CS5604: Information Storage and Retrieval

Term Project - Team Reducing-Noise

May 13, 2015
Virginia Tech
Blacksburg, VA

Team Members:
Prashant Chandrasekar

Xiangwen Wang

Table of Contents

L EXECULIVE SUMIMAIY oottt s s s e s s e e e e e e e e e e eeeeae et e e et e e e e eeaeatsesbssssas s ssassesessssesaaaeaeaeneanes 5
D Yol T)YV L =To F=2=Y 4 0= o) PP PPPPRTR 7
3 VTechWorks SUDMISSION INVENTOIYuuiiiiiiiiiiiiicciieeee e esecre e e e e e e e e st re e e e e e e e e s essnannrsneeeeeeas 8
4 Chapter/SECtiON SUMMAIY ..cccuiiiiiiiecciiee ettt ettt e eetee e et e e eeteeeeeteeeebaeeeetbeeetaeeesseeetseestseeeasseeesseeensseeanns 9
I o o [=To a2 UL LU T =T 0 41T o} PSP PPPPRPRSPRN 10
6 LITerature REVIEW ...ccoiiiiiiiiiiiii e 11
£ =T o =T = o [P OPU PP PPPRUPPPRN 13
8 D LoTol¥] g g =Y o) e o] o =Y A [T PP UPPPPPPPPPPPPPRt 15
8.1 TWEETES . e 16
8.2 L] oI TP UPPPRRRRN 16
9 IMPIEMENTAtION STFAtEEY .iviiiiiiii i e e e e e e e e e s s s sabbereeeeeeaeeeeesasnsnnrnnes 17
10 T0OIS AN FrameEWOrKScoouiiiiiiiiie e s s 17
11 IMmplementation MethOOIOBYcccoiviiiiieec e e e e e s e e e e e e e e eaaes 18
I O R RV VLT A 1 1= T o T o TP 18
11.2 WeEDbPABE ClEBANUD coeiii ittt e e e e e e e st e e e e e e e e e sssssaaberteaeeeaeeeeeessnnsnstaneneaeees 19
11.3 Organize oULPUL iN AVRO ...cooiiiiiiiiiiiiiciicsisis e e e e ettt e e e aeb et sssssaseseeseseaaaaaaaananens 20
12 [0 aY o] L=T 0 aT=Y o = o T o 1P PPUPUTN 20
12,1 ClE@NiNgG TWEELS .urieiiieiieeiicctittte e ee e e e e e es et ee e e e e e e e s s s aab e e e e eaeeaeeesasasssteteeeeaaeeessessnnnsssannnenaees 20
12.2 Cleaning Wb Pages ..ccco e ettt e et e e e e e e e s e st e e e e aeee e e e e e aartaaaeeaaaes 22
13 Implementation OULPUL StatiStiCS ...iiiiii i e e e e e e e e e e e e e eaaes 25
T8 R RV VLT A 1 1T T T o USRI 25
T A V1Y F oY oY o =TSl ol [T YU T J PP 26
14 EVAlUQtioN TECANIGUESeeeeiiiiiieiee ettt e e e e e s e e st ee e e e e e e e e s e e s asnnbanaeeeaeeeessannes 28
141 Manual @Valuationccooiiiiiiiiie e e 28
14.2 Feedback frOm tEaMS....c.ui i 28
15 [oY =Tt T g =1 17 =P PPUPUTN 29
16 CoNClUSION & FUTUIE WOTK ..ceiueiiiiiiiiiiiiicie ettt s 30
17 USEI IMANUAL ...ttt st s s st sne e nane 31
17.1 Cleaning tweets for small collections on local Maching........ccccceeviiiiiiciiiiiee e, 31

17.2 Cleaning tweets for small collections using Hadoop Streaming.........cccccvvveeeeeeeeiiinicccvvinneeeneenn. 31

17.3 Cleaning WEDPAEES . .cii i i ittt ettt e e e e e e st e e e e e e e e e st eeeaeee e e e e e arrtarraeaaaes 32
18 (DA 7= [o T=T g 1Y, =Y LU 1 U PPUPURN 34
18.1 Webpage crawling With PYthon SCripts.......uuiiiiiiiiiiiiiiie e 34
18.2 Loading Web page Collection t0 HDFSuuiiiiiiiiiiiiiicrreeee e eestrrreree e e e s e evrnn e e ee e 35
18.3 Solr Installation and data-impPortingccccuvviiiiiiiii e 36
18.4 Hadoop and Mahout INStallationccccuiiiiiiiiiii e 38
18.5 Setting up @ 6-N0de HAadoop ClUSTENccceeiiiiiiiiieee e e e e e e e e s e ee e s 40
19 RETEIENCES. ..ttt sttt sne e e 43
Appendix A: AVRO Schema for Tweets and Web Pagesuuvieeeiiiiiiiiiciiieeee et 45
AVRO schema for tWeet COECLIONSciiiiiiiiiiiic e s 45
AVRO SChemMa fOr WED PAGES ..uuuviiiiiiiiiiei i ettt e e e er e e e e e e e e e e s st eeeeeeeeeeessssansstaaeeeeaeasessannns 45
Appendix B: Source code of Cleaning SCrPtuuuiiiiiiieiiiiicieeeee e e e e e e e e sserrereeeee e e e e e sssesnnnennes 47
Python sScript fOr tWEET ClEBANUPuueeiiiieieee e e e e e e e s e s s aeabeaeeeeaees 47
Python script for Web page Cle@nUP... ..o e e e e et reeeeee s 52
Python code for cleaning up tweets with MapReduce (RawW VErsion)ccccceeevciieeeeeiiieeececiieee e, 56
Appendix C: Code Provided DY TAS ...cciii ittt e eesscre e e e e e s e e s st eeeeeeeesesssaasbaeaeeeeeeeeesanssssrsnnes 59
Crawl SCript FOr NULCH e e e e e e e e e e s s s s aabbeeeeeeaeeeeesasansnnnnnns 59
URL @XEraction frOm tWEETS ...cocveiiiiiiiiiiie et 59

List of Tables

Table 1: Steps and description for cleaning tWEEESuivii i i e 18
Table 2: Steps and description for cleaning Web Pagescoccceiiiiiiiiieee e 19
Table 3: Tweet Cleaning StAtiSTICSuuuiiiiiiiii i e e e e s e e s s bbb eaeeeeeeeeeesanans 25
Table 4: Web page cleaning StatistiCs ... e e e e e e e e e e e aaes 26
Table 5: Language statistics for web page collectionscoooiiiiiiiiiii e 26
Table 6: Various file type for each web page collectionccccuviiiiiiiiiiii e 27

List of Figures

Figure 1: Framework of noise reduction within whole system context.........cccccceeeeeiiiiiniiiiiiiiiiieee e, 13
Figure 2: Example structure/format of @ tWEELcoiiiiiiiiiii ittt e 16
Figure 3: Example structure/format of @ Web Pageccviiiiiiiiiiicce e 16
Figure 4: Example of @ Cleaned tWEEBTccii i i i e e e e e e e e e eeea e e e e e eanes 19
Figure 5: Overview of tweet cleanup implementation ..o 21
Figure 6: Overview of web page cleanup implementationccceeeeiiiiiiiiiccci e 22
Figure 7: The size of cleaned tweet collections on HDFS ...t 31
Figure 8: The size of cleaned web pages collection on HDFS.........cciiiiiiiiiiiiiiiieeeec e 33
Figure 9: Total amount of URLs in small shooting collectionccvveiiiiiriiiiiiiiieee e 34
Figure 10: Output from Crawling Web Pages.....uuuriiiiiiiiiiiii e e e e e e s e e e e e e e e e anes 35
Figure 11: Result after running the Python SCript ... 35
Figure 12: Screenshot displaying “Shooting” collection........cccccuviieeiiiiiiiiiiic e 37
Figure 13: Import the Hadoop virtual machine into Virtual BOX.......cccceeeiiierciiiiiiieeeee e e 39
Figure 14: Hadoop is running on the virtual Maching.........occciiiiiiiiiiii e 40
T qU I RS o - o [o Yo Yol T 0 IS - 11 - 1 o [PPPPPRN 42

1 Executive Summary

The corpora for which we are building an information retrieval system consists of tweets and web pages
(extracted from URL links that might be included in the tweets) that have been selected based on
rudimentary string matching provided by the Twitter API. As a result, the corpora are inherently noisy
and contain a lot of irrelevant information. This includes documents that are non-English, off topic
articles and other information within them such as: stop-words, whitespace characters, non-

alphanumeric characters, icons, broken links, HTML/XML tags, scripting codes, CSS style sheets, etc.

In our attempt to build an efficient information retrieval system for events, through Solr, we are devising
a matching system for the corpora by adding various facets and other properties to serve as dimensions
for each document. These dimensions function as additional criteria that will enhance the matching and
thereby the retrieval mechanism of Solr. They are metadata from classification, clustering, named-
entities, topic modeling and social graph scores implemented by other teams in the class. It is of utmost
importance that each of these initiatives is precise to ensure the enhancement of the matching and
retrieval system. The quality of their work is dependent directly or indirectly on the quality of data that
is provided to them. Noisy data will skew the results and each team would need to perform additional
tasks to get rid of it prior to executing their core functionalities. It is our role and responsibility to

remove irrelevant content or “noisy data” from the corpora.

For both tweets and web pages, we cleaned entries that were written in English and discarded the rest.
For tweets, we first extracted user handle information, URLs, and hashtags. We cleaned up the tweet
text by removing non-ASClI character sequences and standardized the text using case folding, stemming

and stop word removal.

For the scope of this project, we considered cleaning only HTML formatted web pages and entries
written in plain text file format. All other entries (or documents) such as videos, images, etc. were
discarded. For the “valid” entries, we extracted the URLs within the web pages to enumerate the
outgoing links. Using the Python package readability [19], we were able to clean advertisement, header
and footer content. We were able to organize the remaining content and extract the article text using
another Python package beatifulsoup4 [5]. We completed the cleanup by standardizing the text by

removing non-ASCll characters, stemming, stop word removal and case folding.

As a result, 14 tweet collections and 9 web pages collections were cleaned and indexed into Solr for

retrieval. (The detailed list of the collection name can be found in Section 17 of the report.)

2 Acknowledgement

First, we want to thank the Integrated Digital Event Archiving and Library (IDEAL) [21] team for providing
us with the wonderful opportunity to extend their current initiative, thereby providing us with various
resources that serve as a platform for our project. This project is sponsored by NSF grant 1IS - 1319578.
Also we would like to thank the Digital Libraries Research Laboratory (DLRL) for sharing the cluster
where we executed our analysis. We also want to convey a special thank you to Dr. Edward A. Fox, and
the GTA/GRAs (Sunshin & Mohamed) for helping us throughout the project. Last but not the least, we
want to thank all the other teams of CS5604 for their precious feedback and especially the Hadoop &

Solr teams for their discussions on the AVRO schemas.

3 VTechWorks Submission Inventory

All our work for the semester will be uploaded to VTechWorks at
https://vtechworks.lib.vt.edu/handle/10919/19081.

Please find below a brief description for each file that will be uploaded as a part of our submission:

1.

ReportRN.pdf
a. The PDF format of the term report that describes, in detail, our work for the project.
ReportRN.docx
a. An editable Word format of the term report, ReportRN.pdf
PresentationRN.pdf
a. The PDF format of the presentation (slides) that provide an overview of our work for the
project.
PresentationRN.pptx
a. An editable PowerPoint format of the presentation, PresentationRN.pdf
Code.zip
a. A compressed folder that contains the source code for our tweet and web page cleanup
implementation.
b. Folder contains:
i. profanity_en and profanity_en_2: Reference list of curse words or swear words.
ii. tweet.avsc: AVRO schema for tweet collections.
iii. webpage.avsc: AVRO schema for web page collections.
iv. tweet_cleanup.py: Python script to clean tweets.
v. webpageclean.py: Python script to clean web pages.

4 Chapter/Section Summary

Chapter 1 introduces the goal of our project.

Chapter 5 discusses our project goal and outlines specific tasks within that goal.

Chapter 7 discusses the overall system architecture.

Chapter 8 provides an insight to the various structure and properties of the documents of our collection.
Chapter 9 and 10 provide details on the approach to our implementation and the tools we will be using
to help us during the process.

Chapter 11 describes the step-by-step rules that we followed to clean the tweet collections and the web
page collections.

Chapter 12 provides further detail on the process that we used for cleaning via a data flow diagram and
an example output for the tweet cleanup implementation.

