

Pilot TNC 410

NC-Software 286 060-xx

8/2000

Contents

The Pilot

... is your concise programming guide for the HEIDENHAIN TNC 410 contouring controls. For more comprehensive information on programming and operating, refer to the TNC User's Manual. There you will find complete information on:

- Q-parameter programming
- the central tool file
- tool measurement

Certain symbols are used in the Pilot to denote specific types of information:

Important note

Warning: danger for the user or the machine!

The TNC and the machine tool must be prepared by the machine tool builder to perform these functions!

Chapter in User's Manual where you will find more detailed information on the current topic.

The information in this Pilot applies to the TNC 410 with the following software number:

Control	NC Software Number
TNC 410	286 060-xx

Contents

Fundamentals	4
Contour Approach and Departure Path Functions	13 18
FK Free Contour Programming	25
Subprograms and Program Section Repeats Working with Cycles	3 1 3 4
Drilling Cycles Pockets, Studs, and Slots	37 45
Point Patterns SL Cycles	54 56
Multipass Milling Coordinate Transformation Cycles	60 62
Special Cycles	67
Digitizing 3D Surfaces	69
Graphics and Status Displays	73
ISO Programming	76
Miscellaneous Functions M	81

Fundamentals

Programs/Files

See "Programming, File Management"

The TNC keeps its programs, tables and texts in files. A file designation consists of two components:

THREAD2.H

File name	File type
Maximum length: 8 characters	see table at right

Creating a New Part Program

PGM MGT

BLK

- Enter new file name
- Select file type via soft key
 - Select unit of measure for dimensions (mm or inches)
- Define the blank form (BLK) for graphics: FORM
 - Enter the spindle axis
 - Enter coordinates of the MIN point: the smallest X, Y and Z coordinates
 - Enter coordinates of the MAX point: the greatest X, Y and Z coordinates

BLK FORM 0.1 Z X+0 Y+0 Z-50

2 BLK FORM 0.2 X+100 Y+100 Z+0

Files in the TNC	File type
Programs • in HEIDENHAIN format • in ISO format	.H .I
Table for • Tools • Tool pockets • Datums • Points	TOOL.T TOOLP.TCH .D .PNT

S
σ
<u> </u>
_
\subseteq
Φ
З
σ
$\overline{\mathbf{O}}$
\mathbf{O}
5

Choosing the screen layout

See "Introduction, the TNC 410"

Show soft keys for setting the screen layout

Mode of operation	Options						
Program run, full seq. Program run, single block	Program	PGM	DIST. X				
Test run	Program at left Program information at right	PGM + PGM STATUS	Z C				
	Program at left Additional position display at right	Additional position display					
	Program at left Tool information at right	PGM + TOOL STATUS	PROGRAMMIN				
	Program at left Active coordinate transformations at right	PGM + C.TRANS. STATUS	1 BLK FORM 0.1 Z X- 2 BLK FORM 0.2 X+20 3 TOOL DEF 1 L+0 R+ 4 TOOL CALL 1 Z S10 5 L Z+50 R0 FMAX M3				
	Program at left Tool measurement information at right	Toolmeasurement					
		Continued >	ACTL. X +				

5

Mode of operation	Options		PROGRAMMING AND EDITING PITCH ?				
Programming and Editing	Program	PGM	4 L 2+100 R0 FMAX 5 CYCL DEF 17 .0 RIGID TAPPING 6 CYCL DEF 17 .1 SET UP 2				
	Programming graphics	GRAPHICS	7 CYCL DEF 17 .2 DEPTH -25 8 CYCL DEF 17 .3 PITCH +1 9 CYCL CALL M3 10 END PGM CYC210 MM	1 17.1			
	Program at left Programming graphics right	PGM + GRAPHICS					
	Program at left Graphics illustrating input	PGM + FIGURE	RCTL. X +50.000				
	parameters at right		Y +52.500 Z +250.000 C +0.000	T ■ 0 M5/9			

Mode of operation	Options	
Manuell operation Handwheel	Position	POSITION
	Position at left Program information at right	POSITION+ PGM STATUS
	Position at left Additional position display at right	POSITION+ POS.DISP. STATUS
	Position at left Tool information at right	POSITION+ TOOL STATUS
	Position at left Active coordinate transformations at right	POSITION* C.TRANS. STATUS

▲ Program at left, graphic support at right

Fundamentals

Absolute Cartesian Coordinates

The dimensions are measured from the current datum. The tool moves to the absolute coordinates.

Programmable axes in an NC blockLinear motion: 5 axesCircular motion: 2 linear axes in a plane or 3 linear axes with cycle 19 WORKING PLANE

Incremental Cartesian Coordinates

The dimensions are measured from the last programmed position of the tool.

The tool moves by the incremental coordinates.

Circle Center and Pole: CC

The circle center (CC) must be entered to program circular tool movements with the path function C (see page 21). CC is also needed to define the pole for polar coordinates.

CC is entered in Cartesian coordinates*.

An absolutely defined circle center or pole is always measured from the workpiece datum.

An incrementally defined circle center or pole is always measured from the last programmed position of the workpiece.

Angle Reference Axis

Angles – such as a polar coordinate angle PA or an angle of rotation ROT – are measured from the angle reference axis.

Working	plane	Ref.	axis	and	0°	direction
X/Y		Х				
Y/Z		Y				
Z/X		Ζ				

Polar Coordinates

Dimensions in polar coordinates are referenced to the pole (CC). A position in the working plane is defined by

- Polar coordinate radius PR = Distance of the position from the pole
- Polar coordinate angle PA = Angle from the angle reference axis to the straight line CC PR

Incremental dimensions

Incremental dimensions in polar coordinates are measured from the last programmed position.

Programming polar coordinates

Select the path function

Press the P keyAnswer the dialog prompts

Defining Tools

Tool data Each tool is identified with a number between 1 and 254.

Entering tool data You can enter the tool data (length L and radius R)

- in a tool table (centrally, Program TOOL.T) or
- within the part program in TOOL DEF blocks (locally)

Tool number
 Tool length L
 Tool radius R

TOOL

DEF

Program the tool length as its difference ΔL to the zero tool: $\Delta L>0$: The tool is longer than the zero tool $\Delta L<0$: The tool is shorter than the zero tool

With a tool presetter you can measure the actual tool length, then program that length.

Calling the tool data

- TOOL Tool number
 - ► Working spindle axis: tool axis
 - ▶ Spindle speed S
 - ▶ Tool length oversize DL (e.g. to compensate wear)
 - ▶ Tool radius oversize DR (e.g. to compensate wear)
- 3 TOOL DEF 6 L+7.5 R+3 4 TOOL CALL 6 Z S2000 DL+1 DR+0.5
- 5 L Z+100 R0 FMAX
- 6 L X-10 Y-10 R0 FMAX M6

Tool change

- Beware of tool collision when moving to the tool change position!
 - The direction of spindle rotation is defined by M function: M3: Clockwise
 - M4: Counterclockwise
 - The maximum permissible oversize for tool radius or length is ± 99.999 mm!

▼ Oversizes on an end mill

Tool Compensation

The TNC compensates the length L and radius R of the tool during machining.

Length compensation Beginning of effect: Tool movement in the spindle axis

End of effect:

▶ Tool exchange or tool with the length L=0

Radius compensation Beginning of effect:

▶ Tool movement in the working plane with RR or RL

End of effect:

Execution of a positioning block with R0

Working without radius compensation (e.g. drilling): ► Tool movement with R0

Datum Setting Without a 3D Touch Probe

During datum setting you set the TNC display to the coordinates of a known position on the workpiece:

- ▶ Insert a zero tool with known radius
- Select the manual operation or electronic handwheel mode
- ▶ Touch the reference surface in the tool axis with the tool and enter its length
- Touch the reference surface in the working plane with the tool and enter the position of the tool center

Datum Setting with a 3D Touch Probe

The fastest, simplest and most accurate way to set a datum is to use a HEIDENHAIN 3D touch probe.

The following probe functions are provided by the manual operation and electronic handwheel modes of operation:

Basic rotation

Datum setting in one axis

Datum setting at a corner

Datum setting at a circle center

Contour Approach and Departure

Starting point P.

P_c lies outside of the contour and must be approached without radius compensation.

Auxiliary point Pu

P_u lies outside of the contour and is calculated by the TNC.

The tool moves from the starting point P_s to the auxiliary point P_{μ} at the feed rate last programmed feed rate!

First contour point P_{A} and last contour point P_{F} The first contour point P_{A} is programmed in the APPR (approach) block. The last contour point is programmed as usual.

End point P_N

P_N lies outside of the contour and results from the DEP (departure) block. P_N is automatically approached with R0.

