
Design++ 4.2
Release Notes

for Windows NT

We are pleased to announce the release of Design++ 4.2 for Windows NT.
This is the second major release of Design++ for the PC platform after the
highly successfully release of Design++ 4.1.

Highlights
Design++ 4.2 includes several new modules and enhancements, the most
important ones being the following:

COM/API

Design++ Component Object Model Application Programming Interface
(COM/API) is a library of Windows COM functions that let any COM com-
pliant application, like Visual Basic, communicate with Design++. The
emphasis is in supporting Visual Basic as a GUI development tool for
Design++.

AutoCAD 2000 Link

New ObjectARX-based AutoCAD link supports both AutoCAD release 14
and 2000. The old ADS-based AutoCAD Link is still supported with
AutoCAD release 13 & 14.

MicroStation/J Link

MicroStation Link supports now also MicroStation/J. As a result, Design++
now integrates with MicroStation 95, MicroStation SE, and MicroStation/J.

Dynamic Configuration Enhancements

▲ Dynamic Configurator (DDC) has been optimized to reduce trashing.
Also, model creation based on product structure files is now compatible
with earlier Design++ versions.

▲ Intelligent Change Manager (ICM) and Execution Order Controller
(EOC) have been optimized significantly. They also have more robust
exception (cycle) and error handling.
 Version 4.2

Page 2 Design++ 4.2 Release Notes for Windows NT – Highlights

any
st
l area

evalu-

 and

r
.

ll

ery

n

▲ Design rule compilation has been upgraded to initiate proper change propaga-
tions in all situations.

▲ Substructure attribute is now inherited automatically to all library classes of
type assemblies as they most likely will need it. This simplifies the use of the
dynamic configuration capabilities.

Windows Mode in Command Interpreter and Design Rule Editor

Emacs-based Command Interpreter and Design Rule Editor come with a new Win-
dows-like command set including standard Open, Close, and Print dialogs.

Multiprocessing Support Enhanced

The new native NT threads-based multiprocessing implementation fixes the infa-
mous “sleeping” problem, where Design++ occasionally failed to detect client
requests.

Network Licensing

Licensing mechanism has been extended to support network licensing. Now
workstation capable of running Design++ as a stand-alone installation can also ho
a license server installation. Any client workstation connected to the same loca
network as the server will be able to run Design++.

Due to the network licensing support, SiteKeys issued for Design++ 4.1 need to be
renewed. To smooth the transition each workstation is granted a new 10-day
ation license for Design++ 4.2 regardless of their prior license status.

Automated Installation

Automated installation program has been upgraded to support license server
client installations. It also supports installation upgrades.

License Manager Dialog

To facilitate the handling of licensing issues, Design++ has a new License Manage
that displays the current license status and allows on-the-fly license upgrades

New Documentation - Available Online

Design++ User’s Manual has gone through a complete overhaul. In addition, a
Design++ Function Manuals have been merged into a new Design++ Lisp/API Man-
ual.

Starting with this release all manuals are available in PDF format on the deliv
CD.

Year 2000 Compliant

The representation of the year in Design++ knowledge base time-stamps has bee
extended to use four digits. After this modification and related testing, Design
Power believes that Design++ will conform with the year 2000 requirements.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Design++ Functions (Lisp/API) Page 3
Design++ Functions (Lisp/API)
▲ Design++ Function
DPP-RELATED-TO

modified to handle correctly relations and classes with identical names.

▲ Design++ Function
DPP-COLINEAR-P

fixed. Also, indirectly affected are the following other Design++ Functions.

DPP-POINT-WITHIN-SEGMENT-P

DPP-DROPPED-POINT-WITHIN-SEGMENT-P

DPP-DROP-POINT-ON-LINE

DPP-DROP-POINT-ON-LINE-SEGMENT

DPP-POINT-LINE-ORTHO-DISTANCE

DPP-POINT-TO-LINE-DISTANCE

DPP-PERPENDICULAR-TO-PLANE

▲ Design++ Function DPP-POINT-TO-LINE-DISTANCE fixed to handle correctly
the two special cases: coincident line points and colinear points. Fixed also to
make sure that the calculation remains within real numbers (and does not fall
into complex numbers) when dealing with near-colinear points.

DPP-POINT-TO-LINE-DISTANCE (p lp1 lp2 &optional (ndecimals 5))

PURPOSE:
Returns the shortest distance between a 3D point and a 3D line

ARGUMENTS:
 p: 3D point (list)
 lp1: 3D end-point of a line (list)
 lp2: The other 3D end-point of a line (list)
 ndecimals (optional):
 Number of decimals in the result, default = 5 (integer)
RETURNS:

Point-line distance. There are two special cases. If the two
line points are coincident, point-point distance is returned.
If all three points are colinear, 0.0 is returned.

EXAMPLE:
(dpp-point-to-line-distance ’(1 0 0) ’(0 0 0) ’(1 1 0))
==> 0.70711
(dpp-point-to-line-distance ’(1 0 0) ’(0 0 0) ’(0 0 0))
==> 1.0 ;Coincident line points
(dpp-point-to-line-distance ’(1 0 0) ’(0 0 0) ’(10 0 0))
==> 0.0 ;Colinear points
 Version 4.2

Page 4 Design++ 4.2 Release Notes for Windows NT – Design++ Functions (Lisp/API)

am-
▲ A new structure specification keyword ‘:list’ added for Design++ Functions
DPP-SHOW-GEOMETRY and DPP-REMOVE-GEOMETRY. The new keyword allows a
list of components to be given as the first argument.

DPP-SHOW-GEOMETRY (&optional (component (dpp-model-root))

 (structure :component))

PURPOSE:
Displays component/component-and-substructure/substructure/
leaves geometry in CAD

ARGUMENTS:
component (optional):

Component whose geometry is to be calculated
(frame-or-ref) default = (dpp-model-root)

 structure (optional):
:component, :component-and-substructure,
:substructure, :leaves, or :list

 default = :substructure
RETURNS: NIL
EXAMPLE:

DPP-REMOVE-GEOMETRY (&optional (component (dpp-model-root))

(structure :component-and-substructure))

PURPOSE:
 Removes component’s and its substructure’s geometry from CAD

ARGUMENTS:
 component:

 Component whose geometry is to be removed
(frame-or-ref)

 Default is model’s root component.
 structure (optional):
 :component, :component-and-substructure,

:substructure, :leaves, or :list
default = :substructure

RETURNS: NIL
EXAMPLE:

▲ Design++ Function
DPP-COPY-DIRECTORY

fixed to handle directory copying from one disk partition to another. For ex
ple, the following operation was not handled correctly

(dpp-copy-directory “H:/test/” “C:/temp/”)

▲ Design++ Function DPP-MAKE-DIRECTORY enhanced to create recursively all the
directories denoted by its directory-pathname argument.

DPP-MAKE-DIRECTORY (directory-pathname)

PURPOSE:
Creates recursively all the directories denoted by
DIRECTORY-PATHNAME. Does not allow existing directories to
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Design++ Functions (Lisp/API) Page 5
be overwritten.
ARGUMENTS:

directory-pathname (string or pathname):
Directory structure to be created.

RETURNS:
Returns DIRECTORY-PATHNAME if any directories were created,
otherwise NIL.

EXAMPLE:
(dpp-make-directory "C:/temp/my/very/own/directory/struc-

ture/")
==> "C:/temp/my/very/own/directory/structure/"

▲ The capability of saving custom Design++ images has been reintroduced for the
Runtime version. Image are saved with the new Design++ Function DPP-
DISKSAVE-D++.

DPP-DISKSAVE-D++ (path restart-function)

PURPOSE:
Saves the current Design++ session into a re-startable
custom image.
Disksaving a custom application images is supported only
with the Design++ Runtime version. Thus, an application
should be developed and and compiled with the Development
version and then loaded with the Runtime version to be
disksaved into an image.
The easiest way to test your custom image (without
the Emacs interface) is to create a new copy of your
Design++ runtime startup script, e.g. d++:bin;d++.bat,
and replace the only occurrence of d++-run.dxl with
the name of your new image.

