
Built-in Arithmetic in Knowledge Representation
Languages

Shahab Tasharrofi and Eugenia Ternovska

Simon Fraser University, Canada
{sta44,ter}@cs.sfu.ca

Abstract. In previous papers, results about capturing the complexity class NP as
model expansion task for languages with built-in arithmetic have been demon-
strated. The purpose of this paper is to show implications of those results to
the practice of KR, and, in particular, to two system languages of ASP (Gringo
and Lparse) and the IDP system. In addition, we describe a logic which we call
PBINT and show that PBINT provides a good basis for an attractive modelling
language. We demonstrate that PBINT allows for compact and natural encodings.

1 Introduction

Currently, several different specification/modelling languages are being developed in
different communities. They have their associated solvers, and are intended as universal
languages for search problems in some complexity classes, usually NP (e.g. schedul-
ing, planning, etc.). Examples include Answer Set Programming languages (Gringo,
Lparse), modelling languages from the CP community such as ESSENCE [FGJ+05],
or the input language of the IDP system1 [WM09]. These languages do not closely cor-
respond to first-order (FO) logic – they often contain inductive definitions and built-in
arithmetic. Designers usually focus on the convenience of the language, and rarely pay
attention to the expressiveness. For each language, several tasks can be studied – satis-
fiability and model checking are among them. Here, since we are interested in search
problems, we focus on the task of model expansion (MX), the logical task of expanding
a given structure with new relations. The user axiomatizes their problem in some logic
L (a specification/modelling language). The task of model expansion for L (abbreviated
L-MX), is:

Model Expansion for logic L
Given: (1) An L-formula φ with vocabulary σ ∪ ε and (2) A structure A for σ
Find: an expansion of A, to σ ∪ ε, that satisfies φ.

Thus, we expand the structure A with relations and functions to interpret ε, obtain-
ing a model B of φ. The complexity of this task obviously lies in-between that of model
checking (the entire structure is given) and satisfiability (no part of a structure is given).
In the combined setting an instance consists of a structure together with a formula. We

1 A language and system based on an extension of first-order logic with inductive definitions
under well-founded semantics.

focus here on the data complexity, where the formula is fixed and the input consists of
an instance structure only. We call σ, the vocabulary ofA, the instance vocabulary, and
ε := vocab(φ) \ σ the expansion vocabulary.

Remark 1. Since FO MX can specify exactly the problems that ∃SO can, one might
ask why we don’t stick with the standard notion of ∃SO model checking. Primarily it
is because we rarely use pure FO, and because for each language L, MX is just one
among several tasks of interest.

The authors of [MT05] emphasized the importance of capturing NP and other com-
plexity classes for such languages. The capturing property is of fundamental importance
as it shows that, for a given language:

(a) we can express all of NP – which gives the user an assurance of universality of the
language for the given complexity class,
(b) no more than NP can be expressed – thus solving can be achieved by means of
constructing a universal poly-time reduction (called grounding) to an NP-complete
problem such as SAT or CSP.

The authors proposed to take the capturing property as a fundamental guarding prin-
ciple in the development and study of declarative programming for search problems
in this complexity class, and started careful development of foundations of modelling
languages of search problems based on extensions and fragments of FO logic. While
the current focus is on the complexity class NP, by no means, do we suggest that the
expressive power of the languages for search problems should be limited to NP. Our
goal is to design languages for non-specialist users who may have no knowledge of
complexity classes. The users will be given a simple syntax within which they are safe
and would be encouraged to express their problems in that syntax.

The classic Fagin’s theorem [Fag74], relating ∃SO and NP, states that when the
formula is fixed, FO MX captures NP. However, FO is too limiting for practical spec-
ification languages. Fagin’s theorem allows one to represent all problems in NP, how-
ever, there is no direct way to deal with numbers and operations on them since in logic
we have abstract domain elements – encoding of numbers may be needed. A usable
logic for these problems would use standard arithmetic, as in all realistic modelling
languages.

One of the main contributions of this paper is to formally investigate the expressive
power of arithmetic in some of the practical modelling languages such as the ASP
language of Gringo and Lparse systems and the system language of IDP system. For
example, as Section 3 shows, if your system uses only ordinary arithmetical operations
such as +, × and ordinary arithmetical aggregates such as Σ, Π , min and max, then
you will not be able to axiomatize some common computational problems (such as
integer factorization) naturally. i.e., you would need to use e.g. binary encodings of
numbers. In these cases, you might need to use binary encodings as opposite to using
built-in arithmetic.

These limitations apply regardless of whether fixpoint constructions are present in
the language or not. For example, both ASP language of Gringo and Lparse and the
system language of IDP system support fixpoints while still unable of naturally ax-
iomatizing integer factorization. Section 3 proves this by introducing several categories

of logics and showing that all the system languages above fall into these categories.
It is proved that, under complexity assumptions, these categories cannot express some
problems naturally.

Another motivation in this paper is to design a logic where you could use arithmetic
naturally, and where you can even have some form of quantification over the infinite
domain of integers. We want to impose as few limitations as possible, but some are of
course needed. In particular, we need to limit the range of the quantifiers. We also need
to limit the number of elements appearing in the solutions. This is done by predicates
which we call guards. By itself, this restriction is obvious and does not appear to be
a contribution, especially given that most practical languages do exactly that. What is
new here is that the exact choice of the arithmetic operations and the kind of guards
allowed matter a lot.