Path Functions for Approach and Departure

μĻ

Press the soft key with the desired path function:

Straight line with tangential connection

Straight line perpendicular to the contour point

Circular arc with tangential connection

Straight line segment tangentially connected to the contour through an arc

- Program a radius compensation in the APPR block!
- DEP blocks set the radius compensation to 0!

Approaching on a Straight Line with Tangential Connection

- Coordinates for the first contour point P_A
 Distance lan (length) from D to D
- Distance len (length) from P_H to P_A Enter a length Len > 0
- ► Tool radius compensation RR/RL

7 L X+40 Y+10 R0 FMAX M3 8 APPR LT X+20 Y+20 LEN 15 RR F100 9 L X+35 Y+35

Approaching on a Straight Line Perpendicular to the First Contour Element

► Coordinates for the first contour point P_A

- Distance len (length) from P_H to P_A Enter a length Len > 0
- ▶ Radius compensation RR/RL

7 L X+40 Y+10 R0 FMAX M3 8 APPR LN X+10 Y+20 LEN 15 RR F100 9 L X+20 Y+35

Approaching Tangentially on an Arc

- Coordinates for the first contour point P_A
 Badius B
 - Enter a radius R > 0
- Circle center angle (CCA) Enter a CCA > 0
- ▶ Tool radius compensation RR/RL
- ▶ Tool radius compensation RR/RL

7 L X+40 Y+10 R0 FMAX M3 8 APPR CT X+10 Y+20 CCA 180 R10 RR F100 9 L X+20 Y+35

Approaching Tangentially on an Arc and a Straight Line

- Coordinates for the first contour point P_A
 Radius R
 - Enter a radius R > 0
- ► Tool radius compensation RR/RL

7 L X+40 Y+10 R0 FMAX M3 8 APPR LCT X+10 Y+20 R10 RR F100 9 L X+20 Y+35

Departing Tangentially on a Straight Line

DEP LT

Distance len (length) from P_E to P_N Enter a length LEN > 0

23	ь	Х-	+30	¥+3	5	RR	E	100			
24	ь	Y-	⊦20	RR	F1	.00					
25	DI	ΞP	\mathbf{LT}	LEN	r 1	.2.	5	F10	0	M2	

Departing on a Straight Line Perpendicular to the Last Contour Element

DEP

▶ Distance len (length) from P_E to P_N Enter a length LEN > 0

23 L X+30 Y+35 RR F100 24 L Y+20 RR F100 25 DEP LN LEN+20 F100 M2

Departing Tangentially on an Arc

- Radius R Enter a radius R > 0
- Circle center angle (CCA)
- 23 L X+30 Y+35 RR F100 24 L Y+20 RR F10 25 DEP CT CCA 180 R+8 F100 M2

Departing on an Arc Tangentially Connecting the Contour and a Straight Line

 Coordinates of the end point P_N
 Radius R Enter a radius R > 0

	23	L X-	⊦30 [·]	Y+3!	5 1	RR	F10	0		
	24	L Y-	⊦20 1	RR 1	F1	00				
1	25	DEP	LCT	X+3	10	Y+	12	R8	F100	M2

Path Functions for Positioning Blocks	Path functions	
See "Programming: Programming contours".	Straight line	Page 19
Programming the Direction of Traverse Regardless of whether the tool or the workpiece is actually moving, you always program as if the tool is moving and the workpiece is stationary.	Chamfer between two straight lines	CHF Page 20
Entering the Target Positions Target positions can be entered in Cartesian or polar coordinates – either as absolute or incremental values, or with both absolute and incremental values in the same block.	Corner rounding	RND o: Page 20
Entries in the Positioning Block A complete positioning block contains the following data: • Path function	Circle center or pole for polar coordinates	Page 21
 Coordinates of the contour element end points (target position) Radius compensation RR/RL/R0 Feed rate F Miscellaneous function M 	Circular path around the circle center CC	Page 21
Before you execute a part program, always pre-position the tool to prevent the possibility of damaging the tool or workpiece!	Circular path with known radius	Page 22
	Circular path with tangential connection to previous contour	Page 23
	Free contour programming	FK Page 25

18

Straight Line

Coordinates of the straight line end point
 Tool radius compensation RR/RL/R0

- Feed rate F
- Miscellaneous function M

With Cartesian coordinates:

7	ь	X+10	Y+40	RL	F200	M3	
8	\mathbf{L}	IX+20) IY-1	L5			
9	\mathbf{L}	X+60	IY-10)			

With polar coordinates:

12	CC	X+45 Y+25			
13	LP	PR+30 PA+0	RR	F300	M3
14	LP	PA+60			
15	LP	IPA+60			
16	LP	PA+180			

- You must first define the pole CC before you can program polar coordinates!
 - Program the pole CC only in Cartesian coordinates!
 - The pole CC remains effective until you define a new one!

a:1

Inserting a Chamfer Between Two Straight Lines

CHF ► Chamfer Side Length

7	ь	X+0	Y+30	RL	F300	M3	
8	ь	X+4() IY+!	5			
9	CI	IF 12	2				
10) т	. тх.	-5 Y+0	٦ ١			

- You cannot start a contour with a CHF block!
 - The radius compensation before and after the CHF block must be the same!
 - An inside chamfer must be large enough to accommodate the current tool!

Corner Rounding

The beginning and end of the arc extend tangentially from the previous and subsequent contour elements.

Radius R of the circular arc
 Feed rate F for corner rounding

	5	L X+10	Y+40	RL	F300	M3
1	6	L X+40	V+25			
	0	T VIII	1745			
	7	RND R5	F100			
	0					
	8	L X+10	¥+5			

An inside arc must be large enough to accommodate the current tool!

20

Circular Path Around the Circle Center CC

.CC Coordinates of the circle center CC

Coordinates of the arc end point ▶ Direction of rotation DR

C and CP enable you to program a complete circle in one block.

With Cartesian coordinates:

5	C	C X+25	5 Y+2	5		
6	ь	X+45	¥+25	RR	F200	M3
7	C	X+45	Y+25	DR-	F	

With polar coordinates:

18 CC	X+25 Y+25	
19 LP	PR+20 PA+0	RR F250 M3
20 CP	PA+180 DR+	

- Define the pole CC before programming polar coordinates! ᇞ
 - Program the pole CC only in Cartesian coordinates!
 - The pole CC remains effective until you define a new one!
 - The arc end point can be defined only with the polar coordinate angle (PA)!

Circular Path with Known Radius (CR)

- Coordinates of the arc end point
 Radius R
- If the central angle ZW > 180, R is negative. If the central angle ZW < 180, R is positive.
- Direction of rotation DR

10	L C	X+40	Y+40	RL]	F20	0 1	13	Arc	sta	arting	point	
11	CR	X+70) Y+40	R+2	20	DR-	•	Arc	1	or		
11	CR	X+70) Y+40	R+2	20	DR-	-	Arc	2			

Υ	
40	
40	R R R
+((40 70 X

 \blacktriangle Arcs 1 and 2

 \blacksquare Arcs 3 and 4

10 L	X+40	Y+40 H	RL F20	0 M3	Arc	starting	point
11 CF	x+70	Y+40	R-20	DR-	Arc	3 or	
11 CF	R X+70	Y+40	R-20	DR+	Arc	4	

Circular Path CT with Tangential Connection

- CT2 Coordinates of the arc end point ▶ Radius compensation RR/RL/R0 ► Feed rate F
 - Miscellaneous function M

With Cartesian coordinates:

5	\mathbf{L}	X+0	¥+25	RL	F250	МЗ
6	\mathbf{L}	X+2	5 Y+3	0		
7	C.	C X+4	45 Y+3	20		
8	L	Y+0				

With polar coordinates:

12	CC X+40 Y+35	
13	L X+0 Y+35 RL F250	м3
14	LP PR+25 PA+120	
15	CTP PR+30 PA+30	
16	L Y+0	

- Define the pole CC before programming polar coordinates! ф
 - Program the pole CC only in Cartesian coordinates!
 - The pole CC remains effective until you define a new one!

Helix (Only in Polar Coordinates)

Calculations (upward milling direction) Path revolutions: n = Thread revolutions

- n = Thread revolutions + overrun at start and end of thread
 - h = Pitch P x path revolutions n
 - IPA = Path revolutions n x 360°
 - PA = Angle at start of thread + angle for overrun
 - Z = Pitch P x (thread revolutions + thread overrun at start of thread)

Shape of helix

Start coordinate:

Total height:

Start angle:

Incr. coord. angle:

Internal	thread	Work direction	Direction	Radius comp.
Right-hand		Z+	DR+	RL
Left-hand		Z+	DR–	RR
Right-hand		Z–	DR–	RR
Left-hand		Z–	DR+	RL
External	thread			
Right-hand		Z+	DR+	RR
Left-hand		Z+	DR-	RL
Right-hand		Z-	DR-	RL
Left-hand		 Z–	DR+	RR

M6 x 1 mm thread with 5 revolutions:

12 CC X+40 Y+25
13 L Z+0 F100 M3
14 LP PR+3 PA+270 RL
15 CP IPA-1800 IZ+5 DR- RL F50

24

FK Free Contour Programming

See "Programming Tool Movements – FK Free Contour Programming"

If the end point coordinates are not given in the workpiece drawing or if the drawing gives dimensions that cannot be entered with the gray path function keys, you can still program the part by using the "FK Free Contour Programming."