ARGUMENTS:
path (optional):

 File where the custom image is to be saved. Default
path on Windows NT is "d++:bin;win32-i86;d++.dxl"
and on Unix
"d++:bin;<object-directory-name>;d++.image"

restart-function (optional):
 Function to be called when the custom image is started.

The restart function should perform all application
initializations, like starting the application’s GUI,
before the control is given to the user.
Note that unlike with Design++ 4.1, the restart function
should NOT call the standard Design++ restart function.
Defaults to NIL.

RETURNS:
Nothing if successful, NIL otherwise. Note that it is not
recommended to continue to use the Design++ session after
a new image has been saved.

EXAMPLE:
(dpp-disksave-d++

(dpp-translate-logical-pathname
"d++:bin;win32-i86;pbar.dxl")
#’pbar-restart-function)
 Version 4.2

Page 6 Design++ 4.2 Release Notes for Windows NT – Design++ Functions (Lisp/API)
▲ Design++ Functions DPP-GET-EXTERNAL-DATA-FILES and DPP-ATTACH-EX-
TERNALS modified NOT to filter out non-Lisp (*.lisp) files. Design++ DPP-AT-

TACH-EXTERNALS fixed also to return either T or NIL as documented.

DPP-GET-EXTERNAL-DATA-FILES ()

PURPOSE:
Returns list of external data files of the current project

ARGUMENTS:
RETURNS:

List of external data files (list of strings)
EXAMPLE:

(dpp-get-external-data-files)
==> ("eqpt-data.lisp" "pipe-data.lisp" "struct-data.lisp")

DPP-ATTACH-EXTERNALS

(&optional (model-name (dpp-get-current-model)) extarnal-files)

PURPOSE:
Attaches external files to model

ARGUMENTS:
Optional:

model-name (symbol): Model-name
extarnal-files (list of strings):

External file names in current project’s
externals directory.

RETURNS:
T if all external files processed successfully, otherwise NIL
indicating that some of the external files were not found in
the project’s externals directory.

EXAMPLE:
(dpp-attach-externals ’a-bike ’("ext.lisp" "pipe.lisp"))
==> T
(dpp-attach-externals ’a-bike)
==> T
(dpp-attach-externals ’a-bike

 ’("/tmp/temp.lisp" "pipe.lisp"))
==> NIL ;File /tmp/temp.lisp not in externals directory.

▲ A new Design++ Function (macro!) DPP-WITH-AUTO-DEBUG introduced. It eval-
uates the expressions of the body and in case of an error automatically :zooms
on the error in the Debugger. The output from the :zoom can be directed to a
file. Before exiting back to Lisp top-level, the :when-exit expression is evaluat-
ed.

DPP-WITH-AUTO-DEBUG ((&key output when-exit count) &body body)

PURPOSE:
Evaluates the expressions of the body and in case of an error
automatically :zooms on the error in the Debugger. The output
from the :zoom can be directed to a file. Before exiting back
to Lisp top-level, the :when-exit expression is evaluated.

Note that in order to improve the performance Design++ 4.2
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Design++ Functions (Lisp/API) Page 7
Runtime version does NOT save call arguments by default.
The drawback is that the amount of information available in
the :zoom output is also reduced. The saving of call arguments
can be turned on by evaluating expression
(if (dpp-getenv "DPPNOEMACS")
 (tpl:do-command "args" :save t)
 (s::emacs-do-cmd
 ;;Be sure to flush the input buffer (#\Control-C #\Control-U)
 ;;first.

 (format nil "~C:args :save t ~C"
 (code-char 190) #\return)))

in <d++>/misc/d++-startup.lisp file or with the top-level
command

D++(): :args :save t
ARGUMENTS:

Keyword:
output (pathname or stream):

Defines where the output from :zoom is to be
directed. Defaults to *standard-output*.

when-exit (symbol or function):
Function to be evaluated before exiting back
to Lisp top-level.

count (integer or T):
Integer number of frames to print when
:zooming on an error. Value T means print all
applicable frames. Defaults to 10.

body (expressions):
A set of expressions to be evaluated (an implicit
progn).

RETURNS:
Unless there is an error returns what the last body expression
returns. In case of an error returns what :when-exit
expression returns.

EXAMPLE:
(in-package :design++)

(defun div-by-zero (n)
 (/ n 0))

(defun notify-error-and-zoom-output (pathname)
 (dpp-prompt
 t (format nil "An unhandled error condition has been~

 signalled:~%~A~%~%The output from Debugger~
 Version 4.2

Page 8 Design++ 4.2 Release Notes for Windows NT – Design++ Functions (Lisp/API)

r
uc-
ance
 :zoom command has been directed to file: ~A"
 (with-open-file (stream pathname :direction :input)
 ;;Read the error condition from file.
 (read-line stream nil))
 pathname)))

(defun test0 ()
 (div-by-zero 1))

(defun test1 ()
 (dpp-with-auto-debug
 (:output "c:/temp/debugger-zoom-output"
 :when-exit #’(lambda () (notify-error-and-zoom-output

 "c:/temp/debugger-zoom-output"))
 :count 3)
 (div-by-zero 1)))

(defun test2 ()
 (dpp-with-auto-debug
 ()
 (div-by-zero 1)))

▲ Two new Design Functions DPP-ASSEMBLY and DPP-ALL-ASSEMBLIES intro-
duced. Actually, they are synonyms for existing functions DPP-PARENT and
DPP-ALL-PARENTS with identical functionality. The word ‘assembly’ is a bette
fit than ‘parent’ when referring to a component’s assembly in a product str
ture as the ‘parent’ is typically used for referring a class parent in an inherit
hierarchy.

DPP-ASSEMBLY

(component &optional class-name (member-descendants-p t))

PURPOSE: Get product structure parent of component
ARGUMENTS:

component: A model component (frame-or-ref)
class-name (optional):

The name of a library class (symbol-or-ref)
member-descendants-p (optional):

Consider all descendants or just direct instances
(T (default) or NIL)?

RETURNS: parent component
EXAMPLE:

(dpp-assembly ’mixin_vessel.S5381)
==> #<FRAME PROCESS_PLANT.S5157 A-PLANT>

Added two new optional arguments, CLASS-NAME and
MEMBER-DESCENDANTS-P.
If the new CLASS-NAME argument is given, then a component’s par-
ents are searched recursively until a parent, which is of type
class, is found.
The second new optional argument MEMBER-DESCENDANTS-P (defaults
to T) determines whether all parents that are descendants of the
class or just the direct instances of the class are considered
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Design++ Functions (Lisp/API) Page 9

u-
me
while searching for the parent.
Examples:

(dpp-assembly (dpp-get-component ’leg-end) ’table)
(dpp-assembly (dpp-get-component ’leg-end) ’parts)

DPP-ALL-ASSEMBLIES

(component &optional class-name (member-descendants-p t))

PURPOSE: Get recursively all parents of component
ARGUMENTS:

component: A model component (frame-or-ref)
class-name (optional):

The name of a library class (symbol-or-ref)
member-descendants-p (optional):

Consider all descendants or just direct instances
(T (default) or NIL)?

RETURNS: List of all parent component references
EXAMPLE:

(dpp-all-assemblies ’mixin_vessel.S5381)
==> (#<FRAME PROCESS_PLANT.S5157 A-PLANT> ...)

▲ Design++ Function DPP-VISIT-LIBRARY modified not to visit each class more
than once. The function used to follow each subclass link and, thus, visit those
classes with multiple superclasses more than once. This modification fixes also
‘Saving Rules To File...’ in UIP’s Library Editor not write each rule to a file
more than once.

DPP-VISIT-LIBRARY (library-name fn &optional root)

PURPOSE: Execute function to library classes.
ARGUMENTS:

library-name: Library name (symbol)
fn: Function to be executed with library components
root (optional): Root component in the library (symbol)

RETURNS: NIL
EXAMPLE:

Following example returns all library components with
’geo_type’ attribute defined.