A solution was given in [TT10]. There, we introduce a new set of arithmetical oper-
ations and show that, by supporting these operations, you can capture exactly NP over
arithmetical structures, i.e., (1) nothing outside NP is expressible and (2) for every prob-
lem in NP involving arithmetic (and numbers), there is specification Φ that works with
numbers as numbers (instead of encoding them using abstract domain elements). This
paper introduces this logical fragment in Section 4 but does not give proofs of capturing
NP.

Later on, in Section 5, we give some examples (including those that could not be
axiomatized in other languages) and show that the new logic can axiomatize them nat-
urally using its built-in arithmetical operators. The fragment can be viewed as an ide-
alized specification language, and, hopefully, inspire the development of practical KR
languages.

2 Background: MX with Arithmetic

Throughout the paper, we use ∃x̄ to denote ∃x1 . . . ∃xn and ∀x̄ to denote ∀x1 . . . ∀xn.

Embedded MX Embedded finite model theory (see [Lib04,Lib07]), the study of finite
structures with domain drawn from some infinite structure, was introduced to study
databases containing numbers and numerical constraints. Rather than a database being
a finite structure, we take it to be a set of finite relations over an infinite domain.

Definition 1. A structure A is embedded in an infinite background (or secondary)
structure M = (U ; M̄) if it is a structure A = (U ; R̄) with a finite set R̄ of finite
relations and functions, where M̄ ∩ R̄ = ∅. The set of elements of U that occur in some
relation of A is the active domain of A, denoted adomA.

In database research, embedded structures are used with logics for expressing queries.
Here, we use them similarly, with logics for MX specifications. Throughout, we use
the following conventions: σ denotes the vocabulary of the embedded structure A =
(U ; R̄), which is the instance structure; ν denotes the vocabulary of an infinite back-
ground structureM = (U ; M̄); ε is an expansion vocabulary; A formula φ over σ∪ν∪ε
constitutes an MX specification. The model expansion task remains the same: expand a
(now embedded) σ-structure to satisfy φ.

GGFk Logical Fragment The authors of [TM09] use a guarded logic in an embedded
setting, which allows them to quantify over elements of the background structure (un-
like, e.g. [GG98]). To do so, they use an adaptation of the guarded fragment GFk of FO
[GLS01]. In formulas of GFk, a conjunction of up to k atoms acts as a guard for each
quantified variable.

Definition 2. The k-guarded fragment GFk of FO (with respect to σ) is the smallest set
of formulas that:
1. contains all atomic formulas;
2. is closed under Boolean operations;
3. contains ∃x̄ (G1∧ . . .∧Gm∧φ), provided theGi are atomic formulas of σ,m ≤ k,
φ ∈ GFk, and each free variable of φ appears in some Gi.

4. contains ∀x̄ (G1∧. . .∧Gm ⊃ φ) provided theGi are atomic formulas of σ,m ≤ k,
φ ∈ GFk, and each free variable of φ appears in some Gi.
For a formula ψ := ∃x̄ (G1∧. . .∧Gm∧φ), conjunctionG1∧. . .∧Gm is called the
existential guard of the tuple of quantifiers ∃x̄; universal guard is defined similarly.

Example 1. Let ε be {E1, E2}. The following formula is not guarded: ∀x∀y (E1(x, y) ⊃
E2(x, y)). It is guarded when E1 is replaced by P which is not in ε. The following for-
mula is the standard encoding of the temporal formula Until(P1, P2): ∃v2 (R(v1, v2)∧
P2(v2) ∧ ∀v3 (R(v1, v3) ∧ R(v3, v2) ⊃ P1(v3))). The formula is 2-guarded, i.e., is in
GF2, but it is not 1-guarded.

The guards ofGFk are used to restrict the range of quantifiers. They also use “upper
guard” axioms, which restrict the elements in expansion relations to those occurring
in the interpretation of guard atoms. To formalize this, they introduce the following
restriction of FO, denoted GGFk(ε).

Definition 3. The double-guarded fragment GGFk(ε) of FO, for a given vocabulary ε,
is the set of formulas of the form φ∧ψ, with ε ⊂ vocab(φ∧ψ), where φ is a formula of
GFk, and ψ is a conjunction of upper guard axioms, one for each symbol of ε occurring
in ψ, of the form ∀x̄ (E(x̄) ⊃ G1(x̄1) ∧ · · · ∧Gm(x̄m)), where m ≤ k, and the union
of free variables in the Gi is precisely x̄.

Guards of GFk, that restrict quantifier ranges, are lower guards, and guards of Def. 3 are
upper guards. In GGFk, all upper and lower guards are from the instance vocabulary σ,
so ranges of quantifiers and expansion predicates are explicitly limited to adomA.

To finish definition of the logic, they define well-formed terms which depends on
the vocabulary of the background structure. The authors of [TM09] use arithmetical
structures, same as [GG98]. They also introduce a fragment of arithmetical structures
known as small cost arithmetical structures.

They prove that GGFk captures NP for small cost arithmetical structures2. This
paper continues on their path and proves that the property of capturing NP over small
cost arithmetical structures can be extended to several practical KR languages.

2 We use the definition of arithmetical structures and small cost arithmetical structures in this
paper. So, for presentation reasons, these definitions are moved from background section to
where they are used in Section 3.1.

3 Capturing and Non-Expressibility Results for Practical KR
Languages

This section studies the expressiveness of built-in arithmetic in existing KR languages.
But, in order to formally investigate the expressibility of KR languages, we first need
to define what we mean by a specific language. We have based our investigations on
system manuals published for these languages. And, as these manuals often neglect
the details, we have had to do several experiments in order to understand if particular
specifications are allowed or not. In the end, we believe that our results are true of the
specific languages that we will talk about.

