number of tutorials to guide the user through the steps to build, 
run and debug an ST200 application. The tutorials are accessed through the STWorkbench 
help system by selecting Help > Help Contents > STWorkbench for ST200 Micro Toolset 
menu.

Concepts

The purpose of this tutorial is to familiarize new users with the various basic elements of the 
workbench.

Getting Started

This tutorial provides instructions on how to build a simple OS21 “Hello World” C 
application.

Import an existing project

This tutorial describes how to build a C/C++ application by importing an existing source tree, 
complete with its own makefile, into a wrapper project with STWorkbench.

At the end of the tutorial you will have built an ST200 application that can be run or 
debugged.

Debugging C/C++ Applications

This tutorial describes the process of starting an ST200 debug session with a previously 
built binary executable. It also describes common debugging steps, such as modifying 
breakpoints, examining variables, call stacks and tasks.

Running C/C++ Applications

This tutorial describes the process of running an ST200 application with a previously built 
binary executable.

Branch Trace View

This page describes how to use the Branch Trace view to display the last eight branches 
that the program performed before arriving at the place where the debugger is currently 
stopped.

Execute from Command Line

STWorkbench supports the ability to launch a debug session directly from the command 
line. This page describes how to use this facility.

Performance Monitor view

This page describes how to use the ST200 Performance Monitor view to examine the data 
provided by the ST200 Performance Monitor facility.

Statistics view (simulator only)

This page describes how to display ST200 simulator statistics using the ST200 Statistics 
view.



ST200 Using STWorkbench

8063762 Rev 9 63/246

6.3 ST200 System Analysis tutorials and reference pages
There are several tutorials on how to use the ST System Analysis (formerly the Profiling and 
Coverage) features. The tutorials are accessed through the STWorkbench help system by 
selecting Help > Help Contents > ST200 trace, profile and coverage.

ST200 Static Analysis

STWorkbench supports the generation and display of profiling, coverage and OS21 Profiler 
data. These features are described in the following tutorials:

● STgprof

This tutorial describes the STgprof profiler and provides a guide on using this tool to 
determine which parts of a program take most of the execution time.

● STgcov

This tutorial describes the STgcov profiler and provides a guide on using this tool to 
identify the parts of a program that have never been exercised.

● OS21 Profiler

This tutorial describes the OS21Profiler profiler and provides a guide on using this tool 
to analyze the performance characteristics of an OS21 application.

ST200 Interactive Analysis

Interactive support is available for OS21 System Activity, STMC sampling and OS21 
Profiler. These features are described in the following help pages.

● OS21 System Activity

This tutorial describes the OS21 Activity analyzer and provides a guide for using this 
tool to analyze and monitor the life cycles of interrupts and tasks in an OS21 
application.

● STMC sample profiler

These pages describe the STMC sample profiler, a facility that uses the ST Micro 
Connect to obtain profiling data on the application. The generated result is similar to 
STgprof.

● STMC sample history

These pages describe the STMC sample history, which uses the same approach as 
the STMC sample profiler but provides a sequential view of the application’s activities 
over a period of time.

● OS21 Profiler

These pages describe the OS21 Profiler view in the debugger perspective. This view 
shows the OS21 Profiler data in a graphical form. The OS21 Profiler is described in 
Chapter 11: OS21 Trace on page 98.



Using Insight ST200

64/246  8063762 Rev 9

7 Using Insight

Insight is a Graphical User Interface for GDB that is available on all supported host 
platforms. It enables the user to execute and debug applications interactively. The 
command line interface for GDB is described in Section 5.3: The GNU debugger on 
page 43.

Insight can display several windows that contain source and assembly level code together 
with a range of system information. In addition, Insight has a Console Window for entering 
GDB commands on the command line.

Insight has several features.

● For many parts of a window, click the right-hand mouse button to open a 
context-sensitive menu, see Section 7.2.2: Context-sensitive menus on page 66.

● When the mouse pointer hovers over a button, tooltips are displayed.

● When Insight launches, it restores the configuration and open windows from the state 
saved in the user’s home directory (specified by the HOME environment variable) in a 
file named .gdbtk200init on Unix, or gdbtk200.ini on Windows. This state is 
saved each time Insight closes.

7.1 Launching Insight
To launch the Insight GUI on the command line, enter either st200gdb -w or 
st200insight. Alternately, under Windows, click the Start button and select Programs > 
STM Tools > ST200 Micro Toolset R6.0 > Insight. 

Note: When Insight launches for the first time, the Source Window opens, see Section 7.2.



ST200 Using Insight

8063762 Rev 9 65/246

7.2 Using the Source Window
The Source Window is the main window that opens when Insight launches, see Figure 9.

Section 7.2.1 describes the toolbar buttons.  

Figure 9. Source Window

7.2.1 Source Window toolbar

Table 14 lists the buttons on the Source Window toolbar.

         

Table 14. The Source Window buttons

Button Name Description

Run (R) Start the program executing. 

Step (S) Step into the next statement.

Next (N) Step over the next statement.

Finish (F) Step out of the current function.

Continue (C) Continue the program after a breakpoint.

Step Asm Inst (S) Step one instruction.

Next Asm Inst (N) Step over the next instruction.



Using Insight ST200

66/246  8063762 Rev 9

7.2.2 Context-sensitive menus

Many parts of a window have context-sensitive menus, to open a context-sensitive menu, 
click the right-hand mouse button. For example, right-clicking on a breakpoint position 
(shown as a hyphen) displays a context-sensitive menu with the following options.

Registers (Ctrl+R) Display the Registers window.

Memory (Ctrl+M) Display the Memory window.

Stack (Ctrl+S) Display the Stack window.

Watch Expressions 
(Ctrl+W)

Display the Watch Expressions window.

Local Variables (Ctrl+L) Display the Local Variables window.

Breakpoints (Ctrl+B) Display the Breakpoints window.

Console (Ctrl+N) Display the Console Window.

Down Stack Frame Move to the stack frame called by the current frame.

Up Stack Frame Move to the stack frame that called the current frame.

Go To Bottom of Stack Move to the bottom most stack frame.

Table 14. The Source Window buttons (continued)

Button Name Description

Continue to Here Continue the application and stop at the selected line.

Jump to Here Jump directly to the specified line(1). Unlike the Continue 
option, this modifies only the Program Counter. This option is 
advantageous for going backward after the contents of a 
variable has been manually modified or for skipping over 
defective code.

1. In optimized code, this may not work as expected due to the compiler reordering code.

Set Breakpoint Set a breakpoint on the selected line. The breakpoint is shown 
as a red square.

Set Temporary Breakpoint Set a temporary (one time only) breakpoint on the selected 
line. The breakpoint is shown as an orange square.

Set Breakpoint on Thread(s)...

Set a breakpoint on the thread. If more than one thread is 
available the Thread Selection window opens to select the 
required threads. The breakpoint is shown as a pink square.



ST200 Using Insight

8063762 Rev 9 67/246

7.3 Debugging a program
The following procedure demonstrates debugging a program using the getting started 
example, see Section 1.5: The examples directory on page 20.

1. Launch Insight, see Section 7.1 on page 64.

2. Click the  button. The Load New Executable dialog box opens.

3. Select the executable file and click the Open button. The Target Selection window 
opens.

4. Complete the Target Selection window, see Section 7.4: Changing the target. The 
program launches and stops at the breakpoint set at the main() function, see 
Figure 10.

Figure 10. hello.c stopped at breakpoint

5. Debug the program using the menu and toolbar options.

To toggle breakpoints on and off, click on the hyphen symbols to the left of the code. 
Breakpoints are shown as red squares.



Using Insight ST200

68/246  8063762 Rev 9

7.4 Changing the target
1. From the File menu, select Target Settings.... The Target Selection window opens, 

see Figure 11.

Figure 11. Target Selection window

2. From the Target drop-down list, select ST Debug Interface, see Figure 12.

3. Specify any Options required, for example, to run the example on an IPBR1100 board 
(mb424) connected to an ST Micro Connect with a network address of <IPaddress>, 
enter st200tp <IPaddress>:mb424:ST231, see Figure 12.

Alternatively to run on a simulator target enter st200sp st231simle.

Figure 12. Target Selection window- example 

4. Click the OK button.



ST200 Using Insight

8063762 Rev 9 69/246

7.5 Configuring breakpoints
When a program runs, it continues as far as the first breakpoint. If Set breakpoint at ‘main’ 
in the Target Selection window is selected, this is the first real line of the program. 

Figure 13. Breakpoint examples

The red square in the left-hand margin indicates the position of a breakpoint. The hyphens 
indicate valid positions for potential breakpoints.

The green highlighting shows the position of the current PC (program counter). Orange 
highlighting shows the current position in that stack frame (the real position is at the top of 
the stack).

When the mouse pointer hovers over a variable or function name, a tooltip shows the 
current value of that variable. Variables and types have a context-sensitive menu (right-click 
on the item to open the context menu) that has various actions, for example, setting 
watchpoints and dumping memory.

To set a breakpoint, click on the hyphen next to the line of code. The breakpoint is shown as 
a red square. 

Right-click on a breakpoint position (shown as a hyphen) to open the context-sensitive 
menu for the following breakpoint options.

To replace the three Set Breakpoint options with Disable Breakpoint and Delete 
Breakpoint options, right-click on an existing breakpoint. Disabled breakpoints appear as 
black squares.

Set Breakpoint Set a breakpoint on the selected line. The breakpoint is 
shown as a red square.

Set Temporary Breakpoint Set a temporary (one time only) breakpoint on the 
selected line. The breakpoint is shown as an orange 
square.

Set Breakpoint on Thread(s)... Set a breakpoint on the thread. If more than one thread is 
available the Thread Selection window is displayed to 
select the required threads. The breakpoint is displayed 
as a pink square.



Using Insight ST200

70/246  8063762 Rev 9

7.5.1 The Breakpoints window

To open the Breakpoints window, either click the  button or from the View menu in the 
Source Window, select Breakpoints.  

Note: The Breakpoints window does not enable the creation of new breakpoints, but does permit 
existing ones to be viewed and edited. 

Figure 14. Breakpoints window

Click on a breakpoint to select it. To change the breakpoint, use the check boxes and the 
Breakpoint and Global menus.

Breakpoint menu

Global menu

7.6 Using the help
To open the help files, from the Help menu, select Help Topics.

Normal, Temporary Set the breakpoint to normal (permanent) or temporary 
(one-time).

Enabled, Disabled Enable or disable the breakpoint.

Remove Delete the selected breakpoint.

Show Threads Add an additional column to the window showing the threads 
the breakpoint is set on.

Disable All, Enable All Disable or enable all of the breakpoints.

Remove All Delete all of the breakpoints.

Store Breakpoints... Save the breakpoints to a file.

Restore Breakpoints... Restore breakpoints from a file.



ST200 Using Insight

8063762 Rev 9 71/246

7.7 Using the Stack window
The Stack window shows a list of all the frames currently on the stack. 

To open the Stack window, either click the  button or from the View menu in the Source 
Window, select Stack.

Figure 15. Stack window

To select a frame, click on the appropriate frame line. The line is highlighted in yellow and 
the Registers and Local Variables windows show the associated data. The Source 
Window shows the associated source line, see Figure 16 on page 72, Figure 20 on 
page 76 and Figure 9 on page 65.



Using Insight ST200

72/246  8063762 Rev 9

7.8 Using the Registers window
The Registers window shows the content of all the registers. 

To open the Registers window, either click the  button or from the View menu in the 
Source Window, select Registers.

Figure 16. Registers window

To edit a register’s value, right-click on a register’s value to open the following 
context-sensitive menu options. 

Note: To view only the registers belonging to a specific group (general, float, system, vector, 
all), use the Group selection box.

Hex, Decimal, Unsigned Change the format.

Open Memory Window Open a Memory window at the location specified by the 
currently selected register, see Section 7.9.

Add to Watch Add the selected register to the Watch window, see 
Section 7.10 on page 75.

Remove from Display Delete the selected register from the window. 

Display all Registers Restore all registers that have been removed from the display. 

Help Open the online help window.

Close Close the Registers window.



ST200 Using Insight

8063762 Rev 9 73/246

7.9 Using the Memory window
The Memory window enables you to view and modify the current state of memory on the 
target. The window can be resized to view more memory information. 

To open the Memory window, either click the  button or from the View menu in the 
Source Window, select Memory.  

Figure 17. Memory window

Click on a memory location to edit the contents. To customize the display, use the 
Addresses menu.

Addresses menu

Right-click on a memory location to open the following context-sensitive menu options.

Auto Update If the state of the target changes, the memory information updates 
automatically (default).

Update Now Manually override the auto-update to show the memory state at that 
instant.

Preferences... Opens the Memory Preferences window, the options are:

● size

● format

● number of bytes

● miscellaneous

Go To... Show the selected memory location.

Open New Window at... Open an additional Memory window showing the selected 
memory location. 



Using Insight ST200

74/246  8063762 Rev 9

7.9.1 Displaying multiple Memory windows

To show multiple Memory windows, either click the  button or from the View menu in the 
Source Window, select Memory.

Figure 18. Multiple memory windows



ST200 Using Insight

8063762 Rev 9 75/246

7.10 Using the Watch window
Use the Watch window to set and edit user-specified expressions. Each time the program 
halts, the expressions are reevaluated and shows the program state.

Note: Watch expressions are not the same as watchpoints. Watchpoints must be set through the 
console window.

To open the Watch window, either click the  button or from the View menu in the Source 
Window, select Watch Expressions.

Figure 19. Watch window

There are two ways to add expressions to the Watch window.

● Type an expression into the field at the bottom of the window and click the Add Watch 
button.

● In the Source Window or Registers window, right-click on the expression to open the 
context-sensitive menu and select Add to Watch.

Note: The expression must use the same syntax as the language being debugged. For example, 
to watch for fred being assigned the value 42 when debugging a C application, enter 
fred==42. Using assignment operators by mistake, for example, fred=42, changes the 
value of the variable in the program.

Right-click on a watch expression to open the following context-sensitive menu options.

Format Change the format to Hex, Decimal, Binary, Octal or Natural 
(mantissa and exponent for floating-point values). 

Edit Edit the expression value. 

Delete Delete the highlighted expression from the list.

Dump Memory at... Displays the selected watch expression in the Memory 
window.

Help Displays the online help window.

Close Close the Watch window.



Using Insight ST200

76/246  8063762 Rev 9

The display of values can also be adjusted by normal C type casting. Structures and classes 
can be expanded as a tree.

Note: The look and feel of the Watch window was enhanced in Insight 6.1. The following 
information is displayed for each item:

<item_name> = <type> <value> <string pointed by value as an address> 

7.11 Using the Local Variables window
The Local Variables window shows all the variables in the current stack frame. To open the 
Local Variables window, either click the  button or from the View menu in the Source 
Window, select Local Variables.

Figure 20. Local Variables window

Right-click on a variable to open following the context-sensitive menu options. 

To expand the structure of a variable, click on the plus (+) sign. To collapse the structure, 
click the minus (-) sign. 

Format Change the format of the variable. It can be Hex, Decimal, 
Octal, Binary or Natural (mantissa and exponent for float 
variables).

Edit Edit the value of the selected variable.

Delete Delete the highlighted expression from the list.

Dump Memory at... Displays the selected variable in the Memory window.

Help Displays the online help window.

Close Close the Local Variables window.



ST200 Using Insight

8063762 Rev 9 77/246

7.12 Using the Console Window
The Console Window is the underlying GDB console and enables the user to issue 
commands directly to GDB. 

To open the Console Window, either click the  button or from the View menu in the 
Source Window, select Console.

Figure 21. Console Window

If the Console Window is open when a GDB command is issued, it shows the output. For 
example the load command.

Note: Insight GUI commands such as continue or step are not visible in the Console Window 
unless they are issued directly at the Console Window prompt. 

The display output of the Insight GUI and the GDB console commands are synchronized.

To view the ST200 simulator instruction trace data or to switch the performance data 
gathering of the simulator on or off, use the console.

You can issue any GDB command through the Console Window.

Note: If you use console off, the program output is visible on the terminal from which Insight 
was launched and not in the console window. For this reason, use console on in 
conjunction with Insight.



Using Insight ST200

78/246  8063762 Rev 9

7.13 Using the Function Browser window
To search for functions in the application and show the source code for that function, use 
the Function Browser window, see Figure 22. This makes it easy to add breakpoints 
throughout the code.

To open the Function Browser window, from the View menu in the Source Window, 
select Function Browser.

The following fields are available to search for functions.

The lower section of the window shows the source code for the selected function. To set 
breakpoints, use the same method as for the Source Window, see Section 7.5: Configuring 
breakpoints on page 69.

Figure 22. Function Browser window

Function Filter Searches for an expression.

starts with lists all functions that start with the expression.

contains lists all functions that contain the expression.

ends with to list all functions which end with the expression.

matches regexp lists all functions that match the regular expression.

Files This shows all the files within the application. Only the selected files are 
searched for using the expression.

Functions This shows all the functions within the selected files. To delete and set 
breakpoints at the start of each function, use the Delete BP and Set BP 
buttons.



ST200 Using Insight

8063762 Rev 9 79/246

7.14 Using the Processes window
The Processes window shows the active threads. To open the Processes window, from 
the View menu in the Source Window, select Thread List, see Figure 23.

Figure 23. Processes window

The Processes window shows the thread number and details such as current status. To set 
a thread as the current thread, click on it. This causes the debugger to switch contexts and 
updates all windows.



Using Insight ST200

80/246  8063762 Rev 9

7.15 Using the ST200 Statistics window
The ST200 Statistics window is available only on the simulator target. The ST200 
Statistics window shows the results of the statistics command. The window updates 
each time the state of the processor changes. Figure 24 shows an example of the ST200 
Statistics window. 

To display the ST200 Statistics window, do one of the following:

● click the  button

● from the View menu in the Source Window, select ST200 Statistics 

● press the Ctrl+I keys on the keyboard.

Figure 24. The ST2x0 Statistics window

The Start button calls the start-statistics command. It starts the statistics counters 
for the ST200 processor. By default, the counting is enabled.

The Stop button calls the stop-statistics command. It stops the statistics counters for 
the ST200 processor.

The Reset button calls the reset-statistics command. For example, to compute the 
statistics, use this before executing a sequence of code.



ST200 Using Insight

8063762 Rev 9 81/246

7.16 Using the Performance Monitoring window
The Performance Monitoring window gives access to all the features provided by the 
ST200 cores performance monitoring block. The counter values update whenever their 
values change. To set the type of event counted by the counters and their values, it is 
possible to start and stop the event counting. Figure 25 shows an example of the 
Performance Monitoring window.

To display the Performance Monitoring window, do one of the following:

● click the  button

● from the View menu in the Source Window, select Performance Monitoring

● press the Ctrl+X keys on the keyboard

Figure 25. The Performance Monitoring window

To make any changes in the editable fields effective, click the Apply button. The buttons in 
the Switches area of the window are active immediately. When counting events is enabled, 
the Start button toggles to Stop.



Using Insight ST200

82/246  8063762 Rev 9

7.17 Using the Debug Support Unit Window
The Debug support unit (DSU) allows both the software and hardware to be debugged from 
a host by giving direct access to the ST2xx core.

The Debug Support Unit window provides a simple interface to monitoring and editing 
DSU registers.

Note: DSR0 is always read-only, while DSR31 is read-only just on ST240 cores because it 
represents the virtual PC.

To display the Debug Support Unit window, do one of the following:

● click the  button

● from the View menu in the Source Window, select Dsu viewer

● press the Ctrl+J keys on the keyboard

Figure 26. The Debug Support Unit window

In Figure 26 the registers are displayed on the left and their values on the right. 

A register highlighted in blue indicates it is the currently selected register. 

Each time the program stops, the Debug Support Unit window automatically updates the 
register contents in the display. Registers that have changed since the last stop are 
highlighted in black.

7.17.1 Editing a DSU register

To edit a register:

1. Click on the register with the left mouse button to select it.

2. Type in the new value.

3. Press Return on the keyboard.

Note: Currently only hex numbers can be entered.

It is also possible to edit single bits of the selected register using the same editing method.

Press the Escape key on the keyboard to cancel an edit.



ST200 ST200 simulator

8063762 Rev 9 83/246

8 ST200 simulator

The ST200 simulator has three modes of simulation of the ST200 CPU cores. They reflect 
the trade off in simulation accuracy against simulation speed.

Reference (or cycle accurate) mode

This mode executes code in a similar manner to the hardware, that is, it behaves as 
expected in all exceptional circumstances. This includes the modelling of all types of bus 
errors, interrupts, debug interrupts and exceptions. As a result, it has the lowest 
performance of the three modes.

The following are modelled faithfully.

● the pipeline and the caches, by default, are configured to be at the highest level of 
detail

● the memory subsystem/bus (including the write buffer and prefetch buffer)

● the translation unit (memory management unit)

ISS (or instruction set accurate) mode

Each instruction runs to completion before the next instruction begins. It models the caches 
(basic versions) and the translation units. It behaves in a manner similar to the hardware.

This mode does not model:

● pipeline

● latencies

● interlocking

Fast (functional) mode

This mode models only the minimal set of components required to run correct code 
‘correctly’. This mode has the highest performance, but the lowest accuracy. This mode 
does not model:

● memory subsystem

● caches

● protection units

● bus errors

● external interrupts 

● device plugin functionality



ST200 simulator ST200

84/246  8063762 Rev 9

8.1 Simulator pack
The simulator pack (st200sp) configuration procedure for st200xrun and st200gdb is the 
entry point for all the configurations of the ST200 simulator.

The simulator uses the TargetString to identify the simulator configuration name. The 
associated GDB command file implements the simulator configuration name and passes the 
configuration options at start time to the ST200 simulator.

For example, to run the program hello.out on the ST200 simulator built for the default 
ST231 simulator in little endian with the command:

$> st200cc -mcore=st231 -msoc=default -mboard=default -EL -o 
hello.out hello.c

use st200xrun with the following command line:

$> st200xrun -c st200sp -t st231simle -e hello.out

The command st200sp hooks the simulator pack to st200xrun and the TargetString 
st231simle identifies the ST231 default simulator configuration in little endian mode.

8.1.1 Customized simulator targets

From R6.0 of the ST200 toolset, all supported boards have a board definition for the 
simulator. The customization uses the same memory layout as the real hardware, and 
configures the PLL clock registers to the same values found on the boards. Applications that 
are compiled for a real board can run on a simulated board without modification.

A GDB command script located in the <ST200TOOLS>/lx-elf32/stdcmd subdirectory 
manages the ST200 simulator.

The simulated target is selected by st200gdb and st200xrun using st200sp as the 
command and an appropriate procedure name as the target. For example, to run the “hello” 
application on a simulated IPBR1100 board (mb424) use the command:

$ st200xrun -c st200sp -t mb424sim -e hello.out

or

$ st200gdb hello.out
(gdb) st200sp mb424sim

To add a specific customization, change the configuration string inside the correct 
st200targets-<board>.cmd file.

The following example changes the clock frequency of the core for the IPBR1100 board.

1. Open the st200targets-mb424.cmd file with the editor.

2. Locate the correct command, in this case mb424sim.

3. Locate the configuration string: 

CORE_MHZ 300 PERIPHERAL_BASE 0x30000000 EXTERNAL_MEMORY_BASE 
0xC0000000 EXTERNAL_MEMORY_SIZE 0x2000000 EXTERNAL_MEMORY_BASE1 
0x20f00000 EXTERNAL_MEMORY_SIZE1 0x1FFF  EXTERNAL_MEMORY_BASE2 
0x7f801000 EXTERNAL_MEMORY_SIZE2 0xc0 BOOT_ROM_BASE 0x7FFFFF00 
BOOT_ROM_SIZE 0x10



ST200 ST200 simulator

8063762 Rev 9 85/246

4. Change the CORE_MHZ value and save the file.

CORE_MHZ 200 PERIPHERAL_BASE 0x30000000 EXTERNAL_MEMORY_BASE 
0xC0000000 EXTERNAL_MEMORY_SIZE 0x2000000 EXTERNAL_MEMORY_BASE1 
0x20f00000 EXTERNAL_MEMORY_SIZE1 0x1FFF  EXTERNAL_MEMORY_BASE2 
0x7f801000 EXTERNAL_MEMORY_SIZE2 0xc0 BOOT_ROM_BASE 0x7FFFFF00 
BOOT_ROM_SIZE 0x10

8.1.2 Simulated boards naming convention

In the <tools-dir>/lx-elf32/stdcmd subdirectory, any command file starting with the 
prefix st200targets- contains the hardware definition of the board (through the target 
configuration options) and some standard commands, see Table 15.

         

8.1.3 Simulator targets

The st200targets-stsim.cmd command file contains the definitions for some standard 
simulator configurations, see Table 16.

         

Table 15. Simulator pack

GDB command Description

<board>sim The simulated version of the board <board>.

<board>passedsim
The same as <board>sim with the additional capability to get the path 
of the simulator dynamic library as argument.

<board>profsim The same as <board>sim with profiling enabled.

Table 16. Simulator targets

GDB command Description

st2XYsimle The simulated st2XY board in little endian mode.

st2XYfastsimle The same as st2XYsimle with the target option MODE = FAST.

st2XYpassedsimle
The same as st2XYsimle with the capability to get the path of the 
simulator dynamic library as an argument.

st2XYprofsimle The same as st2XYsimle with profiling enabled.

st2XYsimbe The simulated st2XY board in big endian mode.

st2XYfastsimbe The same as st2XYsimbe with the target option MODE = FAST.

st2XYpassedsimbe
The same as st2XYsimbe with the capability to get the path of the 
simulator dynamic library as an argument.

st2XYprofsimbe The same as st2XYsimbe with profiling enabled.



ST200 simulator ST200

86/246  8063762 Rev 9

8.2 Target configuration options
Table 17 lists the simulator options. To customize the simulator options, use the ST200 
toolset simulator target command files in the <tools-dir>/lx-elf32/stdcmd directory 
as examples.

         

Table 17. Target configuration options

Option Description Default value

CONFIG_FILE 
<filename>

Read options from the specified CONFIG_FILE (see 
DUMP_CONFIG_FILE). 

DUMP_CONFIG_FILE 
<filename>

Dump all user definable options to the specified file. 

MODE [FAST|ISS
|REFERENCE|REF]

The operation mode, the options are FAST, ISS and REFERENCE 
(or REF). See Chapter 4: Board target configuration on page 27.

REFERENCE

ICACHE_MODEL 
<string>

Valid values are: 
NONE
BASIC 
DETAILED

For a detailed description, see DCACHE_MODEL.

See Table 18 on 
page 90

DCACHE_MODEL 
<string>

Although the following explanation refers to DCACHE_MODEL 
values, it applies to both data and instruction caches (see 
ICACHE_MODEL). 
NONE

Cache modelling is not required. In practice this situation is 
modelled using a null cache that transmits requests through to a 
simple bus model.
BASIC

A more detailed model that takes account of the cost of memory 
transactions through user-configurable latencies. When basic 
cache models are specified for both instruction and data caches, 
they act independently and do not accurately represent situations 
where bus transactions would interact. It does not model some 
parts of the memory subsystem (for example, the write buffer and 
prefetch buffer).

DETAILED

Incorporates a more accurate account of the interaction between 
the caches and the bus. In particular, the data cache has an 
added write-back buffer. Both caches compete for bus cycles 
through the CMC (core memory controller), and the bus itself 
models the latency associated with the bus and its attached 
devices.

Noncached reads and writes bypass the caching mechanism and 
generate requests directly. 

The CMC is responsible for arbitrating between reads and writes 
from the data cache and reads from the instruction cache. This is 
done according to a fixed priority scheme, therefore, data reads 
have highest priority and data writes have lowest priority.

See Table 18 on 
page 90

CORE_MHZ <number> Processor clock speed (in MHz). 450 

BUS_MHZ <number> Bus clock speed (in MHz). 166

MEMSYSTEM_
LATENCY <number>

Internal latency of memory subsystem (in processor cycles). 5 



ST200 ST200 simulator

8063762 Rev 9 87/246

BUS_LATENCY 
<number>

Intrinsic latency of the STBus (in bus cycles). 40 

PERIPHERAL_
LATENCY <number> 

Memory latency for peripheral register accesses (in bus cycles). 15 

BUS_BYTES_PER_
CYCLE <number>

The number of bytes that can be transferred in one bus cycle. 8 bytes

TRANSACTION_
SETUP_CYCLES 
<number>

The number of extra processor cycles required for each bus 
transaction.

1 

BUS_BYTES_PER_
TRANSACTION 
<number>

The number of bytes that can be transferred in one bus 
transaction.

32 

EXTERNAL_MEMORY_
SIZE <number> 

Size of external memory (in bytes).(1) 
By default, the toolset generates programs that use 0x800000 
bytes (8 Mbytes) of memory size. To specify a larger or smaller 
memory usage for the program edit the board.ld linker script 
and rebuild the program, see Section 4.3.3: Defining a custom 
board target and compiling a program on page 35.

0x4000000 for 
ST231 and ST240

EXTERNAL_MEMORY_
BASE <number> 

Byte address of the base of external memory.(1) 0x8000000 

EXTERNAL_MEMORY_
SIZEx <number> 

Size of external memory (in bytes).

Where x is 1, 2 or 3.
0x0 

EXTERNAL_MEMORY_
BASEx <number> 

Byte address of the base of external memory.

Where x is 1, 2 or 3.
0x0 

NONCACHEABLE_
MEM_SIZE <number> (2)

The size (in bytes) of noncacheable memory. Buffers associated 
with a number of I/O related system calls are copied into this area. 

0x4000 
(16 Kbytes)

KERNEL_STACK_
SIZE <number> (2) Size of the kernel stack (in bytes) 

0x4000 
(16 Kbytes)

BOOT_FROM_RESET 
<bool> (2)

In a real operational context, the processor typically executes 
some sort of boot program before starting execution of an 
application code. By loading bootcode into external memory and 
specifying the reset address (see RESET_ADDRESS) the boot 
sequence can be exercised. 
In the majority of cases, however, it is sufficient to begin executing 
code at the application’s start symbol after having placed the 
simulator in a state that is equivalent to that achieved by the boot 
program. This is the default behavior.

false

RESET_ADDRESS 
<number> (2)

This option is only meaningful when BOOT_FROM_RESET is set to 
true. 
This is the value of the program counter immediately after reset 
and can equivalently be thought of as the entry point to the boot 
code. 

0 

RESET_DELAY_
CYCLES <number>

The number of processor cycles it takes to reset the core. 512 

BOOT_ROM_BASE 
<number>

Byte address of the base of the boot ROM. 0x0

Table 17. Target configuration options (continued)

Option Description Default value



ST200 simulator ST200

88/246  8063762 Rev 9

BOOT_ROM_SIZE 
<number> 

Size of the boot ROM (in bytes). 
0x10000 
(64 Kbytes)

PERIPHERAL_BASE 
<number>

The addresses of registers associated with the timer, interrupt 
controller and DSU are defined relative to a peripheral base 
address. All ST200 cores have a dedicated control register.

0x1F000000 

TRACING_ON <bool> 

This determines whether or not the simulator produces a code 
execution trace. If set to true, the default operation is to output a 
textual trace to stdout. An alternative location can be specified 
by setting the OUTPUT_TRACE_FILE configuration item.

false 

OUTPUT_TRACE_
FILE "<filename>" 

This item only takes effect when TRACING_ON is set to true. It’s 
effect is to output the trace to the specified filename. If the string is 
empty or the file cannot be opened, the trace is output to stdout.

"" 

TRACE_START_
CYCLE <number>

Cycle on which to start tracing. 0

TRACE_END_CYCLE 
<number> 

Cycle on which to end tracing. 0

BUS_TRAFFIC_
TRACING_ON <bool> 

Enables a textual trace describing all the traffic on the bus to be 
output.

false 

BUS_TRAFFIC_
OUTPUT_TRACE_
FILE "<filename>" 

This item only takes effect when BUS_TRAFFIC_TRACING_ON is 
set to true. It’s effect is to output the trace to the specified 
filename. If the string is empty the trace is output to stdout.

"" 

BUS_TRAFFIC_
TRACE_START_
CYCLE <number> 

Cycle on which to start tracing the bus traffic. 0 

BUS_TRAFFIC_
TRACE_END_CYCLE 
<number> 

Cycle on which to end tracing the bus traffic. 0 

OUTPUT_LOG_FILE 
"<filename>"

By default, output from the simulator is recorded in a file in which 
the last part of the filename is an incrementing integer (for 
example, 0042). The width of this numeric field is determined by 
the form of the filename. For example simlog**** results in a 
succession of filenames: simlog0000, simlog0001, and so on. 
If the null string ("") is specified, output is to the console. 

"simlog****" 

HAZARD_CHECKING_
ON <bool> 

If hazard checking is switched on, the instruction stream is 
checked for violation of pipeline latency constraints during 
simulation.
This is not guaranteed to detect all static hazards.

false 

BUNDLE_CHECKING_
ON <bool>

Setting this item to true enables the simulator’s bundle-checking 
mode. This checks that each instruction bundle obeys the rules 
specified in the Core and Instruction Set Architecture manuals.

true 

BUNDLE_CHECKING_
RE_ON <bool>

Setting this item to true prints an error message to the screen 
when the simulator’s bundle-checking mode detects an illegal 
bundle.

false 

Table 17. Target configuration options (continued)

Option Description Default value



ST200 ST200 simulator

8063762 Rev 9 89/246

PROFILING <bool>

When this is set to true the simulator produces the following 
(gprof-style) output files(3):
gmon.out - standard execution profile

gmon.outDCACHE - time spent in each function waiting on 
Dcache stalls 

gmon.outICACHE - time spent in each function waiting on Icache 
stalls 

false 

PROFILING_
OUTPUT_FILE 
"<filename>" 

By default, profiler information is recorded in a file in which the last 
part of the filename is an incrementing integer (for example, 
0042). The width of this numeric field is determined by the form of 
the filename. For example gmon**** results in a succession of 
filenames: gmon0000, gmon0001, and so on.

"gmon****" 

DEVICE_PLUGIN_
MODULES 
"<filename>"
[;"<filename>"] 

Device plugins are used to simulate memory mapped devices on 
the STBus 

Multiple plugins can be specified by separating their names with a 
semicolon (;).

For example: 

st200xrun -c st200sp -t st231simle 
-C "DEVICE_PLUGIN_MODULES 
c:\plugins\dev1.dll;c:\plugins\dev2.dll" 
--prog.exe

If an external SDI device also has memory-mapped registers, it 
can be modelled by a single plugin. This plugin supports both SDI 
and device plugin interfaces and is specified against both the 
SDI_PLUGIN_MODULE and DEVICE_PLUGIN_MODULES 
configuration items. 
The sample device plugin is described in Section 8.3 on page 90. 
The source of a sample device plugin can be found in the standard 
release under <tools-dir>/host/st200sim/
src/Plugins/SampleDevice.

Device plugins which simulate existing target boards are 
described Section 8.3.2: Building and running the plugin on 
page 91.

""

DSU_DEFAULT_
MODULE_ENABLED 
<bool> 

By default, the debug support handler code is compiled into the 
simulator. This option ensures that this code is loaded into 
memory at the beginning of a simulation.

true 

DSU_ROM_IMAGE 
"<filename>" 

Allows the user to specify their own debug support code module, 
thus overriding the default one.

"" 

STIMULATION_FILE 
"<filename>" 

Path of pin stimulation data file. "" 

EXTERNAL_MEMORY_
PATTERN <number> 

If set, this option initializes the whole of memory to the 4-byte 
pattern specified.

0xBADDBABE 

CLEAR_MEMORY <bool> 
If set to 1 (and EXTERNAL_MEMORY_PATTERN is set to zero) then 
memory is cleared.

true 

1. If required, to model additional blocks of memory, use EXTERNAL_MEMORY_SIZE and EXTERNAL_MEMORY_BASE.

2. The st200xrun and st200gdb tools are insensitive to these options. These options are only meaningful for co simulation 
environments.

Table 17. Target configuration options (continued)

Option Description Default value



ST200 simulator ST200

90/246  8063762 Rev 9

Table 18 lists the default values for the architecture dependent options. 

         

8.3 The sample device plugin for the ST200 simulator
The source of the sample device plugin is in the standard release 
<tools-dir>/host/st200sim/src/Plugins/SampleDevice subdirectory. The 
simulator uses the following functions to communicate with the device plugin. The functions 
are defined in the SampleDevice.h header file.

DevInitialise

DEVICE_API void DevInitialise(
 void *pinout, 
 void *pinoutStruct, 
 char *args)

To enable the plugin to initialize any state it holds, this function is called at startup. The 
CPinout reference (pinout) should be stored so that the other API functions can use it 
later, see Section 8.3.1: Callbacks into the simulator.

DevTerminate

DEVICE_API void DevTerminate()

This function is called at shutdown so that the plugin can release any resources held.

DevClock

DEVICE_API void DevClock()

This function is called once per core clock-cycle to enable the plugin to account for time.

DevRead

DEVICE_API bool DevRead(
 unsigned char *to, 
 unsigned int address, 
 unsigned int numBytes)

This function is called whenever a read is requested on the STBus. The plugin returns true 
if a read at the given address is handled. It returns false if it does not map the address. If 

3. The gmon format employs 16-bit numbers to represent time intervals. Because this gives insufficient dynamic range for 
typical simulations, time values have had to be scaled. As a result, the column headers produced by gprof (specifying the 
underlying unit of time) are incorrect. We recommend that analysis of execution profiles is restricted to consideration of 
relative times, see the gprof documentation for information on the interpretation of the output files. 

Table 18. Architecture-specific target options (cache models) 

Target option
Default value

MODE FAST MODE ISS MODE REFERENCE/REF

ICACHE_MODEL See (1)

1. The FAST mode of simulation does not model the caches but accesses the memory directly. If the 
configuration is dumped to file, the cache model options correspond to those used in reference mode.

ICACHE_MODEL_BASIC ICACHE_MODEL_DETAILED

DCACHE_MODEL See (1) DCACHE_MODEL_BASIC DCACHE_MODEL_DETAILED



ST200 ST200 simulator

8063762 Rev 9 91/246

the plugin decides to handle the request, it completes the to array with numBytes of data. 
Ensure that the data uses the endianness of the ST200 being modelled.

DevWrite

DEVICE_API bool DevWrite(
 const unsigned char *from, 
 unsigned int address,
 unsigned int numBytes,
 const char* byteEnables)

This function is called whenever a write is requested on the STBus. The plugin returns true 
if a write at the given address is handled. It returns false if it does not map the address. If 
the plugin handles the request, it reads numBytes of data from the from array and deals 
with it appropriately. If byteEnables is not NULL, then it specifies which of the numBytes 
are valid. Ensure that the data uses the endianness of the ST200 being modelled.

8.3.1 Callbacks into the simulator

The plugin can make use of the CPinout object (in a C++ environment) or the SPinout (in 
a C environment) object passed into the DevInitialise() function. These enable the 
plugin to have access to the internals of the core. Examples of how to use this functionality 
are in the SampleDevice code. Details of CPinout and SPinout are in Pinout.h and 
PinoutC.h respectively.

8.3.2 Building and running the plugin

The sample plugin shows how to use some of the functions defined in the 
SampleDevice.h header file.

To build the sample:

Note: The Windows version requires the Microsoft development environment for Windows.

Note: The Linux version requires the GNU development environment for the host platform.

To build a big-endian version, substitute LE with BE, this builds the .dll (or .so) in the 
ReleaseLE directory.

To instruct the simulator to use a specific device plugin, specify a configuration item to the 
simulator in the usual way (either on the command line or in a configuration file). To 
customize the sample plugin, use the ST231-EVAL board (STi5300) plugin sources 
provided with the toolset as a starting point.

On Windows: nmake CONFIG=ReleaseLE -f MakefilePC.mak 

On Linux: make CONFIG=ReleaseLE -f MakefileLinux.mak 



OS21 source guide ST200

92/246  8063762 Rev 9

9 OS21 source guide

Within the terms and conditions of the OS21 Software License Agreement, you may freely 
rebuild OS21 for your own purposes. A copy of the license agreement is available from the 
licence.htm file in the doc subdirectory of the release installation directory.

The toolset release includes the source code for OS21, located in the subdirectory 
src/os21 of the release installation directory. To build OS21 and its board support 
libraries, use the makefile (GNU make compatible) in this directory. This top level 
makefile has three build rules.

The resulting libraries are placed in the directory src/os21/lib/.

The OS21 source enables you to:

● refer to the OS21 source for a clearer understanding of OS21’s behavior

● refer to the OS21 source to aid debugging

● rebuild OS21 with different compiler options

● enable configurable options within OS21 that are not enabled in the shipped binaries

● build your own board support libraries

Note: To build OS21, GNU make and Perl (version 5.6.1) must be available on your system.

