Freescale Semiconductor
Application Note

Document Number: AN3937
Rev. 0, 09/2009

MC9S12P-Family Demonstration

Lab Training

by: Gordon Borland
Matt Grant
Lela Garofolo
Steven McLaughlin
MSG Auto R & D

1 Introduction

This publication serves to document the demonstration
lab software examples. The examples show how to
configure and use the modules to users getting started
with the MC9S12P Family of MCUs.

The examples included here illustrate a basic
configuration of the modules to allow users to quickly
start developing their own applications.

Complete code is available for all examples. This can be
downloaded onto an MC9S12P128 target such as the
DEMO9S12PFAME demo board upon which this
demonstration lab is based.

Each module of the MC9S12P Family has its own
stand-alone software and is discussed within its own
section of this document.

A zip file, AN3937SW.zip, containing the complete
CodeWarrior projects for the lab examples accompanies
this application note. The file can be downloaded from
www.freescale.com.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

1
2

4
5

Contents

Introduction 1
SetUP . o 2
21 ToolsSetup...... ..ot 2
22 BoardSetup i 2
Demonstration Lab Examples 2
31 CPMUCIOCKS ... 2
3.2 Flash Programming Example 5
3.3 Emulated EEPROM Driver 8
3.4 LIN Communications 14
35 MSCANModule.............. 14
36 PWMModule................ 16
3.7 S12P Low-PowerModes. 17
3.8 MMC Program Flash Paging Window 19
39 ADCModuleo i 24
310 TimerModule............................ 26
3.11 SCI Communications 28
3.12 SPICommunications 29
Conclusion. 31
Useful Reference Material 32
freescale"

semiconductor

http://www.freescale.com
http://www.freescale.com

Setup

2 Setup

2.1 Tools Setup

NOTE

Before starting any of the module examples in this document, it is important
that you complete the Software Setup and Hardware Setup as described in
the DEMO9S12PFAME User’s Manual which accompanies the
demonstration board.

2.2 Board Setup

The steps listed below provide a basic configuration for each of the module examples in this document.
Any deviation from this basic configuration or any specific requirements for a module will be outlined in
the relevant module chapter.

1. Ensure that the RESET# and BKGD jumpers are present on the BDM ENA header.
Ensure that all of the SW ENA jumpers are present.

Ensure that all of the LED ENA jumpers are present.

Ensure that all of the CAN ENA jumpers are present.

Ensure that the LIN ENA jumper is present.

Ensure that the VDD CAN ENA jumper is present.

Ensure that the VAUX ENA jumper is present.

Ensure that the RS-232/LIN SEL jumpers select the RS-232 position.
Ensure that the POWER SEL jumper selects the USB position.

10. Connect the demonstration board to the PC via the USB cable.

11. The green POWER LED on the board should turn on.

o R SRS

3 Demonstration Lab Examples

3.1 CPMU Clocks

This lab example shows how to produce PLL-based bus clocks using the different clock modes of the
CPMU module. The example software initializes the PLL to run in default § MHz PEI mode, 12.5 MHz
PEI mode, 32 MHz PEE mode and 2 MHz PBE mode. The changes in bus clock can be observed via the
LED pulse rate and the frequency can be measured by monitoring the ECLK signal (Bus clock) on an
oscilloscope.

MC9S12P-Family Demonstration Lab Training, Rev. 0

2 Freescale Semiconductor

3.1.1

Demonstration Lab Examples

Setup

The following steps should be taken before running the lab example:

10.

Start CodeWarrior '™ by selecting it in the Windows Start menu.

From the CodeWarrior main menu, choose File > Open and choose the S12P System Clocks.mcp
file.

Click Open. The project window will open.

The C code of this demonstration is contained within the main.c file. Double click on the file to
open it.

Ensure the “Softec HCS12” option is selected as the target.

512P_P¥YWM_Demo.mcp I
[v sofTes Hs12 Ry &5
Full Chip Simulation
P&E Multilink.Cyclone Pro
| Code | Data |4 |=

'I:BE-.JL 5 0 e xi~
.l datapage.c 185 0+ =

=3 Includes 0 o =
“f derivative.h 0 o =
R MCIS12P128.h 1]] =l

FH_] Project Settings 52 G o« ;|—I

From the main menu choose Project > Debug. This will compile the source code, generate an
executable file, and download it to the demo board.

A new debugger environment will open. Once the download to the demo board is complete, close
the debugger environment.

Ensure that the RS-232/LIN SEL jumper on the DEMO9S12PFAME demonstration board selects
the RS-232 position.

The PLL configuration is sent to the RS-232 port (baud rate = 9600, data bits = 8, parity = N, stop
bits = 1, Flow control = Hardware). Open a terminal window on the PC with this configuration.
The bus clock speed is represented on pin 27 PE4/ECLK. The ECLK signal is equivalent to the
MCU bus speed and can be monitored by attaching an oscilloscope probe to pin 31 of the J102
header.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor

Demonstration Lab Examples

3.1.2

Instructions

Follow these instructions to run the lab example:

1.
2.

10.

1.
12.

3.1.3

Ensure that the PBO, PB1, PB2, and PB3 dip switches are in the 1 position.

Hit RESET. The MCU is now running in it’s default PEI mode with a bus clock frequency of

8 MHz.

Monitor the ECLK signal on the oscilloscope. ECLK will match the bus clock frequency.
Observe the LED pulse rate. Examine the PLL configuration on the terminal window.

Put the PBO dip switch into the O position. Ensure that the PB1, PB2, and PB3 dip switches are in
the 1 position.

Hit RESET. The MCU is now running in PEI mode with a bus clock frequency of 12.5 MHz.
Monitor the ECLK signal on the oscilloscope. ECLK will match the bus clock frequency. Observe
the LED pulse rate. Examine the PLL configuration on the terminal window.

Put the PB1 dip switch into the 0 position. Ensure that the PBO, PB2, and PB3 dip switches are in
the 1 position.

Hit RESET. The MCU is now running in PEE mode with a bus clock frequency of 32 MHz.
Monitor the ECLK signal on the oscilloscope. ECLK will match the bus clock frequency. Observe
the LED pulse rate. Examine the PLL configuration on the terminal window.

Put the PBO and PB1 dip switches into the O position. Ensure that the PB2 and PB3 dip switches
are in the 1 position.

Hit RESET. The MCU is now running in PBE mode with a bus clock frequency of 2 MHz.

Monitor the ECLK signal on the oscilloscope. ECLK will match the bus clock frequency.
Observe the LED pulse rate. Examine the PLL configuration on the terminal window.

Summary

The CPMU PLL has three modes, PLL Engaged Internal Mode (PEI), PLL Engaged External Mode (PEE)
and PLL Bypassed External Mode (PBE).

From reset, the bus clock is derived from the CPMU PLL using the 1 MHz internally generated reference
clock as it’s source (PEI mode). This is the default clock mode from reset and will produce a bus clock of

8 MHz.

For further information on the CPMU module please refer to the following documentation which is
available at www.freescale.com.

AN3622 — Comparison of the S12XS CRG Module with the S12P CPMU Module
MC9S12P128 Reference Manual

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

3.2

3.2.1

Demonstration Lab Examples

Flash Programming Example

Flash Overview

The flash technology module (FTM- a 1.5T split gate transistor flash technology) contains program flash
(P-flash) and data flash (D-flash). P-Flash is intended primarily for non-volatile code storage. D-Flash is
used as basic flash memory for non-volatile data storage or non-volatile storage to support emulated
EEPROM or a combination of both. The user interfaces with this module via the following steps:

1.
2.
3.
4. Launch the appropriate flash commands (program, erase, verify and so on) via FCCOBIX and

5.

Set the flash clock divider (FCLKDIV).
Check the status of the Flash status register (FSTAT).
Make sure the command complete interrupt flag is set (CCIF=1).

FCCOB registers.
Check flash status register and that CCIF=1.

A flow chart of these steps is shown below:

| Read: FCLE DNV ragizer |

Clock Regimer
Writen
Theck

Mate: FCLEKDIV must be get after
| Write: FCLKDI Y regimer | each redet

I Read: FSTAT regiser |-q—

FCOOR
Al b ley Check
Resaks from previ oo Comemand

Wrie: FSTAT

Access Bror amd - v Tagnar
Prosection Violation r L i Oear ACCERR/FPVICL (30
heck -

Wrine o FOOOBEILX regimer

b idemify specific command T
prameser o kad

Write s FOOOH regiser

o Joad J3OImeC COOTETANS DA VAT

Write: PSTAT regicer o ek command)
Clanr CCIF O

| Read: FSTAT regizer |!I—

Bf: Pallizg for .
Commema 'Elfamu'. iom =
Checlk

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor

Demonstration Lab Examples

3.2.2 Code Example Explanation and Walkthrough

The user will note that this program is compiled and run from RAM, because sections of flash will be
erased in this example. The security information byte (OxFFOF) in the flash configuration field is not
erased.