Chapter 13 describes our work in cleaning all of the collections. The chapter also includes statistics such
as the various languages found in the collections along with the various file types that we encountered
while cleaning the web page collection. These details are broken down for each collection.

Chapter 14 talks about the different ways in which we evaluated our work.

Chapter 15 provides a timeline breakdown of our tasks for the semester.

Chapter 17 and 18 provide step-by-step instructions to developers and researchers-alike who are
interested in using our component and possibly extend its functionality.

Chapter 19 provides an exhaustive list of the references that we consulted for our work.

Appendix A, B and C are supplementary notes that provide the HBase schema, our code and the code
provided to us by our TA.

5 Project Requirements

Our goal for the project, at a high level, can be described as the following:

1. Identify and remove the “noise” in the data
2. Process and standardize the “sound” in the data

3. Extract and organize the data into a usable format

As the Noise Reduction team, we are to clean up the collection of documents (tweets and web pages) by
firstly identifying and removing character sequences that are irrelevant to various components of the IR
system. After that, we standardize the remaining text using popular Natural Language Processing
techniques to convert the text to a common structure/format. We then extract any information stored
within the text that are valuable, such as twitter handles, URLs that are out links in web pages, etc. and
store all of this information in a schema/format that aids the other teams that are responsible for

building the remaining components of the IR system.

10

6 Literature Review

Before the data-cleaning procedures, several preprocessing steps are necessary. Chapter 2 of [7]
introduces the method of word segmentation, true casing, and detecting the coding and language of a
document. Also, Section 2.2.2 provides the basic ideas for removing the stop words from a document,

which are the extremely common words with little value, by using a predefined stop words list.

One of our goals is to reduce the original HTML or XML documents to smaller text documents. Chapter
10 would be very useful since it provides the concepts and techniques about how to retrieve
information from structured documents, such as XML files, HTML files, and other markup language

documents.

There are a lot of existing resources in Python for text processing. Thus, we also want to explore how to
reduce noise with Python. A very useful and well developed tool in Python, for language processing, is
the open source library called Natural Language Toolkit (NLTK). There are two references for this tool.
The main reference will be “Natural Language Processing with Python” [1], which systematically
introduces how NLTK works and how it can be used to clean up documents. We can apply most of the
text processing procedures based on this book. For example, Chapter 3 of the book presents the
methods for raw text processing, and Chapter 6 introduces how to classify text, etc. In addition, the
NLTK official website [2] provides an exhaustive introduction of the NLTK toolkit where we can find

details for specific functions that we might use.

For the webpages cleaning-up, the first step is to extract text from the source files. Beautiful Soup is a
open source Python library to extract text from HTML and XML files. Beautiful Soup Document [5] will be
our main reference for web page text extraction. We can also find details for each of the functions in the

beautifulsoup4 Python package along with some useful examples.

When we successfully extract the text from the HTML, we will find there’s still much visible text in the
menus, headers and footers, which we might want to filter out as well. We can approach this problem
under this concept: using information of text vs. HTML code to work out if a line of text (inside or
outside of an HTML tag) is worth keeping or not. We can be motivated by the methods employed via the
online tutorial “The Easy Way To Extract Useful Text From Arbitrary HTML” [8], which provides some
ideas on how to fulfill this task. The analysis is based on the neural network method, by using the

package open source C library FANN. Webpage [16] provides a general reference manual for the FANN

11

library. Also, the readability website [19] provides a powerful tool with the introduction for extract

useful content from a HTML/XML file.

Since we are currently trying to build an English-based information retrieval system, it’s important for us
to filter out the non-English documents, which leads to a new problem, language detection of a
document. The presentation [20] provides us with an idea and its algorithm for language detection
based on Naive Bayes classifier. The presenter implements the algorithm with “Noise filter” and

“Character normalization” to get a decent detection accuracy of 99.8%.

12

7 System Design

When designing our system, we focused on how the other components of the information retrieval
system will consume “clean and relevant” data that is produced. More specifically, our design is focused
on building a system that would seamlessly integrate with the frameworks and/or methodologies

designed by other teams.

For the large collections, the tweets will be stored in the Hadoop cluster. We execute a Python script:
tweet_shortToLongURL_File.py (that was provided to us) to extract all the URLs which are fed into
Apache Nutch to extract the web pages, which are stored in SequenceFile Format.

We plan to develop a Python script that will run on the Hadoop Cluster via Hadoop’s Streaming API that
will process the input files stored on HDFS and output files in AVRO file format. An AVRO file is
essentially a JSON file that also contains the JSON schema (within the file) along with the data. The
schema for the JSON is provided to us by the Hadoop team, which is responsible for uploading the AVRO
files into HBase. Once our system is in place and fully functional, other teams could retrieve the data
from the AVRO files or from the tables in HBase.

[ren | (on) [) [oomimm | [oo)

Webpage and
E> Tweets C>
Cleanup

Raw Source Web Clean Web Pages
pages (in (in AVRO File
Sequence File Format)

Format)

B

Figure 1: Framework of noise reduction within whole system context

13

The HBase schema for storing the cleaned tweets and webpages can be found below. The column family

|II

“original” contains information that we will be storing after cleaning the collection and as a result,
providing to the other teams. Each row contains details for each individual document (tweet and/or web
pages). The column family “analysis” contains information that is provided by the other teams as a result
of their analysis or work on the cleaned collection. For further details on the individual columns, please

refer to the report submitted by the Hadoop team in VTechWorks.

Tweets:

Column Family Column Qualifier

original doc_id
tweet_id
text_original
text_clean
created_at
source
user_screen_name
user_id
lang
retweet_count
favorite_count
contributors_id
coordinates
urls
hashtags
user_mentions_id
in_reply_to_user_id
in_reply to_status_id
text_clean
collection

analysis ner_people
ner_locations
ner_dates
ner_organizations
cluster_id
cluster_label
class
social_importance
lda_topics
lda_vectors

Webpages:

14

[rowkey: collection.uuid]

Column Family Column Qualifier

original doc_id
title
domain
source
collection
text_original
text_clean
author
subtitle
created_at
accessed_at
section
lang
urls
coordinates
tweet_source
content_type
text_clean
appears_in_tweet_ids

analysis ner_people
ner_locations
ner_dates
ner_organizations
cluster_id
cluster_label
class
social_importance
lda_topics
lda_vectors

The AVRO file format is a JSON schema with the fields (listed above) as keys with corresponding values.
Using the schema, the Hadoop team will be writing a utility package that extracts the values within the
AVRO file and inserts them as records into HBase.

8 Document Properties

Prior to cleaning the character sequences, it is critical to understand and evaluate the structure of each
of the documents (tweets and web pages).

15

8.1 Tweets

User Handle

Example Tweet: RT @KhaledBeydoun: Ahmed Merabet was shot point-blank = on the sidewalk.
g http://t....

—

arisSne

Muslim, and a hero. CharlieHebd:

{ashTag

Random
Emoticon/Icon

URL

(Broken/Unbroken)

Figure 2: Example structure/format of a tweet

8.2 Web pages

Eight in 10 say their families have seen either zero or not very
much improvement in their living standards, according to
pollsters Ipsos MORI.

Looking to the future, less than a quarter think they will be
much better off in the next 12 months spanning the general
election in May.

The grim findings come a day after the Bank of England
Governor trumpeted the return of “real pay growth”, as official
figures showed wages creeping up ahead of the cost of living.

Labour leader Ed Miliband, making a keynote comeback speech
in London, said most families were simply missing out altogether
on a recovery that favoured the better-off. For Tory MPs, the
findings will fuel fears that the past five years of painful
austerity are leading to a “voteless” recovery as households face
up to repaying debts rather than enjoying spending sprees.

Mr Miliband told an audience in west London that the recovery
was only working for “the privileged few”.

Other people, he warned, were “asking, why are they being told
there is a recovery when they aren’t feeling the benefits. People
working so hard but not being rewarded, young people fearing
that they are going to have a worse life than their parents,
people making a decent living but still unable to afford to buy a
house.”

Related stories

Welfare cuts ‘leave councils with huge bill to put families in
hotels”

David Cameron can't explain how £7bn tax giveaway will be
funded, Labour says

Iain Duncan Smith unveils 'smart cards' in clampdown on
benefit claimants' drinking and gambling

George Osborne pledges two-year welfare freeze to raise
£3.2bn to cut the deficit

Other Content (Noise)

David Cameron talks
to the Standard with
eight days to go
until the General
Election

Will battle after
north London man
leaves £500k to
builder who cleaned
his gutters for free

Clandon Park House
fire: 80 firefighters
battle huge blaze at
historic stately
home

Ione Wells receives

Advertisement (Noise)

Heis a

Sign up to our weekly
reader offers email

o offers © giveaways

© promotions

Puzzles
Crossword Chess
Word Scrambler Sudoku
Number Crunch Kakuro
Code Word

Find us on Facebook

ES London Evening Standard @

357,803 people like London Evening Standard.

OEEZL

Download our new
&improved
app

Figure 3: Example structure/format of a web page

16

9 Implementation Strategy

There are various languages/frameworks that enable us to implement our design and more specifically,
the aforementioned tasks of text processing and document cleanup. Based on the project requirements
and our deliverables, we have identified the following constraints/considerations that our

implementation strategy has to satisfy:

1. Coding language/framework should have libraries/packages for Natural Language Processing for
text cleanup.
2. Coding language/framework should have libraries/packages that are specifically designed to
cleanup HTML/XML content.
3. Coding language/framework should be extensible to run on Hadoop cluster with little
modification.
Taking into consideration all of the above, we have decided that our implementation will be done in

Python. We plan to develop a stand-alone Python script to clean the collections.
10 Tools and Frameworks

Following are the tools and frameworks that we plan to leverage as a part of our system/framework to

achieve our goal:

1. Python Script To “Unshorten” shortened URLs (Provided by Mohamed)
a. There are many shortened URLs in the tweet collections, which would cost additional
time for analysis. This script will unshorten and replace them with the original long
URLs. The script can be found in Appendix C.
2. Packages in Python
a. Natural Language Toolkit (NLTK) is an open source Python library, which provides
varieties of modules, datasets, and tutorials for research and development in natural
language processing and related areas, such as information retrieval and machine
learning. [2]
b. Beautiful Soup is an open source package that can be used to extract plain text from
HTML/XML source files, which is our first procedure in webpage clean up. [5]
c. Langdetect is an open source Python package which can detect the dominant language

from given text. [20]

17

Readability is an open source Python package that extracts the main HTML body text
and cleans it up. It helps with removing content from advertisers, banners, etc. [19]
Re is an open source Python package which provides regular expression matching
operations. [21]

UUID is an open source Python package which generates UUIDs based on different

algorithms (md5, SHA1, etc.). [22]

11 Implementation Methodology

We've designed a methodology for each of the intermediate tasks that we have identified for our

system’s functionality.

11.1Tweet Cleanup

We inspected the collection of tweets that was provided to us. Contents within a tweet are textual in

nature. Each tweet has a user handle and may have a hashtag or a URL. In Figure 2 we’ve highlighted

some of the properties of a tweet that are common knowledge. We have additionally identified

instances of “noisy” data that require our attention.

Please find below the table describing the intermediate steps for tweet cleanup.

Table 1: Steps and description for cleaning tweets

Step Number

Description

Discard non-English tweets

2 Remove Emoticons/Other Icons

Remove non-alphanumeric characters that aren’t part of the User Handle, Hashtag, or
3 URL. (This involves removing punctuation.)

Remove “RT” or “rt” that signifies that a tweet is a “retweet”
5 Replace curse words or swear words with the text “profanity”

Inspect format of a URL: Remove URL from tweet if the format is invalid (as in the
6 example above)

Validate URL: Remove URL from tweet if URL isn’t registered or is invalid (if it returns a
/ 404)
8 Standardize text through stemming and stop word removal

18

9 Generate a universally unique identifier (UUID) for each tweet

10 Output the results in expected format (AVRO)

User Handle

'

Cleaned up Tweet: RT @KhaledBeydoun Ahmed Merabet was shot point blank on the sidewalk He is a Muslim

and a hero

Figure 4: Example of a cleaned tweet

Figure 4 illustrates the output of the tweet cleanup functionality that has removed the invalid URL, non-

alphanumeric characters (not part of the User Handle or Hashtag) and icons from the original tweet.

11.2Webpage Cleanup

Cleaning up web pages is far more challenging because web pages are unstructured (as compared to
tweets). Web pages do come with the standard HTML tags. However, the HTML source also includes
external content present in advertisements, navigational elements, headers, footers, etc. Therefore, it is

difficult to identify patterns or properties of text within a web page.