As is the case with all practical languages, they evolve over time and their syntax
changes from one version to another. So, what is not allowed in current version, may be
allowed in the next version or vice versa. Therefore, we specify the exact manual and
version of these languages as below:
1. IDP version 1.4.4 and the accompanying manual published in August 2009 [WM09].
2. Gringo version 2.0.5 and the accompanying manual published in November 2008

[GKK+08].
3. Lparse version 1.1.2 and the accompanying Lparse 1.0 user’s manual [Syr00].

3.1 Capturing Results

Definition 4. An Arithmetical structure is a structure N containing at least

(N; 0, 1, χ,<,+, .,min,max,Σ,Π)

with domain N, the natural numbers, and where min, max, Σ and Π are multi-set
operations3 and χ[φ](x̄) is the characteristic function. Other functions, predicates, and
multi-set operations may be included, provided every function and relation of N is
polytime computable.

Definition 5. For an embedded arithmetical structureD, define cost(D), the cost ofD,
to be dlog2(l + 1)e, where l is the largest number in adomA.

Definition 6 (Small cost structures). A class K of embedded arithmetical structures
has small cost if there is some k ∈ N such that cost(D) ≤ |adomD|k, for everyD ∈ K.

Next, we are going to give a theorem that relates the expressibility power of ASP
over arithmetical structures to the expressive power of GGFk fragment of logic. How-
ever, ASP programs are traditionally defined over relational structures and, thus, we
have to extend this notion to arbitrary structures. In order to do this, we define λ-
restricted ASP Programs.

Definition 7 (λ-restricted ASP Programs). Let B(v, r) denote the set of predicate
symbols that appear in the body of rule r with variable v as a term in it, i.e., the term
consists of only variable v. Also, let V (r) denote all the free variables in r and RΠ(p)

3 Multi-sets are generalizations of sets that allow multiple occurrence of elements.

denote all rules in ASP programΠ with predicate symbol p in their head. Also, letM(r)
denote all multi-set terms t of r and Vm(m) denote all variables that are quantified by
multiset operation m and Bm(v,m) denote all predicate symbols that appear as a
positive atom in multi-set operation m and with variable v as one of their arguments.
We say that an ASP program Π is λ-restricted if there is a function λ from predicate
symbols of Π to natural numbers such that for all predicate symbols S in vocabulary
of Π:

max{min{λ(T) | T ∈ B(v, r)} | v ∈ V (r), r ∈ RΠ(S)} < λ(S), and,
max{min{λ(T) | T ∈ Bm(v,m)} | v ∈ Vm(m), m ∈M(r), r ∈ RΠ(S)} < λ(S)

Note that, although the motivation for Definition 7 comes from Gringo, it is in fact
different from both λ-restrictedness in [GST07] and level-restrictedness in [GKK+08].
To see why Definition 7 is different from λ-restrictedness defined in [GST07], look at
the following example which is not accepted by Definition 7 but is λ-restricted due to
[GST07]:

q(0).
p(x)← q(0× x).

Also, to see why Definition 7 is different from level-restrictedness defined in [GKK+08],
observe that assignment operator is not present in Definition 7. In fact, Definition 7 ac-
cepts a subclass of ASP programs that are characterized by level-restrictedness property
which is, in turn, generalized to safety property in newer versions of Gringo software.
The reason we use this limited class of ASP programs, and not the more inclusive ver-
sions, is to define a subclass of ASP programs that remains inside NP in the presence
of arithmetic constructs. This way practical ASP solvers can define a switch to either
limit users to this syntax and give them a performance guarantee in return (because of
remaining in NP) or to give them full access to the ASP language (which can describe
problems outside NP) but without such performance guarantees.

Now, we can use the notion of λ-restricted ASP programs and define admissible
ASP programs over arithmetical structures to be the set of λ-restricted ASP programs
over such background structures.

Theorem 1. Let K be a class of small-cost embedded arithmetical structures over vo-
cabulary σ ∪ ε ∪ ν. Then the following are equivalent:
1. K ∈ NP;
2. There is a first order formula φ of GGFk(ε) such that D ∈ K if and only if there is

an expansion D′ of D to ε so that D′ |= φ;
3. There is a λ-restricted ASP program P with instance vocabulary σ such thatD ∈ K

iff there is an expansion D′ of D so that D′ is a stable model for P .

Proof. (1)⇒ (2) is shown in [TM09].
(2) ⇒ (3) is shown by Lloyd-Topor transformation. We first push all negations

inside and then introduce new relation symbols for negated expansion predicates. For
example, for expansion predicate E(x̄), new relation symbol E′(x̄) is introduced and
two following sentences are added to the ASP program:

E(x̄)← not E′(x̄).
E′(x̄)← not E(x̄).

Also, new relation symbols are introduced for each sub-formula and Lloyd-Topor trans-
formation is used to relate these sub-formulas together in an appropriate way. However,
the resulting ASP program is not still λ-restricted.

In order to convert this ASP program into a λ-restricted ASP program, we have to
incorporate information from lower and upper guards in the GGFk specification. Such
guards define a permissible domain for each sub-formula. Therefore, we introduce new
domain predicates based on this information. These predicates can be defined using a
completely positive and non-recursive ASP program. So, all rules generated above can
be modified so as their variables are bounded by these new domain predicates.

Note that, here, we do not claim that a first order formula φ can be translated into a
λ-restricted ASP program via Lloyd-Topor transformation. What we claim (and what is
needed here for the proof) is that, informally, for a specification φ in GGFk(ε), there is a
λ-restricted ASP program P such that for all instance structures D, there is a certificate
for D in the GGFk(ε) sense iff there is a certificate for D in the ASP sense.