 (let ((r nil))
 (dpp-visit-library
 ’plant #’(lambda (class)
 (when (and
 (dpp-attribute-exists-p class ’geo_type)
 (dpp-get-value-no-calc class ’geo_type))
 (push class r))))
 r)

▲ Design++ Function DPP-VEC-NORM fixed to convert integer arguments into do
ble-floats just like some Lisp functions, e.g., sqrt. Without the conversion so
 Version 4.2

Page 10 Design++ 4.2 Release Notes for Windows NT – Design++ Functions (Lisp/API)
equality tests using the default *EPS* value of 1.0E-9, which is smaller that the
precision of single-floats, caused problems.

DPP-VEC-NORM (vec)

PURPOSE: Returns norm (length) of vector
ARGUMENTS:

vec: Vector (list of x, y and z)
RETURNS: Positive scalar (float)
EXAMPLE:

(dpp-vec-norm ’(1 1 1))
==> 1.7320508075688772

▲ New Design++ Function DPP-CLEANUP-PROGRAM introduced as an alias for
sys:os-wait and sys:os-reap-subprocess. In order to clean up system resources,
DPP-CLEANUP-PROGRAM needs to be called after a process started by DPP-RUN-
PROGRAM with the :wait keyword argument nil has finished. Calling DPP-CLEAN-
UP-PROGRAM returns also the exit status for the process.

DPP-CLEANUP-PROGRAM (&key wait pid)

PURPOSE:
If a process is started by the dpp-run-program with the wait
keyword argument nil, then the process will remain in the
system after it completes until either Lisp exits or Lisp
executes dpp-cleanup-program to inquire about the exit
status. To prevent the system becoming clogged with processes,
a program that spawns a number of processes with :wait nil
must be sure to call dpp-cleanup-program after each process
finishes. Exactly what dpp-cleanup-program does depends on
the status of spawned processes and the keyword arguments.

ARGUMENTS:
:pid

The pid argument controls what processes might be
considered on by dpp-cleanup-program. If pid is -1
(the default), all processes are considered. If pid is
0, only processes in the same process group (as the
executing Lisp image) are considered. If pid is a
positive integer, only the process with that process id
is considered. By default (pid = -1) if there are any
processes started by dpp-run-program with the argument
:wait nil which have exited but for which
dpp-cleanup-program has not been run, one of them is
selected by the operating system and its status and
process id are returned in that order as multiple
values.

 :wait
If there are no such processes which have exited but
there are processes which are still running, then the
behavior of dpp-cleanup-program depends on the :wait
arguments. If it is T (the default),
dpp-cleanup-program will wait (disabling
multiprocessing, if necessary) until one of the running
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Design++ Functions (Lisp/API) Page 11
processes exits.

RETURNS:
If :wait was T then process’s status and id are returned.
If there are no running processes and :wait=NIL,
dpp-cleanup-programs returns immediately with the values nil,
nil. If :wait is NIL, dpp-cleanup-program will return two
values: nil and the pid argument to dpp-cleanup-program
immediately. 0 as the single returned value indicates that
there are processes running but none to clean up, in contrast
to nil -- no processes running, none to clean up, and multiple
values -- a process was cleaned up.

▲ Design++ Performance Monitoring Functions/Macros

DPP-MONITOR

DPP-WITH-MONITORING

DPP-REPORT-MONITORS

re-introduced. They were accidentally left out from Design++ 4.2 Beta release.
Note that the monitoring utilities are only supported with Design++ develop-
ment version. For more information on optimizing your Design++ application,
see file <d++>\documentation\optimizing-applications.txt.
 Version 4.2

Page 12 Design++ 4.2 Release Notes for Windows NT – Design++ Core

rent’
Design++ Core
▲ Exiting Design++ fixed to wait also until the socket client that initiated the exit

has properly exited.

▲ Design Rule compilation fixed to correctly handle quoted expressions within
rules.

▲ Reading external data files modified to allow component-attribute-value triplets
to spread over multiple lines. For example, the following is now a valid entry

mixin_vessel geo_loc (1.0 ;X
 2.0 ;Y
 3.0) ;Z

▲ The batch file for starting Design++, <d++>\bin\d++.bat, modified to use
%HOMEDRIVE%%HOMEPATH% instead of C:\ as the default value for
HOME if HOME is not set. Design++ user-interface resource files (*.vr) and
Emacs startup file .emacs are created into HOME.

▲ Two new variables, DPPNOEMACS and DPPNOGUI, introduced for the
d++.bat batch. The new variables, when set, allow Design++ to be started with-
out Emacs and/or UIP.

▲ Design++ startup file <d++>\misc\d++-startup.lisp modified to load both De-
sign++ ODBC link and Dynamic Configuration Enhancements (patch-config-
0). Thus, the projects no longer have to take care of the loading in one of their
function files. If the enhancements are not needed, the load expressions can sim-
ple be commented out. Note that the ODBC link overrides the Oracle RDB link.

▲ Design++ restart function modified to allow custom images to be started from
any directory, not just from the default Design++ binary directory
<d++>\bin\win32-i86\. Starting an image from a local disk partition can be sig-
nificantly faster than from a file server.

▲ Two new Design Rule Macros :ASSEMBLY and :ALL-ASSEMBLIES introduced.
Actually, they are synonyms for existing macros :PARENT and :ALL-PARENTS
with identical functionality. The word ‘assembly’ is a better fit than ‘parent’
when referring to a component’s assembly in a product structure as the ‘pa
is typically used for referring a class parent in an inheritance hierarchy.

:ASSEMBLY (component &optional class member-descendants-p)

A design rule macro for referring to the product structure
assembly to which COMPONENT belongs to. Note that :assembly
is a synonym to another design rule macro :parent with
identical functionality.

If optional argument CLASS is given, then COMPONENT’s
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Design++ Core Page 13
assemblies are searched recursively until an assembly, which
is of type CLASS, is found.

The second optional argument MEMBER-DESCENDANTS-P (defaults
to T) determines whether all assemblies that are descendants
of the CLASS or just the direct instances of the CLASS are
considered while searching for the assembly.

Examples
(:! floor abc (:assembly floor))
(:! floor abc (:assembly (:assembly self)))
(:! floor abc (:assembly floor building)) ;Name
(:! floor abc (let ((building-class ’building))

(:assembly floor building-class))) ;Local binding
(defvar *building* ’building)
(:! floor abc

;;Global (special) variable
(:assembly floor *building*))

(:! floor abc
;;Expression
(:assembly floor (progn ’building)))

(:! floor abc
;;First assembly which is a descendant of
;;plant_assemblies
(:assembly floor plant_assemblies))

:ALL-ASSEMBLIES (component &optional class member-descendants-p)

Returns recursively all assemblies in a product structure
hierarchy (not just direct assemblies) of the given
COMPONENT. When the CLASS is specified, only assemblies, which
are member DESCENDANTS (not only direct members) of the given
CLASS, are returned.

Added a new optional argument MEMBER-DESCENDANTS-P (defaults
to T) which determines whether to return all related
components which are member descendants of the class or only
those which are direct members of the class.

▲ Design++ Runtime version modified to run design rules with the interpreter
when there is no compiler available. This allows design rule patches to be load-
ed into runtime images. The rule patches, i.e., files containing design rule defi-
nitions, need to be compiled with a development version before they can be
loaded into a runtime image. Note that this does not allow rules to be edited with
a runtime version.

▲ All required system DLLs have been moved under a single directory
<d++>\system32dlls\.

▲ 2 Emacs related startup problems fixed. The first one was caused by Design++
trying to send output to Emacs before the interface had properly initialized. The
 Version 4.2

Page 14 Design++ 4.2 Release Notes for Windows NT – Dynamic Configuration Enhancements

ss

rlier

ave
 and

 the
ent.

 re-
ring
t rule

aga-

ing

ited.
ute,
erred
opa-

o in-

e
second one was caused by the initial input buffer not being properly flushed
when the first prompt appeared.