Please find below the table describing the intermediate steps for web page cleanup.

Table 2: Steps and description for cleaning web pages

Step Number Description
1 Discard non-English web pages
Remove advertising content, banners, and other such content from the HTML page
? using Python package: python-readability (include link).
Remove text within <script> tags along with style sheets, links to images and other
3 hyperlinks.
4 Cleanup HTML/XML tags, in the web page using package: BeautifulSoup [5]

19

Remove all remaining non-alphanumeric text using regular expressions

Standardize remaining text through stemming and stop word removal.

Replace curse words or swear words with the text “profanity”

| N[O »n

Generate a universally unique identifier (UUID) for each web page.

11.30rganize output in AVRO

As mentioned previously, the output from our cleaning module would be consumed by all of the other
teams in HDFS. Additionally, the cleaned documents and any metadata that we had extracted, during
the cleaning phase, was required to be stored in HBase so that the Solr team could extract the table data
into their Solr engine. The Hadoop team was responsible in building the table structure in HBase.

We collaborated with the Solr and the Hadoop team in building the schema for the AVRO file. For details
of the schema, please refer to Appendix A.

Since each team is working with two collections that are stored separately (in local filesystem and
Hadoop cluster), we will be developing a mechanism for each of the scenarios processing files in Solr

and another that will process the collection stored in HDFS.

Through our framework, each team will have access to “clean and relevant” content that would be
available and accessible in HDFS (for large collections) and in their local file system (for small

collections).

12 Implementation

12.1Cleaning Tweets

20

Tweets collections in AVRO Format

¥

ASCII characters only

v

English only Tweets

Matching regular
expressions

Stop words and profane
words removal

Clean Tweets

URLs, Hashtags, Clean Tweets

User Handles, etc. Stemming l % in AVRO format
with preset schema

Clean Tweets 2

Figure 5: Overview of tweet cleanup implementation

The tweets collections are initially stored in AVRO file format. After dumping it as JSON format, we will
only extract “useful”

” u

fields such as “text”, “time”, “id”, etc. An example of the tweet input is shown
below as in JSON format, where the red “text” is the tweet content which we will clean up.

'iso_language_code': 'en',

"text': u"News: Ebola in Canada?: @CharlieHebdo #CharlieHebdo #Shooting Suspected
patient returns from Nigeria to Ontario with symptoms http://t.co/KoOD8yweld",

"time': 1407706831,

'from_user': 'toyeenb',
'from_user_id': '81703236',
'to_user_id': "',

'id': '498584703352320001"

We have written a Python script that takes the tweets in AVRO format from HDFS, cleans the tweets and
stores the results as AVRO files in HDFS. The AVRO schema can be found in Appendix A.

During the cleanup process, we have extracted user handles, hashtags, usernames, tweet IDs, URLs and

timestamps from the original tweets and cleaned up the tweet content. The “hashtags”, “urls”,
“user_mentions_id”, etc. fields, in the AVRO schema, might be non-value or of multiple values. As of

21

now, different values are stored within the same string and separated by ‘|’. Also we generate a UUID
for each tweet as the suffix of the “doc_id”. Examples can be found below as marked red.

'lang': 'English',
'user_id': '81703236',
"text_clean': 'News Ebola in Canada Suspected patient returns from Nigeria to Ontario

with symptoms',
"text_clean2': 'new ebol canad suspect paty return niger ontario symptom',
'created_at': '1407706831',
"hashtags': 'CharlieHebdo|Shooting',
'user_mentions_id': 'CharlieHebdo',
"tweet_id': '498584703352320001",
'urls': 'http://t.co/KoOD8yweld',
'collection': 'charlie_hebdo_S',
'doc_id': 'charlie_hebdo_S--8515a3c7-1d97-3bfa-a264-93ddb159e58e",

'user_screen_name': 'toyeenb',

12.2Cleaning Webpages

Raw consolidated files &
metadata in Text format

lRe

Titles & “Useful” HTML | HTML only (raw) ¢ Idgntlfled mdlwd'ual files
with corresponding URLs

Readability

Raw Files & metadatain
Sequence File format

Beautifulsoup

Contentonly —— | English only Text ——»{ ASClI only Text

Langdetect
Re
Clean web pages
in AVRO format < Clean Text and Extract
. URLs
with preset schema

Figure 6: Overview of web page cleanup implementation

22

The input to our module are web page contents that are output from Apache Nutch. The files are
written in SequenceFile format. To clean up the contents of the file, we first had to convert them into
text files. We were able to convert the format of the file from SequenceFile format to text format using
a script provided by the RA (Mohamed). The details can be found in the Developer Manual section of the
report.

The format in which each web page content is presented in the file is:

url:http://21stcenturywire.com/2015/02/08/free-speech-british-police-hunt-down-buyers-of-
charlie-hebdo/
base:http://21stcenturywire.com/2015/02/08/free-speech-british-police-hunt-down-buyers-of-
charlie-hebdo/

contentType: application/xhtml+xml

metadata: X-Pingback=http://21stcenturywire.com/xmlrpc.php Expires=Fri, 20 Mar 2015 23:02:16
GMT _fst_=33 nutch.segment.name=20150320180211 Connection=close X-Powered-By=W3 Total
Cache/0.9.4.1 Server=Apache Cache-Control=max-age=3600 Link=<http://wp.me/p3bwni-aFh>;
rel=shortlink Date=Fri, 20 Mar 2015 22:02:16 GMT Vary=Accept-Encoding,User-Agent
nutch.crawl.score=1.0 Content-Encoding=gzip Content-Type=text/html; charset=UTF-8

Content:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en-US" xml:lang="en-US">

<head profile="http://gmpg.org/xfn/11">

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

The output file contains web page content that is sequentially written into it. For each web page, you
have the following information about it (highlighted in red):
1. Original URL
URL (same as 1.)
Base URL
Content Type of web page
Metadata of web page

o vk wnmN

Content

For each web page, we extracted the text under the “Content” field using regular expressions. After
that; our module employed the Python libraries BeautifulSoup4 & Readability to clean the text and save
the cleaned text in AVRO files.

Our biggest challenge was working with non-ASCIl character sequences. For such instances, we used the

Python library langdetect that parses the text and returns the language with most character sequence
occurrences. For example, if a web page contained 70% English text and 30% non-English text, the

23

library would return “en” as the language of the text. We did not process/clean text for the web pages
that didn’t return “en” or “English” as the language of the web page.

Additionally, the social networking team required all the outgoing links for each web page. They needed
this information to build their social graph. Using regular expressions, we were able to extract the URLs
within a web page document and store them as a list in the AVRO schema.

You can find the details of our code and the results of our execution in the User Manual section of the

report.

24

13 Implementation Output Statistics

Please find below the details of our cleanup runs for all of the collections. Collections suffixed with “_S”

are small collections whereas collections suffixed with “_B” are big collections.

13.1Tweet Cleanup

Table 3: Tweet cleaning statistics

Collection Name Number of | Number of Percent of Execution Size Of Input | Size of Output
Tweets Non- Tweets cleaned Time File (MB) File (MB)
English (seconds)
Tweets
suicide_bomb_attack_S 39258 2083 95% (37175) 32.18 15.14 15.8
Jan_25 911684 415873 55% (495811) 475.18 469.61 210.2
charlie_hebdo_S 520211 346989 34% (173222) 85.46 199.30 70.1
ebola_S 621099 240655 62% (380444) 422.66 226.76 136.3
election_S 931436 101659 90% (829777) 823.77 357.47 323.5
plane_crash_S 273595 7561 98% (266034) 237.96 99.22 100.0
winter_storm_S 493812 7772 99% (486040) 444.90 182.69 192.9
egypt_B 11747983 3797211 68% (7950772) 7271.36 5673.36 3313.2
Malaysia_Airlines_B 1239606 462651 63% (776955) 769.62 472.78 305.3
bomb_B 24676569 3955957 84% (20720612) 16506.19 9358.34 6537.7
diabetes_B 8382585 2845395 67% (5537190) 5452.62 3258.58 2073.2
shooting_B 26381867 3535187 87% (22846680) 19377.55 10288.89 8403.2
storm_B 27286337 4949268 82% (22337069) 18649.99 10658.21 7591.7
tunisia_B 6061926 3322288 46% (2739638) 3265.69 2359.02 1004.4

25

13.2Webpage cleanup

Table 4: Web page cleaning statistics

Collection Name Number of Number of Percent of Execution Size of Size of
Web pages Non-English Web pages Time Input File Output
Web pages cleaned (seconds) (MB) File (MB)
plane_crash_S 575 170 70.2 30.525 35.09 233
ebola_S 1281 321 36.2 68.399 78.38 28.3
diabetes_B 12612 5449 55.1 607.176 572.10 293
election_S 268 74 72.4 17.635 14.42 11.2
tunisia_B 328 162 49.6 15.97 17.07 8.9
charlie_hebdo_S 341 44 87.1 22.927 18.41 16.5
winter_storm_S 1728 536 67.65 89.79 99.00 64
egypt_B 6846 3712 45.45 411.962 359.15 138
communities_B 47238 10539 76.6 2737.437 2300.27 1804
Table 5: Language statistics for web page collections
Collection Name Top 3 Languages Number of Languages
plane_crash_S English, French, Tagalog 7
ebola_S English, Spanish, French 17
diabetes_B English, Spanish, French 28
tunisia_B English, French, Indonesian 11
winter_storm_S English, French, Japanese 17
egypt_B English, Arabic, French 30
communities_B English, French, Japanese 45
charlie_hebdo_S English, French, Arabic 10

26

election_S

English, French, Hindi 5

Table 6: Various file type for each web page collection

Collection Name

Web page Type

plane_crash_S

application/xml, text/html, application/xhtml+xml

ebola_S

text/html, application/pdf, application/xhtml+xml

diabetes_B

audio/mpeg, application/octet-stream,
application/pdf, text/html,
application/xhtml+xml, application/x-shockwave-
flash, video/mp4, text/plain, text/aspdotnet,
text/x-php

tunisia_B

text/html, audio/mpeg, application/pdf,
application/xhtml+xml|

winter_storm_S

application/atom+xml, text/html, text/plain,
application/octet-stream, application/pdf,
application/xhtml+xml, application/xml

egypt_B

text/html, application/vnd.android.package-
archive, application/xml, video/mp4,
application/octet-stream, application/pdf,
application/xhtml+xml|

communities_B

application/vnd.google-earth.kmz, image/jpeg,
audio/mpeg, video/x-ms-wmv,
application/rss+xml, video/mp4, text/html,
image/gif, application/octet-stream, video/x-m4v,
application/pdf, application/xhtml+xml,
application/x-rar-compressed, text/x-php,
text/aspdotnet

election_S

text/html, application/xhtml+xml

charlie_hebdo_S

text/html, application/xhtml+xml

27

14 Evaluation Techniques

The evaluation of our collection was conducted in two-phases: 1) Manual Evaluation 2) Feedback from
other teams.

14.1 Manual evaluation

As we were saving the cleaned text into AVRO format, we additionally, saved the plain text version for a
subset of the entries, through random selection. We randomly selected 50 documents from each
collection and scanned the text to check for any aberration in the output. We conducted the test for
tweets and web pages.

It was through this validation step that we learnt that some documents had text with multiple
languages. Until then, we were removing all non-ASCII text. We assumed that by doing so, we would get
rid of non-English text in the document. However, this wasn’t enough as we had web pages written in
non-English, say Japanese, which included many instances of numbers and dates within the text. Only
these numbers and dates would appear in the cleaned version of the document.

As a refinement, we chose to process the documents written in English. The Python package, langdetect
[20], was included in our code to identify the prominent language of the document. We would filter out
documents that didn’t predominantly contain English text.

14.2 Feedback from teams

The cleaned collections were directly consumed by other teams. We asked the teams to let us know if
their calculations or results were skewed (or affected) because of occurrences of any text that they
considered as “noise”. The common concern among all the teams was the occurrence of the term “RT”
or “rt” when analyzing tweet content. The character sequence “RT” (or “rt”) is a Twitter specific term
that stands for “retweet”. It is often found in tweets that are “re-tweets” of the original tweet.

Also, Dr. Fox noticed several instances of curse words or swear words in the cleaned text. He suggested
that we replace these occurrences with the term “profanity”, so as to standardize the text and preserve
them for future text analysis, such as sentiment analysis. We used Google’s list of curse words or
offensive words for reference. [23]

Therefore, we cleaned the collections to remove the occurrence of the character sequence “RT” and “rt”
and replaced all curse words and changed them to “profanity”.