Possible data on a contour element:

- Known coordinates of the end point
- Auxiliary point on the contour element
- Auxiliary point near the contour element
- Directional data (angle) / position data
- Data regarding the course of the contour

To use FK programming properly:

- All contour elements must lie in the working plane.
- Enter all available data on each contour element.
- If a program contains both FK and conventional blocks, the FK contour must be fully defined before you can return to conventional programming.

▲ These dimensions can be programmed with FK

Working with the Interactive Graphics

jĻ	Select	the	PGM-	GRAPHI	CS s	creen	layout!
----	--------	-----	------	--------	------	-------	---------

The interactive graphics show the contour as you are programming it. If the data you enter can apply to more than one solution, the following soft keys will appear:

SHOW SOLUTION
FSELECT

END

START SINGLE

To show the possible solutions

To enter the displayed solution in the part program

END	To optor data for subacquant contour clam	onto
SELECT	To enter data for subsequent contour elem	ents

To graphically display the next programmed block

Standard colors of the interactive graphics

Fully defined contour element

The displayed element is one of a limited number of possible solutions

The element is one of an infinite number of solutions

Contour element from a subprogram

9 FC DR+ 10 FCT DF 11 FCT DF	Y+75 RL F3 R25 CCX+50	0 CCY+50				
NOML.) Y Z C	· +	50.00 52.50 50.00 +0.00	0 0	T 1 0	 M5/	9
SHOW SOLUTION	SELECT SOLUTION	END SELECT			START SINGLE	

Initiating the FK Dialog

Straight Circular

Contour element without tangential connection

Contour element with tangential connection

Pole for FK programming

End Point Coordinates X, Y or PA, PR

Cartesian coordinates X and Y

Polar coordinates referenced to FPOL

Incremental input

7	FPC	Ъ	X+2	0 Y+3	0	
8	\mathbf{FL}	IX	+10	¥+20	RR	F100

9 FCT PR+15 IPA+30 DR+ R15

Circle Center (CC) in an FC/FCT block

Cartesian coordinates of the circle center

Polar coordinates of the circle center referenced to FPOL

Incremental input

10 FC CCX+20	CCY+15 DR+ R15	
11 FPOL X+20	¥+15	
13 FC DR+ R1	5 CCPR+35 CCPA+40	

Auxiliary Point

... P1 on a contour

... PD next to a contour

Coordinates of the auxiliary points

Perpendicular distance

13 FC DR- R10 P1X+42.929 P1Y+60.07114 FLT AN-70 PDX+50 PDY+53 D10

Direction and Length of the Contour Element

Data on a straight line

Gradient angle of a straight line

Length of a straight line

27 FLT X+25 LEN 12.5 AN+35 RL F200

Identifying a closed contour

Beginning: CLSD+ End: CLSD-

12 L X+5 Y+35 RL F500 M3	
13 FC DR- R15 CLSD+ CCX+20 CCY+35	
17 FCT DR- R+15 CLSD-	

Values Relative to Block N: Distance of the Contour Element

Parallel to a straight contour element Parallel to the entry tangent of an arc

Distance from a parallel element

Always enter relative values incrementally!

17	FL LEN 20 AN+15	5
18	FL AN+105	
19	FL LEN 12.5 PAR	R 17 DP 12.5
20	FSELECT 2	

21 FL LEN 20 IAN+95

Subprograms and Program Section Repeats

Subprograms and program section repeats enable you to program a machining sequence once and then run it as often as needed.

Working with Subprograms

- 1 The main program runs up to the subprogram call CALL LBL1.
- 2 The subprogram labeled with LBL1 runs through to its end LBL0.
- 3 The main program resumes.

It's good practice to place subprograms after the main program end (M2).

- Answer the dialog prompt REP with the NOENT key!
- You cannot call LBL0!

Working with Program Section Repeats

- 1 The main program runs up to the call for a section repeat CALL LBL1 REP2/2.
- 2 The program section between LBL1 and CALL LBL1 REP2/2 is repeated the number of times indicated with REP.
- 3 After the last repetition the main program resumes.

Altogether, the program section is run once more than the number of programmed repeats!

Subprogram Nesting:

- A Subprogram within a Subprogram
- 1 The main program runs up to the first subprogram call CALL LBL1.
- $2\,$ Subprogram 1 runs up to the second subprogram call CALL LBL2.
- 3 Subprogram 2 runs to its end.
- 4 Subprogram 1 resumes and runs to its end.
- 5 The main program resumes.
 - A subprogram cannot call itself!
 - Subprograms can be nested up to a maximum depth of 8 levels!

Any Program as a Subprogram

- 1 The calling program A runs up to the program call CALL PGM B.
- 2 The called program B runs through to its end.
- 3 The calling program A resumes.

The called program must not end with M2 or M30!

 \blacktriangle S = Jump; R = Return jump

Working with Cycles

Certain frequently needed machining sequences are stored in the TNC as cycles. Coordinate transformations and some special functions are also available as cycles.

- In a cycle, positioning data entered in the tool axis are always incremental, even without the I key!
- The algebraic sign of the cycle parameter DEPTH determines the working direction!

Example

CYCL

DEF

6	CYCL	DEF	1.0	PECKING
7	CYCL	DEF	1.1	SET UP 2
8	CYCL	DEF	1.2	DEPTH -15
9	CYCL	DEF	1.3	PECKG 10

Feed rates are entered in mm/min, the dwell time in seconds.

Defining cycles

Select the desired cycle:

Select the cycle group

Select	the	cycle	

Drill	Drilling Cycles			
200 201 202 203	REAMING BORING UNIVERSAL DRILLING COUNTERBORE BACK TAPPING	Page 37 Page 38 Page 39 Page 40 Page 41 Page 42 Page 43 Page 44		
Poc	Pockets, Studs, and Slots			
213 5 214 215 3 210 211	CIRCULAR POCKET MILLING CIRCULAR POCKET FINISHING CIRCULAR STUD FINISHING	Page 45 Page 46 Page 47 Page 48 Page 49 Page 50 Page 51 Page 52 Page 53		
	CIRCULAR PATTERN	Page 54		
221		Page 55		
SL	Cycles			
	CONTOUR MILLING	Page 57 Page 58 Page 58 Page 59		

Continued on next page ►

Mul	tipass Milling				
230	MULTIPASS MILLING	Page 60			
231	RULED SURFACE	Page 61			
Cyc	Cycles for Coordinate Transformations				
7	DATUM SHIFT	Page 62			
8	MIRROR IMAGE	Page 63			
10	ROTATION	Page 64			
11	SCALING FACTOR	Page 65			
26	AXIS-SPECIFIC SCALING	Page 66			
Special Cycles					
9	DWELL TIME	Page 67			
12	PGM CALL	Page 67			
13	ORIENTED SPINDLE STOP	Page 68			

Graphic Support During Cycle Programming

Select the PGM+FIGURE screen layout!

As you create a program, the TNC provides you with graphic illustrations of the input parameters.

Calling a Cycle

The following cycles are effective as soon as they are defined:

- Cycles for coordinate transformations
- DWELL TIME cycle
- The SL cycle CONTOUR GEOMETRY
- Point patterns

All other cycles go into effect when they are called through

- CYCL CALL: effective for one block
- M99: effective for one block
- M89: effective until canceled (depends on machine parameter settings)

All machining cycles can also be called up in conjunction with point tables. For this, use the function CYCL CALL PAT (see User's Manual)

PROGRAMMING AND EDITING PITCH ?				
4 L Z+100 R0 FMAX 5 CYCL DEF 17 .0 RIGID TAPPING 6 CYCL DEF 17 .0 RIGID TAPPING 7 CYCL DEF 17 .2 DEFH -25 8 CYCL DEF 17 .3 PITCH -1 9 CYCL CALL M3 10 END PGM CYC210 MM				
RCTL. X +50.000 Y +52.500 Z +250.000 C +0.000	Т ГО М5/9			
Drilling Cycles

Drilling Cycles

PECKING (1)

- CYCL DEF: Select Cycle 1 PECKING
 - Set-up clearance: A
 - ► Total hole depth (distance from the workpiece surface to the bottom of the hole): B
 - ▶ Pecking depth: C
 - ▶ Dwell time in seconds
 - ▶ Feed rate F

If the Total hole depth is greater than or equal to the pecking depth, the tool drills the entire hole in one plunge.

