
47 A2 37UJ Rev00

Job Control and IOF

Bull DPS 7000
Programmer's Manual
IOF Programmer's Manual

GCOS 7

Software

Subject : This manual describes the features of GCOS 7 which a
programmer developing programs for interactive execution needs
to know.

Special instructions : This manual replaces the document referenced 47 A2 05UJ Rev05
for all users of GCOS 7 Release V7. 47 A2 05UF remains valid for
users of GCOS 7 V6.

Software supported : GCOS 7-AP/HPS/EXMS Release V7

Date : February 1995

Bull S.A. Bull HN Information Systems Inc.
CEDOC Publication Order Entry
Atelier de reproduction MA30/843
331, Avenue Patton BP 428 300 Concord Road
49005 ANGERS Cedex Billerica, MA 01821
FRANCE U.S.A.

Copyright Bull S.A., 1995

Bull acknowledges the rights of proprietors of trademarks mentioned herein.

Suggestions and criticisms concerning the form, content, and presentation of this
manual are invited. A form is provided at the end of this manual for this purpose.

Bull disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written
agreement with and for its customer. In no event is Bull liable to anyone for any
indirect, special, or consequential damages.

The information and specifications in this document are subject to change without
notice. Consult your Bull Marketing Representative for product or service availability.

47 A2 37UJ Rev00 iii

Preface

MANUAL OBJECTIVES

This manual describes those features of GCOS 7 with which a programmer developing
programs for interactive execution must be familiar.

INTENDED READERS

The intended readers of this manual are programmers who wish to create and/or maintain
programs that execute interactively under IOF (Interactive Operation Facility). A general
knowledge of GCOS 7 (such as may be obtained by reading Part 1 of the IOF Terminal
User's Reference Manual), is assumed, as well as familiarity with COBOL, FORTRAN, C,
or GPL.

STRUCTURE OF THIS MANUAL

Section 1 introduces the concepts associated with executing programs
interactively under IOF.

Section 2 describes Line mode and Forms mode, the two modes in
which a terminal can be accessed.

Section 3 describes character sets, the values of which are used to
code characters transmitted from or to a terminal.

Section 4 discusses the TAM (Terminal Access Method).

Section 5 discusses the SDPI (Standard Device Programmatic
Interface).

Section 6 describes a few miscellaneous service primitives.

IOF Programmer's Manual

iv 47 A2 37UJ Rev00

NOTE: Earlier versions of this manual included a section on the FORMS facility. This
information is now contained in the GCOS 7 Forms User's Guide.

Earlier versions of this manual also included sections on GCL translation,
services provided by GCL to interactive programs, GCL command
management, and the creation and modification of Help texts. This information
is now contained in the GCL Programmer's Manual.

ASSOCIATED DOCUMENTS

The following manuals are companion documents:

GCOS 7 Forms User's Guide.. 47 A2 15UJ
GCL Programmer's Manual... 47 A2 36UJ

The following manual is prerequisite reading to understand the material presented in this
manual:

IOF Terminal User's Reference Manual (Part 1)... 47 A2 38UJ

The following manuals are also recommended:

IOF Terminal User's Reference Manual (Part 2)... 47 A2 39UJ
IOF Terminal User's Reference Manual (Part 3)... 47 A2 40UJ
GCOS 7 System Administrator's Manual .. 47 A2 41US
GCOS 7 Forms User's Guide.. 47 A2 15UJ

The following manuals should be consulted as needed.

COBOL 85 Reference Manual .. 47 A2 05UL
COBOL 85 User's Guide... 47 A2 06UL
FORTRAN 77 Reference Manual ... 47 A2 15UL
FORTRAN 77 User Guide... 47 A2 16UL
GPL Reference Manual... 47 A2 35UL
GPL User Guide.. 47 A2 36UL
GPL System Primitives Reference Manual ... 47 A2 34UL
C Language User's Guide .. 47 A2 60UL
C Language System Primitives Reference Manual... 47 A2 64UL

Preface

47 A2 37UJ Rev00 v

NOTATION CONVENTIONS

The following notation is used in the formats of the commands presented in this manual:

ITEM Uppercase characters are used for keyword items that are
to be entered exactly as shown.

item Lowercase characters are used for user-supplied items.

[item] An item within square brackets is optional.

{item1}
{item2}
{item3}

A column of items within braces means one item must be
selected. The default, if there is one, is underlined (e.g.,
item3 here).

{item1|item2|item3} A sequence of items separated by vertical bars has the
same meaning as the convention just above.

... An ellipsis indicates that the preceding item may be
repeated one or more times.

IOF Programmer's Manual

vi 47 A2 37UJ Rev00

47 A2 37UJ Rev00 vii

Table of Contents

1 Introduction... 1-1

1.1 IOF AND BATCH COMPATIBILITY... 1-1

1.2 INTERACTIVE OPERATOR CONTEXT... 1-1

1.3 INTERACTIVE PROGRAM CONTEXT .. 1-2

1.4 INTERACTIVE PROGRAM SPECIFICS... 1-2

1.5 TERMINALS ... 1-3

1.6 USING THE TERMINAL... 1-4

1.6.1 Basic Level... .. 1-4
1.6.1.1 LINE MODE... 1-4
1.6.1.2 FORMS MODE.. 1-4
1.6.1.3 MAINTAIN_FORM PROCESSOR .. 1-5
1.6.2 GCL Interface... 1-5
1.6.2.1 MAINTAIN_COMMAND PROCESSOR .. 1-5
1.6.2.2 SERVICES .. 1-6

IOF Programmer's Manual

viii 47 A2 37UJ Rev00

2 Line Mode and Forms Mode .. 2-1

2.1 OVERVIEW... 2-1

2.2 LINE MODE .. 2-2

2.3 FORMS MODE ... 2-2

2.4 SHARING THE TERMINAL BETWEEN TAM AND SDPI .. 2-3

3 Character Sets .. 3-1

3.1 EXTENDED CHARACTER SETS... 3-1

3.1.1 C101 Mode ... 3-4
3.1.2 PLW Mode.. 3-4

4 Terminal Access Method ... 4-1

4.1 HOW IT WORKS .. 4-1

4.2 TWO IMPORTANT ASPECTS OF THIS INTERFACE... 4-2

4.2.1 Quarantining.. 4-2
4.2.2 Prefixing and Prompting .. 4-2

4.3 OUTPUT ... 4-3

4.3.1 Edited Mode... 4-3
4.3.2 Transparent Mode... 4-5

4.4 INPUT.. 4-6

4.4.1 Edited Mode... 4-6
4.4.2 Transparent Mode... 4-6

4.5 GCL TERMINAL ASSIGNMENT .. 4-7

4.5.1 ASGi: File Assignment Parameters ... 4-7
4.5.2 DEFi: File-Define Parameter Group ... 4-8

Table of Contents

47 A2 37UJ Rev00 ix

4.6 GPL PRIMITIVES ... 4-9

4.6.1 H_FD (File Declaration)... 4-9
4.6.2 H_OPEN (Open File).. 4-12
4.6.3 H_GET (Get Record) ... 4-13
4.6.4 H_PUT (Put Record).. 4-14
4.6.5 H_CLOSE (Close File)... 4-15
4.6.6 H_TN (File declaration) ... 4-16

4.7 OTHER LANGUAGES.. 4-18

5 Forms Mode: SDPI Interface.. 5-1

5.1 FORM GENERATION... 5-1

5.2 PRINCIPLES OF THE SDPI INTERFACE.. 5-2

5.3 FORM ACTIVATION... 5-3

5.4 OUTPUT ACTIONS .. 5-5

5.5 INPUT ACTIONS .. 5-5

5.6 TRACES.. 5-6

5.7 SDPI COBOL STATEMENTS .. 5-7

5.7.1 Data Structures.. 5 -7
5.7.2 CDSEND (Forms Send)... 5-8
5.7.3 CDRECV (Forms Receive) .. 5-10
5.7.4 CDGET (Form Activation)... 5-13
5.7.5 CDRELS (Release all forms) .. 5-16
5.7.6 CDPURGE (Purge input data) .. 5-17
5.7.7 CDATTR (Attribute selection)... 5-18
5.7.8 CDATTL (Attribute list selection)... 5-20
5.7.9 CDFIDI (Form identification) .. 5-23
5.7.10 CDMECH (Control function mechanism) .. 5-24

5.8 A PROGRAMMING EXAMPLE .. 5-26

IOF Programmer's Manual

x 47 A2 37UJ Rev00

6 Miscellaneous Primitives... 6-1

6.1 H_QUERY (QUERY ON TERMINAL).. 6-1

6.2 H_DCTNATTR (DECLARE TERMINAL ATTRIBUTES)... 6-2

6.3 H_TNATTR (GET TERMINAL ATTRIBUTES).. 6-4

Index .. i-1

Table of Contents

47 A2 37UJ Rev00 xi

Illustrations

Figures

1-1 Terminals supported by GCOS 7 .. 1-3
3-1 PLW Characters (EBCDIC)... 3-2

IOF Programmer's Manual

xii 47 A2 37UJ Rev00

47 A2 37UJ Rev00 1-1

1. Introduction

1.1 IOF AND BATCH COMPATIBILITY

The Interactive Operating Facility (IOF) available under GCOS 7 offers many powerful
programming features, but remains largely compatible with traditional Batch
programming. Among other things:

• the programming tools (compilers, linker, editors, debugger, etc.) are the same for IOF
and Batch,

• programs are interchangeable: programs written with IOF can be run in Batch and vice
versa (except when dialog is with a terminal, as in FORMS mode for example)

• with IOF, as in Batch, a programmer has access to all files without restriction through
the various access methods,

• in both IOF and Batch programming, advanced GPL primitives are available,

• all GCOS 7 resources are equally available to IOF and to Batch, including:

- cataloged, uncataloged, and temporary files,
- variable memory (SIZE parameter of the EXEC_PG command),
- backing store space,
- CPU.

1.2 INTERACTIVE OPERATOR CONTEXT

The interactive facilities available under GCOS 7 are intended to:

• provide a user-friendly environment,

• maximize programmer productivity,

• provide for easy programming,

• be flexible enough to cater for different (and possibly conflicting) end-user
requirements.

IOF Programmer's Manual

1-2 47 A2 37UJ Rev00

Part 1 of the IOF Terminal User's Reference Manual is a prerequisite to this manual,
because it gives an overview of IOF facilities.

Under IOF the terminal user is provided with menus, prompts, and help texts, to explain
each domain, command, and parameter. You can dialog with the system in full screen
mode when using a terminal which supports forms. You are provided with a specific
profile which allows you to define your own working mode and resource requirements.

The programmer creating interactive applications to run under IOF is expected to provide
end-users (terminal operators) of the applications with the same level of facilities.

1.3 INTERACTIVE PROGRAM CONTEXT

All the GCOS 7 tools useful to the programmer can be activated interactively. These tools
include library maintenance, editors (both the line editor and the full-screen editor),
compilers, the linker, and the debugger.

These facilities are described in the IOF Terminal User's Reference Manual and in the
manual(s) specific to each product.

Working environments may be made available by the System Administrator. Standard
environments for IOF and batch programming are provided with GCOS 7, as described in
the GCOS 7 System Administrator's Manual.

The following commercial programming languages are available: COBOL, FORTRAN,
PASCAL, C, and GPL. The compilers for these languages are available both under IOF
and in batch.

IQS is discussed in its own manual set and is not treated here.

1.4 INTERACTIVE PROGRAM SPECIFICS

The new features specific to programming under IOF are designed to facilitate the
interaction between a program and its user(s) during the execution of the program.

The main difference between an interactive program and a batch program is that the
former interacts with a user (terminal operator) during its execution. Thus the specific
needs of an IOF application programmer are for facilities which handle a dialog with a
terminal at different levels and in various modes.

The object of this manual is to present these facilities.

Introduction

47 A2 37UJ Rev00 1-3

1.5 TERMINALS

The modes in which a program can dialog with a terminal operator depend on the
characteristics of the terminal.

A list of the terminals supported by GCOS 7 is presented in Table 1-1 below. Terminals
which support Forms Mode (that is, permit a dialog in full-screen mode) are marked with
an "F" in the table. Terminals which support the PLW character set (described in Section
3) are indicated with a "P" in the table.