28

15 Project Timeline

Report 1: Solr installation on local machines. Documented the requirements for our team’s work and
identified the dependencies associated with other teams.

Report 2: Data imported into Solr. Outlined the requirement of our team’s work. Finalized the
References.

Report 3: Reorganized the structure of the report. Finalized the design part.

Report 4: Coding for text extraction from webpages.

Report 5: The code for cleanup tweet collections will be released along with the report.

Report 6: The preliminary executable code for cleanup of web pages will be released.

Report 7: Cleaned tweet collections ready.

Reports 8&9: The final executable code for web page cleanup released.

Report 10: Version 2 of the web page cleanup released.

29

16 Conclusion & Future Work

Through our work, we were able to successfully clean 14 English tweet collections and 9 English HTML
formatted web page collections. These collections were indexed and loaded into Solr for retrieval.

We were able to employ industry standard packages/utilities to achieve our goals. Our work can be
extended to extract more information about each collection, as a whole, as well as individual documents
within them.

For example, our cleaning process removed all emoticons, which could be used along with other text
processing tools to derive sentiment for tweets. This information would be useful for collections that
include “disasters” such a hurricanes or fires as well as for the Egypt uprising collection.

Additionally, our work was restricted to processing entries that were in English. Researchers and
developers alike could relax the constraint in our code and could achieve similar goals for the 30 or so
languages that we detected in our collection.

Finally, our current scope was defined such that we only focus on cleaning HTML formatted or plain text
formatted documents. Important documents that were represented in other formats could’ve been
pruned as a result. There are many freely available tools that help convert and/or extract plain text from
documents of various formats such as PDF files and Word files. Interested parties can extend our code
to covert these documents to plain text format for further processing.

30

17 User Manual

17.1Cleaning tweets for small collections on local machine

The code has been attached. The procedures are listed below:

1. Install Python library AVRO with the command “pip install Avro --user”. Save the AVRO schema
file in Appendix to “tweets.arsc”, and save the Python code attached to “tweet_cleanup.py”,
and upload them onto the cluster.

2. Copy the large collections on HDFS to local using the command “hadoop fs -copyToLocal
/class/CS5604S15/dataset/XXXXXX/part-m-00000.avro ./XXXXXX/part-m-00000-ori.avro”, where
XXXXXX is the collction name.

3. Toclean up the tweets, run the Python script with the command “ nohup python
tweet_cleanup.py part-m-00000-ori.avro part-m-00000.avro tweet.avsc XXXXXX &”, where
argument part-m-00000-ori.avro is the input AVRO file, argument part-m-00000.avro is the
output AVRO file, and tweet.avsc is the AVRO schema file.

4. Copy the output AVRO file onto HDFS with the command “hadoop fs -copyFromLocal part-m-
00000.avro YYYYYY”, where YYYYYY is the expected path of the output AVRO file on HDFS.

All the small and large tweet collections have been cleaned up, and they are available under the
“Juser/cs5604s15_noise/TWEETS_CLEAN/” folder. One can check the cleaned collections with the
command “hadoop fs -du -h /user/cs5604s15_noise/TWEETS_CLEAN/”, as shown below.

[cs5604s15_noise@nodel ~]$ hadoop fs -du -h /user/cs5604s15_noise/TWEETS_CLEAN
204.3 M 612.8 M /user/cs5604s15_noise/TWEETS_CLEAN/Jan.25_S

258.4 M 775.3 M /user/cs5604s15_noise/TWEETS_CLEAN/Malaysia_Airlines_B
5.4 G 16.3 G /user/cs5604s15_noise/TWEETS_CLEAN/bomb_B

60.8 M 182.5 M /user/cs5604s15 noise/TWEETS_CLEAN/charlie_hebdo_S

1.7 G Tl /user/cs5604s15_noise/TWEETS_CLEAN/diabetes_B

121.e M 363. /user/cs5604s15_noise/TWEETS_CLEAN/ebola_S

2.9G 8.8 Juser/cs5604s15 _noise/TWEETS_CLEAN/egypt_B

284.9 M 854. Juser/cs5604s15 noise/TWEETS_CLEAN/election_S

86.6 M 259, /user/cs5604s15_noise/TWEETS_CLEAN/plane_crash_S

6.9 G 20.7 G /user/cs5604s15_noise/TWEETS_CLEAN/shooting_ B

6.3 G 19.86 G /user/cs5604s15_noise/TWEETS_CLEAN/storm_B

13.1 M 39.4 M /Juser/cs5604s15 noise/TWEETS_CLEAN/suicide_bomb_attack_S
836.7 M 2.5G /user/cs5604s15_noise/TWEETS_CLEAN/tunisia_B

166.2 M 498.6 M /user/cs5604s15 noise/TWEETS CLEAN/winter storm S

Figure 7: The size of cleaned tweet collections on HDFS

17.2Cleaning tweets for small collections using Hadoop Streaming

31

You can clean up the large tweets collection (in CSV format) using the Hadoop steaming and mapper.py
(attached in the appendix). The only problem is that the output of this execution is NOT a custom AVRO
schema. This was an experiment to extend our Python implementation to run on HDFS. Following are
the steps to execute the script:

1. First, you need to download the avro-1.7.7.jar and avro-mapred-1.7.7-hadoop1l.jar from
http://www.gtlib.gatech.edu/pub/apache/avro/avro-1.7.7/java/, and upload them to the same
directory with the mapper.py on cluster.

2. For the shell command attached below, replace the “MAPPER_PATH” with the path of the
mapper.py, for example, as the noise reduction team, our path is
“/home/cs5604s15_noise/testmapreduce/mapper.py ”.

3. Again, replace the “INPUT_PATH” and “OUTPUT_PATH” with the paths of your input and output
directories. For example, our input path is “cs5604s15_noise/input/”, and our output path is
“Juser/cs5604s15_noise/output_tweet_test _20150328”".

4. Then paste the command in remote terminal and run it. The output will be stored in AVRO
format in the given output directory.

Shell command

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-
streaming.jar -D mapred.reduce.tasks=0 -files avro-1.7.7.jar,avro-mapred-1.7.7-hadoop1.jar -libjars
avro-1.7.7.jar,avro-mapred-1.7.7-hadoop1.jar -file MAPPER_PATH -mapper MAPPER_PATH -input
INPUT_PATH/*.csv -output OUTPUT_PATH -outputformat
org.apache.avro.mapred.AvroTextOutputFormat

17.3Cleaning webpages
The following process was following to clean the web pages for each and every collection:

1. The web pages (that were output from Apache Nutch) are in SequenceFile format. We first
need to convert them to text file format.

hadoop jar /opt/cloudera/parcels/CDH/1lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-
streaming-2.5.0-mrl-cdh5.3.1.jar -files apache-nutch-1.9.jar -libjars apache-nutch-1.9.jar
-D mapred.reduce.tasks=0 -input
/user/cs5604s15_cluster/ebola_S_webpages/ebola_S_Crawl/segments/20150413181432/content/part-
00000/data -inputformat SequenceFileAsTextInputFormat -output
/user/cs5604s15_noise/clustering_webpage_small -mapper
org.apache.hadoop.mapred.lib.IdentityMapper

The above script takes as input the web pages for the clustering team’s collection.

32

2. Run Python script to clean the text files.

python webpageclean.py
~/clustering_webpage data/small_text_data/clustering_webpage_small/part-00000
WEBPAGES_CLEAN/clustering_small_00000_v2 webpage_new.avsc ebola_S

The above command is of format: python {Python script file} {input file} {output file} {AVRO schema for

webpages} {collection name}

3. Load output into HDFS
hadoop fs -put /WEBPAGES_CLEAN/clustering_small_00000_v2 /user/cs5604s15 noise/WEBPAGES_CLEAN/

All the small and large web page collections have been cleaned up, and they are available under the
“Juser/cs5604s15_noise/WEBPAGES_CLEAN/” folder. One can check the cleaned collections with the
command “hadoop fs -Is /user/cs5604s15_noise/WEBPAGES_CLEAN”, as shown below.

[cs5604s515_noise@nodel ~]$ hadoop fs -1s /user/cs5604s15_noise/WEBPAGES_CLEAN

Found 30 items
—-rw—-r——r——
—-rw-r——r—-—
—rw-r-—r—-—
—-rw—r——r—-—
—-rw-r——r—-—
-rw-r-——r—-—
—-rw-r——r—-—
—MW—r—r—
—rw-r-—r—-
—rw-r-—r--
—MW—-r—r—
—rw-r-—r—-—
-rw-r-—r—-—
—-W—-r—r—
-rw-r-—r--
-rw-r-——r—-—
—-rw-r——r——
-rw-r-—r--
-rw-r—r—
-W—r—pr—
-rw-r-—r--
-rw-r——r—-—
-IW—r—pr—
-rw-r-—r—-
-rw-r-——r—-—
—-rw-r——r——
-rw-r-—r—-—
-rw-r-——r—-—
—-rw-r——r—-—
-rw-r-—r—-—

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s515_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise

[cs5604515_noise@nodel ~1$ [I

cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s515_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise
cs5604s15_noise

16686151
8299499
118997565
186977392
8454196
8462670
19892415
19917217
82503774
82716142
61997309
61382817
42629815
42569518
22449398
23250237
78575447
299322794
8757982
8771493
8356503
8183090
461710605
462612082
3420783
5405302
7013519
7024837
4274191
4477940

2015-05-02
2015-05-02
2015-05-02
2015-05-02
2015-04-23
2015-04-26
2015-04-23
2015-04-26
2015-04-23
2015-04-26
2015-04-23
2015-04-26
2015-04-23
2015-04-26
2015-04-23
2015-04-26
2015-05-02
2015-05-02
2015-04-23
2015-04-26
2015-04-23
2015-04-26
2015-04-23
2015-04-26
2015-05-02
2015-05-02
2015-04-23
2015-04-26
2015-04-23
2015-04-26

20:
20:
22:
22:
16:
18:
16:
18:
16:
18:
16:
18:
16:
18:
16:
18:
22:
22:
16:
12:
16:
18:
16:
13:
22:
22:
16:
18:
16:
18:

30
30
15
15
42
05
42
05
42
05
42
05
42
05
42
05
15
15
42
26
42
05
42
17
15
15
42
05
42
05

/user/cs5604s15_noise/WEBPAGES_CLEAN/classification_small_00000_v2
/user/cs5604s15_noise/WEBPAGES_CLEAN/classification_small_00001_v2
fuser/cs5604s15_noise/WEBPAGES_CLEAN/clustering_large_00000_v1
fuser/cs5604s15_noise/WEBPAGES_CLEAN/clustering_large_00001_v1
/user/cs5604s15_noise/WEBPAGES_CLEAN/clustering_small_00000
/user/cs5604s15_noise/WEBPAGES_CLEAN/clustering_small_00000_v2
fuser/cs5604s15_noise/WEBPAGES_CLEAN/clustering_small_00001
fuser/cs5604s15_noise/WEBPAGES_CLEAN/clustering_small_00001_v2
fuser/cs5604s15_noise/WEBPAGES_CLEAN/hadoop_small_00000
fuser/cs5604s15_noise/WEBPAGES_CLEAN/hadoop_small_00000_v2
/user/cs5604s15_noise/WEBPAGES_CLEAN/hadoop_small_00001
/user/cs5604s15_noise/WEBPAGES_CLEAN/hadoop_small_00001_v2
/user/cs5604s15_noise/WEBPAGES_CLEAN/ner_small_00000
/user/cs5604s15_noise/WEBPAGES_CLEAN/ner_small_00000_v2
fuser/cs5604s15_noise/WEBPAGES_CLEAN/ner_small_00001
/user/cs5604s15_noise/WEBPAGES_CLEAN/ner_small_00001_v2
/user/cs5604s15_noise/WEBPAGES_CLEAN/noise_large_00000_v1
/user/cs5604s15_noise/WEBPAGES_CLEAN/noise_large_00001_v1
/user/cs5604s15_noise/WEBPAGES_CLEAN/noise_small_00000
/user/cs5604s15_noise/WEBPAGES_CLEAN/noise_small_00000_v2
/user/cs5604s15_noise/WEBPAGES_CLEAN/noise_small_00001
/user/cs5604s15_noise/WEBPAGES_CLEAN/noise_small_00001_v2
fuser/cs5604s15_noise/WEBPAGES_CLEAN/social_00000
/user/cs5604s15_noise/WEBPAGES_CLEAN/social_00000_v2
/user/cs5604s15_noise/WEBPAGES_CLEAN/solr_large_00000_v1
fuser/cs5604s15_noise/WEBPAGES_CLEAN/solr_large_00001_v1l
/user/cs5604s15_noise/WEBPAGES_CLEAN/solr_small_00000
/user/cs5604s15_noise/WEBPAGES_CLEAN/solr_small_00000_v2
fuser/cs5604s15_noise/WEBPAGES_CLEAN/solr_small_00001
/user/cs5604s15_noise/WEBPAGES_CLEAN/solr_small_00001_v2

Figure 8: The size of cleaned web pages collection on HDFS

33

18 Developer Manual

18.1Webpage crawling with Python scripts

As the noise reduction team, we have been given a small tweet collection about the event “shooting”.
With the Python script provided by the RA, Mohamed Magdy, we are able to crawl each of the
webpages that have a URL appearing in the set of tweets. We ran the script on a Macbhook with Python
2.7.8 and Anaconda 2.1.0 installed. The procedures are listed below:

1. Download Mohamed'’s script (please refer to Appendix C) and put it in the same directory as the

small collection.