Dynamic Configuration Enhancements
▲ Dynamic Configurator (DDC) has been optimized to reduce trashing.

▲ The attribute value prompt modified to use a component’s real name unle
trace-rules-with-pnames is T.

▲ Model creation based on product structure files is now compatible with ea
Design++ versions.

▲ Intelligent Change Manager (ICM) and Execution Order Controller (EOC) h
been optimized significantly. They also have more robust exception (cycle)
error handling.

▲ Certain warnings about corrupted dependencies modified to be directed to
standard-output instead of a separate dialog requiring user acknowledgm

▲ Reporting design rule failures during change propagation modified NOT to
port transient failures caused by the changing model. Rules that truly fail du
a change propagation are reported at the end of the propagation. Transien
failures can still be traced by turning the rule trace on.

▲ Design rule compilation has been upgraded to initiate proper change prop
tions in all situations.

▲ Design rule compilation fixed to remove the attribute values for rule-inherit
classes with instances.

▲ Model creation fixed to handle correctly *substructure* and *relations* at-
tributes with both an inherited value and a design rule.

▲ The issue of when the user should be prompted for an attribute value revis
Now, during dynamic instantiation the user is asked for the value of an attrib
which does not have a design rule, regardless of where the attribute is ref
from. Attribute values are never prompted from the user during change pr
gation.

▲ Handling of NR-<class-name> attributes fixed NOT to set the valueclass t
teger for predefined (inherited) attributes.

▲ Handling of design rule references to non-existing attributes during chang
propagation fixed.

▲ Handling of GEO_TYPE’s value removals fixed.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Dynamic Configuration Enhancements Page 15

 that

 prop-
, typi-
▲ To facilitate the creation of the *substructure* attribute, the attribute is now in-
herited automatically to all library classes of type ASSEMBLIES as they will
most likely need it. If a PART requires the *substructure* attribute it still needs
to be created manually or the PART’s inheritance needs to be modified so
it becomes also an assembly.

▲ New keyword argument load-cad-drawing-p added to Design++ Function DPP-
CREATE-MODEL.

DPP-CREATE-MODEL

(model-name &key description

structure-file structure-description

external-data-files (load-cad-drawing-p t)

(reset-cad nil) seedfile)

PURPOSE: Create new model
ARGUMENTS:

model-name (symbol): Model name
keywords:

description (string): Description of model
structure-file (pathname): Structure-file pathname
structure-description (list or string):

Structure-description
external-data-files (list of pathnames):

External-data-files to be added to model
load-cad-drawing-p (T (default) or NIL):

Whether or not create a drawing in CAD. Note
that :reset-cad is ignored when load-cad-drawing
is NIL.

reset-cad (T or NIL (default)):
One of nil, :remove-drawing,
:save-&-remove-drawing and :keep-drawing. If nil,
then user is asked with a dialog box to choose one
of the above options.

seedfile (string):
Name of the seedfile. If NIL use default seedfile.

RETURNS: Model-name
EXAMPLE:

(dpp-create-model ’newmodel)
==> NEWMODEL
(dpp-create-model ’new-bike

:description "This is a description"
 :structure-description

’(bicycle (front_wheel_system) (back_wheel_system)
 (body) (crank_system)))

==> NEWBIKE

▲ Cycle detection during change propagation enhanced to catch also infinite
agation cycles that cannot converge because of inconsistent design rules
 Version 4.2

Page 16 Design++ 4.2 Release Notes for Windows NT – Dynamic Configuration Enhancements
cally an application error. For example, the following simple two-attribute cycle
will not converge due to inconsistent rules.

(:! comp a (:? self b))
(:! comp b (1+ (:? self a)))

The new detection capability is intended to assist application developers and is
not on by default. To turn the enhanced cycle detection on, a new keyword ar-
gument with-cycle-detection is added to Design++ Function DPP-TRACE-RULES.

DPP-TRACE-RULES

(&key (with-pretty-names t)

(with-values nil)

(with-cycle-detection nil)

(with-statistics nil)

(components-of-class :all))

PURPOSE:
Enables Design Rule tracing with different trace options

ARGUMENTS:
with-pretty-names (keyword):

Whether or not the rules are traced with components’
pretty names or real names (T (default) or NIL)

with-values (keyword):
Whether or not the trace should also contain attribute
values (T or NIL(default))

with-cycle-detection (keyword):
Whether or not to look for infinite cycles that cannot
converge because of inconsistent design rules,
typically an application error, (T or NIL (default))

with-statistics (keyword):
Whether or not to collect change propagation statistics
(T or NIL (default))

components-of-class (keyword):
List of classes whose descendant components’ rules are
to be traced. Default value :all means that all rules
of all instances are to be traced. (list of
frame-or-ref or :all (default).

RETURNS: NIL
EXAMPLE:

(dpp-trace-rules :with-values t :components-of-class
’(pump steel))

==> T

▲ The deletion of NR attributes fixed to handle the rare case where an NR attribute
is deleted from a library while the attribute is being used in an active model.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Emacs Interface Page 17

s for

aste

 the

bind-
ht &
be

sed
still
and

a reg-
ds
 to
Emacs Interface
▲ Design++ 4.2 on Windows NT comes with a new Emacs version 20.4.1.

▲ The Emacs interface has a new default Windows mode, which supports:
• Standard Windows dialogs for choosing printers and selecting filename

save and open.
• Windows style menubar
• Windows style key-bindings supporting, e.g., standard Cut, Copy and P

(C-x,C-c,C-v)

▲ Whether Emacs is to be run with the new Windows (default) mode or with
classic Emacs mode is determined during Design++ installation or reconfigura-
tion. The Windows mode can also be enabled with command

M-x dpp-win-mode

and partially disabled with command

M-x disable-dpp-win-mode

which restores most of the classic Emacs key-bindings and menubars.

▲ The Emacs Windows mode provides a emulation of the standard CUA key
ings and manipulating the region where S-<movement> is used to highlig
extend the region. This package allow the C-z, C-x, C-c, and C-v keys to
bound appropriately according to the Windows GUI, i.e.

C-z > undo
C-x > cut
C-c > copy
C-v > paste

The tricky part is the handling of the C-x and C-c keys which are normally u
as prefix keys for most of Emacs’ built-in commands. With this mode they
do! Only when the region is currently active and highlighted since the C-x
C-c keys will work as CUA keys

C-x -> cut
C-c -> copy

When the region is not active, C-x and C-c works as prefix keys!

This has a few drawbacks (such as not being able to copy the region into
ister using C-x r x), but this mode automatically mirrors all region comman
using the [C-x r] prefix to use the [M-r] prefix as well, so you can use M-r x
copy to a register.
 Version 4.2

Page 18 Design++ 4.2 Release Notes for Windows NT – Emacs Interface

, and
 are

 C-x
 the

inal

s in

e-
The Windows mode is based on “the best of” pc-selection-mode, s-region
delete-selection-mode packages with some extra features which we think
useful.

A few more details:
• When the region is highlighted, TAB and S-TAB will indent the entire

region by the normal tab-width (or the given prefix arg).
• C-x C-x (exchange point and mark) no longer activates the mark (i.e.

highlights the region). I found that to be confusing since the sequence
C-x (exchange once) followed by C-x C-x (change back) would then cut
region! To activate the region in this way, use C-u C-x C-x.

• [delete] will delete (not copy) the highlighted region.
• The highlighted region is automatically deleted if other text is typed or

inserted.
• Use M-r as a prefix for the region commands instead of C-x r. The orig

binding of M-r (move-to-window-line) is now on M-r M-r.