TTY VIP
s ynchronous

BSC
3270

D K U 7001/2
M IN ITEL
P C 7800
P R T1220
TTU 8124
TTU 8126
TTU 8128
TTY33
TTY35
TW S 225 5
V IP 7801

F P
F
P

F P
F

D K U 7005
D K U 7007
D K U 7105
D K U 7107
D K U 7211
P D P 11/10
TTU 822 1
V IP 7804
V IP 8800

F
F

F P
F P
F P

F
F P

IB M 3270
IB M 3741
IB M 3278
IB M 3279

F

F
F

Figure 1-1. Terminals supported by GCOS 7

IOF Programmer's Manual

1-4 47 A2 37UJ Rev00

1.6 USING THE TERMINAL

As explained above, the specific features which are of interest to the IOF applications
programmer concern dialog with the terminal.

A large number of primitives and commands are available to assist in programming under
IOF. These are described in detail later in this manual; there is a presentation of each
primitive in terms of its function, format, parameters, return codes, restrictions (if any),
and examples of use.

Various levels of communication with the terminal are available, as discussed below.

1.6.1 Basic Level

The basic level enables the program to exchange information with the terminal for most
general purposes. At this level, two modes are provided: line (or text) mode, and forms
mode.

1.6.1.1 LINE MODE

In line mode, text is input or output in continuous streams; this mode is designed for
source text processing. You might use this mode for entering a source program written in
COBOL, PASCAL, C, GPL, or FORTRAN, or for entering text such as the contents of this
manual. In this mode, the interface between the terminal and the rest of the system and
processors is the Terminal Access Method (TAM), which gives access to the terminal as if
it were a conventional file.

The TAM interface is discussed in Section 4 of this manual.

1.6.1.2 FORMS MODE

In forms mode, the terminal screen is composed of one or more fixed parts - the forms -
that contain variable fields to be filled in by the user or user program. This mode can be
used for commercial formats and is particularly good for graphically presenting
information and prompting a user response. The interface between the terminal and the
rest of the system and processors is the Standard Device Programmatic Interface (SDPI).

The SDPI interface enables you to activate forms from within a program. These forms are
used in the dialog with the terminal. You can create (and store) such forms using the
MAINTAIN_FORM processor.

The SDPI interface is discussed in Section 5 of this manual.

Introduction

47 A2 37UJ Rev00 1-5

1.6.1.3 MAINTAIN_FORM PROCESSOR

You can design forms directly on a terminal (using the ICREATE command within the
processor), or you can specify the form using a COBOL-like source form definition
language. Both these ways of creating forms are described in the GCOS 7 Forms User's
Guide.

This processor takes its input, either directly from a terminal, or from a library member (or
file). However, you are recommended to create forms directly using the ICREATE
command of the MAINTAIN_FORM processor.

You can use commands such as MODIFY, TEST, and EDIT or FSE, to test, debug, and
modify forms. For details, see the GCOS 7 Forms User's Guide.

1.6.2 GCL Interface

The GCL interface enables you to use the GCL (GCOS Command Language) to handle
the dialog with the terminal. This command language is described in detail in the IOF
Terminal User's Reference Manual.

GCL is recommended for all applications that accept large amounts of complex
information from the terminal.

The GCL interface provides facilities such as command prompting, Help text invocation,
and error recovery mechanisms without any special programming effort.

The GCL interface is available in both line and forms mode. Thus, no specific restrictions
apply to the characteristics of the user's terminal for the use of this interface. This
interface is discussed in the GCL Programmer's Manual.

1.6.2.1 MAINTAIN_COMMAND PROCESSOR

The command management processor (MAINTAIN_COMMAND) handles the creation,
modification, and compilation of GCL commands written at your installation. This
processor is discussed in the GCL Programmer's Manual.

The creation and maintenance of Help texts associated with GCL commands and their
parameters is discussed in the GCL Programmer's Manual.

IOF Programmer's Manual

1-6 47 A2 37UJ Rev00

1.6.2.2 SERVICES

The GCL interface provides various services which the IOF programmer can use to
facilitate his task. These include the following:

• calling up Help texts from within an IOF program,

• reading and/or setting system and global variables to test and/or modify the operating
environment,

• analyzing file and fileset literals input from the terminal.

You can define your own GCL commands, and have them compiled to be used in your
programs (see the GCL Programmer's Manual).

You can tailor a procedure to suit your own personal needs exactly. You can also
compress a series of existing procedures and their parameter values into a single
procedure. A simple, step-by-step example of using the menus of MAINTAIN_FORM to
create and modify a form, is described in the GCOS 7 Forms User's Guide.

A few miscellaneous service primitives are presented in Section 6 of this manual.

47 A2 37UJ Rev00 2-1

2. Line Mode and Forms Mode

2.1 OVERVIEW

Under IOF, there are two modes in which a terminal can be accessed. These two modes
are Line mode (also called Text mode) and Forms mode.

Line mode is where data is input or output as a continuous stream of discrete units, either
in blocks or character by character. It is the simpler mode, but is well adapted to editing
source programs or text processing. Line mode is available on both TTY and block
buffered terminals. In the case of Line mode, the interface handling the liaison between
the user at the terminal and the program is the Terminal Access Method (TAM). With this
access method, the terminal is seen as at least two separate files (an input file and an
output file). Information is moved to and from these files.

Forms mode is where the screen is considered as a form or a set of forms. Each form is
composed of fixed and variable fields. Only the variable fields are filled in by the user or
program. Form mode is available only on some block buffered terminals. The interface
used to handle this mode is the Standard Device Programmatic Interface (SDPI).
Essentially, the terminal is seen as an object with which the program is conversing -
sending and receiving information alternately.

The two access methods will be presented in Sections 4 and 5 of this manual, after
further details on Line and Forms modes, below.

IOF Programmer's Manual

2-2 47 A2 37UJ Rev00

2.2 LINE MODE

TAM is the interface handling the link between the terminal in Line mode and the program.
These aspects should be noted:

• TAM is fully compatible with other data management interfaces. Hence, data may be
directed to or from the terminal (or a file), simply by assigning an internal file name to
the terminal as you would do for a conventional file.

• Both SARF and SSF file formats are available.

• As regards output, the terminal is seen as the equivalent of a printer, so that for
example, some of the features of the SYSOUT access method are available to the
terminal.

• By using different internal file names, a logical separation can be made between the
input and output of a program.

TAM is accessible through COBOL, FORTRAN, PASCAL, C, and GPL.

2.3 FORMS MODE

SDPI is the interface handling the terminal in Forms mode. The terminal itself must have
the necessary features for the depiction of forms, for example, reverse video or high/low
intensity differentiation, or the more advanced features of color. The GCOS 7 Forms
User's Guide contains a full list of terminals which can support Forms mode.

SDPI is accessible through COBOL, C, and GPL. The SDPI interface is common to both
TDS and IOF environments.

Line Mode and Forms Mode

47 A2 37UJ Rev00 2-3

2.4 SHARING THE TERMINAL BETWEEN TAM AND SDPI

A terminal may be shared between TAM and SDPI. From the program's point of view,
each interface has a different visibility, each managing an independent virtual terminal. At
any one moment, there is only one virtual terminal mapped onto the actual terminal.

The system also keeps an image of the contents and attributes of the variable fields of a
Form used on the terminal, and this information can be restored when passing back into
Forms mode. So, for example, if a programmer in forms mode passes into Line mode and
then back into Forms mode, the previous information (relative to Forms mode) has been
stored by the system and is restored. From the point of view of the terminal, when a
switching between logical terminals occurs (while a form is being displayed), these events
take place:

• a synchronization message is issued, if necessary (the characters +++ are displayed at
the bottom of the screen),

• the image on the screen is saved,

• the screen is cleared,

• the statement is executed.

When an SDPI primitive is subsequently issued;

• the stored form is displayed on the screen. Variable fields are restored to their previous
values and attributes,

• the statement is executed.

IOF Programmer's Manual

2-4 47 A2 37UJ Rev00

47 A2 37UJ Rev00 3-1

3. Character Sets

3.1 EXTENDED CHARACTER SETS

The values used to code characters input from or output to your terminal belong to one of
the following sets:

• C101 The standard EBCDIC character set.

• C114 The Arabic character set.

• C118 The Greek character set.

• C113 The Cyrillic character set.

• C094 The Chinese character set.

• PLW The PLW (Pluri Lingual West) character set (Figure 3-1).

• PLE The PLE (Pluri Lingual East) character set.

PLW (Pluri Lingual West) is a character set which contains most of the characters used in
those Western European languages which use the Latin alphabet. The set includes the
usual alphanumeric characters plus the accented characters. This character set is
presented in Figure 3-1.

Note that:

• Hatched codes are actually part of the PLW character set but are not supported by
DKU terminals or by VIP8800 family terminals.

• This figure does not show the terminal management characters, for instance FW (code
12), BS (code 16), SYN (code 32). These characters do not belong to the PLW
character set.

IOF Programmer's Manual

3-2 47 A2 37UJ Rev00

..

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F ! ^ ? " + ~o
~
O

U

& - ° µ { } \ 0

é / a j ~ £ A J . 1

â ê A
^

E b k s
^

B K S 2

a
.. ..

e A E
.. ..

c l t C L T 3

a e A E d m u D M U 4

a A I e n v § E N V 5

a~ ^ I
~ ^

f o w ¶ F O W 6

a°
..

A l
° ..

g p x G P X 7

ç ç I h q y H Q Y 8

n
~

N
~

i r z I R Z 9

[] : a !

. $, # o

?

o u O U^ ^ ^ ^

< * % @

() ' .. o u O U

o u O+ =; > '

x y

o u O U
..

A

¢

¥

'

«

»

1 2 3

ò o

y y,

R

.

1
4

1
2

3
4

E

c

Figure 3-1. PLW Characters (EBCDIC)

Characters Sets

47 A2 37UJ Rev00 3-3

The way that TAM and SDPI handle PLW characters that do not belong to the C101
common subset depends on these two factors:

• whether or not the terminal supports PLW. (These terminals support PLW: MINITEL,
DKU7105, DKU7107, DKU7211, PRT1220, TWS2255, and VIP8800.)

• the value of the #CSET system variable. The default is 1, for PLW, but see below. This
variable is an element of the user profile. Its value may be set either from within the
program (using MODVAR, which is described in the GCL Programmer's Manual) or by
the terminal operator using the MODIFY_PROFILE directive.

The normal combinations are the following:

• #CSET=0 (C101) for an application program which deals only with the C101 character
set. In this case, presentation control will prevent the terminal operator from entering
invalid characters even if his terminal supports PLW.

• #CSET=1 (PLW) with an application program that uses the extended character set
even if the user's terminal does not support PLW.

The table shows how PLW characters that do not belong to the C101 common subset
are dealt with under various conditions.

C 10 1 m ode
(#C S E T= 0)Inp ut

o r
O utpu t
M o de V IP 88 00 other

 te rm ina ls

re je cted

rep laced b y
th e "inv a lid
charac ter"

inp ut

ou tp u t

te rm ina ls do no t
sup p ort P L W (or P LE)

te rm ina ls su pp ort
P LW (or P LE)

not p ossib le
(cha rac ter no t
on keybo ard)

tra ns lated from
in te rcha ng e

co ding to d ire ct
E B C D IC

tra ns lated from
direc t EB C D IC to

in te rcha ng e
cod ing

fold ed, i.e .,
tran sla ted fro m
P L W E BC D IC

re jec ted

PLW m ode
(#C S ET=1)

P L E m o de
(#C S E T =7)

or

In addition, the special character sets can be selected by using the following values for
#CSET:

• #CSET = 2 (APL).
• #CSET = 3 (C114) Arabic character set.
• #CSET = 4 (C118) Greek character set.
• #CSET = 5 (C113) Cyrillic character set.
• #CSET = 6 (C094) Chinese character set.
• #CSET = 7 (PLE) Pluri Lingual East character set.

IOF Programmer's Manual

3-4 47 A2 37UJ Rev00

PLE (Pluri Lingual East) is a character set which contains most of the characters used in
those Eastern European languages which use the Latin alphabet. The set includes the
usual alphanumeric characters plus the accented characters, letters with cedilla, diacritical
marks, the stroke, etc. PLE is, like PLW, an extended character set and subject to the
same considerations.

3.1.1 C101 Mode

The terminal is assumed to operate in 95-character (C101) mode. Where possible,
presentation control forces it to operate in this mode.

A program which operates in C101 mode can send/receive only characters which belong
to the C101 subset of EBCDIC. All other characters are considered to be invalid
characters and they are replaced by a substitution character. This substitution character is
contained in the system variable #INVCHAR. The value of this variable can be modified
either by the terminal operator, or by the program. The default value of this variable is ".".

3.1.2 PLW Mode

Extended character set usage is the same for PLW and PLE. In the following discussion
of PLW, it is assumed that the same considerations hold true for PLE.

When a program operates in PLW mode, it is allowed to send and receive all the
characters of the PLW direct code. If the terminal concerned supports PLW, then it is
assumed to be operating in this mode and the characters are displayed in PLW code.