NOTE

If the security information byte is accidentally erased, the part will be
secured and cannot be re-programmed until it is unsecured.

The file of interest is ‘main.c’. The purpose of this demonstration is to show:
* Launching a flash command.
* Demonstrate programming and erasing of flash.

This example has been written with a series of user software breakpoints so that the only thing that has to
be done is to hit the ‘Run’ button.

On startup, the debugger should begin the program in ‘main’.

3.2.3 Breakpoint 1 — Launch Flash Command — Filling P-Flash

The importance at this breakpoint is the LaunchFlashCommand function. This function is responsible for
exercising the flash block depending upon the flash command given. The flash commands are briefly
described in the flash.h header file and within the S12P reference manual chapter 13.4. Stepping through
will take the user to the function below.

-~
Function Hame LaunchFlashConmand
Engineer
Date
Argquments
Return : |
Hotes : This function does not check if the Flash is erased.
Thi=z function doss not explicitly werify that the data has been
sucessfully programmed
Thisz function must be located in RAH or = flash block not
being programmsed

-

tU08 LaunchFlashCommand{char params. tU0S command, tU08 cocobl, tUl6 cocobl, tUl6 coob2, tU1l6 ccob3, tUl6 coobd, tUl6 ccobS)
1f (FSTAT _CCIF == 1)
{

<% Clear any error flags=”
FSTAT = (FPVIOL_MASK | ACCERR _HMASK):

<% Write the command id ~ coobl 7
]

FCCOBIX = 0
FCCOEHI = command:
FCCOELD = coobl:
1f (++FCCOEIX != params) {
FCCOBE = coobl: ~% Urite next data word to CCOB buffer. -
if [+4FCCOBTE 1= params)
FCCOBE = coob? 7% Write next data word to CCOB buffer. =/
1f {(++FCCOBIH = params) {
FCCOE = ccob3: <% Urite next data word to CCOB buffer =~
1f (++FCCOBLE |= params) {
FCCOB = coobd: ~% Write next data word to CCOB buffer. =7
1f(++FCCOEIX |= params)
FCCOB = ccobb: <% Urite next data word to CCOB buffer. =~
K
K

K

¥

FCCOETH = params-1;

/% Clear command buffer enpty flag by writing a 1 to it *7

FSTAT = CCIF_MASK;

while {IFSTAT CCIF) { /% wait for the command to complete =~
<% Return status. */

T
return(FSTAT) #% comnand completed =<
return(FLASH _BUST) #% ztate machine busy */

Figure 1. Launch Flash Command Function

MC9S12P-Family Demonstration Lab Training, Rev. 0

6 Freescale Semiconductor

Demonstration Lab Examples

3.24 Breakpoint 2 — Launched Program Commands — Known Data

On entry of the second breakpoint, the memory maps have been set up to show the P-flash being erased
(OxFFFF state), then programmed with known parameters (OxAAAA). All P-flash pages have been filled
with 0xAAAA; 0x1400, 0x4000, 0xC000, and the PPAGE 0C-0F — 0x8000- OxBFFF (local entry).

Note (PPAGE 08-0B have not been used).

D-flash P-flash P-flash P-flash P-flash

04000 FF FF R2 2
04004 FF FF RR
04008 FF FF LR
0400C FF FF LR
04010 FF FF LR
04014 FF FF RR
04018 FF FF LR
0401C FF FF LR
04020

00400 [ugoo 00
00404 00 00 00
00408 00 00 00
0040C 00 00 00
00410 00 00 00
00414 00 00 00
00418 00 00 00
0041C 00 00 00
00420 00 00 00
00424 00 00
00428 00 00
0042C 00 00 00
00430 00 00 00
00434 00 00 00
00438 00 00 00
0043C 00 00 O
00440 00 00 00 O
00444 00 00 00 00
00448 00 00 00

0044C 00 00 00

00450 00 00 00

00454 00 00 00

00458 00 00 00

0045C 44 3T 00
00460 44 &0 00

7
7
7
7
7
7

04028
0402C
04030
04034
04038
0403C
04040
04044
04048
0404C
04050
04054
04058
0405C

0 00 00 00
0 00 00 00
00 0o 78
0 80 00 00
40 00 00 00
0 00 00 00
0 00 00 00
0 00 00 00
0 00 00 00
0&0 0 00 00 00
08054 00 00 00 00
08058 00 00 00 00
0 00 00 00

04080 0 00 00 Q0
154 4064
004&d 00 00 0o | [040484 0 00 00 00
e oo oo oo b nanss \ i nn e

Figure 2. The Memory Maps Showing Real-Time Erasing and Programming

The user will note that 0x8000, the P-flash window will show different content depending on the PPAGE.
When the programming has occurred, check PPAGE C-F by entering the character in the PPAGE register;

= =
IF 2B3R C |2B3L LI-‘I-‘E—';EE l'_'lJ

5P 397D CC SXRIRZWC

e — e

By Altering the PPAGE, the user can see the 64 kb windows of programmed information at 0x8000.

3.2.5 Breakpoint 3 — Launched Program Commands — Address Data

As breakpoint 2, except the data being written to the P-flash is different; the data written are the actual
addresses of the P-flash.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 7

Demonstration Lab Examples

3.2.6 Breakpoint 4 — D-flash — Launched Program Commands

The same functions are used but will now perform activity on the D-flash. The only difference to the flash
command function is the memory address issued and flash commands — in other words D-flash instead
of P-flash.

The end of the demonstration is indicated by the LEDs on the EVB being toggled. This example does not
re-program the device to default, this will happen on the next re-load of a program by allowing
NVM erasing.

3.2.7 Summary

The demonstration software has shown how to initialise the flash command to perform programming,
erasing, and erase verify on both the P-flash and D-flash. It is vital that the flow diagram is followed for
correct operation. Deviation from this could cause errors when working with the P/D-flash. Although this
demonstration did not include it, it is good practice to verify that the correct data has been programmed to
the flash.

3.3 Emulated EEPROM Driver

3.3.1 Emulated EEPROM Overview

EEPROM (electrically erasable programmable read-only memory), which can be byte- or
word-programmed and erased, is often used in automotive electronic control units. This flexibility
for program and erase operations makes it suitable for data storage of application variables that
must be maintained when power is removed and needs to be updated individually during run-time.
For the devices without EEPROM memory, the page-erasable Flash memory can be used to emulate for
EEPROM through EEPROM emulation software.

The EEPROM emulation driver for S12P implements the fixed-length data record scheme emulation on
the split-gate flash. The EEPROM functionalities to be emulated include organizing data records,
initializing and de-initializing EEPROM, reporting EEPROM status, reading and writing data records.

Four or more sectors shall be involved in emulation with a round robin scheduling scheme.

MC9S12P-Family Demonstration Lab Training, Rev. 0

8 Freescale Semiconductor

Demonstration Lab Examples

3.3.2 Code Example Explanation and Walkthrough

The file of interest is NormalDemo.c where the ‘main’ function resides. The purpose of this demonstration
is to show how:

* The D-flash is initialized for EEE.
* The active and alternative sectors are assigned.
* The active sector is filled and swapped (and erased) with an alternative sector.

In an application, the D-flash would be continually read and written to and sectors would be copied,
swapped, and erased. This example has been written with a series of user software breakpoints so that the
only thing that has to be done is to hit the ‘Run’ button. _[

On startup, the debugger should begin the program in ‘main’:

vold main(void)

[E
UINT1é returnC
UINT1é r
UINT1é er
UINT16 temp[EED DA
UINIE 1,3:

2 VALUE SIZE/EED MIN_FROG_SIZE] = {®O,0,0@}:

3.3.3 Breakpoint 1 — Erase the D-Flash

—:.srr.d_E_-lT_;) o o o

/* TUser breakpointl - the function below wi erase the D-flash */

if (EED_CK != returnCode)
A _

(B

ErrorTrap
A

=}

/* Wait until DeinitEeprom is done */
while (BUSY == EE_Status)

On selecting the run button, the first software breakpoint will be hit. Breakpoint 1 stops at the function
which is responsible for initializing the D-flash. This function erases and assigns the physical D-flash
which shall be used for EEE. The user will notice that the selected D-flash (0x400, 0x500, 0x600, 0x700)
will be in the erased state.

3.3.4 Breakpoint 2 — Initialise the Active and Alternative Sectors

gector and FFFF0000 to al

if (EED OK != returnCode)
P _

[H

ErrorTrap():
A

=1

f# Wait until InitEeprom is done */
:-'hile-:ET_TS'x'A == EE_Status)

[B

FS5L Main{);
P !

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 9

Demonstration Lab Examples

The D-flash has now been erased and will have to be arranged as active and alternative sectors.