9.1 Configurable options
OS21 supports a number of configurable options. These options are selectively enabled at 
build time by defining preprocessor symbols. Table 19 lists the preprocessor symbols that 
are available for configuring OS21 for the ST200.

         

build Build all of OS21 and its board support libraries (the default rule).

buildbsp Build just the OS21 board support libraries.

clean Remove all built files (object files and libraries).

Table 19. OS21 configurable options

Symbol name Description

CONF_DEBUG Enable debug checking within the OS21 kernel.

CONF_DEBUG_ALLOC Enable additional debug checking for memory allocators.

CONF_DEBUG_CHECK_EVT Perform extra validation checks on events.

CONF_DEBUG_CHECK_MTX Perform extra validation checks on mutexes.

CONF_DEBUG_CHECK_SEM Perform extra validation checks on semaphores.

CONF_DISPLAY_CLOCK_FREQS OS21 reports certain ST200 clock settings on kernel boot.

CONF_FINE_GRAIN_CLOCK 
Program the system clock to operate at as high a frequency as 
possible, hence yielding greater accuracy.

CONF_FPU_SINGLE_BANK 
Restrict FPU save and restore to the bank of FPU registers used 
by GCC.



ST200 OS21 source guide

8063762 Rev 9 93/246

Note: To alter the options listed in Table 19, edit the file makeST200.inc (located in the at the 
top level of the OS21 source code directory). By default, none of the configuration options 
are enabled in this file.

9.1.1 Configurable options in the standard OS21 libraries

The standard OS21 libraries (selected by st200cc -mruntime=os21) are built with 
CONF_NO_WRITE_LATENCY_WORKAROUND defined. The debug OS21 libraries (selected 
during build with -mruntime=os21_d) are built with CONF_DEBUG defined.

CONF_DEBUG

To produce a debug OS21 kernel, define the CONF_DEBUG preprocessor symbol. This 
kernel contains many self checks to ensure internal integrity and to check that user calls into 
the kernel are correct.

CONF_DEBUG_ALLOC

To produce an OS21 kernel with special checks added to the memory management code 
(including the detection of heap scribbles and the freeing of bad pointers), define the 
CONF_DEBUG_ALLOC preprocessor symbol.

CONF_DEBUG_CHECK_SEM, CONF_DEBUG_CHECK_MTX and 
CONF_DEBUG_CHECK_EVT

To produce an OS21 with extra integrity checks enabled for semaphores, mutexes and 
event flags respectively, define these preprocessor symbols. Every time one of these 
objects is referenced, OS21 performs extra checks to ensure that its structure is not corrupt 
and that it has not been previously deleted.

CONF_DISPLAY_CLOCK_FREQS

To produce an OS21 kernel that reports certain key ST200 clock frequencies when the 
kernel is initialized, define the CONF_DISPLAY_CLOCK_FREQS preprocessor symbol.

CONF_INLINE_FUNCTIONS

To produce an OS21 with inlined list manipulation functions, define the 
CONF_INLINE_FUNCTIONS preprocessor symbol. This can yield a slight performance 
improvement. 

CONF_INLINE_FUNCTIONS Inline certain functions.

CONF_NO_FPU_SUPPORT OS21 does not save/restore FPU registers on context switch.

Table 19. OS21 configurable options (continued)

Symbol name Description



OS21 source guide ST200

94/246  8063762 Rev 9

9.2 Building the OS21 board support libraries
Instructions on building the OS21 board support libraries are in the src/os21/README 
file, which can also be used on Linux also as a shell script. 

Note: Building the OS21 board support libraries overwrites the original libraries. To restore the 
original libraries, perform a new installation of the ST200 toolset.

9.2.1 Adding support for new boards

To add OS21 board support to a custom target board, refer to Chapter 4: Board target 
configuration on page 27 and follow the src/os21/README guidelines for the OS21 
specific information.

When a new board support has been set up (for example mbXYZ_cpu1, with core type 
st231 and SoC named stxABCD), the compiler driver selects the OS21 support for the 
board:

st200cc -mcore=st231 -msoc=stxABCD -mboard=mbXYZ_cpu1 -mruntime=os21 -o hello.out 
hello.c

9.3 GDB OS21 awareness support
The shtdi GDB target provides OS21 task-aware debugging. The shtdi GDB target installs 
a service that runs on the host and has knowledge of the data structures used in OS21. A 
dependency exists between the version of OS21 in use and the version of the shtdi service.

OS21 has static data tables that expose the layout of certain critical data structures to the 
shtdi service. Each data table has a cyclic redundancy check (CRC) calculated for it that is 
stored statically. These data tables are auto-generated as part of the OS21 build process. At 
the same time, a header file is auto-generated and imported into the build of the shtdi 
service. This header file contains the same CRC values and some key type definitions.

The data tables are offset/size pairs that identify particular fields within OS21 data 
structures. The tables are indexed by enumerated types, which are the types imported by 
the shtdi service. There is one data table per OS21 data structure type that the shtdi 
service has to be aware. 

The CRC value for each table is calculated using the field nam. The order of the fields 
relative to each other is important because it is a CRC. If a field changes name between 
releases or fields alter position within a data structure (relative to each other), then the CRC 
for the data table also changes.

When the shtdi service examines a target system to determine if it can debug it in OS21 
aware mode, it examines the data table CRCs in memory and checks to see if they match 
the ones it was built with. If they do, then OS21 awareness is enabled and the shtdi service 
uses the in-memory data tables to determine how to parse the OS21 data structures. If the 
CRCs do not match, then the shtdi service and OS21 were not built from the same source 
base and the shtdi service cannot operate in OS21 aware mode.

Note: When modifying OS21, changing the relative order of certain fields in key data structures, or 
renaming them, can render the shtdi service unable to debug the resulting OS21 
executables with task awareness.



ST200 OS21 source guide

8063762 Rev 9 95/246

9.3.1 Generation of the shtdi server data tables

The following Perl script (invoked automatically as part of the build process) performs the 
generation of the shtdi server data:

src/os21/scripts/mkgdb.pl

Key OS21 header files are scanned for special mark-ups that identify which structures (and 
the fields in those structures) are exposed to the shtdi server. The mark-ups are very 
simple and invisible to the C compiler.

GDB_STRUCT(struct) 

Declares this structure as containing information required by the shtdi server. This 
declaration triggers the generation of the following data objects:

– a size_t, with the size of the structure, given the name struct_size,

– an array of offset and size descriptors, given the name struct_descs, 

– a size_t, with the value of the number of elements in the above array, given the 
name struct_descs_size,

– an unsigned int with the value of the calculated CRC for the above array, 
given the name struct_descs_crc.

GDB_FIELD(enum_prefix, field)

Declares that a field in the current structure is to be exposed to the shtdi server. An 
enum called enum_prefix_field is generated and stored in the export header file to 
correspond to this fields index in the array of descriptors.

GDB_ARRAY_FIELD(enum_prefix, field, field_index, enum_suffix)

Declares that a particular field in the structure array is to be exposed to the shtdi 
server. An enum called enum_prefix_field_enum_suffix is generated and 
stored in the export header file to correspond to this field’s index in the array of 
descriptors.

GDB_BEGIN_EXPORT, GDB_END_EXPORT

These two markers are used to identify a section of header file which is to be copied 
verbatim into the export header file.



Booting OS21 from Flash ROM ST200

96/246  8063762 Rev 9

10 Booting OS21 from Flash ROM

Examples of booting from Flash ROM are located in the examples/os21 subdirectory of 
the release installation directory. Full details are in the readme.txt files in these 
directories. Table 20 lists some examples. 

         

10.1 Overview of booting from Flash ROM
The ST200 Micro Toolset supports both single CPU and multicore CPU chips where each 
CPU boots from the same Flash ROM. 

Note: This section does not consider chips that have ST200 cores where the host processor is an 
ST40 core, because the ST40 Micro Toolset supports the ROM booting.

The STi5300 has a single ST231 core and boots from offset 0x7FFFFFFFF in Flash ROM.

The OS21 examples in the ST200 Micro Toolset that use Flash ROM, provide tools for 
laying out the Flash ROM in the same way for most chips. The layout used by the tools in 
the examples supports:

● boot vectors for up to eight CPUs at 0x40 byte offsets from the base of the Flash ROM

● bootstrap information for up to eight CPUs

● an optional fail-safe application that runs before the main applications to check the 
integrity of the Flash ROM and report/fix any problems

● a main application image directory

● main application image-control structures for images in the directory that point to the 
real code/data sections located throughout the rest of the Flash ROM

More detail on the Flash ROM layout are in the comments near the start of the flasher.c 
or mkbinrom.pl files in the examples that use Flash ROM.

The flasher Flash ROM programming tool included in the examples can place applications 
in Flash ROM. The flasher tool can either take component image files (for example, for 
bootvectors, bootstraps or applications) or a complete Flash ROM image file that can be 
created by the mkbinrom.pl tool, as its input.

To create a self-flashing executable tool that programs the Flash ROM from the embedded 
image, the flasher tool can be combined with a Flash ROM image created by the 
mkbinrom.pl tool. 

Note: All Flash ROM examples create a self-flashing executable tool.

The flasher tool has a companion tool called flashdir that displays the contents of Flash 
ROM.

The mkimage.pl Perl script converts target executable files into the component image file 
format. It can process ST40 and ST200 ELF files (executable files and relocatable libraries), 
as well as ST20 hex and S-record ROM format files. Executable files and relocatable 

Table 20. Examples of booting from Flash ROM

Example name Description

rombootram Before running, the ROM bootstrap copies the application to RAM.

rombootrom The application runs directly from Flash ROM.



ST200 Booting OS21 from Flash ROM

8063762 Rev 9 97/246

libraries are decomposed into a number of sections that are placed in the component image 
file.

To update the existing contents of Flash ROM, use the flasher tool with component image 
files. Any component image file placed in Flash results in an update to the Flash directory 
pages. Multiple application images can be stored in Flash. Each image is tagged in the 
Flash directory with its relevant CPU. A CPU can have multiple application images stored in 
Flash, but only one is tagged as the boot application for that CPU.

The mkbinrom.pl Perl script creates a complete binary ROM image in a single file. It takes 
component image files as input as well as executable and relocatable library ELF files 
directly (mkimage.pl is called automatically to convert them into component image files). 
Use the flasher tool to program the complete binary ROM image to Flash ROM. 

You cannot update complete ROM images, you must create a new image from all 
constituent ELF files and/or component image files.

The examples provide sample boot vector and bootstrap code for the ST200 that locates 
and starts the ST200 application in the Flash ROM. The following list shows the flow of 
execution on booting.

1. The host processor boot vector code runs, jumping to its bootstrap code.

2. The host core bootstrap code: 

– configures the clocks, EMI and LMI interfaces 

– locates the ST200 boot application (or a fail-safe application if there is one 
present)

– moves any sections to RAM which require moving

– zeros any sections in RAM which require zeroing

– transfers control to the ST200 fail-safe or main application



OS21 Trace ST200

98/246  8063762 Rev 9

11 OS21 Trace

The ST200 Micro Toolset supports tracing of the OS21 kernel activity and APIs and also 
user defined APIs and activities. To trace the OS21 kernel activity and APIs, an application 
is linked with instrumented versions of the supplied libraries; this instrumentation writes 
events to a memory buffer allocated on the target.

To assist with tracing the user’s application and any user-supplied libraries, the ST200 
Micro Toolset provides the tools os21usertrace and os21usertracegen. 

The tool os21usertrace accepts a user-supplied definition file, specifying the APIs and 
events to be traced, and then generates all the output files required to build a version of the 
application that is instrumented for tracing. The user events are written to the same memory 
buffer as the OS21 events. See Section 11.1.1: os21usertrace host tool on page 99.

The tool os21usertracegen accepts an ELF object or executable file and a list of function 
names and generates a definition file that can be used by os21usertrace. See 
Section 11.1.3: os21usertracegen host tool on page 103.

The trace data is extracted by dumping the trace memory buffer to a file on the host. This file 
is then decoded using the os21decodetrace tool. See Section 11.5: Analyzing the results 
on page 109.

Support and visualization of OS21 Trace is provided in STWorkbench. For more 
information, search for OS21 System Activity in the STWorkbench help system.

In addition, the user may control OS21 Trace using GDB commands (see Section 11.9: 
GDB commands on page 117 and Section 11.10: User GDB control commands on 
page 123) and by embedding function calls in the application to enable and disable tracing 
for specific parts of the application (see Section 11.11: Trace library API on page 126 and 
Section 11.13: User trace runtime APIs on page 139).

11.1 User trace records
User APIs and user defined events are organized into a three tier hierarchy: group, class, 
and name. For any application, there can be one or more groups, each of which contain one 
or more classes, and each class can contain one of more names. name is either the name 
of an API that is to be traced, or a reference to a specific event to be traced. The group and 
class levels are customizable, and should be chosen to reflect the way in which tracing may 
be applied.

Tracing can be controlled at any of the three levels. For instance, all the APIs and events 
belonging to a group can be traced as a single entity, or particular classes within a group 
can be traced individually. The user can control tracing at runtime, either through 
customized GDB commands (see Section 11.10: User GDB control commands on 
page 123) or by using APIs linked with the application (see Section 11.13: User trace 
runtime APIs on page 139).



ST200 OS21 Trace

8063762 Rev 9 99/246

11.1.1 os21usertrace host tool

The ST200 Micro Toolset provides the os21usertrace tool to help with instrumenting a user 
application for tracing with OS21 Trace. os21usertrace accepts one or more definition files 
created by the user, and from these it generates a set of output files. These output files 
consist of:

● a single GDB command script that defines the control commands for STWorkbench 
and GDB (see Section 11.10: User GDB control commands on page 123)

● a single C source and header file containing the implementation of the instrumented 
user APIs, custom activity APIs and control APIs to be compiled and linked into the 
application

● a single linker script file containing the linker options for wrapping the user APIs

● a single control file describing the user APIs and activities being traced, for use by the 
os21decodetrace tool 

The structure of the definition files is described in Section 11.1.2: User definition file on 
page 100.

The command line for os21usertrace is:

os21usertrace {option} {definition-file}

The command line options are described in Table 21. There is a long form and short form 
alternative for each option.

         

Table 21. os21usertrace command line options

Option Description

--help
Display help.

-h

--decode-script file Create the os21decodetrace control file (passed to the 
-user option of os21decodetrace).-d file 

--gdb-script file
Create the GDB command script file.

-g file

--link-script file
Create the linker script file.

-l file

--wrap-source file
Create the C source file.

-s file

--user-prefix name
User control name space prefix. Default is user. 

-up name

--user-code-base code
User activity and API trace code base. Default is 0. 

-ucb code

--user-code-script 
FUNCTION@FUNCTION@FILE This option is reserved for STMicroelectronics use only. 

-ucs FUNCTION@FUNCTION@FILE



OS21 Trace ST200

100/246  8063762 Rev 9

Note: The --wrap-source option creates both a C source file and its corresponding header 
file. The header file has the same name as the source file but with the .c extension 
replaced with .h.

The following example accepts a definition file called myapp.def, and generates an 
os21decodetrace control file called myapp.in, a GDB command script called myapp.cmd, 
a linker script called myapp-wrap.ld, and a C source file called myapp-wrap.c. Although 
the file is not explicitly named on the command line, using the -s option also creates a 
header file for myapp-wrap.c called myapp-wrap.h.

os21usertrace -d myapp.in -g myapp.cmd -l myapp-wrap.ld -s myapp-wrap.c myapp.def

11.1.2 User definition file

os21usertrace takes as its input one or more definition files. This file contains details of the 
user APIs to be traced by OS21 Trace, and the specifications for the custom activity APIs to 
be created for use by the user application.

The tool os21usertracegen can generate a suitable definition file from an ELF object or 
executable file and a list of function names. See Section 11.1.3: os21usertracegen host tool 
on page 103 for more information.

The structure of a definition file, in modified Backus-Naur Form, is as follows:

format ::= spec-list

spec-list ::= spec
| spec-list spec

spec ::= USER-INCLUDE header-spec
| USER-API group-class-name type-spec-list
| USER-ACTIVITY group-class-name type-spec-list 
| # comment 

header-spec ::= filename
| <filename>
| "filename"

type-spec-list ::= type-spec
| type-spec-list type-spec

type-spec ::= { type @ format }
| { type }

group-class-name ::= identifier @ identifier @ identifier

where:

● filename is the name of a header file

● identifier is a C identifier

● type is a C type specification, which is either a C basic type (such as unsigned int) 
or a typedef defined in an included header file

● format is the format specification for type, and is one of the format codes listed in 
Table 22 on page 102

● comment is a comment

● all text in bold is literal and are not part of the modified BNF syntax

● the { and } symbols are literal and not part of the modified BNF syntax



ST200 OS21 Trace

8063762 Rev 9 101/246

In addition:

● a spec definition is terminated by the end of a line (and so cannot be split across 
multiple lines)

● group-class-name describes the hierarchy of the API or activity, and always 
consists of three components, group, class and name. The group and class 
components are reflected in the GDB control commands (see Section 11.10: User 
GDB control commands on page 123) and runtime control APIs (see Section 11.13: 
User trace runtime APIs on page 139). The final component, name is either the name 
of the user function being traced, or is a name used to derive the name of a custom 
activity API (see Section 11.13.1: User activity control APIs on page 139).

A typical example of a group-class-name specification is libc@heap@_malloc_r, 
which names the _malloc_r API from the class heap in the group libc.

● USER-INCLUDE specifies the name of the include file which defines a type referenced 
by a type-spec.

The os21usertrace tool preserves the style of the header-spec used in a 
USER-INCLUDE definition when generating the C source file except when the form 
filename is used, which is transformed into the <filename> style of header-spec.

● USER-API specifies the API within the application to be traced, and consists of two 
parts. The group-class-name provides the name of the API, and the 
type-spec-list specifies the prototype for the API.

The order of elements in the type-spec-list is important. The return type for the 
API is the first type-spec specified in the type-spec-list. The types of the 
parameters of the API are specified by the second and subsequent elements in the 
type-spec-list. For example:

USER-API libc@heap@_malloc_r {void*@p} {struct _reent*@p} {size_t*@d}

indicates that the _malloc_r() API returns an object pointer of type void, and 
accepts two parameters, the first being a pointer to a _reent structure and the second 
being a size_t.

If the return type is void, or if the API takes no parameters, use the form of 
type-spec with no format, that is: {type}. For example:

USER-API libc@heap@_free_r {void} {struct_reent*@p} {void*@p}

● USER-ACTIVITY specifies the name of the custom activity API to be created by the 
os21usertrace tool. The specification of type-spec-list is the same as for 
USER-API, except that it only specifies the type of each parameter for the API as the 
return type is always void.

● if type specifies an explicit function pointer type (that is, type is not a typedef), then 
a %s placeholder for the parameter name must be inserted into the type definition. This 
is to aid os21usertrace in the generation of the C source file. For example, if the 
parameter type is int (*)(void), then the type specification must be int 
(*%s)(void).



OS21 Trace ST200

102/246  8063762 Rev 9

Table 22 lists the available format codes used by type-spec:

         

The following restrictions apply.

● Strings are truncated to 255 characters.

● APIs with variable argument lists are not supported. If possible, convert the API into an 
equivalent form that takes a va_list parameter, and define this in the definition file. 
For example, replace int TRACE_Print(const char *format, ...) with the 
following:

int TRACE_VPrint(const char *format, va_list args)
  {
    ...
  }

  int TRACE_Print(const char *format, ...)
  {
    int result;
    va_list args;

    va_start(args, format);
    result = TRACE_VPrint(format, args);
    va_end(args);

    return result;
  }

Next, define TRACE_VPrint in the definition file as follows:

USER-API STAPI@TRACE@TRACE_VPrint {int@d} {const char*@s} {va_list@p}

Table 22. Format codes

 Code  Description 

 b 8-bit word

 B pointer to 8-bit word(1)

1. If a NULL pointer is used with these format codes, the de-referenced value is assumed to be zero.

 w 16-bit word

 W pointer to 16-bit word(1)

 d 32-bit word 

 D pointer to 32-bit word(1)

 q 64-bit word

 Q pointer to 64 bit word(1)

 s string(2)

2. If a NULL pointer is used with a string, an empty string is assumed.

 p object pointer 

 P function pointer 

 T OS21 task_t pointer 



ST200 OS21 Trace

8063762 Rev 9 103/246

● Non-scalar argument and return types are not supported. If possible, convert the API 
into an equivalent form taking a reference to the type and define this in the definition 
file.

● Avoid defining USER-ACTIVITY APIs with parameters with a type that is a derived 
type (that is, a typedef), unless it can be guaranteed that the derived type is declared 
when the header file (created by the --wrap-source option) is included.

Note: The format codes are used by OS21 Trace to decide how to decode and store the return 
value and arguments of the user and custom activity APIs.

11.1.3 os21usertracegen host tool

The ST200 Micro Toolset provides the os21usertracegen tool to generate a definition file 
for input to the os21usertrace tool. See Section 11.1.2: User definition file on page 100 for 
details of the definition file format. 

os21usertracegen accepts as input an ELF object or executable file (but not a library 
archive file) and uses the DWARF debug information(a) contained within to generate the 
definitions required by os21usertrace.

The command line for os21usertracegen is:

os21usertracegen --input | -i file {option | function-name}

where file is an ELF format file and function-name is the name of a global function. 
The default is to generate a definition file for all global functions defined by the DWARF 
debug information in the ELF format file specified by the --input option. The set of global 
functions contributing to the definitions file can be customized by using command line 
options to only include functions satisfying a specified criteria.

The command line options are described in Table 23. There is a long form and short form 
alternative for each option.

Note: The position of some options within the command line is significant. Also some options can 
be specified multiple times.

         

a. st200cc creates an ELF format file with DWARF debug information when the -g compilation option is 
specified.

Table 23. os21usertracegen command line options

Option Description

General options

--input file Name of the ELF format object or executable input file 
containing the DWARF debug information.-i file

--warn Enable warnings. If specified then os21usertracegen issues 
a warning for each function definition that specifies an 
unsupported parameter or return type.-w

--help
Display help.

-h



OS21 Trace ST200

104/246  8063762 Rev 9

Output format options

--decl Output definitions using their declared types. The default is to 
use compatible base types, this avoids the need to specify C 
include files (see --include) declaring the types (required 
when compiling the os21usertrace generated source).

-b

--tag Output definitions using C struct or enum tags as their base 
types. The default is to use compatible types, void* instead 
of struct* and int instead of enum; this avoids the need to 
specify C include files (see --include) declaring the types 
(required when compiling the os21usertrace generated 
source).

-t

--deref Output definitions with format codes to de-reference pointer 
types. The default is not to de-reference pointer types. For 
example, with this option the type int* is output with the 
format code of D instead of the default format code of p.
Only use this option with functions that are known to 
reference valid (that is, initialized) pointers and where a 
de-reference does not have side effects

-n

--string Output definitions with the s format code to decode char* 
types as a NUL (\0) terminated strings.

Only use this option with functions that are known to 
reference valid (that is, NUL terminated) strings.

-s

Function match options

function-name

Specifies that only functions that match the name 
function-name are to be included in the definitions file. If 
no function-name is specified then the default is to match 
all function names.

The interpretation of function-name is dictated by which of 
the --regexp and --noregexp options are in force (see 
below for details).

--regexp Specifies that the function names following this option contain 
a regular expression. This is the default.

For example, specifying -x t1 will match functions with the 
names t1, t10 and test1.

This option can be specified more than once.

-x

--noregexp Specifies that the function names following this option do not 
contain a regular expression.
For example, specifying -X t1 will only match the function 
with the name t1.
This option can be specified more than once

-X

--file regexp Specifies that only functions with a source file name that 
matches regexp are included in the definitions file. The 
default is to match all source file names.-f regexp

--dir regexp Specifies that only functions with a compilation directory 
name that matches regexp are included in the definitions 
file. The default is to match all compilation directories.-d regexp

Table 23. os21usertracegen command line options (continued)

Option Description



ST200 OS21 Trace

8063762 Rev 9 105/246

os21usertracegen output file format

os21usertracegen generates an annotated version of the definition file format (see 
Section 11.1.2: User definition file on page 100) where the annotations provide the following 
additional information:

● the version of the os21usertracegen tool

● the name of the ELF format input file from which the definitions file is derived

● for each contributing compilation unit: the locations of the compiled source file 
(##compile unit annotation) and the compilation directory (##comp_dir 
annotation)

● for each matching function name in the compilation unit: the name of the function 
(##function annotation), the function prototype (##decl annotation) and an 
equivalent function prototype specified with compatible base types (##base_decl 
annotation)

● if no function definition can be generated (because its specification is not supported by 
OS21 Trace) then the reason is included in the ##function annotation

In addition:

● functions appear in the definitions file in the order that they are defined in the DWARF 
debug information, not in the order they are specified on the command line

● a function definition can only be defined once in the definitions file

Output grouping options

--output file Output the generated definitions to file. The default is to 
send the output to the console.
This option resets the --group and --class options to their 
default values and clears the set of C include files specified 
by the --include option (see below for details).

This option can be specified more than once.

-o file

--group name Specify name as the definition group name for the following 
function names until the next --group or --output option 
or to the end of the command line, whichever is the sooner.
The default is group_default. This option can be specified 
more than once in order to define multiple group names.

-g name

--class name Specify name as the definition class name for the following 
function names until the next --class or --output option 
or to the end of the command line, whichever is the sooner.

The default is class_default. This option can be specified 
more than once in order to define multiple class names.

-c name

--include file Specify the name of a C include file to add to the definitions 
file. The set of C include files specified by this option is 
cleared by the next --output option.

file can also be specified as "file" or <file>.
This option can be specified more than once.

-I file

Table 23. os21usertracegen command line options (continued)

Option Description



OS21 Trace ST200

106/246  8063762 Rev 9

11.1.4 os21usertracegen example

This section shows an example using an ELF executable file to demonstrate the flexibility of 
the os21usertracegen tool.

1. The first step is to link the application (compiled with DWARF debug information 
enabled) to generate an ELF executable file called myapp.out:

st200cc application_link_options -g -o myapp.out

2. From the ELF executable file created in step 1., match function names that do not start 
with DEBUG_write and have been compiled in a directory ending in debug, and 
output their definitions to the file myapp-debug-other.def:

os21usertracegen -i myapp.out -o myapp-debug-other.def
-d 'myapp-directory.*debug$'
-g debug -c other '^(?!DEBUG_write)'

where myapp-directory is the directory containing the source code for myapp.

3. Match function names that start with DEBUG_write and have the same compilation 
directory as in step 2., and output their definitions, de-referencing pointer and string 
types, to the file myapp-debug-write.def:

os21usertracegen -i myapp.out -o myapp-debug-write.def
-d 'myapp-directory.*debug$' -n -s
-g debug -c write '^DEBUG_write'

4. Match function names that start with OS_, EVENT_ or TRACE_ that have not been 
compiled in a directory ending in debug, and output their definitions, de-referencing 
pointer and string types, to the file myapp-deref.def:

os21usertracegen -i myapp.out -o myapp-deref.def
-d 'myapp-directory.*(?<!debug)$' -n -s
-g myapp -c OS '^OS_' -c EVENT '^EVENT_' -c TRACE '^TRACE_'

5. Match function names that have the same compilation directory as in step 4. but 
excluding those that start with OS_, EVENT_ or TRACE_, and output their definitions to 
the file myapp-other.def:

os21usertracegen -i myapp.out -o myapp-other.def
-d 'myapp-directory.*(?<!debug)$'
-g myapp -c other '^(?!(OS_|EVENT_|TRACE_))'

6. Use os21usertrace to process the definition files (generated in steps 2. to 5.), to 
create a C source file, called myapp-wrap.c, containing the instrumented functions 
(as well as the other companion source files):

os21usertrace -d myapp.in -g myapp.cmd
-l myapp-wrap.ld -s myapp-wrap.c
myapp-debug-other.def
myapp-debug-write.def
myapp-other.def
myapp-deref.def

7. Next compile the source file generated in step 6.:

st200cc -mruntime=os21 -fno-zero-initialized-in-bss(b) -g -c
myapp-wrap.c

b. See Building on page 114 in Section 11.6.2: User API and user activity trace for further information about the 
-fno-zero-initialized-in-bss option.



ST200 OS21 Trace

8063762 Rev 9 107/246

8. The final step is to re-link the application with trace enabled (see Section 11.3: Building 
an application for OS21 Trace for details):

st200cc application-link-options -g -o myapp.out
myapp-wrap.o -trace -trace-api -trace-api-no-time
-Wl,@myapp-wrap.ld

Note: The use of single quotes (') in the above examples are not required (nor accepted) by the 
os21usertracegen tool but are present to illustrate the use of quoting to protect the regular 
expressions from being interpreted by a Unix shell. Under Windows, use double quotes (“) 
instead of single quotes to protect the regular expressions.

Use of regular expressions

os21usertracegen uses the Perl Compatible Regular Expressions (PCRE) library, which is 
more powerful and flexible than many other regular expression libraries. This is an 
open-source library (see www.pcre.org for details), with many reference and tutorial 
resources available on the Internet.

11.2 Print a string to the OS21 Trace buffer
It is possible to invoke a USER-ACTIVITY function to record that the program has reached 
a specified point in its execution. It is also possible to print a string to the OS21 Trace buffer 
with the OS21_TRACE_PRINT API. See os21_trace_status on page 135 for more 
information.

11.3 Building an application for OS21 Trace
To enable tracing for an application, link it with the appropriate command line options, 
-trace or -trace -trace-api.

Note: Enabling OS21 API tracing also requires OS21 activity tracing to be enabled. Therefore, to 
enable OS21 API tracing, the -trace linker command line option must always precede 
-trace-api.

Table 24 lists the st200cc linker options required to enable the OS21 Trace features.



OS21 Trace ST200

108/246  8063762 Rev 9

         

11.4 Running the application
By default, an application built for OS21 Trace initially starts with trace logging disabled. To 
enable tracing of the OS21 kernel and API from GDB, invoke the following commands:

source os21trace.cmd
enable_os21_activity_global
enable_os21_api_global

Note: The command script os21trace.cmd automatically creates two breakpoints. One is on the 
function that is invoked when the trace buffer is full, and the other is on the function that is 
invoked when the task information buffer is full.

To enable tracing for user defined APIs and activities, source the GDB command script that 
was generated by the --gdb-script option of os21usertrace. In the following example, 
that file is named myapp.cmd. The example also assumes the default prefix of user.

source myapp.cmd
enable_user_activity_global
enable_user_api_global

Table 24. st200cc linker options to enable OS21 Trace

st200cc options Description

-trace

Initialize OS21 Trace support.
Install OS21 callbacks to monitor kernel events. (See the 
“Callbacks” chapter in the OS21 User Manual for more details.)
This option uses the default ld linker script file, os21trace.ld 
located at <toolset_dir>/target/os21.

-trace-api

Use in conjunction with -trace to initialize OS21 API tracing for 
all functions in the OS21 API.

When this option is used, all public OS21 functions are wrapped 
using the GNU linker --wrap option. The wrapper functions 
record the parameters and return values of the OS21 APIs into 
the trace buffer.

This option uses the special linker script files os21wrap.ld and 
os21wrap.ld-class located at 
<toolset_dir>/target/os21.

-trace-api-class

Use in conjunction with -trace to initialize OS21 API tracing for 
all functions in the specified class of OS21 API(1). For example:

-trace -trace-api-cache

performs tracing only on the OS21 functions that belong to the 
class event.

1. Where class is one of the following: cache, callback, event, exception, interrupt, kernel, 
memory, message, mutex, partition, power, profile, scu, semaphore, task, time, or vmem.

-trace-api-no-class

Use this option in conjunction with the -trace-api option to 
exclude the specified class of API from tracing(1). For example:
-trace -trace-api -trace-api-no-cache

performs tracing on all OS21 functions except those that belong 
to the class cache.

-trace-no-constructor
Use this option to disable the automatic initialization of the OS21 
Trace buffers.



ST200 OS21 Trace

8063762 Rev 9 109/246

11.4.1 Trace buffer

The default for the trace buffer is to wrap. This means that when this buffer is full, tracing 
wraps to the start of the buffer and overwrites the oldest existing events. In this case, the 
trace buffer full breakpoint does not occur. When the buffer wraps, time stamping 
continues from the previously recorded sample.

Note: The time recorded also includes time spent when profiling is disabled either as a result of an 
I/O request or because the ST200 is under control of GDB.

With tracing enabled and while the target is running, timestamped events are written to the 
trace buffer. To access this data, GDB must take control of the target. To do this, either set 
a breakpoint and wait for the break to match, or stop the target, either with a Ctrl+C from 
within GDB or the Stop button in STWorkbench or Insight.

When GDB has control of the target, extract the trace data by invoking the following GDB 
command:

flush_all_trace_buffers

This command extracts data from the task information and trace buffers, writes them to files 
on the host and then resets the buffers. The following binary files are created:

Section 11.8: Structure of trace binary files on page 115 provides a description of the format 
for each of these files.

11.5 Analyzing the results
After the OS21 Trace and the task information buffers have been saved on the host, use the 
decoder tool os21decodetrace to convert this data into various output formats for viewing 
and analysis.

The command line for os21decodetrace is:

os21decodetrace {option} trace-file

The command line options for os21decodetrace are described in Table 25.

         

os21trace.bin This file contains the contents of the trace buffer.

os21trace.bin.ticks OS21 time information (time_ticks_per_sec value for the 
trace timestamps and the absolute time of the last event saved 
in the trace buffer). 

os21tasktrace.bin This file contains the contents of the task information buffer

Table 25. os21decodetrace command line options

Option Description

-e exe-file
Optional name of target executable file. Required to obtain the 
symbolic names of interrupt handlers.

-n task-trace-file
Optional name of the task information data file (for example 
os21tasktrace.bin). This file provides the name and other useful 
information for each task. 



OS21 Trace ST200

110/246  8063762 Rev 9

-o output-file

Optional output file name. The default is to output to the console.

Trace data files must be given the extension .osa to enable them to 
be opened automatically in STWorkbench. If any other extension is 
used, the files must be opened in STWorkbench using the “Open 
with...” option.

-os21 file

Optional name of the control file describing the OS21 APIs and 
traceable activities. Use this option to override the default definition of 
OS21 APIs and traceable activities.

The format of the control file is described in Section 11.5.2 on page 
112.

-m mode

Use -m to modify the format selected by the -t option, where mode is 
one of the following:
– details shows detailed information for each task and interrupt 

context. This includes the number of trace records associated with 
each task or interrupt context, and the time spent (in ticks) executing 
in the task or interrupt context. Task priority and stack location 
information is provided for each task context.

– metrics shows timing metrics for each recorded task and interrupt 
context. The metrics include the number of times a task or interrupt 
was scheduled or descheduled, and the minimum, maximum and 
average times that the task or interrupt context was active or inactive.

– zero includes in the report the tasks and interrupt handlers that 
have zero time.

– max is equivalent to specifying -m details -m metrics 
-m zero.

– min does not show individual task and interrupt handler information.

– simple uses an alternative time accounting regime that is based 
upon the context information recorded with each trace record instead 
of context changes reported by the OS21 activity monitors. This 
option is most useful when API tracing has been enabled.

– ticks to output timing information in ticks.
– usecs to output timing information in real time at microsecond 

resolution. This is the default.
Not all of the modes are applicable to all output formats. See 
Section 11.5.1 on page 111 for more information on the usage of this 
option.

-t type

Optional output format, where type is one of the following:

– summary to display a summary. This is the default.

– workbench to generate output in a format suitable for 
STWorkbench.

– text to display one record per line. The first field is the absolute 
time. OS21 API trace records also contain the parameters and return 
value of each function.

– csv is similar to text except that the token separator is a comma.

The -t option can be followed by an optional -m option to modify the 
format of the output of os21decodetrace.

Table 25. os21decodetrace command line options (continued)

Option Description



ST200 OS21 Trace

8063762 Rev 9 111/246

11.5.1 Usage of the -m mode option

The various modes of the -m option are intended to be used with specific output formats. 
Table 26 shows how the -m modes can be combined with the different output formats.

         

Yes indicates that the given mode generates meaningful output when used for the given 
output format.

No indicates that the mode cannot be used for the given output format.

If no -t option precedes the -m mode option, os21decodetrace assumes -t summary.

-user file

Optional name of the control file describing the user APIs and 
traceable activities. 
The format of the control file is described in Section 11.5.2 on page 
112.

trace-file

Trace data file (for example os21trace.bin).

os21decodetrace assumes that the OS21time information can be 
found in the file trace-file.ticks (for example 
os21trace.bin.ticks)

Table 25. os21decodetrace command line options (continued)

Option Description

Table 26. Permitted combinations of mode and output format

Mode (-m option)
Output format (-t option)

summary workbench text csv

details Yes No No No

metrics Yes Yes No No

zero Yes No No No

max Yes No No No

min Yes No No No

simple Yes No No No

ticks Yes Yes Yes Yes

usecs Yes(1)

1. Displays real time in microseconds, milliseconds, seconds, minutes and hours.

Yes Yes Yes



OS21 Trace ST200

112/246  8063762 Rev 9

11.5.2 os21decodetrace control file

The os21decodetrace options -os21 and -user both require a control file that describes 
the APIs and activities being traced. For user-defined APIs and activities, this file is 
generated by the --decode-script option of the os21usertrace tool.

The structure of a control file, in modified Backus-Naur Form, is as follows:

file-format ::= spec-list

spec-list ::= spec
          | spec-list spec

spec ::= A = code group-class-name parameter-type-spec
   | P = code group-class-name return-type-spec 

parameter-type-spec

return-type-spec ::= format
      | format type-list

parameter-type-spec ::= format
   | format type-list

type-list ::= type
 | type-list type

where:

● code is a number.

● group-class-name, format and type are strings. 

● A record of type A specifies an activity and a record of type P specifies an API.

● group-class-name is the same as used in the USER-API and USER-ACTIVITY 
specifications, but with all white space removed. See Section 11.1.2 on page 100.

● format is a concatenation of all the format codes specified for the parameters of an 
API or activity. It is zero length for a void return type or an empty parameter list, in 
which case a type-list is not present.

● type is the the same as used in the USER-API and USER-ACTIVITY specifications, 
but with all superfluous white space removed. See Section 11.1.2 on page 100.



ST200 OS21 Trace

8063762 Rev 9 113/246

11.6 Examples

11.6.1 OS21 activity and OS21 API trace

A simple example is provided in the examples/os21/os21_trace directory of the 
toolset. A makefile is available in this location to build/run the application and decode the 
resulting OS21 Trace. Data is automatically dumped to the host in a file called 
test.tracedump. A README file provides further details about how to launch the test.

The example is driven by the GDB command script (traceexec.cmd). This script enables 
OS21 tracing (both activity and API), executes the application and then flushes the trace 
buffers onto the default host file before exiting.

The example application is a simple demonstration of OS21 task usage with time slicing 
enabled.

11.6.2 User API and user activity trace

This section provides a simple example of using OS21 Trace to trace APIs and some 
custom activity events within a user application.

os21usertrace

The first step is to create a definition file for os21usertrace. This specifies each of the user 
API functions and user activity events to trace, using the format described in Section 11.1.2: 
User definition file on page 100.

Figure 27. Example definition file, myapp.def

The example definition file in Figure 27, myapp.def, specifies:

● several of the C library heap allocation APIs (_sbrk_r, _malloc_r, _memalign_r, 
_calloc_r, _realloc_r and _free_r)

● three custom activity event API definitions (esr_signal, isr_signal and 
task_signal)

● three APIs from the user application (esr_api, isr_api and task_api) 

Each are defined using an appropriate group-class-name triplet, and each API has its 
return value and parameters defined. Several header files are also required, as these define 
the types referenced by the APIs.