6 CYCL DEF 1.0 PECKING
7 CYCL DEF 1.1 SET UP +2
8 CYCL DEF 1.2 DEPTH -15
9 CYCL DEF 1.3 PECKG +7.5
10 CYCL DEF 1.4 DWELL 1
11 CYCL DEF 1.5 F80
12 L Z+100 R0 FMAX M6
13 L X+30 Y+20 FMAX M3
14 L Z+2 FMAX M99
15 L X+80 Y+50 FMAX M99
16 L Z+100 FMAX M2

DRILLING (200)

- ▶ CYCL DEF: Select Cycle 200 DRILLING
 - ► Set-up clearance: Q200
 - Depth distance between workpiece surface and bottom of hole: Q201
 - ► Feed rate for plunging: Q206
 - ▶ Pecking depth: Q202
 - ▶ Dwell time at top: Q210
 - ▶ Surface coordinate: Q203
 - ▶ 2nd set-up clearance: Q204

The TNC automatically pre-positions the tool in the tool axis. If the depth is greater than or equal to the pecking depth, the tool drills to the depth in one plunge.

11 CYCL DEF 200 DRILLING
Q200 = 2 ;SET-UP CLEARANCE
Q201 = -15 ;DEPTH
Q206 = 250 ;FEED RATE FOR PLUNGING
Q202 = 5 ; PECKING DEPTH
Q210 = 0 ;DWELL TIME AT TOP
Q203 = +0 ;SURFACE COORDINATE
Q204 = 100 ;2ND SET-UP CLEARANCE
12 L Z+100 R0 FMAX M6
13 L X+30 Y+20 FMAX M3
14 CYCL CALL
15 L X+80 Y+50 FMAX M99
16 L Z+100 FMAX M2

Drilling Cycles

REAMING (201)

- ▶ CYCL DEF: Select Cycle 201 REAMING
 - ▶ Set-up clearance: Q200
 - Depth distance between workpiece surface and bottom of hole: Q201
 - ► Feed rate for plunging: Q206
 - dwell time at depth: Q211
 - ▶ Retraction feed rate: Q208
 - ► Surface coordinate: Q203
 - ▶ 2nd set-up clearance: Q204

The TNC automatically pre-positions the tool in the tool axis.

Z		
Q203	Q211	

11 CYCL DEF 201 REAMING
Q200 = 2 ;SET-UP CLEARANCE
Q201 = -15 ;DEPTH
Q206 = 100 ;FEED RATE FOR PLUNGING
Q211 = 0.5 ;DWELL TIME AT DEPTH
Q208 = 250 ;RETRACTION FEED RATE
Q203 = +0 ;SURFACE COORDINATE
Q204 = 100 ;2ND SET-UP CLEARANCE
12 L Z+100 R0 FMAX M6
13 L X+30 Y+20 FMAX M3
14 CYCL CALL
15 L X+80 Y+50 FMAX M99
16 L Z+100 FMAX M2

BORING (202)

Danger of collision! Choose a disengaging direction that moves the tool away from the wall of the hole.

- CYCL DEF: Select Cycle 202 BORING
 - ▶ Set-up clearance: Q200
 - Depth distance between workpiece surface and bottom of hole: Q201
 - ► Feed rate for plunging: Q206
 - ▶ Dwell time at depth: Q211
 - ▶ Retraction feed rate: Q208
 - Surface coordinate: Q203
 - ▶ 2nd set-up clearance: Q204
 - ▶ Disengaging direction (0/1/2/3/4) at bottom of hole: Q214

The TNC automatically pre-positions the tool in the tool axis.

11	CVCI.	DEF 202 BORING
		= 2 ;SET-UP CLEARANCE
	Q200	= 2 ; SEI-OP CLEARANCE
	Q201	= -15 ; DEPTH
	Q206	= 100 ; FEED RATE FOR PLUNGING
	Q211	= 0.5 ; DWELL TIME AT DEPTH
	Q208	= 250 ; RETRACTION FEED RATE
	Q203	= +0 ; SURFACE COORDINATE
	Q204	= 100 ;2ND SET-UP CLEARANCE
	Q214	= 1Di ; DISENGAGING DIRECTION
12	L Z+1	LOO RO FMAX M6
13	L X+3	30 Y+20 FMAX M3
14	CYCL	CALL
15	L X+8	30 Y+50 FMAX M99
16	L Z+1	LOO FMAX M2

Drilling Cycles

UNIVERSAL DRILLING (203)

- ▶ CYCL DEF: Select Cycle 203 UNIVERSAL DRILLING
 - ▶ Set-up clearance: Q200
 - Depth distance between workpiece surface and bottom of hole: Q201
 - ► Feed rate for plunging: Q206
 - Pecking depth: Q202
 - ▶ Dwell time at top: Q210
 - ▶ Surface coordinate: Q203
 - ▶ 2nd set-up clearance: Q204
 - Decrement after each pecking depth: Q212
 - ▶ Nr of breaks number of chip breaks before retraction: Q213
 - > min. pecking depth if a decrement has been entered: Q205
 - Dwell time at depth: Q211
 - ▶ Retraction feed rate: Q208

The TNC automatically pre-positions the tool in the tool axis. If the depth is greater than or equal to the pecking depth, the tool drills to the depth in one plunge.

COUNTERBORE BACK (204)

- ▶ CYCL DEF: Select Cycle 204 COUNTERBORE BACK
 - ▶ Set-up clearance: Q200
 - ▶ Depth of counterbore: Q249
 - ▶ Material thickness: Q250
 - ▶ Tool edge off-center distance: Q251
 - ► Tool edge height: Q252
 - ▶ Feed rate for pre-positioning: Q253
 - ▶ Feed rate for counterboring: Q254
 - ▶ Dwell time at counterbore floor: Q255
 - ► Workpiece surface coordinate: Q203
 - ▶ 2nd set-up clearance: Q204
 - Disengaging direction (0/1/2/3/4): Q214

• Danger of collision! Select the disengaging direction that

- gets the tool clear of the counterbore floor!
- Use this cycle only with a reverse boring bar!

11	CYCL	DEF 204	4 COUNTERBORE BACK
	Q200	= 2	;SET-UP CLEARANCE
	Q249	= +5	;DEPTH OF COUNTERBORE
	Q250	= 20	;MATERIAL THICKNESS
	Q251	= 3.5	;OFF-CENTER DISTANCE
	Q252	= 15	;TOOL EDGE HEIGHT
	Q253	= 750	;F PRE-POSITIONING
	Q254	= 200	;F COUNTERBORING
	Q255	= 0.5	;DWELL TIME
	Q203	= +0	;SURFACE COORDINATE
	Q204	= 50	;2ND SET-UP CLEARANCE
	Q214	= 1	;DISENGAGING DIRECTN

TAPPING with Floating Tap Holder (2)

- ▶ Insert the floating tap holder
- ► CYCL DEF: Select cycle 2 TAPPING
 - Set-up clearance: A
 - ► Total hole depth (thread length = distance between the workpiece surface and the end of the thread): B
 - Dwell time in seconds (a value between 0 and 0.5 seconds)
 - Feed rate F = Spindle speed S x thread pitch P
 - For tapping right-hand threads, actuate the spindle with M3, for left-hand threads use M4!

25 0	CYCL	DEF	2.0	TAPPING
26 0	CYCL	DEF	2.1	SET UP 3
27 (CYCL	DEF	2.2	DEPTH -20
28 0	CYCL	DEF	2.3	DWELL 0.4
29 0	CYCL	DEF	2.4	F100
30 I	L Z+1	L00 F	RO FI	MAX M6
31 I	L X+5	50 Y I	-20 H	FMAX M3
32 I	L Z+3	B FMA	X M9	99

RIGID TAPPING (17)

- Machine and TNC must be prepared by the machine tool builder to perform rigid tapping!
 - In rigid tapping, the spindle speed is synchronized with the tool axis feed rate!
- ► CYCL DEF: Select cycle 17 RIGID TAPPING
 - ▶ Set-up clearance: A
 - ► Tapping depth (distance between workpiece surface and end of thread): B
 - ▶ Pitch: C

The algebraic sign determines the direction of the thread:

- Right-hand thread: +
- Left-hand thread: -

Slots D U ന Studs, Pockets

Pockets, Studs, and Slots

POCKET MILLING (4)

This cycle requires either a center-cut end mill (ISO 1641) or pilot drilling at the pocket center!

The tool begins milling in the positive axis direction of the longer side. In square pockets it moves in the positive Y direction.