This software driver requires that at least two alternative sectors are available. This is to deal with any
brownout or dead-sector situations. The ‘FSL_InitEeprom’ function initializes the two sectors at location
0x4400 and 0x4500 to ‘active’, and the remaining sectors 0x4600, 0x4700, and 0x4800 to 'alternative'.
On completion, the active sectors are defined by 0XFACF000O0 and alternative are defined by OxFFFF0000.

IX] [DMemary:3 |- |O]X) Clemonzd |- |OX

| N | i | H | |

00400 FA CF 00 00 Alloosoo mcr oo 00 ... S/EMoosoo FEEF 00 00 &/ Bo0700 FF EF 00 00 &/ Mo0z00 FF FF 00 00
00404 FF EF cooo [B(Wooso FEEF ... [([Mooc0s FF FF PXFF ... [Ffooros FF AP rE FF ... [5[00e04 EFYEE FE EF
00408 FF FF FENF ... [O00SOB FF/FF FE PP ... (@M0060 FF PR PR XY ... 00708 PR EF PR BF ... [M00g0g/FF FF FF Y
0040C FF EF FF I ... 00S0C FY FE FE ... 0060C FF FF FF FF\.... [O0OTOC FF Ef FE OF ... 0034C FF EF FF IF
00410 FF EF FF FF\ ... 00510 §F FE FE EF ... 00610 FFFF FFFF . [M00710 FFEf FE OF ... 6210 FF FF EF IF
00414 FF FF FF BF 00514 FF FF FE ... 00614 FEFFFFEF ..\ [M00714 FEEF FE OF ... 00814 FF FF FF IF
00418 FF FF FF IF 00518/ FF FF FE T ... 00618 FF FF FF FF ... \ [00718 FF Ef FF EF Q0818 FF EF FF IF
0041C FF FF FF IF 00SYC FF FF FF B ... 0061C FF FF FF FF ... \WOOTIC FF Ef FEOF ... 00B1C FF EF FF §F
00420 FF FF FF IF 00520 FF FF FE F ... 00620 FF FF FE FF ... %0720 FF EF FF FF ../ 00820 FF EF FF IF
00424 FF FF FF IF ¥ogs2 R rr rE FF ... M[MMoosas TR PR FF R ... MIM00Sed FF Y FF BT /[oos24 FEOFF FFFE

Active Sectors Alternative Sectors

3.3.5 Breakpoint 3 — Write First Data and ID Record

@
g3m BGHD;
f*3oftware breakpoint 3 - the function below will write the first data record and ID*/

rEturnCcniE = F5L WriteEeprom(DATA ID ONE, temp):
Ai:‘ (EED_OK != returnCode)
[E

ErrorTrap():
=
/* Wait until WriteEeprom is done */
while |{E!‘T.TSY'I'1 == EE_S5tatus)
(=
AFSL_Ealn{:I;

The data to be written is defined within a header file — 0x10. When executed, this function will write the
data 0x10 and will assign this with a record ID of 0x01. The ID size is two bytes and the data size has been
configured to six bytes. The specific EEE users guide explains how to set the data size.

MC9S12P-Family Demonstration Lab Training, Rev. 0

10 Freescale Semiconductor

Demonstration Lab Examples

I [

00400 Fa CF 00 00
ggg&EG7E‘ET13
00408 (00 1000 01
Data Record / 0040C EF FF FF FF

00410 FF FF FF FF

00414 FF FF FF FF
00418 FF FF FF FF
0041C FF FF FF FF
00420 FF FF FF FF
00424 FF FF FF FF

ID Record

3.3.6 Breakpoint 4 — Completely Write the Active Sectors

gsm BGEND:
/* sofitware breakpoint 4 - the first record has been written and the function below will write tl
f* It will leoop here until all the active zectors are filled*/

£ E:A'ml <= EED_MAX_RECORD_NUMBER; i++)
{

for(,j = 0;j < (EED_DATA VALUE_SIZE/EED MIN PROG_SIZE) ; j++)
{E

@

returnCode = FS5L_WriteEeprom(i, temp):
Aif {(EED OK != returnCode)

{E

temp[]] = 1 + CDATA VALUE;

This writes data records such that the active block is completely filled. The next write after the loop will
cause a swap. The active sectors at 0x400 and 0x500 have been filled since the code executes a for loop
until it reaches the end of the second active sector.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 11

Demonstration Lab Examples

Active sector Beginning of first
completely filled (red) alternative sector
00 00 * Wloosoo F2 00 ... Woospc oo 4
00 10 00504 00 2F) 00SEQ 00 4
00 o1 00508 00 1F ./, 00SE4 00 4
00 11 ~ Wloosoc oo 30 .0.0 MoosEs 00 4
00 o1 00510 00 20 .o, 00SEC 00 4
00 12 00514 00 3 i1 L1 005F0 00 4
00 02 00518 00 3 21 .1, 005F4 00 4
00 13 0051C 00 3 2 .2z 005FE 00 4
00224 00 03 00520 00 3 22 .2.v 005FC FF
00424 00 14 00524 00 33 33 .33 00800 FF
no428 00 04 00528 00 3 23 .3.# 00604 FF
no4azc 00 15 0052C 00 3 34 .44 00808 FF
00430 00 00530 00 3 24 .48 0060C FF
00434 00 00534 00 3 35 .5.3 00810 FF
n0438 00 00538 00 35 00 25 .5.% 00614 FF
0043C 00 0053C 00 3% 00 38 .5.4 00818 FF
00440 00 00540 00 38 00 28 .5.5 0061C FF
00444 0 00544 00 3T LTLT 00820 FF
n0443 00548 00 27 00624 FF
0044C 00 0054C 00 00828 FF
00450 00 00550 00 0062C FF
00454 00554 00 00830 FF
00458 00558 00 00634 FF
0045C 00 0055 00 00838 FF
00460 00 1B 00 +|Moosen oo + llooesc FE

3.3.7 Breakpoint 5 — Sector Swap

Now that the active sectors have been completely filled, the next record write will only occur after a new
active sector has been created. This is a two-stage process, firstly all the records from the first active sector
are copied to the first available alternative sector — in this case, data and ID records from 0x400-0x499
are copied to 0x600. Secondly, the sector at 0x400 is erased and becomes a new alternative sector. On the
new alternative sector, notice it begins with OxFFFF00O01.

Old active sector now Records copied

becomes alternative

T *Mooso0 racr o0 00 ..., &
00404 00504 00 2F 00 2F ././
00408 00508 00 2F 00 1F ./.
0040C ~ Wloosoc 00 30 00 30 .00
00410 00510 00 30 00 20 .0.
00414 00514 00 31 00 31 .1.1
00418 00518 00 31 00 21 .1.
0041C 0051C 00 32 00 32 .2.2
00420 00520 00 32 00 22 .2."
00424 00524 00 33 00 33 3.3 1
00428 00528 00 33 00 23 .3.% 14
0042¢ 0052C 00 34 00 34 .4.4 1z
00430 00530 00 34 00 24 .4.5 c
00434 00534 00 35 00 35 5.5 1 20
0043s 00532 00 35 00 25 .5.% 00614 00724 FF FF FF FF
0043C 0053C 00 3% 00 38 .6.6 00618 00722 FF FF FF FF
00440 00540 00 3% 00 26 .f.a 0061C 0072C FF FF FF FF
00444 00544 00 37 00 37 .7.7 00620 00730 FF FF FF FF
00448 00548 00 37 00 27 .7, 00624 00734 FF T FF FF
0044C 0054C 00 3% 00 38 5.2 00828 fo73: FE TR FE FE
00450 00550 00 38 00 28 .E.{ 0062C 00730 FF FF FF FF
00454 00554 00 32 00 33 2.3 00830 00740 FF FF FF FF
00458 00558 00 3% 00 28 .49.) 00634 00744 FF FF FF FF
0045C 0055C 00 32 00 3% .:.: 00638 0074% FF FF FF FF
00460 v(Wloosso oo 3z 00 22 + o lloosac 0074C FF FF FF FF

MC9S12P-Family Demonstration Lab Training, Rev. 0

12 Freescale Semiconductor

Demonstration Lab Examples

The process described whereby the sectors are being filled, copied, and erased will continue through an
application, such as an odometer for example. When power to the application is lost, the data is stored in
the D-flash and is easily read.

3.3.8 Breakpoint 6 — Reading EEE and Erase

a3m BGHD;
/* software breakpoint & - Active sector awapped. The code below will read and then re-program the
/* This reads the data with Data ID 0x0l. The record is read from the cache table if EED CLCHETABLE

returnCode=F5L_ReadEeprom (0&T& ID ONE, sreadRddr);
if (EED OK != returnCode)
(=

ErrorTrap():

gelse

(=
f:ridi = jS < EED DATA VALUE STZE iqi+=EE3_HIN_PRDE_SIZE?
(=

There are read functions after breakpoint 6 which are responsible for reading the EEE. This will read the
record with a specified data and address.