USER-INCLUDE stdlib.h
USER-INCLUDE malloc.h
USER-INCLUDE os21.h
USER-API libc@sys@_sbrk_r {void*@p} {struct _reent*@p} {ptrdiff_t@d}
USER-API libc@heap@_malloc_r {void*@p} {struct _reent*@p} {size_t@d}
USER-API libc@heap@_memalign_r {void*@p} {struct _reent*@p} {size_t@d} {size_t@d}
USER-API libc@heap@_calloc_r {void*@p} {struct _reent*@p} {size_t@d} {size_t@d}
USER-API libc@heap@_realloc_r {void*@p} {struct _reent*@p} {void*@p} {size_t@d}
USER-API libc@heap@_free_r {void} {struct _reent*@p} {void*@p}
USER-ACTIVITY test@esr@esr_signal {unsigned int@d}
USER-ACTIVITY test@isr@isr_signal {unsigned int@d}
USER-ACTIVITY test@task@task_signal {unsigned int@d}
USER-API test@esr@esr_api {const char*@s} {size_t@d}
USER-API test@isr@isr_api {const char*@s} {size_t@d}
USER-API test@task@task_api {const char*@s} [task_t*@T}



OS21 Trace ST200

114/246  8063762 Rev 9

To generate the source files necessary for building the application, run os21usertrace with 
the following command line.

os21usertrace -d myapp.in -g myapp.cmd -l myapp-wrap.ld -s myapp-wrap.c myapp.def

Building

Use st200cc to compile the generated C source file, myapp-wrap.c:

st200cc -mruntime=os21 -fno-zero-initialized-in-bss -g -c myapp-wrap.c

Warning: The generated C source file must be compiled using the 
-fno-zero-initialized-in-bss option to ensure that the 
data structures in target memory used by the generated GDB 
command scripts are correctly initialized when the 
application is loaded onto the target.

The next step performs the final link of the application with the generated linker script:

st200cc -mboard=platform -mruntime=os21 -trace ... myapp-wrap.o -Wl,@myapp-wrap.ld 

Execution

Use GDB to load and run the application. The following GDB session uses the ST 
TargetPack st200tp command to connect to the platform.

(gdb) file a.out
(gdb) st200tp stmc:platform:core
(gdb) load
(gdb) break main
(gdb) continue 

Source the command script myapp.cmd in order to use the GDB commands for controlling 
tracing:

(gdb) source myapp.cmd
(gdb) enable_user_activity_global
(gdb) enable_user_api_global

When the trace data has been gathered, use flush_all_trace_buffers to flush the 
data to file. Finally, use os21decodetrace to decode the trace file.

os21decodetrace -e a.out -user myapp.in -n os21tasktrace.bin os21trace.bin

Note: The -user myapp.in option is required so that os21decodetrace can interpret the data 
for the user defined APIs and activities.



ST200 OS21 Trace

8063762 Rev 9 115/246

11.7 Trace overhead
It should be understood that OS21 Trace is intrusive. The level of intrusiveness depends 
upon the choice of linker and runtime options. Therefore, take this into consideration when 
analyzing the trace results, as tracing affects the real time behavior of the application.

The following points identify some of the costs to consider when using OS21 Trace.

● The default trace buffer requires 2 Mbytes of heap. Use the variable 
os21_trace_constructor_size to change the size of the buffer.

● The default trace buffer constructor can be disabled using the
-trace-no-constructor option. The user can then initialize the trace buffer directly 
using os21_trace_initialize().

● The default task information buffer requires 64 Kbytes of heap. Use the variable 
os21_task_trace_constructor_size to change the size of the buffer.

● The default task information buffer constructor can be disabled using the 
-trace-no-constructor option. The user can then initialize the task information 
buffer directly using os21_task_trace_initialize().

Note: For more information on the variables and functions named above, see Section 11.11: Trace 
library API on page 126.

● For a representative audio and video decode application that contains 4 Mbytes of 
code, the approximate increases in code size are as follows:

– OS21 activity tracing adds 3 Kbytes (0.1% increase) 

– OS21 API tracing adds 17 Kbytes (0.4% increase), including OS21 activity

● For the same representative application, the approximate times to fill the default sized 
trace buffer (the core is actually 50% idle during the run) are as follows:

– OS21 activity tracing takes 25 secs

– OS21 API tracing takes 1.2 secs, including OS21 activity

● The profile of code and data cache utilization is perturbed.

11.8 Structure of trace binary files
As described in Section 11.4: Running the application on page 108, the command 
flush_all_trace_buffers outputs the contents of the trace buffer to three binary files. 
This section describes the internal structure of each of these files.

In the format column in Table 27, Table 28 and Table 29:

● INT8 is an 8-bit unsigned integer

● INT16 is a 16-bit unsigned integer, little endian format

● INT32 is a 32-bit unsigned integer, little endian format

● INT64 is a 64-bit unsigned integer, little endian format



OS21 Trace ST200

116/246  8063762 Rev 9

11.8.1 os21trace.bin

This file contains the contents of the trace buffer. It is a sequence of records, where each 
record has the structure given in Table 27.

         

11.8.2 os21trace.bin.ticks

This file contains OS21 time information. It consists of the fields described in Table 28.

         

Table 27. File format of os21trace.bin 

Field Format Comment

time-stamp INT32 Delta from previous trace record

context-code INT8
See os21_context_e in 
os21trace/tracecodes.h

context INT32 task_t object pointer or interrupt INTEVT code.

trace-type INT8
See os21_trace_type_e in 
os21trace/tracecodes.h

trace-code INTn

n is defined by the code-size field in the 
os21trace.bin.ticks format (see Table 28).
See os21_activity_e and os21_api_e in 
os21trace/tracecodes.h

options INT32

The following bits are set to indicate which of the 
optional fields are included in the record:
0 to 7: number of arguments

8: caller-address field

9: frame-address field

caller-address INT32 Optional

frame-address INT32 Optional

arguments INT32 Optional

Table 28. File format of os21trace.bin.ticks

Field Format Comment

version INT32 For the current version, this is 0x00000003

code-size INT32
Size of the trace-code field in the 
os21trace.bin format (see Table 27). The valid 
sizes are 1, 2 or 4 bytes.

tick-rate INT64 time_ticks_per_sec()

last-time INT64 time_now() for most recent trace record



ST200 OS21 Trace

8063762 Rev 9 117/246

11.8.3 os21tasktrace.bin

This file contains the contents of the task information buffer. It is a sequence of records, 
where each record has the structure given in Table 29.

         

11.9 GDB commands
This section lists the OS21 Trace GDB commands accessible when the file 
os21trace.cmd is sourced within GDB. For more information on a given command, use 
the GDB command help command.

11.9.1 Buffer full action

os21_trace_set_mode stop|wrap (Default mode is wrap)
os21_task_trace_set_mode stop|wrap (Default mode is stop)

If either mode is set to stop, then a breakpoint is enabled to signal when the buffer is 
full. If set to wrap, this breakpoint is disabled.

If the buffer is not operating in wrap mode, the data is logged into the buffer only while 
space is available. When the buffer is full, no more logging occurs until the buffer is 
emptied and reset.

When the buffer full breakpoint is raised, a GDB script invokes the appropriate 
function to flush the buffer and then continues. The function is one of the following:

– for os21_trace_set_mode, the script calls flush_os21_trace_buffer

– for os21_task_trace_set_mode, the script calls 
flush_os21_task_trace_buffer

This means that the contents of the buffer are automatically extracted when full to 
provide a complete log. However, the target is stopped for a comparatively long time 
during each download.

11.9.2 Enable OS21 Trace

enable_os21_trace

Enable OS21 Trace logging for both OS21 and user trace events. OS21 Trace logging 
is enabled by default.

disable_os21_trace

Disable OS21 Trace logging.

enable_os21_trace

Display the status of OS21 Trace logging.

Table 29. File format of os21tasktrace.bin

Field Format Comment

handle INT32 Task task_t object pointer

priority INT32 Task priority when created

stack-base INT32 Location of task stack

stack-size INT32 Size of task stack

task-name INT8[16] Task name



OS21 Trace ST200

118/246  8063762 Rev 9

11.9.3 Enable trace control commands

The following GDB commands control the saving of arguments and context information in 
the trace records for both OS21 and user trace events.

enable_os21_trace_control control

Enable the saving of the information indicated by control, where control is one of 
the following: save_activity, save_api_enter, save_api_exit, 
save_activity_args, save_api_enter_args, save_api_exit_args, 
save_caller_address or save_frame_address.

disable_os21_trace_control control

Disable the saving of information indicated by control.

show_os21_trace_control control

Shows whether control is enabled or disabled.

enable_os21_trace_control_all

Enable all controls as a single operation.

disable_os21_trace_control_all

Disable all controls as a single operation.

show_os21_trace_control_all

Display the controls that are enabled or disabled.

11.9.4 Enable OS21 activity

enable_os21_activity_global

Enable the logging of OS21 activity types, which is disabled by default.

disable_os21_activity_global 

Disable the logging of OS21 activity types.

show_os21_activity_global 

Display the logging status of the OS21 activity types.

11.9.5 Enable OS21 API

enable_os21_api_global

Enable the logging of OS21 API types, which is disabled by default.

disable_os21_api_global 

Disable the logging of OS21 API types.

show_os21_api_global 

Display the logging status of the OS21 API types.



ST200 OS21 Trace

8063762 Rev 9 119/246

11.9.6 Enable OS21 activity event

show_os21_activity_classes

Display the OS21 activity event classes. The supported classes are task, interrupt 
and exception.

enable_os21_activity_class_all 

Enable the logging of all OS21 activity events in all classes.

disable_os21_activity_class_all 

Disable the logging of all OS21 activity events in all classes.

show_os21_activity_class_all 

Display the logging status of all OS21 activity events in all classes.

enable_os21_activity_class_class 

Enable the logging of the OS21 activity events in the class class, where class is one 
of the classes listed by show_os21_activity_classes.

disable_os21_activity_class_class 

Disable the logging of the OS21 activity events in the class class.

show_os21_activity_class_class 

Display the logging status of the OS21 activity events in the class class.

enable_os21_activity code

Enable the logging of the OS21 activity event specified by code. All events are enabled 
by default. The command show_os21_activity_class_all lists all valid code 
parameters (see Section 11.9.11: Type and event enables on page 121).

For an event to be logged, both the event code and the type (OS21 activity in this 
case) must be enabled. Disabling the type prevents logging of all the events that 
belong to that type, although it does not disable them.

disable_os21_activity code

Disable the logging of the OS21 activity event specified by code.

show_os21_activity code 

Display the logging status of the OS21 activity event specified by code.

11.9.7 Enable OS21 API function

show_os21_api_classes

Display the OS21 API classes. The supported classes are cache, callback, event, 
exception, interrupt, kernel, memory, message, mutex, partition, power, 
profile, reset, semaphore, task, time or vmem.

enable_os21_api_class_all 

Enable logging of all OS21 APIs in all classes.

disable_os21_api_class_all 

Disable logging of all OS21 APIs in all classes.

show_os21_api_class_all 

Display logging status of all OS21 APIs in all classes.



OS21 Trace ST200

120/246  8063762 Rev 9

enable_os21_api_class_class 

Enable logging of the OS21 API in the class class, where class is one of classes 
reported by show_os21_api_classes.

disable_os21_api_class_class 

Disable logging of the OS21 API in the class class.

show_os21_api_class_class 

Display the logging status of the OS21 API in the class class.

enable_os21_api code 

Enable the logging of the OS21 API specified by code. All APIs are enabled by default. 
The command show_os21_api_class_all provides the list of valid code 
parameters (see Section 11.9.11: Type and event enables on page 121).

For an event to be logged, both the API code and the type (OS21 API in this case) 
must be enabled. Disabling the type prevents logging of all the events that belong to 
that type, although it does not disable them.

disable_os21_api code 

Disable the logging of the OS21 API specified by code.

show_os21_api code 

Display the logging status of the OS21 API specified by code.

11.9.8 Enable task information logging

enable_os21_task_trace 

Enable logging of task information. Take care to ensure that logging is enabled when 
tasks are created, otherwise os21decodetrace and STWorkbench are not able to 
associate task names with trace data. Logging of task information is enabled by 
default.

disable_os21_task_trace

Disable logging of task information.

show_os21_task_trace 

Display the logging status of task information.

enable_os21_activity_task_trace

Enable logging of task information by OS21 activity events (task_create and 
task_switch), this is enabled by default.

disable_os21_activity_task_trace

Disable logging of task information by OS21 activity events.

show_os21_activity_task_trace

Display the status of logging task information by OS21 activity events.



ST200 OS21 Trace

8063762 Rev 9 121/246

11.9.9 Dump buffer to file

dump_os21_trace_buffer file [0|1]
dump_os21_task_trace_buffer file [0|1]

Dump the contents of the buffer to file. 

The optional second parameter is the buffer reset argument. If 1 (the default) then the 
buffer is cleared, otherwise it is not reset and the trace data remains intact.

Note: file is created the first time that data is written. Subsequent invocations append data to 
the existing file. Take care to always use the same name for the task information buffer 
as this holds details of all the tasks created by the application.

A file named file.ticks is also created when dumping the trace buffer.

11.9.10 Flush buffers and reset

flush_os21_trace_buffer

is equivalent to invoking

dump_os21_trace_buffer os21trace.bin

flush_os21_task_trace_buffer

is equivalent to invoking

dump_os21_task_trace_buffer os21tasktrace.bin

flush_all_trace_buffers

is equivalent to invoking

flush_os21_trace_buffer
flush_os21_task_trace_buffer

These functions flush the contents of both the trace and task information buffers to 
predefined file names and then reset the buffers. They write data to the files (if any data 
is extracted) os21trace.bin, os21trace.bin.ticks and 
os21tasktrace.bin.

11.9.11 Type and event enables

To support convenient enabling and disabling of related OS21 events with a single 
operation, the events are divided into classes; and classes are divided into types. A trace 
event is logged (written into the trace buffer) only if the event itself is enabled as well as its 
type. 

Two types are supported:

● OS21 activity

● OS21 API

For each of these, the following command displays the logging status of the type (see 
Section 11.9.4: Enable OS21 activity on page 118 and Section 11.9.5: Enable OS21 API on 
page 118):

show_type_global

The following command lists all the classes in a type:

show_type_classes



OS21 Trace ST200

122/246  8063762 Rev 9

For example:

(gdb) show_os21_activity_classes
exception
general
interrupt
task

The following command displays the logging status of all the events that belong to a class:

show_type_class_class

For example, display the logging status of the OS21 APIs in the time class with the 
command:

(gdb) show_os21_api_class_time
time_after = enabled
time_minus = enabled
time_now = enabled
time_plus = enabled
time_ticks_per_sec = enabled

The following command displays the logging status of a specific event:

show_type event

For example, display the status of the OS21 API semaphore_wait event with the 
command:

(gdb) show_os21_api semaphore_wait
semaphore_wait = enabled

The following alternative command displays the logging status of all events for a type:

show_type_class_all

Each of the show commands has an enable/disable equivalent, except the 
show_type_classes commands. For example:

(gdb) disable_os21_activity task_switch
(gdb) disable_os21_activity_class_interrupt
(gdb) show_os21_activity_class_all
excp_enter = enabled
excp_exit = enabled
excp_install = enabled
excp_uninstall = enabled
general_print = enabled
intr_enter = disabled
intr_exit = disabled
intr_install = disabled
intr_uninstall = disabled
task_create = enabled
task_delete = enabled
task_exit = enabled
task_switch = disabled



ST200 OS21 Trace

8063762 Rev 9 123/246

11.10 User GDB control commands
When used with the --gdb-script command line option, the tool os21usertrace creates 
a GDB command script that defines a set of GDB commands for controlling the generation 
of user trace records. These commands are used to show the status of tracing, or to enable 
or disable tracing for a given group, class or event.

To make these commands available when debugging the application, source the generated 
command script (see Section 11.4: Running the application on page 108).

Note: The element user in the names of the GDB commands listed in the following sections can 
be changed with the option --user-prefix of the os21usertrace tool.

11.10.1 User activity control commands

os21usertrace creates the following commands for controlling the generation of trace 
records for user activities. Use these commands for enabling or disabling tracing for any 
group, class or named activity that was specified in the os21usertrace definition file.

Note: If no user activities are defined, then none of the following commands are defined.

show_user_activity_groups

Display all the user activity trace groups in the application as a simple list. 

enable_user_activity_group_all
disable_user_activity_group_all 

Enable or disable the logging of all the activities for all groups. 

show_user_activity_group_all

Display the logging status of all the activities for all groups. 

show_user_activity_group_group_classes 

Display all the classes of the user trace group group, where group is one of the 
groups listed by show_user_activity_groups. 

enable_user_activity_group_group_class_all 
disable_user_activity_group_group_class_all

Enable or disable the logging of all the activities for all classes of the user trace group 
group.

show_user_activity_group_group_class_all 

Display the logging status of all the activities for all classes of the user trace group 
group.

enable_user_activity_group_group_class_class
disable_user_activity_group_group_class_class 

Enable or disable the logging of all the activities within the class class of the user 
trace group group, where class is one of the classes listed by 
show_user_activity_group_group_classes. 

show_user_activity_group_group_class_class

Display the logging status of all the activities within the class class of the user trace 
group group.



OS21 Trace ST200

124/246  8063762 Rev 9

enable_user_activity code(c)

disable_user_activity code(c) 

Enable or disable the logging of the user activity code. All activities are enabled by 
default. The command show_user_activity_group_all lists all the valid code 
parameters (see Section 11.9.11: Type and event enables on page 121).

For an event to be logged, both the activity code and the type (user activity in this 
case) must be enabled. Disabling the type prevents logging of all the events that 
belong to that type, although it does not disable them.

show_user_activity code(c)

Display the logging status of the user activity code.

enable_user_activity_global 
disable_user_activity_global 

Enable or disable the logging of user activity types. User activity trace is disabled by 
default.

show_user_activity_global 

Display the logging status of user activity types.

11.10.2 User API control commands

os21usertrace creates the following commands for controlling the generation of trace 
records for user APIs. Use these commands for enabling or disabling tracing for any group, 
class or named API that was specified in the os21usertrace definition file.

Note: If no user APIs are defined, then none of the following commands are defined.

show_user_api_groups

Display all the user API trace groups in the application as a simple list.

enable_user_api_group_all 
disable_user_api_group_all

Enable or disable the logging of all the APIs for all groups.

show_user_api_group_all

Display the logging status of all the APIs for all groups. 

show_user_api_group_group_classes

Display all the classes of the user trace group group, where group is one of the 
groups listed by show_user_api_groups.

enable_user_api_group_group_class_all
disable_user_api_group_group_class_all

Enable or disable the logging of all the APIs for all classes of the user trace group 
group. 

show_user_api_group_group_class_all

Display the logging status of all the APIs for all classes of the user trace group group. 

c. These commands are not qualified by class or group since the activity must be unique.



ST200 OS21 Trace

8063762 Rev 9 125/246

enable_user_api_group_group_class_class
disable_user_api_group_group_class_class 

Enable or disable the logging of all the APIs within the class class of the user trace 
group group, where class is one of the classes reported by 
show_user_api_group_group_classes. 

show_user_api_group_group_class_class

Display the status of all the APIs within the class class of the user trace group group. 

enable_user_api code(d)

disable_user_api code(d)

Enable or disable the logging of the user API specified by code. All APIs are enabled 
by default. The command show_user_api_group_all lists all the valid code 
parameters (see Section 11.9.11: Type and event enables on page 121).

For an event to be logged, both the API code and the type (user API in this case) must 
be enabled. Disabling the type prevents logging of all the events that belong to that 
type, although it does not disable them.

show_user_api code(d)

Display the logging status of the user API specified by code. 

enable_user_api_global
disable_user_api_global

Enable or disable the logging of user API types. User API trace is disabled by default.

show_user_api_global

Display the logging status of user API types. 

11.10.3 Miscellaneous commands

The following GDB command is also created by os21usertrace.

show_user_decode_trace

Show the location of the associated os21decodetrace control file (that is, the 
argument passed to its -user option).

d. These commands are not qualified by class or group since the API must have global scope and therefore be 
unique.



OS21 Trace ST200

126/246  8063762 Rev 9

11.11 Trace library API
The OS21 Trace library is provided in libos21trace.a and its associated header file is 
os21trace.h. The functions defined by this API are described in the following sections.

os21_trace_initialize Create a trace buffer

Definition: typedef enum os21_trace_mode_e { 
 os21_trace_mode_stop = 1, 
 os21_trace_mode_wrap = 2 

} os21_trace_mode_e;

void os21_trace_initialize(
 void * data, 
 unsigned int size, 
 os21_trace_mode_e mode); 

Arguments:

Returns: Void

Description: This function allocates and initializes a trace buffer specified by the size parameter. 
If data is NULL, the API returns the current buffer to the heap and allocates a new 
buffer specified by size.

On startup of OS21 Trace, the default constructor invokes this function to create a 
buffer of size 2 Mbytes (enough for 128k simple records) in 
os21_trace_mode_wrap mode. This default size can be overridden by the user. 
See Section 11.12: Variables and APIs that can be overridden on page 138.

os21_trace_initialize_data Replace an existing trace buffer

Definition: void os21_trace_initialize_data(
 void * data, 
 unsigned int size); 

Arguments:

Returns: Void

Description: Replace the existing trace buffer with the buffer specified by the data and size 
parameters. If data is NULL, the API returns the current buffer to the heap and 
allocates a new buffer of the specified size.

This function must not be used before os21_trace_initialize() has been 
called.

Note: os21_trace_initialize_data() can be used to clear the trace buffer if data 
refers to the existing trace buffer.

data The buffer to use.

size The size in bytes of the buffer to create.

mode Buffer full action (stop or wrap).

data The buffer to use.

size The size in bytes of the buffer to create.



ST200 OS21 Trace

8063762 Rev 9 127/246

os21_trace_initialize_activity_monitors Initialize activity monitors

Definition: void os21_trace_initialize_activity_monitors(void); 

Arguments: None

Returns: Void

Description: Use this function to initialize the activity monitors.

os21_trace_set_mode Set the action on trace buffer full

Definition: typedef enum os21_trace_mode_e { 
 os21_trace_mode_stop = 1, 
 os21_trace_mode_wrap = 2 

} os21_trace_mode_e;

os21_trace_mode_e os21_trace_set_mode(os21_trace_mode_e mode); 

Arguments:

Returns: The previous trace mode.

Description: Set the action to be performed when the task trace buffer is full. The options are stop 
or wrap.

os21_trace_overflow User-defined trace overflow function

Definition: void os21_trace_overflow(
 void * data, 
 unsigned int size); 

Arguments:

Returns: Void

Description: A function with this name is called when the trace buffer overflows (in stop mode) or 
before wraparound occurs (in wrap mode). The data and size parameters are the 
current trace data buffer and the size of the data saved in the buffer.

The default implementation of this function is a no-op that the user can override with 
their own implementation.

mode Buffer full action (stop or wrap).

data The current trace buffer.

size The size in bytes of data in the buffer.



OS21 Trace ST200

128/246  8063762 Rev 9

os21_task_trace_initialize Create a task information buffer

Definition: void os21_task_trace_initialize(
 void * data, 
 unsigned int size, 
 os21_task_trace_mode_e mode); 

Arguments:

Returns: Void

Description: This function allocates and initializes a task information buffer specified by the size 
parameter. If data is NULL, the API returns the current buffer to the heap and 
allocates a new buffer specified by size.

On startup of OS21 Trace, the default constructor invokes this function to create a 
buffer of size 64 Kbytes (enough for 2k records) in os21_trace_mode_wrap mode. 
This default size can be overridden by the user. See Section 11.12: Variables and 
APIs that can be overridden on page 138.

os21_task_trace_initialize_data Replace an existing task information buffer

Definition: void os21_task_trace_initialize_data(
 void * data, 
 unsigned int size); 

Arguments:

Returns: Void

Description: Replace the existing task information buffer with the buffer specified by the data and 
size parameters. If data is NULL, the API returns the current buffer to the heap and 
allocates a new buffer of the specified size.

This function must not be used before os21_task_trace_initialize() has 
been called.

Note: os21_task_trace_initialize_data() can be used to clear the task 
information buffer if data refers to the existing task information buffer.

data The buffer to use.

size The size in bytes of the buffer to create.

mode Buffer full action (stop or wrap).

data The buffer to use.

size The size in bytes of the buffer to create.



ST200 OS21 Trace

8063762 Rev 9 129/246

os21_task_trace_overflow User-defined task information overflow function

Definition: void os21_task_trace_overflow(
 void * data, 
 unsigned int size); 

Arguments:

Returns: Void

Description: A function with this name is called when the task information buffer overflows (in stop 
mode) or before wraparound occurs (in wrap mode). The data and size parameters 
are the current buffer and the size of the data saved in the buffer.

The default implementation of this function is a no-op that the user can override with 
their own implementation.

os21_task_trace_set_mode Set the action on task information buffer full

Definition: typedef enum os21_trace_mode_e { 
 os21_trace_mode_stop = 1, 
 os21_trace_mode_wrap = 2 

} os21_trace_mode_e;

os21_task_trace_mode_e os21_task_ trace_set_mode
 (os21_trace_mode_e mode); 

Arguments:

Returns: The previous trace mode.

Description: Set the action to be performed when the task trace buffer is full. The options are stop 
or wrap.

os21_trace_set_enable Enable trace logging

Definition: int os21_trace_set_enable(
 int mode); 

Arguments:

Returns: The previous mode.

Description: Enable or disable OS21 Trace logging. Initially set to 1.

data The current task information buffer.

size The size in bytes of data in the buffer.

mode Buffer full action (stop or wrap).

mode Enable (1) or disable (0).



OS21 Trace ST200

130/246  8063762 Rev 9

os21_activity_set_global_enable Enable OS21 activity logging

Definition: int os21_activity_set_global_enable(
 int mode); 

Arguments:

Returns: The previous mode.

Description: Enable or disable OS21 activity logging. Initially set to 0.

os21_activity_set_class_enable Enable OS21 activity logging for class

Definition: typedef enum os21_activity_class_e {
os21_activity_class_exception,
os21_activity_class_interrupt,
os21_activity_class_task,
os21_activity_class_general

os21_activity_class_EOF
} os21_activity_class_e; 

void os21_activity_set_class_enable(
 os21_activity_class_e code, int mode); 

Arguments:

Returns: Void

Description: Enable or disable logging for the specified OS21 activity event class.

mode Enable (1) or disable (0).

code OS21 activity event class.

mode Enable (1) or disable (0).



ST200 OS21 Trace

8063762 Rev 9 131/246

os21_activity_set_enable Enable OS21 activity logging for activity

Definition: typedef enum os21_activity_e { 
os21_activity_task_switch,
os21_activity_task_create,
os21_activity_task_delete,
os21_activity_task_exit,
os21_activity_intr_install,
os21_activity_intr_uninstall,
os21_activity_intr_enter,
os21_activity_intr_exit,
os21_activity_excp_install,
os21_activity_excp_uninstall,
os21_activity_excp_enter,
os21_activity_excp_exit,
os21_activity_general_print,

os21_activity_EOF
} os21_activity_e;

int os21_activity_set_enable(os21_activity_e code, int mode); 

Arguments:

Returns: The previous mode.

Description: Enable or disable logging of the specified OS21 activity event type.

os21_activity_set_task_trace_enable Enable OS21 task
information logging

Definition: int os21_activity_set_task_trace_enable(int mode); 

Arguments:

Returns: The previous mode.

Description: Enable or disable logging of task information by OS21 activity events (task_create 
or task_switch).

os21_api_set_global_enable Enable OS21 API logging

Definition: int os21_api_set_global_enable(
 int mode); 

Arguments:

Returns: The previous mode.

Description: Enable or disable OS21 API logging. Initially set to 0.

code OS21 activity event type.

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).



OS21 Trace ST200

132/246  8063762 Rev 9

os21_api_set_class_enable Enable OS21 API logging for class

Definition: typedef enum os21_api_class_e { 
os21_api_class_cache,
os21_api_class_callback,
os21_api_class_event,
os21_api_class_exception,
os21_api_class_interrupt,
os21_api_class_kernel,
os21_api_class_memory,
os21_api_class_message,
os21_api_class_mmap,
os21_api_class_mutex,
os21_api_class_partition,
os21_api_class_power,
os21_api_class_profile,
os21_api_class_reset,
os21_api_class_semaphore,
os21_api_class_scu,
os21_api_class_task,
os21_api_class_time,
os21_api_class_vmem,
os21_api_class_xpu,

os21_api_class_EOF
} os21_api_class_e;

void os21_api_set_class_enable(
 os21_api_class_e code, int mode); 

Arguments:

Returns: Void

Description: Enable or disable logging for the specified OS21 API class. 

code OS21 API class.

mode Enable (1) or disable (0).



ST200 OS21 Trace

8063762 Rev 9 133/246

os21_api_set_enable Enable logging for the given API

Definition: int os21_api_set_enable(os21_api_e code, int mode); 

Arguments:

Returns: The previous mode.

Description: Enable or disable logging of the specified OS21 API type.

os21_task_trace_set_enable Enable task information logging

Definition: int os21_task_trace_set_enable(
 int mode); 

Arguments:

Returns: The previous mode.

Description: Enable or disable logging of task information. Initially set to 1.

os21_trace_get_control Get trace control

Definition: typedef struct os21_trace_control_s {
 unsigned int save_activity:1;
 unsigned int save_api_enter:1;
 unsigned int save_api_exit:1;
 unsigned int save_activity_args:1;
 unsigned int save_api_enter_args:1;
 unsigned int save_api_exit_args:1;
 unsigned int save_caller_address:1;
 unsigned int save_frame_address:1;

} os21_trace_control_t;

void os21_trace_get_control(os21_trace_control_t *control); 

Arguments:

Returns: Void

Description: Get the control settings for OS21 Trace.

code OS21 API type.

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).

control The control settings.



OS21 Trace ST200

134/246  8063762 Rev 9

os21_trace_set_control Set trace control

Definition: typedef struct os21_trace_control_s {
 unsigned int save_activity:1;
 unsigned int save_api_enter:1;
 unsigned int save_api_exit:1;
 unsigned int save_activity_args:1;
 unsigned int save_api_enter_args:1;
 unsigned int save_api_exit_args:1;
 unsigned int save_caller_address:1;
 unsigned int save_frame_address:1;

} os21_trace_control_t;

void os21_trace_set_control(os21_trace_control_t *control); 

Arguments:

Returns: Void

Definition: Set the control settings for OS21 Trace.

os21_trace_print Print a string into the trace buffer

Definition: void OS21_TRACE_PRINT(const char *string) 

Arguments:

Returns: Void.

Description: Print a string into the trace buffer.

Use the OS21_TRACE_PRINT() API in preference to the alternative 
os21_trace_print() API as the former allows the application to link successfully 
when not linked with the OS21 Trace libraries, whereas the latter does not.

os21_trace_write_file Write trace buffer to a file

Definition: int os21_trace_write_file(
 const char *name,
 int reset); 

Arguments:

Returns: 0 if OK, 1 if an error occurred.

Description: Write the contents of the trace buffer to the file name.

The second parameter reset is the buffer reset argument. If 1 then the buffer is 
cleared, otherwise it is not reset and remains intact.

control The control settings

string The string to be written to the buffer

name File name to create.

reset Clear (1) or keep (0) buffer.



ST200 OS21 Trace

8063762 Rev 9 135/246

os21_trace_status Get trace status

Definition: typedef struct os21_trace_status_s {
 int version;
 unsigned int codesize;
 unsigned int size;
 osclock_t tickrate;
 osclock_t lasttime;

} os21_trace_status_t;

void os21_trace_status(os21_trace_status_t *status); 

Arguments: A structure status with the following fields to be filled in by the function:

Returns: Void.

Description: Get the trace buffer status.

os21_trace_write_buffer Write trace data to memory

Definition: int os21_trace_write_buffer(
 void *data,
 int reset); 

Arguments:

Returns: 0 if OK, 1 if an error occurred.

Description: Write the contents of the trace buffer to the buffer specified by data. Use 
os21_task_status() to obtain the size needed for the destination buffer.

The second parameter reset is the buffer reset argument. If 1 then the trace buffer 
is cleared, otherwise it is not reset and the buffer remains intact.

Use this API in conjunction with os21_trace_status(). To ensure that the 
information returned by os21_trace_status() remains valid for the call to 
os21_trace_write_buffer(), these API calls must be encapsulated within calls 
to os21_trace_set_enable(1) and os21_trace_set_enable(0).

version The version number for the trace buffer format.

codesize The size of the trace code field in the trace buffer. 
Valid sizes are 1, 2, or 4 bytes (see Section 11.8.1: 
os21trace.bin on page 116).

size The current size of the data in the trace buffer.

tickrate The time_ticks_per_sec value.

lasttime The time when the last record was logged to the 
trace buffer.

data Destination buffer.

reset Clear (1) or keep (0) buffer.



OS21 Trace ST200

136/246  8063762 Rev 9

os21_task_trace_write_file Write task information buffer to a file

Definition: int os21_task_trace_write_file(
 const char *name,
 int reset); 

Arguments:

Returns: 0 if OK, 1 if an error occurred.

Description: Write the contents of the task information buffer to the file name.

The second parameter reset is the buffer reset argument. If 1 then the buffer is 
cleared, otherwise it is not reset and remains intact.

os21_task_trace_status Get task information status

Definition: typedef struct os21_task_trace_status_s {
 int version;
 unsigned int size;

} os21_task_trace_status_t;

void os21_task_trace_status(os21_task_trace_status_t *status); 

Arguments: A structure status with the following fields to be filled in by the function:

Returns: Void.

Description: Get the task information buffer status.

name File name to create.

reset Clear (1) or keep (0) buffer.

version The version number for the task 
information buffer format.

size The current size of the data in the task 
information buffer.



ST200 OS21 Trace

8063762 Rev 9 137/246

os21_task_trace_write_buffer Write task information data to a buffer

Definition: int os21_task_trace_write_buffer(
 void *data,
 int reset); 

Arguments:

Returns: 0 if OK, 1 if an error occurred.

Description: Write the contents of the task information buffer to the buffer specified by data. Use 
os21_task_trace_status() to obtain the size needed for the destination buffer.

The second parameter reset is the buffer reset argument. If 1 then the buffer is 
cleared, otherwise it is not reset and remains intact.

Use this API in conjunction with os21_task_trace_status(). To ensure that the 
information returned by os21_task_trace_status() remains valid for the call to 
os21_task_trace_write_buffer(), these API calls must be encapsulated 
within calls to os21_task_trace_set_enable(1) and 
os21_task_trace_set_enable(0).

data Destination buffer.

reset Clear (1) or keep (0) buffer.



OS21 Trace ST200

138/246  8063762 Rev 9

11.12 Variables and APIs that can be overridden
OS21 Trace provides default constructors for the trace buffer and the task information 
buffer. The user may customize the constructors for both buffers by overriding the functions 
and variables listed in this section.

The following variables may be overridden by the user.

extern void *os21_trace_constructor_data;

Defaults to NULL, in which case the initial trace buffer is allocated by 
os21_trace_initialize(). See also os21_trace_initialize_data on page 126.

extern const unsigned int os21_trace_constructor_size;

The size of the trace buffer in bytes, defaults to 128k records.

extern void *os21_task_trace_constructor_data;

Defaults to NULL, in which case the initial task information buffer is allocated by 
os21_task_trace_initialize(). See also os21_task_trace_initialize_data on 
page 128.

extern const unsigned int os21_task_trace_constructor_size;

The size of the task information buffer in bytes, defaults to 2k records.

The following APIs can be overridden by the user.

os21_trace_constructor_user User-definable trace buffer constructor

Definition: void os21_trace_constructor_user(void); 

Returns: Void.

Description: The default trace buffer constructor calls a function with this name as its final action. 
The default implementation of this function is a no-op that the user can override with 
their own implementation (see Figure 28 on page 144 for an example).

os21_task_trace_constructor_user User-definable task
information buffer constructor

Definition: void os21_task_trace_constructor_user(void); 

Returns: Void.

Description: The default task information buffer constructor calls a function with this name as its 
final action. The default implementation of this function is a no-op that the user can 
override with their own implementation.



ST200 OS21 Trace

8063762 Rev 9 139/246

11.13 User trace runtime APIs
When used with the --wrap-source command line option, the os21usertrace tool 
creates source code that includes a set of APIs that can be called by the application to 
control the generation of user trace records.

Note: The initial element user in the names of the APIs listed in the following sections can be 
changed with the option --user-prefix of the os21usertrace tool.

11.13.1 User activity control APIs

The following APIs are created by os21usertrace for controlling the generation of trace 
records for custom user activity events. 

Note: If no user activities are defined, then none of these APIs are defined.

user_activity_set_group_enable Enable tracing for an activity group

Definition: void user_activity_set_group_enable(
user_activity_group_e code, int mode) 

Arguments:

Returns: Void.

Description: Enable or disable the logging of all the activities for all classes of the user trace group 
specified by code. The enumeration user_activity_group_e is defined in the 
header file generated by os21usertrace.

user_activity_set_group_group_class_enable Enable tracing for
an activity class

Definition: void user_activity_set_group_group_class_enable(
user_activity_group_group_class_e code, int mode) 

Arguments:

Returns: Void.

Description: os21usertrace generates a set of APIs for enabling or disabling the logging of 
classes of user defined activities within each of the user defined trace groups. There 
is one API for each group. For example, if there is a group of user defined activities 
called libc, then the API to enable or disable the logging of any given class of 
activity within the libc group is 
user_activity_set_group_libc_class_enable(). 

An enumeration with the name user_activity_group_group_class_e, where 
group is the name of an activity group, is defined for each activity group in the 
header file generated by os21usertrace.

code Activity group to enable or disable.

mode Enable (1) or disable (0).

code Activity class to enable or disable.

mode Enable (1) or disable (0).



OS21 Trace ST200

140/246  8063762 Rev 9

user_activity_set_enable Enable tracing for an activity

Definition: int user_activity_set_enable(user_activity_e code, int mode) 

Arguments:

Returns: 0 for success

Description: Enable or disable the logging of the user defined activity specified by code. The 
enumeration user_activity_e is defined in the header file generated by 
os21usertrace.

user_api_set_global_enable Enable global tracing for activities

Definition: int user_activity_set_global_enable(int mode) 

Arguments:

Returns: 0 for success

Description: Enable or disable the logging of user activity types; initially set to 0.

11.13.2 User API control APIs

The following APIs are created by os21usertrace for controlling the generation of trace 
records for user APIs. 

Note: If no user APIs are defined, then none of these APIs are defined.

user_api_set_group_enable Enable tracing for an API group

Definition: void user_api_set_group_enable(user_api_group_e code, int mode) 

Arguments:

Returns: Void.

Description: Enable or disable the logging of all the APIs for all classes of the user trace group 
specified by code. The enumeration user_api_group_e is defined in the header 
file generated by os21usertrace.

code Activity to enable or disable.

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).

code API group to enable or disable.

mode Enable (1) or disable (0).



ST200 OS21 Trace

8063762 Rev 9 141/246

user_api_set_group_group_class_enable Enable tracing for
an API class

Definition: void user_api_set_group_group_class_enable(
user_api_group_group_class_e code, int mode) 

Arguments:

Returns: Void.

Description: os21usertrace generates a set of APIs for enabling or disabling the logging of 
classes of user defined APIs within each of the user defined trace groups. There is 
one API for each group. For example, if there is a group of user defined APIs called 
libc, then the API to enable or disable the logging of any given class of API within 
the libc group is user_api_set_group_libc_class_enable(). 

An enumeration with the name user_api_group_group_class_e, where group 
is the name of an API group, is defined for each API group in the header file 
generated by os21usertrace.

user_api_set_enable Enable tracing for an API

Definition: int user_api_set_enable(user_api_e code, int mode) 

Arguments:

Returns: 0 for success

Description: Enable or disable the logging of the user defined API specified by code. The 
enumeration user_api_e is defined in the header file generated by os21usertrace.

user_api_set_global_enable Enable global tracing for APIs

Definition: int user_api_set_global_enable(int mode) 

Arguments:

Returns: 0 for success

Description: Enable or disable the logging of user API types; initially set to 0.

code API class to enable or disable.

mode Enable (1) or disable (0).

code API to enable or disable.

mode Enable (1) or disable (0).

mode Enable (1) or disable (0).



OS21 Trace ST200

142/246  8063762 Rev 9

11.13.3 User activity APIs

The os21usertrace tool creates a set of APIs for generating the user defined events 
specified in the definition file. These are all named USER_ACTIVITY(), where ACTIVITY 
is the name (in upper case letters) of the activity given by the USER-ACTIVITY specification 
in the definition file (see Section 11.1.2: User definition file on page 100). The parameters of 
the API are determined by the specification given in the definition file.

Note: The preferred version of the API is USER_ACTIVITY(), as this enables the application to 
be linked successfully even if it is not linked with the OS21 Trace libraries. There is an 
alternative form of the API, with the name in lower case letters, which does not allow the 
application to be linked unless it is also linked with the OS21 Trace libraries. Use of the 
latter API is not recommended.