2. Modify the script, change line 17 from “thresh = 10” to “thresh = 0” to count the total number of

unique URLs in the collection. Run the script by using the command “python

tweet_URL_archivingFile.py z540t.csv”.
3. Terminate the program when it starts to send a connection request. See the figure below

=» CS5604 python tweet_URL_archivingFile.py z54@t.csv
tweets is read from File

short Urls extracted: 47389

cleaned short URLs: 47365

Unique short URLs: 42932

Freq short URLs (>0): 42932
//anaconda/lib/python2.7/site-packages/requests/packages/urllib3/c
certificate verification is strongly advised. See: https://urllib

InsecureRequestWarning)
Figure 9: Total amount of URLs in small shooting collection

4. We find that there are in total 42932 unique URLs appearing in the small tweet collection. Due
to the limitation on the performance of our computers and network bandwidth, we will only
crawl the web pages that have a URL appearing more than 5 times in the set. However, on the
cluster, this need not be the case.

5. Modify the script, change line 17 from “thresh = 0” to “thresh = 5”.

6. Rerun the script, using the same command “python tweet_URL_archivingFile.py z540t.csv”.
Wait until the program finishes running, which takes about 5 minutes, as shown in the figure

below:

34

=» CS5604 python tweet_URL_archivingFile.py z54@t.csv
tweets is read from File

short Urls extracted: 47389

cleaned short URLs: 47365

Unique short URLs: 42932

Freq short URLs (>5): 196

//anaconda/lib/python2.7/site-packages/requests/packages/urllib3/connectionpool
certificate verification is strongly advised. See: https://urllib3.readthedocs
InsecureRequestWarning)
<class ‘requests.exceptions.ReadTimeout'> http://t.co/0CTjV7kck2
Unique Orig URLs expanded: 85
Bad URLs: 6
Webpages text saved

7.

Figure 10: Output from crawling web pages

In total 85 unique web pages are successfully collected and stored within the same directory of

the script.
T 78.txt Today 1:11 PM 17 KB Plain...cument
T 79.txt Today 1:11 PM 1 KB Plain...cument
7 80.txt Today 1:11 PM 35 KB Plain...cument
© 8l.txt Today 1:11 PM 5 KB Plain...cument
T 82.txt Today 1:11 PM 47 KB Plain...cument
T 83.txt Today 1:11 PM 5 KB Plain...cument
T 84.txt Today 1:11 PM 8 KB Plain...cument
© 85.txt Today 1:11 PM 8 KB Plain...cument
" seedsURLs_z540t.txt Today 1:11 PM 7 KB Plain...cument
~ short_origURLsMapping_z540t.txt Today 1:11 PM 12 KB Plain...cument
" shortURLs_z540t.txt Today 1:07 PM 1.1 MB Plain...cument

tweet_URL_archivingFile.py Today 1:07 PM
2540t.csv Feb 12, 2015 1:23 PM 8.3 MB comm...values

Figure 11: Result after running the Python script

18.2Loading Web page Collection to HDFS

Please execute the following instructions in order to load the web page collection into HDFS:

1.

Download (Shooting/Charlie Hebdo) collection called z540t.csv at
http://nick.dlib.vt.edu/data/CS5604515/2540t.csv
Download Python script to extract URLs called tweet_shortToLongURL_File.py at
https://scholar.vt.edu/access/content/group/5508d3d6-c97d-437f-a09d-
2cfd43828a9d/Tutorials/tweet_shortToLongURL_File.py
Execute Python script:

a. python tweet_shortToLongURL_File.py z540t.csv

35

b. This script outputs a file with a list of URLs that we can then use as a seed file for Apache
Nutch: seedsURLs_z540t.txt
Download Apache Nutch (as per instruction provided in the Tutorial):
https://scholar.vt.edu/access/content/group/5508d3d6-c97d-437f-a09d-
2cfd43828a9d/Tutorials/Nutch%20Tutorial.pdf)
Modify crawl script (in directory bin/crawl)
a. Comment out section that indexes the web pages into Solr
Execute Nutch
a. bin/crawl ../urls/ TestCrawl4/ http://preston.dlib.vt.edu:8980/solr/1 1
i urls/ is the directory where the seed URL text file is.
ii. TestCrawl4/ is the directory where the output is stored
iii. http://prestion.dlib.vt.edu:8980/solr is the Solr instance that needs to be
provided regardless of whether the output is indexed on Solr or not.
iv. 1 is the number of times you want to attempt to connect to the URLs
b. The web page file can be found in directory: Snutch-
1.9/TestCrawl4/segments/20150320180211/content/part-0000
c. Upload File to Hadoop Cluster
i scp part-0000 cs5604s15_noise@hadoop.dlib.vt.edu:/home/cs5604s15_noise/
d. Upload File to HDFS

i hadoop fs -copyFromLocal /home/cs5604s15 noise/*
/user/cs5604s15_noise/input

18.3Solr Installation and data-importing

To get a better understanding of the IDEAL project and information retrieval systems, we want to install

and practice with Solr on our local machines. We installed Solr on a PC with Windows 7 and indexed the

collection (CSV file) by following procedures based on the Solr Quickstart Tutorial [6]:

1.

Download Java version 1.7 64-bit installation file (jdk-7u75-windows-x64.exe) from Oracle
website [3].

Install Java and modify the related environment variables (PATH, JAVA_HOME and CLASSPATH).
Download Solr installation file (solr-4.10.3.zip) from Apache Solr website [4] and unzip it in
“D:/Solr”.

Under the command-line tool (cmd.exe), enter the Solr directory, and run the command
“bin/solr.cmd start -e cloud -noprompt” to lunch Solr

Check if the Solr is running by visiting “http://localhost:8983/solr/.” with a web-browser.

Edit the environment variable CLASSPATH, add “;D:/Solr/dist/solr-core-4.10.3.jar".

Copy the collection CSV file, and the web pages just crawled into directory “D:/Solr/data”.

36

8. Index the small collection by running the command “curl
'http://localhost:8983/solr/update?commit=true&separator=%09' -H 'Content-
type:application/csv' --data-binary @z4t.csv” in command line tool.

9. Index the web pages by running the command “java -Dauto org.apache.solr.util.SimplePostTool
data/*.txt”.

10. Check if the collection has been indexed by visiting the link “http://localhost:8983/solr/browse”.

As seen in the figure below, the collection has been imported.

&« C A [localhost:8983/solr/browse

]/
Apache "
ol
vy

Solr

Type of Search [Simple] [S patial] [Glou D By]

Field Facets

cat

manu_exact

content_type

author_s

Query Facets

Range Facets

Pivot Facets

sing (37001)

clusters

Run Solr with java -

Dsolr.clustering.enabled=true -

jar start jar to see clustered
search results.

Find:

Boost by Price

TthWoman More Like This
Id: 552943156447440897
Price:

Features

In Stock:

Lyndon_RSA More Like This
Id: 552943155231076353
Price

Features:

In Stock

ChrystalDimitra More Like This
Id: 552943155121635328

Price:

Features

In Stock:

BtSPAK More Like This

Id: 552943154098634752
Price

Features

In Stock

37001 results found in 194 ms Page 1 of 3701

Figure 12: Screenshot displaying “Shooting” collection

37

This small collection contains 36917 tweets about the “CharlieHebdo attack”, so we can practice
normalizing text, and classifying text using those tweets. Also, we can try to unshorten each tiny URL in

those tweets.

18.4Hadoop and Mahout Installation

We initially installed Mahout to understand the input format for all of the machine learning
implementations that were being used by other teams. We were able to experiment freely with our own
installation. Following is a list of the procedures to build a Hadoop+Mahout environment on a virtual
machine with a Windows 7 64-bit PC as the host.
1. Download the virtualization software VirtualBox version 4.3.22 (VirtualBox-4.3.22-98236-
Win.exe) from Oracle VM VirtualBox website, https://www.virtualbox.org/, and install it.
2. We will use the open source Cloudera Distribution Including Apache Hadoop (CDH) as our
Hadoop platform. Download the CDH demo, a VirtualBox image which has CentOS 6.4 and CHD
5.3 already built in, from Cloudera Quick-start webpage,
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html,
and unzip it.

3. From the VirtualBox menu, import the OVF file which is just unzipped.

38

Eile Machine Help

@ % =

New Settings Start

card

@ General

Name: cloudera-quickstart-vm=5. 3. 0-0-
virtualbox
Operating System: Red Hat (84 bit)

m System

Base Memory: 4096 MEB
Boot Order: Hard Disk, CD/DVD
Acceleration: VT-x/AMD-V, Nested Paging, PAE/WX

Display

Video Memory: 8 MB
Remote Desktop Server: Disabled
Video Capture: Disabled

Storage

Controller: IDE Controller
IDE Primary Master:
62.50 GB)

IDE Secondary Master: [Co/0vD] BEEE

(B Audio

Disabled

AW e .

(@) Snapshots

@ Preview

cloudera—
quickstart—
vin—>5. 3. 0-0-
virtualbox

cloudera—quickstart-vm=5. 3. 0-0-virtualbox-diskl. vmdk (Normal,

Figure 13: Import the Hadoop virtual machine into Virtual Box

4. Turn on the virtual machine, check the Node Manager, and see that the Hadoop is running.

39

&% Applications Places System (@) & o) @ Frifeb13,02:29 cloudera

Access documents, folders and network places Mozilla Firefox
File Edit View History Bookmarks Tools Help

Z o x
(] http://quickstar...udera:8042/node | <k | v
€ | quickstart.cloudera:304 e v 2| [R

{iCloudera { jHue [@jHadoopv [@JHBasev [@jimpalav [EJSparkv [;Solr {jOozie { ;Cloudera Manager [}Getting Started

@ Mozilla Firefox is free and open source software from the non-profit Mozilla Foundation. Know your rights...| 3

CTiEREED

» ResourceManager NodeManager information

k ~ NodeManager Total Vmem allocated for 16.80 GB
Containers

NodeHealthReport
Node Manager Version: 2.5.0-cdhs.3.0 from f19097cda2536daldf41ff6713556c8f7284174d by jenkins source checksum
beabbd9Bbe48027c8e2668ccad78b91 on 2014-12-17T03:11Z
Hadoop Version: 2.5.0-cdh5.3.0 from f19097cda2536daldf41ff6713556c8f7284174d by jenkins source checksum
9c4267e6915cf5bbd4c6e08be54d54e0 on 2014-12-17T03:05Z

|} Node Information
| Ustof Vmem enforcement enabled false

Applications Total Pmem allocated for 8 GB

List of Containers Container

Pmem enforcement enabled false
ol Total VCores allocated for &

| Containers
g NodeHealthyStatus true
? LastNodeHealthTime Fri Feb 13 02:22:22 PST 2015
r

About Apache Hadoop

| @ Mozilla Firefox | @

Figure 14: Hadoop is running on the virtual machine

5. Then we install Mahout on CentOS, using the command “sudo yum install mahout”.
6. Use the executable /usr/bin/mahout to run our analysis.

Now we’ve installed the Hadoop and Mahout on our virtual machine. Further configurations will be

included in future reports.

18.5Setting up a 6-node Hadoop cluster

In order to practice coding on Hadoop, we tried to build a 6-node Hadoop cluster with
ClouderaManager.
Hardware specifications:

Number of nodes: 5 Hadoop Nodes and 1 Manager Node

Quad-core CPU on each node, 24 cores in total.

48GB memory in total, 8GB on each node

One 750GB enterprise-level hard drive on each node

Nodes are connected by a 8-port gigabit ethernet switch.