The key here is that the transformation does not have to preserve the entire models
of the GGFk formula. What is needed to be presereved is the existence of an expansion
(and not the equivalence of the set of expansions) for a given instance structure.

Also, the expansion vocabulary of the ASP program does not have to be the same
as ε.

(3) ⇒ (1) is shown by giving a machine in NP that first guesses a stable model
and then checks its stability in polytime. The existence of such a guessing procedure is
guaranteed by the λ-restrictedness property of the ASP program.

Corollary 1. ASP language of Lparse and Gringo captures small cost arithmetical NP
problems.

Corollary 2. The IDP language captures the small cost arithmetical NP problems.

Proof. By Theorem 1, GGFk covers all small cost NP structures. However, we know
that except for characteristic function χ, IDP supports all the rest of GGFk. So, we only
need to show that χ can be written in terms of other arithmetical functions. This is easy
to show: χ[φ] ≡ Σ{1 : φ}.

3.2 Non-expressibility Results

This part considers some natural arithmetical problems and shows that they cannot be
encoded using only built-in arithmetic of ASP languages or the input language of the
IDP system. Two such problems are considered: the Integer Factorization problem and
the Quadratic Residue Problem. We first define them:
Integer Factorization is a natural arithmetical problem with wide applications in cryp-
tography. You are given a number n and asked to either report it as a prime or find one
of its nontrivial factors (a positive factor except 1 and n itself). As a side-note, although
checking primality is in polytime, it is not known if finding nontrivial factors of a com-
posite number can also be done in polytime. Also, there are several other versions of
factorization problem which are all polynomially equivalent, i.e., using an oracle for
one version, solution to other versions can be found in polytime.

Quadratic Residue Problem is an NP-complete problem that involves only a few num-
bers. You are given three numbers n, a and c and you are asked if there is a number x
such that x ≥ c and x2 ≡ a (mod n).

Various domain-restricted logical fragments Now, we define several logical frag-
ments by restricting their MX tasks. We also show that some practical KR system
languages such as ASP and IDP fall into these fragments. Then, by showing some
non-expressibility results for these logical fragments, we effectively prove that system
languages of ASP and IDP cannot express integer factorization and quadratic residue
problems naturally.

Definition 8 (Active-domain-restricted logical fragment). Let L be a logical frag-
ment so that for all specifications φ in L, and for all arithmetical structures A over
σ (instance vocabulary) and all expansions of A such as B satisfying φ, we have that
adomB = adomA. We call this logical fragment an active-domain-restricted logical
fragment.

Definition 9 (Polytime domain-restricted logical fragment). Let L be a logical frag-
ment so that for any specification φ in L, there is a monotone polytime computable
mapping P : 2N → 2N with the following property: For all arithmetical structures A
over σ (instance vocabulary) and for all structures B expanding A and satisfying φ,
we have adomB ⊆ P (adomA). We call such logical fragments a polytime domain-
restricted logical fragment.

Definition 10 (Loosely domain-restricted logical fragment). Let L be a logical frag-
ment so that for any specification φ in L, there is a function f : N→ N and a monotone
polytime mapping P : 2N × 2N → 2N such that: For all arithmetical structures A over
σ (instance vocabulary) and for all structures B expandingA and satisfying φ, we have
adomB ⊆ P (adomA, {1, 2, 3, · · · , f(|adomA|)}). We call such logical fragments a
loosely domain-restricted logical fragment.

Remark 2. Every polytime domain-restricted logical fragment is also a loosely domain-
restricted logical fragment with f being a constant function and P being the same as
before except it takes two argument and neglects the second one.

However, there is an important difference between these two fragments. Namely,
when specification is fixed, for polytime domain-restricted logical fragments, polytime
grounding (in the size of instance structure) is ensured; while, for loosely domain-
restricted logical fragments, such grounding cannot be guaranteed.

Proposition 1. The language of the IDP system is a domain-restricted logical frag-
ment.

Proof. All predicates and functions in IDP system language should have proper type
names. Also, all types are given as part of the input. Thus, the active domain of all
structures satisfying an specification in IDP is exactly the active domain of the instance
structure.

Proposition 2. The language of ASP (without Σ) accepted by Gringo and Lparse is a
polytime domain-restricted logical fragment.

Proof. For Gringo, we know that a correctly constructed ASP program should be level-
restricted. So, we use induction on the levels of an ASP program and show that, for
each level l, there is a monotone polytime program Pl : 2N → 2N that, given the active
domain of the previous level, generates the active domain of the new level. So, as any
fixed ASP specification has only constantly many different levels, we can combine all
Pl’s to obtain a new monotone polytime program P that satisfies the polytime domain-
restrictedness condition.

For Lparse, we just use the fact that all Lparse programs are also Gringo programs
[GKK+08].

The condition on not includingΣ in Proposition 2 is essential because, adding it will
enable us to describe predicates consisting of exponentially many values. The following
ASP program shows one such scenario:

V (2i), for i ∈ {0, 1, 2, · · · , n− 1}.
A(X)← not A′(X), V (X).
A′(X)← not A(X), V (X).
E(X)← X = Σ(Y ;A(Y), V (Y)).

This program has domain size n, but predicate E has domain 0 to 2n − 1.

Proposition 3. ASP language of Gringo and Lparse is a loosely domain-restricted log-
ical fragment.

