
 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC17xx CPUs

Micriµm
Empowering Embedded Systems

μC/OS-II

μC/Probe

and the
NXP LPC17xx Processors

on the IAR LPC1768-SK development Board

Application Note
AN-1080

www.Micrium.com

http://www.micrium.com/

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

2

About Micriµm

Micriµm provides high-quality embedded software components in the industry by way of engineer-friendly
source code, unsurpassed documentation, and customer support. The company‟s world-renowned real-

time operating system, the Micriµm µC/OS-II, features the highest-quality source code available for

today's embedded market. Micriµm delivers to the embedded marketplace a full portfolio of embedded

software components that complement µC/OS-II. A TCP/IP stack, USB stack, CAN stack, File System

(FS), Graphical User Interface (GUI), as well as many other high quality embedded components.
Micriµm‟s products consistently shorten time-to-market throughout all product development cycles. For
additional information on Micriµm, please visit www.micrium.com.

About µC/OS-II

Thank you for your interest in µC/OS-II. µC/OS-II is a preemptive, real-time, multitasking kernel.

µC/OS-II has been ported to over 45 different CPU architectures and now, has been ported to the NXP

LPC17xx processors

µC/OS-II is small yet provides all the services you would expect from an RTOS: task management, time

and timer management, semaphore and mutex, message mailboxes and queues, event flags a much
more.

You will find that µC/OS-II delivers on all your expectations and you will be pleased by its ease of use.

Licensing

µC/OS-II is provided in source form for FREE evaluation, for educational use or for peaceful research. If

you plan on using µC/OS-II in a commercial product you need to contact Micriµm to properly license its

use in your product. We provide ALL the source code with this application note for your convenience and

to help you experience µC/OS-II. The fact that the source is provided DOES NOT mean that you can

use it without paying a licensing fee. Please help us continue to provide the Embedded community with
the finest software available. Your honesty is greatly appreciated.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

3

About µC/Probe

μC/Probe is a Windows application that allows a user to display the value (at run-time) of virtually any

variable or memory location on a connected embedded target. The user simply populates μC/Probe‟s

graphical environment with gauges, tables, graphs, and other components, and associates each of these
with a variable or memory location. Once the application is loaded onto the target, the user can begin

μC/Probe‟s data collection, which will update the screen with variable values fetched from the target.

μC/Probe retrieves the values of global variables from a connected embedded target and displays the

values in an engineer-friendly format. The supported data-types are: booleans, integers, floats and ASCII
strings.

μC/Probe can have any number of „data screens‟ where these variables are displayed. This allows to

logically group different „views‟ into a product.

A 30-day trial version of μC/Probe is available on the Micriµm website:

 http://www.micrium.com/products/probe/probe.html

http://www.micrium.com/products/probe/probe.html

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

4

Manual Version

If you find any errors in this document, please inform us and we will make the appropriate corrections for
future releases.

Version Date By Description

V.1.00 2009/09/19 FT Initial version.

Software Versions

This document may or may not have been downloaded as part of an executable file, Micrium-NXP-uCOS-

II-LPC1768-SK.exe, containing the code and projects described here. If so, then the versions of the
Micriµm software modules in the table below would be included. In either case, the software port
described in this document uses the module versions in the table below

Module Version Comment

μC/OS-II V2.89

μC/Probe V2.3

See Also

In addition to the µC/OS-II, µC/FS, µC/USB-Device, µC/USB-Host, µC/USB-OTG, µC/TCP-IP

have been ported to the LPC17xx processors.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

5

Document Conventions

Numbers and Number Bases

 Hexadecimal numbers are preceded by the “0x” prefix and displayed in a monospaced font.
Example: 0xFF886633.

 Binary numbers are followed by the suffix “b”; for longer numbers, groups of four digits are
separated with a space. These are also displayed in a monospaced font. Example: 0101 1010

0011 1100b.

 Other numbers in the document are decimal. These are displayed in the proportional font
prevailing where the number is used.

Typographical Conventions

 Hexadecimal and binary numbers are displayed in a monospaced font.

 Code excerpts, variable names, and function names are displayed in a monospaced font.
Functions names are always followed by empty parentheses (e.g., OS_Start()). Array names

are always followed by empty square brackets (e.g., BSP_Vector_Array[]).