If the terminal concerned does not support PLW, then any PLW characters that do not
belong to the C101 common subset are "folded". In folding, each accented letter is
replaced by its equivalent non-accented letter. The purpose of folding is to avoid sending
invalid characters (which is the alternative to folding). However, folding does not
guarantee that the resulting text is intelligible in all cases.

When a form of type PLW is activated by means of a CDGET primitive and the program
concerned operates in PLW mode, PLW characters in the object form are displayed in
PLW code (if the terminal supports PLW) or are folded into C101 characters (if the
terminal does not support PLW).

When a form of PLW type is moved to a diskette by MAINTAIN_FORM, folding is
performed systematically.

47 A2 37UJ Rev00 4-1

4. Terminal Access Method

4.1 HOW IT WORKS

TAM is an access method designed to support an interactive program, and yet remain
consistent with classical GCOS access methods. TAM is designed as a data
management interface to handle the exchanges between an interactive program and a
terminal.

This compatibility of interactive and file contexts has these features:

• a program accessing a sequential file through the COBOL verbs
OPEN/READ/WRITE/CLOSE is executable at an IOF terminal without further
modification,

• conversely, a program written for an interactive context can use the file verbs
OPEN/READ/WRITE/CLOSE,

In addition, the GPL H_TN primitive permits the user to dynamically redefine several
options of the TAM. (Note however, that in a file context, the H_TN primitive is refused
with the FUNCNAV return code ; i.e., function not available.)

Further details on these primitives are given below.

• an internal file name, ifn, is assigned to an IOF terminal by specifying TN as the device
class in the ASGi (file assignment) parameter group of the EXEC_PG command.

The user may assign several ifns to the same terminal. A program needs at least two ifns
for interactive dialog - one for input and one for output.

The ifn is the means by which a program specifies terminal handling and presentation
characteristics, which are independent from those of other ifns. These characteristics
include data format, default prompts, etc.

There is, however, the problem that in using several ifns, various outputs will arrive on the
screen in chronological order, with all ifns mixed, along with any other information sent to
the terminal from other interfaces.

IOF Programmer's Manual

4-2 47 A2 37UJ Rev00

4.2 TWO IMPORTANT ASPECTS OF THIS INTERFACE

4.2.1 Quarantining

TAM can block successive WRITEs to ifns assigned to the same terminal in order to
minimize the number of input/output operations. A user program can, nevertheless,
override this control by forcing a WRITE to the terminal with the FORCEWRITE option.

• In general, TAM will trigger an information transfer in these cases:

• FORCEWRITE (an option of the H_TN primitive),

• WRITE (PUT) new page,

• READ (GET),

• switching to another mode (e.g., to Forms mode,)

• time out,

• screen full,

• buffer overflow.

4.2.2 Prefixing and Prompting

In addition to quarantining, prefixes and prompts can be used to associate particular ifns
with information generated chronologically on the screen.

Output: Messages output on the screen may be prefixed. This prefix is a string, chosen by
the programmer, of between 1 and 12 characters. By default, the prefix is 3 spaces.

The programmer can also have data output without a prefix.

Input: Here, the situation is slightly different. A prompt, unique to a particular ifn, can
appear on the screen when input for that ifn is required.

Three prompt possibilities are provided:

• normal prompt: the prompt is limited to 12 characters specified either statically (H_FD)
or dynamically (H_TN). The default prompt is the ifn concatenated with a colon (:) and a
space,

• temporary prompt: the prompt is limited to the record size, and must be specified
through an H_TN primitive. Its effect is on the next H_GET operation,

• no prompt: where the terminal is just as in input mode.

Terminal Access Method

47 A2 37UJ Rev00 4-3

4.3 OUTPUT

An output file can be handled in one of two presentation modes: edited mode, or
transparent mode. Each of these is described below.

The format of a file, either SSF or SARF, determines the output presentation of the
records of this file. SARF is the simpler format, having records or lines one after the other.
Each SSF record contains an 8-byte header and control records which give presentation
information - page length, width, etc.

The essential idea is that in edited mode, presentation controls are not included in the
data records of a file, and it is the IOF access method that handles the presentation,
following given system and user variables. If particular sequences (e.g., escape
sequences) must be directed to the terminal without any alteration, then the transparent
mode is used. In this case, no check on the data is done by the access method.

The advantage of edited mode is that a programmer can code his program without having
to pay attention to the terminal type. For example, a programmer can indicate that he
wants the next record after a blank line, without having to prefix this record with "carriage-
return-line-feed" (which is not effective on all terminals; e.g., IBM 3270).

4.3.1 Edited Mode

Screen Presentation

The program can specify the screen presentation either implicitly with SARF, where each
record starts at the beginning of a new line, or in the SSF record headers and control
records.

The data part of the record is not to contain presentation characters (carriage return, line
feed, form feed). Any such character is translated into the current substitution character.
This character is defined by the system variable #INVCHAR (the default is .).

IOF counts the number of lines sent from the program to the terminal and divides this
output into a series of screens or pages. The length of each screen is determined in the
user profile (MP command) by the system variables #PL (Page Length) and #PW (Page
Width).

A +++ prompt appears on the bottom of the screen and waits for the user to press the
TRANSMIT key to display the next screen.

Organization of output into screens is known as PAGEMODE and is standard for non-
scrolling terminals. Scrolling terminals, however, may use this mode by assigning a
system variable (#PAGEMODE=1).

The four system variables concerned with output, #INVCHAR, #PL, #PW, and
#PAGEMODE are described in the GCL Programmer's Manual. Assigning these variables
in the user's profile is discussed in the same manual.

IOF Programmer's Manual

4-4 47 A2 37UJ Rev00

Printer-like Presentation

By using the appropriate control records, SSF edited mode can be used to present data
on the screen as on a line printer; i.e., with headings, footings, line numbering, etc. A
programmer can specify these characteristics:

• the system variable #PL (Page Length) specifies the form height

• the system variable #INVCHAR specifies the alternative presentation of characters that
cannot be displayed on the screen. The default is "."

• HOF (Head Of Form) specifies the line number of the first line on the screen to be
used. The default is HOF=1

• FF1 (first level of Full Form) specifies the last line on the screen to be used. FF2
(second level of Full Form) specifies the line at which a return code message will be
produced. These restriction applies: 1 <= HOF <= FF2 <= FF1. The defaults are
FF1=FF2=#PL.

Line Folding

Depending on the format, TAM does the following:

• in SARF format, the line folding is automatic,

• in SSF format, truncation can be requested by a control record, but folding is generally
specified through the system variable #PW. Folding is performed by splitting the record
after the page width specified by #PW. This width must not exceed the physical printing
width of the terminal.

Note that if the programmer wants to control the folding of an output text at a given point,
he must generate two separate records. The data part of the records is supposed not to
contain any backspace character as far as folding is concerned.

Tabulation

Tabulation stops can be set at the terminal, in order to speed up the display of output, and
will be inserted automatically by TAM just before the physical output to the terminal.

Usually the output data does not contain any embedded tabulation characters. However, a
Control Record (CR 131) can be used to specify the values of tabulation stops for
expansion, as well as coding the tabulation character, for a particular ifn. Later on, IOF will
perform the expansion of the subsequent data records according to the CR131 of that ifn.
Note that the record length after expansion should not exceed the RECSIZE value. The
expansion of tabulations takes place before line folding processing.

Terminal Access Method

47 A2 37UJ Rev00 4-5

Files and Output Presentation

Obviously the presentation will be correct if only one ifn is used and if asynchronous
messages are held during the display of output.

Therefore two typical uses of TAM are:

• one ifn in OUTPUT and another in INPUT are used to establish a dialog. The ifn for
INPUT is used without any sophisticated presentation requirements,

• one ifn active for OUTPUT is used to provide a report with a neat presentation; i.e.,
headings, footings, margin, etc.

Any other situation with several ifns in OUTPUT at the same time, or one in INPUT and
another in OUTPUT and requiring a neat presentation in OUTPUT, will give a rather
unsatisfactory result due to the trade-offs that have to be made to support those
contradictory requirements (such as heading/footing intermixing, or an automatic new
page jump after an input).

4.3.2 Transparent Mode

Any binary sequence may be submitted by the program by specifying through a H_TN
primitive that the next primitive will be in transparent mode.

Any control record is then ignored, so there is no processing of tabulations, line folding,
etc. As regards counting of lines internally to maintain the cursor position, IOF assumes
that the cursor position must be incremented by one line.

IOF Programmer's Manual

4-6 47 A2 37UJ Rev00

4.4 INPUT

4.4.1 Edited Mode

The data records which are delivered by the access method do not contain any
presentation characters, such as carriage return, line feed, etc.

Therefore, there are several points the programmer should know as regards presentation
in edited mode:

• Tabulation: by using the system variable, #EXPTABS, a programmer can choose
between:

- either having tabs automatically expanded (as blank characters) as text is entered.
This is the default value for #EXPTABS,

- or not having tabs expanded. They are passed embedded in the input text. Further,
if the ifn is in SSF format, a special Control Record (CR 131) is generated.

• Text over several lines: the user can define a text continuation character by means of
the system variable #CC, then use this character as the last character of an input line
before transmitting the line. All lines entered this way are considered as parts of the
same record. The programmer can eliminate this continuation facility by setting the
#CC variable to a zero-length string.

• Files in SSF format: record headers and control records can be used in inputting files in
SSF format - for example, including CR in the file when data is to be tabulated. The
program must test the control/data record flag and check for a data record each time it
receives a control record.

• Input data on a page mode basis: this facility is available only when inputting data in
page mode on a synchronous terminal with RETURN and TRANSMIT keys. It means
that several lines can be entered in a single transmission, but delivered record by
record to the program. This avoids unnecessary swapping in and out, and prompting
between two consecutive lines. All text entered as consecutive lines is saved, even if
output messages must be displayed before this text has been completely processed by
the program. However, a break command will cancel it being processed.

For further information on the system variables #CC, #EXPTABS and #TABS, refer to the
GCL Programmer's Manual.

4.4.2 Transparent Mode

Each character entered at the terminal is transmitted to the program.

Terminal Access Method

47 A2 37UJ Rev00 4-7

4.5 GCL TERMINAL ASSIGNMENT

The TAM allows an interactive program to access the terminal in a way fully compatible
with sequential file access interfaces. Therefore the same program can run either with
files or a terminal, depending on the environment and the GCL parameters used.

Note that several "files" of the same interactive program can share the same terminal, but
there is no sharing a terminal between several programs.

An ifn is assigned to a terminal by using these parameters of the EXEC_PG GCL
command:

• FILEi and ASGi parameters make this assignment.
• DEFi parameter can extend the file description with define parameters.
• ALCi parameter is not meaningful for the terminal, since no allocation is made.
• OUTi parameter is not meaningful since it only refers to a file to be written by the

SYSOUT mechanism.

For a full description of the file parameter groups, refer to the IOF Terminal User's
Reference Manual.

These data management options are the only options relevant to the TAM.

4.5.1 ASGi: File Assignment Parameters

 ASGi = file-description

The most general file description is presented in the IOF Terminal User's Manual.

For the terminal, the file description is reduced to:

 [full-path-name]: [md]: TN [$UNCAT]

• TN: the device class (terminal) refers to the main device of the terminal
(keyboard/display or keyboard/printer),

• md: the media parameter, used to specify the name of the media,

• the external file name is not relevant to the main device of the terminal. The default
value for the efn parameter is the ifn value.

IOF Programmer's Manual

4-8 47 A2 37UJ Rev00

4.5.2 DEFi: File-Define Parameter Group

This describes the file characteristics and the features particular to the TAM.

Significant parameters:

 [RECSIZE = dec5]

 [DATAFORM = { SARF | SSF }]

Terminal file specific parameters:

 [PROMPT = char12]

 [{ MSG | MSSG } = bool]

 [EOF = char4]

Terminal Access Method

47 A2 37UJ Rev00 4-9

4.6 GPL PRIMITIVES

All TAM primitives are presented schematically and in detail below.

The File Management primitives, which are not described here in this section, also apply
to the TAM (e.g. H_CRFD, H_DLFD, H_ASSIGN, H_DEASSIGN).

NOTE: If a break occurs while a TAM file is open, a BREAK Return Code is returned
with a subsequent primitive. Apart from the case of break, the return codes are
the normal access method return codes.

4.6.1 H_FD (File Declaration)

Purpose:

H_FD is used to declare characteristics of a file. These can be updated by the ASGi or
DEFi parameters of the EXEC_PG GCL command, or dynamically when the file is open,
with the H_TN primitive.