- ▶ The tool must be pre-positioned over the center of the slot with tool radius compensation R0
- ▶ CYCL DEF: Select cycle 4 POCKET MILLING
 - Set-up clearance: A
 - Milling depth (depth of the pocket): B
 - Pecking depth: C
 - ► Feed rate for pecking
 - First side length (length of the pocket, parallel to the first main axis of the working plane): D
 - Second side length (width of pocket, sign always positive): E
 - ▶ Feed rate
 - Rotation clockwise: DR– Climb milling with M3: DR+ Up-cut milling with M3: DR–

12	CYCL	DEF	4.0	POCKET MILLING
13	CYCL	DEF	4.1	SET UP2
14	CYCL	DEF	4.2	Depth-10
15	CYCL	DEF	4.3	PECKG4 F80
16	CYCL	DEF	4.4	X80
17	CYCL	DEF	4.5	¥40
18	CYCL	DEF	4.6	F100 DR+
19	L Z+1	L00 H	RO FI	1AX M6
20	L X+6	50 Y-	⊦35 I	MAX M3
21	L Z+2	2 FM2	AX MS	99

POCKET FINISHING (212)

- ▶ CYCL DEF: Select Cycle 212 POCKET FINISHING
 - ▶ Set-up clearance: Q200
 - Depth Distance between workpiece surface and bottom of hole: Q201
 - ► Feed rate for plunging: Q206
- ▶ Pecking depth: Q202
- ► Feed rate for milling: Q207
- ▶ Surface coordinate: Q203
- ▶ 2nd set-up clearance: Q204
- ► Center in 1st axis: Q216
- ▶ Center in 2nd axis: Q217
- ► First side length: Q218
- ► Second side length: Q219
- ► Corner radius: Q220
- ► Allowance in 1st axs: Q221

The TNC automatically pre-positions the tool in the tool axis and in the working plane. If the depth is greater than or equal to the pecking depth, the tool drills to the depth in one plunge.

s, Studs, and Slots

STUD FINISHING (213)

- ▶ CYCL DEF: Select Cycle 213 STUD FINISHING
 - ▶ Set-up clearance: Q200
 - Depth Distance between workpiece surface and bottom of hole: Q201
 - ► Feed rate for plunging: Q206
 - Pecking depth: Q202
 - ▶ Feed rate for milling: Q207
 - ▶ Surface coordinate: Q203
 - ▶ 2nd set-up clearance: Q204
 - Center in 1st axis: Q216
 - ► Center in 2nd axis: Q217
 - First side length: Q218
 - Second side length: Q219
 - ► Corner radius: Q220
 - Allowance in 1st axs: Q221

The TNC automatically pre-positions the tool in the tool axis and in the working plane. If the depth is greater than or equal to the pecking depth, the tool drills to the depth in one plunge.

Slots and Studs, Pockets,

CIRCULAR POCKET MILLING (5)

This cycle requires either a center-cut end mill (ISO 1641) or pilot drilling at pocket center!

- ▶ The tool must be pre-positioned over the center of the slot with tool radius compensation R0
- ► CYCL DEF: Select cycle 5
 - Set-up clearance: A
 - ▶ Milling depth (depth of the pocket): B
 - ▶ Pecking depth: C
 - ▶ Feed rate for pecking
 - Circle radius R (radius of the pocket)
 - ▶ Feed rate
 - Rotation clockwise: DR– Climb milling with M3: DR+ Up-cut milling with M3: DR–

17 CYCL DEF 5.0 CIRCULAR POCKET
18 CYCL DEF 5.1 SET UP 2
19 CYCL DEF 5.2 Depth -12
20 CYCL DEF 5.3 PECKG 6 F80
21 CYCL DEF 5.4 RADIUS 35
22 CYCL DEF 5.5 F100 DR+
23 L Z+100 R0 FMAX M6
24 L X+60 Y+50 FMAX M3
25 L Z+2 FMAX M99

CIRCULAR POCKET FINISHING (214)

▶ CYCL DEF: Select Cycle 214 CIRCULAR POCKET FINISHING

- ▶ Set-up clearance: Q200
- Depth Distance between workpiece surface and bottom of hole: Q201
- ▶ Feed rate for plunging: Q206
- Pecking depth: Q202
- ► Feed rate for milling: Q207
- Surface coordinate: Q203
- ▶ 2nd set-up clearance: Q204
- ► Center in 1st axis: Q216
- Center in 2nd axis: Q217
- ▶ Workpiece blank dia.: Q222
- Finished part dia.: Q223

The TNC automatically pre-positions the tool in the tool axis and in the working plane. If the depth is greater than or equal to the pecking depth, the tool drills to the depth in one plunge.

CIRCULAR STUD FINISHING (215)

- ▶ CYCL DEF: Select Cycle 215 CIRCULAR STUD FINISHING
 - ▶ Set-up clearance: Q200
 - depth Distance between workpiece surface and bottom of hole: Q201
 - ► Feed rate for plunging: Q206
- ▶ Pecking depth: Q202
- ▶ Feed rate for milling: Q207
- ► Surface coordinate: Q203
- ▶ 2nd set-up clearance: Q204
- ► Center in 1st axis: Q216
- ► Center in 2nd axis: Q217
- ► Workpiece blank dia.: Q222
- ▶ Finished part dia.: Q223

The TNC automatically pre-positions the tool in the tool axis and in the working plane. If the Depth is greater than or equal to the PECKING Depth, the tool drills to the Depth in one plunge.

Slots D U ന Studs, Pockets

SLOT MILLING (3)

- This cycle requires either a center-cut end mill (ISO 1641) or pilot drilling at the starting point!
- The cutter diameter must be smaller than the slot width and larger than half the slot width!
- ▶ The tool must be pre-positioned over the midpoint of the slot and offset by the tool radius with tool radius compensation at R0
- ▶ CYCL DEF: Select cycle 3 SLOT MILLING
 - Safety clearance: A
 - Milling depth (depth of the slot): B
 - ▶ Pecking depth: C
 - ▶ Feed rate for pecking (traverse velocity for plunging)
 - First side length? (length of the slot): D The algebraic sign determines the first cutting direction
 - Second side length? (width of the slot): E
 - ▶ Feed rate (for milling)

10 TOOL DEF 1 L+0 R+6
11 TOOL CALL 1 Z S1500
12 CYCL DEF 3.0 SLOT MILLING
13 CYCL DEF 3.1 SET UP 2
14 CYCL DEF 3.2 Depth -15
15 CYCL DEF 3.3 PECKG 5 F80
16 CYCL DEF 3.4 X50
17 CYCL DEF 3.5 Y15
18 CYCL DEF 3.6 F120
19 L Z+100 R0 FMAX M6
20 L X+16 Y+25 R0 FMAX M3
21 L Z+2 M99

SLOT WITH RECIPROCATING PLUNGE-CUT (210)

The cutter diameter must be no larger than the width of the slot, and no smaller than one third!

- ▶ CYCL DEF: Select Cycle 210 SLOT RECIP. PLNG
 - ▶ Set-up clearance: Q200
 - Depth Distance between workpiece surface and bottom of hole: Q201
 - ► Feed rate for milling: Q207
 - ▶ Pecking depth: Q202
 - Machining operation (0/1/2) 0 = roughing and finishing, 1 = roughing only, 2 = finishing only: Q215
 - ▶ Surface coordinate: Q203
 - ▶ 2nd set-up clearance: Q204
 - ► Center in 1st axis: Q216
 - ▶ Center in 2nd axis: Q217
 - ► First side length: Q218
 - ► Second side length: Q219
 - ▶ Angle of rotation (angle by with the slot is rotated): Q224

The TNC automatically pre-positions the tool in the tool axis and in the working plane. During roughing the tool plunges obliquely into the metal in a back-and-forth motion between the ends of the slot. Pilot drilling is therefore unnecessary.

Pockets, Studs, and Slots

CIRCULAR SLOT with reciprocating plunge (211)

The cutter diameter must be no larger than the width of the slot, and no smaller than one third!

- ▶ CYCL DEF: Select Cycle 211 CIRCULAR SLOT
 - ▶ Set-up clearance: Q200
 - Depth Distance between workpiece surface and bottom of hole: Q201
 - ► Feed rate for milling: Q207
 - ▶ Pecking depth: Q202
 - ► Machining operation (0/1/2) 0 = roughing and finishing, 1 = roughing only, 2 = finishing only: Q215
 - ▶ Surface coordinate: Q203
 - ▶ 2nd set-up clearance: Q204
 - Center in 1st axis: Q216
 - ▶ Center in 2nd axis: Q217
 - ▶ Pitch circle dia.: Q244
 - Second side length: Q219
 - ▶ Starting angle of the slot: Q245
 - Angular length of the slot: Q248

The TNC automatically pre-positions the tool in the tool axis and in the working plane. During roughing the tool plunges obliquely into the metal in a back-and-forth helical motion between the ends of the slot. Pilot drilling is therefore unnecessary.