 File and directory names are always displayed in an italicized serif font. Example:
/Micrium/Sofware/uCOS-II/Source/.

 A bold style may be layered on any of the preceding conventions—or in ordinary text—to more
strongly emphasize a particular detail.

 Any other text is displayed in a sans-serif font.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

6

 Table of Contents

1. Getting Started. 7
1.01 Installing the Micirum Software 7
1.02 Setting up the Hardware 8
1.03 Opening the Examples Projects 8
1.03.01 IAR Example Project 8
1.03.02 IAR µC/OS-II Kernel Awareness. 9
1.03.03 IAR Project Options 10
1.04 Running the Example Applications 10

2. Directories and Files 12

3. Application Code 16
3.01 app.c 16
3.02 os_cfg.h 19

4 Board Support Package (BSP) 20
4.01 BSP, bsp_xxx.c and bsp_xxx.h files 20
4.02 Board Support Package Configuration 21
4.03 Tick Interrupt code. 21

5. μC/Probe 22

Licensing 25
References 25
Contacts 25

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

7

1. Getting Started.

The following sections step trough the prerequisites for using the demonstration application described in
this document, AN-1080. First, installation of software and the setup of the hardware will be outlined.
Second, the use and setup of the IAR embedded Workbench. Thirdly, the steps to build the projects and
load the application onto the board trough JTAG will be described. Lastly, instructions will be provided for
using the example application.

1.01 Installing the Micirum Software

The source code for µC/OS-II is provided in source form along with IAR Embedded Workbench for ARM

project files that allow you to run µC/OS-II on the IAR LPC1768-SK development board. To install the

software, simply run the self-extracting executable. Micrium-NXP-uCOS-II-LPC1768-SK.exe.

You will be prompted to accept the simple terms of the licensing agreement. If you answer „Yes‟, the
software will be installed on your PC under the \Micrium directory from the root as shown in Figure 1-1

\Micrium

 \AppNotes

 \AN1xxx-RTOS

 \AN1018-uCOS-II-Cortex-M3

 \AN1080-uCOS-II-NXP-LPC1768-SK

 \AN9xxx-MULT

 \AN-9913-PROBE-DEMO-INTRO

 \Licensing

 \Software

 \EvalBoards

 \NXP

 \LPC1768-SK

 \IAR

 \BSP

 \OS-Probe

 \uC-CPU

 \ARM-Cortex-M3

 \IAR

 \Doc

 \uC-LIB

 \Doc

 \Ports

 \ARM-Cortex-M3

 \IAR

 \uCOS-II

 \Doc

 \Ports

 \ARM-Cortex-M3

 \Generic

 \IAR

 \Source

Licensing agreements

(If µC/OS-II is used

commercially)

Contact

www.Micrium.com

for pricing

AN-1018

AN-1080

LPC1768-SK Board

Support Package

µC/OS-II

The Real Time

Kernel

µC/OS-II

documentation

ARM Cortex M3

µC/OS-II port

µC/OS-II processor

independent source

code

LPC1768 IAR example

project

AN-9913

http://www.micrium.com/

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

8

 \uC-Probe

 \Target

 \Communication

 \DCC

 \Generic

 \OS

 \RS-232

 \Ports

 \NXP

 \LPC17xx

 \Source

 \Source

 \Workspace

 \Demos

 \Intro

 \Source

 \Workspaces

 \Plugins

 \uCOS-II

Figure 1-1. Directory Structure

1.02 Setting up the Hardware

The processor can be programmed and debugged trough the 20-pin JTAG port using a JTAG emulator,
such as J-Link.

The board can be power up from a standard 5v DC converter, J-Link or the USB connector.
The Power select jumper (PWR_SEL) will determine the power supply used.

To use µC/Probe with the LPC1768-SK, download and install the trial version of the program from the

Micrium website as discussed in section 5. After programming your target with one of the included
projects, connect a RS-232 cable between the board and your PC, configure RS-232 options, and start
running the program.

1.03 Opening the Examples Projects

1.03.01 IAR Example Project

To view the IAR example project, start an instance of IAR Embedded Workbench, and open:

 LPC1768--OS-Probe.ewp, located in
 /Micrium/Software/EvalBoards/NXP/LPC1768-SK /IAR/OS-Probe folder.