Syntax:

$H_FD

 ifn

 [{ ACTUAL | EMPTY } [ATTRIB = l_char]]

 { PROMPT = l_char12 }
 [TN = ({ } [NMSG] [EOF=l_char4])]
 { NPROMPT }

 [RECSIZE = l_digit5]

 [BLKSIZE = l_digit5]

 [DATAFORM = { SARF | SSF }]

 [REFMODE = { MOVE | LOCATE }] ;

IOF Programmer's Manual

4-10 47 A2 37UJ Rev00

Parameters:

ifn The internal file name, i_char8, is the name of a terminal file
in a program or in GCL. This name must be unique within a
compile unit, and within a linked group of compile units.

ACTUAL Allocation has to be made for this file declaration, with
initialization taking the user-provided parameters or system
defaults.

EMPTY No allocation is to be made for this file declaration. All
existing parameters are ignored. (An ACTUAL declaration of
the same ifn must be in another compile unit linked to this
one).

ATTRIB Attributes of a file are normally determined automatically, so
the ATTRIB parameter can be omitted. There are, however,
special cases where the BASED attribute is used with the
EMPTY parameter. See the GPL System Primitives
Reference Manual.

TN Specifies the TAM parameters:

 PROMPT A string of 1 to 12 characters:

- In input this string is sent to the terminal to indicate that
an entry can be made (i.e., a H_GET primitive has been
issued). The default prompt is the ifn string concatenated
with a colon and a space; that is, "ifn: ".

- In output, this string is used as an identifier prefix to the
text displayed. The default prompt is 3 spaces.

 NPROMPT No prompt is generated:

- In input processing mode, the terminal is switched to
input mode when a H_GET primitive is issued without
visible notification.

- In output processing mode, the text is displayed without
a prefix.

 NMSG All messages sent to the terminal by any agent other than the
interactive step are held until the file is closed, or a H_TN
primitive with the MSG option is issued for the terminal. If
several files are simultaneously open for the terminal, all
messages are held, if NMSG is selected for at least one of
the files.

 EOF A character string, entered at the terminal, to simulate an
End-of-File.

This string may be prefixed by a $ and terminated by several
spaces and a semicolon. The default EOF is the end of
sequence, EOS. No other character can be entered on the
line containing the EOF.

Terminal Access Method

47 A2 37UJ Rev00 4-11

RECSIZE The maximum record length. It is limited to 264 characters
(prompt length and any expanded tabulation characters
included). For a TN file, RECSIZE must be given. Note that
the default is 0, and that a label cannot update this value.

BLKSIZE Specifies the size of the block. The size must be at least
equal to the size of the maximum record length. This
parameter is not used by TAM, but the FD-mechanism
requires it when the RECSIZE parameter is specified,
otherwise a warning may occur at MACPROC time.

DATAFORM Specifies the format of the data records:

- SARF: Standard Access Data Format. Data only, with no
header. SARF is the default format.

- SSF: System Standard Format. Data records, and record
header and control records. SSF can be used to present
data as on a line printer with headings, footings, line
numbering, margins, line spaces, etc.

REFMODE Reference mode, either MOVE or LOCATE. See the GPL
System Primitives Reference Manual. The default is MOVE
mode. REFMODE can be modified by the reference mode
option of H_OPEN primitive. LOCATE mode is possible only
with Input processing mode (PMD parameter of the H_OPEN
primitive).

IOF Programmer's Manual

4-12 47 A2 37UJ Rev00

4.6.2 H_OPEN (Open File)

Purpose:

H_OPEN is used to initialize the processing of a file, and must be issued before any other
imperative can be used on a file. If a file is to be processed further, after an H_CLOSE
has been issued, an H_OPEN must be reissued.

Syntax:

$H_OPEN

 ifn

 PMD = { INPUT | OUTPUT | APPEND | iv_char_2 }

 [REFMODE = i_char_1] ;

Parameters:

ifn Specifies the name of the file to be opened.

PMD Specifies the processing mode, as follows:

- INPUT makes the file accessible to H_GET,
- OUTPUT makes the file accessible to H_PUT,
- APPEND makes the file accessible to H_PUT,
- iv_char_2 allows the user to dynamically change the

processing mode. The variable, declared as CHAR(2),
stands for one of three possible abbreviations: IN, OU, or
AP.

REFMODE Specifies the reference mode. Options are:

- For MOVE mode, REFMODE ="M".
- For LOCATE mode, REFMODE = "L".

Terminal Access Method

47 A2 37UJ Rev00 4-13

4.6.3 H_GET (Get Record)

Purpose:

H_GET specifies the location and length of a record to be retrieved from a terminal file. It
can be executed only in INPUT mode.

Syntax:

$H_GET

 ifn

 WA = { ov-location | ov-ptr }

 [OUTLEN = ov_fb15]

 [MAXLEN = i_fb15] ;

Parameters:

ifn Specifies the name of the terminal file.

WA Work area. Specifies the location of the record, as follows:

- In MOVE mode, it is the area into which data received
from the terminal is stored (ov_location).

- In LOCATE mode, it is a pointer to the record in the
buffer (ov_ptr).

OUTLEN The length of the output field which is to receive the record
(the length includes the SSF header if DATAFORM is SSF).

MAXLEN The length, in bytes, of the work area. This parameter is only
valid in MOVE reference mode. If the record obtained from
the terminal is longer than the specified work area, it is
truncated, and the normal return code, WALIM, is given.
Processing can continue. The default is the actual length of
the record.

IOF Programmer's Manual

4-14 47 A2 37UJ Rev00

Constraints:

If a function key has been pressed as part of the message to be received, two cases may
occur:

• Either a text, previously assigned to this function key, is returned as a part of the
message and the program is unaware that it came from a function key.

• Or no text has been assigned to this function key, in which case the first two characters
of the work area are filled with the value of the function key and an appropriate normal
return code is sent to the program (FUNCKEY).

In either case, if some text has been entered from the keyboard, it is appended to the text
generated by the function key.

If the previous primitive issued for this ifn was H_TN with the TRSPRT parameter, the
data obtained from the terminal is returned without alteration.

If the previous primitive issued for this ifn was H_TN with a temporary prompt, this text is
sent to the terminal (less prompt) before the terminal is turned to input mode. The get
input is then concatenated with the temporary prompt.

In transparent mode, if NPROMPT parameter in H_FD primitive, and if PROMPT
parameter is not used in previous H_TN primitive, the terminal is just turned to input mode
without any visible notification.

4.6.4 H_PUT (Put Record)

Purpose:

H_PUT is used to display a logical record. This command may be executed only in
OUTPUT and APPEND processing modes.

Syntax:

$H_PUT

 ifn

 WA = iv_location

 [LENGTH = i_fb15] ;

Terminal Access Method

47 A2 37UJ Rev00 4-15

Parameters:

ifn Specifies the internal file name.

WA The user work area from which the record is to be moved.

LENGTH The length, in bytes, of the next variable length record to be
displayed. If the records are of fixed length, it is the length of
the given string. This string may be extended with blanks to
reach record size. The default length is record size.

Constraints:

The writing of the record may be deferred by TAM, but any H_GET primitive for a file that
is assigned to the same terminal or a H_TN with the FORCEWRITE option forces the
display of all unprocessed records.

4.6.5 H_CLOSE (Close File)

Purpose:

H_CLOSE is used to close a file.

Syntax:

$H_CLOSE

 ifn

 [DEASSIGN] ;

Parameters:

ifn Specifies the name of the file.

DEASSIGN The file is to be deassigned immediately, without waiting until
the end of the step. The file cannot be reopened before it is
reassigned.

IOF Programmer's Manual

4-16 47 A2 37UJ Rev00

4.6.6 H_TN (File declaration)

Purpose:

H_TN is used to dynamically redefine certain TAM options. This primitive is effective only
when the file is open. If executed on a closed file, H_TN provokes an abnormal return
code.

Syntax:

$H_TN

 ifn
 { i_char1 }
 [PROMPT = i_char12 LENGTH = i_fb15 MODE = { "T" }]
 { "P" }
 [TRSPRT]

 [MSG = { "Y" | "N" | i_char1 }]

 [FORCEWRITE] ;

Parameters:

ifn Specifies the internal file name assigned to the terminal. The
file must currently be open.

PROMPT Specifies the user work area which contains the value of the
new prompt.

LENGTH Specifies the length in bytes of the new prompt.

MODE Specifies that prompt switching is either Permanent or
Temporary:

- P (Permanent): the prompt is switched for all subsequent
H_PUT/H_GET primitives. The length of the prompt
(LENGTH) must not exceed 12 characters. Setting
LENGTH to 0 means no prompt.

- T (Temporary): the prompt will apply only to the next
H_GET primitive. In this mode, a prompt larger than 12
characters can be defined. The prompt length (LENGTH)
must not exceed RECSIZE.

TRSPRT The next H_PUT primitive will be transparent; i.e., data will be
sent to the terminal without alteration. Note that when using
TRSPRT, you must provide all the presentation characters.
Presentation characters (CRLF, cursor position, etc.) will be
treated as one line by the presentation layer to avoid
malfunction.

Terminal Access Method

47 A2 37UJ Rev00 4-17

MSG Asynchronous messages are to be accepted (Y -yes) or
deferred (N -no).

FORCEWRITE The contents of the buffer associated with the terminal are
sent to the terminal. It is only meaningful in OUTPUT or
APPEND processing modes.

Constraints:

If this primitive is executed on a data management file, the abnormal return code
FUNCNAV is returned and no action is taken.

IOF Programmer's Manual

4-18 47 A2 37UJ Rev00

4.7 OTHER LANGUAGES

The features of the standard programming languages (COBOL, FORTRAN) which
handle access to a conventional sequential file also apply to the case where a terminal is
being used instead. However, the terminal must be assigned via GCL.

For more information about such data management interfaces, refer to the appropriate
programming language manual.

However, parameters specific to the terminal (see the H_TN primitive in Section 4) such
as the temporary prompt and transparent mode are not available through these
languages.
For example, to switch a terminal into transparent mode dynamically from a COBOL
program, you must call a GPL procedure that uses the H_TN primitive.

An example of a COBOL program that reads from and writes to a terminal (until an end-
of-file string, default value $EOS, is encountered), is given below.

IDENTIFICATION DIVISION.
PROGRAM-ID. TERM-I-O.
* THIS PROGRAM ILLUSTRATES THE USE OF A TERMINAL *
* AS A SEQUENTIAL FILE FOR INPUT/OUTPUT *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. LEVEL-64.
OBJECT-COMPUTER. LEVEL-64.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT INF ASSIGN INFILE ORGANIZATION SEQUENTIAL.
 SELECT OUTF ASSIGN OUTFILE ORGANIZATION SEQUENTIAL.
DATA DIVISION.
FILE SECTION.
FD INF
 LABEL RECORD STANDARD.
01 INF-REC PIC X(75).
FD OUTF
 LABEL RECORD STANDARD.
01 OUTF-REC PIC X(75).

PROCEDURE DIVISION.
START-HERE.
 OPEN INPUT INF OUTPUT OUTF.
ITER.
 MOVE SPACES TO INF-REC
 READ INF AT END
 CLOSE INF
 CLOSE OUTF
 STOP RUN.
 MOVE INF-REC TO OUTF-REC.

 WRITE OUTF-REC.
 GO TO ITER.

47 A2 37UJ Rev00 5-1

5. Forms Mode: SDPI Interface

5.1 FORM GENERATION

Forms are generated by the MAINTAIN_FORM (MNFORM) utility.

In EDIT mode, the form is described routine by routine in the SDPI form definition
language. SDPI is short for Standard Device Programmatic Interface.

In FORMS mode, the form is described pictorially using the full screen terminals which
support this mode, in conjunction with the form definition language.

For each form, MAINTAIN_FORM generates these members:

• A reference source member in a binary library (BINLIB). MAINTAIN FORM names this
member, formname_SF.

• A terminal-independent object member (formname_of_ANY) or as many terminal
dependent object members as there are terminal types for which the form has been
oaded (formname of terminaltype). These members are created in a binary library
BINLIB).

• Language members in a source library (SLLIB). These members, which contain data
structures, are retrieved by the application using COPY routines or an equivalent, and
include members for C Language or macro-instructions for GPL. Three types of
members are generated:

- formnameI defines the form identification. It identifies the form and indicates where
to mount the form on the screen,

- formnameV defines the selection vector. It is used to select variable fields in the
form,

- formnameR defines the data record. This data record is an image of the variable
fields of the form.

IOF Programmer's Manual

5-2 47 A2 37UJ Rev00

The object forms are searched for in these binary libraries, according to standard search
rules: (BLIB, BINLIB1, BINLIB2, BINLIB3).