Proof. For Gringo, again, we use the level-restrictedness property. Assume that your
specification φ has l levels. As discussed above, each summation can (potentially) ex-
ponentiate the size of the domain. But, by level-restrictedness property, summations
separate levels. Thus, at most l different exponentiations can occur. Now, if we take f
as follows, it gives an upper bound on the number of elements at level l:

f(n) = 22
. . .

2n

︸ ︷︷ ︸
l times

Then, we use the same monotone polytime program P as in Proposition 2 with
the difference that it takes two arguments and neglects the second one. This program
runs in polytime because the size of its input is so large that all of its computation
time is bounded by a polynomial in that (large) number. Please note that the function
f given above is a very rough upper bound and we believe that upper bounds of form
f(n) = 2poly(n) work too (although with a more detailed proof).

For Lparse, again, we only use the fact that all Lparse programs are also Gringo
programs [GKK+08].

Non-expressibility for domain-restricted logical fragments We now prove that in-
teger factorization and quadratic residue problem can not be naturally axiomatized in
the logical fragments we defined. For active-domain-restricted logical fragments, this
is obvious. We need new numbers except those in the domain. Below, we prove the
same property for the two other domain-restricted fragments, i.e., polytime and loosely
domain-restricted logical fragments.

Theorem 2. If L is a polytime or loosely domain-restricted logical fragment, then
1. L cannot express integer factorization using built-in arithmetic unless factorization

is in polytime.
2. L cannot express quadratic residue problem using its built-in arithmetic unless

P=NP.

Proof. (for polytime domain-restricted logical fragments) LetL be a polytime domain-
restricted logical fragment and φ be a specification in such a fragment. Then, by defini-
tion, there is a monotone polytime program P that gives an upper bound on the active
domain of all valid expansions of a given instance structure.

Now, if φ axiomatizes integer factorization with its built-in arithmetic, at least one
factor of number n should appear in the output of P . So, checking all numbers that P
outputs gives us one such factor. Also, as P is polytime, the whole checking procedure
would also be polytime and we would solve integer factorization in polytime.

Similarly, if φ axiomatizes quadratic residue problem using its built-in arithmetic,
then x appears in the output produced by P . So, checking all outputs of P gives us such
x if it exists. Again, P being polytime implies that the whole procedure is also polytime
and P=NP (because quadratic residue problem is NP-complete).

Proof. (for loosely domain-restricted logical fragments) Let L be a loosely domain-
restricted logical fragment and φ be a specification in such a fragment. Then, by def-
inition, there is a function f and monotone polytime program P such that the ac-
tive domain of all valid expansions B of an input structure A are upper-bounded by
P (adomA, {1, 2, 3, · · · , f(|adomA|)}).

However, in the case of the two problems above (factorization and quadratic residues),
we know that the number of elements in the input structure is always constant (one el-
ement in factorization and 3 elements in quadratic residue). Therefore, f(|adomA|) is
always a constant (depending on f but notA). Thus, the set {1, 2, 3, · · · , f(|adomA|)}
does not depend on structure A. So, program P takes the active domain of A and re-
turns a set S which upper-bounds the active domain of all valid expansions of A. The
rest of the proof can be carried out in the same way as the previous case.

Corollary 3. Using only built-in arithmetic of ASP language of Gringo and Lparse
(with or without Σ),
(1) Unless P=NP, the quadratic residue problem cannot be axiomatized naturally, and
(2) Axiomatizing integer factorization naturally is possible only if it is polytime com-
putable.

So, we proved that the two problems of factorization and quadratic residue cannot
be axiomatized in either ASP or IDP system languages. However, we disregarded one

of the features of both languages we analyzed: the compact domain representation, i.e.,
the use of two numbers n1 and n2 to compactly represent all numbers in the range
between n1 and n2. In fact, the compact domain representation can be used to naturally
axiomatize both problems above. However, there are two drawbacks associated with
using compact domain representations:
1. First, the compact domain representations would take one well beyond NP and

would enable one to describe, for example, the NEXP-complete problem of tiling.
Therefore, any hope for polynomial time grounding would be lost.

2. Second, the compact domain representation is not really an option for any reason-
able size instance. For example, in the case of factorization, the numbers one need
to factor in practice need more than 200 digits to represent. So, using compact do-
main representation yields a domain of size 10200 which cannot be stored in any
reasonable size memory (in fact, it is more than the number of atoms in the observ-
able universe).

4 Logic PBINT

In this section, we describe a logic that can unconditionally characterize NP problems
involving arithmetic. The first step towards this goal is to use a different background
structure:

Definition 11. A Compact Arithmetical structure is a structure N c having at least
(N; 0, 1,+,×, <, || ||) with domain N, the natural numbers, where 0, 1, +, × and <
have their usual meaning and ||x|| returns the size of binary encoding of number x, i.e.,
||x|| = 1 + blog2(x+ 1)c. Other functions, predicates, and multi-set operations (min,
max etc.) may be included, provided every function and relation of N c is polytime
computable.

Requirements on σ As before, we consider embedded MX, but the embedding is
into the compact arithmetical structure. We make some assumptions about the instance
vocabulary σ. It contains predicate adomA and a constant SIZE. The constant SIZE
is equal to |adomA|×S where |adomA| is the number of elements in the active domain
and S is the size of binary encoding of the maximum element of the active domain. In
other words, SIZE upper-bounds the number of bits needed to encode (in binary) the
input structureA embedded inN c. We also need a constant default denoting a particular
default value needed in upper guards on functions. Its meaning is specified by the user.
Logic PBINT We introduce a new logic, PBINT, standing for Polynomially Bounded
Integers. This logic is a variant of the double-guarded logic except we use compact
arithmetical structures and allow function symbols in both σ and ε, or new kinds of
guards, with more freedom in existential and upper guards on the outputs of expansion
functions. The three forms of guards in PBINT are as follows:
1. Instance Guards are instance relations (including adomA) interpreted by the in-

stance structure A. Note that, although not required to be so, all specifications can
be rewritten so as they only use adomA as an instance guard.