To do this, use the Add Existing Project... menu command under the Project menu:

µC/Probe

Real-Time Monitor

Target

Communication

µC/Probe

RS232 LPC17xx

Ports

RS-232

Communication

µC/Probe

µC/OS-II Plug-in

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

9

Figure 1-2. IAR EW. Opening an existing project

IAR EWARM Versions

Be certain to open the proper project for your version of EWARM. The NXP LPC1768

examples project was built using EWARM ver. 5.4

1.03.02 IAR µC/OS-II Kernel Awareness.

The µC/OS-II Kernel Awareness plug-in will allow you to examine information about system objects while

using the C-Spy debugger. To gain access to this feature, enable the plug-in by right-clicking on the
project name in the work space browser and choosing Options… Then, select the “Debugger” entry in the

list box, and the “Plug-in” tab pane. Find the µC/OS-II entry in the list and, finally, select the check box

beside the entry. Make sure you select the correct plug-in for the correct version of µC/OS-II.

 “uC/OS-II for version 2.86 and earlier” for µC/OS-II version 2.86 and earlier

 “uC/OS-II” for µC/OS-II version 2.87 and above.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

10

Figure 1-3. Enabling the μC/OS-II Kernel Awareness Plug-In

1.03.03 IAR Project Options

The IAR project configurations allow you to compile, link and load the software in different ways to the
target. The following configuration is available in the IAR project.

 FLASH: This project option is configured to load the code into the Internal 256Kb Internal Flash.

1.04 Running the Example Applications

The example project includes a basic demonstration of μC/OS-II and μC/Probe. The evaluation board

components are labeled in the figure 1-4

Once the program is loaded onto the target, the LEDs will start blinking.

The system state will be output to the color LCD display, the joystick (toggle left/right) can be used to
move the output to a new item.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

11

Figure 1-4. IAR LPC1768-SK Development Board

The RS232 port labeled “RS232 for µC/Probe” is used for µC/Probe (at 115200 baud), which allows

you to view (in real-time) the value of any variables in the target system.

Color LCD

Nokia 6610

RS-232 for

µC/Probe

Application

Output

High Speed

SDCard interface

µC/FS

User’s Push

Buttons

User’s LEDs

JTA connector

USB Device Port

µC/USB-Device

USB Host Port

µC/USB-Host

USB OTG port

µC/OTG

User’s Push

Joystick

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

12

2. Directories and Files

Application Notes

\Micrium\AppNotes\AN1xxx-RTOS\AN1018-uCOS-II-Cortex-M3

This directory contains AN-1018.pdf, the application note describing the ARM-Cortex-M3 port for

μC/OS-II.

\Micrium\AppNotes\AN1xxx-RTOS\AN1080--uCOS-II-NXP-LPC1768-SK

This directory contains this application note, AN-1080.pdf.

\Micrium\AppNotes\AN9xxx-MULT\AN-9913-PROBE-DEMO-INTRO

This directory contains this application note, AN-9913.pdf describing the introductory demo for

μC/Probe

Licensing Information

\Micrium\Licensing

Licensing agreements are located in this directory. Any source code accompanying this appnote

is provided for evaluation purposes only. If you choose to use μC/OS-II in a commercial product,

you must contact Micriμm regarding the necessary licensing.

μC/OS-II Files

\Micrium\Software\uCOS-II\Doc

This directory contains documentation for μC/OS-II.

\Micrium\Software\uCOS-II\Ports\ARM\Generic\IAR

This directory contains the standard processor-specific files for the generic μC/OS-II ARM port

assuming the IAR toolchain. These files could easily be modified to work with other toolchains
(i.e., compiler/assembler/linker/locator/debugger); however, the modified files should be placed
into a different directory. The following files are in this directory:

 os_cpu.h

 os_cpu_a.asm

 os_cpu_c.c

 os_dcc.c

 os_dbg.c

With this port, μC/OS-II can be used in either ARM or Thumb mode. Thumb mode, which

drastically reduces the size of the code, was used in this example, but compiler settings may be
switched (as discussed in Section 2.30) to generate ARM-mode code without needing to change
either the port or the application code. The ARM/Thumb port is described in application note AN-

1014 which is available from the Micrium web site.