List of some changed bindings in Windows mode and their classic binding
Emacs:

Key Windows mode Classic Emacs mode
C-c copy-region-as-kill prefix key
C-x kill-region prefix key
C-z advertised-undo suspend-emacs-or-iconify-frame
C-v yank scroll-up-command
C-a mark-whole-buffer beginning-of-line
C-p print-buffer previous-line
C-s save-buffer isearch-forward
C-n find-file next-line
C-o open-file open-line
C-f isearch-forward beginning-of-line
C-h query-replace help prefix key
f5 insert-time-stamp -
f1 help -
S-insert yank beginning-of-line
M-insert yank-pop -
C-insert copy-region-as-kill copy-primary-selection
S-delete kill-region kill-primary-selection
C-delete kill-line delete-primary-selection
S-tab back-tab-indent tab-to-tab-stop

▲ show-paren-mode, which highlights matching parentheses, is now on by d
fault.

▲ auto-fill-mode is now disabled by default for Lisp buffers.

▲ font-lock-mode is now on by default for Lisp buffers.

▲ The menubar menu has been reorganized.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Emacs Interface Page 19

en

ble
ult
acs
▲ Environment variable DISPLAY is no longer set on Windows NT as it somehow
conflicts with AutoCAD’s license manager.

▲ Default directory is set to DPPPROJECTSPATH.

▲ The problem, where Design Rule compilation fails if the rule buffer has be
fontified, i.e., font colors have been turned on, is now fixed.

Note that you can fontify a single Emacs buffer with function key F8. To disa
autofill mode and enable font-lock mode, i.e., to fontify buffers, for the defa
Lisp mode, you need to add the following expressions into your HOME_em
file.

(defun dpp-setup-lisp-mode ()
(auto-fill-mode -1) ;Disable autofill
(font-lock-mode 1) ;Enable font-lock (to fontify)

)
(add-hook ‘fi:common-lisp-mode-hook ‘dpp-setup-lisp-mode)
 Version 4.2

Page 20 Design++ 4.2 Release Notes for Windows NT – User Interfaces

 that

s to
ot to

 a
ct in-
A to

lass
User Interfaces
▲ Font specifications fixed for dialogs with font PHONETIC.FON which caused

this font to be used instead of intended MS Sanf Serif.

▲ About dialog has a new button to launch the default browser pointing to
www.dp.com.

▲ Design++ executables (.exe files) are now displayed in Windows Explorer and
Taskbar with the Design Power logo (designpower.ico).

▲ When minimized Design++ executables are now placed on the Taskbar.

▲ At startup, if connecting with Design++ fails, the error message is shown in a
dialog.

UIP

▲ Model Editor’s ‘Geometry’ menu item enabled.

▲ Enabling/disabling of Magnifier’s menubar items ‘Remove’ and ‘Unlock’
fixed.

▲ Preference dialog is now the leading dialog for the ColorChooser dialog so
the ColorChooser stays over the preference dialog.

▲ Icons in Magnifier now have tooltip helps.

▲ A new ‘License Manager’ item added to the main dialogs’ File menu.

▲ Several Component Editor updating related problems fixed.

▲ Several dialog closing and deleting related problems fixed.

▲ Removing an attribute value through Component Editor fixed.

▲ Saving a project fixed NOT to prompt the user with a second set of dialog
save unsaved libraries and/or model after the user has already selected n
save them with the first dialog.

▲ Inheritance cycle detection fixed for Library Editor. The editor did not allow
direct subclass link between two classes if there already existed an indire
heritance link between the two. For example, adding a subclass link from
C is now allowed.

A ----> B ----> C
| |
+------->-------+

Truly cyclic inheritance links are still blocked. For example, adding a subc
link from C to A is not allowed.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – User Interfaces Page 21

 to

d

e the
shing
d.

s.
UIS

▲ To facilitate the handling of licensing issues, the new License Manager displays
the current license status and allows on-the-fly license upgrades.

▲ For Design++ runtime version, displays a new permanent background Design
Power logo dialog.

▲ Modified not use UIP’s resource files anymore. Shared resource files used
corrupt in case of concurrent access.

▲ Dialog for Design++ Function
DPP-PROMPT-FOR-FILE

fixed to expose properly.

Design Rule Editor (DRE)

▲ On Windows NT, the default Emacs-like key-bindings are now disabled an
Windows-style key-bindings are used instead. For example, now

Control-X is Cut,
Control-C is Copy, and
Control-V is Paste.

▲ Matching parentheses are highlighted when point is positioned either befor
starting parenthesis or after the ending parenthesis. The old method of fla
parentheses when inserting one of the parentheses characters is remove

▲ There is a new toolbar (with tooltips) for most common operations.

▲ The Open/Save file dialogs are fixed to show the correct default directorie

▲ The default text font on NT is now Courier.

▲ Handling of UNIX/DOS linefeed/return conventions fixed.

▲ Parsing fixed to handle correctly Design++ Functions with no arguments, like
DPP-PROJECT-PATHNAME
 Version 4.2

Page 22 Design++ 4.2 Release Notes for Windows NT – CAD Interfaces
CAD Interfaces
▲ Design++ 4.2 integrates with AutoCAD releases 13c4a, 14.01, and 2000, and

with MicroStation 95, SE, and J. The following table summarizes the supported
CAD systems.

CAD DPPCAD in D++ Interface Dir. Project Dir.
MS 95 mstation :ms ms-interface mstation
MS SE msse :msse msse-interface msse
MS/J msj :msj msj-interface msj
ACADr13/ADS acad :acad ac-interface acad
ACADr14/ADS acadr14 :acadr14 acadr14-interface acadr14
ACADr14/ARX arx :arx arx-interface arx
ACAD2000/ARX arx2000 :arx2000 arx2000-interface arx2000

To request the name of CAD system currently integrated with Design++, use De-
sign++ Function

DPP-CAD-GET-CAD-SYSTEM

▲ The value of the exported variable *dpp-geo-level* is now the name of the
geo_level attribute (GEO_LAYER or GEO_LEVEL).

▲ GEO_LEVEL, GEO_LAYER, and GEO_COLOR value strings can include
space characters.

▲ Showing and removing geometry optimized by relying only on the existence of
geo-rep attribute as an indication that the component has a geometric primi-
tive associated with it.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – AutoCAD/ADS Interface Page 23
AutoCAD/ADS Interface
▲ OSMODE is set off before executing AutoLisp free code.

▲ Fixed to allow Free functions to be called without any arguments.

▲ When exiting Design++, AutoCAD should now exit more reliably.

▲ dppHiddenLayer layer created only when needed.

▲ dppBlock_box block definition created only when needed, that is only when
Design++ BOX primitive is used.

▲ dppBlock_box color set to bylayer.

▲ Added more error reporting into file operations.

▲ SEQEND was sometimes created to current layer instead of the designated layer
of a primitive.

▲ Problem, which prevented project-specific AutoCAD startup files (startup.scr)
from being loaded, is now fixed.

▲ Communication with AutoCAD optimized for a single component geometry
show/remove messages.
 Version 4.2

Page 24 Design++ 4.2 Release Notes for Windows NT – AutoCAD R14/ARX Interface

nly

n-

y
 AutoCAD R14/ARX Interface
Changes Since v0.6.6

▲ Symbol_with_attributes primitive fixed to handle attribute placement correctly.

▲ acaddpp now registers itself correctly for the drawing with ads_regapp.

ARX Link v0.6.10 13-Jul-98

▲ AutoLisp code is correctly initialized if the drawing is changed outside of the
ARX link, e.g., within an external application or through the AutoCAD user in-
terface.

▲ Fixed some default geometric primitive code, where SEQEND was created to
the current layer instead of the layer of the object.

ARX Link v0.6.12 25-Sep-98

▲ Free geometry can consists of multiple objects. Free primitive can return object
handles in a string list, where handles are separated by spaces. Note that func-
tion dppExtapMappingGetHandle now returns a string that can have multiple
handles in it.

▲ CMDECHO disabled during ‘Show Axis’ command.

▲ During the creation of dimensions DIMASO is set to 1 to make sure that o
one geometric object is created.

▲ Color of the block DPP_BOX (used in BOX primitive) is set to BYLAYER.

▲ Added error checking into script file handling with better error reporting.