This demonstration program will complete by erasing the D-flash sectors and will end in the while loop.

00400 FF FF 77 77 ©/Mooso0 FF 7F FF FF A|Woosoc FF FF FF FF o | [
00404 FF FF FT FF ... 00504 FF FF FF FF 00SEQ FF FF FF FF 006F0 FF FF FF FF
00408 FF FF FF FF [5|foosos =z 7F sF fF =|foose4 FF FF FF OPE)| [y ——
0040C FF FF FF FF 0050C FF FF FF FF 00SEE FF FF FF FF 006FE FF FFT FF FF
00410 FF FF FT FF 00510 ¥F FF FF FF 00SEC FF FF FF FF 00GEC FF FF FF EFF
00414 FF FF FT FF 00514 FF FF FF FF 00SFQ FF FF FF FF 00700 FF §F FF FF
00412 FF FF FT FF 00518 FF FF FF FF 005F4 FF FF FF FF 00704 FF FF FF FF
0041C FF FF FT FF 0051C FF FF FF FF 00SFE FF FF FF FF 00708 FF FF FF FF
00420 FF FF FF FF 00520 ¥F FF FF FF 00SEC FF FF F FF 0070C FF FF FF FF
00424 FF FF FF FF 00524 FF FF FF FF 00600 FF FF FF FF 00710 FF FF FF FF
00428 FF FF FF FF 00528 FF FF FF FF 00604 FF FF FF FF 00714 FF FF FF FF
0042C FF FF FF FF 0052C FF FF FF FF 00608 FF FF FF FF 00718 FF FF FF FF
00430 FF FF FF FF 00530 ¥F FF FF ¥ 0060C ¥F FF FF FF 0071C FF FF FF FF
00434 FF FF FF FF 00534 FF FF FF FF 00610 FF FF FF FF 00720 FF FF FF FF
00438 FF FF FF FF 00538 FF FF FF FF 00614 FF FF FF FF 00724 FF FF FF FF
0043C FF FF FF FF 0053C ¥F FF FF FF 00618 FF FF FF FF 00728 FF FF FF FF
00440 FF FF FF FF 00540 ¥F FF FF FF 0061C FF FF FF FF 0072C FF FF FF EF
00444 FF FF FF FF 00544 FF FF FF FF 00620 FF FF FF FF 00730 FF FF FF FF
00448 FF FF FF FF 00548 FF FF FF FF 00624 FF FF FF FF 00734 FF ¥F FF FF
0044C FF FF FT FF ... 0054C FF FF FF FF 00628 FF FF FF FF 00738 FF FF FF FF
00450 FF FF FT FF ... 00550 FF FF FF FF 0062C FF FF FF FF 0073C FF FF FF FF
00454 FF FF FT FF 00554 FF FF FF FF 00630 FF FF FF FF 00740 FF FF FF FF
00452 FF FF FT FF 00558 FF FF FF FF 00634 FF FF FF FF 00744 FF FF FF FF
0045C FF FF FT FF 0055C FF FF FF FF 00638 FF FF FF FF 00748 FF FF FF FF
00460 FF FF FT FF [lMooseo #F 7F 7F 77 v(llooesc FF FF FF FF |

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 13

Demonstration Lab Examples

3.3.9 Summary

The demonstration software has shown how to initialise the D-flash for EEE operation by producing active
and alternative sectors via the ‘FSL_InitEeprom’ function. The functions for writing, ‘FSL_WriteEeprom’
and reading, ‘FSL_ReadEeprom’ are required to write/read the appropriate data and accompanying ID
records and hence emulate EEPROM. In an application, it will be the two latter functions which will be
relied upon. Moreover, the software is capable of dealing with brownout events as well as dead sectors. For
developing applications with this code it is advisable to read the EEE driver user’s guide included within
the Emulated EEPROM software pack, available from www.freescale.com.

3.4 LIN Communications

An example of how to manage the SCI module to reconstruct a LIN bus is included on the system software
CD from Softec Microsystems labeled “DEMO9S12PFAME” which is supplied with the
DEMO9S12PFAME board.

The software, developed by Softec Microsystems uses the LIN bus to communicate a potentiometer value
from master to slave.

The LIN example software can be found on the CD
in DEMO9S12PFAME\Docs\CW_Examples\DEMO9S12PFAME\C\LIN.

3.5 MSCAN Module

This lab example uses the MSCAN module in loopback mode to transmit and receive a byte of data using
standard length identifiers and four 16-bit filters. The status of Port B is read and transmitted by the
MSCAN module. When the MSCAN module receives its own transmission, the data in the message is read
and displayed on the Port A LEDs.

When the MSCAN module is operated in loopback mode no CAN signals are transmitted externally. Both
the Tx and Rx pins are held high.

3.5.1 Setup

The following steps should be followed before running the lab example:

1. Ensure that the RS-232/LIN SEL jumper on the DEMO9S 12PFAME demonstration board selects
the RS-232 position.

Ensure that the ENA jumper on J503 is present.
Ensure that the ENA jumper on J505 is present.
Ensure that the ENA jumper on J506 is present.
Start CodeWarrior by selecting it in the Windows Start menu.

A

From the CodeWarrior main menu, choose File > Open and choose the S12P CAN Demo.mcp
file.

7. Click Open. The project window will open.

MC9S12P-Family Demonstration Lab Training, Rev. 0

14 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

Demonstration Lab Examples

8. The C code of this demonstration is contained within the main.c file. Double click on the file to

open it.
9. Ensure the Softec HCS12 option is selected as the target.

512P_PWW_Demo.mcp I
Wﬂ)ﬂ SofTec HCS12 Ry 3
Full Chip Simulation
P&E Muttilink.Cyclone Pra
| Code | Data |i |=-

TBE-.-'IL =5 0+ xa
-l datapage.c 185 0« =

E-E3 Inchudes 0 0o =
“fl derivative.h 0 0o =
B MCI512P128.h 1] I} =l

EHCT Project Settings 52 E » ;|—I

10. From the main menu, choose Project > Debug. This will compile the source code, generate an
executable file, and download it to the demo board.

11. A new debugger environment will open. Once the download to the demo board is complete, close

the debugger environment.

3.5.2 Instructions

Follow these instructions to run the lab example:
1. Ensure that the PBO, PB1, PB2, and PB3 dip switches are set to the O position.
2. Hit RESET. The MSCAN demo software will begin the execution.

3. Vary the positions of the PBO, PB1, PB2, and PB3 dip switches. The LEDs should match their
configuration.

3.5.3 Summary

The MSCAN module is a serial data bus communication controller implementing the CAN 2.0A/B
protocol as defined in the Bosch specification dated September 1991. It is not limited to automotive
applications and is suited to wide variety of uses which require reliable communications.

For further information on the MSCAN module please refer to the following documentation which is
available at www.freescale.com.

* AN3034 — Using MSCAN on the HCS12 Family

* MC9S12P128 Reference Manual

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor

15

http://www.freescale.com/
http://www.freescale.com/
http://www.freescale.com
http://www.freescale.com

Demonstration Lab Examples

3.6

PWM Module

This lab provides an example of how to setup and use the PWM module to create a 50% duty cycle output
with different polarity and alignment settings. This behavior is best illustrated if all of the PWM signals
can be displayed simultaneously on a four-channel oscilloscope.

3.6.1

Setup

The following steps should be completed before running the lab example:

1.

Ensure that the “ENA” jumpers on J504 and J503 are removed. This is to prevent the push-button
associated with Port PO and P1 from interfering with the PWM signal.

If desired, populate J101 with a header row that allows probing of the MCU signals, specifically
PO-P4.

Start CodeWarrior by selecting it in the Windows Start menu.

From the CodeWarrior main menu, choose File > Open and choose the S12P PWM Demo.mcp
file.

Click Open. The project window will open.

The C code of this demonstration is contained within the main.c file. Double click on the file to
open it.

Ensure the Softec HCS12 option is selected as the target.

512P_PWM_Demo._mcp I
Wﬂ)ﬂ SofTec HCS12 Ry 3
Full Chip Simulation
P&E Muttilink.Cyclone Pra
| Code | Data |4 | =

LR - B 0 ez
-l datapage.c 185 0« =

E-E3 Inchudes] 1 =l
“fl derivative.h 0 0o =
B MCI512P128.h 1]] =l

EHCT Project Settings 52 E » ;|—I

From the main menu choose “Project > Debug”. This will compile the source code, generate an
executable file, and download it to the demo board.

A new debugger environment will open. Once the download to the demo board is complete, close
the debugger environment.

MC9S12P-Family Demonstration Lab Training, Rev. 0

16

Freescale Semiconductor

Demonstration Lab Examples

3.6.2 Instructions

Follow these instructions to run the lab example:

1. Hit RESET. The code should run on its own. The PWM module should output 50% duty cycle
signals on Ports PO-P4.

2. Try probing all four signals simultaneously if possible. This allows the difference in settings such
as center alignment and polarity to be more apparent.