11.14 Correspondence between GDB commands and APIs
Table 30 lists the OS21 Trace GDB commands and their equivalent APIs.

         

Table 30. Correspondence between GDB commands and APIs

GDB command API

os21_trace_set_mode os21_trace_set_mode()

os21_task_trace_set_mode os21_task_trace_set_mode()

enable_os21_trace
os21_trace_set_enable()

disable_os21_trace

enable_os21_activity_global
os21_activity_set_global_enable()

disable_os21_activity_global

enable_os21_api_global
os21_api_set_global_enable()

disable_os21_api_global

enable_os21_activity_class_class
os21_activity_set_class_enable()

disable_os21_activity_class_class

enable_os21_activity
os21_activity_set_enable()

disable_os21_activity

enable_os21_api_class_class
os21_api_set_class_enable()

disable_os21_api_class_class

enable_os21_api
os21_api_set_enable()

disable_os21_api

enable_os21_trace_control

os21_trace_set_control()
enable_os21_trace_control_all

disable_os21_trace_control

disable_os21_trace_control_all

enable_os21_task_trace
os21_task_trace_set_enable()

disable_os21_task_trace



ST200 OS21 Trace

8063762 Rev 9 143/246

Table 31 lists the user GDB commands and their equivalent APIs.

         

11.15 Trace always on
The default is that the OS21 activity and OS21 API logging is disabled at startup. The 
expectation is that the user enables them using STWorkbench or GDB. However, it may be 
convenient to always run an application with logging enabled from the outset.

The example in Figure 28 on page 144 customizes OS21 Trace without having to change 
the application source. To use this example, compile the example code and add the object to 
the link command line for the application. 

enable_os21_activity_task_trace
os21_activity_set_task_trace_enable()

disable_os21_activity_task_trace

dump_os21_trace_buffer os21_trace_write_file()

dump_os21_task_trace_buffer os21_task_trace_write_file()

Table 30. Correspondence between GDB commands and APIs (continued)

GDB command API

Table 31. Correspondence between GDB commands and APIs

GDB command API

enable_user_api_group_all

user_api_set_group_enable()
disable_user_api_group_all

enable_user_api_group_group_class_all

disable_user_api_group_group_class_all

enable_user_api_group_group_class_class
user_api_set_group_group_class_enable()

disable_user_api_group_group_class_class

enable_user_api
user_api_set_enable()

disable_user_api

enable_user_api_global
user_api_set_global_enable()

disable_user_api_global

enable_user_activity_group_all

user_activity_set_group_enable()
disable_user_activity_group_all

enable_user_activity_group_group_class_all

disable_user_activity_group_group_class_all

enable_user_activity_group_group_class_class
user_activity_set_group_group_class_enable()

disable_user_activity_group_group_class_class

enable_user_activity
user_activity_set_enable()

disable_user_activity

enable_user_activity_global
user_activity_set_global_enable()

disable_user_activity_global



OS21 Trace ST200

144/246  8063762 Rev 9

The example defines the following functions.

● os21_trace_constructor_user(). This function is called by the trace buffer 
constructor os21_trace_constructor in the OS21 Trace library.

● my_os21_trace_destructor(). This function runs after exit().

Note: The destructor function may not be very useful as embedded applications typically never 
terminate.

Figure 28. Example to customize trace
#include <stdio.h>
#include <os21.h>
#include <os21trace.h>

#if !defined(TRACE_SIZE)
#define TRACE_SIZE 256 /* Trace buffer size */
#endif

static int trace_enabled_flag = 0;

const unsigned int os21_trace_constructor_size = TRACE_SIZE;

/* Run by OS21 Trace constructor */
void os21_trace_constructor_user(void)
{

/* Enable trace */
os21_trace_set_enable(1);
os21_activity_set_global_enable(1);
os21_api_set_global_enable(1);
os21_task_trace_set_enable(1);
trace_enabled_flag = 1;

}

/* Run after exit */
void my_os21_trace_destructor(void) 

__attribute__((destructor));
void my_os21_trace_destructor(void)
{

if (trace_enabled_flag) {
/* Disable trace */
os21_trace_set_enable(0); 
os21_task_trace_set_enable(0);

/* Save trace and task information data */
os21_trace_write_file("os21trace.bin", 1);
os21_task_trace_write_file("os21tasktrace.bin", 1);

}
}



ST200 Relocatable loader library

8063762 Rev 9 145/246

12 Relocatable loader library

The relocatable loader library (rl_lib) supports the creation and loading of DSOs (dynamic 
shared objects, also known as load modules) in an embedded environment. rl_lib 
implements DSOs as defined in the standard for supporting ELF System V Dynamic 
Linking. 

Note: For applications that do not rely on advanced OS features (such as file systems, virtual 
memory management and multi process segment sharing), use rl_lib as an alternative to 
the standard ELF System V Dynamic Loader (libdl.so).

12.1 Run-time model overview
The ELF System V ABI supports several run-time models. Only some run-time models are 
suitable for embedded systems without the support of traditional operating system services. 

The run-time model for an application dictates the method used for linking and loading.

Table 32 lists the different run-time models. Table 33 summarizes the features supported by 
each model.

Note: rl_lib implements only the R_Relocatable run-time model.

         

Table 32. Run-time models

Run-time model Description

R_Absolute 
Absolute run-time model. The whole application is a single module that is 
statically linked at a fixed load address.

R_Relocatable 

Relocatable run-time model. The application has a main module and several 
load modules. The main module is statically linked and loaded as for an 
R_Absolute application. The load modules are loaded on demand (by 
explicit calls to the loader) at run-time. The load modules are loaded at an 
arbitrary address and dynamic symbol binding is applied by the loader for 
symbols undefined in the load modules. In the hierarchy of loaded modules, 
the dynamic symbol binding traverses the modules from the bottom up, see 
Section 12.2: Relocatable run-time model for details.

R_PIC 

System V run-time model. The application has a main module and several 
load modules. The main module is typically statically linked but possibly has 
references to symbols in the load modules. The main module is loaded with 
support from the dynamic loader that also loads load modules and binds 
symbols before the application starts. At run-time, the application can load 
other modules on demand. The dynamic symbol-binding traverses the load 
modules in an order defined by the static link order and the run-time loading 
order. In addition to dynamic loading and linking, in a multi-process 
environment, the load module’s segments can be shared between several 
applications. This model usually relies on file system support and virtual 
memory management.



Relocatable loader library ST200

146/246  8063762 Rev 9

         

12.2 Relocatable run-time model
The R_Relocatable run-time model, as implemented by rl_lib, has the following features:

● one main module loaded at application startup by the system

● several load modules that can load at run-time and unload after use

● several modules can be resident at the same time

● a loaded module can load and unload other load modules (as for the main module)

● load modules can be loaded anywhere

● access to symbols in loaded modules from the loader through a call to the loader library

● the loader performs dynamic symbol binding when loading a module and symbols are 
searched in the load modules hierarchy bottom-up (to the main module)

● sharing of code and data objects between modules is achieved by linking to the objects 
in a common ancestor

● the loader library is statically linked with the main module

● the system support archive library should be linked with the main module

Figure 29 shows an example of an application that has four load modules A, B, C and D. 

Table 33. Run time models comparison

Supported features R_Absolute R_Relocatable R_PIC

Application partitioning 1 single program
1 main program + 
N load modules

1 main program + 
N load modules

Static symbol binding Yes Yes Yes

Dynamic loading No
Startup time: No
Run-time: Yes

Startup time: Yes
Run-time: Yes

Dynamic symbol 
binding

No
Main program: No
Load modules: Yes

Main program: Yes
Load modules: Yes

Explicit module 
dependencies

N/A No Yes

Dynamic symbol lookup N/A
Bottom up (from loaded 
to loader)

Unrestricted order

Symbol preemption N/A No Yes 

Segment sharing 
(across processes)

N/A No Yes

Performance impact N/A Minimal Yes

Code size impact N/A Minimal Yes

Application writer 
impact

N/A Need explicit loading No change by default

Build system impact N/A
Compiler options
Load modules build

Compiler options
Load modules build



ST200 Relocatable loader library

8063762 Rev 9 147/246

Figure 29. Example of an application with four load modules

In Figure 29, curved arrows (from load modules to parent module) represent load time 
symbol-binding performed while the load module loads. Straight arrows (from loader module 
to loaded module) represent explicit symbol address resolution performed through the 
loader library API.

The following describes a possible scenario.

1. At run-time, the main module loads the module A into memory through the 
rl_load_file() function.

2. The loader, in the process of loading A into memory, binds the symbol printf 
(undefined in A) to the printf function defined in main.

3. The main program uses the rl_sym() function to retrieve a pointer to the function 
symbol exec_A in A.

4. For A, the main program loads the module D and references to printf are resolved to 
the printf in main. In addition, references to malloc in D are also resolved to the 
malloc in main. 

5. The main program retrieves a pointer to exec_D in D using the rl_sym() function.

6. The main program (at some point) invokes the function exec_A.

7. The exec_A function loads the two modules B and C.

8. The undefined reference to printf in B is resolved to the printf in main (the loader 
searches first in A, and then in main).

9. The undefined reference to malloc in C is resolved to the malloc in A (the loader 
searches for and finds it in A). Note that the malloc function called from D (malloc of 
main) is then different from the malloc function called from B (or C, or A) which is the 
malloc of A.

10. After retrieving symbol addresses using the rl_sym() function, module A can 
indirectly call functions or reference data in B and C.

Note: At any time, the main module or the module A can unload one of the loaded modules.

main
printf
malloc

Module A

malloc

Module C

Module D

Module B

*exec_A

*exec_D

*exec_B

*exec_C

malloc

printf

malloc

printf

printf



Relocatable loader library ST200

148/246  8063762 Rev 9

12.2.1 The relocatable code generation model

The relocatable code generation model is the same as the code generation model for the 
System V model with the following differences.

● No symbol can be preempted. Dynamic symbol binding always searches the current 
module first. This has the effect that a module containing a symbol definition can be 
sure that it will use this definition. For example, this enables inlining in load modules.

● Weak references are treated the same way as undefined references in load modules. 
Therefore, when traversing the module tree bottom-up, the first definition found is 
taken. 

12.3 Relocatable loader library API
The relocatable loader library supports loading and unloading a module and for accessing a 
symbol address in a module by name. The relocatable loader library is provided as a library 
librl.a and its associated header file rl_lib.h.

The functions defined in this API are explained in the following sections.

12.3.1 rl_handle_t type

All the functions manipulating a load module use a pointer to the rl_handle_t type. This 
is an abstract type for a load module handle.

A load module handle is allocated by the rl_handle_new() function and deallocated by 
the rl_handle_delete() function.

The main module handle is statically allocated and initialized in the startup code of the main 
module.

A module handle references one loaded module at a time. To load another module from the 
same handle, the previous module must first be unloaded.



ST200 Relocatable loader library

8063762 Rev 9 149/246

rl_handle_new Allocate and initialize a new handle

Definition: rl_handle_t *rl_handle_new(
 const rl_handle_t *parent, 
 int mode); 

Arguments:

Returns: The newly initialized handle.

Description: The rl_handle_new() function allocates and initializes a new handle that can be 
used for loading and unloading a load module. 

The handle of the parent module to which the loaded module will be connected is 
specified by the parent argument.

The mode argument is reserved for future extensions and must always be 0.

Generally, a load module will be attached to the module using this function, therefore 
a handle will typically be allocated as follows:

rl_handle_t *new_handle = rl_handle_new(rl_this(), 0); 

rl_handle_delete Finalize and deallocate a module handle

Definition: int rl_handle_delete(
 rl_handle_t *handle); 

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_handle_delete() function finalizes and deallocates a module handle.

The handle must not hold a loaded module. The loaded module must have been first 
unloaded by rl_unload() before calling this function. If successful, the value 
returned is 0. Otherwise the value returned is -1 and the error code returned by 
rl_errno() is set accordingly.

rl_this Return the handle for the current module

Definition: rl_handle_t *rl_this(void); 

Arguments: None.

Returns: The handle for the current module.

Description: The rl_this() function returns the handle for the current module. If called from the 
main module, it returns the handle of the main module. If called from a loaded 
module, it returns the handle that holds the loaded module.

This function is used when allocating a handle with rl_handle_new(). It can also 
be used, for example, to retrieve a symbol in the current module:

void *symbol_ptr = rl_sym(rl_this(), "symbol");

parent The handle of the parent module.

mode Reserved for future extensions.

handle The handle to deallocate.



Relocatable loader library ST200

150/246  8063762 Rev 9

rl_parent Return the handle for the parent of the current handle

Definition: rl_handle_t *rl_parent(void); 

Arguments: None.

Returns: The handle for the parent of the current handle.

Description: The rl_parent() function returns the handle for the parent of the current handle 
(as returned by rl_this()).

It may be used, for example, to find a symbol in one of the parent modules:

void *symbol_in_parents = rl_sym_rec(rl_parent(), "symbol"); 

rl_load_addr Return the memory load address of a loaded module

Definition: const char *rl_load_addr(
 rl_handle_t *handle); 

Arguments:

Returns: The memory load address of the loaded module, or NULL. 

Description: The rl_load_addr() function returns the memory load address of a loaded 
module. It returns NULL if the handle does not hold a loaded module or if the handle 
passed is the main program handle.

rl_load_size Return the memory load size of a loaded module

Definition: unsigned int rl_load_size(
 rl_handle_t *handle); 

Arguments:

Returns: The memory load size of the loaded module, or 0.

Description: The rl_load_size() function returns the memory load size of a loaded module. It 
returns 0 if the handle does not hold a loaded module or if the handle passed is the 
main program handle.

rl_file_name Return the filename associated with the loaded module handle

Definition: const char *rl_file_name(
 rl_handle_t *handle); 

Arguments:

Returns: The filename associated with the loaded module handle, or NULL.

Description: The rl_file_name() function returns the filename associated with the loaded 
module handle. It returns NULL if no filename is associated with the current loaded 
module, if the handle does not hold a loaded module or if the handle passed is the 
main program handle.

handle The handle for the loaded module.

handle The handle for the loaded module.

handle The handle for the loaded module.



ST200 Relocatable loader library

8063762 Rev 9 151/246

rl_set_file_name Specify a filename for the handle

Definition: int rl_set_file_name(
 rl_handle_t *handle, 
 const char *f_name); 

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_set_file_name() function is used to specify a filename for a handle. This 
filename is attached to the next module that will be loaded. It can be used to specify a 
filename for modules loaded from memory or to force a different filename for a 
module loaded from a file.

This function returns 0 if the filename was successfully set, or -1 and the error code 
returned by rl_errno() is set accordingly if a module is already loaded or if the 
application runs out of memory.

rl_load_buffer Load a relocatable module into memory

Definition: int rl_load_buffer(
 rl_handle_t *handle, 
 const char *image); 

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_load_buffer() function loads a relocatable module into memory from the 
image referenced by image.

It allocates the space for the loaded module in the heap, loads the segments from the 
memory image of the loadable module, links the module to the parent module of the 
handle and relocates and initializes the loaded module.

This function calls the action callback functions for RL_ACTION_LOAD after loading 
and before executing any code in the loaded module.

The value 0 is returned if the loading was successful. The value -1 is returned on 
failure and the error code returned by rl_errno() is set accordingly.

handle The handle for the module.

f_name The filename to specify for the handle.

handle The handle for the module.

image The image of the load module.



Relocatable loader library ST200

152/246  8063762 Rev 9

rl_load_file Load a relocatable module into memory from a file

Definition: int rl_load_file(
 rl_handle_t *handle, 
 const char *f_name); 

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_load_file() function loads a relocatable module into memory from the file 
specified by f_name.

It opens the specified file with an fopen() call, allocates the space for the loaded 
module in the heap, loads the segments from the file, links the module to the parent 
module of the handle, relocates and initializes the loaded module. The file is closed 
with fclose() before returning. This function calls the action callback functions for 
the RL_ACTION_LOAD after loading and before executing any code in the loaded 
module.

0 is returned if the load was successful, -1 is returned on failure and the error code 
returned by rl_errno() is set accordingly.

handle The handle for the module.

f_name The file from which to load the relocatable module.



ST200 Relocatable loader library

8063762 Rev 9 153/246

rl_load_stream Load a relocatable module into memory from a byte stream

Definition: typedef int rl_stream_func_t (
 void *cookie, 
 char *buffer, 
 int length);

int rl_load_stream(
 rl_handle_t *handle, 
 rl_stream_func_t *stream_func, 
 void *stream_cookie); 

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_load_stream() function loads a relocatable module into memory from a 
byte stream provided through a user specified callback function stream_func and 
the user specified state stream_cookie.

The callback function must be of type rl_stream_func_t. It is called multiple times 
by the loader to retrieve the load module data in the buffer buffer of length length 
until the module is loaded into memory. The loader always calls the callback function 
with a buffer length strictly greater than 0. The stream_cookie argument passed to 
rl_load_stream is passed to the callback function in its cookie parameter. The 
cookie parameter is intended to be used by the callback function to update a private 
state.

The callback function must return the number of bytes transferred. If the returned 
value is less than the given buffer length or is -1, rl_load_stream() will in turn 
return an error and the error code returned by rl_errno() is set accordingly.

The rl_load_stream() function allocates the space for the loaded module from 
the heap, loads the segments by calling the callback function, links the module to the 
parent module of the handle, relocates and initializes the loaded module. This 
function calls the action callback functions for RL_ACTION_LOAD after loading and 
before executing any code in the loaded module.

0 is returned if the load was successful, -1 is returned on failure and the error code 
returned by rl_errno() is set accordingly.

This function can be used as an alternative to rl_load_buffer() or 
rl_load_file() to allow any loading method to be implemented. 

handle The handle for the module.

stream_func The user specified callback function.

stream_cookie The user specified state.



Relocatable loader library ST200

154/246  8063762 Rev 9

The following example illustrates how the rl_load_file() function may be 
implemented using the rl_load_stream() function:

/* User implementation of the callback function that read from 
a file. */
static int rl_stream_read(FILE *file, char *buffer, int length)
{
 int nbytes;
 nbytes = fread(buffer, 1, length, file);
 return nbytes;

}
...
{
 /* Loads the module from a file.*/
 FILE *file;
 int status;
 file = fopen(f_name, "rb");
 if (file == NULL) { /*... error... */ }
 status = rl_load_stream(handle, (rl_stream_func_t 

*)rl_stream_read, 
     file);
 if (status == -1) { /*... error... */ }
 fclose(file);

}
...

rl_unload Unload a previously loaded relocatable module

Definition: int rl_unload(
 rl_handle_t *handle); 

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_unload() function unloads a previously loaded relocatable module. It 
finalizes, unlinks, and frees allocated memory for the loaded module. This function 
calls the action callback functions for RL_ACTION_UNLOAD before unloading and 
after having executed finalization code in the module.

The return value is 0 if the unloading is successful, otherwise the return value is -1 
and the error code returned by rl_errno() is set accordingly.

handle The handle for the module.



ST200 Relocatable loader library

8063762 Rev 9 155/246

rl_sym Return a pointer reference to the symbol in the loaded module

Definition: void *rl_sym(
 rl_handle_t *handle, 
 const char *name); 

Arguments:

Returns: The pointer reference to the symbol.

Description: The rl_sym() function returns a pointer reference to the symbol named name in the 
loaded module specified by handle. It searches the dynamic symbol table of the 
loaded module and returns a pointer to the symbol. The handle parameter can be 
the handle of any currently loaded module, or the handle of the main module.

If the symbol is not defined in the loaded module, NULL is returned. It is not generally 
an error for this function to return NULL. For example, the user may conditionally call 
a specific function only if it is defined in the module.

In this function, as well as in the rl_sym_rec() function, the name parameter must 
be the mangled symbol name. For instance, on some targets, C names are mangled 
by prefixing the name with an underscore (_). For example, to return a reference to 
the printf() function, the symbol name passed to rl_sym() will be “_printf”. 
Also, to access C++ symbols, the fully mangled name must be passed. The C++ 
mangling scheme is dependent on the processor specific C++ ABI implemented.

rl_sym_rec Return a pointer reference to the symbol in the loaded module or
one of its ancestors

Definition: void *rl_sym_rec(
 rl_handle_t *handle, 
 const char *name); 

Arguments:

Returns: The pointer reference to the symbol.

Description: The rl_sym_rec() function returns a pointer reference to the symbol named name 
in the loaded module specified by handle or one of its ancestors.

This function searches the dynamic symbol table of the loaded module and returns a 
pointer to the symbol if found. If the symbol is not found, the function iteratively 
searches in the dynamic symbol table of the parent module until the symbol is found. 
The handle parameter can be the handle of any currently loaded module, or the 
handle of the main module.

If the symbol is not defined in the loaded module or one of its ancestors, NULL is the 
returned. It is not generally an error for this function to return NULL.

The name parameter must be the mangled symbol name as for the rl_sym() 
function.

handle The handle for the loaded module.

name The symbol in the loaded module.

handle The handle for the loaded module.

name The symbol in the loaded module.



Relocatable loader library ST200

156/246  8063762 Rev 9

rl_foreach_segment Iterate over all the segments of loaded module and
call the supplied function

Definition: typedef rl_segment_info_t_ rl_segment_info_t;
typedef int rl_segment_func_t (
 rl_handle_t *handle, 
 rl_segment_info_t *seg_info, 
 void *cookie);

int rl_foreach_segment(
 rl_handle_t *handle, 
 rl_segment_func_t *callback_fn, 
 void *callback_cookie); 

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_foreach_segment() function iterates over all the segments of the loaded 
module handle and calls back the user supplied function. For each segment, the 
function callback_fn is called with the following parameters.

The segment information returned in seg_info is a pointer to the following structure:

typedef unsigned int rl_segment_flag_t;
#define RL_SEG_EXEC    1
#define RL_SEG_WRITE   2
#define RL_SEG_READ    4
struct rl_segment_info_t_ {
 const char *seg_addr;
 unsigned int seg_size;
 rl_segment_flag_t seg_flags;

};

The user callback function must return 0 on success or -1 on error.

In the case where the callback function returns an error, the 
rl_foreach_segment() function returns -1 and the error code returned by 
rl_errno is set to RL_ERR_SEGMENTF. Otherwise the function returns 0.

handle The handle for the module.

callback_fn The user specified callback function.

callback_cookie The argument to pass to the function.

handle The handle passed to the function.

seg_info The segment information pointer filled with the current 
segment information.

cookie The callback_cookie argument passed to the function.



ST200 Relocatable loader library

8063762 Rev 9 157/246

rl_add_action_callback Add a user action callback function to the user
action callback list

Definition: typedef unsigned int rl_action_t;
#define RL_ACTION_LOAD   1
#define RL_ACTION_UNLOAD  2
#define RL_ACTION_ALL   ((rl_action_t)-1)

typedef int rl_action_func_t (
 rl_handle_t *handle, 
 rl_action_t action, 
 void *cookie);

int rl_add_action_callback(
 rl_action_t action_mask, 
 rl_action_func_t *callback_fn, 
 void *callback_cookie); 

Arguments:

Returns: Returns 0 for success, -1 for failure.

Description: The rl_add_action_callback() function adds a user action callback function to 
the user action callback list. It can be called multiple times with different callback 
functions. The same callback function cannot be added more than once. 

For each defined action, each callback function is called in the order it was added into 
the callback list. The callback functions are not attached to a particular module and 
are called for any further loaded/unloaded modules. 

This function returns 0 on success and -1 on failure. It does not set any error codes. 
This function can fail if a callback function is already in the callback list or if the 
program goes out of memory. 

The rl_action_t type defines the action flags for module loading/unloading and is 
passed to the action function callback. The action flags can be OR-ed to create an 
action mask that can be passed to the function rl_add_action_callback(). The 
action defined are:

action_mask The set of actions for which the callback function must be 
called.

callback_fn The user specified callback function.

callback_cookie The argument to pass to the function.

RL_ACTION_LOAD The callback is called just after the module has been loaded in 
memory and cache has been synchronized. No module code 
has been executed.

RL_ACTION_UNLOAD The callback is called just before the module is unloaded from 
memory. No module code will be executed after this point.

RL_ACTION_ALL The callback will be called for any action.



Relocatable loader library ST200

158/246  8063762 Rev 9

The type for the user action callback function is rl_action_func_t. The 
parameters passed to the callback function when it is called are:

The callback function returns 0 on success and -1 on failure. In the case of failure, the 
loading (or unloading) of the module is undone and the error code returned by 
rl_errno() is set to RL_ERR_ACTIONF.

rl_delete_action_callback Remove the given function from the action
callback list

Definition: int rl_delete_action_callback(
 rl_action_func_t *callback_fn); 

Arguments:

Returns: Returns 0 for success, -1 if the callback was not present in the callback list.

Description: The rl_delete_action_callback() function removes the specified callback 
function from the action callback list. This function returns 0 if the callback was 
removed, or -1 if it was not present in the callback list. No error code is set.

rl_errno Return the error code for the last failed function

Definition: int rl_errno(
 rl_handle_t *handle); 

Arguments:

Returns: The error code for the last failed function.

Description: The rl_errno() function returns the error code for the last failed function. Table 34 
lists the possible codes. 

         

handle The handle that performed the action.

action The action performed.

cookie The callback_cookie parameter passed to 
rl_add_action_callback().

callback_fn The user specified callback function.

handle The handle for the module.

Table 34. Errors returned by rl_errno()

Error code Diagnostic
Possible error causing 

function

RL_ERR_NONE No previous call has failed. 

RL_ERR_MEM 
Ran out of memory (rl_memalign() 
failed).

rl_load_buffer(), 
rl_load_file(), 
rl_load_stream(), 
rl_set_file_name() 

RL_ERR_ELF The load module is not a valid ELF file.

rl_load_buffer(), 
rl_load_file(), 
rl_load_stream(), 
rl_set_file_name() 



ST200 Relocatable loader library

8063762 Rev 9 159/246

RL_ERR_DYN The load module is not a dynamic library.

rl_load_buffer(), 
rl_load_file(), 
rl_load_stream(), 
rl_set_file_name() 

RL_ERR_SEG
The load module has invalid segment 
information.

rl_load_buffer(), 
rl_load_file(), 
rl_load_stream(), 
rl_set_file_name() 

RL_ERR_REL
The load module contains invalid 
relocations.

rl_load_buffer(), 
rl_load_file(), 
rl_load_stream(), 
rl_set_file_name() 

RL_ERR_RELSYM

A symbol was not found a load time.

rl_errarg() returns the symbol 
name.

rl_load_buffer(), 
rl_load_file(), 
rl_load_stream(), 
rl_set_file_name() 

RL_ERR_SYM 

The symbol is not defined in the module.

rl_errarg() returns the symbol 
name.

rl_sym(), 
rl_sym_rec() 

RL_ERR_FOPEN 
The file cannot be opened by 
rl_fopen(). 

rl_load_file() 

RL_ERR_FREAD 
Error while reading the file in 
rl_fread().

rl_load_file() 

RL_ERR_STREAM 
Error while loading the file from a 
stream.

rl_load_stream() 

RL_ERR_LINKED Module handle is already linked.

rl_load_file(), 
rl_load_buffer(), 
rl_load_stream(), 
rl_handle_delete() 

RL_ERR_NLINKED Module handle is not linked
rl_unload(), rl_sym(), 
rl_sym_rec(), 
rl_foreach_segment() 

RL_ERR_SEGMENTF Error in segment function callback. rl_foreach_segment() 

RL_ERR_ACTIONF Error in action function callback. 
rl_load_file(), 
rl_load_buffer(), 
rl_load_stream() 

Table 34. Errors returned by rl_errno() (continued)

Error code Diagnostic
Possible error causing 

function



Relocatable loader library ST200

160/246  8063762 Rev 9

rl_errarg Return the name of the symbol that could not be resolved

Definition: const char *rl_errarg(
 rl_handle_t *handle); 

Arguments:

Returns: The name of the symbol that could not be resolved.

Description: If rl_errno() returns either RL_ERR_RELSYM or RL_ERR_SYM, the rl_errarg() 
function returns the name of the symbol that could not be resolved.

rl_errstr Return a string for an error code

Definition: const char *rl_errstr(
 rl_handle_t *handle); 

Arguments:

Returns: A string for the error code.

Description: The rl_errstr() function returns a readable string for the error code reported by 
rl_errno(). For example:

...
void *sym = rl_sym(handle, "symbol");
if (sym == NULL) fprintf(stderr, "failed: %s\n", 
rl_errstr(handle));
...

If symbol is not defined in the module referenced by handle then the following 
message is displayed:

failed: symbol not found: symbol

handle The handle for the module.

handle The handle for the module.



ST200 Relocatable loader library

8063762 Rev 9 161/246

12.4 Customization
The relocatable loader library defines a number of functions that it uses internally for 
providing services such as heap memory management and file access. To provide custom 
implementation of these functions, the application in the main module can override these 
functions.

12.4.1 Memory allocation

void *rl_malloc(int size);
void *rl_memalign(int align, int size);
void rl_free(void *ptr);

These functions allocate free space for the load module image and for the handle objects.

The default behavior for these functions is to call the standard C library functions 
malloc(), memalign() and free() respectively.

Note: If providing a custom implementation, override all three functions.

12.4.2 File management

void *rl_fopen(const char *f_name, const char *mode);
int rl_fclose(void *file);
int rl_fread(char *buffer, int eltsize, int nelts, void *file);

The rl_load_file() function uses these functions to open, read and close a file handle.

The default behavior for these functions is to call the standard C library functions fopen(), 
fread() and fclose() respectively.

Note: If providing a custom implementation, override all three functions and link them with the 
main program.

12.5 Building a relocatable library or main module
To build a relocatable library that can be loaded by the rl_lib loader, additional compile time 
and link time options must be used.

The following is a simple example of building a hello world loadable module:

st200cc -o rl_hello.o -fpic -c rl_hello.c
st200cc -o rl_hello.rl --rlib rl_hello.o

Alternatively, the compile and link phases can be carried out with a single command:

st200cc -o rl_hello.rl -fpic --rlib rl_hello.c

To build a main module suitable for loading a relocatable library, specific link time options 
are required. No specific compile time option are required for the main module.

The following is an example of building a main module:

st200cc -o prog.o prog.c
st200cc -o prog.exe --rmain prog.o 



Relocatable loader library ST200

162/246  8063762 Rev 9

The compile and link phases can be carried out with a single command:

st200cc -o prog.exe --rmain prog.c

12.5.1 Importing and exporting symbols

For the relocatable loader system to function, the main module (or a loaded module) must 
provide services to the other load modules. To avoid a load error when loading a module, it 
is usual for the referenced symbols to be linked into the main module. 

When the services are present in a library, at the time of linking the main module, import the 
corresponding symbols. To import symbols, the linker requires an import script.

The st200rltool utility can generate an import script. The following gives the two common 
cases for generating an import script.

● When the required services are well defined, pass the list of symbols to the st200rltool 
utility.

● When the list of services is not defined but the load modules are available, pass the 
load modules to the st200rltool utility. The st200rltool utility generates an import 
script from the set of symbols that the load modules require.

The following command generates an import script from a list of symbols specified in the file 
prog_import.lst (one symbol per line):

st200rltool -i -s -o prog_import.ld prog_import.lst

The following command generates an import script that the main module can load from a list 
of load modules, liba.rl and libb.rl:

st200rltool -i -o prog_import.ld liba.rl libb.rl 

Use the import script to link the main module, for example:

st200cc -o prog.exe --rmain object_files.o prog_import.ld

In addition to import scripts, the st200rltool utility can also generate export scripts that 
reduce the size of the dynamic symbol table in the main module or the load modules. The 
export script defines the set of symbols (and only these) that must be exported to the other 
modules through the dynamic symbol table. These symbols are then accessible by the load 
time symbol binding process and by the calls to rl_sym() and rl_sym_rec(). The 
export script is not mandatory as all global symbols are exported (by default).

There are two common cases for generating export scripts. 

● When an import script is required for the module, the export script can be generated at 
the same time. This is because the symbols to export are generally those that are 
imported.

● For a load module that has a well known external interface, the export script can be 
generated from a list of symbols to export.

The following example shows how to generate an export script and import script for a list of 
modules that is then used when linking the main module. Only the symbols from liba.rl 
and libb.rl are imported into the main module and exported by it.

st200rltool -i -e -o prog_import_export.ld liba.rl libb.rl
st200cc -o prog.exe --rmain object_files.o prog_import_export.ld



ST200 Relocatable loader library

8063762 Rev 9 163/246

To generate an export script for a load module with a well defined interface specified in the 
file liba_export.lst (one symbol per line):

st200rltool -e -s -o liba_export.ld liba_export.lst
st200cc -o liba.rl --rlib *.o liba_export.ld

12.5.2 Optimization options

When compiling a load module with the -fpic option, some overhead occurs in the 
generated code to access functions and data objects. Compiler options and C language 
extensions can be used to reduce this overhead. 

Relocatable libraries are not subject to symbol preemption, therefore, when generating 
position independent code, the -fvisibility=protected option can be used in addition 
to -fpic. The -fvisibility=protected option enables the inlining of global functions 
and can be used as a default option for compiling relocatable libraries. For example:

st200cc -o a.o -fpic -fvisibility=protected a.c

In addition to this option, fine grain visibility can be specified with the 
__attribute__((visibility(...)) GNU C extension at the source code level.

For example, if the external interface of a load module is well defined in a header file, the 
__attribute__((visibility("protected")) can be attached to each function of 
the external interface. To specify that all other defined functions are internal to the load 
module, on the command line, use the -fvisibility=hidden option. This combination 
of options optimize references from the same file to global objects that are not part of the 
interface.

To specify the visibility of each symbol externally with the given <file>, use the 
-mvisibility-decl=<file> option. In the case where the external services required by 
a module (default visibility) and the external services provided by the module (protected 
visibility) are known, all other functions or data objects can be declared as internal (hidden 
visibility). This option can be used to specify these visibility declarations. In this case, only 
the functions that are external have an associated overhead. The other internal functions 
have a very reduced overhead.

For a full inter-procedural optimization of the relocatable library, use the -ipa option. In this 
case, when combined with the declaration of external functions, the library is generated with 
a minimal overhead for the dynamic linking support.

For detailed information on the visibility specification, refer to the compiler options 
documentation and to the ELF System V Dynamic Linking ABI.



Relocatable loader library ST200

164/246  8063762 Rev 9

12.6 Debugging support
The debugging of dynamically loaded modules is possible in the same way as for System V 
dynamic shared objects. The main module debugging information loads at load time of the 
application. The load modules debugging information loads at load time of the load 
modules.

To update debugging information, the loader maintains a list of loaded modules together 
with their filenames (the file contains the debugging information) and the load address of the 
module. Each time a new module loads, the loader calls a specific function. The debugger 
has to set a breakpoint on this specific function and, when the breakpoint is hit, traverse the 
list to find new loaded modules and load the debugging information.

For the ST200 toolset, the debugger implements the required mechanism for the automatic 
debugging of loaded modules. 

To find the file that contains the debug information, the loader must know the path to the 
load module. This is automatic in the case of rl_load_file() as the filename is specified 
in the interface. For the rl_load_buffer() and rl_load_stream() functions, the user 
must set the filename with a call to the rl_set_file_name() function.

For example, the following code enables automatic debugging of a load module loaded with 
rl_load_buffer():

{
 int status;
 rl_handle_t *handle = rl_handle_new(rl_this(), 0);
 if (handle == NULL) { /* error */ }

#ifdef DEBUG_ENABLED
 rl_set_filename(handle, "path_to_the_file_for_the_module");

#endif
 status = rl_load_buffer(handle, module_image);
 if (status == -1) { /* error */ }
 ...

}



ST200 Relocatable loader library

8063762 Rev 9 165/246

12.7 Profiling support
The action callbacks may be used with a profiling support library, or alternatively, a user 
defined package can be informed that a segment has just been loaded or is on the point of 
being unloaded by using the user action callback interface.

Below is an example that iterates over the segment list and declares the executable 
segments to a profiling support library on the loading/unloading of a module.

static int segment_profile(rl_handle_t *handle, rl_segment_info_t 
*info, 
          void *cookie)

{
 rl_action_t action = *((rl_action_t *)cookie);
 const char *file_name = handle_file_name(handle);
 if (file_name != NULL && (info->seg_flags & RL_SEG_EXEC) {
  if (action == RL_ACTION_LOAD) {
   /* Call profiling interface for adding a code region. */
   profiler_add_region(file_name, info->seg_addr, 

info->seg_size);
  }
  if (action == RL_ACTION_UNLOAD) {
   /* Call profiling interface for removing a code region. */
   profiler_remove_region(file_name, info->seg_addr, 
            info->seg_size);
  }
 }
 return 0;

}

static int module_profile(rl_handle_t *handle, rl_action_t action, 
          void *cookie)

{
 rl_foreach_segment(handle, segment_profile, (void *)&action);
 return 0;

}

int main() 
{
 ...
 if (rl_add_action_callback(RL_ACTION_ALL, module_profile, 

NULL)==-1){
  fprintf(stderr, "rl_add_Action_callback failed\n");
  exit(1);
 }
 ...
 status = rl_load_file(handle, file_name);
 ...
 return 0;

}



Relocatable loader library ST200

166/246  8063762 Rev 9

12.8 Memory protection support
When a new library segment has loaded into memory or is on the point of being unloaded 
from memory, a system library (or the user) can use the user-action callback interface to 
install a memory protection scheme.

To set user protection support, use the user-action callback, see Section 12.7: Profiling 
support.

12.9 Load time decompression
The loader does not perform load time decompression. It is possible that this will change in 
a future extension and the loader may load compressed or uncompressed code without 
change to the interface.

For loading a compressed image of a load module into memory, use the 
rl_load_stream() interface. In this case, the user must implement the decompression of 
the stream in the callback function.



ST200 Dynamic OS21 profiling

8063762 Rev 9 167/246

   
   

   

13 Dynamic OS21 profiling

The ST200 Micro Toolset supports profiling using the OS21 profiler under the control of 
GDB. For this, an application is linked with the dynamic OS21 profiler library. This library 
enables GDB to control all aspects of the OS21 profiler by sending requests to the 
application to configure, start and stop the OS21 profiler using standard OS21 APIs. Also, 
GDB can write the data gathered by the OS21 profiler directly to a file on the host without 
sending a request to the application. The profile data obtained by GDB can be analyzed 
using the os21prof tool. For more information about OS21 profiling, see the OS21 user 
manual (7358306).

For details of the GDB commands available to control the OS21 profiler, see Section 13.4: 
GDB commands on page 168).

13.1 Overview
The dynamic OS21 profiler adds a monitor task to the application(a). The purpose of the 
monitor task is to call OS21 profiler APIs on behalf of GDB.

When GDB needs to call an OS21 profiler API, it writes an action request to a structure in 
target memory and then raises the OS21 interrupt OS21_INTERRUPT_DEBUGGER (reserved 
for exclusive use by GDB). When the target is restarted, the monitor task is woken up and it 
reads the structure and performs the requested action. On completion of the action, the 
monitor task writes the result back to the same structure and calls a signal function to inform 
GDB. GDB can then read the structure and report the result of the request to the user.

The interface between GDB and the monitor task can be configured by the user. For details 
of the configuration options, see Section 13.7.2: Overrides on page 173.

a. The monitor task has the name OS21 Profiler in the OS21 task list.



   
   

   

Dynamic OS21 profiling ST200

168/246  8063762 Rev 9

13.2 Building an application for dynamic OS21 profiling
Table 35 lists the st200cc linker options required to enable the dynamic OS21 profiling 
features.

         

13.3 Running the application
By default, an application built with dynamic OS21 profiling support initially starts with OS21 
profiler disabled. To enable the GDB control of the dynamic OS21 profiler, use the following 
command:

source os21profile.cmd

See Section 13.4: GDB commands on page 168 for a complete list of commands.

13.4 GDB commands
This section contains a list of the dynamic OS21 profiler GDB commands accessible when 
the file os21profiler.cmd is sourced within GDB. For information on a given command, 
use the GDB command help command.

OS21 profiler initialization

Use the following commands to initialize and de-initialize profiling.

os21_profiler_initialize instructions-per-bucket frequency

Configures the OS21 profiler by calling the OS21 API profile_init(). If profiling 
has already been configured, this command removes the existing configuration by 
calling profiler_deinit() and reconfigures it with the new parameters. If the 
OS21 profiler is currently running when this command is issued, the OS21 API 
profiler_stop() is called first.

Table 35. st200cc linker options to enable dynamic OS21 profiling

s200cc options Description

-profiler

Initialize dynamic OS21 profile support.
– The dynamic OS21 profiler constructor is called by the OS21 

API function kernel_start().
– The dynamic OS21 profiler destructor is called during OS21 

shutdown.

-profiler-no-constructor

Adding this option to the -profiler one disables the automatic 
initialization of the dynamic OS21 profiler. This option also 
prevents the destructor for the dynamic OS21 profiler from being 
installed. In this case the initialization and the deinitialization of 
the dynamic OS21 profiler must be performed explicitly by the 
application (see Chapter 13.7: Profiler library API). 



ST200 Dynamic OS21 profiling

8063762 Rev 9 169/246

   
   

   

This command accepts two arguments:

– instructions-per-bucket 
The number of instructions allocated to a single bucket when capturing profile 
data. (A bucket is a counter associated with an address range.)