ARX Link v0.6.13 12-Jan-99

▲ GEO_COLOR, GEO_LEVEL and GEO_FREE_TYPE value strings can co
tain space characters.

▲ Loading of AutoLisp code is now more robust.

▲ BYLEVEL is accepted as the color spec for GEO_COLOR for compatibilit
reasons.

▲ Xref rotations handling fixed.

▲ Some miscellaneous bugs fixed.

ARX Link v0.6.14 12-Feb-99

▲ CAD startup fixed to wait until AutoCAD has properly started.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – AutoCAD R14/ARX Interface Page 25
▲ Creation/deletion of geometry fixed to force AutoCAD to update its graphics
display after each component creation/deletion. By default, AutoCAD rel. 14
updates its display only after a certain amount graphics entities are created/de-
leted.

▲ Model deletion fixed to delete also the associated drawing file even if AutoCAD
is not running.

ARX Link v0.6.15 20-Apr-99

▲ The project specific startup script file startup.src is not used anymore. Instead,
when ever a drawing is loaded, also an AutoLisp file startup.lsp is loaded.

▲ OSMODE is set off before executing AutoLisp free code.
 Version 4.2

Page 26 Design++ 4.2 Release Notes for Windows NT – AutoCAD 2000/ARX Interface

a-

rt:

dd

ject:
d-
b-

re.
,

’ in
AutoCAD 2000/ARX Interface
▲ The current version (v0.7.2) of AutoCAD 2000/ARX link is a port of AutoCAD

R14/ARX link (v0.6.15) to AutoCAD 2000. The link currnetly works only in a
Single Drawing Interface (SDI) mode. Design++ identification symbol used for
the link is :arx2000.

Porting Design++ AutoCAD R14/ARX project to use AutoCAD 2000

1. Check references to symbol :arx in functions and rules files and add an entry for
the :arx2000. For example,

(or (eq (dpp-cad-get-cad-system) :arx)
 (eq (dpp-cad-get-cad-system) :arx2000))

2. Project’s CAD files are in directory <d++-project>\project\arx2000

3. Design++ arx2000 interface directory is <d++>\arx2000-interface

4. Convert drawing files into AutoCAD 2000 format.

5. Check/update custom menus.

6. Upgrade ARX application (see below).

Porting ARX application into AutoCAD 2000/ARX

▲ Please start by reading the book: AutoCAD200 Migration Guide for Applic
tions

▲ When converting an old ARX project to R2000 there are three ways to sta

1. (Recommended) Create a new project with ObjectARX2000 wizard and a
your code into it.

2. Read from the ARX2000 online help the document of how to create a pro
ObjectARX Reference-> Additional Information-> Compiler Support-> Buil
ing and Debugging ObjectARX Programs for Windows NT-> Creating an O
jectARX Application using the MSVC++ 6.0 IDE

3. Edit an existing AutoCAD R14/ARX project.
• Upgrade VC++ compiler to VC++6.sp3
• Remove the preprocessor definition RADPACK as it is not used anymo
• Change ARX include and library paths to point to ARX2000 directories

like C:\Program Files\ObjectARX 2000\inc and
C:\Program Files\ObjectARX 2000\lib

• Change Design++ ARX link include and library paths to point to directory
<d++>\arx2000-interface\win32-i86

• In the Projects->Settings dialog’s Link tab clear the ‘Entry-point Symbol
the Output category.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – AutoCAD 2000/ARX Interface Page 27

or

ding

es

0
w

ent-

. As a

rt
e
• Change the project’s dppextap.def file to use the PRIVATE keyword. F
example,

DESCRIPTION ‘Design++ project extension app’
LIBRARY dppextap
EXPORTS acrxEntryPoint PRIVATE

_SetacrxPtp PRIVATE
acrxGetApiVersion PRIVATE

• The R14 ARX source code can be made compatible with R2000 by ad
the following migration headers and defining symbol (like XYZ_R14) in
your old project:

#ifndef XYZ_R14
#include <migrtion.h> //from R14 -> R2000 migration defs.
#include <dbapserv.h>
#endif

Otherwise, it is recommended to start using the new ARX function nam
instead of the old ADS function names.

• ARX library names have been changed, check the book ‘AutoCAD200
Migration Guide for Applications’ Library Changes (page 14) for the ne
names.

▲ After the project compiles, follow other R14 to R2000 porting tasks docum
ed in Acad2000/ARX manuals.

Known problems

▲ AutoLisp error handling does not return usable error codes.

▲ Some model handling commands (open/delete/close) are not synchronous
result, Design++ does not always wait for the processing to complete in Au-
toCAD.

▲ Multiple Document Interface (MDI) mode support is unfinished. The suppo
for the MDI mode will be released later. It is worth noting that the MDI will b
running in the application context and will not support ADS_COMMAND
function. Thus, it is recommended to start migrating away from using
ADS_COMMAND in Free primitives and user functions.
 Version 4.2

Page 28 Design++ 4.2 Release Notes for Windows NT – MicroStation Interface

 also
. By
fault

tatic
e
e.
MicroStation Interface
▲ A new dppGetVersion function added. This allows external applications to

check that they were compiled within an environment compatible for the current
MicroStation version.

▲ Element size checked not to exceed MicroStation limit of 65534.

▲ Primitive ruledSurface fixed to return an error, if the input is more than 100
points, instead of trying to show a partial geometry.

▲ Fixed the handling of profile points when there are more than 101 points as most
MDL functions accept no more than 101 points.

C/API
▲ Following functions work now with filenames which have spaces in them

dppProjectGetProductStructureFileList
dppProjectGetExternalDataFileList
dppModelGetSecondaryModelName

▲ Function

dppSystemIsConsistencyRedeterminatorEnabled

fixed. It used to always return FALSE.

▲ New functions added:

dppPortAlloc
dppPortRealloc
dppPortFree
dppPortStrdup

▲ The idea is that if C/API’s portability manager allocates/frees memory, then
the client should use the same dppPort functions to free/Allocate memory
using custom dppPort manager functions this is always possible but with de
functions there is problem on NT if using static runtime libraries as every s
library gets its own copy of runtime memory allocation functions. Data typ
bool is replaced with dppBool as bool conflicts with C++’s built-in bool typ
Version 4.2

Design++ 4.2 Release Notes for Windows NT – COM/API (changes since pre-release) Page 29

”

an-
or-
▲ Following functions are renamed:

dppNodeLocalGetUserDataDestructor
renamed to

dppNodeLocalGetUserdataDestructor
dppNodeLocalGetUserData

renamed to

dppNodeLocalGetUserdata
dppNodeLocalSetUserData

renamed to

dppNodeLocalSetUserdata
dppNodeLocalGetNodeId

renamed to

dppNodeLocalGetId

▲ Problems in the definitions of following functions fixed.

dppComponentLocalSetModelName
dppComponentLocalSetName
dppComponentLocalSetPrettyname

▲ Added following into the C/API header files to speed up NT compilations.

#if _MSC_VER >= 1000
#pragma once
#endif /* _MSC_VER >= 1000 */

▲ Function dppAttributeDetermineValue fixed to properly format the determined
attribute value. For example, it used to return attribute value (“ABC” “DEF
“GHI”) incorrectly as (ABC DEF GHI).

COM/API (changes since pre-release)
▲ Support for asynchronous messages added

▲ Systematic Memory handling error causing memory leaks in dppautoma-
tion.exe fixed

▲ Visual Basic example project and documentation had systematic error in h
dling memory in regards of the use of dppNew and dppDelete functions. N
mally dppNew functions are only needed in order to create iterators.

▲ A bug in C/API message id handling fixed.
 Version 4.2

Page 30 Design++ 4.2 Release Notes for Windows NT – CAD Interface Manager
 CAD Interface Manager
▲ Expanded CAD Integration Manager (CIM) provides framework for seamless

bi-directional integration with various CAD systems.

▲ CIM is now loaded in <d++42>\misc\d++-startup.lisp if AutoCad/ARX link is
selected as the CAD system.