Master node has two network cards, one for public access, one for internal network.
Procedures:

1. For each node, install CentOS 6.5 as the operating system.

40

N oo ok

9.

10.

In order to use ClouderaManager, selinux has to be disabled on manager node by editing
/etc/selinux/config.

For each Hadoop (slave) node, the iptables firewall is disabled to avoid
NoRouteToHostException.

The ntp service need to be enabled to synchronize time.

For all nodes, sshd server is enabled, as well as ssh root login.

For each node, the GUI had to be turned off by editing /etc/inittab.

For the manager (master) node, the iptables firewall is enabled, and all incoming traffic from

public interface is denied except through Ports 22 and 50030, which corresponds to SSH service

and Hadoop JobTracker service. Also, traffic through Ports 7180 should be accepted to allow

controlling the services through cloudera on master node.

A forwarding rule has been set up with NAT on master node so that slave nodes can get access

to internet.
For each Hadoop node, disable NetworkManager service and enable network service.

Download and install ClouderaManager with the command

wget http://archive.cloudera.com/cm5/installer/latest/cloudera-manager-installer.bin

chmod u+x cloudera-manager-installer.bin;sudo ./cloudera-manager-installer.bin

11.

12.

13.

14.

15.

16.

17.

Manually assign an IP address, Gateways, etc. for each node.

Use a web browser to install CDH by visiting the manager node through port 7180.

In “License” section, select “Cloudera Express” option.

In “Specify hosts” section, type in the IP addresses of each node in the cluster. The installation
program will automatically install Hadoop on each node.

Select the basic services (HDFS, MapReduce, YARN, Zookeeper, Oozie, Hive, Pigs, etc.) and the
HBase service.

Assign the role for each node, here we will select the master node as the NameNode,

SecondaryNameNode, and the HBase Master, and select the five slave nodes as the Data Nodes

and HBase Region severs. Then manually select the corresponding services for each node.

Waiting for the installation to complete.

41

=

Cluster Setup

€« C A [} 192.168.0.104:7180/cmf/clusters/1/express-add-services/index#step=commandDetailsStep > O M =
Progress
Command Context Status Started at Ended at
e First Run In Progress Apr 13, 2015 10:29:22 PM EDT

Command Progress

Completed 6 of 24 steps.

/ Initializing ZooKeeper Service
Completed 1 steps successfully.

J Starting ZooKeeper Service
Completed 1 steps successfully.
Details &

«/ Checking if the name directories of the NameNode are empty. Formatting HDFS only if empty.
Successfully formatted NameNode.
Details

/ Starting HDFS Service
Successfully started HDFS service
Details &

,/ Creating HDFS /tmp directory
Successfully created HDFS directory /tmp.
Details

J Creating HBase root directory
Successfully created HDFS directory.
Details

Starting HBase Service
Details

Creating MR2 job history directory

Creating NodeManager remote application log directory

M Continue

=
vy}
o
o
=

Figure 15: Hadoop installation

18. Here we skipped several tiny issues that may cause problems, since they can be easily solved by
looking up ClouderaManager documants.

19. Run the PiTest and WordCount programs to examine if the installation is successful.

42

19 References

[1] Steven Bird, Ewan Klein, and Edward Loper, Natural language processing with Python. O'Reilly
Media, 2009.

[2] NLTK project, NLTK 3.0 documentation. http://www.nltk.org, accessed on 02/05/2015.

[3] Oracle, Java SE Development Kit 7 Downloads.
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html, accessed
on 02/05/2015.

[4] The Apache Software Foundation, Solr Download. http://lucene.apache.org/solr/mirrors-solr-latest-
redir.html, accessed on 02/05/2015.

[5] Leonard Richardson, Beautiful Soup Documentation.
http://www.crummy.com/software/BeautifulSoup/bs4/doc/, accessed on 02/05/2015.

[6] The Apache Software Foundation, Solr Quick Start. http://lucene.apache.org/solr/quickstart.html,
accessed on 02/05/2015.

[7] Christopher Manning, Prabhakar Raghavan, and Hinrich Schiitze, Introduction to information
retrieval. Vol. 1. Cambridge: Cambridge University Press, 2008.

[8] Alex J. Champandard, The Easy Way to Extract Useful Text from Arbitrary HTML. http://ai-
depot.com/articles/the-easy-way-to-extract-useful-text-from-arbitrary-html/, accessed on 02/05/2015
[9] HossMan, YonikSeeley, OtisGospodnetic, et al. Solr: Analyzers, Tokenizers, and Token Filters.
https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters accessed on 02/03/2015

[10] Apache Infrastructure Team, Solr: Solr Schema.
http://svn.apache.org/repos/asf/lucene/dev/branches/lucene_solr_3_6/solr/example/solr/conf/schem
a.xml accessed on 02/03/2015

[11] Joseph Acanfora, Stanislaw Antol, Souleiman Ayoub, et al. Vtechworks: CS4984 Computational
Linguistics. https://vtechworks.lib.vt.edu/handle/10919/50956 accessed on 02/05/2015

[12] Arjun Chandrasekaran, Saurav Sharma, Peter Sulucz, and Jonathan Tran, Generating an Intelligent
Human-Readable Summary of a Shooting Event from a Large Collection of Webpages Report for Course
CS4984. https://vtechworks.lib.vt.edu/handle/10919/51137 accessed on 02/05/2015

[13] Apache Software Foundation, Mahout. http://mahout.apache.org/, accessed on 02/13/2015.

[14] Edureka, Apache Mahout Tutorial,
https://www.youtube.com/watch?v=zvfKH9Yb0s0&list=PL900oVrP1hQOGbSzIhdjb47SFMDc6bK6BW,
accessed on 02/13/2015.

43

[15] Cloudera, Cloudera Installation and Upgrade.
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/PDF/cloudera-
installation.pdf, accessed on 02/13/2015.

[16] Steffen Nissen, Reference Manual for FANN 2.2.0. http://leenissen.dk/fann/html/files/fann-h.html,
accessed on 02/13/2015.

[17] Ari Pollak, Include OutputFormat for a specified AVRO schema that works with Streaming.

https://issues.apache.org/jira/browse/AVRO-1067, accessed on 03/29/2015.

[18] Michael G. Noll, Using AVRO in MapReduce Jobs With Hadoop, Pig, Hive.
http://www.michael-noll.com/blog/2013/07/04/using-avro-in-mapreduce-jobs-with-hadoop-pig-hive/,
accessed on 03/29/2015.

[19] Arc90, Readability, http://lab.arc90.com/2009/03/02/readability/, accessed on 05/05/2015.

[20] Nakatani Shuyo, Language Detection Library for Java, http://www.slideshare.net/shuyo/language-
detection-library-for-java, accessed on 05/06/2015.

[21] Python Software Foundation, Regular expressions, https://docs.python.org/2/library/re.html,
accessed on 02/05/2015

[22] Python Software Foundation, UUID, https://docs.python.org/2/library/uuid.html, accessed on
02/05/2015

[23] Google, List of bad words, http://fffff.at/googles-official-list-of-bad-words/, accessed on
05/01/2015

44

Appendix A: AVRO Schema for Tweets and Web pages

AVRO schema for tweet collections

{"namespace": "cs5604.tweet.NoiseReduction”,

"type": "record",

"name": "TweetNoiseReduction",

"fields": [

"name": "doc_id", "type": "string"},

{"doc": "original", "name": "tweet_id", "type": "string"},
{"doc": "original", "name": "text_clean", "type": "string"},
{"doc": "original", "name": "text_original", "type": "string"},
{"doc": "original", "name": "created_at", "type": "string"},
{"doc": "original", "name": "user_screen_name", "type": "string"},
{"doc": "original", "name": "user_id", "type": ["string", "null"]},
{"doc": "original", "name": "source", "type": ["string", "null"]},
{"doc": "original", "name": "lang", "type": ["string", "null"]},
{"doc": "original", "name": "favorite_count", "type": ["int", "null"]},
{"doc": "original", "name": "retweet_count", "type": ["int", "null"]},
{"doc": "original", "name": "contributors_id", "type": ["string", "null"]},
{"doc": "original", "name": "coordinates", "type": ["string", "null"]},
{"doc": "original", "name": "urls", "type": ["string", "null"]},
{"doc": "original", "name": "hashtags", "type": ["string", "null"]},
{"doc": "original", "name": "user_mentions_id", "type": ["string", "null"]},
{"doc": "original", "name": "in_reply to_user_id", "type": ["string", "null"]},
{"doc": "original", "name": "in_reply_ to_status_id", "type": ["string", "null"]}

]

}

AVRO schema for web pages

{"namespace": "cs5604.webpage.NoiseReduction”,
"type": "record",
"name": "WebpageNoiseReduction",
"fields": [
"name": "doc_id", "type": "string"},
{"doc": "original", "name": "text_clean", "type": ["null", "string"], "default": null},
{"doc": "original", "name": "text_original", "type": ["null", "string"], "default":
null},
{"doc": "original", "name": "created_at", "type": ["null", "string"], "default":
null},
{"doc": "original", "name": "accessed_at", "type": ["null", "string"], "default":
null},

45

{"doc": "original", "name": "author", "type": ["null", "string"], "default": null},
{"doc": "original", "name": "subtitle", "type": ["null", "string"], "default": null},

{"doc": "original", "name": "section", "type": ["null", "string"], "default": null},

{"doc": "original", "name": "lang", "type": ["null", "string"], "default": null},

{"doc": "original", "name": "coordinates", "type": ["null", "string"], "default":
null},

{"doc": "original", "name": "urls", "type": ["null", "string"], "default": null},
{"doc": "original", "name": "content_type", "type": ["null", "string"], "default":
null},

{"doc": "original", "name": "text_clean2", "type": ["null", "string"], "default":
null},

{"doc": "original", "name": "collection", "type": ["null", "string"], "default": null},

{"doc": "original", "name": "title", "type": ["null", "string"], "default": null},

{"doc": "original"”, "name": "domain", "type": ["null", "string"], "default": null},

{"doc": "original"”, "name": "url", "type": ["null", "string"], "default": null},
4/22/2015

{"doc": "original", "name": "appears_in_tweet_ids", "type": ["null", "string"],
"default": null} 4/21/2015
1}

Appendix B: Source code of cleaning script

Python script for tweet cleanup

#!/usr/bin/env python

coding: utf-8

import sys

import re

import avro

import avro.schema

from avro.datafile import DataFileReader, DataFileWriter
from avro.io import DatumReader, DatumWriter
import json

from nltk.stem.lancaster import LancasterStemmer
import time

import uuid

st = LancasterStemmer()
__doc_id__ = 'charlie_hebdo_S'
__stop_word__ = [u'i', u'me', u'my', u'myself', u'we', u'our', u'ours’,

u'ourselves', u'you', u'your', u'yours', u'yourself', u'yourselves', u'he’,

u'him', u'his', u'himself', u'she', u'her', u'hers', u'herself', u'it',
u'its’,

u'itself', u'they', u'them', u'their', u'theirs', u'themselves', u'what',
u'which',

u'who', u'whom', u'this', u'that', u'these', u'those', u'am', u'is"',
u'are', u'was',

u'were', u'be', u'been', u'being', u'have', u'has', u'had', u'having',
u'do', u'does’,

u'did', u'doing', u'a', u'an', u'the', u'and', u'but', u'if', u'or’,
u'because', u'as’,

u'until', u'while', u'of', u'at', u'by', u'for', u'with', u'about’,
u'against', u'between’,

u'into', u'through', u'during', u'before', u'after', u'above', u'below’,
u'to', u'from',

u'up', u'down', u'in', u'out', u'on', u'off', u'over', u'under', u'again',
u'further',

u'then', u'once', u'here', u'there', u'when', u'where', u'why', u'how',
u'all', u'any',

u'both', u'each', u'few', u'more', u'most', u'other', u'some', u'such’,
u'no', u'nor',

u'not', u'only', u'own', u'same', u'so', u'than', u'too', u'very', u's’,
u't', u'can',

u'will', u'just', u'don', u'should', u'now']

with open('profanity_en.txt') as f:
__profanity_words__ = f.read()[:-1].split('\n")

47

f.close()

def validate(url): # task 4
return 1

def cleanup(tweet):
task 1
remove emoticon
try: # Wide UCS-4
EmoRegexp = re.compile(u'["
u'\U0OO1F300-\UPRO1F64F"
u'\U0PO1F680-\UPROLF6FF "'
u'\u2600-\u26FF\u2700-\u27BF]+",
re.UNICODE)
except re.error: # Narrow UCS-2
EmoRegexp = re.compile(u' ("
u'\ud83c[\udfeo-\udfff]|"
u'\ud83d[\udceo-\ude4f\ude8o-\udeff]|"
u'[\u2600-\u26FF\u2700-\u27BF])+",
re.UNICODE)
tweet = EmoRegexp.sub(' ', tweet)
tweet = re.sub(r' \'s', ' s', tweet)
tweet = re.sub(r'\'s', "', tweet)
task 2
Remove non-alphanumeric characters
HashtagRegexp = r'(?<="|(?<=["a-zA-20-9-\.]))#([A-Za-z_]+[A-Za-2z0-9_]+)"
UserhandleRegexp = r'(?<="|(?<=["a-zA-Z0-9-\.]))@([A-Za-z_]+[A-Za-z0-9_]+)"
UrlRegexp = r'(?P<url>https?://[a-zA-Z0-9\./-]+)"
Hashtaglist = re.findall(HashtagRegexp, tweet)
for hashtag in Hashtaglist:
tweet = tweet.replace('#' + hashtag, '')
Userhandlelist = re.findall(UserhandleRegexp, tweet)
for userhandle in Userhandlelist:
tweet = tweet.replace('@' + userhandle, '")
url list = re.findall(UrlRegexp, tweet)
for url in url_list:
tweet = tweet.replace(url, '")
tweet = re.sub(r'([*\s\w]|_)+', "', tweet) # task 5 included
clean_tweet_only = tweet
for hashtag in Hashtaglist:
tweet = tweet + ' #' + hashtag
for userhandle in Userhandlelist:
tweet = tweet + ' @' + userhandle
task 3
validating url
ValidUrlRegexp = re.compile(r'~(?:http|ftp)s?://"' # http:// or https://
domain...