– frequency 
Indicates the frequency that samples are to be taken, in hertz.

For example:

os21_profiler_initialize 16 5000 

initializes the OS21 profiler to use 16 instructions per bucket and a sampling frequency 
of 5 KHz.

os21_profiler_deinitialize

Destroys the OS21 profiler by calling the OS21 API profile_deinit() to release 
the memory and resources allocated by profiler_init(). If the OS21 profiler is 
currently running when this command is issued, the OS21 API profiler_stop() is 
called first.

OS21 profiler start

When the OS21 profiler has been initialized, use one of the following commands to start 
profiling. If the OS21 profiler is already running, the OS21 API profiler_stop() is called 
first.

os21_profiler_start_all

Starts the system-wide OS21 profiler (that is, profiling every task and interrupt level) by 
calling the OS21 API profile_start_all().

os21_profiler_start_interrupt interrupt-level

Starts the OS21 profiler for the specified interrupt level by calling the OS21 API 
profile_start_interrupt().

os21_profiler_start_task task-handle

Starts the OS21 profiler for the task specified by task-handle by calling the OS21 
API profile_start_task(). The argument task-handle is the address of an 
OS21 task_t object. This address can be extracted from the thread list reported by 
GDB.

os21_profiler_start_task_number task-number

Starts the OS21 profiler for the task specified by task-number, where task-number 
is the OS21 task number, and not the number assigned to the task by GDB.

This command converts task-number into a task-handle by scanning the OS21 
task list(b). The command then calls the OS21 API profile_start_task() with 
task-handle.

b. Target memory is read when scanning the task list.



   
   

   

Dynamic OS21 profiling ST200

170/246  8063762 Rev 9

OS21 profiler contextual initialization and start

The OS21 dynamic profiler can be initialized and started using the following combined 
commands:

os21_profiler_initialize_and_start_all instructions-per-bucket frequency

os21_profiler_initialize_and_start_interrupt instructions-per-bucket frequency level

os21_profiler_initialize_and_start_task instructions-per-bucket frequency task

os21_profiler_initialize_and_start_task_number instructions-per-bucket frequency>
task-number

Each command is equivalent to the corresponding two line sequence:

os21_profiler_initialize instructions-per-bucket frequency

os21_profiler_start_* options

OS21 profiler stop

Use the following command to stop profiling.

os21_profiler_stop

Stops the OS21 profiler by calling the OS21 API profile_stop().

OS21 profiler write data

Use the following commands to write the gathered profile data to a file.

os21_profiler_write file

Writes the OS21 profile data to file by calling the OS21 API profiler_write(). If 
the OS21 profiler is currently running, the OS21 API profiler_stop() is called first.

os21_profiler_dump file

Writes the OS21 profile data to file. The OS21 profiler does not stop if it is currently 
running.

After invoking any of the commands listed above, restart the target to perform the requested 
action.

Note: The os21_profiler_dump command has immediate effect and therefore the target does 
not have to be restarted in this case.

OS21 profiler cancel

Use the following command to cancel a previous command.

os21_profiler_cancel

Cancel a previous command if that command is still pending (that is, the dynamic 
OS21 profiler is not in the BUSY state as reported by the 
show_os21_profiler_monitor_status command).

Note: All the commands listed above automatically cancel a previous command if it is still pending, 
except for os21_profiler_dump, which has immediate effect.



ST200 Dynamic OS21 profiling

8063762 Rev 9 171/246

   
   

   

OS21 profiler status reporting

The reporting of the status of a OS21 profiler request is achieved by placing breakpoints on 
the signal function called by the application when an action has been completed (see 
os21_profiler_signaled on page 173). The effect of these breakpoints is controlled by the 
following commands, which enable or disable the reporting the result of the request and 
control the restart mode of the target:

enable_os21_profiler_report_signaled

Enable OS21 profiler request reporting. The target is automatically restarted after 
reporting the result of the request.

disable_os21_profiler_report_signaled

Disable OS21 profiler request reporting.

enable_os21_profiler_stop_signaled 
disable_os21_profiler_stop_signaled 

The same as above, but the target remains stopped and must be manually restarted.

Profiler monitor status

show_os21_profiler_monitor_status

Show the status of the OS21 profiler monitor. Table 36 gives a list of possible states.

         

Profiler status

show_os21_profiler_status

Show the status of the OS21 profiler (including the type if active). Table 37 gives a list 
of possible states.

         

show_os21_profiler_internal_status

This is similar to show_os21_profiler_status except that it shows the internal 
status of the OS21 profiler.

Table 36. OS21 profiler monitor state

State Description

INACTIVE The monitor is not initialized.

IDLE The monitor is waiting to perform an action.

BUSY The monitor has yet to complete the action.

Table 37. OS21 profiler state

State  Description

INACTIVE The profiler is not initialized.

INITIALIZED The profiler is initialized but not started.

STARTED(1) 

1. In this state, profile data is available for dumping by the os21_profiler_dump command.

The profiler is running.

STOPPED(1) The profiler is stopped.



   
   

   

Dynamic OS21 profiling ST200

172/246  8063762 Rev 9

13.5 Analyzing the results
After the OS21 profile data has been saved (using the os21_profile_write or 
os21_profile_dump commands), use the os21prof tool to perform the analysis.

The command line to invoke the os21prof tool is as follows:

os21prof executable-file profile-file

Information on the os21prof tool can be found in the OS21 user manual (7358306).

13.6 Example
The example examples/os21/profiling_os21 contains the source code of a simple 
OS21 multitasking application and the GDB script for a GDB dynamic profiling session.

13.7 Profiler library API
The dynamic OS21 profiler library is provided as libos21profiler.a and its associated 
header file is os21profiler.h.

13.7.1 Function definitions

This sections lists the function definitions for the dynamic OS21 profiler library.

os21_profiler_initialize Initialize profiling

Definition: typedef struct os21_profiler_init_s { 
size_t instrs_per_bucket;
int hz; 
} os21_profiler_init_t;

int os21_profiler_initialize(
const os21_profiler_init_t *init); 

Arguments: A structure init with the following fields:

Returns: OS21_SUCCESS for success, or OS21_FAILURE if called with invalid parameters, or if 
out of memory.

Description: Use this function to initialize the dynamic OS21 profiler. If init is not NULL, then this 
function calls the OS21 API profile_init(), using the contents of the 
os21_profiler_init_t structure. If init is NULL, then profile_init() is not 
called.

The dynamic OS21 profiler constructor invokes this function with a default 
initialization parameter of NULL. The user can override this default. See 
Section 13.7.2: Overrides.

instrs_per_bucket The number of instructions included in each bucket.

hz The sampling frequency in hertz.



ST200 Dynamic OS21 profiling

8063762 Rev 9 173/246

   
   

   

os21_profiler_deinitialize Deinitialize profiling

Definition: int os21_profiler_deinitialize(void); 

Arguments: None

Returns: OS21_SUCCESS for success, or OS21_FAILURE if the dynamic OS21 profiler cannot 
be deinitialized.

Definition: Use this function to deinitialize the dynamic OS21 profiler. This function stops the 
OS21 profiler (if it is running), releases all memory and resources allocated by 
os21_profiler_initialize().

os21_profiler_signaled User defined signal function

Definition: void os21_profiler_signaled(void); 

Arguments: None

Returns: None

Definition: The dynamic OS21 profiler calls a function with this name when it completes an 
action requested by the user from GDB.

The default implementation of this function is a stub that the user can override with 
their own implementation.

13.7.2 Overrides

Customizing the constructor

The dynamic OS21 profiler provides constructor and destructor functions. The user may 
customize the constructor by overriding the os21_profiler_constructor_init 
variable.

os21_profiler_init_t os21_profiler_constructor_init; 

The init argument passed to os21_profiler_initialize(). If this is not 
defined, NULL is passed to this function.

Configuration of the dynamic OS21 profiler monitor task

The dynamic OS21 profiler uses a dedicated task to monitor for user requests from GDB. 
See Section 13.1: Overview on page 167 for details. In the default configuration, GDB uses 
the OS21 OS21_INTERRUPT_DEBUGGER interrupt to signal the monitor task of a pending 
action. The user may change the interrupt used for signalling the monitor task by overriding 
the following items.

● Define the symbol:

interrupt_name_t os21_profiler_monitor_interrupt; 

to specify the interrupt that GDB uses to signal to the monitor task. The default is 
OS21_INTERRUPT_DEBUGGER. This should not normally need changing. This override 
is defined using the linker --defsym option, as follows:

-Wl,--defsym,os21_profiler_monitor_interrupt=OS21_INTERRUPT_name



   
   

   

Dynamic OS21 profiling ST200

174/246  8063762 Rev 9

● If the symbol _os21_profiler_monitor_interrupt is defined, the dynamic OS21 
profiler calls an external function (supplied by the user) to clear the interrupt. The 
function has the following prototype:

void os21_profiler_monitor_interrupt_clear(interrupt_t *handle); 

● Define the GDB command os21_profiler_signal_raise to raise the interrupt 
specified by the symbol _os21_profiler_monitor_interrupt.

This command is required only if the interrupt to be raised is not the default 
(OS21_INTERRUPT_DEBUGGER).

If no interrupt is available, the monitor task can be configured to check periodically if an 
action needs to be performed. The dynamic OS21 profiler provides the following variables to 
configure this operation.

unsigned int os21_profiler_monitor_wakeup_period; 

Use this variable to specify the frequency (in hertz) at which the monitor task is to 
check if an action has been requested. The higher the frequency, the greater the 
intrusion on the operation of the application. The default is 1 KHz.

unsigned int os21_profiler_monitor_priority; 

Use this variable to define the priority at which the monitor task runs. By default, this is 
the maximum OS21 priority (OS21_MAX_USER_PRIORITY). It should not be changed 
unless the monitor task has been configured to periodically check if an action has been 
requested. Reducing the priority of the monitor task increases the latency between the 
request being raised and the monitor task performing the action.



ST200 Toolset tips

8063762 Rev 9 175/246

Appendix A Toolset tips

The following sections give tips for using the ST200 Micro Toolset.

A.1 Managing memory partitions with OS21
For managing areas of memory, OS21 enables the creation of memory partitions, see the 
OS21 user manual (7358306). There are several reasons for creating memory partitions, for 
example:

● to implement an allocation algorithm that is appropriate to an application (for example, 
to apply some alignment constraint to allocated blocks)

● to manage a special area of memory not visible to the normal memory managers (for 
example, on-chip RAM or peripheral device RAM)

● to manage a memory region that has special caching issues

To manage a memory partition, do the following.

1. Find the location of the memory and its size. This can be implicitly known, for example, 
the address and size of on-chip RAM is a characteristic of the CPU. 

To select a pool of memory to manage with an allocator:

– declare it statically:

static unsigned char *my_device_RAM = SOME_ADDRESS;

– allocate it from another partition: 

static unsigned char my_static_pool [65536];

– allocate it from the general heap

unsigned char *my_alloced_pool = malloc (65536);

2. Select the allocation strategy to use with the memory. OS21 has three managers, see 
Section A.2: Memory managers on page 177.

my_pp = partition_create_simple (my_pool, 65536);
my_pp = partition_create_fixed (my_pool, 65536, block_size);
my_pp = partition_create_heap (my_pool, 65536);

Alternatively, use a special purpose allocator. Use the partition_create_any() 
call to create a partition that uses the required memory management implementation. 
This call takes the size of a control structure (that the allocator uses to manage the 
memory) and the addresses of functions (that perform allocation, freeing, reallocation 
and status reporting). 

The following example implements a simple linear allocator, with no free or realloc 
methods.

#include <os21.h>
#include <stdio.h>

/*
* Declare memory to be managed by our partition
*/

static unsigned char my_memory[65536];

/*
* Declare the management data we use to control the partition
*/



Toolset tips ST200

176/246  8063762 Rev 9

typedef struct
{
 unsigned char * base;
 unsigned char * limit;
 unsigned char * free_ptr;

} my_state_t;

/*
* Allocation routine - really simple!
*/

static void *my_alloc(my_state_t *state, size_t size)
{
 void *ptr = NULL;

 if(size && ((state->free_ptr + size) < state->limit))
 {
  ptr = state->free_ptr;
  state->free_ptr = state->free_ptr + size;
 }

 return ptr;
}

/*
* Partition status routine
* Note that status->partition_status_used is not filled
* in here - partition_status sets this field automatically.
*/

static int my_status(my_state_t *state, 
   partition_status_t *status,
   partition_status_flags_t flag)

{
 status->partition_status_state = partition_status_state_valid;
 status->partition_status_type = partition_status_type_user;
 status->partition_status_size = state->limit - state->base;
 status->partition_status_free = state->limit - state->free_ptr;
 status->partition_status_free_largest = state->limit - 
    state->free_ptr;

}

/*
* Initialization routine, called when a partition is created
*/

static void my_initialize(partition_t *pp,
    unsigned char *base,
    size_t size)

{
 my_state_t *state = partition_private_state(pp);

 state->free_ptr = base;
 state->base = base;
 state->limit = base + size;

}

int main(void)
{
 partition_t *pp;
 void *ptr;

 /*
  * Start OS21
  */



ST200 Toolset tips

8063762 Rev 9 177/246

 kernel_initialize(NULL);
 kernel_start();

 /*
  * Create new partition
  */
 pp = partition_create_any(sizeof (my_state_t),
    (memory_allocate_fn)my_alloc,
    NULL, /* no free method */
    NULL, /* no realloc method */
    (memory_status_fn)my_status);

 /*
  * Initialize it
  */
 my_initialize(pp, my_memory, sizeof(my_memory));

 /*
  * Try it out!
  */
 printf("Alloc 16 bytes : %p\n", memory_allocate(pp, 16));
 printf("Alloc 10 bytes : %p\n", memory_allocate(pp, 10));
 printf("Alloc  1 bytes : %p\n", memory_allocate(pp,  1));

 printf("Done\n");

 return 0;
}

A.2 Memory managers
The run-time libraries have several memory managers. These provide heap, simple and 
fixed block allocators. The OS21 heap algorithm is very simple, It maintains a single free list 
of blocks, and allocates from the first one which can satisfy the request. Blocks added to the 
free list are coalesced with neighbors to reduce fragmentation.

When OS21 is built with the -DCONF_DEBUG_ALLOC option specified, the partition manager 
in OS21 can provide extensive run-time checking for all partitions, including those 
maintained by user-supplied routines, see Section A.1 on page 175. 

With the -DCONF_DEBUG_ALLOC option enabled, the partition manager over-allocates and 
places scribble guards above and below the block of memory that is passed back to the 
user. These guards are filled with a known pattern when the block is allocated and are 
checked when the block is freed in order to detect writes that have occurred outside of the 
block (for example, writing past the end of an array). When OS21 terminates, the partition 
manager reports any blocks of memory that are allocated but not freed.

newlib provides Doug Lea’s allocator (version 2.6.4). The design of Doug Lea’s allocator is 
discussed at length in gee.cs.oswego.edu/dl/html/malloc.html. The design goals for this 
widely used allocator include minimizing execution time and memory fragmentation.

newlib can be rebuilt with debugging switched on in malloc_r.c (-DDEBUG) to enable 
extensive run-time checking. With debugging enabled, calls to malloc_stats() and 
mallinfo() attempt to check that every memory block in the heap is consistent.



Toolset tips ST200

178/246  8063762 Rev 9

A.3 OS21 scheduler behavior
The scheduler in OS21 provides priority-based preemptive FIFO scheduling with optional 
timeslicing. The following list summarizes its behavior.

● 256 priority levels.

● FIFO scheduling within priority level.

● Tasks get preempted when higher priority tasks become runnable.

● Preemption can be disabled and re-enabled with task_lock() and 
task_unlock(), see task_lock() and task_unlock().

● Preemptions held pending while task_lock() is in effect, occur when 
task_unlock() releases the lock.

● Tasks which get preempted are placed at the head of the run queue for their priority 
level.

● Tasks which yield are placed at the tail of the run queue for their priority level.

● Tasks which become runnable are placed at the tail of the run queue for their priority 
level.

● Tasks which get timesliced are placed at the tail of the run queue for their priority level.

● Timeslicing is optional (off by default), and can be enabled or disabled by calling 
kernel_timeslice().

● The default timeslice frequency is 50 Hz.

● The timeslice frequency can be set between 1 and 500 Hz by changing the value of the 
variable bsp_timeslice_frequency_hz, either before calling 
kernel_initialize(), or in the BSP library routine bsp_initialize().

A.4 Managing critical sections in OS21
A critical section is a region of code where exactly one thread of execution can run at any 
one time. There are two forms of critical section to consider:

● task / interrupt

● task / task

A.4.1 task / interrupt critical sections

Within the context of a running task, task / interrupt critical sections are implemented by 
masking interrupts so that the interrupt handler you are serializing with cannot run. OS21 
has three calls for interrupt masking and unmasking.

interrupt_mask(), interrupt_mask_all() and interrupt_unmask()

This OS21 API enables the priority level of the CPU to be raised and lowered. The CPU’s 
interrupt level provides a simple mechanism to mask interrupts from reaching the CPU. Any 
interrupts that have a priority that is strictly greater than the CPU’s interrupt priority can 
interrupt the CPU. Any interrupts that have a priority less than or equal to the CPU’s 
interrupt priority are masked out and cannot therefore affect the CPU.

The CPU’s interrupt level is normally zero, meaning that all interrupts are unmasked. Any 
interrupt masked by the CPU’s interrupt level when it becomes active, is asserted to the 
CPU when the CPU’s interrupt priority is lowered below that of the active interrupts.



ST200 Toolset tips

8063762 Rev 9 179/246

To serialize with an interrupt handler that is interrupting at level X, only the interrupts up to 
level X need to be masked. This stops all interrupts with a priority less than or equal to X 
from reaching the CPU, but leaves higher priority interrupts unaffected.

interrupt_mask() sets the CPU’s interrupt level to the value specified, and 
interrupt_mask_all() sets the CPU’s interrupt level to its maximum.

To prevent pre-emption, interrupt_mask() and interrupt_mask_all() also perform 
an implicit task_lock(). This is because if a context switch occurs while under an 
interrupt_mask(), the CPU’s interrupt priority would be changed to the value required 
by the incoming task which breaks the critical section. Ensure that an explicit deschedule 
does not occur while interrupts are masked (for example, blocking on a busy semaphore or 
mutex).

A.4.2 task / task critical sections

OS21 has a number of mechanisms for achieving task / task critical sections, each of which 
has its own cost and benefit.

task_lock() and task_unlock()

These calls provide a lightweight mechanism to prevent preemption. With a task_lock() 
the running task is guaranteed so that the scheduler does not preempt it if a higher priority 
task becomes runnable, or a timeslice interrupt occurs. In addition, any calls to 
task_reschedule() have no effect.

It is possible for the running task to explicitly give up the CPU while a task_lock() is 
active. This is the only way to schedule another task while the running task holds a 
task_lock(). Explicit yielding of the CPU occurs when the running task calls either 
task_yield() or a blocking OS21 function, for example:

● calls to task_delay() or task_delay_until() specifying a time in the future

● waiting on an unposted event flag, busy semaphore or empty message queue with the 
timeout period not set to TIMEOUT_IMMEDIATE 

● waiting for a busy mutex

When the running task resumes execution, OS21 automatically reinstates task_lock(). 
Due to the critical section provided by task_lock() and task_unlock() being broken, if 
the task blocks, it is weak. If a strong critical section is required when using these calls, 
ensure that called functions do not block. This is not always possible, for example, when 
calling a library function.

Advantages:

● light weight

● no need to allocate a synchronization object

● critical sections can nest

Disadvantages:

● critical sections broken if the running task explicitly blocks



Toolset tips ST200

180/246  8063762 Rev 9

Mutexes

Mutexes in OS21 provide robust critical sections. The critical section remains in place even 
if the task in the critical section blocks. Exactly one task is able to own a mutex at any one 
time. OS21 has two forms of mutex: FIFO and priority.

FIFO mutexes have the simplest semantics. When tasks try to acquire a busy FIFO mutex 
they are queued in request order. When a task releases a FIFO mutex, ownership is passed 
to the task at the head of the waiting queue, and it is unblocked.

Priority mutexes are more complex. When tasks try to acquire a busy priority mutex, they 
are queued on the mutex in order of descending task priority. In this way, the task at the 
head of the wait queue is always the one with the highest priority, regardless of when it 
attempted to acquire the mutex.

Priority mutexes also implement what is known as priority inheritance. This mechanism 
temporarily boosts the priority of the task that owns a mutex to be the same as the priority of 
the task at the head of the wait queue. When the owning task releases the mutex, its priority 
is returned to its original level. This behavior prevents priority inversion, where a low priority 
task can effectively prevent a high priority task from running. This can happen if a low 
priority task owns a mutex which a high priority task is waiting for, and a mid level priority 
task starts running, the low priority task cannot run and therefore cannot release the mutex, 
causing the high priority task to wait.

Ownership of FIFO or priority mutexes has the effect of making the task immortal, that is, 
immune to task_kill(). This is intended to prevent deadlock in the event that a task 
owning a mutex is killed; the mutex would otherwise be left owned by a dead task and 
therefore it would be locked out for ever. If task_kill() is carried out on a mutex owning 
task, the task remains running until it releases the mutex, at which point the task_kill() 
is actioned.

Both forms of mutex can be recursively taken by the owning task without deadlock.

Advantages:

● robust critical section

● can be recursively taken without deadlock

● tasks are immortal while holding a mutex

● FIFO mutexes provide strictly fair access to the mutex

● priority mutexes provide priority ordered access, with priority inheritance

Disadvantages:

● mutexes have to be created before they can be used

● more costly than task_lock() and task_unlock()

● priority mutexes have a higher cost than FIFO mutexes, due to priority inheritance logic

● strictly for task / task interlock, cannot be used by interrupt handlers



ST200 Toolset tips

8063762 Rev 9 181/246

Semaphores

Semaphores in OS21 can be used for a variety of purposes, see the OS21 for ST200 user 
manual (7410372). They can be used to provide a robust critical section, in a similar fashion 
to mutexes, but with some major differences.

● Semaphores cannot be taken recursively; any attempt to do this results in deadlocking 
the calling task.

● Like mutexes, there are both FIFO and priority queuing models, but unlike priority 
mutexes, priority semaphores do not implement priority inheritance.

● Tasks are not automatically made immortal when they acquire a semaphore.

● Semaphores can be used with care from interrupt handlers.

Advantages:

● Robust critical section.

● FIFO and priority queuing models are available, but no priority inheritance.

● No difference in cost between a FIFO and a priority semaphore.

● Due to simpler semantics, there is slightly lower execution cost compared to mutexes.

● If TIMEOUT_IMMEDIATE is used when trying to acquire and the interrupt handler is 
written to cope with not acquiring the semaphore, semaphores can be used in an 
interrupt handler.

Disadvantages:

● Semaphores have to be created before they can be used.

● More costly than task_lock() and task_unlock().

● Cannot be taken recursively because the system deadlocks.

● No immortality while holding; killing an owning task would be dangerous.

Disabling timeslicing

When running with timeslicing enabled and a very light weight task / task critical section is 
required (which does not involve accessing a synchronization object), it is possible to 
temporarily disable timeslicing. For example:

kernel_timeslice (0);

...critical section...

kernel_timeslice (1);

Use this approach carefully as the kernel_timeslice() API has an immediate global 
effect. If the task blocks in this region (for example, calls task_delay(), blocks waiting for 
a synchronization object, or signals a synchronization object and gets preempted as a 
result), then timeslicing remains disabled for all other tasks. This can result in a task not 
timeslicing in order to share the CPU.



Toolset tips ST200

182/246  8063762 Rev 9

A.5 Access to uncached memory
To get uncached views of physical memory, use the OS21 virtual memory API.

The following is the sequence of OS21 virtual memory API calls.

1. To obtain the physical address for the virtual address to be accessed through an 
uncached view, call vmem_virt_to_phys().

2. To obtain a virtual address that gives an uncached view of the physical memory, call 
vmem_create() with the physical address obtained in step 1. with the mode 
VMEM_CREATE_UNCACHED|VMEM_CREATE_READ|VMEM_CREATE_WRITE.

3. To release the virtual address when it is no longer required, call vmem_delete() with 
the virtual address obtained in step 2.

If the virtual address has been dynamically mapped through the MMU, use 
vmem_delete() to release a UTLB entry for reuse. This reduces page faults and 
improves performance.

The following example uses the OS21 virtual memory APIs:

void *dev_phys;
struct device *dev, *dev_uc;
/*... */

assert(vmem_virt_to_phys(dev, &dev_phys) == OS21_SUCCESS);

dev_uc = (struct device *) 
 vmem_create(dev_phys, sizeof(struct device), NULL,
 VMEM_CREATE_UNCACHED|VMEM_CREATE_READ|VMEM_CREATE_WRITE); 

assert(dev_uc != NULL); /*... */

assert(vmem_delete(dev_uc) == OS21_SUCCESS);



ST200 Toolset tips

8063762 Rev 9 183/246

A.6 Debugging with OS21
Note: Further information on debugging can be found in the Debugging with GDB manual.

A.6.1 Understanding OS21 stack traces

Every time OS21 is entered through an interrupt or exception, OS21 captures the context of 
the CPU on the current stack. If interrupts nest, it captures multiple contexts, one for each 
interrupt. The information stored includes the complete register state of the CPU, details of 
what caused the context to be saved (interrupt or exception) and the task that was active at 
the time. 

Whenever an unexpected exception occurs, it produces a stack trace. On the ST200, these 
stack traces have the following general form:

OS21: ============================================================
OS21: Stack trace (<n> of <N>)

OS21: Fatal exception detected: ST200 exception code
OS21: Description of exception, possibly with faulting address

+ OS21: Active Task ID    : task ID 
+ OS21: Active Task Stackp: stack pointer 
+ OS21: Active Task name  : task name 

<Register dump> 

Note: The lines marked with a ‘+’ are shown only if the stack frame belongs to a task, not if the 
stack frame belongs to an interrupt handler.

The stack trace shows the state of the CPU at the time the exception occurred. It should be 
possible to ascertain the cause of the exception from the description of the exception, 
reported faulting addresses and the register dump.

For example, the following program creates a task that contains a deliberate misaligned 
write to memory. 

#include <os21.h>

void my_task(void *ptr)
{
 *((unsigned int*)ptr) = 0xBA49;

}

int main (void)
{
 kernel_initialize(NULL);
 kernel_start();

 (void)task_create(my_task, (void*)0x12344321, 32768, 
  OS21_MAX_USER_PRIORITY, "bang", 0);

 task_delay(time_ticks_per_sec());

 return 0;
}



Toolset tips ST200

184/246  8063762 Rev 9

Building this program with the compiler options -g and -mruntime=os21, and running it 
gives the following output:

OS21: ============================================================
OS21: Stack trace (1 of 1)

OS21: Fatal exception detected: 0x00000200.
OS21: misaligned access to 0x12344321

OS21: Active Task ID    : 0xC0034B38
OS21: Active Task Stackp: 0xC003CB1C
OS21: Active Task name  : bang

OS21: PC   0xC000041C    SP   0xC003CC38    LINK 0xC0002D5C    PSW  0x0000000E
OS21: R14  0x00000000    R15  0x00000000    R16  0x12344321    R17  0x12344321
OS21: R18  0x00000000    R19  0x00000000    R20  0x00000000    R21  0x00000000
OS21: R22  0x00000000    R23  0x00000000    R24  0x00000000    R25  0x00000000
OS21: R26  0x00000000    R27  0x00000000
OS21: B0-7 0 0 0 0 0 0 0 0

OS21: R1   0x00000000    R2   0x00000000    R3   0x00000000    R4   0x00000000
OS21: R5   0x00000000    R6   0x00000000    R7   0x00000000    R8   0x12344321
OS21: R9   0x0000BA49    R10  0x00000000    R11  0x00000000    R13  0x00000000
OS21: R28  0x00000000    R29  0x00000000    R30  0x00000000    R31  0x00000000
OS21: R32  0x00000000    R33  0x00000000    R34  0x00000000    R35  0x00000000
OS21: R36  0x00000000    R37  0x00000000    R38  0x00000000    R39  0x00000000
OS21: R40  0x00000000    R41  0x00000000    R42  0x00000000    R43  0x00000000
OS21: R44  0x00000000    R45  0x00000000    R46  0x00000000    R47  0x00000000
OS21: R48  0x00000000    R49  0x00000000    R50  0x00000000    R51  0x00000000
OS21: R52  0x00000000    R53  0x00000000    R54  0x00000000    R55  0x00000000
OS21: R56  0x00000000    R57  0x00000000    R58  0x00000000    R59  0x00000000
OS21: R60  0x00000000    R61  0x00000000    R62  0x00000000    R63  0xC0002D5C

OS21: Aborted.

The exception has been decoded as a misaligned write to memory, and the bad address is 
0x12344321. 

A.6.2 Identifying a function that causes an exception

It is not possible to directly identify the function that causes an exception from an OS21 
stack trace. However, there are several ways to indirectly establish the function.

Using GDB

To catch the exception in GDB, place a breakpoint on OS21’s unexpected exception 
handler, for example:

(gdb) b _os21_exception_handler
Breakpoint 1 at 0xc0009cb4: file src/os21/exception/exception.c, line 114.

(gdb) c
Continuing.
[Switching to Thread 2147483647] 

Breakpoint 1, _os21_exception_handler () at src/os21/exception/exception.c:114
114       for (lnp = _os21_list_give_node_front (&excpHandList);

(gdb) info threads
4 Thread 3 ("bang" (active & interrupted) [0xc0034b38])  0xc000041c in my_task 
(ptr=0x12344321) at /u/spilotro/work/samples/OS21_Exceptions/OS21_test.c:5
3 Thread 2 ("Idle Task" (active) [0xc0031630])  _os21_task_launch () at 



ST200 Toolset tips

8063762 Rev 9 185/246

src/os21/task/task.c:1626 
2 Thread 1 ("Root Task" (active) [0xc0024c08])  0xc0006db0 in _md_kernel_syscall ()
* 1 Thread 2147483647 ("OS21 System Task" (active & running) [0 (PSEUDO)])
* _os21_exception_handler () at src/os21/exception/exception.c:114

In this example, the thread that hits the breakpoint is a pseudo thread called OS21 System 
Task. This is fabricated by GDB to enable it to present the state of the system. 

When the exception occurred, thread 4 is indicated as being interrupted as it was running. 
To examine the state of this thread, change context to that thread:

(gdb) thread 4
[Switching to thread 4 (Thread 3)]#0  0x880017d4 in my_task 
  (ptr=0x12344321) at test.c:5

5     * ((unsigned int *) ptr) = 0xBA49;
(gdb) print /x ptr
$1 = 0x12344321
(gdb)

Using st200objdump

From the OS21 stack trace (see Section A.6.1: Understanding OS21 stack traces on 
page 183), note the value of the PC register of the first stack trace (in the example, this is 
0xC000041C). Use st200objdump to generate a disassembly, starting before and 
stopping after this address. This shows the name of the function that generated the 
exception. If it does not, start the disassembly further back. For example:

st200objdump -d -j .text --start-address=0xC0000408 
  --stop-address=0xC0000420 a.out

a.out:     file format elf32-littlelx

Disassembly of section .text:

c0000408 <my_task>:
c0000408:cc 0f 00 a5 stw 0 (0x0)[$r12] = $r63;;
c000040c:0c 84 00 a5 stw 8 (0x8)[$r12] = $r16;;
c0000410:5d 00 80 15 
c0000414:40 92 04 08 mov $r9 = 47689 (0xba49)
c0000418:0c 82 00 a0 ldw $r8 = 8 (0x8)[$r12];;
c000041c:48 02 00 a5 stw 0 (0x0)[$r8] = $r9;;

Using st200addr2line

st200addr2line provides the source file and line number for a specified address. Taking the 
PC to be the same as above (0xC000041C), pass it to st200addr2line, for example:

st200addr2line -e a.out -f 0xC000041C
my_task
<source-directory>/test.c:5

Note: The program must contain debug information.



Toolset tips ST200

186/246  8063762 Rev 9

A.6.3 Catching program termination with GDB

The normal exit path for an application is to call exit(), a breakpoint on this function 
catches typical application exit scenarios.

However, if OS21 detects an internal error, it panics. This calls the _kernel_panic() 
function with a string describing the situation. To catch abnormal kernel situations, place a 
breakpoint on _kernel_panic(). _kernel_panic() calls down to bsp_panic(), that 
provides a hook for your own panic handler.

Due to all the exit paths going through the internal run-time library function _exit(), a 
breakpoint here catches every exit path.

A.7 General tips for GDB
This sections describes a variety of general tips for GDB.

A.7.1 Handling target connections

To avoid typing a sequence of commands when debugging using the GDB command line 
interface, use a simple script and invoke it with -x. For example:

st200gdb -x script.cmd

To connect to your target, define a user-defined command in your .lxgdbinit file. The 
following example sets up a command that connects to a target board (in this case an 
STi5300 ST231 evaluation board connected to an ST Micro Connect with its IP address set 
to <address>) and loads the program ready for debugging:

define target1
file $arg0
st200tp <address>:mb424:st231
load
end

To connect to the target from GDB with the executable a.out, invoke target1 with a.out 
as its parameter:

(gdb) target1 a.out

A.7.2 Windows path names

Windows permits spaces to appear within path names. However, because spaces can 
cause some GDB commands to break, do not use spaces in your path names.

When using autocomplete, GDB does not recognize the usual DOS path name separator, 
the backslash (\), instead use the Unix style forward slash (/). 

Windows permits file names to have 2-byte (wide) characters. Usually, this is not a problem 
because although the tools do not understand them, they just pass them through and 
Windows still recognizes them. However, some wide characters contain, as one of their two 
bytes, the directory separator character ‘\’ or ‘/’. These are correctly interpreted by 
Windows but in some cases are misinterpreted by the GNU tools leading to malformed 
paths and apparently missing files and directories.

Note: The preferred encoding for GNU is UTF-8, and there are no problems with 2- (or more) byte 
unicode encodings being misinterpreted as slashes. 



ST200 Toolset tips

8063762 Rev 9 187/246

A.7.3 Power up and connection sequence

STMicroelectronics recommends that the target board is either powered up after the 
ST Micro Connect or that the target is reset after power up of the ST Micro Connect. The 
reason for this is that the ribbon cable connection between the target and ST Micro Connect 
can drag down the JTAG lines while the ST Micro Connect is not powered. During the 
power up of the ST Micro Connect the JTAG signals are transiently undefined. To clear any 
invalid state, use a target reset.

A.8 Polling for keyboard input
To enable host keyboard polling from an application running on the target, use the 
_pollkey function. 

_pollkey Poles the host keyboard

Definition: int _pollkey(int *keycode)

Arguments:

Returns: 0 if no key was pressed, 1 if a key was pressed. No errors are returned.

Description: _pollkey() polls the host keyboard for a keypress. If no keypress is detected, the 
function returns 0. If a keypress is detected then the function returns 1, and the int 
pointed to by keycode receives the ASCII keycode of the key that was pressed.

keycode The address of an int to receive the ASCII keycode of the pressed 
key.



Toolset tips ST200

188/246  8063762 Rev 9

A.9 Just in time initialization
A common problem when writing a library is performing just in time initialization. It is usually 
accepted that the first thread to call a library function is responsible for initializing it. This 
often requires allocating memory or synchronization objects like semaphores. The problem 
is how to ensure that this is atomic, that is, the initialization is performed precisely once. 
Allocation can result in the caller blocking, therefore, special consideration has to be given 
as to how to achieve this atomic initialization. 

The following example describes a simple strategy that guarantees atomicity. 

For a library to initialize, the first caller must create a semaphore to serialize access to the 
library resources. The following code, which omits error condition checking to aid clarity, 
guarantees that the semaphore is created precisely once: 

static semaphore_t *volatile library_sem; 
... 

if (library_sem == NULL) 
{ 
 semaphore_t *local_sem = semaphore_create_fifo (1); 
 task_lock (); 
 if (library_sem == NULL) 
 { 
  library_sem = local_sem; 
 } 
 task_unlock (); 
 if (library_sem != local_sem) 
 {
  semaphore_delete (local_sem); 
 } 

} 

When the code completes, if necessary, the library semaphore has been created. The first 
check, which occurs unlocked, is to see if the semaphore already exists. If it does, then 
there is nothing more to do. If it does not, then the code allocates a new semaphore with the 
address of the semaphore in a local variable. If the task is descheduled while creating the 
semaphore, it is possible for another task to enter this routine. It too would see that no 
library semaphore exists, and would similarly attempt to create a new one. When the task 
returns from creating the semaphore, it locks the scheduler to prevent pre-emption. Under 
this lock it again checks the library semaphore. If it still does not exist, the library semaphore 
is assigned the address of the semaphore just created. The scheduler is now unlocked.

The lock ensured that precisely one of the competing tasks assigned a non-zero value to 
the library semaphore pointer. When out of the lock the library semaphore is checked 
against the local one. If they are identical, then it is known that the local semaphore was 
used, and nothing more needs to be done. If they are different, then another task assigned 
the library semaphore pointer. In this case, the local semaphore must be discarded; it is not 
needed as the library semaphore already exists. 



ST200 Toolset tips

8063762 Rev 9 189/246

A.10 Using Cygwin
The Windows toolset requires Windows XP or Windows 7. However, if a Unix-like 
environment is required, use the toolset in conjunction with Cygwin (www.cygwin.net).

Cygwin adds a number of Unix-like features to its own applications but cannot extend this 
support to other applications such as the ST200 Micro Toolset. 

To improve interoperability and to use Cygwin as a build environment, the ST200 Micro 
Toolset has a limited amount of Cygwin-like behavior.

Many of the tools accept Cygwin pathnames according to the ST_CYGPATH_MODE 
environment variable, see Table 38.

         

There are a few limitations:

● paths must be specified in canonical form, that is, /cygdrive///c will not work

● relative pathnames cannot pass through these paths, that is, ../../cygdrive/c will 
not work

● Cygwin symbolic links (short cuts) are not understood

The make utility is one of the ST200 Micro Toolset tools that does not have any Cygwin 
support. The make utility is one of the tools in mingw32-make.exe. To use the Cygwin 
make utility, place the Cygwin bin directory earlier in the PATH environment variable than 
the toolset bin directory.

There are a number of other tools provided with the toolset that do not have Cygwin 
pathname support. In these cases, only a proper Windows pathname works. To convert 
pathnames from Cygwin format to Windows format (and back again), use the cygpath utility 
(part of Cygwin).

Table 38. ST_CYGPATH_MODE settings

Environment variable setting Description

ST_CYGPATH_MODE=off No pathname translation is attempted.

ST_CYGPATH_MODE=normal or
ST_CYGPATH_MODE is not set.

/cygdrive/X converts to X:/.

ST_CYGPATH_MODE=full 
/cygdrive/X is converted as above and any other Cygwin 
mount points (such as /usr) are also converted.



Toolset tips ST200

190/246  8063762 Rev 9

A.11 Watchpoint support
ST200 provides both hardware watchpoints supported only on silicon and software 
watchpoints, supported on both silicon and in a simulation environment.(a)(b)

Hardware watchpoints are hardware assisted, that is, the ST200 provides registers to define 
the watched memory region and comparison operation. Because ST200 register resources 
are limited, only one hardware watchpoint is allowed at a time. 

Hardware watchpoints are triggered when the instruction address matches criteria 
established through the registers. In this condition, the target stops execution and sends 
GDB a specific signal. See the ST2xx core and instruction set architecture Reference 
manual for details.

Software watchpoints do not rely on hardware facilities and are therefore unlimited. This 
kind of watchpoint is natively provided by GDB when executing in a simulation environment. 
Another situation when software watchpoints are used is when setting more than one 
watchpoint on silicon(a).

From the users point of view, software watchpoints provide the same functionality of 
hardware ones, but differ in that they do not emulate the hardware watchpoint trigger 
mechanism. When software watchpoints are used, GDB steps through every instruction 
checking whether the value of the data in the watch region has been changed. Although this 
is effective, it reduces program performance significantly.

To set a watchpoint, use one of the commands listed in Table 39, where location can be 
either an address or a symbolic object name.

         

Watchpoints set using the watch command, only trigger if the value of the data in the watch 
region has been changed and not just written to.

a. Setting subsequent watchpoints is allowed but results in setting software watchpoints. In this case, even the 
first (hardware) watchpoint is treated as a software watchpoint until all subsequent watchpoints are active 
(neither deleted nor out of scope).

b. It is not possible to explicitly differentiate which type of watchpoints (hardware or software) to set using the 
commands in Table 39. GDB makes this decision depending on the execution environment. On silicon, it can 
be either type depending on the number of hardware watchpoint already set. On a simulator, only the software 
type is allowed. 