3.6.3 Summary

The PWM is a common module on many microcontrollers. It often finds use in applications that have
a need to vary frequency or intensity, such as with lighting.

For further information on the PWM module please refer to the following documentation which is
available at www.freescale.com.

e MC9S12P128 Reference Manual

3.7 S12P Low-Power Modes

In addition to the default Run mode, the MC9S12P has three low-power modes, Wait, Pseudo Stop,
and Stop.

Wait mode is similar to RUN mode except that CPU execution is halted and it is possible to selectively
disable some modules so that only necessary modules are clocked.

For lower power consumption, Pseudo Stop mode halts the bus clock, but the external oscillator continues
to run.

Stop Mode disables the external oscillator for the lowest power consumption.
This lab example shows how to enter each mode and the differences between them.

The table below summarizes the signals present in each mode.

Mode Bus Clock External Oscillator
Run Y Y
Wait Y Y
Pseudo Stop N Y
Stop N N

The changes in the MCU operating mode can be observed via the LEDs and by monitoring the ECLK
signal (Bus clock) and EXTAL signal (Crystal) on an oscilloscope.

Care should be taken to probe ECLK and EXTAL separately to avoid adding extra noise to the signals.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 17

http://www.freescale.net
http://www.freescale.net

Demonstration Lab Examples

3.7.1

Setup

The following steps should be taken before running the lab example:

3.7.2

Start CodeWarrior by selecting it in the Windows Start menu.

From the CodeWarrior main menu, choose File > Open and choose the
S12P Low Power Modes.mcp file.

Click Open. The project window will open.

The C code of this demonstration is contained within the main.c file. Double click on the file to
open it.

Ensure the Softec HCS12 option is selected as the target.

512P_P¥YWM_Demo.mcp I
[v sofTes Hs12 Ry &5
Full Chip Simulation
P&E Multilink.Cyclone Pro
| Code | Data @ | =

TEOML 35 0+ x=
-l datapage.c 185 0« =l

=3 Includes 0 o =
“f derivative.h 0 o =
R MCIS12P128.h 1]] =l

FH_] Project Settings 52 G o« ;|—I

From the main menu choose Project > Debug. This will compile the source code, generate an
executable file, and download it to the demo board.

A new debugger environment will open. Once the download to the demo board is complete, close
the debugger environment.

The bus clock is represented on pin 27 PE4/ECLK. The ECLK signal is equivalent to the MCU bus
speed and can be monitored by attaching an oscilloscope probe to pin 31 of the J102 header.

The oscillator can be monitored by attaching a scope probe to the EXTAL side of the Y101 crystal.

Instructions

Follow these instructions to run the lab example:

1.
2.

Ensure that the PBO, PB1, PB2, and PB3 dip switches are in the 1 position.

Hit RESET. The MCU is now operating in Run mode. The LEDs will flash indefinitely indicating
the MCU is in Run mode.

Monitor the ECLK signal on the oscilloscope. ECLK represents the bus clock. A 32 MHz square
wave should be observed.

Monitor the EXTAL signal on the oscilloscope. EXTAL indicates that the crystal oscillator is
running. A 4 MHz sine wave should be observed.

Put the PBO dip switch into the O position. Ensure that the PB1, PB2, and PB3 dip switches are in
the 1 position.

MC9S12P-Family Demonstration Lab Training, Rev. 0

18

Freescale Semiconductor

10.

1.

12.

13.

14.

15

16.

3.7.3

Demonstration Lab Examples

Hit RESET. The LEDs will flash 20 times indicating Run mode and then the MCU will enter into
Wait mode. Pressing PPO causes the MCU to exit Wait mode back into Run mode. The LEDs will
flash 20 times before the MCU returns into Wait mode again.

Monitor the ECLK signal on the oscilloscope. The 32 MHz square wave representing the bus clock
will be present in both Run and Wait modes.

Monitor the EXTAL signal on the oscilloscope. In both Run and Wait modes, a 4 MHz sine wave
should be observed indicating that the external oscillator continues to operate in Wait mode.

Put the “PB1” dip switch into the O position. Ensure that the PBO, PB2, and PB3 dip switches are
in the 1 position.

Hit RESET. The LEDs will flash 20 times indicating Run mode and then the MCU will enter into
Pseudo Stop mode. Pressing PPO causes the MCU to exit Pseudo Stop mode back into Run mode.
The LEDs will flash 20 times before the MCU returns into Pseudo Stop mode again.

Monitor the ECLK signal on the oscilloscope. The 32 MHz square wave representing the bus clock
is only present in Run mode. In Pseudo Stop mode, the bus clock is stopped to save power.
Monitor the EXTAL signal on the oscilloscope. In both Run and Pseudo Stop modes, a4 MHz sine
wave should be observed indicating that the external oscillator continues to operate in Pseudo Stop
mode.

Put the PBO and PB1 dip switches into the O position. Ensure that the PB2 and PB3 dip switches
are in the 1 position.

Hit RESET. The LEDs will flash 20 times indicating Run mode and then the MCU will enter into
Stop mode. Pressing PPO causes the MCU to exit Stop mode back into Run mode. The LEDs will
flash 20 times before the MCU returns into Stop mode again.

. Monitor the ECLK signal on the oscilloscope. The 32 MHz square wave representing the bus clock

is only present in Run mode. In Stop mode, the bus clock is stopped to save power.

Monitor the EXTAL signal on the oscilloscope. The 4 MHz sine wave is only present in Run mode.
In Stop mode, the external oscillator is stopped to save power.

Summary

The MC9S12P Family can be configured in a variety of ways to achieve low power consumption. The three
low-power modes offer different solutions for user applications.

For further information on low-power modes please refer to the following documentation which is
available at www.freescale.com.

3.8

AN2461 — Low Power Management using HCS12 and SBC devices
MC9S12P128 Reference Manual

MMC Program Flash Paging Window

The MC9S12P128 has a global memory of 128 KB. This amount of memory cannot be addressed by the
16-Bit MC9S12P128 MCU. Instead, a paging system which maps 16 KB blocks of memory into the local
memory map from address 0x8000 to OxBFFF is used.

This lab example shows how to use the paging capability of the MMC module to access global memory
addresses within the local memory map.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 19

http://www.freescale.com
http://www.freescale.com

Demonstration Lab Examples

3.8.1 Setup

The following steps should be taken before running the lab example:
Start CodeWarrior by selecting it in the Windows Start menu.

2. From the CodeWarrior main menu, choose File > Open and choose the S12P MMC Demo.mcp
file.

3. Click Open. The project window will open.

4. The C code of this demonstration is contained within the main.c file. Double click on the file to
open it.

5. Ensure the Softec HCS12 option is selected as the target.

512P_P¥YWM_Demo.mcp I
[v sofTes Hs12 Ry &5
Full Chip Simulation
P&E Multilink.Cyclone Pro
| Code | Data @ | =

'I:BE-.-'lL 5 0 e xi~
.l datapage.c 185 0+ =

=3 Includes 0 o =
“f derivative.h 0 o =
R MCIS12P128.h 1] 0 =l

FH_] Project Settings 52 G o« ;|—I

6. From the main menu choose Project > Debug. This will compile the source code, generate an
executable file, and download it to the demo board.

7. A new debugger environment will open. Do not close the debugger environment.

MC9S12P-Family Demonstration Lab Training, Rev. 0

20 Freescale Semiconductor

Demonstration Lab Examples

3.8.2 Instructions

Follow these instructions to run the lab example:

1. The “Memory” window in the debugger environment is configured to show the first few locations
of the P-Flash Window at address 0x8000.