You can optionally use a UFAS sequential file (OUTFILE) or a diskette (DK) to store
terminal object members.

Access to forms is given to the application through the SDPI primitives. These primitives
will call a forms runtime package which handles the presentation of forms, using the
object form member created by MAINTAIN_FORM.

For more information about MAINTAIN_FORM, refer to the GCOS7 Forms User's Guide.

5.2 PRINCIPLES OF THE SDPI INTERFACE

As regards programs, access to forms mode is made through SDPI routines which make
reference to language members. These routines provide a basic way to dialogue with the
terminal.

Each routine results in an action being taken, except the CDFIDI routine which is purely
informative. This action may result either in issuing some kind of message to the terminal
(CDGET, CDSEND, CDATTR, CDATTL, CDMECH, CDRELS) or in receiving a message
(CDRECV, CDPURGE).

For each action of the first kind, the program can specify an enclosure level in the routine,
which is used to specify when the message is to be delivered to the terminal, and, if it is to
be delivered immediately, whether the program retains the right to send other messages
or gives control to the terminal.

The Receive routine (CDRECV) returns an enclosure level which tells the user or his
program whether the message has been issued and whose turn it is to reply.

For each routine, a return code indicates whether it was successfully completed.

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-3

5.3 FORM ACTIVATION

Activating a form consists of displaying on the screen the fixed fields, their initial values,
and the initial rendition attributes of the variable fields of a form. To activate a form, the
program must issue a CDGET routine referencing a form identification structure that
identifies the form and its mode of activation. Four activation modes are available:
APPEND, OVERLAY, WINDOW, and ERASE.

In APPEND mode the user can specify where to mount the form on the screen, relative to
forms already mounted. If a new form is activated, all the forms below the form to which
the new form is appended are implicitly released and the area occupied by these forms on
the screen is cleared. If a form is requested to be mounted at the top of the screen, the
whole screen is cleared. Several occurrences of the same form can be mounted
simultaneously on the screen. In this case, each occurrence is identified by an occurrence
number that is specified in formnameI and formnameV structures.

In OVERLAY mode all the preceding forms are logically released but the screen is not
cleared. These forms become frozen and the new form is displayed on the screen without
relocation.

The WINDOW mode is a mode in which each form defines a window on the screen. The
window consists of the smallest rectangle that may contain the form beginning in line 1
column 1 up to the maximum line and the maximum column.

The program specifies, in the form identification structure, the location of the window by
giving the coordinates of its top left corner. All the forms previously on the screen are
frozen, as in OVERLAY mode. Then the contents of the window that will contain the form
are erased. The form is relocated so as to be placed in the window and it becomes the
new active form.

The main characteristic of the WINDOW mode is that when the CDGET references a
form which is already displayed in a window, this form becomes the active form again with
its fields restored to their contents when the form was the active form. In this case, the
form is always displayed at the same location on the screen and the window coordinates
that may be specified are ignored. This gives a visibility similar to a stack of sheets of
paper that partially overlay each other and where the user may remove a sheet in the
middle of the stack to put it on the top of the stack.

Also, the POPUP mechanism may be used to release only the currently active form. In
this case, the form window is reset to its underlaying contents and the next form in the
stack becomes the new active form.

The ERASE mode is similar to the WINDOW mode, with the difference that it first
releases all forms and clears the screen.

A form may be activated in WINDOW mode only if the previous form was activated in one
of these modes: ERASE, WINDOW. A form cannot be appended to a form activated in
WINDOW or ERASE mode.

IOF Programmer's Manual

5-4 47 A2 37UJ Rev00

The object form may be mounted either from the binary libraries of the step or from the
terminal diskette. This choice is transparent to the program which always issues the same
routine. The forms runtime package either sends the object form or requests the terminal
to mount the form from the diskette, depending on the form generation options.

NOTES: 1. The TERM=ANY option is mandatory for a form to be activated in
WINDOW or ERASE mode. (See the GCOS7 Forms User's
Guide.)

2. Activating a form within an IOF startup procedure is not
recommended.

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-5

5.4 OUTPUT ACTIONS

Several routines are available that display a message on the terminal:

• CDSEND is used to select variable fields of a form. A selection vector is passed to
identify the form and to specify the fields that must be modified.

• CDATTR is used to define a rendition attribute of fields of a form. The form and its
fields are identified by a selection vector.

• CDATTL is similar to CDATTR except that it sets a list of attributes instead of only one
attribute.

• CDMECH is a control function that acts on the terminal, clearing all unprotected fields
or setting off the alarm.

• CDRELS releases all the active forms and sets the terminal to line mode. This routine
does not clear the screen. If the screen is to be cleared, this routine must be followed
by a CDMECH with RESET option.

5.5 INPUT ACTIONS

When the terminal user enters data on the screen, his program must issue as many
CDRECV routines as there are forms for which data is to be entered. It is recommended
that each CDRECV be preceded by a CDFIDI routine which returns the identification of
the next form to receive data. The program passes a selection vector to the CDRECV
routine to identify this form and to select those fields of the form to receive data.

If a function key has been pressed and a function key field has been implicitly or explicitly
declared at form generation time, this field, if selected, is filled with the rank of the function
key. The mapping of function keys onto terminal-independent ranks is detailed in the
GCOS7 Forms User's Guide .

If the message contains information relative to another form, the program is notified
through an appropriate enclosure level. If the program does not want to receive the
pending data, it must issue a CDPURGE routine.

IOF Programmer's Manual

5-6 47 A2 37UJ Rev00

5.6 TRACES

The FORMS runtime package provides traces to debug user programs and to serve as a
diagnostic tool in case of problems. These traces are activated through the LOG directive
under IOF.

They consist of:

• A trace of each user routine. This trace is issued after each routine is processed; it
displays all the parameters of the routine after its execution (the selection vector and
the data record contents when used), as well as the routine's return code.

• A trace of all messages received and sent. These messages are designated as
INBOUND and OUTBOUND. They are traced as they are processed by FORMS.
Therefore, the traces show the anticipation of input message handling.

• Data structures. These are the Data Map, which contains internal mapping information
generated by MAINTAIN_FORM, and the terminal independent Preform structure for
dynamic forms.

The last two traces are activated by using the option LOG MODIFY ON=*F or **, or LOG
START FOR = SYSTEM.

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-7

5.7 SDPI COBOL STATEMENTS

This section describes the FORMS mode routines accessible via COBOL statements.
For the C Language interface see the manual C Language System Primitives, and for the
GPL interface see GPL System Primitives.

Some parameters are passed to the input or output CD structure.

Since the CD cannot be directly used in a COBOL CALL routine, it must be redefined in
the Communication section of an I/O structure.

Such a redefinition is subsequently designated as a "CD" alias.

5.7.1 Data Structures

The FORMS services accept several data structures as parameters. The form
identification, the data record and the selection vector are generated by
MAINTAIN_FORM and retrieved by COPY in the program.

The input and output Communication descriptions are standard COBOL communication
structures. The actual use of these structures by FORMS is detailed below.

The input and output Communication Description (CD) entries must be redefined in the
Communication Section, because the CD names cannot be used directly in the CALL
verb's parameter list. The redefinitions are:

CD cd-name-1 [FOR] INPUT.
01 cd-alias-1.
 02 symbolic-queue-data-name PIC X(12). (c)
 02 FILLER PIC X(36). (a)
 02 date-data-name PIC X(6). (e)
 02 time-data-name PIC X(8). (e)
 02 symbolic-source-data-name PIC X(12). (b)
 02 text-length-data-name PIC 9(4). (b)
 02 end-key-data-name PIC X. (f)
 02 status-key-data-name PIC XX. (g)

and:

CD cd-name-2 [FOR] OUTPUT.
01 cd-alias-2.
 02 destination-count-data-name PIC 9(4) VALUE 1. (h)
 02 text-length-data-name PIC 9(4). (b)
 02 status-key-data-name PIC XX. (g)
 02 error-key-data-name PIC X. (b)
 02 symbolic-destination-data-name PIC X(12). (d)

IOF Programmer's Manual

5-8 47 A2 37UJ Rev00

NOTES:

a) The FILLERs in the description are not used.

b) These fields are not used under IOF.

c) This field must contain the string "CONSOLE" when calling any FORMS service
using the input CD.

d) This field must contain the string "CONSOLE" when calling any FORMS service
using the output CD.

e) After a CDRECV service, these fields contain the date and the time of day.

f) After a CDRECV service, this field returns the enclosure level associated with the
received message. It may be either of the following:

"1":further data, coming from another form, is still to be incorporated in the message.

"3": all data has been received. Control is given to the program.

g) After any FORMS service, this field contains the status on completion of the
statement. The various status keys are detailed in the following routine descriptions.

h) This field must be set to 1.

5.7.2 CDSEND (Forms Send)

Purpose:

This routine causes data in a data record to be transferred to the endpoint indicated by the
selection vector (that is, a logical terminal as seen by the program).

Syntax:

CALL "CDSEND" USING output-CD-alias,
 data-record, enclosure-level, selection vector.

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-9

Parameters:

output-CD-alias Refer to the CD description.

data record The data record associated with the form. This structure is
output by MAINTAIN_FORM (formnameR).

enclosure-level The enclosure level to be associated with the data. This is a
one character data item that may take these values:

"1" End of record: Data is quarantined; no message is sent to
the terminal.

"2" End of quarantine: The data relative to this command and
all previously quarantined data are sent to the terminal. The
application keeps control.

"3" End of interaction: The data relative to this command and
all previously quarantined data are sent to the terminal.
Control is given to the terminal.

selection-vector The selection vector. This structure is output by
MAINTAIN_FORM (formnameV). The occurrence number
field of the selection vector must identify the form occurrence
to which the command applies. The other fields of the
selection vector must be loaded as follows:

- "space": do not move the associated data field from the
data record.

- "S": move the associated data field from the data record.

- "C": clear the contents of the field.

After execution, the contents of the selection vector fields are
unchanged , except in case of a selected numeric field with
invalid contents where the selection vector field is loaded with
"A".

IOF Programmer's Manual

5-10 47 A2 37UJ Rev00

Return Codes:

Normal:

0 DONE

AB ALMOST: an error was found in at least one field

AF DONEIDE: invalid selection vector contents

Abnormal:

9A BREAK: a break occurred

AC ARGERR: unexpected parameter

A0 SNDVIOL: turn error

A7 SNDARERR: the selection vector does not match an active form

A1 SEQERR: endpoint not in FORMS mode

97 OPTERR: invalid enclosure level

AG NOMATCH: the creation date of the form does not match the creation
date of program structures

A9 DVIDFBID: device not supported

9H DNSPEC: invalid endpoint name

S1 DAMAGED: system error

S1 WRONGITM: invalid object form contents

S1 WRONGSTA: invalid data map contents

5.7.3 CDRECV (Forms Receive)

Purpose:

This routine causes data to be received in the data record according to the selection
vector.

Syntax:

CALL "CDRECV" USING input-CD-alias,
 data-record, wait-indicator, selection-vector.

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-11

Parameters:

input-CD-alias Refer to CD description.

data-record The data record associated with the form. This structure is
output by MAINTAIN_FORM (formnameR).

selection-vector This structure is output by MAINTAIN FORM (formnameV).
The form name and occurrence number fields of the selection
vector must match a form and occurrence number for which
data is available. For each field in which a value is to be
received from the terminal, the corresponding selection
vector field must be loaded with "S". Such a selection vector
field will be modified by the command as follows:

R valid data has been moved to the corresponding field.
S no data available for the field; i.e., either the field is not a

transmittable field or its contents are set to null or to
spaces and the RECEIVE SPACES option was not
selected for the form.

C this field contains the cursor (may also be returned for a
non-selected field).

X this field contains the cursor and valid data has been
moved to it (R + C).

D this field has the attribute DT or IT and data are received
in the field.

+ a sign was entered in an unsigned field, no data
transferred.

T least significant digits have been truncated, data
transferred.

O significant digits would have been truncated, no data
transferred.

A incorrect characters input to the field, no data
transferred.

O, T and + may be returned only for numeric or numeric
edited fields; that is, fields with a numeric or numeric edited
screen picture or with a computational usage (e.g. COMP.1
fields).

All other selection vector fields must be loaded with spaces. If
some data is available for a non selected field, the data is not
transferred and the corresponding selection vector field is set
to L (=lost), otherwise the selection vector field is unaffected.

wait-indicator one character to be set to "0" (provision for future use).