Table 39. Hardware watchpoint commands

Command When triggered

watch location Write accesses only.

rwatch location Read accesses only.

awatch location Both read and write accesses.



ST200 ST200 board support package (BSP)

8063762 Rev 9 191/246

Appendix B ST200 board support package (BSP)

This appendix describes the board support package of the bare machine run-time software 
for the STMicroelectronics ST200 family of processors.

The BSP has a set of function calls that enable you to command low-level functionalities 
available on ST200-powered systems, such as cache management, timers programming, 
performance monitoring and interrupts installation.

This bare-machine run-time software provides very low level control of the resources of the 
ST200 CPU core. Most users are expected to use the OS21 run-time kernel which manages 
the machine's low-level resources and so do not need to use this low-level API.

B.1 Error handling
All BSP functions, not directly returning a value, return an error condition that assumes one 
of the following values:

When an error is detected the global variable unsigned int bsp_errno is set to the 
appropriate value at the exit of each BSP call. If there are no errors, bsp_errno is set to 
BSP_OK, otherwise it is set to the appropriate error code, see Table 40. 

         

Note: The function bsp_print_error() obtains a short error message corresponding to the 
error received.

BSP_OK if there are no errors

BSP_FAILURE if an error occurred

Table 40. BSP errors

Error Description

BSP_OK No errors.

BSP_FAILURE General error condition.

BSP_EINVAL An invalid argument is given.

BSP_EINTR An error occurred installing an interrupt.

BSP_EBUSY The resource is not available.

BSP_EMAPFAIL There is an error mapping memory.

BSP_EMFILE No TLB is available.

BSP_EINTNOTHNDL The interrupt was not handled.

BSP_EINTNOTPENDING No pending bits are set.



ST200 board support package (BSP) ST200

192/246  8063762 Rev 9

B.2 Caches
All variants of the ST200 processor use caches to reduce the time taken for the CPU to 
access memory and greatly increase system performance.

The ST200 has an instruction cache (I-cache) and a data or operand cache (D-cache). The 
I-cache is read only, while the D-cache is read/write. Writes use a write-back method.

When using a data cache, there is a risk that it can become incoherent with main memory, 
this is where the contents of the cache conflicts with the contents of main memory. For 
example, devices that perform direct memory access (DMA) modify the main memory 
without updating the contents of the cache, potentially leaving its contents invalid. For this 
reason extra care should be taken when performing DMA.

On the ST200, the I-cache cannot be disabled, however, the D-cache can be selectively 
disabled for specific regions of memory. It is also possible to flush specific blocks of memory 
from either cache. In this way, application software can safely manage the cache.

B.2.1 Managing the caches

When the D-cache is enabled, any data written to main memory by the CPU is stored in the 
D-cache and marked as dirty so that at some point in the future it can be properly stored to 
main memory. 

The BSP ST200 cache API can purge (that is, to simultaneously flush and invalidate) 
specific D-cache lines. Purging is required when writing to data structures in memory that 
are accessed through the D-cache, but are to be shared with another bus master, for 
example, another CPU, or DMA device. You can use BSP to manipulate shared data either 
avoiding the cache altogether or through the cache with software cache coherency support. 

To safely handle dynamic code loading, the read-only I-cache can be invalidated.

B.2.2 Cache header file: machine/bsp/cache.h

All the definitions related to the cache are in the header file, machine/bsp/cache.h.

         

Table 41. Functions defined in machine/bsp/cache.h

Function Description

bsp_cache_invalidate_instruction()
Invalidates addresses within the specified range 
from the instruction cache

bsp_cache_invalidate_instruction_
all()

Invalidates the entire instruction cache

bsp_cache_purge_data()
Purges addresses within the specified range from 
the data cache

bsp_cache_purge_data_all() Purges the entire data cache



ST200 ST200 board support package (BSP)

8063762 Rev 9 193/246

B.2.3 L2 cache

If a Level-2 cache interface is present in the hardware (refer to your SoC datasheet for 
details) then the BSP requires customization in order to use it:

1. Define the symbol L2_CACHE_SYSTEM_ADDRESS in the board_nomem.ld file (or 
board.ld).

For example:

/* L2 Cache base address */
L2_CACHE_SYSTEM_ADDRESS = 0X1E000000;

2. If the TLBs are configured, then define the TLB settings for the L2 cache in the BSP

For example:

"bsp_memory_map_t <platform>_l2_maps [] = { {(void *)&L2_CACHE_SYSTEM_ADDRESS,
0x200, 8*1024, 0, 7, 7}, NO_MAP};

bsp_memory_map_t * bsp_board_map_init(void)
{  
return <platform>_l2_maps;
}
"

3. In order to connect to hardware (and use L2 cache) then set the following parameter in 
the connection string: l2cache=<address>

For example:

st200xrun -c st200tp -t "<stmc_ip>:<platform>:<core> l2cache=<address>" -e 
<user_application> 
st200gdb -ex "st200tp <stmc_ip>:<platform>:<core> l2cache=<address>" 
<user_application>

Note: The l2cache parameter must be used only in the connection with real hardware (it is not to 
be used with a simulator).



ST200 board support package (BSP) ST200

194/246  8063762 Rev 9

B.3 Memory management
Some variants of the ST200 processor (ST231 onwards) support a memory management 
unit (MMU) and a speculative load control unit (SCU). The MMU has hardware that controls 
the D-cache behavior across address ranges, as well as performing the traditional role of 
controlling virtual address translation and protection. The MMU has a fixed number of 
translation look aside buffers (TLBs) that describe and control the virtual address space on 
the system.

The SCU controls whether or not speculative (also known as dismissible) loads from 
physical address ranges are allowed. The SCU has a fixed number of entries that are used 
to enable speculative loads for certain physical address ranges.

B.3.1 Initial memory map

When the ST200 comes out of reset, the MMU is disabled. In this mode all data fetches are 
uncached. 

The C run-time boot sequence programs the MMU to contain an identity mapping for system 
RAM with caching enabled. It also programs the SCU so that speculation is enabled for 
system RAM. The boot sequence then enables the MMU and the ST200 starts running from 
a virtual address space. 

The mapping set up in the TLBs by the bare run-time is an identity mapping, therefore, the 
system RAM is shown in the virtual address space at the same addresses as it does in the 
physical address map. 

         

B.3.2 Managing the MMU

The bare run-time Board Support Package only has a minimal support for the MMU and 
SCU. The OS21 BSP has a more extended API for MMU and SCU modules. 

B.3.3 MMU header file: machine/bsp/mmu.h

All the definitions related to the MMU available in bare run-time environment are in the 
single header file, machine/bsp/mmu.h, see Table 43.

Table 42. Initial memory map

Start address Size
Supervisor / 

User priv.
Cacheable Description

__text_start 8 MBytes rwx/rwx Yes RAM read/write/execute.

0x00000000 8 KBytes rwx/rwx No boot ROM

Peripheral_base 16 KBytes rw--/---- No Peripheral registers.

Peripheral_base + 
0x4000

8 KBytes r--x/---- No DSU ROM



ST200 ST200 board support package (BSP)

8063762 Rev 9 195/246

         

B.3.4 Speculative control unit (SCU)

To ensure that speculative bus requests are not sent out to peripherals and unmapped 
memory regions, the SCU filters physical speculative load addresses (both cached and 
uncached) and prefetches that miss the cache.

The SCU supports four regions of memory aligned to the smallest TLB page size (8 Kbytes). 
If the physical address of the speculative load/prefetch address falls within one of the four 
supported regions it is allowed, otherwise the SCU aborts the speculative load/prefetch and 
either returns zero or the cancels the prefetch.

To configure the memory regions, use the SCU_BASEx and SCU_LIMITx control registers. 

The SCU resets so that each of the four regions cover the whole of memory. This enables 
speculative loads to be issued before the SCU has been initialized.

SCU header file: machine/bsp/mmap.h

All the definitions related to the SCU available in bare run-time environment are in the single 
header file, machine/bsp/mmap.h, see Table 44.

         

The functions bsp_scu_read() and bsp_scu_write() use a struct to define start and 
end addresses.

typedef struct
{
 void * start_address;
 void * end_address;

} bsp_scu_entry_t;

The two addresses are rounded to be aligned to the smallest TLB page size.

Table 43. Functions defined in bsp/mmu.h

Function Description

bsp_mmu_reset() Reset TLB settings

bsp_mmu_memory_map()
Map pages of program address space into ST200 
physical addresses and set protections

bsp_mmu_memory_unmap() Unmap pages of memory

bsp_mmu_dump_TLB_Settings() 
Write on the stdio a list of TLBs with their 
attributes

Table 44. Functions defined in bsp/mmap.h

Function Description

bsp_scu_read() Read the settings of the region

bsp_scu_write() Write the start and end address of a region

bsp_scu_disable() Disable a region

bsp_scu_dump_SCU_Settings()
Write on the stdio a list of SCU regions with their 
address and size



ST200 board support package (BSP) ST200

196/246  8063762 Rev 9

B.4 Timers
The ST200 has three independent timers, each capable of running as a free-running 
auto-reload 32-bit counter, with interrupt on underflow. Each can be programmed to count 
some fraction of the input clock. Time is represented in clock ticks, with the bsp_clock_t 
type. This is defined to be a signed 64-bit integer.

B.4.1 Input clock frequency

The precise speed of the input clock is determined by the end user; it is a function of the 
board design and boot software.

B.4.2 Tick duration

ST200 BSP establishes the period of one tick when it boots. Based on the input clock 
frequency, it selects an appropriate divisor to yield a tick that is approximately 
1 microsecond.

B.4.3 Reading the current time

To read the value of system time, use bsp_timer_now(). 

#include <machine/bsp/timer.h>
bspclock_t bsp_timer_now(void);

B.4.4 ST200 timer assignments

ST200 BSP uses the Timer0 as system timer and Timer1 only if the profiling is enabled, 
Timer2 is always free for users (Timer1 is also available for users if the profiling feature is 
not enabled).

         

To return the system time, bsp_timer_now() uses the free running system timer. On 
ST200, the system time (bsp_clock_t) is a 64-bit value. ST200 BSP maintains the top 
32 bits of the 64-bit time through an interrupt handler that is called each time the 32-bit timer 
reaches zero. The lower 32 bits of the system time are the value in the system timer.

If the profiling feature is enabled, the profiling timer is programmed to the profiling sampling 
interval. otherwise it is available for the user (as TIMER_USER2)

The user Timer1 is always available for the user.

Table 45. ST200 timer assignments

Timer name BSP usage

TIMER_SYSTEM System timer

TIMER_PROFILER Profiling timer

TIMER_USER1 User timer 1 

TIMER_USER2 
User timer 2 (only available if profiler is not 
present)



ST200 ST200 board support package (BSP)

8063762 Rev 9 197/246

Hardware abstraction layer (HAL) for the ST200 timer module

The BSP has a set of functions to help program the timer directly by acting on the timer 
registers that hide the differences between ST200 cores. These functions are not checked 
against conflicts against other timer functions (for example, bsp_timer_now()) and 
should be only used to program user timer 2 and eventually the user timer 1 if profiling is not 
enabled.

         

B.4.5 Timer header file: machine/bsp/timer.h

All the definitions related to the timer available in bare run-time environment are in the single 
header file machine/bsp/timer.h, see Table 47 and Table 48.

         

         

Table 46. Functions defined in machine/bsp/timer.h

Functions Description

bsp_timer_start() Start the timer.

bsp_timer_start_all() Start all the timers

bsp_timer_stop() Stop the timer.

bsp_timer_divide_set() Set the TIMEDIVIDE registry

bsp_timer_divide_get() Get the TIMEDIVIDE registry

bsp_timer_count_set()
Set the initial value of the counter of the specific 
timer

bsp_timer_count_get()
Get the initial value of the counter of the specific 
timer

bsp_timer_reload_set()
Set the value to be reloaded into the specific timer 
on reaching zero

bsp_timer_reload_get() Get the reload value of the specific timer

bsp_timer_interrupt_enable() Enable the timer interrupts the processor

bsp_timer_interrupt_disable() Disable the timer interrupt

bsp_timer_interrupt_clear() Clear the timer interrupt

Table 47. Functions defined in machine/bsp/timer.h

Function Description

bsp_timer_now() Return the current time

bsp_timer_user()
Set a user timer, eventually attach an interrupt 
handle and enable the corresponding interrupt

bsp_timer_ticks_per_sec() Return the number of clock ticks per second

Table 48. Types defined by machine/bsp/timer.h

Type Description

bspclock_t Number of processor clock ticks



ST200 board support package (BSP) ST200

198/246  8063762 Rev 9

B.5 Performance monitor (PM)
The PM module is a hardware instrumentation system that enables you to simultaneously 
monitor up to four events in a variable set of predefined events.

B.5.1 Hardware abstraction layer for the PM module

The BSP has a set of functions to help program the performance monitor directly acting on 
the registers, see Table 49.

         

B.6 Exception handling
Exceptions on the ST200 can occur for the following reasons:

● program request (syscall instruction)

● external interrupt

● program error (for example, misaligned access, bad instruction, failed protection 
check)

After the BSP initialization, only external interrupts are handled.

The default behavior when an unexpected exception occurs is to print a message detailing 
the exception, dump the whole context and then shut down by calling _exit().

To replace the currently installed exception handlers, use the BSP_CORE_EXTERN_INT 
function.

All external interrupts are treated as BSP_CORE_EXTERN_INT exceptions; the interrupt 
dispatcher is set during the BSP initialization.

B.6.1 Exceptions types

Table 50 lists the exceptions that can occur for ST231 and ST240 cores.

Table 49. Functions defined in machine/bsp/pm.h

Functions Description

bsp_pm_reset() Reset all counters

bsp_pm_start() Start all the event counters

bsp_pm_stop() Stop all the event counters

bsp_pm_clock_get() Read the PM Clock counter

bsp_pm_clock_set() Write the PM Clock counter

bsp_pm_counter_get() Read the current value of a PM counter

bsp_pm_counter_set() Write/change the current value of a PM counter

bsp_pm_event_get() Returns the event monitored by the PM counter

bsp_pm_event_set() Set the event being monitored by a PM counter



ST200 ST200 board support package (BSP)

8063762 Rev 9 199/246

         

The exception handlers are defined as:

typedef int (*InterruptVector_t)(regcontext *);

For example:

int MySyscallHandle( regcontext *regs)
{
 DoSomething();
 bsp_errno = BSP_OK;
 return (BSP_OK);

}

main ()
{
 InterruptVector_t OldHandler;
 InterruptVector_t NewHandler;
 ...
 NewHandler = MySyscallHandle;
 bsp_core_interrupt_install( &NewHandler, 
  &OldHandler, 
  BSP_CORE_MISALIGNED_TRAP);
 ...

}

B.6.2 Exceptions header file: machine/bsp/core.h

All the definitions related to the exception handling are in the single header file, 
machine/bsp/core.h.

         

Table 50. ST231 and ST240 exceptions defined in machine/bsp/core.h 

ST231 exceptions

BSP_CORE_STBUS_IC_ERROR BSP_CORE_SYSCALL

BSP_CORE_STBUS_DC_ERROR BSP_CORE_DBREAK

BSP_CORE_EXTERN_INT BSP_CORE_MISALIGNED_TRAP

BSP_CORE_IBREAK BSP_CORE_CREG_NO_MAPPING

BSP_CORE_ITLB BSP_CORE_CREG_ACCESS_VIOLATION

BSP_CORE_SBREAK BSP_CORE_DTLB

BSP_CORE_ILL_INST BSP_CORE_SDI_TIMEOUT

Table 51. Functions defined in machine/bsp/core.h

Functions Description

bsp_core_interrupt_install()
Install an exception handler for a specified 
exception cause

bsp_core_interrupt_lock() Disable external interrupts at core level

bsp_core_interrupt_unlock() Enable external interrupts at core level



ST200 board support package (BSP) ST200

200/246  8063762 Rev 9

B.7 Interrupts
Interrupts are events external to the CPU that are signaled to it through sampled lines. 
When an interrupt occurs, an interrupt handler interrupts the CPU’s normal flow of 
execution. The normal execution flow resumes after the interrupt handler terminates. 

The ST200 cores have 64 lines of external interrupts. A subset of these lines can be 
masked (that is, disabled) individually. In the ST231, the first three lines are connected to 
the three system timers 0, 1 and 2. The remaining 61 lines are connected to system specific 
subsystems. The ST240 interrupt controller supports up to 64 external interrupt sources: 
three internal interrupt sources from the timers and one internal interrupt source from the 
performance monitors. Each of these 68 sources has a mask and a test bit associated with 
it.

For specific information about the maskable interrupt lines and other information, refer to the 
system-specific (core, SoC, board) datasheets.

B.7.1 Interrupt handler installation

An interrupt handler is a user-defined function that executes whenever a particular interrupt 
line is raised. This API provides the means to specify and install user-defined interrupt 
handlers. The interrupt handler has to return BSP_OK in case of success (interrupt correctly 
installed) or BSP_FAILURE (and bsp_errno set to the corresponding error number) in 
case of failure.

B.7.2 Interrupts header file: machine/bsp/interrupt.h

All the definitions related to the interrupts available in bare run-time environment are in the 
single header file, machine/bsp/interrupt.h, see Table 52.

Note: The introduction for the ST240 of two set of interrupts (internal and external) required the 
definition of a new API for the interrupt handler. All functions that have _itc in their name are 
renamed so that _itc is removed. For example, bsp_itc_interrupt_disable() is now 
bsp_interrupt_disable().

         

For backward compatibility, Table 53 list the old-style functions defined in 
machine/bsp/interupt.h.

Table 52. Functions defined in machine/bsp/interrupt.h

Function Description

bsp_interrupt_clear() Clears an interrupt

bsp_interrupt_disable() Disable an interrupt

bsp_interrupt_enable() Enable an interrupt

bsp_interrupt_install() Installs an interrupt handler

bsp_interrupt_poll() Polls an interrupt

bsp_interrupt_raise() Raises an interrupt

bsp_interrupt_uninstall() Uninstalls an interrupt handler



ST200 ST200 board support package (BSP)

8063762 Rev 9 201/246

B.8 User handles
User handles are an optional way to modify the BSP initialization behavior. If standard 
behavior is in line with user expectations, do not use user handles.

Table 54 lists the user handles.

         

bsp_user_start_handle User handle called at the start of the BSP
initialization

Definition: int bsp_user_start_handle(void); 

Arguments: None.

Returns:

Description: If this function is user-defined, it is invoked at the start of the BSP initialization. At this 
stage, this function is in supervisor mode and nothing of the BSP has been initialized 
(no memory management and timer initialization).

Example: int bsp_user_start_handle (void)
{
 kprintf("At the start of user defined bsp_user_start_handle() 

\n");
 Dosomething();
 return RESUME; /* Continue with standard BSP init */

}

Table 53. Functions defined in machine/bsp/interrupt.h

Function Description

bsp_itc_interrupt_clear() Clears an interrupt

bsp_itc_interrupt_disable() Disable an interrupt

bsp_itc_interrupt_enable() Enable an interrupt

bsp_itc_interrupt_install() Installs an interrupt handler

bsp_itc_interrupt_poll() Polls an interrupt

bsp_itc_interrupt_raise() Raises an interrupt

bsp_itc_interrupt_uninstall() Uninstalls an interrupt handler

Table 54. User handles

User handle Description

bsp_user_start_handle
User handle called at the start of the BSP 
initialization

bsp_user_end_handle
User handle called at the end of the BSP 
initialization

RESUME The execution continues in the standard BSP 
initialization.

OVERWRITE bsp_user_start_handle() handles all of the BSP 
initialization and the standard initialization is skipped.



ST200 board support package (BSP) ST200

202/246  8063762 Rev 9

bsp_user_end_handle User handle called at the end of the BSP
initialization

Definition: void bsp_user_end_handle(void); 

Arguments: None.

Returns: None.

Description: If this function is user-defined, it is invoked at the end of the BSP initialization. At this 
stage, this function is in the mode requested (the default is supervisor) and the BSP 
has been initialized. This function is called before main().

Note: This function is only invoked in the standard flow of BSP initialization. If the user 
defined bsp_user_start_handle() has returned OVERWRITE 
bsp_user_end_handle() is not called.

Example: void bsp_user_end_handle (void)
{
 kprintf("At the end of BSP init\n");
 Dosomething();

} 



ST200 ST200 board support package (BSP)

8063762 Rev 9 203/246

B.9 Retrieving internal run-time data
The bare machine run-time software stores configuration data records. All data is accessible 
by using the function defined in the single header file, machine/rtrecord.h, see 
Table 55.

         

Configuration data fields that can be retrieved are listed in Table 56.

         

Table 55. Function defined in machine/rtrecord.h

Function Description

bsp_rtrecord_get Retrieve run-time configuration data.

Table 56. Configuration data fields

Configuration data field Description Field format

RUNTIME_BOARDNAME Board name. char *

RUNTIME_BOOTADDRESS .boot section address. unsigned int

RUNTIME_BSSEND End address of .bss section. unsigned int

RUNTIME_BSSSTART Start address of .bss section. unsigned int

RUNTIME_BUSCLOCK BUS clock frequency. unsigned int

RUNTIME_CLEARDSS
Flag indicating if the .bss 
section is cleared at boot.

unsigned int

RUNTIME_CORENAME Core name. char *

RUNTIME_CPUCLOCK CPU clock frequency. unsigned int

RUNTIME_DEBUGRAM Debug RAM address. unsigned int

RUNTIME_L2_CACHE_SYSTEM
_ADDRESS

L2 cache base address. unsigned int

RUNTIME_MODE
run-time mode execution 
(supervisor or user).

unsigned int

RUNTIME_PERIPH_BASE Peripheral base address. unsigned int

RUNTIME_RAMEND RAM end address. unsigned int

RUNTIME_SOC_ID Device identifier. unsigned int

RUNTIME_SOCNAME SoC name. char *

RUNTIME_STACK Stack pointer address. unsigned int

RUNTIME_TEXTADDRESS .text section address. unsigned int

RUNTIME_VERSION ST200 toolchain version. char *



ST200 board support package (BSP) ST200

204/246  8063762 Rev 9

B.10 BSP function definitions

bsp_cache_invalidate_instruction Invalidate addresses within the specified
range from the instruction cache

Definition: #include <platform.h>
int bsp_cache_invalidate_instruction (
 void * base_address, 
 size_t length); 

Arguments:

Returns: Returns the error condition.

Description: This function invalidates any valid instruction cache lines that fall within the address 
range specified. If it is not possible to flush individual cache lines, then the entire 
instruction cache is invalidated.

See also: bsp_cache_invalidate_instruction_all 

bsp_cache_invalidate_instruction_all Invalidate the entire instruction
cache

Definition: #include <platform.h>
int bsp_cache_invalidate_instruction_all (void); 

Arguments: None.

Returns: Returns the error condition.

Description: This function invalidates the entire instruction cache.

See also: bsp_cache_invalidate_instruction 

bsp_cache_purge_data Purge addresses within the specified range
from the data cache

Definition: #include <platform.h>
int bsp_cache_purge_data(
 void * base_address, 
 size_t length ); 

Arguments:

Returns: Returns the error condition.

Description: This function purges any valid data cache lines which fall within the address range 
specified. Any dirty cache lines are first written back to memory, and then the cache 
lines are invalidated.

See also: bsp_cache_purge_data_all 

base_address The start address of the range to invalidate.

length The length of the range in bytes.

base_address The start address of the range to purge.

length The length of the range in bytes.



ST200 ST200 board support package (BSP)

8063762 Rev 9 205/246

bsp_cache_purge_data_all Purge the entire data cache

Definition: #include <platform.h>
int bsp_cache_purge_data_all (void); 

Arguments: None.

Returns: Returns the error condition.

Description: This function purges any valid data cache lines within the D-cache. Any dirty cache 
lines are first written back to memory, and then the cache lines are invalidated.

See also: bsp_cache_purge_data 

bsp_core_interrupt_install Install an exception handler for a specified
exception cause

Definition: #include <platform.h>
int bsp_core_interrupt_install (
 InterruptVector_t* NewExceptionHandler,
 InterruptVector_t* OldExceptionHandler,
 int ExceptionNumber ); 

Arguments:

Returns: On successful completion, bsp_core_interrupt_install() returns BSP_OK; 
otherwise, it returns BSP_FAILURE and sets bsp_errno to indicate an error.

Description: This function installs the exception handler for the exception specified in 
ExceptionNumber.

See also: bsp_core_interrupt_lock, bsp_core_interrupt_unlock 

bsp_core_interrupt_lock Disable external interrupts at core level

Definition: #include <platform.h>
int bsp_core_interrupt_lock (void); 

Arguments: None.

Returns: On successful completion, bsp_core_interrupt_lock() returns BSP_OK; 
otherwise, it returns BSP_FAILURE and sets bsp_errno to indicate an error.

Description: This function disables all external interrupts at core level.

See also: bsp_core_interrupt_install, bsp_core_interrupt_unlock 

NewExceptionHandler The exception handler to attach to the specified 
exception.

OldExceptionHandler The previously installed exception handler.

ExceptionNumber The exception to which the handler has to be attached.



ST200 board support package (BSP) ST200

206/246  8063762 Rev 9

bsp_core_interrupt_unlock Enable external interrupts at core level

Definition: #include <platform.h>
int bsp_core_interrupt_unlock (void); 

Arguments: None.

Returns: On successful completion, bsp_core_interrupt_unlock() returns BSP_OK; 
otherwise, it returns BSP_FAILURE and sets bsp_errno to indicate an error.

Description: This function enables all external interrupts at core level.

See also: bsp_core_interrupt_install, bsp_core_interrupt_lock 

bsp_interrupt_clear Clear a specific interrupt

Definition: #include <platform.h>
int bsp_interrupt_clear(
 int interrupt_number,
 int type); 

Arguments:

Returns: Returns the error condition.

Description: This function clears a specific interrupt. bsp_itc_interrupt_clear is kept for 
backward compatibility and it is equivalent to call bsp_interrupt_clear using 
type=EXTERNAL_INTERRUPTS.

bsp_interrupt_disable Disable a specific interrupt

Definition: #include <platform.h>
int bsp_interrupt_disable(
 int interrupt_number,
 int type); 

Arguments:

Returns: Returns the error condition.

Description: This function disables a specific interrupt. bsp_itc_interrupt_disable is kept 
for backward compatibility and it is equivalent to call bsp_interrupt_disable 
using type=EXTERNAL_INTERRUPTS.

interrupt_number The interrupt to clear.

type Flag to select between eternal and internal interrupts. 
Values accepted:

INTERNAL_INTERRUPTS

EXTERNAL_INTERRUPTS

interrupt_number The interrupt to enable.

type Flag to select between eternal and internal interrupts. 
Values accepted:

INTERNAL_INTERRUPTS

EXTERNAL_INTERRUPTS



ST200 ST200 board support package (BSP)

8063762 Rev 9 207/246

bsp_interrupt_enable Enable a specific interrupt

Definition: #include <platform.h>
int bsp_interrupt_enable(
 int interrupt_number,
 int type); 

Arguments:

Returns: Returns the error condition.

Description: This function enables a specific interrupt. bsp_itc_interrupt_enable is kept for 
backward compatibility and it is equivalent to call bsp_interrupt_enable using 
type=EXTERNAL_INTERRUPTS.

interrupt_number The interrupt to enable.

type Flag to select between eternal and internal interrupts. 
Values accepted:

INTERNAL_INTERRUPTS

EXTERNAL_INTERRUPTS



ST200 board support package (BSP) ST200

208/246  8063762 Rev 9

bsp_interrupt_install Install an interrupt handler

Definition: #include <platform.h>
int bsp_interrupt_install(
 int interrupt_number,
 int (*handler_function)(void* param_ptr),
 int (**old_handler_function)(void* param_ptr),
 void* stack_base,
 int stack_size,
 int type); 

Arguments:

Returns: Returns the error condition.

Description: This function installs a new interrupt handler, returning the handler installed 
previously. bsp_itc_interrupt_install is kept for backward compatibility and it 
is equivalent to call bsp_interrupt_install using 
type=EXTERNAL_INTERRUPTS.

interrupt_number The interrupt to which the handler is to be linked.

handler_function The interrupt handler to be installed.

old_handler_function The interrupt handler previously installed.

stack_base The pointer to the location in memory to be used as 
stack base. If NULL, the default system stack pointer is 
used instead.

stack_size The stack size to be allocated for the handler; not used if 
stack_base is NULL. 

type Flag to select between eternal and internal interrupts. 
Values accepted:

INTERNAL_INTERRUPTS

EXTERNAL_INTERRUPTS



ST200 ST200 board support package (BSP)

8063762 Rev 9 209/246

bsp_interrupt_poll Poll a specific interrupt

Definition: #include <platform.h>
int bsp_interrupt_poll(
 int interrupt_number,
 int* value,
 int type); 

Arguments:

Returns: Returns the error condition.

Description: This function informs the user whether an interrupt has been raised. 
bsp_itc_interrupt_poll is kept for backward compatibility and it is equivalent to 
call bsp_interrupt_poll using type=EXTERNAL_INTERRUPTS.

bsp_interrupt_raise Raises a specific interrupt

Definition: #include <platform.h>
int bsp_interrupt_raise(
 int interrupt_number,
 int type); 

Arguments:

Returns: Returns the error condition.

Description: This function raises a specific interrupt. bsp_itc_interrupt_raise is kept for 
backward compatibility and it is equivalent to call bsp_interrupt_raise using 
type=EXTERNAL_INTERRUPTS.

interrupt_number The interrupt to poll, in the range from 0 to 63.

value The pointer to the returned value. If the returned value is 
0, the interrupt has not been raised.

type Flag to select between eternal and internal interrupts. 
Values accepted:

INTERNAL_INTERRUPTS

EXTERNAL_INTERRUPTS

interrupt_number The interrupt to be raised.

type Flag to select between eternal and internal interrupts. 
Values accepted:

INTERNAL_INTERRUPTS

EXTERNAL_INTERRUPTS



ST200 board support package (BSP) ST200

210/246  8063762 Rev 9

bsp_interrupt_uninstall Uninstalls an interrupt handler

Definition: #include <platform.h>
int bsp_interrupt_unistall(
 int interrupt_number,
 int type); 

Arguments:

Returns: Returns the error condition.

Description: This function uninstalls a previously installed interrupt handle. 
bsp_itc_interrupt_unistall is kept for backward compatibility and it is 
equivalent to call bsp_interrupt_unistall using 
type=EXTERNAL_INTERRUPTS.

bsp_mmu_dump_TLB_Settings Write TLB’s settings on the stdio

Definition: #include <platform.h>
int bsp_mmu_dump_TLB_Settings (void); 

Arguments: None.

Returns: Returns BSP_OK. 

Description: The bsp_mmu_dump_TLB_Settings() function writes the TLB’s settings on the 
stdio. 

The following example shows the output of the bsp_mmu_dump_TLB_Settings() 
function for an ST231 or ST240 simulation.

Index Asid Shared Sup/Usr Size  Vaddr   Paddr Partition  Policy
58   0   1  r-x/---  8KB 0x1F004000 0x1F004000 WAY0-3  UNCACHED
59   0   1  rw-/---  8KB 0x1F002000 0x1F002000 WAY0-3  UNCACHED
60   0   1  rw-/---  8KB 0x1F000000 0x1F000000 WAY0-3  UNCACHED
61   0   1  rwx/rwx  8KB 0x00000000 0x00000000 WAY0-3  UNCACHED
62   0   1  rwx/rwx  4MB 0x08400000 0x08400000 WAY0-3   CACHED
63   0   1  rwx/rwx  4MB 0x08000000 0x08000000 WAY0-3   CACHED

interrupt_number The interrupt to uninstall.

type Flag to select between eternal and internal interrupts. 
Values accepted:

INTERNAL_INTERRUPTS

EXTERNAL_INTERRUPTS



ST200 ST200 board support package (BSP)

8063762 Rev 9 211/246

bsp_mmu_memory_map Create a memory mapping and return a virtual
address range

Definition: #include <platform.h>
void * bsp_mmu_memory_map (void * address, 
 size_t length,
 int prot,
 int flags,
 void * phaddr); 

Arguments:

Returns: On successful completion, the bsp_mmu_memory_map() function returns the virtual 
address at which the mapping was placed; otherwise, it returns a value of 
BSP_FAILURE and sets bsp_errno to indicate the error. 

If bsp_mmu_memory_map() fails for reasons other than BSP_EINVAL, some of the 
mappings in the address range starting at address and continuing for length bytes 
may be unmapped.

Description: The bsp_mmu_memory_map() function establishes a mapping between a range of 
virtual addresses accessed by the program and a range of physical address of the 
same size. Protection attributes can be set for the access to this range of address. 
The format of the call is as follows:
va = bsp_mmu_memory_map(addr, length, prot, flags, phaddr);

In this example, bsp_mmu_memory_map() establishes a mapping between the 
address space of the program at an address va for length bytes to the physical 
address phaddr for length bytes. The value of va is exactly where the access at 
addr starts and is a function of the addr argument and the value of flags, further 
described below. A successful bsp_mmu_memory_map() call returns va as its 
result.

As the result of bsp_mmu_memory_map(), a block of program address space 
including the range [va, va + length) is mapped. The limits of this block are 
rounded according to the hardware constraints, such as the page size.

The mapping established by bsp_mmu_memory_map() replaces any previous 
mappings for those whole pages containing any part of the address space of the 
program starting at va and continuing for length bytes.

The prot argument determines all the attributes of the mapping: access rights for 
supervisor and user mode, policy related to the cache and partition attributes. 

address The virtual address.

length The length of region in bytes.

prot The combination of supervisor and user mode accesses 
permitted for the address being mapped.

flags Other information about the handling of the mapped 
data.

phaddr The physical address of the region to map.



ST200 board support package (BSP) ST200

212/246  8063762 Rev 9

The prot argument should be either PROT_NONE or the bitwise inclusive OR of one 
or more of the following attributes defined in the header file 
<target/core/include/bsp/mmu.h>.

If an implementation of bsp_mmu_memory_map() for a specific platform cannot 
support the combination of access types specified by prot, the call to 
bsp_mmu_memory_map() fails.

The flags argument provides other information about the handling of the mapped 
data. The value of flags is the bitwise inclusive OR of the following options defined 
in <machine/bsp/mmu.h>.

When MAP_FIXED is set in the flags argument, the system is informed that the 
value of va must be addr exactly. If MAP_FIXED is set, bsp_mmu_memory_map() 
may return MAP_FAILED and set bsp_errno to BSP_EINVAL. If a MAP_FIXED 
request is successful, the mapping established by bsp_mmu_memory_map() 

PROT_USER_READ The address can be read in user mode. 

PROT_SUPERVISOR_READ The address can be read in supervisor mode.

PROT_USER_WRITE The address can be written in user mode. 

PROT_SUPERVISOR_WRITE

The address can be written in supervisor mode. 

PROT_USER_EXECUTE The address can be executed in user mode. 

PROT_SUPERVISOR_EXECUTE 

The address can be executed in supervisor mode. 

PROT_NONE The data cannot be accessed.

POLICY_CACHEABLE Memory accesses are cached. (POLICY_CACHEABLE 
replaces PROT_CACHEABLE, which is kept for backward 
compatibility).

POLICY_UNCACHEABLE Memory accesses are uncached.

POLICY_WCUNCACHEABLE Memory accesses are uncached write-combined.

PART_REPLACE Place as specified by replacement counter and 
increment the counter.

PART_WAY1 Place in way 1 only.

PART_WAY2 Place in way 2 only.

PART_WAY3 Place in way 3 only.

PAGE_DIRTY Page is dirty; write accesses to this page will cause a 
TLB_WRITE_TO_CLEAN exception.

PAGE_VALID Writes to this page are allowed.

MAP_FIXED Interpret addr exactly.

MAP_LOCKED Protect this TLB by random TLB replacement.

MAP_OVERRIDE Override any existing mapping.

MAP_SPARE_RESOURCES Spare mapping resources.



ST200 ST200 board support package (BSP)

8063762 Rev 9 213/246

replaces any previous mappings for the program’s pages in the range 
[va, va + length).

When MAP_FIXED is set and the requested address is the same as previous 
mapping, the previous address is unmapped and the new mapping is created on top 
of the old one.

When MAP_FIXED is not set, the system uses addr to arrive at va. The va is an area 
of the address space that the system deems suitable for a mapping of length bytes 
to the physical address phaddr. The value of addr is taken to be a suggestion of a 
program address near which the mapping should be placed.

When the system selects a value for va and MAP_OVERRIDE is not set, existing 
mappings are not overridden. This includes the mapping set at program initialization 
time in BSP-like code.

When MAP_SPARE_RESOURCES is set, the hardware resources are spared so that a 
reasonable amount of hardware resources remain available for further 
bsp_mmu_memory_map() usage. The implementation of this flag is ST200 
architecture dependent.

When MAP_LOCKED is set, the LIMIT field of the TLB REPLACE register is changed. 
To avoid this, TLB could be impacted from random TLB replacement routines.

ST200 implementation specifics

The bsp_mmu_memory_map() utility is implemented for the ST231 architecture 
using the TLB hardware feature. The policy of the TLB index allocation is to use high 
index values first, starting at TLB_SIZE-1, and decreasing toward 0.

The MAP_SPARE_RESOURCES specific allocation policy ensures that no more than 
half of the TLB index is used to map a single area. It may also increase the page size 
used to cover the area despite the lack of accuracy. This function invalidates any valid 
instruction cache lines which fall within the address range specified. If it is not 
possible to flush individual cache lines, then the entire instruction cache is invalidated.

See also: bsp_mmu_memory_unmap() 



ST200 board support package (BSP) ST200

214/246  8063762 Rev 9

bsp_mmu_memory_unmap Delete a memory mapping

Definition: #include <platform.h>
int bsp_mmu_memory_unmap (
 void *address,
 size_t length); 

Arguments:

Returns: On successful completion, bsp_mmu_memory_unmap() returns BSP_OK; otherwise, 
it returns BSP_FAILURE and sets bsp_errno to indicate an error.

If the removed TLBs were set as MAP_LOCKED then the LIMIT field of the TLB 
REPLACE register is adjusted accordingly.

Description: The bsp_mmu_memory_unmap() function removes the mapping and protection for a 
block of program address space, including the range [address, address + 
length) assumed to have been set by bsp_mmu_memory_map().

If address is not the address of a mapping established by a prior call to 
bsp_mmu_memory_map(), the behavior is undefined.

The bsp_mmu_memory_map() function may perform an implicit 
bsp_mmu_memory_unmap().

See also: bsp_mmu_memory_map 

bsp_mmu_reset Reset TLBs settings

Definition: #include <platform.h>
int bsp_mmu_reset (void); 

Arguments: None.

Returns: Returns the error condition.

Description: Resets the MMU unit in TLB settings.

bsp_pm_clock_get Read the PM Clock counter

Definition: #include <platform.h>
long long bsp_pm_clock_get(void); 

Arguments: None.

Returns: Returns the current value of the Clock counter.

Description: This function reads the PM Clock counter and returns its current value.

See also: bsp_pm_clock_set 

address The virtual start address of the range to invalidate.

length The length of the range in bytes.



ST200 ST200 board support package (BSP)

8063762 Rev 9 215/246

bsp_pm_clock_set Write the PM Clock counter

Definition: #include <platform.h>
int bsp_pm_clock_set(
 long long value); 

Arguments:

Returns: Returns the error condition.

Description: This function writes value to the PM Clock counter.

See also: bsp_pm_clock_get 

bsp_pm_counter_get Read the current value of a PM counter

Definition: #include <platform.h>
unsigned int bsp_pm_counter_get(
 int counter); 

Arguments:

Returns: Returns the current value of the counter.

Description: This function reads the PM counter and returns its current value.

See also: bsp_pm_counter_set 

bsp_pm_counter_set Write/change the value of a PM counter

Definition: #include <platform.h>
int bsp_pm_counter_set(
 int counter, 
 unsigned int value); 

Arguments:

Returns: Returns the error condition.

Description: This function writes value to the PM counter specified in counter.

See also: bsp_pm_counter_get 

value The initialization value to be loaded in PM clock.

counter The counter to read.

counter The counter to write.

value The value to assign to the counter.



ST200 board support package (BSP) ST200

216/246  8063762 Rev 9

bsp_pm_event_get Returns the event monitored by the PM counter

Definition: #include <platform.h>
unsigned int bsp_pm_event_get(
 int counter); 

Arguments:

Returns: Returns the event associated with the counter.

Description: This function reads the PM counter specified in counter and returns the event with 
which it is associated.