CIM 1.10.1 17-Mar-98

▲ Generalized model handling, by removing assumptions about current drawing
in operation. Argument list has changed for following functions.

dppOpenDrawingProc
dppNewDrawingProc
dppCloseDrawngProc
dppRevertDrawingProc
dppSaveDrawingProc
dppSaveAsDrawingProc

▲ Function

dppCadCadRegisterPrimitive

removed and introduced new functions listed below. Benefit from this is that
now compiler can check for function prototype being correctly defined.

dppCadRegisterBoxPrimitiveProc
dppCadRegisterCylinderPrimitiveProc
dppCadRegisterExtrusionPrimitiveProc
dppCadRegisterFreePrimitiveProc
dppCadRegisterLinePrimitiveProc
dppCadRegisterLinearDimensionPrimitiveProc
dppCadRegisterPolyLinePrimitiveProc
dppCadRegisterRuledSurfacePrimitiveProc
dppCadRegisterSpherePrimitiveProc
dppCadRegisterSurfaceRotationPrimitiveProc
dppCadRegisterSweepPrimitiveProc
dppCadRegisterSymbolPrimitiveProc
dppCadRegisterSymbolWithAttributesPrimitiveProc
dppCadRegisterTextPrimitiveProc
dppCadRegisterXrefPrimitiveProc

▲ Changed the internal definition of following functions so that compiler can
check for function prototype being correctly defined
Version 4.2

Design++ 4.2 Release Notes for Windows NT – CAD Interface Manager Page 31

L
dppCadRegisterModifyProc
dppCadRegisterOpenDrawingProc
dppCadRegisterNewDrawingProc
dppCadRegisterCloseDrawingProc
dppCadRegisterDeleteDrawingProc
dppCadRegisterRevertDrawingProc
dppCadRegisterSaveDrawingProc
dppCadRegisterSaveAsDrawingProc
dppCadRegisterShutdownProc
dppCadRegisterRestartProc
dppCadRegisterHighlightProc
dppCadRegisterHandleByNameProc
dppCadRegisterNameByHandleProc
dppCadRegisterMappingAddProc
dppCadRegisterMappingDeleteProc
dppCadRegisterDeleteComponentProc
dppCadRegisterUserFunctionProc
dppCadRegisterOperationProc
dppCadRegisterAsyncNotifyProc
dppCadRegisterEventProc

▲ Xref scale is now defined to be 3Dpoint instead of double.

▲ New Design++ Functions:

dpp-cad-start

dpp-cad-restart

dpp-cad-quit

▲ Fixed the handling of some special geo_rep attribute values:
• :error, geometry creation failed and CIM primitive function returned NUL

as the handle value.
• :calculated, CAD probably will finish geometry creation later and the

handle value :calculated is returned for now.
• :done, CAD link was not on when value of geo_rep was calculated.
 Version 4.2

Page 32 Design++ 4.2 Release Notes for Windows NT – CAD Interface Manager

that

th
e lev-

ified
▲ New functions for user function handling:

bool dppCadUnRegisterUserProc(char * tag)
bool dppCadGetUserProc(char * tag)
dppChar dppCadRegisterUserFuctionProc(dppChar *tag, dppChar * args)

▲ Function

dppCadGetStartupReason

added. It can be used to query the reason for the CAD startup request issued by
Design++.

▲ Primitives with names ending with ‘2’ are removed.

CIM 1.10.2 1998-04-02

▲ Design++ Functions
dpp-cad-send-request

dpp-cad-eval-user-message

dpp-cad-send-user-message

changed to use (read-from-string ans nil nil) for backward compatibility, so
they now do not return strings but the value inside the string.

CIM 1.10.3 7-Jul-1998

▲ Exported defparameter *dpp-geo-level* added. It will also be available wi
non-CIM -based CAD interfaces. This enables the creation of rules that us
el/layer and work with any MS/ADS/ARX -based CAD links.

▲ Function

dppCadGetAutocalc

added for querying the on/off status of the autocalc feature.

CIM 1.11.0 24-Sep-98

▲ Data type bool replaced with dppBool due to changes in C/API.

▲ Some cleanup in the header files.

CIM 1.11.1 20-Oct-98

▲ Documentation was updated.

▲ Include directory was cleaned of obsolete files.

CIM 1.12.0 11-Jan-99

▲ String values of geo_level, geo_color, geo_style, and geo_free_type mod
to allow space characters.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – CAD Interface Manager Page 33
CIM 1.12.2 12-Jan-99

▲ Loading of the design rules for the Geometries system KB fixed for Design++
Runtime version.

▲ Drawing file deletion fixed to handle the deletion even if the CAD is not run-
ning.

▲ A missing default function binding added for

cad-interface-init-function

(defined with cim-define-cad-system).

▲ The geo_rep/handle value handling modified. See updated CIM documentation
for details.

▲ User Function

dppCadGetUserProc

fixed to return a proper function pointer.
 Version 4.2

Page 34 Design++ 4.2 Release Notes for Windows NT – ODBC Link

ad of

g

. It

d.
alue

ields

”

s as
 ODBC Link
▲ Design++ startup file <d++42>\misc\d++-startup.lisp modified to load both De-

sign++ ODBC link and Dynamic Configuration Enhancements (patch-config-
0). Thus, the projects no longer have to take care of the loading these in one of
their function files. If the enhancements are not needed, or cause problems with
existing applications, the load expressions can simple be commented out. Note
that the ODBC link overrides the Oracle RDB link.

▲ Fixed an ODBC (Solid) Interface problem which prevented simultaneous DDE
use. The problem was caused by the ODBC Interface having been compiled as
a Console application which is not supported by C/API.

GUI Builder
▲ The new GUIB-V2 is not necessarily compatible with the GUIB version 1 that

was shipped with Design++ 4.1. You can downgrade back to GUIB version 1 by
extracting files from <d++>\bin\win32-i86\guib-v1.zip to directory
<d++>\bin\win32-i86. Later, you can upgrade back to GUIB version 2 by ex-
tracting files from <d++>\bin\win32-i86\guib-v2.zip.

▲ GUI Builder V2 fixes and enhancements:
• Two exit problems fixed. GUIB used to crash sometimes when the last

window was closed. Also, exiting GUIB used to crash it.
• Some error messages are now shown in the GUIB trace window inste

Galaxy debug window.
• Restarting GUIB fixed
• Some serious memory leaks fixed.
• Some problems with graph updating fixed.
• Some problems with handling of ‘.’ and ‘\’ in filenames fixed. Reopenin

the trace dialog works now after it it has been closed.
• Trace output is now dumped to file, either HOME\guib_trace.log or

.\guib_trace.log
• A warning dialog box is now shown when there a stack over/under flow

used to just abort.
• Listboxes now send the Accept event when a cell value has been edite
• Comboboxes now allow the insertion of new values not already in the v

list.
• A bug, where accept handler sending an event that modifies other text f

crashes GUIB, fixed
• A related bug, where the message “Undefined dialog reference :DLG:X

was displayed, fixed.
• A bug, where empty column names resulted in one less listbox column

requested, fixed.
• Some focus problems are fixed.
Version 4.2

Design++ 4.2 Release Notes for Windows NT – Happy with Design++ Page 35

t ->

box
{

er
• Labels of dialogs are now printed in bold.
• Style of labelitem works correctly .
• Some event handling bugs fixed.

▲ Things to consider when converting from Design++ 4.1 GUIB to Design++ 4.2:
• Changes in event handling might now cause loops like update -> selec

update -> ...
• Because values in listbox cells can now be changed directly, every list

has to be checked. If event “OnDoubleClick” is used, add a style style
readonly } for the listbox. Or remove OndoubleClick, and let the user
change values manually.

• Function concat works now like described in the documentation. The
previous version allowed some other ways to use it also. So, it is
recommended to check all concat functions.

• Dialog labels are now printed in bold and, thus, need more space. Now
labelitem styles work correctly. For example,

labelitem XXX
style { BOLD }

returns a bold labelitem and needs more space.
• If there are no CancelHook in a dialog, the CloseWindowButton in upp

right corner does not work. Add a CancelHook if needed.