2. Polynomial Range Guards are relations of the form poly1(SIZE) ≤ x ≤ poly2(SIZE)
with poly1 and poly2 two polynomials.

3. PBINT Guards are relations of form ||x|| ≤ poly(SIZE) where poly(SIZE) is
a polynomial depending only on the constant SIZE.
Instance guards and polynomial range guards define ranges of size at most polyno-

mial in the binary encoding size of structure. However, PBINT guards can define ranges
with exponentially many different integers. For example, condition ||x|| ≤ SIZE is
equivalent to x ≤ 2SIZE−1 − 1, exponential in the value of SIZE. Also, note that
guards definable by stratifiable inductive definitions with (1), (2) as the base cases can
be added without changing our results.

Definition 12 (logic PBINT). We define our logic as follows.
Background Structure: the compact arithmetical structure.
Terms are constructed as usual over ν ∪ σ ∪ ε.
Formulas:

(a) Upper Guards
i. Expansion relations are upper-guarded by instance or polynomial range guards.

ii. An expansion function f has an upper guard of form ∀x̄∀y (f(x̄) = y ⇒
(G(x̄, y) ∨ y = default)) where G(x̄, y) is a conjunction of guards jointly
guarding variables x̄ and y so that x̄ is upper-guarded by instance or polyno-
mial range guards and y is upper-guarded by any of the three types of guards.

(b) Lower Guards
i. Existential guards: any of the three types of guards.

ii.Universal guards: instance or polynomial range guards.

The constant “default” can be interpreted by any number at the user’s choice. The part
y = default in (a(ii)) above is needed because all functions in FO logic are total, thus
defined on all natural numbers. Without that part, the upper guard axioms on expansion
functions would always be false making all specifications with such functions useless.

Functions have meaningful (non-default) outputs on a finite number of inputs. Thus,
we can obtain a finite representation (encoding) of instance and expansion structures.

Having functions in the instance vocabulary imposes a small inconvenience with
the definition of the active domain. In a formalism based on classical logic, all terms
are total, and therefore defined on all integers. Thus, if we add functions, the notion
of an active domain becomes meaningless. On the other hand, the user might (quite
reasonably) assume that the inputs and the outputs of the instance functions are from
a finite domain, which makes these functions to be non-total. A safe solution would
be to advise the user to use graphs of functions (i.e., the corresponding predicates)
instead of instance functions. It would solve the problem with the definition of an active
domain, but this solution seems too limiting for a nice logic. Instead, we choose to allow
instance functions, but to require all instance functions to have upper guards and the
“default” value for inputs outside of the intended range, just as we have for expansion
functions. Active domain now contains all elements of the universe contained in all
instance relations, together with all elements in the ranges of the instance functions.
Capturing NP with PBINT-MX

Theorem 3. Let K be an isomorphism-closed class of compact arithmetical embedded
structures over vocabulary σ. Then the following are equivalent:
1. K ∈ NP ,

2. there is a PBINT sentence φ of a vocabulary τ = σ ∪ ν ∪ ε, such that A ∈ K iff
there exists an expansion B of A with B |= φ.

We do not give any proof for Theorem 3 in this paper. The proof can be found in
[TT10]. The importance of this theorem is in its ability to capture all NP with arithmetic.
As shown previously, most of previous frameworks for arithmetic in KR suffer from the
fact that they can only axiomatize certain arithmetical problems in NP. For example, we
showed that ASP and IDP cannot axiomatize integer factorization using their built-in
arithmetic. On the other hand, Theorem 3 shows that PBINT can axiomatize exactly
those problems involving arithmetic which are in NP.

Moreover, the background structure of PBINT is much simpler than many back-
ground structures in practical KR languages. In particular, there is no built-in aggregate
in compact arithmetical structures. Together with Theorem 3, it shows that PBINT can
define aggregates in terms of more primary operations (those given in compact arith-
metical structures). Therefore, adding aggregates to your language would not increase
the expressibility of your language.

Thus, PBINT gives you a very concrete basis to build your language upon. It tells
you that if your language somehow supports all PBINT constructs, you can (1) be sure
that your language captures all of NP and (2) unless your other constructs are very
powerful (outside NP ∩ co-NP), you can safely add them to your language without
worrying about its complexity implications.

5 Examples of PBINT Axiomatizations

In this section, we give some examples of PBINT axiomatizations to demonstrate the
naturality of them. These examples include the two examples of integer factorization
and quadratic residue so as to contrast against the results of Section 3.

Example 2 (Disjoint Scheduling). Given a set of Tasks, t1, · · · , tn and a set of con-
straints, find a scheduling that satisfies all the constraints. Each task ti has an earliest
starting time EST (ti), a latest ending time LET (ti) and a length L(ti). There are also
two predicates P (ti, tj) and D(ti, tj) which say, respectively, that task ti should end
before task tj starts, and two tasks ti and tj cannot overlap. We are asked to find two
functions start(ti) and end(ti) satisfying the given conditions.