Point Patterns

CIRCULAR PATTERN (220)

- ▶ CYCL DEF: Select Cycle 220 CIRCULAR PATTERN
 - Center in 1st axis: Q216
 - Center in 2nd axis: Q217
 - ► Angle of rotation: Q244
- ▶ Starting angle: Q245
- ▶ Stopping angle: Q246
- ▶ Stepping angle: Q247
- ▶ Nr or repetitions: Q241
- ► Set-up clearance: Q200
- ► Surface coordinate: Q203
- ▶ 2nd set-up clearance: Q204
- Cycle 220 POLAR PATTERN is effective immediately upon definition!
 - Cycle 220 automatically calls the last defined fixed cycle!
 - Cycle 220 can be combined with Cycles 1, 2, 3, 4, 5, 17, 200, 201, 202, 203, 204, 212, 213, 214, 215
 - In combined cycles, the SET-UP CLEARANCE, SURFACE COORDINATE and 2ND SET-UP CLEARANCE are always taken from Cycle 220!

The TNC automatically pre-positions the tool in the tool axis and in the working plane.

LINEAR PATTERN (221)

- CYCL DEF: Select Cycle 221 LINEAR PATTERN
 - Starting pnt 1st axis: Q225
 - Starting pnt 2nd axis: Q226
 - ▶ Spacing in 1st axis: Q237
 - Spacing in 2nd axis: Q238
 - Number of columns: Q242
 - ▶ Number of lines: Q243
 - ► Angle of rotation: Q224
 - ▶ Set-up clearance: Q200
 - Surface coordinate: Q203
 - ▶ 2nd set-up clearance: Q204
 - Cycle 221 LINEAR PATTERN is effective immediately upon definition!
 - Cycle 221 automatically calls the last defined fixed cycle!
 - Cycle 221 can be combined with Cycles 1, 2, 3, 4, 5, 17, 200, 201, 202, 203, 204, 212, 213, 214, 215
 - In combined cycles, the SET-UP CLEARANCE, SURFACE COORDINATE and 2ND SET-UP CLEARANCE are always taken from Cycle 221!

The TNC automatically pre-positions the tool in the tool axis and in the working plane.

SL Cycles

General Information

SL cycles are useful when you wish to machine a contour consisting of several subcontours (up to 12 islands or pockets).

The subcontours are defined in subprograms.

When working with subcontours, always remember:

- For a pocket the tool machines an inside contour, for an island it is an outside contour!
- Tool approach and departure as well as infeed in the tool axis cannot be programmed in SL cycles!
- Each contour listed in Cycle 14 CONTOUR GEOMETRY must be a closed contour!
- There is a limit to the amount of memory an SL cycle can occupy! A maximum of 128 straight line blocks, for example, can be programmed in an SL cycle.

따

Make a graphic test run before actually machining a part. That way you can be sure that you defined the contour correctly!

|--|

SL Cycles

CONTOUR GEOMETRY (14)

In Cycle 14 CONTOUR GEOMETRY you list the subprograms that you wish to superimpose to make a complete closed contour.

CYCL DEF: Select Cycle 14 CONTOUR GEOMETRY

Label numbers for contour: List the LABEL numbers of the subprograms that you wish to superimpose to make a complete closed contour.

ᇞ

Cycle 14 CONTOUR GEOMETRY is effective immediately upon definition!

4 CYCL DEF 14.0 CONTOUR GEOM
5 CYCL DEF 14.1 CONTOUR LABEL 1/2/3
•••
36 L Z+200 R0 FMAX M2
37 LBL1
38 L X+0 Y+10 RR
39 L X+20 Y+10
40 CC X+50 Y+50
45 LBL0
46 LBL2
58 LBLO

 \blacktriangle A and B are pockets, C and D islands

PILOT DRILLING (15)

- CYCL DEF: Select cycle 15 PILOT DRILLING
 - Set-up clearance
 - Total hole depth Distance from the top surface of the workpiece to the hole bottom
 - Pecking depth
 - Finishing allowance D
 - ▶ Feed rate F

ROUGH-OUT (6)

There are two steps in the rough-out cycle:

- 1. Milling a channel around subcontours
- 2. Area clearance
- CYCL DEF: Select Cycle 6 ROUGH-OUT
 - Set-up clearance: A
 - ► Milling depth: B
 - Pecking depth: C
 - ► Feed rate for pecking
 - Finishing allowance: D
 - ▶ Rough-out angle
 - Feed rate F

SL Cycles

CONTOUR MILLING (16)

Finishing the individual subcontours.

- CYCL DEF: Select Cycle 16 CONTOUR MILLING
 - ▶ Set-up clearance: A
 - ► Milling depth: B
 - ▶ Pecking depth: C
 - ▶ Feed rate for pecking
 - ▶ Rotation clockwise: DR-
 - Climb milling for pocket and island: -
 - Up-cut milling for pocket and island: +
 - ▶ Feed rate F

Multipass Milling

MULTIPASS MILLING (230)

From the current position, the TNC positions the tool automatically at the starting point of the first machining operation, first in the working plane and then in the tool axis. Pre-position the tool in such a way that there is no danger of collision with the workpiece or fixtures.

CYCL DEF: Select Cycle 230 MULTIPASS MILLING

- ▶ Starting point in 1st axis: Q225
- Starting point in 2nd axis: Q226
- ▶ Starting point in 3rd axis: Q227
- ► First side lengthIRST: Q218
- ▶ Second side length: Q219
- ▶ Number of cuts: Q240
- ► Feed rate for plunging: Q206
- ► Feed rate for milling: Q207
- ▶ Stepover feed rate: Q209
- ▶ Set-up clearance: Q200

Multipass Milling

RULED SURFACE (231)

Starting from the initial position, the TNC positions the tool at the starting point (point 1), first in the working plane and then in the tool axis.

- ▶ CYCL DEF: Select Cycle 231 RULED SURFACE
 - ▶ Starting point in 1st axis: Q225
 - Starting point in 2nd axis: Q226
 - Starting point in 3rd axis: Q227
 - 2nd point in 1st axis: Q228
 - 2nd point in 2nd axis: Q229
 - > 2nd point in 3rd axis: Q230
 - ▶ 3rd point in 1st axis: Q231
 - ▶ 3rd point in 2nd axis: Q232
 - ▶ 3rd point in 3rd axis: Q233
 - ▶ 4th point in 1st axis: Q234
 - ▶ 4th point in 2nd axis: Q235
 - ▶ 4th point in 3rd axis: Q236
 - Number of cuts: Q240
 - ▶ Feed rate for milling: Q207

Cycles for Coordinate Transformation

Cycles for coordinate transformation permit contours to be

Shifted	Cycle 7 DATUM SHIFT
Mirrored	Cycle 8 MIRROR IMAGE
 Rotated (in the plane) 	Cycle 10 ROTATION
 Enlarged or reduced 	Cycle 11 SCALING

Cycles for coordinate transformation are effective upon definition until they are reset or redefined. The original contour should be defined in a subprogram. Input values can be both absolute and incremental.

DATUM SHIFT (7)

- CYCL DEF: Select Cycle 7 DATUM SHIFT
 - Enter the coordinates of the new datum or the number of the datum from the datum table.

To cancel a datum shift: Re-enter the cycle definition with the input value 0. $\label{eq:constraint}$

9 CALL L	BL1			Call the part subprogram
10 CYCL	DEF 7.0	DATUM	SHIFT	
11 CYCL	DEF 7.1	X+60		
12 CYCL	DEF 7.2	Y+40		
13 CALL	LBL1			Call the part subprogram

When combining transformations, the datum shift must be programmed before the other transformations!

MIRROR IMAGE (8)

μ

CYCL DEF: Select Cycle 8 MIRROR IMAGE
 Enter the mirror image axis: Either X, Y, or both

To reset the mirror image, re-enter the cycle definition with NO ENT.

15	CALL	LBL1	L			
16	CYCL	DEF	7.0	DATUM	SHIFT	
17	CYCL	DEF	7.1	X+60		
18	CYCL	DEF	7.2	Y+40		
19	CYCL	DEF	8.0	MIRROR	IMAGE	
20	CYCL	DEF	8.1	Y		
21	CALT.	T.BT.1				

- The tool axis cannot be mirrored!
- The cycle always mirrors the original contour (in this example in subprogram LBL1)!