IOF Programmer's Manual

5-12 47 A2 37UJ Rev00

Return Codes:

Normal:

0 DONE

AF DONEIDE: invalid selection vector contents

AB ALMOST: at least one field in error

A8 SKIPPED: some received fields were not selected; they are lost

AI IGNORED: unexpected receive function key

Abnormal:

9A BREAK: a break occurred

AC ARGERR: unexpected parameter

A3 RCVVIOL: turn error

A7 RECARERR: the selection vector does not match an active form

A1 SEQERR: endpoint not in FORMS mode

AG NOMATCH: the creation date of the form does not match the creation
date of program structures

A9 DVIDFBID: device not supported

9H DNSPEC: invalid endpoint name

S1 DAMAGED: system error

S1 WRONGITM: invalid object form contents

S1 WRONGSTA: invalid data map contents

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-13

5.7.4 CDGET (Form Activation)

Purpose:

This routine causes a form to be activated.

Syntax:

CALL "CDGET" USING output-CD-alias,
 format [,enclosure-level].

Parameters:

output-CD-alias Refer to CD description.

format A structure that identifies the form to be activated and where
it has to be mounted on the screen. This structure is output
by MAINTAIN FORM (formnameI) and is used as follows:

- If APPEND mode is specified (i.e., the mode field of the
format structure is set to A), all forms following the form
specified by the old form name and occurrence number
fields of the format structure are released and cleared.
The new form is appended after the old form. If the old
form and occurrence number fields specify a name
consisting of spaces and an occurrence of zero (default
initialization), the new form will be appended to the top of
the screen and all other forms are released and cleared.

- If OVERLAY mode is specified (i.e., the mode field of the
format structure is set to O), the old form and occurrence
number fields must specify a name consisting of spaces
and an occurrence number of zero. The forms that were
active are frozen; i.e., they remain visible on the screen
but all their fields become protected and they are no
longer addressable from the program. The new form is
activated at the top of the screen. There is no checking
of overlapping of the newly activated form with other
forms.

- If WINDOW mode is specified, that is if the field "form-
name-MD" is set to "W", the forms that were active are
frozen. If the form to be activated is already displayed on
the screen with the same occurrence number, this form
is put on top of other forms and made active again with
its previous contents. Otherwise the "form-name-SL" and
"form-name-SC" fields determine the line and column
numbers of the top left corner of the rectangle where the
form is to be placed. The contents of this rectangle are
cleared and the form is made active.

- If ERASE mode is specified, that is if the field "form-
name-MD" is set to "E", all the forms are released and
the screen is cleared. The "form-name-SL" and "form-
name-SC" fields determine the line and column numbers

IOF Programmer's Manual

5-14 47 A2 37UJ Rev00

of the top left corner of the rectangle where the form is to
be placed.

If a CDGET with OVERLAY is followed by one or more
CDGETs with APPEND, the subsequent forms will be
appended to the overlaying form.

The formname-LL field of the format structure gives the
number of lines allocated to the new form. If formname-LL is
zero, the number of lines allocated is equal to the number of
lines in the form. If formname-LL is not zero and is greater
than or equal to the number of lines in the form, the form is
completed with the appropriate number of blank lines. If
formname-LL is not zero and is less than the number of lines
in the form, the status FUNCNAV is returned. This field is
interpreted only for the new format structure, that is, the first
FILLER must be set to 2.

The maximum number of active or frozen forms is 6.

enclosure-level The enclosure level to be associated with the data. This is a
one-character data item that may take these values:

"1" End of record: Data is quarantined; no message is sent to
the terminal.
"2" End of quarantine: The data relative to this command and
all previously quarantined data are sent to the terminal. The
application keeps control.
"3" End of interaction: The data relative to this command and
all previously quarantined data are sent to the terminal.
Control is given to the terminal.

The default is "1".

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-15

Return Codes:

Normal:

0 DONE

Abnormal:

9A BREAK: a break occurred

9J ALREADY: form already active (last form activated in WINDOW mode)

AC ARGERR: unexpected parameter

A0 SNDVIOL: turn error

A4 RECNFD: the specified form was not found

AE FUNCNAV: activation mode not available

97 OPTERR: invalid enclosure level

92 ENTRYOV: Maximum number of active or frozen forms exceeded

or MSGOV: expansion area overflow

or SPACEOV: no more space available for control structures

A9 DVIDFBID: device not supported

AG NOMATCH: the creation date of the form does not match the creation
date of program structures

9H DNSPEC: invalid endpoint name

9F CALLVIOL: environment is neither TDS nor IOF

S1 DAMAGED: system error

S1 WRONGITM: invalid object form contents

S1 WRONGSTA: invalid data map contents

IOF Programmer's Manual

5-16 47 A2 37UJ Rev00

5.7.5 CDRELS (Release all forms)

Purpose:

This routine releases all active forms and puts the terminal in line mode. The screen is not
cleared. This routine also releases all attribute modifications into the forms management
structure. No attribute modification can be removed by another CALL after this routine
has been performed.

Syntax:

CALL "CDRELS" USING output-CD-alias [,enclosure-level].

Parameters:

output-CD-alias Refer to CD description.

enclosure-level The enclosure level to be associated with the data. This is a
one character data item that may take these values:

"1" End of record: Data is quarantined; no message is sent to
the terminal.

"2" End of quarantine: The data relative to this command and
all previously quarantined data are sent to the terminal. The
application keeps control.

"3" End of interaction: The data relative to this command and
all previously quarantined data are sent to the terminal.
Control is given to the terminal.

The default is "1".

Return Codes:

Normal:

0 DONE

Abnormal:

9A (BREAK): a break occurred

AC ARGERR: unexpected parameter

A0 SNDVIOL: turn error

A1 SEQERR: endpoint not in FORMS mode

97 OPTERR: invalid enclosure level

A9 DVIDFBID: device not supported

9H DNSPEC: invalid endpoint name

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-17

92 MSGOV: expansion area overflow

S1 DAMAGED: system error

S1 WRONGITM: invalid object form contents

S1 WRONGSTA: invalid data map contents

NOTE: After calling CDRELS, the released forms are still displayed. Activation of a new
form by CALL CDGET in OVERLAY or WINDOW mode could lead to
unpredictable results.

5.7.6 CDPURGE (Purge input data)

Purpose:

This routine purges all pending input messages and gives control back to the application.

Syntax:

CALL "CDPURGE" USING input-CD-alias.

Parameters:

input-CD-alias Refer to CD description.

Return Codes:

Normal:

0 DONE

Abnormal:

9A BREAK: a break occurred

A1 SEQERR: endpoint not in FORMS mode

9H DNSPEC: invalid endpoint name

S1 DAMAGED: system error

S1 WRONGITM: invalid object form contents

S1 WRONGSTA: invalid data map contents

IOF Programmer's Manual

5-18 47 A2 37UJ Rev00

5.7.7 CDATTR (Attribute selection)

Purpose:

This routine causes an attribute to apply to the fields selected in the selection vector. This
routine cannot remove an attribute modification performed before a CALL CDRELS.

Syntax:

CALL "CDATTR" USING output-CD-alias, selection-vector,
 attribute-identifier, [enclosure-level].

Parameters:

output-CD-alias Refer to CD description.

selection-vector The selection vector. This structure is output by
MAINTAIN_FORM (formnameV). The form name and
occurrence number fields of the selection vector must identify
the form occurrence to which the command applies. The
other fields of the selection vector must be loaded as follows:

"space": do not assign the attributes of the associated field.
"S": assign the attributes of the associated field.
"C": clear the contents of the field.
"B": both clear the contents of the field and assign the
attributes as specified.

After execution, the contents of the selection vector fields are
unchanged.

attribute identifier The attribute to be applied to the fields selected. This is a four
character alphanumeric data item that may take these values:

BI: Blink
BD: Bold (i.e., high intensity).
Bxxx: Background color
where xxx may be:
RED: Red
YEL: Yellow
BLU: Blue
GRE: Green
CYA: Cyan
MAG: Magenta
WHI: White
BLA: Black
DFT: Default color
CN: Conceal.
COS: Column Separator.
CP: Cursor position.
DFT: Default rendition (i.e., NBI, NHL, NRV, NCOS, NUL,
BDFT, FDFT, and normal intensity).
FT: Faint (i.e., reduced intensity).
Fxxx: Foreground color (xxx may take the same values as for
Bxxx).

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-19

HL: Rendition highlighted in a terminal-specific manner.
INIT: Initial attributes.
NBI: No blink
NCOS: No column separator
NHL: Not highlighted.
NPR: Not protected.
NRV: No reverse video.
NTR: Not transmittable.
NUL: Not underlined.
PR: Protected.
RV: Reverse video.
TR: Transmittable.
UL: Underlined.

Once an attribute is modified, it remains modified until either
another CDATTR or CDATTL command specifies a
contradictory attribute for the same field or a CDMECH
command with INITAT argument is executed.

When a CP attribute is applied to a protected field the cursor
cannot be positioned on that field, so it will be positioned
either on the first field of the screen to which the CP attribute
was given at form generation (if any), or on the first non-
protected field of the screen (home field).

enclosure-level The enclosure level to be associated with the data. This is a
one character data item that may take these values:

"1" End of record: Data is quarantined; no message is sent to
the terminal.

"2" End of quarantine: The data relative to this command and
all previously quarantined data are sent to the terminal. The
application keeps control.

"3" End of interaction: The data relative to this command and
all previously quarantined data are sent to the terminal.
Control is given to the terminal.

The default is "1".

IOF Programmer's Manual

5-20 47 A2 37UJ Rev00

Return Codes:

Normal:

0 DONE
AF DONEIDE: invalid selection vector contents.

Abnormal:

9A BREAK: a break occurred

AC ARGERR: unexpected parameter

A0 SNDVIOL: turn error

A7 SNDARERR: the selection vector does not match an active form

A1 SEQERR: endpoint not in FORMS mode

97 OPTERR: invalid enclosure level

A6 OBJUNKN: unknown attribute

AG NOMATCH: the creation date of the form does not match the creation
date of program structures

A9 DVIDFBID: device not supported

9H DNSPEC: invalid endpoint name

or CONFLICT: the attribute conflicts with the form (e.g., because the
selected field starts in column 1)

92 MSGOV: expansion area overflow

S1 DAMAGED: system error

S1 WRONGITM: invalid object form contents

S1 WRONGSTA: invalid data map contents

5.7.8 CDATTL (Attribute list selection)

Purpose:

This routine causes a list of attributes to apply to the fields selected in the selection vector.
Attributes are evaluated sequentially, hence the effect of one attribute may be cancelled
by the following attributes in the list.

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-21

Syntax:

CALL "CDATTL" USING output-CD-alias, selection vector,
 attribute-identifier, [enclosure-level].

Parameters:

output-CD-alias Refer to CD description.

selection-vector This structure is output by MAINTAIN_FORM (formnameV).
The form name and occurrence number fields of the selection
vector must identify the form occurrence to which the
command applies. The other fields of the selection vector
must be loaded as follows:

"space": do not assign the attributes of the associated field.
"S": assign the attributes of the associated field.
"C": clear the contents of the field.
"B": both clear the contents of the field and assign the
attributes as specified.

After execution, the contents of the selection vector fields are
unchanged.

attribute-identifier A structure with this description:

 01 data-name1.
 02 data-name2 PIC 9(3) VALUE n.
 02 data-name3 PIC X(4) OCCURS n.

where data-name2 is the number of attributes to be applied
coded in decimal and each element of data-name3 is an
attribute identifier. The list of attribute identifiers and their
interpretations are detailed in the description of CDATTR
command.

enclosure-level The enclosure level to be associated with the data. This is a
one-character data item that may take these values:

"1" End of record: Data is quarantined; no message is sent to
the terminal.

"2" End of quarantine: The data relative to this command and
all previously quarantined data are sent to the terminal. The
application keeps control.

"3" End of interaction: The data relative to this command and
all previously quarantined data are sent to the terminal.
Control is given to the terminal.

The default is "1".

IOF Programmer's Manual

5-22 47 A2 37UJ Rev00

Return Codes:

Normal:

0 DONE

AF DONEIDE invalid selection vector contents

Abnormal:

9A BREAK a break occurred

AC ARGERR unexpected parameter

A0 SNDVIOL turn error

A7 SNDARERR the selection vector does not match an active form

A1 SEQERR endpoint not in FORMS mode

97 OPTERR invalid enclosure level

A6 OBJUNKN unknown attribute

AG NOMATCH the creation date of the form does not match the creation
date of program structures

A9 DVIDFBID device not supported

or CONFLICT the attribute conflicts with the form (e.g., because the
selected field starts in column 1)

9H DNSPEC invalid endpoint name

92 MSGOV expansion area overflow

S1 DAMAGED system error
S1 WRONGITM: invalid object form contents

S1 WRONGSTA: invalid data map contents

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-23

5.7.9 CDFIDI (Form identification)

Purpose:

This routine causes the system to return the name of the form relative to the next
message.