48

r'(?:(?:[A-Z20-9](?:[A-Z20-9-1{0,61}[A-Z0-9])?\.)+(2: [A-
Z1{2,6}\.?|[A-Z0-9-1{2, }\.»)|"
r'localhost|' # localhost...
...or ip
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})"
r'(?::\d+)?" # optional port
r'(?:/2|[/?]\S+)$"', re.IGNORECASE)
for url in url_list:
if validUrlRegexp.match(url) and validate(url):

tweet = tweet + ' ' + url
tweet = re.sub(' +', ' ', tweet)
clean_tweet_only = ''.join(
[w if len(w) > © else '' for w in clean_tweet_only])

if len(clean_tweet_only) == 0:
return (None, None, None, None, None, None)

clean_tweet_only = ''.join(
[w if ord(w) < 128 else ' ' for w in clean_tweet_only])
clean_tweet_only = ' '.join(

[word for word in clean_tweet_only.split(' ') if word.lower() not in __stop_word__])

ProfanityRegexp = re.compile(

r'(2<="|(?<=["a-2zA-20-9-\.1)) (' + '|'.join(__profanity_words__) + r')(?=$|\W)",
re.IGNORECASE)
clean_tweet_only = re.sub(' +', ' ', clean_tweet_only)

clean_tweet_only = re.sub(r'\n', ', clean_tweet_only)
clean_tweet_only = re.sub('~RT |~ | $', "', clean_tweet_only)
clean_tweet_2 = re.sub(ProfanityRegexp, '', clean_tweet_only)
clean_tweet_only = re.sub(

ProfanityRegexp, '{"profanity"}', clean_tweet_only)
clean_tweet_2 = ' '.join([st.stem(word.lower())

for word in clean_tweet_2.split(' ')])

clean_tweet_2 re.sub(" +', ' ', clean_tweet_2)
clean_tweet_2 = re.sub('~ | $', '', clean_tweet_2)
return (tweet, clean_tweet_2, clean_tweet_only, Hashtaglist, Userhandlelist, url_list)

def checknone(str): # convert empty string to None
if str == "' or str == u'":
return None
else:
return str

def avrocleaning(filenamel, filename2, filename3, doc_id):
try:
InFile = open(filenamel, 'r")
OutFile = open(filename2, 'w')
ShemaFile = open(filename3, 'r")
except IOError:
print 'please check the filenames in arguments'

49

return ©
reader = DataFileReader(InFile, DatumReader())
schema = avro.schema.parse(ShemaFile.read())
writer = DataFileWriter(OutFile, DatumWriter(), schema)
tweet_count = 0
clean_tweet_count = 0
for full_tweet_json in reader:
tweet_count += 1
if tweet_count % 25000 == 0:
continue
if tweet_count > 100: break
remove leading and trailing whitespace
try:
print full_tweet_json
full tweet = json.loads(json.dumps(full_tweet_json))

except:
continue

only select tweets in English

if full_tweet[u'iso_language code'] != u'en':
print 'not English’
continue

rawtweet = full_tweet[u'text'] # original tweet
(clean_tweet, clean_tweet_2, clean_tweet_only, Hashtaglist,
Userhandlelist, url_list) = cleanup(rawtweet)
if clean_tweet is None:
continue
clean_tweet_count += 1
full _clean_tweet = {}
username = full_tweet[u'from_user']
tweetID = full tweet[u'id']
user_id full tweet[u'from_user_id']
timestamp = str(full_tweet[u'time']) # original 'time' is of type int
source = checknone(full_tweet[u'archivesource'])
in_reply to_user_id = checknone(full_tweet[u'to_user_id'])
geocordl, geocord2 = full_ tweet[
u'geo_coordinates_0'], full_tweet[u'geo_coordinates_1'"]
full clean_tweet['tweet_id'] = tweetID.encode('ascii', 'ignore')
unique_id = uuid.uuid3(uuid.NAMESPACE_DNS, user_id.encode('ascii', 'ignore') +
' ' + tweetID.encode('ascii', "ignore'))
full_clean_tweet['doc_id'] = doc_id + '--' + str(unique_id)
full_clean_tweet['text_clean'] = clean_tweet_only.encode(
'ascii', 'ignore')
full_clean_tweet['text_clean2'] = clean_tweet_2.encode(
'ascii', 'ignore')
full _clean_tweet['text_original'] = rawtweet
full clean_tweet['created_at'] = timestamp.encode('ascii', 'ignore')
full_clean_tweet['user_screen_name'] = username
full clean_tweet['user_id'] = user_id.encode('ascii', 'ignore')
full_clean_tweet['lang’'] = 'English'
full _clean_tweet['collection'] = doc_id

50

if float(geocordl) != 0.0 or float(geocord2) != 0.0:
coordinate = '%s,%s' % (geocordl, geocord2)
full clean_tweet['coordinates'] = coordinate.encode(
'ascii', 'ignore')
if url_list != []:
full_clean_tweet['urls'] = '|'.join(
url_list).encode('ascii', 'ignore'")
if Userhandlelist != []:
full_clean_tweet['user_mentions_id'] = '|'.join(
Userhandlelist).encode('ascii', 'ignore')
if Hashtaglist != []:
full_clean_tweet['hashtags'] = '|'.join(
Hashtaglist).encode('ascii', "ignore')
if source is not None:
full clean_tweet['source'] = source.encode('ascii', ‘'ignore')
if in_reply_to_user_id is not None:
full clean_tweet['in_reply to_user_id'] = in_reply_to_user_id.encode(
'ascii', 'ignore')
print full_clean_tweet
writer.append(full_clean_tweet)
reader.close()
ShemaFile.close()
writer.close()
print filenamel + has been cleaned up'
print 'total tweets: %d' % tweet_count
print 'cleaned tweets: %d' % clean_tweet_count
return 1

def main(argv):
try:
InputFile = argv[1]
OutputFile = argv[2]
SchemaFile = argv[3]
except IndexError:
print 'Please specify the tweets input avro filename, output avro filename and avro
schema filename'
return ©
try:
doc_id = argv([4]
except IndexError:
doc_id = __doc_id__
return avrocleaning(InputFile, OutputFile, SchemaFile, doc_id)

if __name__ == '__main__':
start_time = time.time()
main(sys.argv)

print("--- %s seconds ---\n\n" % (time.time() - start_time))

51

sys.exit(1)

Python script for web page cleanup

#!/usr/bin/env python
coding: utf-8

import sys

from readability.readability import Document
import re

from bs4 import BeautifulSoup

import avro

import avro.schema

from avro.datafile import DataFileWriter
from avro.io import DatumWriter

from nltk.stem.lancaster import LancasterStemmer
from urlparse import urlparse

from langdetect import detect_langs

import uuid

import time

st = LancasterStemmer()
__doc_id__ = 'charlie_hebdo_S'
__stop_word__ = [u'i', u'me', u'my', u'myself', u'we', u'our', u'ours’,

u'ourselves', u'you', u'your', u'yours', u'yourself', u'yourselves', u'he’,

u'him', u'his', u'himself', u'she', u'her', u'hers', u'herself', u'it',
u'its’,

u'itself', u'they', u'them', u'their', u'theirs', u'themselves', u'what',
u'which',

u'who', u'whom', u'this', u'that', u'these', u'those', u'am', u'is"',
u'are', u'was',

u'were', u'be', u'been', u'being', u'have', u'has', u'had', u'having',
u'do', u'does’,

u'did', u'doing', u'a', u'an', u'the', u'and', u'but', u'if', u'or’,
u'because', u'as’,

u'until', u'while', u'of', u'at', u'by', u'for', u'with', u'about’,
u'against', u'between’,

u'into', u'through', u'during', u'before', u'after', u'above', u'below’,
u'to', u'from',

u'up', u'down', u'in', u'out', u'on', u'off', u'over', u'under', u'again',
u'further',

u'then', u'once', u'here', u'there', u'when', u'where', u'why', u'how',
u'all', u'any',

u'both', u'each', u'few', u'more', u'most', u'other', u'some', u'such’,
u'no', u'nor',

52

u'not', u'only', u'own', u'same', u'so', u'than', u'too', u'very', u's’,
u't', u'can',
u'will', u'just', u'don', u'should', u'now']

with open('profanity_en.txt') as f:
__profanity_words__ = f.read()[:-1].split('\n")
f.close()

def cleanblankspaces(clean_contento):
clean_content = clean_content®
clean_content = re.sub(' . ', '. ', clean_content)
clean_content = re.sub(' (,|;) ', ', ', clean_content)
clean_content = re.sub(' +', ' ', clean_content)
clean_content = re.sub('~ | $', '', clean_content)

return clean_content

def webcontentcleanup(content):
UrlRegexp = r'(?P<url>https?://[a-zA-Z0-9\./-]+)"
ProfanityRegexp = re.compile(
r'(2<="|(?<=["a-zA-20-9-\.1)) (' + '|'.join(__profanity_words__) + r')(?=$|\W)",
re.IGNORECASE)
url list = re.findall(UrlRegexp, content)
for url in url_list:

content = content.replace(url, '")
clean_content_only = ' '.join(

[word for word in content.split(' ') if word.lower() not in __stop_word__])
clean_content_2 = re.sub(ProfanityRegexp, '', clean_content_only)
clean_content_only = re.sub(ProfanityRegexp, '{"profanity"}', clean_content_only)
clean_content_2 = ' '.join([st.stem(word)

for word in clean_content_2.split(' ')])
clean_content_only = cleanblankspaces(clean_content_only)
clean_content_2 = re.sub(r'([*\s\w]|_)+', '', clean_content_2)
clean_content_2 = cleanblankspaces(clean_content_2)
url_list_str = '|'.join(url_list)
return (clean_content_only, clean_content_2, url_list_str)

def avrocleaning(filenamel, filename2, filename3, doc_id):
try:
InFile = open(filenamel, 'r")
OutFile = open(filename2, 'w')
SchemaFile = open(filename3, 'r')
fp = open('test.dat’, 'w')
except IOError:
print 'please check the filenames in arguments'
return ©
raw_text_all = InFile.read().decode('utf8")