Rotation (10)

- ► CYCL DEF: Select Cycle 10 ROTATION

 - Enter the rotation angle:
 Input range -360° to +360°
 - Reference axes for the rotation angle

Working	plane	Reference	axis	and	0°	direction
X/Y		Х				
Y/Z		Y				
Z/X		Z				

To reset a ROTATION, re-enter the cycle with the rotation angle 0.

12	CALL	LBL1
13	CYCL	DEF 7.0 DATUM SHIFT
14	CYCL	DEF 7.1 X+60
15	CYCL	DEF 7.2 Y+40
16	CYCL	DEF 10.0 ROTATION
17	CYCL	DEF 10.1 ROT+35
18	CALL	LBL1

Cycles

Transformations

SCALING (11)

- ► CYCL DEF: Select Cycle 11 SCALING
 - ▶ Enter the scaling factor (SCL):
 - Input range 0.000001 to 99.999999: To reduce the contour ... SCL < 1 To enlarge the contour ... SCL > 1

To cancel the SCALING, re-enter the cycle definition with SCL1.

11	CALL	LBL1
12	CYCL	DEF 7.0 DATUM SHIFT
13	CYCL	DEF 7.1 X+60
14	CYCL	DEF 7.2 Y+40
15	CYCL	DEF 11.0 SCALING
16	CYCL	DEF 11.1 SCL 0.75
17	CALL	LBL1

SCALING can be effective in the working plane only or in all three main axes (depending on machine parameter 7410)!

AXIS-SPECIFIC SCALING (26)

- ▶ CYCL DEF: Select Cycle 20 AXIS-SPEC. SCALING
 - ► AXIS and FACTOR: Coordinate axes and factors for extending or compressing contour dimensions
 - CENTERPOINT COORD. OF EXTENSION: Center of the extension or compression

To cancel the AXIS-SPEC. SCALING, re-enter the cycle definition assigning the factor 1 to the affected axes.

Coordinate axes sharing coordinates for arcs must be extended or compressed by the same scaling factor!

25	CALL	LBL1	L							
26	avar	ססת	26 0	7 7	V D T V	זסי		SCALING		
20		DEF	20.0	- A1	VTD-!	DPI	5C. i	PUTTING		
27	avar		26 1	v	1 /	37	0 6	CCX+15	aav . 20	
41	LILL	DEF	20.L		1.4	_ I	0.0	CCT+T2	UUI+20	
20	CATT	T D T 1	1							
28	CALL	- ЦВЦ-								

Special-Cycles

Special Cycles

DWELL TIME (9)

The program run is interrupted for the duration of the DWELL TIME.

CYCL DEF: Select cycle 9 DWELL TIME
 Enter the dwell time in seconds.

48 CYCL DEF 9.0 DWELL TIME 49 CYCL DEF 9.1 DWELL 0.5

PGM CALL (12)

CYCL DEF: Select cycle 12 PGM CALL
 Enter the name of the program that you wish to call

mL	
WY7	

Cycle 12 PGM CALL must be called to become active!

7 CYCL DEF 12.0 PGM CALL 8 CYCL DEF 12.1 LOT31

9 L X+37.5 Y-12 R0 FMAX M99

Spindle ORIENTATION

- ► CYCL DEF: Select cycle 13 ORIENTATION
 - Enter the orientation angle referenced to the angle reference axis of the working plane:
 - Input range 0 to 360°
 - Input resolution 0.1°
- ► Call the cycle with M19
 - The machine and TNC must be prepared for spindle ORIENTATION by the machine tool builder!

12 CYCL DEF 13.0 ORIENTATION

13 CYCL DEF 13.1 ANGLE 90

Digitizing 3D Surfaces

	r T
T	

The machine and TNC must be prepared for digitizing by the machine tool builder!

The TNC features the following cycles for digitizing with a measuring touch probe:

- Fix the scanning range: TCH PROBE 5 RANGE
- Digitize in reciprocating lines: TCH PROBE 6 MEANDER
- Digitize level by level: TCH PROBE 7 CONTOUR LINES

The digitizing cycles can be programmed only in plain language dialog. They can be programmed for the main axes X, Y and Z.

- Digitizing is not possible while coordinate transformations or a basic rotation is active!
 - Digitizing cycles need not be called. They are effective immediately upon definition!

Selecting digitizing cycles

Call an overview of touch probe functions

Select a digitizing cycle via soft key

Digitizing Cycle RANGE (5)

- Define the data transmission interface
- ▶ Touch probe: Select Cycle 5 RANGE
 - PGM name for digitized data: Enter a name for the NC program in which the digitized data should be stored.
 - ▶ TCH PROBE axis: Enter the axis of the touch probe
 - MIN. point range
 - MAX. point range
 - \blacktriangleright Clearance height: Height at which the stylus cannot collide with the model surface: $Z_{\rm s}$
- 5 TCH PROBE 5.0 RANGE
- 6 TCH PROBE 5.1 PGM NAME: DIGI1
- 7 TCH PROBE 5.2 Z X+0 Y+0 Z+0
- 8 TCH PROBE 5.3 X+100 Y+100 Z+20
- 9 TCH PROBE 5.4 HEIGHT: +100

Digitizing Cycle 6: MEANDER

A 3D surface can be scanned in a reciprocating line-by-line process in Cycle 6 MEANDER.

- ▶ Define the RANGE with Cycle 5
- ▶ TOUCH PROBE: Select Cycle 6 MEANDER
 - Line direction: Coordinate axis in whose positive direction the probe moves after touching the first contour point
 - Limit in normal lines direction (travel): Distance by which the probe lifts off from the model surface after each deflection
 - Line spacing: Distance moved forward to start the next line
 - MAX. probe point interval
 - The line spacing and MAX. probe point interval cannot exceed 5 mm.
 - Set a line direction that is as perpendicular as possible to surface inclinations.

7 TCH PROBE 6.0 MEANDER

8 TCH PROBE 6.1 DIRECTN X

9 TCH PROBE 6.2 TRAVEL: 0.5 L.SPAC: 0.2 PP.INT:0.8

P: PP.INT = Probe point interval L: L.SPAC = Line spacing

Digitizing Cycle 7: CONTOUR LINES

Cycle 7 CONTOUR LINES enables you to digitize a 3D surface level by level.

▶ Define Cycle 5 RANGE

► TOUCH PROBE: Select Cycle 7 CONTOUR LINES

- Time limit: If the touch probe has not orbited the model and returned to the first touch point within this time, the TNC will terminate the cycle. If you do not want a time limit, enter 0.
- Starting point: Coordinates of the starting position
- Axis and direction of approach: Coordinate axis and direction in which the probe approaches the model
- Starting probe axis and direction: Coordinate axis and direction in which the probe begins scanning the model
- Limit in normal lines direction (travel): Distance by which the probe lifts off from the model surface after each deflection
- Line spacing and direction: Distance moved upward to start the next contour line
- MAX. probe point interval

The line spacing and MAX. probe point interval cannot exceed 5 mm.

10	TCH	PROBE	7.0	CONTOUR LINES	
11	TCH	PROBE	7.1	TIME:200 X+50	Y+0
10	TOU	שםסםם	7 2	OPDED V. /V.	

12 TCH PROBE 7.2 ORDER Y+/X+ 13 TCH PROBE 7.3 TRAVEL 0.5 L.SPAC+1 PP.INT 0.2

Graphics and Status Displays

See "Test run and program run, graphics"

Defining the Workpiece in the Graphic Window

▶ In the open program, press the BLK FORM soft key

BLK FORM Spindle axisMIN and MAX POINT

The following is a selection of frequently needed functions.

Interactive Programming Graphics

따

Select the PGM+GRAPHICS screen layout!

The TNC can generate a two-dimensional graphic of the contour while you are programming it:

- Automatic graphic generation during programming
- Manually start graphic generation
- Generate interactive graphics blockwise

PROGRAMMING AND EL 7 L 2-10 R0 FMAX 8 L X+50 Y+75 RL F250 9 FC DR+ R25 CCX+50 CCY+50 10 FCT DR- R14 11 FCT DR- R88 CCX+50 CCY+0 12 END PGM FK3 MM	
NOML. X +50.000 Y +52.500 Z +250.000 C +0.000	Т Г 0 М5/9
SHOW SELECT END SOLUTION SOLUTION SELECT	START SINGLE

DDOODONNTHO OND EDITINO

Test Graphics

Select the GRAPHICS or PGM+GRAPHICS screen layout!

In the test run mode the TNC can graphically simulate the machining process. The following display types are available via soft key:

ħ

▶ Plan view

8°	8			1	
	RESET BLK FORM	STOP AT N	START	START SINGLE	04:11:58 RESET * START

Status Displays

шŢ
W

Select a screen layout showing the status information that you need.