2. The “Register” window in the debugger environment shows the setting of the Program Page Index
Register (PPAGE).

i True-Time Simulator & Real-Time Debugger D:\Profiles\r28318\My Documents\MetroWerks Projects\512P\512P MMC Demo\SofTec_HCS12.4ni TS|
Fle View Run iDARTHCS12 Compoment Source Window Help

Clelm| k[m(e] 2% o le|2|2|e(4] 2]

JRT=TR| [sy JRETET
D:\Profiles\28318'My Documents\Meliowerks Projects\S12PAS 12P MMC Demo\Sourcestmain.c Line: 100 main
veid main(veid) (B Bl [] jl
while (1) 004 00
B B 4005 52
P2 4006 5B1S ST2B 0x15
4008 00 BGND
4009 52 INCB
2am BEND: 4004 5B1S STZB 0x15
PEAGE = Ox0; 400C 00 BEND
2sm BEND: 400D 52 INCE =
PELGE = 0x03;
2=m BEID; =] Register =[al x|
A e — "
- 1 o ([T Huto
| o 0o 2 [0 B [o
=0 = [emr w[o
1p [aooo0 ecfacoo eeacE [O
eein () an [5een reo [avammzoe
ccnnEs [X] Memory -10] x|
Periodic
02000 70 00 00 00 00 00 00 00 Pu...... =
e I [53 SF 00 00 00 DO 00 00 00 ... |
0 0 00 00 00 00 00 00 00 00
main.c Auto | Symb [Global 00 0o 32 s 40 00 40 oo
Windew? <38> comst array[58] of const signed char =
Windews <38> comst array[58] of const signed char
Windowk <585 const array[56] of const signed char 0 00 00 00 00 SF OF 03 7C
Windowd <56> const array[58] of const signed char 00 20 00 00 00 00 00 00
LED Flag 0 unsigned char 0 00 00 00 00 00 00 00 00
_PERSE <1> volatile FERGESTR = 00 00 00 00 00 00 00 00 ...eewvws =
R 10l
main Auto | Symb | Local 0 B
in> TI -
TS| |
For Help, pressF1 [Automatic (oreakpaints, watchpaints, and trace possible) [Mcos12r128 [Breakpaint

3. Start the software by clicking on the “Run” button.

B

4. When the software hits the first breakpoint, examine the contents of the “Memory” and “Register”
windows. The PPAGE register is set to 08 and the P-Flash Window shown in the “Memory”
window displays the contents of PPAGE 08.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 21

A
Demonstration Lab Examples

Eile Yiew Run DDART-HCS12 Componment Source Window Help

Lislal snle| 2| o= (2|¢e|] 9|

RE
[D:\Profiles\ 28318\ My Documents\Metrawerks Projects\S 128 12P MMC Demc\Sowcestmaine—— [Lnec100
void main(veid) (B = |
4008 SB1S STAB 0x15 |
while (1) 4008 00 BEND
G o 4008 52 hitie:)
PEAGE = 0x0Z; 400% SB1S STAE 0x15
400 00 SHD
400D 52 INCB
2sm BEID; 400E SB1S ST2E 0x15
PERGE = Ox0i; 4010 00 BGND
n 4011 20ED ERL 417 rzbz = 0x4000 =
PEAGE = 0x08;

== B EEE
‘ V[| [THE2 o
D z 2 [0 B &

@

1p [4005 pc 2005 peacE [&

main () <o [aemn rro [avamour

Periodic

02000 30 38 20 50 50 41 47 45 08 PPASE =
—————————————||08010 &5 20 30 38 20 50 50 &1 E 0
main.c Auto || Somb " [Global| 15015 27 45 20 30 35 20 50 50 &
& <56> const array[S8] of const signed char 2f||os020 21 47 45 20 30 38 20 S0
Vindowd ~ <56> const array[56] of const signed char 02028 50 41 47 45 20 30 38 20
7indowh <56» const array[56] of const signed char 02030 50 50 41 47 45 20 30 38
WindowB <S6> const array[56] Of cOnSt signed char 05038 FF FF ET FF FF FF FF EF
0 unsigned char 2040
<1> volatile PFAGESTR]| e =l
H pata:2 P[] 4 P[] 4
main Auto | Symb [Local 4
STARTED
RUNNING
ILLEGAL BF
in> jl
KT oz
For Help, press F1 [Automatic {breakpoints, watchpoints, and trace possible) [Mcss12r128 [ILLEGAL_BP

5. Hit the “Run” button and observe the “Memory” and “Register” windows at the next breakpoint.

6. Now the PPAGE register is set to 09 and the P-Flash Window shown in the “Memory” window
displays the contents of PPAGE 09.

Fle View Run inDARTHCS12 Compoment Source Window Help

D lEl 2| (@] 2] - |a|=|le|] o]
0]

D:Profiles’'i28318'My Documents\MeticWerks Projects\S12PAS 12P MMC Dema\Sourcestmain.c Line: 100
void main{veid) [E -
while (1)
{®
L 4004 5B1S SIZE 0x13
400C 00 BEND
400D 52 IHCB
400E 5B15 STZB 0x15
4010 00 BGND
4011 20ED BRR *-17 rabs = 0x4000 =

zan BaiD; 101>
4 vz woiz [[A

D s 2 [o B El
=0 x Jeaan [@

P| 4003 PC |4009 PBPAGE | 3

<o [2awn rro [evatusur

iglx
[Pefisde |

02000 30 39 20 50 S0 41 47 45 09 BEAGE =l
A pata:1 _ (ol x[|[oz002 20 30 32 20 50 50 41 47 09 EEme |
0 ————————|ln=010 45 20 30 39 20 50 50 41 E 09 FEA
ain.e e[Syroby T Glokal | |01z 47 45 20 30 39 20 50 50 GE 09 BB
Windows <56 const array([S6] of const signed char “l||oz020 41 47 45 20 30 39 20 50 AGE 09 B
<56> const array[56] of const signed char 08028 S50 41 47 45 20 30 39 20 PAGE 09
<56> const array[56] of const signed char 02030 50 50 41 47 45 20 30 39 PEAGE 09
<56> const array[56] of const signed char 203 FY FF FF F¥ FT . .
0 unsigned char 04 EY FF FF FT ET .
<1 volatile PEAGESTR =i [Joeox FT FF FF FF FT . |
o i
main Auto | Symb | Local TLLEGAL B -
STARTED
RUNNING
ILLEGAL BP
in> TI H
4 LA) [
For Help, press F1 [Automatic (breakpoints, watchpaints, and trace possible) [Mcss12r 128 [LEGAL BP A

MC9S12P-Family Demonstration Lab Training, Rev. 0

22 Freescale Semiconductor

4
Demonstration Lab Examples

Hit the “Run” button and observe the “Memory” and “Register” windows at the next breakpoint.

8. Now the PPAGE register is set to OA and the P-Flash Window shown in the “Memory” window
displays the contents of PPAGE 0A.

i True-Time Simulator & Real-Time Debugger D:\Profiles\r28318\My Documents\MetroWerks Projects\512P\512P MIMC Demo\Soffec_HCS124m NS
Fle View Run nDART-HCS12 Comporent Source Window Help

BRI SN EE)

e e
D:4Profilestr28318WMy DocumentsiMetigwerks Projectshs12P4S12P MMC Demao\Sourcesimain.c Line: 100 main
wvoid main(veid) (B d 4005 52 INCB d
4006 5B1S STER 0x15 _I
while(1) 4008 00 BGND
= 4009 52 INCB
PPAGE = 0Ox08; —I

400A SB1S STAB 0x15

asm BGND; BGND

PEAGE = 0x08;

25 BGID; 400E 5B15 STZE 0x13
BEAGE = 0x0R; 4010 00 B&D
4011 20ED ERAL *-17 ;abs = 0x4000 LI
v i
m—— S| Auto
D 2 [0 B [z
=0/ x Jeos [@

IP | 400D EC [400D PPAGE [&

<o [2avn rro [evatusur

il
[Pefisdc [

02000 30 41 20 50 50 41 47 45 OA PEAGE =
B pata:1 o [4] | 20 30 41 20 50 50 41 47 Ok BEAG o
02010 45 20 30 41 20 50 50 41 E 0 BEA
main.c Futo " [Symb " [Giobal 47 45 20 30 41 20 50 50 GE OR PP
Windows <56> const array[58] of const signed char 2 41 47 45 20 30 41 20 50 AGE OR P
Windowd <56> const array[56] of const signed char 50 41 47 45 20 30 41 20 PAGE OR
Windowh <56> const array[56] of const =igned char 50 50 41 47 45 20 30 41 PPAGE 0A&
WindewS <38> comst array[58] of const signed char 02038 EF FF FF FF FF FF FF FE
LED Flag 0 unsigned char 02040 EF FF FF FF FF FF FF FE
_FERSE <1> volatile FEASESTR m|[pse rEE ER I rr T R T L =
S wan - [Auw [Smb [Local TLLEGAL BE B
STERTED
RUNNING
ILLEGAL_BE
i
4 LA) [
For Help, press F1 [Automatic (breakpoints, watchpaints, and trace possible) [Mcss12r 128 [LEGAL BP

9. Hit the “Run” button and observe the “Memory” and “Register” windows at the next breakpoint.

10. Now the PPAGE register is set to OB and the P-Flash Window shown in the “Memory” window
displays the contents of PPAGE 0B.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 23

Demonstration Lab Examples

i True-Time Simulator & Real-Time Debugger D:\Profiles\r28318\My Documents\MetroWerks Projects\512P\512P MIMC Demo\Soffec_HCS124m NS
Fle View Run nDART-HCS12 Comporent Source Window Help