In PBINT, we axiomatize this problem as follows: Instance vocabulary σ consists
of symbols EST , LET , L, Task, P and D. Expansion vocabulary consists of two
functions start and end. The axiomatization below first gives the upper guards on these
functions and then the axioms:

∀t∀s (start(t) = s⇒ (Task(t) ∧ ||s|| ≤ SIZE) ∨ s = default),
∀t∀e (end(t) = e⇒ (Task(t) ∧ ||e|| ≤ SIZE) ∨ e = default),
∀ti (Task(ti)⇒ start(ti) ≥ EST (ti)),
∀ti (Task(ti)⇒ end(ti) ≤ LET (ti)),
∀ti (Task(ti)⇒ start(ti) + L(ti) = end(ti)),
∀ti∀tj (P (ti, tj)⇒ end(ti) ≤ start(tj)),
∀ti∀tj (D(ti, tj)⇒ end(ti) ≤ start(tj) ∨ end(tj) ≤ start(ti)).

In a practical language, upper and lower guards are defined by types and need not
be given explicitly. Here, the predicate Task is a type and functions start and end are
functions from type Task to integer type. So, predicate Task can disappear from the
above sentences.

Example 3 (Integer Factorization). You are given a number n and asked to find some
nontrivial factor of n. Here, σ only has constant n and ε only constant p which is upper-
guarded as follows: ||p|| ≤ SIZE (which abbreviates ∀m (c = m⇒ ||m|| ≤ SIZE)
in case of zero-ary (constant) expansion functions). Now, the axiomatization is: p >
1 ∧ p < n ∧ ∃q (||q|| ≤ SIZE ∧ p× q = n).

Example 4 (Quadratic Residues). You are given numbers r, n and c and asked to find
a number x such that x2 ≡ r (mod n) and x < c. Here, instance vocabulary consists
of constants n, r and c and expansion vocabulary only has constant x upper-guarded by
sentence ||x|| ≤ SIZE. The axiomatization consists of two sentences 0 ≤ x ∧ x ≤
c ∧ x < n and ∃q (||q|| ≤ SIZE ∧ x× x = q × n+ r).

6 Related Work

Research in databases over infinite structures can be traced back to the seminal paper
by Chandra and Harel [CH80]. There are several follow-up papers with developments
in several directions including [Top91,Suc98,GG98], and more recent [Grä07]. Topor
[Top91] studies the relative expressive power of several query languages in the presence
of arithmetical operations. He also investigates domain independence and genericity in
such frameworks.

Another line of database-motivated work over infinite background structures is em-
bedded model theory (See [Lib04,Lib07]). Work in this area generally reduces ques-
tions on embedded finite models to questions on normal finite models. An important
result in this area is the natural-domain-active-domain collapse for ∃SO for embedded
finite models, as well as other deep expressiveness results. The work also describes
a notion of safety (through e.g. range-restriction) to achieve safety with many back-
ground structures, and connections between safety and decidability. The active domain
quantifiers are similar to our proposal of lower guards, however our goal was to reflect
what is used in practical languages, namely the so-called domain predicates of Answer
Set Programming and type information from other languages. We have done it through
the use of upper and lower guards. In general, research in database theory is mostly
focused around computability and the expressive power of query languages, while our
interest, following [Grä07] is in capturing complexity classes, but in connection with
specification/modelling languages. We plan, however, to investigate the applicability
of domain-independence, range-restrictedness and other notions from embedded model
theory to practical modelling languages.

Grädel and Gurevich [GG98] studied logics over infinite background structures
in a more general computer science context. They characterized NP for arithmetical
structures under some small weight property, generalized to the small cost condition
in [TM09] (see [TM09] for a more detailed discussion). While this condition corre-
sponds to existing languages (as shown in Section 3.1), our work here gives an uncon-
ditional result for capturing NP in the presence of arithmetical structures, and thus is

a step forward in the development of such languages. Instead of controlling access to
the background structure through the use of weight terms [GG98] , we rely on guarded
fragments, which is much closer to practical specification languages.

The work we mentioned so far is the closest to our proposal, and was the most inspi-
rational. The research on descriptive complexity in the embedded setting also includes
the work of Grädel and Meer [GM96], as well as Grädel and Kreutzer [GK99]. Another
line (Cook, Kolokolova and others [CK01]) establishes connections between bounded
arithmetic and finite model theory, in particular by relying on Grädel’s characterization
of PTIME.

Another direction on capturing complexity classes is bounded arithmetic, including
[Bus85,Ske05,BC92]. However, the characterization of complexity classes there is in
terms of provability in systems with a limited collection of non-logical symbols, and is
not applicable here.

Built-in arithmetic is implemented in many modelling languages, e.g. the IDP sys-
tem [WM09], the Gringo system [GKK+08], and LPARSE [Syr00]. There is also ex-
isting works such as [GOS09] and [BBG05] on how these systems deal with solving
issues in presence of arithmetic constraints. However, we are not aware of any in-depth
study of the expressiveness of such languages in the presence of arithmetic constraints.
In many cases, allowing arithmetic constraints without careful restrictions provides the
language with very high expressiveness, as is shown for ESSENCE [MT08].

7 Conclusion

In modelling languages, you are frequently faced with the problem of having a frame-
work to support both natural specifications of problems, and reasoning about those
problems. In this paper, we took our measure of naturality to be being able to use “built-
in” arithmetic, and our measure of reasoning to be being in NP. We showed some ex-
amples of problems of practical importance and proved that several existing modelling
languages cannot express these problems naturally (using their built-in arithmetic and
not by encoding numbers using abstract domain elements). We also presented a solution
to this problem and claimed (without giving the proof) that our fragment of logic can
represent all arithmetical problems in NP naturally. We supported our claim by giving
natural axiomatizations for problems in NP that could not be naturally axiomatized in
existing modelling languages. This result guarantees universality of our logic for this
complexity class and also settles our reasoning abilities by showing that all PBINT ax-
iomatizations can be efficiently (in polytime) grounded to any state of the art solver of
NP problems. Our work is a significant step forward from the previous proposal since
it overcomes a number of limitations.