In the program run modes a window in the lower part of the screen shows information on

- Tool position
- Feed rate
- Active M functions

Further status information is available via soft key for display in an additional window:

► Tool positions

▶ Program information

► Tool data

- ► Coordinate transformations
- ▶ Tool measurement

1 BLK FORM 0.1 Z X+0 Y+0 Z-40 2 BLK FORM 0.2 X+100 Y+100 Z+0 3 TOOL CALL 1 Z S4000 DL+0.05 DR+0.04	z Л	Ź	R	-17.350 +3.000
4 L Z+100 R0 FMAX 5 L X-20 Y+50 R0 FMAX 6 L Z-2 R0 FMAX M3	TAB	DL +0.050 +0.050	DR +0.050 +0.040	
7 CYCL DEF 7 .0 NULLPUNKT 8 CYCL DEF 7 .1 X+25.5 9 CYCL DEF 7 .2 Y+10	0	CUR.TIME 0:05	TIME1 1:40	TIME2 1:30
10 CYCL DEF 7 .3 Z+12 11 CYCL DEF 7 .4 C-90		CALL 11 S ➡━━━━━━	CHRUPPER	
NOML· X +74.500 Y +90.000				
Y +90.000 Z +255.300 C +90.000	T 11	1 Z	мг	/0
			<u></u>	
	START	STOP		RESET

ISO-Programming

Programming Tool Movements with Cartesian Coordinates

- G00 Linear motion in rapid traverse
- G01 Linear motion
- G02 Circular motion, clockwise
- G03 Circular motion, counterclockwise
- G05 Circular motion without directional data
- G06 Circular movement with tangential contour connection
- G07* Paraxial positioning block

Programming Tool Movements with Polar Coordinates

- G10 Linear motion in rapid traverse
- G11 Linear motion
- G12 Circular motion, clockwise
- G13 Circular motion, counterclockwise
- G15 Circular motion without directional data
- G16 Circular movement with tangential contour connection

Drilling Cycles

- G83 Pecking
- G200 Drilling
- G201 Reaming
- G202 Boring
- G203 Universal boring
- G204 Counterbore back
- G84 Tapping
- G85 Rigid tapping (controlled spindle)

Pockets, Studs and Slots

- G75 Rectangular pocket milling, clockwise machining direction
- G76 Rectangular pocket milling, counterclockwise machining direction
- G212 Pocket milling
- G213 Stud milling
- G77 Circular pocket milling, clockwise machining direction
- G78 Circular pocket milling, counterclockwise machining direction
- G214 Circular pocket finishing
- G215 Circular stud finishing
- G74 Slot milling
- G210 Slot milling with reciprocating plunge
- G211 Circular slot

76

Point Patterns

- G220 Circular point pattern
- G221 Linear point pattern

SL Cycles, Group I

- G37 List of contour subprograms
- G56 Pilot drilling
- G57 Rough-out
- G58 Contour milling, clockwise
- G 59 Contour milling, counterclockwise

Multipass milling

G230 Multipass milling

G231 Ruled surface

Cycles for Coordinate Transformation

- G 53 Datum shift from datum tables
- G 54 Entering datum shift directly
- G28 Mirror image
- G73 Rotating the coordinate system
- G72 Scaling factor: enlarging/reducing contours

Special Cycles

- G04* Dwell time
- G36 Oriented spindle stop
- G39 Designating a program as a cycle
- G79* Cycle call

Defining the Working Plane

- G17 X/Y working plane, tool axis Z
- G18 Z/X working plane, tool axis Y
- G19 Y/Z working plane, tool axis X
- G20 Fourth axis is tool axis

Chamfer, Rounding, Approach/Departure

- G24* Chamfer with side length R
- G25* Corner rounding with radius R
- G26* Tangential contour approach on an arc with radius R
- G 27 * Tangential contour departure on an arc with radius R

Tool Definition

G99* Tool definition in the program with length L and radius R

Tool Radius Compensation

- G40 No radius compensation
- G41 Radius compensation to the left of the contour
- G42 Radius compensation to the right of the contour
- G43 Paraxial radius compensation: the path is lengthened
- G44 Paraxial radius compensation: the path is shortened

Dimensional Data

- G90 Absolute dimensions
- G91 Incremental (chain) dimensions

Unit of Measure (at Beginning of Program)

- G70 Inches
- G71 Millimeters

Blank Form Definition for Graphics

- G30 Setting the working plane, MIN point coordinates
- G31 Dimensional data (with G90, G91), coordinates of the MAX point

Other G functions

- G29 Define last nominal position value as pole
- G38 Stopping the program run
- G51* Calling the next tool (only with central tool file)
- G55* Automatic measurement with the 3D touch probe
- G98* Setting a label number

Q Parameter Functions

- D00 Assign a value directly
- D01 Calculate and assign the sum of two values
- D02 Calculate and assign the difference of two values
- D03 Calculate and assign the product of two values
- D04 Calculate and assign the quotient of two values
- D05 Calculate and assign the root from a value
- D06 Calculate and assign the sine of an angle in degrees
- D07 Calculate and assign the cosine of an angle in degrees
- D08 Calculate and assign the square root of the sum of two squares (Pythagorean theorem)
- D13 Find and assign an angle from the arc tangent of two sides or from the sine and cosine of an angle
- D09 If equal, jump to the given label
- D10 If not equal, jump to the given label
- D11 If greater than, jump to the given label
- D12 If less than, jump to the given label
- D14 Output text to screen
- D15 Output text or parameter contents through the data interface
- D18 Read system data
- D19 Transfer numerical values or Q parameters to the PLC

Addresses

%	Program beginning	R	Polar coordinate radius with G10/G11/G12/
А	Swivelling axis around X		G13/G15/G16/
В	Swivelling axis around Y	R	Circle radius with G02/G03/G05
С	Rotary axis around Z	R	Corner radius with G25/G26/G27
D	Define Q-parameter functions	R	Chamfer length with G24
Е	Tolerance for rounding arc with M112	R	Tool radius with G99
F	Feed rate in mm/min in positioning blocks	S	Spindle speed in rpm
F	Dwell time in seconds with G04	S	Angle for spindle orientation with G36
F	Scaling factor with G72	Т	Tool number with G99
G	G functions (see list of G functions)	Т	Tool call
Н	Polar coordinate angle	Т	Call next tool with G51
Н	Angle of rotation with G73	U	Parallel axis to X
I	X coordinate of the circle center or pole	V	Parallel axis to Y
J	Y coordinate of the circle center or pole	W	Parallel axis to Z
Κ	Z coordinate of the circle center or pole	Х	X axis
L	Label number with G98	Y	Y axis
L	Jump to a label number	Z	Z axis
L	Tool length with G99	*	Character for end of block
Μ	Miscellaneous function		
Ν	Block number		
Ρ	Cycle parameter for fixed cycles		
Ρ	Value or Q parameter with Q parameter definitions		

Q Variable Q parameter

Miscellaneous Functions

Miscellaneous Functions M

M00	Stop program run/Stop spindle/Coolant off
M01	Optional program stop
M02	Stop program run/Stop spindle/Coolant off Jump back to block 1/Clear status display (depending on machine parameters)
M03	Spindle on clockwise
M04	Spindle on counterclockwise
M05	Stop spindle
M06	Tool change/Stop program run (depending on machine parameters) Stop spindle
M08	Coolant on
M09	Coolant off
M13	Spindle on clockwise/Coolant on
M14	Spindle on counterclockwise/Coolant on
M30	Same function as M02
M89	Vacant miscellaneous function or Cycle call, modally effective (depending on machine parameters)
M90	Constant contour speed at corners (effective only in lag mode)
M91	Within the positioning block: Coordinates are referenced to the machine datum
M92	Within the positioning block: The coordinates are referenced to a position defined by the machine tool builder
M93	Reserved
M94	Reduce rotary axis display to a value below 360°
M97	Machine small contour steps
M98	Suspend tool path compensation

M99	Cycle call, effective blockwise
M101	Automatic tool change after tool lifetime expires
M102	Reset M101
M103	Reduce the feed rate during plunging to factor F
M109	Constant contouring speed of tool cutting edge
	on arcs (increasing and decreasing the feed rate)
M110	Constant contouring speed of tool cutting edge
	on arcs (only decreasing the feed rate)
M111	Reset M109/M110
M112	Insert a rounding arc between two lines,
	with tolerance and limit angle
M113	Reset M112
M120	LOOK AHEAD: Calculate the radius-
	compensated tool path ahead of time
M124	Ignore points when calculating the rounding arc
	with M112
M126	Permit zero crossover on 360° rotary axes

M127 Cancel M126

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

www.heidenhain.de

HEIDENHAIN (G.B.) Limited

200 London Road, Burgess Hill West Sussex RH15 9RD, Great Britain (01444) 247711 (01444) 870024