53

InFile.close()
schema = avro.schema.parse(SchemaFile.read())
writer = DataFileWriter(OutFile, DatumWriter(), schema)
regex_raw_webpage = re.compile(
'url:.*?contentType:.*?Content:.*?Version: -1', re.DOTALL)
regex_webpage = re.compile('Content:.*Version: -1', re.DOTALL)
regex_url = re.compile(r'(?<=url:)http.*")
regex_contentType = re.compile(r'(?<=contentType:).*")
regex_rubbish = re.compile('http.*Version: -1")
webpages = re.findall(
regex_raw_webpage, raw_text_all + '\nhttp:TO_FIND_THE_LAST_WBBPAGE_ Version: -1")
clean_webpage_count = ©
html_file_count = @
contentTypeAll = {}
languageAll = {}
for raw_text in webpages:
url = re.findall(regex_url, raw_text)[0].strip()
contentType = re.findall(regex_contentType, raw_text)[0].strip()
if contentType not in contentTypeAll:
contentTypeAll[contentType] = 1
else:
contentTypeAll[contentType] += 1
if contentType.find('html") < @:
continue
html_file_count += 1
raw_text = re.findall(regex_webpage, raw_text)[0]
raw_text = re.sub(regex_rubbish, '', raw_text)
readable_article = Document(raw_text).summary()
readable_title = Document(raw_text).short_title()

readable_title = "'.join(
[i if ord(i) < 128 else ' ' for i in readable_title])
url = ''.join([i if ord(i) < 128 for i in url])
url = url.decode("utf8")
readable_title = re.sub(' +', ' ', readable_title)

soup = BeautifulSoup(readable_article)
texts = soup.findAll(text=True)

all text = ' '.join(texts).strip()
try:

lan = str(detect_langs(all_text)[0]).split(':")[0]
except:

continue

if lan not in languageAll:
languageAll[lan] =1
else:
languageAll[lan] += 1
if lan I= 'en':
continue
all text = all_text.replace('\r\n', " ")
all text = all_text.replace('\n', ' ")
all text = all_text.replace('\t', ' ")

54

def

all text "".join([i if ord(i) < 128 else ' ' for i in all_text])
all text = re.sub(' +', ' ', all text)
(clean_content_only, clean_content_2, url_list str) = webcontentcleanup(all_text)
print clean_content_2
domain = '{uri.netloc}'.format(uri=urlparse(url))
webpage_id = str(uuid.uuid3(uuid.NAMESPACE_DNS, url.encode('ascii', "ignore')))
webpage_json = {}
webpage_json["doc_id"] = doc_id + '--webpage--
webpage_json["text_clean"] = clean_content_only
webpage_json["text_original"] = raw_text
webpage_json["title"] = readable_title
webpage_json["text_clean2"] = clean_content_2
webpage_json["collection"] = doc_id
webpage_json["content_type"] = "html’
webpage_json["urls"] = url_list str
webpage_json["domain"] = domain
webpage_json["url"] = url
writer.append(webpage_json)
clean_webpage_count += 1
fp.write("%s\n%s\n\n%s\n\n\n\n\n" %
(doc_id + '--webpage--' + webpage_id, url, clean_content_only))

+ webpage_id

fp.close()

SchemaFile.close()

writer.close()

print filenamel + ' has been cleaned up'

print 'Total webpages: %d' % len(webpages)

print 'Cleaned webpages: %d' % clean_webpage_count

print 'Percentage cleaned: %.3f' % (100.0*clean_webpage_count/len(webpages))
print 'HTML webpages: %d' % html_file_count

print 'Non-English webpages: %d' % (html_file_ count-clean_webpage_count)
print 'Content Type Statistics:
print 'Language Statitics:
return 1

, contentTypeAll
, languageAll

main(argv):

InputFile = argv[1]
OutputFile = argv[2]
SchemaFile = argv[3]

except IndexError:

print 'Please specify the webpage input avro filename, output avro filename and avro

schema filename'

return 0

doc_id = argv([4]

except IndexError:

doc_id = __doc_id__

return avrocleaning(InputFile, OutputFile, SchemaFile, doc_id)

55

if __name__ == '__main__":
start_time = time.time()

main(sys.argv)

print("--- %s seconds ---\n\n\n" % (time.time() - start_time))

sys.exit(1)

Python code for cleaning up tweets with MapReduce (Raw version)

#!/usr/bin/env python
import sys
import re

doc_id = 'charlie_hebdo_S'

def cleanup(tweet):
task 1
remove emoticon
try: # Wide UCS-4
EmoRegexp = re.compile(u'["
u'\UGOO1F300-\UGOO1F64F"
u'\UGOO1F680-\UGOOLF6FF'
u'\u2600-\u26FF\u2700-\u27BF]+",
re.UNICODE)
except re.error: # Narrow UCS-2
EmoRegexp = re.compile(u' ("
u'\ud83c[\udfeo-\udfff]|"
u'\ud83d[\udcea-\ude4f\ude8o-\udeff]|"
u'[\u2600-\u26FF\u2700-\u27BF])+",
re.UNICODE)
tweet = EmoRegexp.sub(' ', tweet)
tweet = re.sub(r'\'s', "', tweet)
task 2
Remove non-alphanumeric characters
HashtagRegexp = r'(?<="|(?<=["a-zA-20-9-\.]))#([A-Za-z_]+[A-Za-2z0-9_]+)"
UserhandleRegexp = r'(?<="|(?<=["a-zA-Z0-9-\.]))@([A-Za-z_]+[A-Za-z0-9_]+)"
UrlRegexp = r'(?P<url>https?://[a-zA-Z0-9\./-]+)"
Hashtaglist = re.findall(HashtagRegexp, tweet)
for hashtag in Hashtaglist:
tweet = tweet.replace('#' + hashtag, '')
Userhandlelist = re.findall(UserhandleRegexp, tweet)
for userhandle in Userhandlelist:
tweet = tweet.replace('@' + userhandle, '")
url list = re.findall(UrlRegexp, tweet)
for url in url_list:
tweet = tweet.replace(url, '")
tweet = re.sub(r'([*\s\w]|_)+', "', tweet) # task 5 included
clean_tweet_only = tweet
for hashtag in Hashtaglist:
tweet = tweet + ' #' + hashtag

56

for userhandle in Userhandlelist:
tweet = tweet + ' @' + userhandle
task 3
validating url
ValidUrlRegexp = re.compile(r'~(?:http|ftp)s?://"' # http:// or https://
domain...
r'(?:(?:[A-Z20-9](?:[A-20-9-]1{0,61}[A-Z0-9])?\.)+(?:[A-
z]1{2,6}\.?[[A-Z0-9-]{2, }\.2) |"
r'localhost|' # localhost...
...or ip
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})"
r'(?::\d+)?" # optional port
r'(?:/?|[/?]1\S+)$", re.IGNORECASE)
for url in url_list:
if validUrlRegexp.match(url):
tweet = tweet + ' ' + url
tweet = re.sub(' +', ' ', tweet)
return (tweet, clean_tweet_only, Hashtaglist, Userhandlelist, url_list)

input comes from STDIN (standard input)
for line in sys.stdin:
remove leading and trailing whitespace
line = line.strip()
split the line
content = line.split(',")
if len(content) < 14:
continue
if content[6] != 'en': # only select tweets in English
continue
source = content[0]
rawtweet = content[1]
(cleanedtweet, clean_tweet_only, Hashtaglist,
Userhandlelist, url_list) = cleanup(content[1])
hashtags = ', '.join(Hashtaglist)
urls = ',".join(url_list)
user_mentions_id = ', '.join(Userhandlelist)
username = content[3]
tweetID = content[4]
user_id = content[5]
if content[10] == 0.0 and content[11] == 0.0:
coordinate = "'
else:
coordinate = '%s,%s' % (content[10], content[11])
timestamp = content[13]
json_string = {}
json_string["doc_id"] = doc_id+'_'+tweetID
json_string["text_clean"] = clean_tweet_only
json_string["tweet_id"] = tweetID
json_string["text_original”] = line
json_string["user_screen_name"] = username
json_string["user_id"] = user_id
json_string["created_at"] = timestamp
json_string["source"] = source
if hashtags != "':
json_string["hashtags"] = hashtags
if urls = "":

57

json_string["urls"] = urls
if username != "":
json_string["user_mentions_id"] = username
if coordinate != "":
json_string["coordinates"] = coordinate
print '%s' % json_string

58

Appendix C: Code provided by TAs

Crawl script for Nutch

if false
then
note that the link inversion - indexing routine can be done within the main loop
on a per segment basis

echo "Link inversion"

"$bin/nutch"” invertlinks "$CRAWL_PATH"/linkdb "$CRAWL_PATH"/segments/$SEGMENT

if [$? -ne 0]

then exit $?

fi

echo "Dedup on crawldb"

$bin/nutch dedup $CRAWL_PATH/crawldb

if [$? -ne 0]

then exit $?

fi

echo "Indexing $SEGMENT on SOLR index -> $SOLRURL"

"$bin/nutch” index -D solr.server.url=$SOLRURL "$CRAWL_PATH"/crawldb -linkdb
"$CRAWL_PATH"/linkdb "$CRAWL_PATH"/segments/$SEGMENT

if [$? -ne 0]

then exit $?

fi

echo "Cleanup on SOLR index -> $SOLRURL"

"$bin/nutch” clean -D solr.server.url=$SOLRURL "$CRAWL_PATH"/crawldb

if [$? -ne 0]
then exit $?
fi

fi

done

URL extraction from tweets

import sys

import requests

#import hashlib

from bs4 import BeautifulSoup,Comment
import re

#import sunburnt

#import pymysql

59

from operator import itemgetter
from contextlib import closing
requests.packages.urllib3.disable_warnings()

headers = {'User-Agent': 'Digital Library Research Laboratory (DLRL)'}

def visible(element):
if element.parent.name in ['style', ‘'script', '[document]', 'head']:
return False
return True

thresh =1
archivelD

sys.argv[1l].split(".")[0]
tweetFile = sys.argv[1]

tweets = []
f = open(tweetFile,"r")
us = f.readlines()
f.close()
for 1 in us[1:]:
1 = 1.strip()
p = l.split(",")
t = p[o]
tweets.append(t)

docs=[]
print "tweets is read from File"
Extract short URLs from Tweets

shortURLsList =[]
#for row in cursor.fetchall():
for line in tweets:
#line = row[1]
regExp = "(?P<url>https?://[a-zA-Z0-9\./-]+)"
url 1i = re.findall(regkxp, line) # find all short urls in a single tweet
while (len(url_li) > 0):
shortURLsList.append(url_li.pop())
print "short Urls extracted: ", len(shortURLsList)
surls = []
for url in shortURLsList:
i = url.rfind("/")
if i+1 >= len(url):
continue
p = url[i+l:]
if len(p) < 10:
continue
while url.endswith("."):

60

url = url[:-1]
surls.append(url)
print "cleaned short URLs:
surlsDic ={}
for url in surls:
if url in surlsDic:
surlsDic[url]
else:
surlsDic[url] =1
print "Unique short URLs: ", len(surlsDic)
sorted_list = sorted(surlsDic.iteritems(), key=itemgetter(l), reverse=True)

, len(surls)

surlsDic[url] + 1

freqShortURLs =[]
for surl,v in sorted_list:

if v > thresh:

freqShortURLs.append(surl)

print "Freq short URLs (>"+str(thresh)+"): ",len(freqShortURLs)
fs = open("shortURLs_" + archiveID +".txt","w")
for surl,v in sorted_list:

fs.write(surl +"," + str(v)+"\n")
fs.close()
Expand Short URLs

expanded_url_dict = {}
i=0
e=0
webpages=[]
for url in freqShortURLs:
try:
with closing(requests.get(url,timeout=10, stream=True,

verify=False,headers=headers)) as r:

#page = r.text or r.content

if r.status_code == requests.codes.ok:

ori_url =r.url
if ori_url != "":
add the expanded original urls to a python dictionary with their count
if ori_url in expanded_url_dict:

expanded_url_dict[ori_url].append(url)
else:

expanded_url_dict[ori_url] = [url]

i+=1

page = r.content or r.text

soup = BeautifulSoup(page)

title = ""

text = ""

61

if soup.title:
if soup.title.string:
title = soup.title.string

comments = soup.findAll(text=1lambda text:isinstance(text,Comment))
[comment.extract() for comment in comments]
text_nodes = soup.findAll(text=True)

visible_text = filter(visible, text_nodes)
text = ''.join(visible_text)

#ttext = title + " " + text
webpages.append((url,title, text))

else:
e = e+l
except :
print sys.exc_info()[0],url
e =¢e +1

print "Unique Orig URLs expanded: ", i
print "Bad URLs: ",e
#print "Unique Orig URLs: ", len(expanded_url dict)
fo = open('seedsURLs_'+archiveID+'.txt"','w")
fs = open("short_origURLsMapping_ " + archiveID +".txt","w")
for ourl,surls in expanded_url _dict.items():
fs.write(ourl +":--"+",".join(surls)+"\n")
fo.write(ourl+'\n")
fs.close()
fo.close()
#Saving Webpages text to file
i=1
for wp in webpages:
f = open(str(i)+'.txt"','w")
cont = wp[1]+ " " + wp[2]
f.write(cont.encode('utf8'))
f.close()
i+=1

print "Webpages text saved"

62