The language we proposed is natural because it is essentially FO logic, where
guards can be made “invisible” through “hiding” them in a type system. Solving can
be achieved through grounding to SAT, a work which is being performed in our group,
but falls outside of the topic of this paper and this conference.

In summary, our work has pointed out some of the limitations of existing modelling
languages and provided a solution to these limitations. Future directions include (a)
analysis of other existing languages in connection with the logical fragments defined

here; (b) design of logics with different useful background structures and analysis of
existing modelling languages with respect to these background structures, (c) continue
with our implementation development.

Acknowledgement. This work is generously funded by NSERC, MITACS and D-
Wave. We also express our gratitude towards the anonymous referees for their useful
comments.

References

[BBG05] S. Baselice, P.A. Bonatti, and M. Gelfond. Towards an integration of answer set and
constraint solving. In M. Gabbrielli and G. Gupta, editors, Proceedings of the Twenty-
first International Conference on Logic Programming (ICLP’05), volume 3668 of
Lecture Notes in Computer Science, pages 52–66. Springer-Verlag, 2005.

[BC92] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime
functions (extended abstract). In STOC ’92: Proceedings of the twenty-fourth annual
ACM symposium on Theory of computing, pages 283–293, 1992.

[Bus85] S. R. Buss. Bounded arithmetic. PhD thesis, Princeton University, 1985.
[CH80] A. Chandra and D. Harel. Computable queries for relational databases. Journal of

Computer and System Sciences, 21:156–178, 1980.
[CK01] S. Cook and A. Kolokolova. A second-order system for polytime reasoning based on

grädel’s theorem. In Proceedings of Sixteenth Annual IEEE Symposium on Logic in
Computer Science (LICS ’01), pages 177–186, 2001.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
Complexity of computation, SIAM-AMC proceedings, 7:43–73, 1974.

[FGJ+05] A. M. Frisch, M. Grum, C. Jefferson, B. M. Hernandez, and I. Miguel. The essence
of essence: A constraint language for specifying combinatorial problems. In Proc.
of the Fourth International Workshop on Modelling and Reformulating Constraint
Satisfaction Problems, pages 73–88, 2005.

[GG98] E. Grädel and Y. Gurevich. Metafinite model theory. Inf. Comput., 140(1):26–81,
1998.

[GK99] E. Grädel and S. Kreutzer. Descriptive complexity theory for constraint databases.
In Proceedings of the Annual Conference of the European Association for Computer
Science Logic, CSL ‘99, Madrid, volume 1683 of LNCS, pages 67–81. Springer, 1999.

[GKK+08] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele. A User’s Guide to gringo, clasp, clingo, and iclingo, November 2008.
http://potassco.sourceforge.net/.

[GLS01] G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and guards: game theoretic
and logical characterizations of hypertree width. In PODS ’01, 2001.

[GM96] E. Grädel and K. Meer. Descriptive complexity theory over the real numbers. Math-
ematics of Numerical Analysis: Real Number Algorithms, 32:381–403, 1996.

[GOS09] M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In P. Hill
and D. Warren, editors, Proceedings of the Twenty-fifth International Conference on
Logic Programming (ICLP’09), volume 5649 of Lecture Notes in Computer Science,
pages 235–249. Springer-Verlag, 2009.

[Grä07] E. Grädel. Finite Model Theory and Descriptive Complexity, pages 125–230.
Springer, 2007.

[GST07] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for answer set pro-
gramming. In C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings of the Ninth

International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’07), volume 4483 of Lecture Notes in Artificial Intelligence, pages 266–271.
Springer-Verlag, 2007.

[Lib04] L. Libkin. Elements of Finite Model Theory. 2004.
[Lib07] L. Libkin. Embedded Finite Models and Constraint Databases, pages 257–338.

Springer, 2007.
[MT05] D. G. Mitchell and E. Ternovska. A framework for representing and solving NP

search problems. In Proc. AAAI’05, 2005.
[MT08] D. G. Mitchell and E. Ternovska. Expressiveness and abstraction in ESSENCE. Con-

straints, 13(2):343–384, 2008.
[Ske05] A. Skelley. Theories and Proof Systems for PSPACE and the EXP-Time Hierarchy.

PhD thesis, University of Toronto, 2005.
[Suc98] D. Suciu. Domain-independent queries on databases with external functions. Theor.

Comput. Sci., 190(2):279–315, 1998.
[Syr00] T. Syrjänen. Lparse 1.0 User’s Manual, 2000.

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz.
[TM09] E. Ternovska and D. G. Mitchell. Declarative programming of search problems with

built-in arithmetic. In Proc. of 21st International Joint Conference on Artificial Intel-
ligence (IJCAI-09), pages 942–947, 2009.

[Top91] R. Topor. Safe database queries with arithmetic relations. In Proc. 14th Australian
Computer Science Conf, pages 1–13, 1991.

[TT10] S. Tasharrofi and E. Ternovska. PBINT, a logic for modelling search problems involv-
ing arithmetic. In Proceedings of the 17th Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning (LPAR’17), Yogyakarta, Indonesia, October 2010.

[WM09] J. Wittocx and M. Marien. The IDP System. KUL, August 2009.
http://www.cs.kuleuven.be/˜dtai/krr/software/idpmanual.pdf.