Cjela] k[mle] 2] - [z[z]el=]1] 9]
BEE BT

D:\Profilest283184My Documents\MetrdWerks Projects\S12P4512P MMC Demo\Sourcesimain.c Line: 100 main
void main{veid) [E =l 4005 52 INCB =
0 STEE 0x13 |
while (] BEND
B L IHCE
PEAGE = 0x0%; 4004 5B1S STZB 0x15
2am BEND: 400C 00 BEND
PELGE = 0x03; 400D 52 INCE
asm BEND; 400E 5B15 STZB 0x15
PELGE = 0xfZ; 4010 00 BEND
asm BEND; 4011 20ED *-17 ;abs = 0x4000 =l

PEAGE = 0x08;

sen BGND: =101
m— S| [Auto
—| o B 2 [0 B E
=I0X| x [esn [@

1p[4011 o201 eeacE [B

et () ac [meen ren [eveinoe
[Peiede |
42 20 50 S50 41 47 45 OB PPAGE =
30 42 20 50 50 41 47 0B PEAS o
3042 20 50 50 41 E 0B PRA

i

main.c Futo [Symb " [Giobal 5 47 45 20 30 42 20 50 50 GE OB EF
Windowf <585 const array[56] of const signed char = 41 47 45 20 30 42 20 50 AGE 0B P
Windowd <56> const array[58] of const signed char 50 41 47 45 20 30 42 20 EBAGE 0B
Windowk <56> const array[58] of const signed char 0 50 50 41 47 45 20 30 42 FEAGE OB
Windewd <56> conat array[56] of const signed char & FF FF FF FF FF FF FF FE .uvunvnn
LED Flag 0 unsigned char 0 EF FF FF FF FF FF FF FE
_PERSE <1> volatile FERSESTR m|[zse ErEE Er EE Er T PR T L =
Hl Data:2 =lolx| =lalx|
main Auo | Symb | Local -
RUNNING
ILLEGAL_BF
i
“ L) [
For Help, pressF1 [Automatic (breakpaints, watchpaints, and trace possible) [Mces12r128 [EGAL BP

11. Hit the “Run” button and the software will loop back to return the PPAGE register to 08.
The contents of PPAGE 08 can be seen in the “Memory” window.

3.8.3 Summary

The MMC module can be used to expand the accessible amount of memory of the MC9S12P128 MCU by
paging the expanded global memory into a window in the local memory.

For further information on the MMC module please refer to the following documentation which is
available at www.freescale.com.

e MC9S12P128 Reference Manual

3.9 ADC Module

This lab example shows how to use the ADC module to perform single conversions, continuous
conversions, and automatic compare. The ADC conversion results are output on a terminal window via

the RS-232 port.

MC9S12P-Family Demonstration Lab Training, Rev. 0

24 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

3.9.1

Demonstration Lab Examples

Setup

The following steps should be taken before running the lab example:

1.

A

Ensure that the “RS-232/LIN SEL” jumper on the DEMO9S12PFAME demonstration board
selects the “RS-232” position.

Ensure that the “ENA” jumper on J503 is present.
Ensure that the “ENA” jumper on J505 is present.
Ensure that the “ENA” jumper on J506 is present.
Start CodeWarrior by selecting it in the Windows Start menu.

From the CodeWarrior main menu, choose File > Open and choose the S12P ADC Demo.mcp
file.

7. Click Open. The project window will open.

8. The C code of this demonstration is contained within the main.c file. Double click on the file to

10.

11.

12.

open it.
Ensure the Softec HCS12 option is selected as the target.

512P_PWM_Demo.mcp I
[D sofTes Hs12 ClEE vy &
Full Chip Simulation
P&E Multilink.Cyclone Pro
| Code | Diata |i |;-

'IZEE-.-'IL 5 0 e =~
LMl datapage.c 185 o= =

H3 Inchudes 0 0 =
“fl derivative.h 0 0o =
~-fl MCI512P128.h i 0 =l

F-{3 F'_rnieu:tSettings 52 G o« ;l—l

From the main menu choose Project > Debug. This will compile the source code, generate an
executable file, and download it to the demo board.

A new debugger environment will open. Once the download to the demo board is complete, close
the debugger environment.

The ADC conversion result is sent to the RS-232 port (baud rate = 9600, data bits = 8, parity = N,
stop bits = 1, Flow control = Hardware). Open a terminal window on the PC with this configuration.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 25

Demonstration Lab Examples

3.9.2 Instructions

Follow these instructions to run the lab example:

1. Ensure that the PBO, PB1, PB2, and PB3 dip switches are in the 1 position.

2. Hit RESET. The ADC will perform a single 12-bit conversion on PADOO. To perform another
conversion press PP0.

3. Vary the conversion result by turning potentiometer P501 on PADOO and observe the changes in
the terminal window.

4. Put the PBO dip switch into the O position. Ensure that the PB1, PB2, and PB3 dip switches are in
the 1 position.

5. Hit RESET. The ADC will perform continuous 8-bit conversions on PADOI.

6. Vary the conversion result by shading the light sensor R507 on PADO1 and observe the changes in
the terminal window.

7. Put the PB1 dip switch into the O position. Ensure that the PBO, PB2, and PB3 dip switches are in
the 1 position.

8. Hit RESET. The ADC will perform continuous 12-bit conversions on PAD0OO and compare the
result to see if it is higher than 0xO7FF. Whilst the comparison is true, the LEDs on the demo board
will flash.

9. Vary the conversion result by turning potentiometer P501 on PADOO and observe the result in the
terminal window. Notice how the LEDs only flash when the result is greater than OxO7FF.

3.9.3 Summary

The ADC module is highly autonomous with an array of flexible conversion sequences and resolution.
It can be configured to select which analog source to start the conversion on, how many conversions to
perform, and whether these should be on the same or multiple input channels. An automatic compare can
be used to liken the conversion result against a programmable value for higher than or less than/equal to
matching. Any conversion sequence can be repeated continuously without additional MCU overhead.

For further information on the ADC module please refer to the following documentation which is available
at www.freescale.com.

* AN2428 — An Overview of the HCS12 ATD Module

* MC9S12P128 Reference Manual

3.10 Timer Module

This lab example shows how to use the Timer module to perform output compare and input capture. In case
an oscilloscope is unavailable, the LEDs associated with Port A on the DEMO9S12PFAME board toggle
to indicate an output compare match, or a successful input capture.

MC9S12P-Family Demonstration Lab Training, Rev. 0

26 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

Demonstration Lab Examples

3.10.1 Setup

The following steps should be taken before running the lab example:
1. Ensure that the ENA jumper on the J508 is present for LEDs A0, A1, and A3.

Connect Port T1 from J101 pin 15 with Port T3 from J102 pin 8. This will allow the output compare
function on T1 to provide stimulus to the input capture function on PT3. The connections may be
easier to make if header rows are populated on J101 and J102.

Start CodeWarrior by selecting it in the Windows Start menu.

From the CodeWarrior main menu, choose File > Open and choose the S12P Timer Demo.mcp
file.

Click Open. The project window will open.

The C code of this demonstration is contained within the main.c file. Double click on the file to
open it.

Ensure the Softec HCS12 option is selected as the target.

512P_Timer_Demo.mcp I

|_ SofTec HCS12 @Ry 3y

Full Chip Simulation
P&E Multilink./Cyclone Pro

| Code | Diata |i |;-

TBOML o 0 =,

Hl demvanve f 0 1] =—
-l MCI512P128 h a 1] =l
EH=3 Project Settings 52 6+« =

From the main menu choose Project > Debug. This will compile the source code, generate an
executable file, and download it to the demo board.

A new debugger environment will open. Once the download to the demo board is complete, close
the debugger environment.

3.10.2 Instructions

Follow these instructions to run the lab example:

1.

Hit RESET. The code should run and the Timer will perform output compares on channel O (Port
TO) and channel 1 (Port T1), and input capture on channel 3 (Port T3). When a compare match
occurs, Ports TO and T1 will toggle.

Use an oscilloscope to view the toggling of Timer channel pins. In case an oscilloscope is not
available, the LEDs associated with Port AO and Port A1 toggle in sync with Port TO and Port T1,
respectively.

To ensure the input capture is detecting edge transitions, observe Port A3 LED toggles in sync
with Port A1.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 27

Demonstration Lab Examples

3.10.3 Summary

The Timer is a very useful module in that it provides a trigger for events to occur at a specific time, or
captures when the events have occurred. It is very important in the scheduling of repetitive actions and
contains a variety of special functions, such as pulse accumulation.

For further information on the Timer module please refer to the following documentation which is
available at www.freescale.com.
* MC9S12P128 Reference Manual

3.11 SCI Communications

This lab example shows how to configure the SCI module to transmit and receive data using different baud
rates.