Syntax:

CALL "CDFIDI" USING input-CD-alias, form-identifier.

Parameters:

input-CD-alias Refer to CD description.

form identifier The name and occurrence of the form relative to the next
message (or portion of message) to be received. The format
of this structure is as follows:

 01 form-identification.
 02 form-name PIC X(8).
 02 occurrence-number PIC 9(3).

Return Codes:

Normal:

0 DONE

Abnormal:

A3 RCVVIOL: turn error

9A BREAK: a break occurred

A9 DVIDFBID: device not supported

9H DNSPEC: invalid endpoint name

S1 DAMAGED: system error

S1 WRONGITM: invalid object form contents

S1 WRONGSTA: invalid data map contents

IOF Programmer's Manual

5-24 47 A2 37UJ Rev00

5.7.10 CDMECH (Control function mechanism)

Purpose:

This statement activates a control function mechanism. Note that it cannot remove an
attribute modification performed before a CALL CDRELS.

Syntax:

CALL "CDMECH" USING output-CD-alias, mechanism-identifier
[,enclosure-level].

Parameters:

output-CD-alias Refer to CD description.

mechanism-identifier A mnemonic that represents a control function mechanism
that is related to the device. This is a 6-character
alphanumeric data item that may take these values:

ALARM: activate the audio or visual alarm, if any.
CLEAR: clear all unprotected fields.
PROTCT: turn to protected all named fields of all active forms.

This command is effective on the next CDGET.
INITAT (alias RESET): clear unprotected fields and reset attributes to their initial

value. When the screen is in normal mode, (i.e., after
CDRELS LEVEL=1), this command clears the screen.

INIT: resets all forms to their initial state.
STPRA and STPRV: are valid only if the endpoint is a forms mode printer,

otherwise they have no effect. If the STPRV mechanism is
set, then for all subsequent CDSEND commands, only the
variable fields are printed. If the STPRA mechanism is set,
then for all subsequent CDSEND commands, all fields are
printed. STPRA is the default mode.

CPON: sets up a mode where the user will be notified of the cursor
position in the subsequent CDREV statements, for
terminals that support this feature (QUESTAR 200,
IBM3278/3279, MINITEL).

CPOFF: resets a previously CPON mechanism.
POPUP: When the active form has been activated in window mode,

this mechanism causes this form to be released and the
previous form in the stack of displayed forms to become
active. The window associated with the released form is
reset to the underlying contents. When the active form has
not been activated in WINDOW mode, or when the stack
of displayed forms is reduced to one form, a return code
FUNCNAV is sent.

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-25

enclosure-level The enclosure level to be associated with the data. This is a
one character data item that may take these values:

"1" End of record: Data is quarantined; no message is sent to
the terminal.

"2" End of quarantine: The data relative to this command and
all previously quarantined data are sent to the terminal. The
application keeps control.

"3" End of interaction: The data relative to this command and
all previously quarantined data are sent to the terminal.

Control is given to the terminal.

The default is "1".

Return Codes:

Normal:

0 DONE

Abnormal:

9A BREAK: a break occurred

AC ARGERR: unexpected parameter

A0 SNDVIOL: turn error

97 OPTERR: invalid enclosure level

A6 OBJUNKN: unknown mechanism

A9 DVIDFBID: device not supported

9H DNSPEC: invalid endpoint name

S1 WRONGITM: invalid object form contents

S1 WRONGSTA: invalid data map contents

AE FUNCNAV: mechanism not available

IOF Programmer's Manual

5-26 47 A2 37UJ Rev00

5.8 A PROGRAMMING EXAMPLE

This is an example of a COBOL program using a form under IOF. The form is called
SALES and is used for recording the sales of representatives. The program calculates the
total sales value for each product and a grand total for the sales of all products. If data is
entered incorrectly, the fields of the corresponding line are highlighted in a terminal-
dependent way and the data can be re-entered.

The form image of SALES is as follows:

 # PRODUCT TYPE ##########
NAME OF REPRESENTATIVE ########################### CODE #####
#
PRODUCT CODE QUANTITY PRICE TOTAL
#######
#######
#######
#######
#######
#######
#######
GRAND TOTAL ##########

The corresponding form definition language is:

NF SLASH LINE IS 01 COL IS 02 SCREEN-PIC IS X(1) UL.
NF SALE-TITLE LINE IS 01 COL IS 37 SCREEN-PIC IS X(10) UL.
NF REP-NAME LINE IS 02 COL IS 29 SCREEN-PIC IS X(27) UL.
NF REP-CODE LINE IS 02 COL IS 64 SCREEN-PIC IS X(6) UL DI.
ARRAY SALE-LINES OCCURS 07.
NF PRODUCT LINE IS 04 COL IS 03 SCREEN-PIC IS X(6).
NF PRODUCT-CODE LINE IS 04 COL IS 18 SCREEN-PIC IS X(4) DI.
NF QUANTITY LINE IS 04 COL IS 35 SCREEN-PIC IS 9(3) DI.
NF PRICE LINE IS 04 COL IS 46 SCREEN-PIC IS ZZ9.99 NU.
NF TOTAL LINE IS 04 COL IS 59 SCREEN-PIC IS ZZZ9.99 PR.
UF LINE IS 04 COL IS 13 VALUE IS ":".
UF LINE IS 04 COL IS 27 VALUE IS ":".
UF LINE IS 04 COL IS 42 VALUE IS ":".
UF LINE IS 04 COL IS 55 VALUE IS ":".
END-ARRAY.
NF GRAND-TOTAL LINE IS 15 COL IS 50 SCREEN-PIC IS ******9.99 PR.
UF LINE IS 01 COL IS 23 VALUE IS "PRODUCT TYPE" RV.
UF LINE IS 02 COL IS 04 VALUE IS "NAME".
UF LINE IS 02 COL IS 09 VALUE IS "OF".
UF LINE IS 02 COL IS 12 VALUE IS "REPRESENTATIVE".
UF LINE IS 02 COL IS 58 VALUE IS "CODE".
UF LINE IS 03 COL IS 03 VALUE IS "PRODUCT".
UF LINE IS 03 COL IS 13 VALUE IS ":".
UF LINE IS 03 COL IS 18 VALUE IS "CODE".
UF LINE IS 03 COL IS 27 VALUE IS ":".
UF LINE IS 03 COL IS 31 VALUE IS "QUANTITY".
UF LINE IS 03 COL IS 42 VALUE IS ":".
UF LINE IS 03 COL IS 46 VALUE IS "PRICE".
UF LINE IS 03 COL IS 55 VALUE IS ":".
UF LINE IS 03 COL IS 60 VALUE IS "TOTAL".
UF LINE IS 15 COL IS 36 VALUE IS "GRAND".
UF LINE IS 15 COL IS 42 VALUE IS "TOTAL".

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-27

These data structures are generated:

SALESI:
*
02 FILLER PIC X VALUE "3".
02 FILLER PIC X(8) VALUE "SALES".
02 SALES-NO PIC 9(3) VALUE ZERO.
02 SALES-MD PIC X VALUE "A".
02 SALES-OF PIC X(8) VALUE SPACES.
02 SALES-OO PIC 9(3) VALUE ZERO.
02 SALES-LL PIC 9(3) VALUE ZERO.
02 FILLER PIC X(5) VALUE "87097".
02 FILLER COMP-1 VALUE 01385.
02 SALES-AF PIC 9 VALUE 1.
02 SALES-SL PIC 9(3) VALUE 1.
02 SALES-SC PIC 9(3) VALUE 1.

SALESR:
04 SALES-FC PIC 99.
04 SLASH PIC X(1).
04 SALE-TITLE PIC X(10).
04 REP-NAME PIC X(27).
04 REP-CODE PIC X(6).
04 SALE-LINES-A .
 05 SALE-LINES OCCURS 7.
 06 PRODUCT PIC X(6).
 06 PRODUCT-CODE PIC X(4).
 06 QUANTITY PIC 9(3).
 06 PRICE PIC 999V99.
 06 TOTAL PIC 9999V99.
04 GRAND-TOTAL PIC 9999999V99.

SALESV:
02 SALESV.
03 FILLER PIC X VALUE ""2"".
03 FILLER COMP-1 VALUE 41.
03 FILLER PIC X(8) VALUE "SALES".
03 SALES-VO PIC 9(3) VALUE ZERO.
03 SALES-V.
 04 SALES-FC-V PIC X.
 04 SLASH-V PIC X.
 04 SALE-TITLE-VPIC X.
 04 REP-NAME-V PIC X.
 04 REP-CODE-V PIC X.
 04 SALE-LINES-AV .
 05 SALE-LINES-V OCCURS 7.
 06 PRODUCT-V PIC X.
 06 PRODUCT-CODE-V PIC X.
 06 QUANTITY-V PIC X.
 06 PRICE-V PIC X.
 06 TOTAL-V PIC X.
04 GRAND-TOTAL-V PIC X.

IOF Programmer's Manual

5-28 47 A2 37UJ Rev00

The program, which is called DEMO, is listed below:

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMO.
AUTHOR. A N OTHER.
INSTALLATION. BULL CENTER.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. LEVEL-64.
OBJECT-COMPUTER. LEVEL-64.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 I PIC 999.
77 J PIC 9.
77 W-I PIC 9.
77 ERROR-INDICATOR PIC 9.
77 W-NBF PIC 9.
77 W-ATTRIB PIC X(4) VALUE "INIT".
01 SALES-SW.
 COPY SALESV REPLACING TRAILING "-V" BY "-W".
01 ATTRIBUTE.
 02 FILLER PIC 999 VALUE 002.
 02 FILLER PIC X(4) VALUE "CP".
 02 FILLER PIC X(4) VALUE "HL".
77 TOTAL-MAN PIC 9(4)V99.
77 TOTAL-NUM PIC 9(7)V99.
77 W-ATTRIBUT PIC X(6).
77 W-LEVEL PIC X.
01 MESS-AREA.
 02 FILLER PIC X(8).
01 SALESI.
 COPY SALESI.
01 SALES-SV.
 COPY SALESV.
01 SALESR.
 COPY SALESR.
COMMUNICATION SECTION.
CD IQ INPUT
 QUEUE ISQ
 MESSAGE DATE IMD
 MESSAGE TIME IMT
 SOURCE ISS
 TEXT LENGTH ITL
 END KEY IEK
 STATUS KEY ISK
 COUNT IMC.
01 RIQ.
02 RISQ PIC X(12).
02 RISU PIC X(36).
02 RIMD PIC 9(6).
02 RISS PIC X(12).
02 RITL PIC 9(4).
02 RIEK PIC X.
02 RISK PIC XX.
02 RIMC PIC 9(6).
CD OQ OUTPUT
 DESTINATION COUNT ODC
 TEXT LENGTH OTL
 STATUS KEY OSK
 ERROR KEY OEK
 DESTINATION OSD.
01 ROQ.
 02 RODC PIC 9(4).
 02 ROTL PIC 9(4).

Forms Mode: SDPI Interface

47 A2 37UJ Rev00 5-29

 02 ROSK PIC XX.
 02 ROEK PIC X.
 02 ROSD.
 03 RNET PIC X(4).
 03 RTRM PIC X(4).
 03 RTYP PIC X(3).
 03 RNUM PIC X.
PROCEDURE DIVISION.
PROG-STAR.
 MOVE "CONSOLE" TO ISQ OSD.
 MOVE 1 TO ODC.
 MOVE 1 TO OTL.
 MOVE "3" TO W-LEVEL.
 MOVE ALL "S" TO SALES-W.
 MOVE ALL SPACES TO SALESR.
CALL "CDGET" USING ROQ SALESI W-LEVEL.
IF OSK = "A4" GO TO END-PROG.
MAIN-LOOP.
 MOVE ALL SPACES TO SALESR.
 MOVE ALL "S" TO SALES-V.
 CALL "CDRECV" USING RIQ SALESR W-LEVEL SALES-SV.
 IF SLASH-V = "R" AND SLASH = "/"
 GO TO END-PROG.
MOVE ALL SPACES TO SALE-TITLE-V
 SLASH-V
 REP-CODE-V
 REP-NAME-V.
MOVE 0 TO ERROR-INDICATOR.
MOVE ZERO TO TOTAL-NUM.
PERFORM TOTAL-D THRU TOTAL-F VARYING I FROM 1 BY 1
 UNTIL I > 7.
IF ERROR-INDICATOR = 1
 MOVE "1" TO W-LEVEL
 CALL "CDATTR" USING ROQ SALES-SW W-ATTRIB W-LEVEL
 MOVE "3" TO W-LEVEL
 MOVE SPACES TO GRAND-TOTAL-V
 CALL "CDATTL" USING ROQ SALES-SV ATTRIBUTE W-LEVEL
 MOVE SALES-V TO SALES-W
 GO TO MAIN-LOOP
ELSE
 MOVE "1" TO W-LEVEL
 MOVE ALL "S" TO SALES-W
 CALL "CDATTR" USING ROQ SALES-SW W-ATTRIB W-LEVEL
 PERFORM PREP-SEND THRU END-PREP-SEND VARYING J
 FROM 1 BY 1 UNTIL J > 7
 MOVE "S" TO GRAND-TOTAL-V
 MOVE TOTAL-NUM TO GRAND-TOTAL
 MOVE "3" TO W-LEVEL
 CALL "CDSEND" USING ROQ SALESR W-LEVEL SALES-SV
 MOVE "S" TO SLASH-V
 CALL "CDRECV" USING RIQ SALESR W-LEVEL SALES-SV.
IF SLASH-V = "R" AND SLASH = "/"
 GO TO END-PROG.
MOVE "1" TO W-LEVEL.
CALL "CDRELS" USING ROQ W-LEVEL.
MOVE ALL "S" TO SALES-V.
MOVE ALL SPACES TO SALESR.
MOVE "3" TO W-LEVEL.
CALL "CDGET" USING ROQ SALESI W-LEVEL.
GO TO MAIN-LOOP.
END-PROG.
 STOP RUN.
TOTAL-D.
 IF PRODUCT-V (I) NOT = "R" GO TO TOTAL-NR.