See also: bsp_pm_event_set 

bsp_pm_event_set Set the event being monitored by a PM counter

Definition: #include <platform.h>
int bsp_pm_event_set(
 int counter, 
 unsigned int event); 

Arguments:

Returns: Returns the error condition.

Description: This function sets the PM counter specified in counter to monitor the event specified 
in event.

See also: bsp_pm_event_get 

bsp_pm_reset Reset all counters

Definition: #include <platform.h>
int bsp_pm_reset(void); 

Arguments: None.

Returns: Returns BSP_OK.

Description: This function resets all of the PM counters.

bsp_pm_start Start all the event counters

Definition: #include <platform.h>
int bsp_pm_start(void); 

Arguments: None.

Returns: Returns BSP_OK.

Description: This function starts all of the event counters.

See also: bsp_pm_stop 

counter The counter to read.

counter The counter to set.

event The event to assign to the counter.



ST200 ST200 board support package (BSP)

8063762 Rev 9 217/246

bsp_pm_stop Stop all the event counters

Definition: #include <platform.h>
int bsp_pm_stop(void); 

Arguments: None.

Returns: Returns BSP_OK.

Description: This function stops all of the event counters.

See also: bsp_pm_start 

bsp_rtrecord_get Returns the run-time configuration data

Definition: #include <platform.h>
void* bsp_rtrecord_get(int data); 

Arguments:

Returns: Returns the associated data. The return value must be cast in the correct field format, 
see Table 56 on page 203.

Description: This function reads from the run-time configuration record the field specified by data 
and returns the related information as void *.

bsp_scu_disable Disable an SCU region

Definition: #include <platform.h>
unsigned int bsp_scu_disable(
 unsigned int regno); 

Arguments:

Returns: Returns the error condition (BSP_OK or BSP_FAILURE).

Description: This function disables the specified SCU region.

bsp_scu_dump_SCU_Settings Dump on the I/O a list of the SCU regions

Definition: #include <platform.h>
int bsp_scu_dump_SCU_Settings(void); 

Arguments: None.

Returns: Returns BSP_OK.

Description: This function writes the SCU region’s settings on the stdio.

data The data field that is required to be returned from the 
run-time configuration data.

regno The SCU region number to be disabled.



ST200 board support package (BSP) ST200

218/246  8063762 Rev 9

bsp_scu_read Read the start and stop address of an SCU region

Definition: #include <platform.h>
unsigned int bsp_scu_read(
 unsigned int regno,
 bsp_scu_entry_t *sect); 

Arguments:

Returns: Returns the error condition (BSP_OK or BSP_FAILURE). In case of success, the 
structure sect contains the start and end addresses of the region.

Description: The bsp_scu_read() function reads the start and stop address of the SCU region 
specified by regno. The addresses are returned in the structure sect.

bsp_scu_write Set the start and stop address of an SCU region

Definition: #include <platform.h>
unsigned int bsp_scu_write(
 unsigned int regno,
 bsp_scu_entry_t *sect); 

Arguments:

Returns: Returns the error condition (BSP_OK or BSP_FAILURE).

Description: The bsp_scu_write() function sets the start and stop address of the SCU region 
specified by regno to the addresses specified in the structure sect.

bsp_timer_count_get Get the initial value of the counter of the specific timer

Definition: #include <platform.h>
unsigned int bsp_timer_count_get(
 int timer); 

Arguments:

Returns: The value of the counter of the required timer.

Description: This function returns the counter of the given timer.

See also: bsp_timer_count_set 

regno The SCU region number to read.

sect A pointer to an allocated structure of type 
bsp_scu_entry_t.

regno The SCU region number to be written.

sect A pointer to an allocated structure of type 
bsp_scu_entry_t containing the start and end 
addresses.

timer The timer for which to get the initial counter value, see 
Table 45: ST200 timer assignments on page 196.



ST200 ST200 board support package (BSP)

8063762 Rev 9 219/246

bsp_timer_count_set Set the initial value of the counter of the specific timer

Definition: #include <platform.h>
int bsp_timer_count_set(
 int timer, 
 unsiged int value); 

Arguments:

Returns: Returns the error condition.

Description: This function initializes the counter of a given timer. It should only be used with 
TIMER1 and TIMER2, however TIMER2 should only be used if the profiler is not 
enabled. Do not use this function with TIMER_SYSTEM.

bsp_timer_interrupt_clear Clear the timer interrupt

Definition: #include <platform.h>
int bsp_timer_interrupt_clear(
 int timer); 

Arguments:

Returns: Returns the error condition.

Description: This function clears the interrupt of a given timer. It should only be used with TIMER1 
and TIMER2, however TIMER2 should only be used if the profiler is not enabled. Do 
not use this function with TIMER_SYSTEM.

bsp_timer_interrupt_enable Enable the timer interrupt

Definition: #include <platform.h>
int bsp_timer_interrupt_enable(
 int timer); 

Arguments:

Returns: Returns the error condition.

Description: This function enables the interrupt for the given timer. It should only be used with 
TIMER1 and TIMER2, however TIMER2 should only be used if the profiler is not 
enabled. Do not use this function with TIMER_SYSTEM.

timer The timer to initialize, see Table 45: ST200 timer 
assignments on page 196.

value The value to be used for counter initialization.

timer The timer interrupt to clean, see Table 45: ST200 timer 
assignments on page 196.

timer The timer interrupt to enable, see Table 45: ST200 timer 
assignments on page 196.



ST200 board support package (BSP) ST200

220/246  8063762 Rev 9

bsp_timer_now Return the current time

Definition: #include <platform.h>
bspclock_t bsp_timer_now(void); 

Arguments: None.

Returns: Returns the number of ticks since the system started.

Description: bsp_timer_now() returns the number of ticks since the system started running. 
The exact time at which counting starts is implementation specific, but is done in the 
core initialization. 

The units of ticks is an implementation dependent quantity, but it is approximately 
1 microseconds, see bsp_timer_ticks_per_sec on page 221.

bsp_timer_reload_get Get the reload value of the specific timer

Definition: #include <platform.h>
unsigned int bsp_timer_reload_get(
 int timer); 

Arguments:

Returns: The value to be reloaded into the timer on reaching zero.

Description: This function returns the reload value of the given timer.

bsp_timer_reload_set Set the value to be reloaded into the specific
timer on reaching zero

Definition: #include <platform.h>
int bsp_timer_reload_set(
 int timer,
 unsigned int reload); 

Arguments:

Returns: Returns the error condition.

Description: This function initializes the reload register of a given timer. It should only be used with 
TIMER1 and TIMER2, however TIMER2 should only be used if the profiler is not 
enabled. Do not use this function with TIMER_SYSTEM.

timer The timer, see Table 45: ST200 timer assignments on 
page 196.

timer The timer to reload, see Table 45: ST200 timer 
assignments on page 196.

value The value to be used for reload initialization.



ST200 ST200 board support package (BSP)

8063762 Rev 9 221/246

bsp_timer_start Start the timer

Definition: #include <platform.h>
int bsp_timer_start(
 int timer); 

Arguments:

Returns: Returns the error condition.

Description: This function starts the timer. It should only be used with TIMER1 and TIMER2, 
however TIMER2 should only be used if the profiler is not enabled. Do not use this 
function with TIMER_SYSTEM.

bsp_timer_stop Stop the timer

Definition: #include <platform.h>
int bsp_timer_stop(
 int timer); 

Arguments:

Returns: Returns the error condition.

Description: This function stops the timer. It should only be used with TIMER1 and TIMER2, 
however TIMER1 should only be used if the profiler is not enabled. Do not use this 
function with TIMER_SYSTEM.

bsp_timer_ticks_per_sec Return the number of clock ticks per second

Definition: #include <platform.h>
bspclock_t bsp_timer_ticks_per_sec(void); 

Arguments: None.

Returns: The number of ticks per second.

Description: bsp_timer_ticks_per_sec() returns the number of clock ticks per second.

timer The timer to start, see Table 45: ST200 timer 
assignments on page 196.

timer The timer to stop, see Table 45: ST200 timer 
assignments on page 196.



ST200 board support package (BSP) ST200

222/246  8063762 Rev 9

bsp_timer_user Set a user timer, attach an interrupt handle and enable the
corresponding interrupt

Definition: #include <platform.h>
int bsp_timer_user(
 int timer,
 unsigned int const,
 unsigned int reload,
 int (* interrupt_handle)(void *param),
 int (** old_handle)(void *param)); 

Arguments:

Returns: Returns BSP_OK on success, on failure it returns BSP_FAILURE and sets 
bsp_errno to indicate the error.

Description: This function set a user timer, attaches an interrupt handle and enables the 
corresponding interrupt.

timer The user timer to set (TIMER1 or TIMER2).

const The value to load to initialize the timer.

reload The value to be reloaded when reaching zero.

interrupt_handle The handle of the interrupt.

old_handle The interrupt handle previously associated with the 
timer.



ST200 Branch trace buffer

8063762 Rev 9 223/246

Appendix C Branch trace buffer

The branch trace buffer is an ST240 hardware feature intended to aid debugging, showing 
the flow of control during execution of a program by recording the non-sequential updates of 
the program counter (PC).

The ST240 branch trace buffer is an eight level deep FIFO buffer, which stores the source 
and destination addresses for the last eight branches. The branch trace buffer can be 
configured for all branches, a class of branches or a combination of branch classes. The 
branch classes defined are general, subroutine and traps (see Section C.1: Branch trace 
buffer modes for further details). 

The branch trace buffer features are accessible though the GDB branchtrace command.

C.1 Branch trace buffer modes
The branch trace buffer can be configured to trace branch classes selectively. The traceable 
branch classes and their symbolic names are listed in Table 57.

         

Table 57. Traceable branch classes

Traceable branch class Symbol Description

general gn BR, BRF and GOTO instructions.

subroutine sb CALL and RETURN instructions.

traps traps All non-debug traps and RFI traps.

No branches none Trace nothing.



Branch trace buffer ST200

224/246  8063762 Rev 9

C.2 The branchtrace command
The branchtrace command is enabled automatically when the host connects to a target. 
It can also be enabled by issuing the GDB command enable_branch_trace (defined in 
the brtrace.cmd GDB command script file).

The branchtrace command has the following format:

(gdb) branchtrace subcommand options 

This command controls the branch trace buffer function specified by subcommand and 
options.

Note: For convenience, the branchtrace command is aliased to the brt command.

The subcommands supported by the branchtrace command are listed in Table 58 on 
page 224. 

          

When using either the display or save subcommands, use the reset option to report the 
data held in the branch trace buffer,  immediately after connecting to the target with GDB. 
This can be useful as a post-mortem debugging aid when reconnecting to a target after a 
crash.

Table 58. Branchtrace subcommands

Subcommand Options Description

help [subcommand]
Display help for the branchtrace command. If a 
subcommand is specified then more detailed help 
for the subcommand is displayed.

decode on | off
Switch the decoding of ST240 opcodes on or off in 
order to report the branch type. The default is on.

display [reset]

Display the branch trace buffer content.
If reset is specified, then display the initial branch 
trace contents instead of the current contents.

mode mode
Set the mode of the branch trace buffer, where 
mode is one of the symbols in Table 57 on 
page 223.

reset
Stop the trace an reset the branch trace buffer 
content.

save file [reset]

Write the branch trace to file. The file is written in 
the same format as the display command.

If reset is specified, then save the initial branch trace 
contents instead of the current contents.

status Display the configuration for the branch trace buffer.



ST200 Branch trace buffer

8063762 Rev 9 225/246

C.3 Output format
The display and save subcommands report the details of the eight branches taken most 
recently, with the details of each branch described as follows:

#index to   address in function [at location]
       from address in function [at location]
       Mode: type [opcode]

where:

Figure 30 shows an example of a branch trace report.

Figure 30. Example branch trace output

The example in Figure 30 shows the most recent branch (branch #0) is a RETURN from 
0x40000858 in the function func1 () (found in branch_sb.c line 27) back to 
0x40000b20 in brtrace_subroutine () (branch_sb.c line 68).

index This is the record number. 0 is the most recent branch performed by the 
target, 7 is the oldest.

address This is the address of the branch source or destination.

function This is the name of the function at the given address. ?? indicates that 
the function name is not known.

location This is the source address of the given address, if known.

type This is the class of branch being recorded. This can be gn, sb, traps or 
N/A (if the class in unknown or decode mode is off. See Table 57 on 
page 223 for details of traceable branch classes.

opcode This is the mnemonic of the branch instruction or (if this is not a branch 
instruction) a hexadecimal number. The report displays 0xffffffff if 
decode mode is off.

#0 to   0x40000b20 in brtrace_subroutine () at test_brt/branch_sb.c:68
   from 0x40000858 in func1 () at test_brt/branch_sb.c:27
   Mode: sb [RETURN]
#1 to   0x40000798 in func1 () at test_brt/branch_sb.c:22
   from 0x400009d0 in func2 () at test_brt/branch_sb.c:43
   Mode: sb [RETURN]
#2 to   0x40000910 in func2 () at test_brt/branch_sb.c:38
   from 0x40000aa0 in func3 () at test_brt/branch_sb.c:55
   Mode: sb [RETURN]
#3 to   0x400009d8 in func3 () at test_brt/branch_sb.c:46
   from 0x40000908 in func2 () at test_brt/branch_sb.c:38
   Mode: sb [CALL]
#4 to   0x40000860 in func2 () at test_brt/branch_sb.c:31
   from 0x40000790 in func1 () at test_brt/branch_sb.c:22
   Mode: sb [CALL]
#5 to   0x400006e8 in func1 () at test_brt/branch_sb.c:15
   from 0x40000b18 in brtrace_subroutine () at test_brt/branch_sb.c:67
   Mode: sb [CALL]



Profiler plugin ST200

226/246  8063762 Rev 9

Appendix D Profiler plugin

Profiling is a performance analysis technique that identifies the areas in an application 
where the CPU spends most time. Having identified these areas, it is then possible to target 
optimization efforts on the specific parts of the code that will yield the greatest benefit in 
terms of improving performance.

When a connection is made to a target using an ST Micro Connect, commands may be 
issued through GDB to instruct the ST Micro Connect to collect sampling information about 
a running application. This data is stored in a file and can then be analyzed using a profiling 
tool (such as STWorkbench or st200gprof).

The profiler plugin is provided for ST200 targets and facilitates two different types of 
profiling.

Profiling operates in one of three modes:.

The ST Micro Connect profiler features are accessible through the GDB profiler 
command.

trace The profiler samples the PC over a given period, time stamping each 
sample. This method provides a view of the application’s activities 
over a period of time. See Section D.2: Trace profile output format 
on page 229.

range The profiler accumulates the number of times that a particular region 
of the application’s code is executed (in the manner of gprof; see the 
GNU gprof documentation for more details). See also Section D.2: 
Trace profile output format on page 229.

none The profiler collects samples only when the target stops at a 
breakpoint or an I/O request occurs.

dsu The profiler provides non-intrusive sampling of the program counter. 
It is performed through the core’s DSU interface to obtain the current 
address on the instruction bus. This mode is only valid for ST240 
targets.

interrupt This mode stops the target to read the PC directly before continuing. 
This mode has a significant impact on the real-time performance of 
the target, although it has the advantage of being able to read the 
PC directly.



ST200 Profiler plugin

8063762 Rev 9 227/246

D.1 Profiler plugin reference
The profiler command is enabled automatically when the host connects to a ST200 
target. It can also be enabled by issuing the command enable_profiler (defined in the 
st200profiler.cmd GDB command script file.

(gdb) profiler subcommand [options]

This command controls the profiler function specified by subcommand and options.

The subcommands supported by the profiler command are listed in Table 59.

         

Table 59. Profiler subcommands

Subcommand Option Description

help [subcommand]
Display help for the profiler command. If a subcommand is 
specified then more detailed help for the subcommand is 
displayed.

enable

Start the profiler on the STMC the next time the target is re-
started. Samples are only taken and stored by the STMC while 
the target is running. When the target is stopped, no samples 
are taken.

disable
Stop the profiler on the STMC. Stopping the profiler implies a 
reset.

reset Discard the stored profiler data on the STMC.

display Display the profiler data stored on the STMC.

save|append file Save or append the profiler data stored on the STMC to file.

gmonout file
Save or append the range profiler data stored on the STMC to 
file using the gprof compatible gmon.out file format.

mode none | dsu | interrupt

Set the profiler sampling mode:
– none records samples when the target stops at a breakpoint 

or an I/O request (this is the default).
– dsu records samples using the non-intrusive method of 

sampling the PC (only applies to ST240 targets). See 
Section D.2: Trace profile output format on page 229.

– interrupt records samples by briefly stopping the target to 
sample the PC. See Section D.2: Trace profile output format 
on page 229.

period delay

Set the minimum sampling period for the profiler. The delay 
period can be specified in seconds (s), milliseconds (ms) or 
microseconds (us) by using the appropriate suffix. If no suffix is 
specified, microseconds are assumed.
If period is not specified, profiling is effectively disabled. It is 
therefore mandatory to set the sampling period.



Profiler plugin ST200

228/246  8063762 Rev 9

type none|trace|range

Set the type of profiler to be used:

– none indicates that no profiler is to be used (this is the 
default)

– trace enables the trace profiler where each sample is time 
sampled (see Section D.2: Trace profile output format on 
page 229)

– range enables the sampling profiler which increments a 
counter for an address range each time a sample is taken 
(see Section D.3: Range profile output format on page 230)

trace size

Set the maximum number of samples to store on the STMC. If 
insufficient space is available on the STMC to store the 
specified number of samples, profiling is effectively disabled. 
When the sample buffer is full, the oldest samples are 
discarded; therefore only size most recent samples are 
returned.

The trace subcommand is mandatory when the type of the 
profiler is set to trace.

range size [startaddr endaddr]

Set the size, in number of instructions, of the slice of the 
application's address range to associate with a counter. If 
insufficient space is available on the STMC to store the 
counters required for the specified address range, profiling is 
effectively disabled.

The default address range for an application is determined by 
the __stext and __etext symbols (placed by the linker), but 
this may be overridden by specifying the start and end 
addresses explicitly. The start and end addresses can be 
specified symbolically or with absolute addresses.

The range subcommand is mandatory when the type of the 
profiler is set to range.

Table 59. Profiler subcommands (continued)

Subcommand Option Description



ST200 Profiler plugin

8063762 Rev 9 229/246

D.2 Trace profile output format
If the profiler type is set to trace (using the command profile type trace), the profiler 
trace display consists of a header line followed by a time-stamped list of sampled program 
counter (PC) values.

The header line has the following format:

Trace Profiler (saved = saved_records, total = total_records, time = end_time)

where:

● saved_records is the number of records saved in the buffer

● total_records is the number of records captured since the profiling session started

● end_time is the time of the last record captured since the profiling session started and 
the profiler was reset

Using the trace profiler between two breakpoints provides an simple way to get an 
approximation of the elapsed time between two given points in an application. To do this, 
start (or reset) the profiler at the first breakpoint, then display the profiler data at the second 
breakpoint. The end_time value gives the time elapsed between the two breakpoints.

If the saved_records value is less than the total_records value, the sample buffer 
has wrapped. The number of discarded records is calculated from:

total_records - saved_records

The remainder of the profiler output is a list of PC samples. The number of samples is equal 
to saved_records. The list has the following format:

accumulated_delta address function [at location]

where:

● accumulated_delta is the accumulation of the time delta between samples since 
profiling started

● address is the sampled PC address

● function is the name of the function at the given address (?? indicates that the 
function name is unknown)

● location is the source location of the given address, if known

Figure 31 provides an example of the output displayed for profile type trace.

Figure 31. Example profile type trace output

Trace Profiler (saved = 232, total = 232, time = 53393)
0000000000 0x84016f70, fn_0_993 () at fn2_0.c:6956
0000000171 0x84016e68, fn_0_990 () at fn2_0.c:6935

...

0000053206 0x84001bd4, fn_0_5 () at fn2_0.c:42
0000053393 0x84001a24, fn_0_0 () at fn2_0.c:5



Profiler plugin ST200

230/246  8063762 Rev 9

D.3 Range profile output format
If the profiler type is set to range (using the command profile type range), the profiler 
trace display consists of a header line followed by a list of the sample counters, each 
representing a range of program memory. For each sample taken, the profiler increments 
the counter for the address range (slot) where the PC is currently located.

The header line has the following format:

Range Profiler (range = address..address, step = step, slots = slots, rate = µs µs                        
per sample)

where:

● address..address is the start and end address of the memory range

● step is the size of each slot in bytes (as set by the range subcommand)

● slots is the total number of slots

● µs is the rate of sampling, in microseconds per sample

The remainder of the profiler output has the following form:

count   address:address,   function

where:

● count is the sample count obtained for the given address range

● address:address is the start and end address of the slot

● function is the name of the function in which the slot is located (?? indicates that the 
function name is unknown)

Note: The report displays only non-zero sample counters.

Figure 32 provides an example of the output displayed for profile type range.

Figure 32. Example profile type range output
Range Profiler (range = 0x88001000..0x880174f2, step = 16, slots = 5713, rate = 
128µs per sample) 
0000000001 0x88001790:0x880017a0, f1 () 
0000002911 0x880017a0:0x880017b0, f1 () 
0000004159 0x880017b0:0x880017c0, f1 () 
0000002182 0x880017c0:0x880017d0, f2 () 
0000001065 0x880017d0:0x880017e0, f2 () 
0000001382 0x880017e0:0x880017f0, f2 () 
0000002129 0x880017f0:0x88001800, f2 () 
0000000468 0x88001800:0x88001810, f3 () 
0000000889 0x88001810:0x88001820, f3 () 
0000001446 0x88001820:0x88001830, f3 () 
0000000433 0x88001830:0x88001840, f4 () 
0000000753 0x88001840:0x88001850, f4 () 
0000001063 0x88001850:0x88001860, f4 ()



ST200 Profiler plugin

8063762 Rev 9 231/246

D.4 ST Micro Connect configuration options
The profiling data is collected by the ST Micro Connect. The profiler can also be controlled 
by issuing ST Micro Connect configuration options to st200gdb.

Table 60 lists the ST Micro Connect configuration options that are equivalent to the profiler 
sub-commands listed in Table 59 on page 227.

         

Table 60. ST Micro Connect configuration options

Configuration option Equivalent to

stmcconfigure profiler=on profiler enable

stmcconfigure profiler=off profiler disable

stmcconfigure profiler=reset profiler reset

stmcconfigure profiler.mode=mode profiler mode mode

stmcconfigure profiler.period=delay profiler period delay

stmcconfigure profiler.type=type profiler type type

stmcconfigure profiler.type.trace=size profiler trace size

stmcconfigure 
profiler.type.range=startaddr:endaddr:bytes(1)

profiler range size startaddr endaddr

1. Unless overridden, startaddr is the address of the __stext symbol and endaddr is the address of the __etext symbol. 
bytes is the size, in bytes, of the number of instructions specified by size. startaddr:endaddr:bytes must have the 
hex form 0x<hexvalue>0x<hexvalue>:0x<hexvalue>.



Profiler plugin ST200

232/246  8063762 Rev 9

D.5 Examples
The following GDB command script shows how to configure the ST Micro Connect to use 
the trace profiler in non-intrusive mode, automatically appending the results to a file every 
time the program stops and then resetting the profiler data:

profiler mode dsu
profiler period 1ms
profiler type trace
profiler trace 65536
profiler enable

define hook-stop
profiler append "a.dat"
profiler reset

end

continue
profiler disable

The following script describes a similar example that uses the range profiler, except that the 
results file and the gmon.out file are overwritten each time the target stops and the profiler 
data continues to accumulate on the ST Micro Connect:

profiler mode dsu
profiler period 1ms
profiler type range
profiler range 8
profiler enable

define hook-stop
profiler save "a.dat"
profiler gmonout "gmon.out"

end

continue
profiler disable

To produce a human readable profiling report using the st200gprof tool, use following 
command line:

$> st200gprof --no-graph <appname.out> gmon.out

The --no-graph option is necessary in this case because the gmon.out file produced by 
the profiler plugin does not contain call graph information.



ST200 ST TargetPack plugin

8063762 Rev 9 233/246

Appendix E ST TargetPack plugin

The ST TargetPack plugin provides the following services to GDB.

● It defines the memory mapped registers specified for an SoC by the ST TargetPack as 
GDB convenience variables.

● It defines GDB commands that can be used for displaying the contents of the memory 
mapped registers in various formats.

The convenience variables and GDB commands are similar to those generated by the
--gdb-mmrs option of the sttpdebug tool provided in the ST Micro Connection Package. 
See ST TargetPack user manual (8020851) for information about the sttpdebug tool.

These features are accessible through the GDB targetpack command.

E.1 The targetpack command
When a host connects to a target using an ST TargetPack, the targetpack command is 
enabled automatically. It can also be enabled by issuing the GDB command 
enable_target (as defined in the GDB command script file targetpack.cmd.)

The targetpack command has the following format:

targetpack subcommand options

This command controls the ST TargetPack function specified by subcommand and 
options.

The subcommands supported by the targetpack command are listed in Table 61.

         

Table 61. Targetpack subcommands

Subcommand Options Description

help [subcommand]
Display help for the targetpack command. If 
subcommand is specified, then more detailed 
help for subcommand is displayed.

import targetstring

Import the ST TargetPack register set associated 
with the specified targetstring. If connecting 
to a target using the st200tp (or related) 
connection command, then the command 
targetpack import is automatically invoked 
after connecting to the target.

export [file]

Export the register convenience variables and 
commands into GDB. To export the convenience 
variables and commands to a GDB command file 
for later use, specify the name of the file with 
file.



ST TargetPack plugin ST200

234/246  8063762 Rev 9

For example, when connected to a target, the following command sets up the memory 
mapped user commands and convenience variables:

targetpack export

This command also displays further information on how to list the available memory mapped 
register names.

The following examples (for a STi5301 SoC) show how to use the memory mapped user 
commands and convenience variables.

List all register groups user commands:

help mmrs_component 

List all registers:

help mmrs_register

Decode and display register contents:

mmrs_SysServ_MODE_CONTROL -v

List all register convenience variables:

help mmrs_convenience

The targetpack command is available only when connected to a target. However, it is not 
necessary to connect to a target using an ST TargetPack in order to to use the 
targetpack command, nor is it necessary to import or export the same targetstring 
used for the original target connection.

The following example illustrates this. After connecting to a simulated MB424 target, use the 
targetpack command to export the ST TargetPack register set to a GDB script file called 
mb424regs.cmd: 

st200sp mb424sim
enable_targetpack
targetpack import stmc:mb424:st231
targetpack export mb424regs.cmd 



ST200 GDB os21_time_logging user command

8063762 Rev 9 235/246

Appendix F GDB os21_time_logging user command 

OS21 records the elapsed time that a task has been run on the CPU. This value is available 
to an application by using the OS21 task_status() API. 

As a convenience, the GDB command os21_time_logging is provided to display the 
task list with the elapsed time for each task. This command is defined in the GDB script file 
os21timelog.cmd and displays the information with the following format:

task-number [task-name] = time-usus (time-ticks ticks) [*] 

where: 

task-number is the OS21 task number 

task-name is the OS21 task name 

time-us is the elapsed time in microseconds

time-ticks is the elapsed time in clock ticks 

* indicates the current task

For example:

(gdb) source os21timelog.cmd 
(gdb) os21_time_logging 
1 [Root Task] = 14607us (22824 ticks) * 
2 [Idle Task] = 9985us (15602 ticks) 
3 [task0] = 19995us (31243 ticks) 
4 [task1] = 39994us (62491 ticks) 
5 [task2] = 59992us (93738 ticks) 
6 [task3] = 79993us (124990 ticks) 

Note: As the CPU clock is still running when the target is under the control of GDB, this time will 
be accumulated against the current task (indicated by a *) when the target is restarted. 
Using the same example as above but having previously already hit a breakpoint in Root 
Task: 

1 [Root Task] = 204545us (319602 ticks) * 
2 [Idle Task] = 9985us (15602 ticks) 
3 [task0] = 19994us (31242 ticks) 
4 [task1] = 39985us (62478 ticks) 
5 [task2] = 59993us (93740 ticks) 
6 [task3] = 79992us (124988 ticks) 

The time in each task is comparable except for Root Task which now includes the time 
accumulated while the target was under the control of GDB.



Revision history ST200

236/246  8063762 Rev 9

Revision history

         

Table 62. Document revision history

Date Revision Changes

10-Oct-2011 9

Supports the ST200 R7.2.

Updated Section 5.1: Loading and executing a target program on page 40.

Updated -o output-file in Section 11.5: Analyzing the results on page 109.
Added Section B.2.3: L2 cache on page 193.

Added RUNTIME_L2_CACHE_SYSTEM_ADDRESS to Table 56 on page 203.

12-Oct-2010 H

Supports the ST200 R7.1.

Updated the list of supported hosts in Section 1.1: Toolset features on page 13 and 
Section 3.1: Toolset overview on page 25.

Removed redundant reference to stm8010 files in Section 1.5: The examples directory 
on page 20 and in Section 10: Booting OS21 from Flash ROM on page 96.

Update introduction to Chapter 4: Board target configuration on page 27.

Corrected Section 4.1.2: Generating code for a board target on page 28 default settings 
for -mboard.

Updated Section 4.3.1: Overriding the memory layout of an existing board target on 
page 34 to add alternative source of custom values.

Updated step 7. on page 36 in Section 4.3.3: Defining a custom board target and 
compiling a program on page 35.

Updated the introduction to Chapter 11: OS21 Trace on page 98.

Updated the BNF description in Section 11.1.2: User definition file on page 100 and 
introduced os21usertracegen.

Added Section 11.1.3: os21usertracegen host tool on page 103 and Section 11.1.4: 
os21usertracegen example on page 106.

Removed Section 11.6.3: Tips for creating an os21usertrace definition file on page 115 
which is redundant with the introduction of os21usertracegen.

09-Feb-2010 G

Supports the ST200 R7.0.

Re-ordered the sections in 4: Board target configuration on page 27.

Updated Section 4.3: Customizing board targets on page 34 throughout.
Added 4.4: Customizing SoC targets on page 37.

Minor syntax correction to Section 11.1.2: User definition file on page 100.



ST200 Revision history

8063762 Rev 9 237/246

01-Dec-2009 F

Supports the ST200 R6.5.

Updated Section 1.1: Toolset features on page 13 to add ST TargetPacks.

Updated OS21 examples on page 21.
Updated -mboard in Section 4.1.2: Generating code for a board target on page 28.

Section 5.3.6: ST200 GDB commands:

– Table 11, updated enable_dsu command and removed dsu version command
– Table 12, updated enable_pmblock command

Updated Chapter 6: Using STWorkbench on page 58 throughout.

Added details of “OS21 Trace user record” throughout Chapter 11: OS21 Trace on 
page 98. 

Updated Section 11.4: Running the application on page 108.
Updated Section C.2: The branchtrace command on page 224, adding the reset 
option to the display and save subcommands.
Added Appendix E: ST TargetPack plugin on page 233.

Added Appendix F: GDB os21_time_logging user command on page 235.

15-Jun-2009 E

Supports the ST200 R6.4.
Throughout: removed all references to ST220, which is no longer supported.

Updated Section 1.5: The examples directory on page 20 and Chapter 10: Booting 
OS21 from Flash ROM on page 96 to add os21/rombootrom.

Updated set args in Table 9: st200gdb command quick reference on page 49 and 
removed the command target sim.

Updated -T timeout in Table 13: st200xrun command line options on page 55.

Updated Chapter 11: OS21 Trace on page 98.
Updated Section 11.9: GDB commands on page 117 throughout.

Updated Section 11.11: Trace library API on page 126, adding the functions: 
os21_trace_initialize_activity_moditors, os21_trace_set_mode,

os21_task_trace_set_mode, os21_activity_set_class_enable, 
os21_activity_set_enable, os21_set_task_trace_enable, 
os21_api_set_class_enable, os21_api_set_enable.
Added new Chapter 13: Dynamic OS21 profiling on page 167.

Added Section B.9: Retrieving internal run-time data on page 203.

Updated Section B.10: BSP function definitions on page 204, adding the function 
bsp_rtrecord_get.

Table 62. Document revision history (continued)

Date Revision Changes



Revision history ST200

238/246  8063762 Rev 9

20-Dec-2008 D

Supports the ST200 R6.3.

Updated Section 1.3.4: The syscalls low-level I/O interface on page 18.

Added syscalls to Section 1.5: The examples directory on page 20 and os21/trace 
to OS21 examples on page 21.

Corrected st200xrun command line in Chapter 2: Introducing OS21.
Corrected Note in Section 5.1: Loading and executing a target program on page 40.

Updated the examples in Section 5.3.3: Connecting to a running target on page 46.

Corrected gdb example in Section 8.1.1: Customized simulator targets on page 84.
Added Chapter 11: OS21 Trace on page 98.

Added Section A.11: Watchpoint support on page 190.

Removed bsp_timer_count_mode() from Table 47 in Section B.4.5: Timer header 
file: machine/bsp/timer.h on page 197 and from Section B.10: BSP function definitions.

Removed bsp_pm_count_mode() from Table 49 in Section B.5.1: Hardware 
abstraction layer for the PM module on page 198 and from Section B.10.

Corrected bsp_mmu_memory_map description in Section B.10: BSP function definitions 
on page 204.

Updated Table 57 in Section C.1: Branch trace buffer modes on page 223.

Updated Table 58 in Section C.2: The branchtrace command on page 224.
Added Section C.3: Output format on page 225.

Updated Appendix D: Profiler plugin on page 226 to describe the profiler modes none, 
dsu and interrupt. The profiler modes none and interrupt now apply to all ST200 
cores. dsu mode applies to ST240 only.
Added Section D.2: Trace profile output format on page 229 and Section D.3: Range 
profile output format on page 230.
Updated Section D.5: Examples on page 232.

08-Jul-2008 C

Supports the ST200 R6.2.
Minor clarifications to Chapter 1: Toolset overview on page 13.

Removed host and info directories from Table 1: The release directories on page 19, 
changed docs to doc.

Updated the list of supplied examples in Section 1.5 on page 20.

Added Linux 4.0 and removed Windows 2000 from the list of supported platforms in 
Section 3.1 on page 25.

Updated Section 3.2: st200cc command line on page 26 and Section 4.1: Configuring 
the run-time code for a target on page 27 to better differentiate configuration options for 
st200cc and st200xrun.

Updated steps 6. and 8. in Section 4.3.3: Defining a custom board target and compiling 
a program on page 35.

Added note to Chapter 5: Cross development tools on page 40 to direct users to the 
STMC release notes for details of TargetPacks.

Corrected Section 5.3: The GNU debugger on page 43.

Added Section 5.3.3: Connecting to a running target on page 46.
Added the command disconnect to Table 9: st200gdb command quick reference in 
Section 5.3.5 on page 49.
(Continued overpage)

Table 62. Document revision history (continued)

Date Revision Changes



ST200 Revision history

8063762 Rev 9 239/246

08-Jul-2008
C

(continued)

Added the command ondisconnect to Table 10: ST200 st200gdb non-specific 
commands in Section 5.3.6 on page 51.
Updated Section 5.4.2: st200xrun command line reference on page 55 throughout and 
added new options -u, -D and --.
Updated Section 5.4.3: st200xrun command line examples on page 56, adding new 
examples.
Updated Section 6.1: Getting started with STWorkbench on page 58.

Re-written Section 6.2: STWorkbench tutorials on page 62, listing the latest tutorials.

Updated 6.3 ST Profiling and Coverage tutorials. (Section 6.3: ST200 System Analysis 
tutorials and reference pages on page 63 in revision F of this manual).

Updated the instructions in Section 7.4: Changing the target on page 68.
Updated Figure 16, Figure 21 and Figure 22 in Chapter 7 to use current processors.

Added Section 7.17: Using the Debug Support Unit Window on page 82.

Corrected st200xrun command line in Section 8.1: Simulator pack on page 84.

Changed lx-elf32/src/os21/lib/ST200 to src/os21/lib/ in Chapter 9: 
OS21 source guide on page 92.

Added Appendix C: Branch trace buffer on page 223.
Added Appendix D: Profiler plugin on page 226.

Changed “target string” to “TargetString” throughout.

Corrected other minor non-technical errors.

13-Feb-2008 B

The GDB extended commands appendix has been removed and the contents merged 
with Section 5.3.6: ST200 GDB commands on page 51.

The Building open sources chapter has been removed.

Section 1.2.3: Configuration scripts updated.
Section 5.3.1: Using GDB updated.

Additional items added to Table 13: st200xrun command line options.

Chapter 3: Code development tools added.
Two OS21 commands removed from Chapter 9: OS21 source guide.

General update of the language used throughout the document.

13-Sep-2007 A Initial release.