Happy with Design++
 Version 4.2

Page 36 Design++ 4.2 Release Notes for Windows NT – Happy with Design++
Version 4.2

	Design++ 4.2 Release Notes for Windows NT
	Highlights
	COM/API
	AutoCAD 2000 Link
	MicroStation/J Link
	Dynamic Configuration Enhancements
	Windows Mode in Command Interpreter and Design Rule Editor
	Multiprocessing Support Enhanced
	Network Licensing
	Automated Installation
	License Manager Dialog
	New Documentation - Available Online
	Year 2000 Compliant

	Design++ Functions (Lisp/API)
	DPP-RELATED-TO
	DPP-COLINEAR-P
	DPP-POINT-WITHIN-SEGMENT-P
	DPP-DROPPED-POINT-WITHIN-SEGMENT-P
	DPP-DROP-POINT-ON-LINE
	DPP-DROP-POINT-ON-LINE-SEGMENT
	DPP-POINT-LINE-ORTHO-DISTANCE
	DPP-POINT-TO-LINE-DISTANCE
	DPP-PERPENDICULAR-TO-PLANE
	DPP-POINT-TO-LINE-DISTANCE (p lp1 lp2 &optional (ndecimals 5))
	DPP-SHOW-GEOMETRY (&optional (component (dpp-model-root)) (structure :component))
	DPP-REMOVE-GEOMETRY (&optional (component (dpp-model-root)) (structure :component-and-substructure))
	DPP-COPY-DIRECTORY
	DPP-MAKE-DIRECTORY (directory-pathname)
	DPP-DISKSAVE-D++ (path restart-function)
	DPP-GET-EXTERNAL-DATA-FILES ()
	DPP-ATTACH-EXTERNALS (&optional (model-name (dpp-get-current-model)) extarnal-files)
	DPP-WITH-AUTO-DEBUG ((&key output when-exit count) &body body)
	DPP-ASSEMBLY (component &optional class-name (member-descendants-p t))
	DPP-ALL-ASSEMBLIES (component &optional class-name (member-descendants-p t))
	DPP-VISIT-LIBRARY (library-name fn &optional root)
	DPP-VEC-NORM (vec)
	DPP-CLEANUP-PROGRAM (&key wait pid)
	DPP-MONITOR
	DPP-WITH-MONITORING
	DPP-REPORT-MONITORS

	Design++ Core
	:ASSEMBLY (component &optional class member-descendants-p)
	:ALL-ASSEMBLIES (component &optional class member-descendants-p)
	Dynamic Configuration Enhancements
	DPP-CREATE-MODEL (model-name &key description structure-file structure-description external-data-...
	DPP-TRACE-RULES (&key (with-pretty-names t) (with-values nil) (with-cycle-detection nil) (with-st...

	Emacs Interface
	User Interfaces
	UIP
	UIS
	DPP-PROMPT-FOR-FILE

	Design Rule Editor (DRE)
	DPP-PROJECT-PATHNAME

	CAD Interfaces
	DPP-CAD-GET-CAD-SYSTEM

	AutoCAD/ADS Interface
	AutoCAD R14/ARX Interface
	Changes Since v0.6.6
	ARX Link v0.6.10 13-Jul-98
	ARX Link v0.6.12 25-Sep-98
	ARX Link v0.6.13 12-Jan-99
	ARX Link v0.6.14 12-Feb-99
	ARX Link v0.6.15 20-Apr-99

	AutoCAD 2000/ARX Interface
	Porting Design++ AutoCAD R14/ARX project to use AutoCAD 2000
	1. Check references to symbol :arx in functions and rules files and add an entry for the :arx2000...
	2. Project’s CAD files are in directory <d++-project>\project\arx2000
	3. Design++ arx2000 interface directory is <d++>\arx2000-interface
	4. Convert drawing files into AutoCAD 2000 format.
	5. Check/update custom menus.
	6. Upgrade ARX application (see below).

	Porting ARX application into AutoCAD 2000/ARX
	1. (Recommended) Create a new project with ObjectARX2000 wizard and add your code into it.
	2. Read from the ARX2000 online help the document of how to create a project: ObjectARX Reference...
	3. Edit an existing AutoCAD R14/ARX project.

	Known problems

	MicroStation Interface
	C/API
	dppProjectGetProductStructureFileList
	dppProjectGetExternalDataFileList
	dppModelGetSecondaryModelName
	dppSystemIsConsistencyRedeterminatorEnabled
	dppPortAlloc
	dppPortRealloc
	dppPortFree
	dppPortStrdup
	dppNodeLocalGetUserDataDestructor
	dppNodeLocalGetUserdataDestructor
	dppNodeLocalGetUserData
	dppNodeLocalGetUserdata
	dppNodeLocalSetUserData
	dppNodeLocalSetUserdata
	dppNodeLocalGetNodeId
	dppNodeLocalGetId
	dppComponentLocalSetModelName
	dppComponentLocalSetName
	dppComponentLocalSetPrettyname

	COM/API (changes since pre-release)

	CAD Interface Manager
	CIM 1.10.1 17-Mar-98
	dppOpenDrawingProc
	dppNewDrawingProc
	dppCloseDrawngProc
	dppRevertDrawingProc
	dppSaveDrawingProc
	dppSaveAsDrawingProc
	dppCadCadRegisterPrimitive
	dppCadRegisterBoxPrimitiveProc
	dppCadRegisterCylinderPrimitiveProc
	dppCadRegisterExtrusionPrimitiveProc
	dppCadRegisterFreePrimitiveProc
	dppCadRegisterLinePrimitiveProc
	dppCadRegisterLinearDimensionPrimitiveProc
	dppCadRegisterPolyLinePrimitiveProc
	dppCadRegisterRuledSurfacePrimitiveProc
	dppCadRegisterSpherePrimitiveProc
	dppCadRegisterSurfaceRotationPrimitiveProc
	dppCadRegisterSweepPrimitiveProc
	dppCadRegisterSymbolPrimitiveProc
	dppCadRegisterSymbolWithAttributesPrimitiveProc
	dppCadRegisterTextPrimitiveProc
	dppCadRegisterXrefPrimitiveProc
	dppCadRegisterModifyProc
	dppCadRegisterOpenDrawingProc
	dppCadRegisterNewDrawingProc
	dppCadRegisterCloseDrawingProc
	dppCadRegisterDeleteDrawingProc
	dppCadRegisterRevertDrawingProc
	dppCadRegisterSaveDrawingProc
	dppCadRegisterSaveAsDrawingProc
	dppCadRegisterShutdownProc
	dppCadRegisterRestartProc
	dppCadRegisterHighlightProc
	dppCadRegisterHandleByNameProc
	dppCadRegisterNameByHandleProc
	dppCadRegisterMappingAddProc
	dppCadRegisterMappingDeleteProc
	dppCadRegisterDeleteComponentProc
	dppCadRegisterUserFunctionProc
	dppCadRegisterOperationProc
	dppCadRegisterAsyncNotifyProc
	dppCadRegisterEventProc
	dpp-cad-start
	dpp-cad-restart
	dpp-cad-quit

	bool dppCadUnRegisterUserProc(char * tag)
	bool dppCadGetUserProc(char * tag)
	dppChar dppCadRegisterUserFuctionProc(dppChar *tag, dppChar * args)
	dppCadGetStartupReason
	CIM 1.10.2 1998-04-02
	dpp-cad-send-request
	dpp-cad-eval-user-message
	dpp-cad-send-user-message

	CIM 1.10.3 7-Jul-1998

	dppCadGetAutocalc
	CIM 1.11.0 24-Sep-98
	CIM 1.11.1 20-Oct-98
	CIM 1.12.0 11-Jan-99
	CIM 1.12.2 12-Jan-99

	cad-interface-init-function
	dppCadGetUserProc

	ODBC Link
	GUI Builder
	Happy with Design++