IOF Programmer's Manual

5-30 47 A2 37UJ Rev00

 IF PRODUCT-CODE-V (I) = "R"
 AND QUANTITY-V (I) = "R"
 AND PRICE-V (I) = "R"
 MULTIPLY QUANTITY (I) BY PRICE (I)
 GIVING TOTAL-MAN
 MOVE TOTAL-MAN TO TOTAL (I)
 ADD TOTAL-MAN TO TOTAL-NUM
 MOVE ALL SPACES TO SALE-LINES-V (I)
 GO TO TOTAL-F.
TOTAL-NR.
 IF PRODUCT-CODE-V (I) = "S"
 AND QUANTITY-V (I) = "S"
 AND PRICE-V (I) = "S"
 MOVE ALL SPACES TO SALE-LINES-V (I)
 GO TO TOTAL-F.
TOTAL-ERROR.
 MOVE 1 TO ERROR-INDICATOR.
 MOVE ALL "S" TO SALE-LINES-V (I).
TOTAL-F.
 EXIT.
PREP-SEND.
 IF SALE-LINES (J) = SPACES
 MOVE ALL SPACES TO SALE-LINES-V (J)
ELSE
 MOVE ALL "S" TO SALE-LINES-V (J).
END-PREP-SEND.
 EXIT.

47 A2 37UJ Rev00 6-1

6. Miscellaneous Primitives

The following miscellaneous service primitives help the user to issue a query at the
terminal, or to obtain all information about the terminal from which the interactive program
was activated.

6.1 H_QUERY (QUERY ON TERMINAL)

Purpose:

H_QUERY is used to (re)issue a query at the terminal, until a string meaning "yes" or "no"
in the current language is returned. For this purpose it uses the system variables #YES
and #NO.

Syntax:

$H_QUERY i_charn LENGTH=i_fb15 REPLY=ov_char1;

Parameters:

i_charn Specifies the text of the query.

LENGTH Specifies the length of the text, which must be greater than 0
and less than 256.

REPLY Specifies the area which will receive the translated reply: 1 is
yes, 0 is no.

Return codes:

Normal:

DONE

Abnormal:

ARGERR invalid argument (length error)

INDERR system variable #YES or #NO is without a value

IOF Programmer's Manual

6-2 47 A2 37UJ Rev00

6.2 H_DCTNATTR (DECLARE TERMINAL ATTRIBUTES)

Purpose:

H_DCTNATTR is used to declare the structure filled by the H_TNATTR primitive.

Syntax:

$H_DCTNATTR [PREFIX = l_identifier16] [ATTRIB = l_char];

Parameters:

PREFIX Specifies a character string which is prefixed to the name of
the structure and to the name of each elementary item. The
default value is "H_". ATTRIB specifies the attributes of the
structure. There are no default attributes.

Comments:

This primitive returns all the information about the terminal from which the interactive
program was launched. The information is valid only if IOF="01"X.

The LINE_LENGTH and PAGE_LENGTH parameters reflect the logical lengths as
defined by the corresponding system variables. They may be less than or equal to the
actual terminal lengths.

Miscellaneous Primitives

47 A2 37UJ Rev00 6-3

Example:

The macro statement $H_DCTNATTR generates this structure:

/*------ $H_DCTNATTR; *V*/

DCL 1 H_TNATTR
 2 H_IOF BIT(8), /* 00: Batch, 01: IOF /*
 2 H_MODEL BIT(16), /* Model Nb /*
 2 H_DVTYPE,
 3 H_DISPLAY BIT(1), /* CRT Terminal /*
 3 H_KEYBRD BIT(1), /* Keyboard exists /*
 3 * BIT(6),
 2 H_LINE_LENGTH LOGBIN(8), /* Terminal line length /*
 2 H_PAGE_LENGTH LOGBIN(8), /* Terminal page length /*
 2 H_ENV FLAGS,
 3 * BIT(1),
 3 H_FORM_SUPPORT BIT(1), /* May be used in /*
 /* formatted mode /*
 3 * BIT(30),
 2 * CHAR(12),
 2 H_DVFEATR,
 3 * BIT(2),
 3 H_ROLLUP BIT(1),
 3 H_WRAPAROUND BIT(1),
 3 * BIT(2),
 3 H_AUTOLF BIT(1), /* Automatic line feed /*
 /* after input /*
 3 H_LINFOLD BIT(1), /* Automatic line /*
 /* folding /*
 3 * BIT(6),
 3 H_HTAB BIT(1), /* Horizontal tabulation/*
 /* capability /*
 3 H VTAB BIT(1), /* Vertical tabulation /*
 /* capability /*
 2 * CHAR(8);

IOF Programmer's Manual

6-4 47 A2 37UJ Rev00

6.3 H_TNATTR (GET TERMINAL ATTRIBUTES)

Purpose:

H_TNATTR is used to get the execution mode (batch or IOF). In the case of IOF,
H_TNATTR returns all information about the terminal from which the interactive program
was activated.

Syntax:

$H_TNATTR o_structure;

Parameters:

o_structure Specifies the name of the structure in which the information is
returned. This structure must be declared by the
H_DCTNATTR primitive.

Return codes:

Normal:

DONE

Abnormal:

NONE

47 A2 37UJ Rev00 i-1

Index

#

#CSET system variable 3-3

A

activating forms 5-3
APPEND mode 5-3
Arabic character set 3-1
ASGi file assignment 4-7

B

batch compatibility 1-1

C

C094 character set 3-1
C101 character set 3-1
C101 mode 3-4
C113 character set 3-1
C114 character set 3-1
C118 character set 3-1
CDATTL routine 5-20
CDATTR routine 5-18
CDFIDI routine 5-23
CDGET routine 5-13
CDMECH routine 5-24
CDPURGE routine 5-17
CDRECV routine 5-10
CDRELS routine 5-16
CDSEND routine 5-8
character sets 3-1
Chinese character set 3-1
CSET system variable 3-3
Cyrillic character set 3-1

D

DEFi file define 4-8

E

EBCDIC character set 3-1
edited mode 4-3, 4-6
ERASE mode 5-3

F

forms
activating 5-3
mode 1-4, 2-1, 5-1

G

GCL interface 1-5
GCL terminal assignment 4-7
GPL primitives 4-9
Greek character set 3-1

H

H_CLOSE primitive 4-15
H_DCTNATTR primitive 6-2
H_FD primitive 4-9
H_GET primitive 4-13
H_OPEN primitive 4-12
H_PUT primitive 4-14
H_QUERY primitive 6-1
H_TN primitive 4-1, 4-16
H_TNATTR primitive 6-4
Help texts 1-5

IOF Programmer's Manual

i-2 47 A2 37UJ Rev00

I

inputs
actions 5-5
edited mode 4-6
transparent mode 4-6

L

languages, programming 1-2
line mode 1-4, 2-1

M

MAINTAIN_COMMAND 1-5
MAINTAIN_FORM 1-5, 5-1
manuals iv

N

notation v

O

operator context 1-1
outputs

actions 5-5
edited mode 4-3
transparent mode 4-5

OVERLAY mode 5-3

P

PLE (Pluri Lingual East) 3-1, 3-4
PLW (Pluri Lingual West) 3-1, 3-4
PLW character set 1-3
POPUP mechanism 5-3
prefixes 4-2
primitives

GPL 4-9
TAM 4-9

program specifics 1-2
programming languages 1-2
programming tools 1-2
prompts

normal 4-2
temporary 4-2

Q

quarantining 4-2

S

SDPI (Standard Device Programmatic
Interface) 1-4, 2-2, 5-1

COBOL statements 5-7
sharing a terminal with TAM 2-3

services 1-6

T

TAM (Terminal Access Method) 1-4, 2-2, 4-1
primitives 4-9
sharing a terminal with SDPI 2-3

terminals supported by GCOS 7 1-3
text mode 1-4, 2-1
tools, programming 1-2
traces, FORMS 5-6
transparent mode 4-5, 4-6

W

WINDOW mode 5-3

	47 A2 37UJ Rev00
	Preface
	Table Of Contents
	1. Introduction
	1.1	IOF AND BATCH COMPATIBILITY
	1.2	INTERACTIVE OPERATOR CONTEXT
	1.3	INTERACTIVE PROGRAM CONTEXT
	1.4	INTERACTIVE PROGRAM SPECIFICS
	1.5	TERMINALS
	1.6	USING THE TERMINAL
	1.6.1	Basic Level
	1.6.1.1	LINE MODE
	1.6.1.2	FORMS MODE
	1.6.1.3	MAINTAIN_FORM PROCESSOR

	1.6.2	GCL Interface
	1.6.2.1	MAINTAIN_COMMAND PROCESSOR
	1.6.2.2	SERVICES

	2. Line Mode and Forms Mode
	2.1	OVERVIEW
	2.2	LINE MODE
	2.3	FORMS MODE
	2.4	SHARING THE TERMINAL BETWEEN TAM AND SDPI

	3. Character Sets
	3.1	EXTENDED CHARACTER SETS
	3.1.1	C101 Mode
	3.1.2	PLW Mode

	4. Terminal Access Method
	4.1	HOW IT WORKS
	4.2	TWO IMPORTANT ASPECTS OF THIS INTERFACE
	4.2.1	Quarantining
	4.2.2	Prefixing and Prompting

	4.3	OUTPUT
	4.3.1	Edited Mode
	4.3.2	Transparent Mode

	4.4	INPUT
	4.4.1	Edited Mode
	4.4.2	Transparent Mode

	4.5	GCL TERMINAL ASSIGNMENT
	4.5.1	ASGi: File Assignment Parameters
	4.5.2	DEFi: File-Define Parameter Group

	4.6	GPL PRIMITIVES
	4.6.1	H_FD -File Declaration-
	4.6.2	H_OPEN -Open File-
	4.6.3	H_GET -Get Record-
	4.6.4	H_PUT -Put Record-
	4.6.5	H_CLOSE -Close File-
	4.6.6	H_TN -File declaration-

	4.7	OTHER LANGUAGES

	5. Forms Mode: SDPI Interface
	5.1	FORM GENERATION
	5.2	PRINCIPLES OF THE SDPI INTERFACE
	5.3	FORM ACTIVATION
	5.4	OUTPUT ACTIONS
	5.5	INPUT ACTIONS
	5.6	TRACES
	5.7	SDPI COBOL STATEMENTS
	5.7.1	Data Structures
	5.7.2	CDSEND -Forms Send-
	5.7.3	CDRECV -Forms Receive-
	5.7.4	CDGET -Form Activation-
	5.7.5	CDRELS -Release all forms-
	5.7.6	CDPURGE -Purge input data-
	5.7.7	CDATTR -Attribute selection-
	5.7.8	CDATTL -Attribute list selection-
	5.7.9	CDFIDI -Form identification-
	5.7.10	CDMECH -Control function mechanism-

	5.8	A PROGRAMMING EXAMPLE

	6. Miscellaneous Primitives
	6.1	H_QUERY -QUERY ON TERMINAL-
	6.2	H_DCTNATTR -DECLARE TERMINAL ATTRIBUTES-
	6.3	H_TNATTR -GET TERMINAL ATTRIBUTES-

	Index