Table 62. Document revision history (continued)

Date Revision Changes



ST200 Index

8063762 Rev 9 240/246

Index

Symbols
__rambase . . . . . . . . . . . . . . . . . . . . . . . . . 34-35
__ramsize . . . . . . . . . . . . . . . . . . . . . . . . . . 34-35
__rombase . . . . . . . . . . . . . . . . . . . . . . . . . 34-35
__romsize . . . . . . . . . . . . . . . . . . . . . . . . . . 34-35
_pollkey  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

A
address conversion  . . . . . . . . . . . . . . . . . . . . .14
address space usage . . . . . . . . . . . . . . . . . . . .41
allocators

fixed block . . . . . . . . . . . . . . . . . . . . . . . . . . .24
simple  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
user definable  . . . . . . . . . . . . . . . . . . . . . . . .24

archive  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
generate index  . . . . . . . . . . . . . . . . . . . . . . .15

archiver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

B
Backus-Naur Form . . . . . . . . . . . . . . . . . . . . . .12
binutils

GNU package  . . . . . . . . . . . . . . . . . . . . . . . .14
BNF. See Backus-naur Form.
board

bring up . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

board support
libraries  . . . . . . . . . . . . . . . . . . . . . . . . . .16, 94
package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

board targets
building and debugging . . . . . . . . . . . . . . . . .37
configuration  . . . . . . . . . . . . . . . . . . . . . . . . .27
custom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
generating code  . . . . . . . . . . . . . . . . . . . . . .28

BOOT_FROM_RESET  . . . . . . . . . . . . . . . . . .87
BOOT_ROM_BASE . . . . . . . . . . . . . . . . . . . . .87
BOOT_ROM_SIZE . . . . . . . . . . . . . . . . . . . . . .88
branch trace on ST240 . . . . . . . . . . . . . . 223-224
breakpoints . . . . . . . . . . . . . . 13, 49, 65, 69, 184
BSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
bsp_cache_invalidate_instruction  . . . . . . . . .204
bsp_cache_invalidate_instruction_all . . . . . . .204
bsp_cache_purge_data  . . . . . . . . . . . . . . . . .204
bsp_cache_purge_data_all  . . . . . . . . . . . . . .205
bsp_core_interrupt_install  . . . . . . . . . . . . . . .205

bsp_core_interrupt_lock  . . . . . . . . . . . . . . . . 205
bsp_core_interrupt_unlock  . . . . . . . . . . . . . . 206
bsp_ipu_region_get . . . . . . . . . . . . . . . . . . . . 206
bsp_itc_interrupt_clear  . . . . . . . . . . . . . . . . . 206
bsp_itc_interrupt_disable  . . . . . . . . . . . . . . . 206
bsp_itc_interrupt_enable . . . . . . . . . . . . . . . . 207
bsp_itc_interrupt_install . . . . . . . . . . . . . . . . . 208
bsp_itc_interrupt_poll  . . . . . . . . . . . . . . . . . . 209
bsp_itc_interrupt_raise  . . . . . . . . . . . . . . . . . 209
bsp_itc_interrupt_uninstall . . . . . . . . . . . . . . . 210
bsp_memory_map_s . . . . . . . . . . . . . . . . . . . . 38
bsp_mmu_dump_TLB_Settings  . . . . . . . . . . 210
bsp_mmu_memory_map . . . . . . . . . . . . . . . . 211
bsp_mmu_memory_unmap . . . . . . . . . . . . . . 214
bsp_mmu_reset . . . . . . . . . . . . . . . . . . . . . . . 214
bsp_pm_clock_get  . . . . . . . . . . . . . . . . . . . . 214
bsp_pm_clock_set . . . . . . . . . . . . . . . . . . . . . 215
bsp_pm_count_mode  . . . . . . . . . . . . . . . . . . 215
bsp_pm_counter_get . . . . . . . . . . . . . . . . . . . 215
bsp_pm_counter_set . . . . . . . . . . . . . . . . . . . 215
bsp_pm_event_get  . . . . . . . . . . . . . . . . . . . . 216
bsp_pm_event_set  . . . . . . . . . . . . . . . . . . . . 216
bsp_pm_reset  . . . . . . . . . . . . . . . . . . . . . . . . 216
bsp_pm_start . . . . . . . . . . . . . . . . . . . . . . . . . 216
bsp_pm_stop . . . . . . . . . . . . . . . . . . . . . . . . . 217
bsp_rtrecord_get . . . . . . . . . . . . . . . . . . . . . . 217
bsp_scu_disable  . . . . . . . . . . . . . . . . . . . . . . 217
bsp_scu_dump_SCU_Settings . . . . . . . . . . . 217
bsp_scu_read  . . . . . . . . . . . . . . . . . . . . . . . . 218
bsp_scu_write . . . . . . . . . . . . . . . . . . . . . . . . 218
bsp_timer_count_get . . . . . . . . . . . . . . . . . . . 218
bsp_timer_count_set . . . . . . . . . . . . . . . . . . . 219
bsp_timer_interrupt_clear  . . . . . . . . . . . . . . . 219
bsp_timer_interrupt_enable . . . . . . . . . . . . . . 219
bsp_timer_now  . . . . . . . . . . . . . . . . . . . . . . . 220
bsp_timer_reload_get  . . . . . . . . . . . . . . . . . . 220
bsp_timer_reload_set  . . . . . . . . . . . . . . . . . . 220
bsp_timer_start  . . . . . . . . . . . . . . . . . . . . . . . 221
bsp_timer_stop  . . . . . . . . . . . . . . . . . . . . . . . 221
bsp_timer_ticks_per_sec . . . . . . . . . . . . . . . . 221
bsp_timer_user  . . . . . . . . . . . . . . . . . . . . . . . 222
bsp_user_end_handle . . . . . . . . . . . . . . . . . . 202
bsp_user_start_handle  . . . . . . . . . . . . . . . . . 201
BUNDLE_CHECKING_ON . . . . . . . . . . . . . . . 88
BUNDLE_CHECKING_RE_ON  . . . . . . . . . . . 88
BUS_BYTES_PER_CYCLE  . . . . . . . . . . . . . . 87
BUS_BYTES_PER_TRANSACTION  . . . . . . . 87
BUS_LATENCY  . . . . . . . . . . . . . . . . . . . . . . . 87
BUS_MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Index ST200

241/246  8063762 Rev 9

BUS_TRAFFIC_OUTPUT_TRACE_FILE  . . . .88
BUS_TRAFFIC_TRACE_END_CYCLE . . . . . .88
BUS_TRAFFIC_TRACE_START_CYCLE . . . .88
BUS_TRAFFIC_TRACING_ON . . . . . . . . . . . .88

C
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
library header files . . . . . . . . . . . . . . . . . . . . .19
run-time libraries . . . . . . . . . . . . . . . . 16-17, 22

C++  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
library header files . . . . . . . . . . . . . . . . . . . . .19
run-time libraries . . . . . . . . . . . . . . . . . . . 16-17
symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

cache API . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
CLEAR_MEMORY . . . . . . . . . . . . . . . . . . . . . .89
clock frequencies . . . . . . . . . . . . . . . . . . . . . . .93
command line

GDB commands  . . . . . . . . . . . . . 48-54, 56, 77
st200cc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
st200xrun  . . . . . . . . . . . . . . . . . . . . . . . . . . .55

compilation. See st200cc, st200c++ and STWork-
bench
CONF_CALLBACK_SUPPORT . . . . . . . . . . . .93
CONF_DEBUG  . . . . . . . . . . . . . . . . . . . . . . . .93
CONF_DEBUG_ALLOC  . . . . . . . . . . . . . . . . .93
CONF_DEBUG_CHECK_EVT . . . . . . . . . . . . .93
CONF_DEBUG_CHECK_MTX  . . . . . . . . . . . .93
CONF_DEBUG_CHECK_SEM  . . . . . . . . . . . .93
CONF_DISPLAY_CLOCK_FREQS . . . . . . . . .93
CONF_INLINE_FUNCTIONS  . . . . . . . . . . . . .93
CONFIG_FILE  . . . . . . . . . . . . . . . . . . . . . . . . .86
configuration files . . . . . . . . . . . . . . . . . . . . . . .19
configuration matrix  . . . . . . . . . . . . . . . . . . . . .33
configuration options

OS21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
st200cc compiler . . . . . . . . . . . . . . . . . . . 26-33
target system. See TargetPack and 

simulator pack
configuration script . . . . . . . . . . . . . . . . . . .16, 20
connection to target  . . . . . . . . . . . . . . 44, 56, 84

for Insight  . . . . . . . . . . . . . . . . . . . . . . . . . . .68
that is running  . . . . . . . . . . . . . . . . . . . . . . . .46

core
selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

core registers . . . . . . . . . . . . . . . . . . . . . . . . . .42
initialization  . . . . . . . . . . . . . . . . . . . . . . . . . .42

CORE_MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . .86
counting semaphores . . . . . . . . . . . . . . . . . . . .24
CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

critical sections  . . . . . . . . . . . . . . . . . . . . . . . 178
custom board target  . . . . . . . . . . . . . . . . . . . . 34
cyclic redundancy check . . . . . . . . . . . . . . . . . 94
Cygwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D
DCACHE_MODEL  . . . . . . . . . . . . . . . . . . . . . 86
debug kernel  . . . . . . . . . . . . . . . . . . . . . . . . . . 93
debugger . . . . . . . . . . . . . . . . . . . . . . . 13, 15, 43

Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

board targets  . . . . . . . . . . . . . . . . . . . . . . . . 37
OS21 aware . . . . . . . . . . . . . . . . . . . . . . . . . 22
with Insight . . . . . . . . . . . . . . . . . . . . . . . . . . 67
with OS21 . . . . . . . . . . . . . . . . . . . . . . . . . . 183

defines.mkf  . . . . . . . . . . . . . . . . . . . . . . . . 36, 39
device plug-ins  . . . . . . . . . . . . . . . . . . . . . . . . 89
DEVICE_PLUGIN_MODULES  . . . . . . . . . . . . 89
directory structure  . . . . . . . . . . . . . . . . . . . . . . 19
disabling timeslicing  . . . . . . . . . . . . . . . . . . . 181
disassembling code . . . . . . . . . . . . . . . . . . . . . 49
discard symbols . . . . . . . . . . . . . . . . . . . . . . . . 15
documentation set . . . . . . . . . . . . . . . . . . . . . . 19
DSU window  . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DSU_DEFAULT_MODULE_ENABLED  . . . . . 89
DSU_ROM_IMAGE . . . . . . . . . . . . . . . . . . . . . 89
DUMP_CONFIG_FILE  . . . . . . . . . . . . . . . . . . 86

E
Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ELF format files . . . . . . . . . . . . . . . . . . . . . . . . 15
embedded applications

developing  . . . . . . . . . . . . . . . . . . . . . . . . . . 13
environment setup . . . . . . . . . . . . . . . . . . . . . . 55
Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
event flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
examples

applications  . . . . . . . . . . . . . . . . . . . . . . . . . 16
debugging with Insight  . . . . . . . . . . . . . . . . . 67
OS21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
st200xrun  . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

exception handlers  . . . . . . . . . . . . . . . . . . . . . 24
exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
execute program

memory location . . . . . . . . . . . . . . . . . . . . . . 41
exit paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
EXTERNAL_MEMORY_BASE  . . . . . . . . . . . . 87
EXTERNAL_MEMORY_PATTERN  . . . . . . . . 89
EXTERNAL_MEMORY_SIZE . . . . . . . . . . . . . 87



ST200 Index

8063762 Rev 9 242/246

F
FIFO message queues . . . . . . . . . . . . . . . . . . .24
FIFO scheduler  . . . . . . . . . . . . . . . . . . . .24, 178
file management . . . . . . . . . . . . . . . . . . . . . . .161
file size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
fixed block allocator  . . . . . . . . . . . . . . . . .24, 177
Flash ROM

examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

G
GCC

package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
GDB . . . . . . . . . . . . . . . . . . . . . . . . . 13, 43, 184

branch trace  . . . . . . . . . . . . . . . . . . . . . . . .224
command line interface . . . . . . . . . . . . . . . . .43
command line reference  . . . . 48-49, 51-54, 77
command reference  . . . . . . . . . . . . . . . . . .117
Insight  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
OS21 aware debugging  . . . . . . . . . . . . . . . .22
profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

GDI
commands . . . . . . . . . . . . . . . . . . . . . . . . . . .80

GNU
assembler  . . . . . . . . . . . . . . . . . . . . . . . . . . .14
binutils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
C compiler . . . . . . . . . . . . . . . . . . . . . . . . . . .13
C++ compiler . . . . . . . . . . . . . . . . . . . . . . . . .15
debugger. See GDB.
GCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
linker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
profiler . . . . . . . . . . . . . . . . . . . . . . . . . .14, 226
target debugger . . . . . . . . . . . . . . . . . . . . . . .15
test coverage . . . . . . . . . . . . . . . . . . . . . . . . .15
toolchain  . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
configuration files  . . . . . . . . . . . . . . . . . . . . .19

H
HAZARD_CHECKING_ON  . . . . . . . . . . . . . . .88
heap allocator . . . . . . . . . . . . . . . . . . . . . . . . .177
heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
help

Insight  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
st200xrun  . . . . . . . . . . . . . . . . . . . . . . . . . . .55

I
I/O streams . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

ICACHE_MODEL  . . . . . . . . . . . . . . . . . . . . . . 86
index to archive . . . . . . . . . . . . . . . . . . . . . . . . 15
initialization hook . . . . . . . . . . . . . . . . . . . . . . . 43
inlined list manipulation functions  . . . . . . . . . . 93
Insight  . . . . . . . . . . . . . . . . 15-16, 43, 46, 64-82

Breakpoint menu  . . . . . . . . . . . . . . . . . . . . . 70
Breakpoints window . . . . . . . . . . . . . . . . . . . 70
Console Window  . . . . . . . . . . . . . . . . . . 64, 77
Debug support unit window  . . . . . . . . . . . . . 82
Function Browser window  . . . . . . . . . . . . . . 78
Global menu . . . . . . . . . . . . . . . . . . . . . . . . . 70
Help menu  . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Local Variables window  . . . . . . . . . . . . . . . . 76
Memory Preferences window . . . . . . . . . . . . 73
Memory window . . . . . . . . . . . . . . . . . . . . . . 73
Performance monitoring window  . . . . . . . . . 81
Processes window  . . . . . . . . . . . . . . . . . 79, 82
Registers window . . . . . . . . . . . . . . . . . . . . . 72
Source Window  . . . . . . . . . . . . . . . . . . . . . . 65

toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ST2x0 Statistics window . . . . . . . . . . . . . . . . 80
Stack window . . . . . . . . . . . . . . . . . . . . . . . . 71
Target Selection window  . . . . . . . . . . . . . . . 68
Watch window  . . . . . . . . . . . . . . . . . . . . . . . 75

instruction-set accurate mode . . . . . . . . . . . . . 83
integrity checks  . . . . . . . . . . . . . . . . . . . . . . . . 93
internal C run-time initialization . . . . . . . . . . . . 42
interrupt handlers  . . . . . . . . . . . . . . . . . . . . . . 24
interrupt_mask()  . . . . . . . . . . . . . . . . . . . . . . 178
interrupt_mask_all() . . . . . . . . . . . . . . . . . . . . 178
interrupt_unmask()  . . . . . . . . . . . . . . . . . . . . 178
inter-task communication  . . . . . . . . . . . . . . . . 24
ISS mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

K
kernel

real-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
real-time library . . . . . . . . . . . . . . . . . . . . . . . 16

KERNEL_STACK_SIZE  . . . . . . . . . . . . . . . . . 87
keyboard input . . . . . . . . . . . . . . . . . . . . . . . . 187

L
L2 cache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
libc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
libdtf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
libgcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
libgcov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
libgprof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
libm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
librarian  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
library files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



Index ST200

243/246  8063762 Rev 9

libstdc++ . . . . . . . . . . . . . . . . . . . . . . . . . . .16, 18
linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14

options . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13, 25
LIST_CONFIG variable  . . . . . . . . . . . . . . .36, 39
LMI RAM memory  . . . . . . . . . . . . . . . . . . . . . .41
load program

memory location  . . . . . . . . . . . . . . . . . . . . . .41
See also st200xrun, STWorkbench and 

st200insight
low-level I/O . . . . . . . . . . . . . . . . . . . . . . . . . . .16
lx-elf32  . . . . . . . . . . . . . 14, 16, 19-20, 46, 84-86

M
make  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
malloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
man(1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
managing memory . . . . . . . . . . . . . . . . . . . . .175
manual pages . . . . . . . . . . . . . . . . . . . . . . . . . .19
memory

allocation . . . . . . . . . . . . . . . . . . . . . . . .22, 161
change location . . . . . . . . . . . . . . . . . . . . . . .41
LMI RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
management . . . . . . . . . . . . . . . . . . . . . .24, 93
memory managers  . . . . . . . . . . . . . . . . . . .177
partitions  . . . . . . . . . . . . . . . . . . . . . . . . . . .175
protection settings . . . . . . . . . . . . . . . . . . . . .35

MEMSYSTEM_LATENCY . . . . . . . . . . . . . . . .86
MODE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
multi-tasking . . . . . . . . . . . . . . . . . . . . . . . .22, 24
mutexes  . . . . . . . . . . . . . . . . . . . . . . . . . .24, 180

N
newlib . . . . . . . . . . . . . . . . . . . . . . . . 17, 24, 177

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
NONCACHEABLE_MEM_SIZE . . . . . . . . . . . .87

O
object files

copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
information  . . . . . . . . . . . . . . . . . . . . . . . . . .15
list symbols  . . . . . . . . . . . . . . . . . . . . . . . . . .15
translate  . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

on-chip emulation . . . . . . . . . . . . . . . . . . . . . . .13
OS21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

applications . . . . . . . . . . . . . . . . . . . . . . . . . .17
board support libraries  . . . . . . . . . . . . . .16, 94
configurable options  . . . . . . . . . . . . . . . . . . .92
critical sections  . . . . . . . . . . . . . . . . . . . . . .178
debugging . . . . . . . . . . . . . . . . . . . . . . . . . .183

examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 22
kernel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
key features  . . . . . . . . . . . . . . . . . . . . . . . . . 24
libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
memory allocation  . . . . . . . . . . . . . . . . . . . . 22
OS21 aware debugging  . . . . . . . . . . . . . . . . 22
profiler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
real-time kernel . . . . . . . . . . . . . . . . . . . . . . . 22
real-time kernel library  . . . . . . . . . . . . . . . . . 16
scheduler  . . . . . . . . . . . . . . . . . . . . . . . . . . 178
source code  . . . . . . . . . . . . . . . . . . . . . . . . . 92
stack traces  . . . . . . . . . . . . . . . . . . . . . . . . 183
tick duration  . . . . . . . . . . . . . . . . . . . . . . . . 196

OS21 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
binary files  . . . . . . . . . . . . . . . . . . . . . . . . . 115
GDB commands . . . . . . . . . . . . . . . . . . . . . 117
GDB commands example  . . . . . . . . . . . . . 122
GDB control commands . . . . . . . . . . . . . . . 123
user APIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
user defined events  . . . . . . . . . . . . . . . . . . . 98

OS21 Trace binary files
os21tasktrace.bin . . . . . . . . . . . . . . . . . . . . 117
os21trace.bin  . . . . . . . . . . . . . . . . . . . . . . . 116
os21trace.bin.ticks  . . . . . . . . . . . . . . . . . . . 116

os21_time_logging  . . . . . . . . . . . . . . . . . . . . 235
os21decodetrace . . . . . . . . . . . . 98-99, 109, 111

control file . . . . . . . . . . . . . . . . . . . . . . . . . . 112
example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

os21usertrace  . . . . . . . . . . . . . . . . . . . . . . 98-99
definition file . . . . . . . . . . . . . . . . . . . . . . . . 100
example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

os21usertracegen  . . . . . . . . . . . . . . . . . . . . . . 98
OUTPUT_LOG_FILE  . . . . . . . . . . . . . . . . . . . 88
OUTPUT_TRACE_FILE  . . . . . . . . . . . . . . . . . 88

P
partition manager  . . . . . . . . . . . . . . . . . . . . . 177
path names  . . . . . . . . . . . . . . . . . . . . . . . . . . 186
peek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
PERIPHERAL_BASE  . . . . . . . . . . . . . . . . . . . 88
PERIPHERAL_LATENCY . . . . . . . . . . . . . . . . 87
Perl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92, 95
platforms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
plugin

device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
plugins

profiler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
ST TargetPack . . . . . . . . . . . . . . . . . . . . . . 233

poke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



ST200 Index

8063762 Rev 9 244/246

polling keyboard input  . . . . . . . . . . . . . . . . . .187
preprocessor

symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
printable strings  . . . . . . . . . . . . . . . . . . . . . . . .15
profiler  . . . . . . . . . . . . . . . . . . . . . . . 14, 226-232
PROFILING  . . . . . . . . . . . . . . . . . . . . . . . . . . .89
PROFILING_OUTPUT_FILE . . . . . . . . . . . . . .89
program execution startup . . . . . . . . . . . . . . . .20
program termination . . . . . . . . . . . . . . . . . . . .186

R
R_Absolute . . . . . . . . . . . . . . . . . . . . . . . . . . .145
R_PIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
R_Relocatable  . . . . . . . . . . . . . . . . . . . . . . . .145
real-time kernel  . . . . . . . . . . . . . . . . . 13, 16, 22
Red Hat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
reference mode  . . . . . . . . . . . . . . . . . . . . . . . .83
release directories  . . . . . . . . . . . . . . . . . . . . . .19
relocatable loader library  . . . . . . . . . . . . .15, 145

file management  . . . . . . . . . . . . . . . . . . . . .161
memory allocation . . . . . . . . . . . . . . . . . . . .161

relocatable run-time model . . . . . . . . . . . . . . .146
RESET_ADDRESS  . . . . . . . . . . . . . . . . . . . . .87
RESET_DELAY_CYCLES . . . . . . . . . . . . . . . .87
rl_add_action_callback . . . . . . . . . . . . . . . . . .157
rl_delete_action_callback . . . . . . . . . . . . . . . .158
rl_errarg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
rl_errno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
rl_errstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
rl_file_name  . . . . . . . . . . . . . . . . . . . . . . . . . .150
rl_foreach_segment . . . . . . . . . . . . . . . . . . . .156
rl_handle_delete . . . . . . . . . . . . . . . . . . . . . . .149
rl_handle_new  . . . . . . . . . . . . . . . . . . . . . . . .149
rl_lib  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
rl_load_addr . . . . . . . . . . . . . . . . . . . . . . . . . .150
rl_load_buffer . . . . . . . . . . . . . . . . . . . . . . . . .151
rl_load_file  . . . . . . . . . . . . . . . . . . . . . . . . . . .152
rl_load_size  . . . . . . . . . . . . . . . . . . . . . . . . . .150
rl_load_stream . . . . . . . . . . . . . . . . . . . . . . . .153
rl_parent . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
rl_set_file_name . . . . . . . . . . . . . . . . . . . . . . .151
rl_sym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
rl_sym_rec  . . . . . . . . . . . . . . . . . . . . . . . . . . .155
rl_this  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
rl_unload  . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
run-time libraries  . . . . . . . . . . . . . . . . . 16-17, 19
run-time model . . . . . . . . . . . . . . . . . . . . . . . .145

S
scheduler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
scheduler behavior . . . . . . . . . . . . . . . . . . . . .178

semaphores . . . . . . . . . . . . . . . . . . . . . . . 24, 181
shtdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

data tables  . . . . . . . . . . . . . . . . . . . . . . . . . . 95
simple allocator . . . . . . . . . . . . . . . . . . . . . . . 177
simulator  . . . . . . . . . . . . . . . . . . . . . . . . . . 83-91

fast mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ISS mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
reference mode  . . . . . . . . . . . . . . . . . . . . . . 83
SuperH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

simulator pack . 16, 28, 37, 44, 55-57, 68, 84-90
SoC

custom  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

software
notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 42

source files
OS21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

special purpose allocator . . . . . . . . . . . . . . . . 175
ST Micro Connect  . . . . . . . . . . . . .11, 14, 23, 40

connecting to a running target  . . . . . . . . . . . 46
connecting to a target . . . . . . . . . . . . . . . 43-44
power up . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
profiling . . . . . . . . . . . . . . . . . . . . . . . . 226-232
selecting target for Insight  . . . . . . . . . . . . . . 68

ST Micro Connection Package  . . . . . . 16, 37, 44
ST TargetPack. See TargetPack
st200addr2line . . . . . . . . . . . . . . . . . . . . . . . . 185
st200as  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
st200c++  . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 25
st200cc  . . . . . . . . . . . . . . . . . .15, 29, 37, 84, 94

building relocatable library  . . . . . . . . . 161-163
command line . . . . . . . . . . . . . . . . . . . . . . . . 27
examples  . . . . . . . . . . . . . . . . . . . . . 23, 26, 40
interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 25
selecting OS . . . . . . . . . . . . . . . . . . . . . . . . . 93

st200gcov  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
st200gdb 15-16, 26, 42-43, 46, 49-50, 64, 84, 89, 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186, 231

command line . . . . . . . . . . . . . . . . . . . . . 48-54
connecting to target  . . . . . . . . . . . . . . . . . . . 44
exit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

st200gprof . . . . . . . . . . . . . . . . . . . . . . . . 16, 226
st200insight. See Insight
st200ld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
st200objdump  . . . . . . . . . . . . . . . . . . . . . . . . 185
ST200TOOLS_DIR . . . . . . . . . . . . . . . . . . 35, 38
st200xrun . . . . . . . . 13, 15-16, 26, 28, 37, 42, 89

command line reference . . . . . . . . . . . . . . . . 55
examples  . . . . . . . . . . . . . . . . . . . . . . . . 23, 56
loading target  . . . . . . . . . . . . . . . . . . . . . . . . 40



Index ST200

245/246  8063762 Rev 9

running simulator . . . . . . . . . . . . . . . . . . .84, 89
setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

ST2x0 Statistics window  . . . . . . . . . . . . . . . . .80
stack traces  . . . . . . . . . . . . . . . . . . . . . .183, 185
standard templates library  . . . . . . . . . . . . . . . .16
start parameter initialization . . . . . . . . . . . . . . .42
statistics command . . . . . . . . . . . . . . . . . . . . . .80
stepping through source code  . . . . . . . . . .50, 65
STIMULATION_FILE . . . . . . . . . . . . . . . . . . . .89
STL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
STWorkbench  . . . . . . . . . . . . . . . . . . 58-63, 110

editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-61
perspective  . . . . . . . . . . . . . . . . . . . . . . . 59-61
view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-61

SuperH simulator . . . . . . . . . . . . . . . . . . . . . . .14
support for new boards  . . . . . . . . . . . . . . . . . .94
symbols

discard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
encoded  . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
list  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

synchronization  . . . . . . . . . . . . . . . . . . . . . . . .24
sysconf code module . . . . . . . . . . . . . . . . . . . .28
system heap . . . . . . . . . . . . . . . . . . . . . . . . . . .24

T
target

changing with Insight . . . . . . . . . . . . . . . . . . .68
configuration for compilation . . . . . . . . . .27, 30
connection . . . . . . . . . . . . . . . . . . . 44, 46, 186
debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
loader  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

TargetPack  . . . . . . . . . . . 16, 20, 28, 31, 37, 40, 
 . . . . . . . . . . . . . . . . . . . . . . . 44, 55-56, 233-234
targetpack command . . . . . . . . . . . . . . . . . . . 233
TargetString . . . . . . . . . . . . . . . . . .40, 44, 56, 84
task / interrupt critical sections  . . . . . . . . . . . 178
task / task critical sections . . . . . . . . . . . . . . . 179
task aware debugging . . . . . . . . . . . . . . . . . . . 94
task_lock() . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
task_unlock() . . . . . . . . . . . . . . . . . . . . . . . . . 179
timeslicing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

disabling . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
TLB  . . . . . . 37-38, 191, 194-195, 199, 210, 214
tools directory  . . . . . . . . . . . . . . . . . . . . . . . . . 19
toolset configuration  . . . . . . . . . . . . . . . . . . . . 30
toolset introduction  . . . . . . . . . . . . . . . . . . 13-14
trace on ST240  . . . . . . . . . . . . . . . . . . . 223-224
TRACE_END_CYCLE . . . . . . . . . . . . . . . . . . . 88
TRACE_START_CYCLE  . . . . . . . . . . . . . . . . 88
tracing an application  . . . . . . . . . . . . . . . . . . . 98
TRACING_ON . . . . . . . . . . . . . . . . . . . . . . . . . 88
TRANSACTION_SETUP_CYCLES  . . . . . . . . 87
translate object files . . . . . . . . . . . . . . . . . . . . . 15

U
user debug interface  . . . . . . . . . . . . . . . . . . . . 13

W
watch expressions . . . . . . . . . . . . . . . . . . . . . . 75
watchpoints . . . . . . . . . . . . . . . . . . . . 51, 66, 190
Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
-Wz  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



   
   

   

ST200

246/246  8063762 Rev 9

         

 

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - 
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com


	Introducing the ST200 Micro Toolset
	Preface
	Document identification and control
	License information
	ST200 documentation suite
	Terminology
	Conventions used in this guide
	Acknowledgements

	1 Toolset overview
	1.1 Toolset features
	1.2 Distribution content
	1.2.1 Tools
	1.2.2 Libraries
	1.2.3 Configuration scripts
	1.2.4 Sources
	1.2.5 Examples

	1.3 Libraries delivered
	Figure 1. The relationship between the libraries
	1.3.1 The C library (newlib)
	1.3.2 The C++ library (libstdc++)
	1.3.3 The libdtf library
	1.3.4 The syscalls low-level I/O interface

	1.4 Release directories
	Table 1. The release directories
	1.4.1 The documents directory
	Table 2. The HTML files in the doc directory

	1.4.2 GDB command scripts directory

	1.5 The examples directory

	2 Introducing OS21
	2.1 OS21 features

	3 Code development tools
	3.1 Toolset overview
	Figure 2. Components of the ST200 Micro Toolset interfaces

	3.2 st200cc command line

	4 Board target configuration
	4.1 Configuring the run-time code for a target
	4.1.1 The sysconf code module
	4.1.2 Generating code for a board target

	4.2 Understanding target dependent settings
	4.2.1 Toolset configuration
	Table 3. ST200 toolset parameters
	Table 4. Core contribution
	Table 5. SoC contribution
	Table 6. Board contribution

	4.2.2 Configuration matrix
	Table 7. Configuration matrix


	4.3 Customizing board targets
	4.3.1 Overriding the memory layout of an existing board target
	4.3.2 Modifying the memory protection settings
	4.3.3 Defining a custom board target and compiling a program
	4.3.4 Building and debugging a program on a custom board target

	4.4 Customizing SoC targets
	4.4.1 Defining a custom SoC target


	5 Cross development tools
	5.1 Loading and executing a target program
	5.2 Target code structure and initialization
	5.2.1 Target address space usage
	Figure 3. ST200 address space usage

	5.2.2 Initialization sequence
	5.2.3 Start parameters
	5.2.4 Other initializations
	5.2.5 Initialization hook

	5.3 The GNU debugger
	5.3.1 Using GDB
	5.3.2 The .lxgdbinit file
	5.3.3 Connecting to a running target
	Figure 4. Process flows for connecting to a target

	5.3.4 GDB command line reference
	Table 8. st200gdb command line options

	5.3.5 GDB command quick reference
	Table 9. st200gdb command quick reference

	5.3.6 ST200 GDB commands
	Table 10. ST200 st200gdb non-specific commands
	Table 11. Simulator and DSU commands
	Table 12. PMblock specific commands


	5.4 Using st200xrun
	5.4.1 Setting the environment
	5.4.2 st200xrun command line reference
	Table 13. st200xrun command line options

	5.4.3 st200xrun command line examples


	6 Using STWorkbench
	6.1 Getting started with STWorkbench
	Figure 5. Workspace Launcher
	Figure 6. Welcome view
	6.1.1 The STWorkbench workbench
	Figure 7. C/C++ perspective
	Figure 8. Save Perspective As... dialog


	6.2 STWorkbench tutorials
	6.3 ST200 System Analysis tutorials and reference pages

	7 Using Insight
	7.1 Launching Insight
	7.2 Using the Source Window
	Figure 9. Source Window
	7.2.1 Source Window toolbar
	Table 14. The Source Window buttons

	7.2.2 Context-sensitive menus

	7.3 Debugging a program
	Figure 10. hello.c stopped at breakpoint

	7.4 Changing the target
	Figure 11. Target Selection window
	Figure 12. Target Selection window- example

	7.5 Configuring breakpoints
	Figure 13. Breakpoint examples
	7.5.1 The Breakpoints window
	Figure 14. Breakpoints window


	7.6 Using the help
	7.7 Using the Stack window
	Figure 15. Stack window

	7.8 Using the Registers window
	Figure 16. Registers window

	7.9 Using the Memory window
	Figure 17. Memory window
	7.9.1 Displaying multiple Memory windows
	Figure 18. Multiple memory windows


	7.10 Using the Watch window
	Figure 19. Watch window

	7.11 Using the Local Variables window
	Figure 20. Local Variables window

	7.12 Using the Console Window
	Figure 21. Console Window

	7.13 Using the Function Browser window
	Figure 22. Function Browser window

	7.14 Using the Processes window
	Figure 23. Processes window

	7.15 Using the ST200 Statistics window
	Figure 24. The ST2x0 Statistics window

	7.16 Using the Performance Monitoring window
	Figure 25. The Performance Monitoring window

	7.17 Using the Debug Support Unit Window
	Figure 26. The Debug Support Unit window
	7.17.1 Editing a DSU register


	8 ST200 simulator
	8.1 Simulator pack
	8.1.1 Customized simulator targets
	8.1.2 Simulated boards naming convention
	Table 15. Simulator pack

	8.1.3 Simulator targets
	Table 16. Simulator targets


	8.2 Target configuration options
	Table 17. Target configuration options
	Table 18. Architecture-specific target options (cache models)

	8.3 The sample device plugin for the ST200 simulator
	8.3.1 Callbacks into the simulator
	8.3.2 Building and running the plugin


	9 OS21 source guide
	9.1 Configurable options
	Table 19. OS21 configurable options
	9.1.1 Configurable options in the standard OS21 libraries

	9.2 Building the OS21 board support libraries
	9.2.1 Adding support for new boards

	9.3 GDB OS21 awareness support
	9.3.1 Generation of the shtdi server data tables


	10 Booting OS21 from Flash ROM
	Table 20. Examples of booting from Flash ROM
	10.1 Overview of booting from Flash ROM

	11 OS21 Trace
	11.1 User trace records
	11.1.1 os21usertrace host tool
	Table 21. os21usertrace command line options

	11.1.2 User definition file
	Table 22. Format codes

	11.1.3 os21usertracegen host tool
	Table 23. os21usertracegen command line options

	11.1.4 os21usertracegen example

	11.2 Print a string to the OS21 Trace buffer
	11.3 Building an application for OS21 Trace
	Table 24. st200cc linker options to enable OS21 Trace

	11.4 Running the application
	11.4.1 Trace buffer

	11.5 Analyzing the results
	Table 25. os21decodetrace command line options
	11.5.1 Usage of the -m mode option
	Table 26. Permitted combinations of mode and output format

	11.5.2 os21decodetrace control file

	11.6 Examples
	11.6.1 OS21 activity and OS21 API trace
	11.6.2 User API and user activity trace
	Figure 27. Example definition file, myapp.def


	11.7 Trace overhead
	11.8 Structure of trace binary files
	11.8.1 os21trace.bin
	Table 27. File format of os21trace.bin

	11.8.2 os21trace.bin.ticks
	Table 28. File format of os21trace.bin.ticks

	11.8.3 os21tasktrace.bin
	Table 29. File format of os21tasktrace.bin


	11.9 GDB commands
	11.9.1 Buffer full action
	11.9.2 Enable OS21 Trace
	11.9.3 Enable trace control commands
	11.9.4 Enable OS21 activity
	11.9.5 Enable OS21 API
	11.9.6 Enable OS21 activity event
	11.9.7 Enable OS21 API function
	11.9.8 Enable task information logging
	11.9.9 Dump buffer to file
	11.9.10 Flush buffers and reset
	11.9.11 Type and event enables

	11.10 User GDB control commands
	11.10.1 User activity control commands
	11.10.2 User API control commands
	11.10.3 Miscellaneous commands

	11.11 Trace library API
	os21_trace_initialize
	os21_trace_initialize_data
	os21_trace_initialize_activity_monitors
	os21_trace_set_mode
	os21_trace_overflow
	os21_task_trace_initialize
	os21_task_trace_initialize_data
	os21_task_trace_overflow
	os21_task_trace_set_mode
	os21_trace_set_enable
	os21_activity_set_global_enable
	os21_activity_set_class_enable
	os21_activity_set_enable
	os21_activity_set_task_trace_enable
	os21_api_set_global_enable
	os21_api_set_class_enable
	os21_api_set_enable
	os21_task_trace_set_enable
	os21_trace_get_control
	os21_trace_set_control
	os21_trace_print
	os21_trace_write_file
	os21_trace_status
	os21_trace_write_buffer
	os21_task_trace_write_file
	os21_task_trace_status
	os21_task_trace_write_buffer

	11.12 Variables and APIs that can be overridden
	os21_trace_constructor_user
	os21_task_trace_constructor_user

	11.13 User trace runtime APIs
	11.13.1 User activity control APIs
	user_activity_set_group_enable
	user_activity_set_group_group_class_enable
	user_activity_set_enable
	user_api_set_global_enable

	11.13.2 User API control APIs
	user_api_set_group_enable
	user_api_set_group_group_class_enable
	user_api_set_enable
	user_api_set_global_enable

	11.13.3 User activity APIs

	11.14 Correspondence between GDB commands and APIs
	Table 30. Correspondence between GDB commands and APIs
	Table 31. Correspondence between GDB commands and APIs

	11.15 Trace always on
	Figure 28. Example to customize trace


	12 Relocatable loader library
	12.1 Run-time model overview
	Table 32. Run-time models
	Table 33. Run time models comparison

	12.2 Relocatable run-time model
	Figure 29. Example of an application with four load modules
	12.2.1 The relocatable code generation model

	12.3 Relocatable loader library API
	12.3.1 rl_handle_t type
	rl_handle_new
	rl_handle_delete
	rl_this
	rl_parent
	rl_load_addr
	rl_load_size
	rl_file_name
	rl_set_file_name
	rl_load_buffer
	rl_load_file
	rl_load_stream
	rl_unload
	rl_sym
	rl_sym_rec
	rl_foreach_segment
	rl_add_action_callback
	rl_delete_action_callback
	rl_errno
	rl_errarg
	rl_errstr


	12.4 Customization
	12.4.1 Memory allocation
	12.4.2 File management

	12.5 Building a relocatable library or main module
	12.5.1 Importing and exporting symbols
	12.5.2 Optimization options

	12.6 Debugging support
	12.7 Profiling support
	12.8 Memory protection support
	12.9 Load time decompression

	13 Dynamic OS21 profiling
	13.1 Overview
	13.2 Building an application for dynamic OS21 profiling
	Table 35. st200cc linker options to enable dynamic OS21 profiling

	13.3 Running the application
	13.4 GDB commands
	Table 36. OS21 profiler monitor state
	Table 37. OS21 profiler state

	13.5 Analyzing the results
	13.6 Example
	13.7 Profiler library API
	13.7.1 Function definitions
	os21_profiler_initialize
	os21_profiler_deinitialize
	os21_profiler_signaled

	13.7.2 Overrides


	Appendix A Toolset tips
	A.1 Managing memory partitions with OS21
	A.2 Memory managers
	A.3 OS21 scheduler behavior
	A.4 Managing critical sections in OS21
	A.4.1 task / interrupt critical sections
	A.4.2 task / task critical sections

	A.5 Access to uncached memory
	A.6 Debugging with OS21
	A.6.1 Understanding OS21 stack traces
	A.6.2 Identifying a function that causes an exception
	A.6.3 Catching program termination with GDB

	A.7 General tips for GDB
	A.7.1 Handling target connections
	A.7.2 Windows path names
	A.7.3 Power up and connection sequence

	A.8 Polling for keyboard input
	_pollkey

	A.9 Just in time initialization
	A.10 Using Cygwin
	Table 38. ST_CYGPATH_MODE settings

	A.11 Watchpoint support
	Table 39. Hardware watchpoint commands


	Appendix B ST200 board support package (BSP)
	B.1 Error handling
	Table 40. BSP errors

	B.2 Caches
	B.2.1 Managing the caches
	B.2.2 Cache header file: machine/bsp/cache.h
	Table 41. Functions defined in machine/bsp/cache.h

	B.2.3 L2 cache

	B.3 Memory management
	B.3.1 Initial memory map
	Table 42. Initial memory map

	B.3.2 Managing the MMU
	B.3.3 MMU header file: machine/bsp/mmu.h
	Table 43. Functions defined in bsp/mmu.h

	B.3.4 Speculative control unit (SCU)
	Table 44. Functions defined in bsp/mmap.h


	B.4 Timers
	B.4.1 Input clock frequency
	B.4.2 Tick duration
	B.4.3 Reading the current time
	B.4.4 ST200 timer assignments
	Table 45. ST200 timer assignments
	Table 46. Functions defined in machine/bsp/timer.h

	B.4.5 Timer header file: machine/bsp/timer.h
	Table 47. Functions defined in machine/bsp/timer.h
	Table 48. Types defined by machine/bsp/timer.h


	B.5 Performance monitor (PM)
	B.5.1 Hardware abstraction layer for the PM module
	Table 49. Functions defined in machine/bsp/pm.h


	B.6 Exception handling
	B.6.1 Exceptions types
	Table 50. ST231 and ST240 exceptions defined in machine/bsp/core.h

	B.6.2 Exceptions header file: machine/bsp/core.h
	Table 51. Functions defined in machine/bsp/core.h


	B.7 Interrupts
	B.7.1 Interrupt handler installation
	B.7.2 Interrupts header file: machine/bsp/interrupt.h
	Table 52. Functions defined in machine/bsp/interrupt.h
	Table 53. Functions defined in machine/bsp/interrupt.h


	B.8 User handles
	Table 54. User handles
	bsp_user_start_handle
	bsp_user_end_handle

	B.9 Retrieving internal run-time data
	Table 55. Function defined in machine/rtrecord.h
	Table 56. Configuration data fields

	B.10 BSP function definitions
	bsp_cache_invalidate_instruction
	bsp_cache_invalidate_instruction_all
	bsp_cache_purge_data
	bsp_cache_purge_data_all
	bsp_core_interrupt_install
	bsp_core_interrupt_lock
	bsp_core_interrupt_unlock
	bsp_interrupt_clear
	bsp_interrupt_disable
	bsp_interrupt_enable
	bsp_interrupt_install
	bsp_interrupt_poll
	bsp_interrupt_raise
	bsp_interrupt_uninstall
	bsp_mmu_dump_TLB_Settings
	bsp_mmu_memory_map
	bsp_mmu_memory_unmap
	bsp_mmu_reset
	bsp_pm_clock_get
	bsp_pm_clock_set
	bsp_pm_counter_get
	bsp_pm_counter_set
	bsp_pm_event_get
	bsp_pm_event_set
	bsp_pm_reset
	bsp_pm_start
	bsp_pm_stop
	bsp_rtrecord_get
	bsp_scu_disable
	bsp_scu_dump_SCU_Settings
	bsp_scu_read
	bsp_scu_write
	bsp_timer_count_get
	bsp_timer_count_set
	bsp_timer_interrupt_clear
	bsp_timer_interrupt_enable
	bsp_timer_now
	bsp_timer_reload_get
	bsp_timer_reload_set
	bsp_timer_start
	bsp_timer_stop
	bsp_timer_ticks_per_sec
	bsp_timer_user


	Appendix C Branch trace buffer
	C.1 Branch trace buffer modes
	Table 57. Traceable branch classes

	C.2 The branchtrace command
	Table 58. Branchtrace subcommands

	C.3 Output format
	Figure 30. Example branch trace output


	Appendix D Profiler plugin
	D.1 Profiler plugin reference
	Table 59. Profiler subcommands

	D.2 Trace profile output format
	Figure 31. Example profile type trace output

	D.3 Range profile output format
	Figure 32. Example profile type range output

	D.4 ST Micro Connect configuration options
	Table 60. ST Micro Connect configuration options

	D.5 Examples

	Appendix E ST TargetPack plugin
	E.1 The targetpack command
	Table 61. Targetpack subcommands


	Appendix F GDB os21_time_logging user command
	Revision history
	Table 62. Document revision history

	Index