3.11.1 Setup

The following steps should be taken before running the lab example:

1. Ensure that the RS-232/LIN SEL jumper on the DEMO9S12PFAME demonstration board selects
the RS-232 position.

2. Start CodeWarrior by selecting it in the Windows Start menu.

3. From the CodeWarrior main menu, choose File > Open and choose the S12P SCI Tx and Rx.mcp
file.

4. Click Open. The project window will open.

3.11.2 Instructions

Follow these instructions to run the lab example:
1. The C code of this demonstration is contained within the main.c file. Double click on the file to
open it.
2. Configure the variable Baud_Rate to 9600 and make sure all other options are disabled.

vold maini{woid) {
char RegisterCase;
un=zigned int BaudRateFrescaler. =.v:

unszigned long Baud Rate = 9600;
ey unzigned long Baud Rate = 19200;
S unsigned long Baud_Rate = 38400:;
£ unzigned long Baud_Rate = S7600;

MC9S12P-Family Demonstration Lab Training, Rev. 0

28 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

Demonstration Lab Examples

3. Ensure the Softec HCS12 option is selected as the target.

S12P_PWW_Demo.mcp I

[D sofTec Hes12 CEdE vy &y

Full Chip Simulation
P&E Muttilink/Cyclone Pro

| Code | Data |4 | =

TEDIL 3 D+ xia
il datapage.c 185 0« =
E=3 Inclhudes 0 0o =
oMl derivative.h 0 0o =
-l MCI512P128 h a 1] =l

F_] Project Settings 52 B« =—

4. From the main menu choose Project > Debug. This will compile the source code, generate an
executable file, and download it to the demo board.

5. A new debugger environment will open.

6. The software uses the RS-232 port to interact with the user. Open a terminal window (baud rate =
9600, data bits = 8, parity = N, stop bits = 1, Flow control = Hardware) to see the RS-232 port data.

7. Hit F5. The code will begin execution, configuring the SCI to the selected baud rate. It’s status can
be confirmed on the terminal window.

8. The SCl register configurations can be confirmed by selecting an option displayed on the terminal
window. Choose some options and observe the SCI register configurations.

9. Repeat steps 2 to 9 for baud rates of 19200, 38400, and 57600. Alternatively modify the definition
of variable Baud_Rate for a user-configured baud rate.

3.11.3 Summary
The SCI module can be used to communicate with peripheral devices or other MCUSs.

For further information on the SCI module please refer to the following documentation which is available
at www.freescale.com.

e AN2883 — Serial Communication Interface as UART on HCS12 MCUs

e MCOS12P128 Reference Manual

3.12 SPI Communications

This lab example shows how to set up and use the SPI module in Master mode to transmit an incrementing
byte of data.

As there is only one SPI module available on the DEMO9S12PFAME board, this example is limited to
transmitting data only. When an SPI master transmits data to an SPI slave, data is usually received
simultaneously, synchronized by a serial clock.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 29

http://www.freescale.com
http://www.freescale.com

Demonstration Lab Examples

3.121 Setup

An oscilloscope and three scope probes are required for this demo. The following steps should be followed
before running the lab example.

1. Ensure that the J101 is populated with a header row that allows probing of the MCU signals,
specifically PM3-PMS5.

Start CodeWarrior by selecting it in the Windows Start menu.
From the CodeWarrior main menu, choose File > Open and choose the S12P SPI Demo.mcp file.
Click Open. The project window will open.

M

The C code of this demonstration is contained within the main.c file. Double click on the file to
open it.
6. Ensure the Softec HCS12 option is selected as the target.

512P_PWM_Demo._mcp I
[V SoiTec HCs 12 ClEE Ry B s
Full Chip Simulation
P&E Multilink/Cyclone Pro
| Code | [rata |i |=-

'I:E!EHL = 0 e =
-l datapage.c 185 0« =

EH=3 Inclhudes 1] 0 =l
M derivative b 0 o =
-l MCI512P128 h a 0o =l

F_] Project Settings 52 E » ;|—I

7. From the main menu choose Project > Debug. This will compile the source code, generate an
executable file, and download it to the demo board.

8. A new debugger environment will open. Once the download to the demo board is complete, close
the debugger environment.

9. Attach scope probes to PM3, PM4, and PM5.
10. Configure the oscilloscope to trigger on the falling edge of PM3.

3.12.2 Instructions

Follow these instructions to run the lab example:

1. Hit RESET. The code will begin execution, configuring the SPI to transmit an incrementing byte
of data at a baud rate of 15.625 kbits/s.

2. Monitor the SPI transmission on the oscilloscope to see the relationship between Slave Select
(PM3), data transmitted on MOSI (PMS5), and the Serial Clock (PM4) signals.

MC9S12P-Family Demonstration Lab Training, Rev. 0

30 Freescale Semiconductor

Conclusion

M Pos: 300.00s CURSOR

Trype
Tirre

Source

5 LY A P VPR ™ K 1T
LIse multipurpose knob to rosye Cursar 1

3.12.3 Summary

The SPI module can be used to allow duplex synchronous serial communication between peripheral
devices and the MCU.

For further information on the SPI module please refer to the following documentation which is available
at www.freescale.com.

e MCOS12P128 Reference Manual

4 Conclusion

The S12P family of microcontrollers (MCUs) offers the enhanced features of 16-Bit performance at the
value of 8-bit MCUs. The S12P family bridges the gap between 8- and 16-bit MCUs and serves as an entry
point into Freescale’s 16-bit family offerings, giving customers the flexibility to enhance or cost-reduce
their applications.

The S12P family is ideal for a wide range of central body control applications, such as window lifts, seat
controllers, sunroofs, door modules, low-end anti-lock brake systems (ABS), electronic power steering
(EPS) and watchdog control.

A zip file, AN3937SW.zip, containing the complete CodeWarrior projects for the lab examples
accompanies this application note. The file can be downloaded from www.freescale.com.

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor 31

http://www.freescale.com
http://www.freescale.com

Useful Reference Material

5

Useful Reference Material

The following material is available at www.freescale.com.

Software Development Tools

CodeWarrior for HCS12(X) Microcontrollers

Application Notes

AN3622 — Comparison of the S12XS CRG Module with S12P CPMU Module
AN3034 — Using MSCAN on the HCS12 Family

AN2612 — PWM Generation Using HCS12 Timer Channels

AN2428 — An Overview of the HCS12 ATD Module

AN2883 — Serial Communication Interface as UART on HCS12 MCUs
AN2461 — Low Power Management using HCS12 and SBC devices

AN3613 — Using the MC9S12XS Family as a Development Platform for the MC9S12P
Family

MC9S12P-Family Demonstration Lab Training, Rev. 0

32

Freescale Semiconductor

THIS PAGE IS INTENTIONALLY BLANK

MC9S12P-Family Demonstration Lab Training, Rev. 0

Freescale Semiconductor

33

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Document Number: AN3937
Rev. 0
09/2009

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.

freescale"

semiconductor

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Setup
	2.1 Tools Setup
	2.2 Board Setup

	3 Demonstration Lab Examples
	3.1 CPMU Clocks
	3.1.1 Setup
	3.1.2 Instructions
	3.1.3 Summary

	3.2 Flash Programming Example
	3.2.1 Flash Overview
	3.2.2 Code Example Explanation and Walkthrough
	3.2.3 Breakpoint 1 — Launch Flash Command — Filling P-Flash
	3.2.4 Breakpoint 2 — Launched Program Commands — Known Data
	3.2.5 Breakpoint 3 — Launched Program Commands — Address Data
	3.2.6 Breakpoint 4 — D-flash — Launched Program Commands
	3.2.7 Summary

	3.3 Emulated EEPROM Driver
	3.3.1 Emulated EEPROM Overview
	3.3.2 Code Example Explanation and Walkthrough
	3.3.3 Breakpoint 1 — Erase the D-Flash
	3.3.4 Breakpoint 2 — Initialise the Active and Alternative Sectors
	3.3.5 Breakpoint 3 — Write First Data and ID Record
	3.3.6 Breakpoint 4 — Completely Write the Active Sectors
	3.3.7 Breakpoint 5 — Sector Swap
	3.3.8 Breakpoint 6 — Reading EEE and Erase
	3.3.9 Summary

	3.4 LIN Communications
	3.5 MSCAN Module
	3.5.1 Setup
	3.5.2 Instructions
	3.5.3 Summary

	3.6 PWM Module
	3.6.1 Setup
	3.6.2 Instructions
	3.6.3 Summary

	3.7 S12P Low-Power Modes
	3.7.1 Setup
	3.7.2 Instructions
	3.7.3 Summary

	3.8 MMC Program Flash Paging Window
	3.8.1 Setup
	3.8.2 Instructions
	3.8.3 Summary

	3.9 ADC Module
	3.9.1 Setup
	3.9.2 Instructions
	3.9.3 Summary

	3.10 Timer Module
	3.10.1 Setup
	3.10.2 Instructions
	3.10.3 Summary

	3.11 SCI Communications
	3.11.1 Setup
	3.11.2 Instructions
	3.11.3 Summary

	3.12 SPI Communications
	3.12.1 Setup
	3.12.2 Instructions
	3.12.3 Summary

	4 Conclusion
	5 Useful Reference Material