\Micrium\Software\uCOS-II\Source

This directory contains the processor-independent source code for μC/OS-II.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

13

μC/Probe Files

\Micrium\Software\uC-Probe\Communication\Generic\

This directory contains the μC/Probe generic communication module, the target-side code

responsible for responding to requests from the μC/Probe Windows application (including

requests over RS-232).

\Micrium\Software\uC-Probe\Communication\Generic\Source

This directory contains probe_com.c and probe_com.h, the source code for the generic
communication module.

\Micrium\Software\uC-Probe\Communication\Generic\OS\uCOS-II

This directory contains probe_com_os.c, which is the μC/OS-II port for the μC/Probe generic

communication module.

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232

This directory contains the RS-232 specific code for μC/Probe generic communication module,

the target-side code responsible for responding to requests from the μC/Probe Windows

application over RS-232

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232\Source

This directory contains probe_rs232.c and probe_rs232.h, the source code for the generic
communication module RS-232 code.

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232\Ports\NXP\LPC17xx

These directories contain probe_rs232c.c and probe_rs232c.h, the NXP LPC17xx port for the RS-
232 communications.

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232\OS\uCOS-II

This directory contains probe_rs232_os.c, which is the μC/OS-II port for the μC/Probe RS-232

communication module.

\Micrium\Software\uC-Probe\Demos\Intro\Source\

This directory contains probe_demo_intro.c, which contains a self-explanatory introductory demo

showing how to use μC/Probe (consult the application note AN-9913)

μC/CPU Files

\Micrium\Software\uC-CPU

This directory contains cpu_def.h, which declares #define constants for CPU alignment,

endianness, and other generic CPU properties.

\Micrium\Software\uC-CPU\ARM\IAR

This directory contains cpu.h and cpu_a.s. cpu.h defines the Micriμm portable data types for 8-,
16-, and 32-bit signed and unsigned integers (such as CPU_INT16U, a 16-bit unsigned integer).

These allow code to be independent of processor and compiler word size definitions. cpu_a.s
contains generic assembly code for ARM7 and ARM9 processors which is used to enable and
disable interrupts within the operating system. This code is called from C with
OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL().

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

14

μC/LIB Files

\Micrium\Software\uC-LIB

This directory contains lib_def.h, which provides #defines for useful constants (like DEF_TRUE

and DEF_DISABLED) and macros.

The files lib_mem.c and lib_mem.h contain code to replace the standard library functions
memclr(), memset(), memcopy() and memcmp(). These functions are replaced by

Mem_Clr(), Mem_Set(), Mem_Copy() and Mem_Cmp(), respectively.

The files lib_str.c and lib_str.h contain code to replace the standard library functions str???(),

with the equivalent Str_???() functions.

The files lib_str.c and lib_str.h contain code to replace the standard library functions str???(),

with the equivalent Str_???() functions.

The files lib_ascii.c and lib_ascii.h contain code to replace the standard library character
classification and case conversion functions & macros such as tolower(), toupper(),

isalpha(), isdigit(), etc. These functions are replaced with ASCII_ToLower(),

ASCII_ToUpper(), ASCII_IsAlpha()and ASCII_IsDig().

The files lib_math.c and lib_math.h contain code to replace the standard mathematics functions
such as rand(), srand(), etc. These functions are replaced with Math_Rand(),
Math_RandSetSeed().

The reason Micium declare its own function of for third party certification for avionics and medical
use

\Micrium\Software\uC-LIB\Doc

This directory contains the documentation for μC/LIB.

Application Code

\Micrium\Software\EvalBoards\NXP\LPC1768-SK\IAR\OS-Probe

This directory contains the source code the example application:

 app.c contains the test code for the example application including calls to the functions

that start multitasking within μC/OS-II, register tasks with the kernel, and update the user

interface (the LEDs and the push buttons).

 app_cfg.h is a configuration file specifying stack sizes and priorities for all user tasks and
#defines for important global application constants.

 app_probe.c/h contain code to initialize μC/Probe,

 app_hooks.c/h contain code for the μC/OS-II application hooks.

 app_vect.c contain the initialization code for the NXP LPC17xx processor

 includes.h is the master include file used by the application.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

15

 os_cfg.h is the μC/OS-II configuration file.

 cpu_cfg.h is the μC/CPU configuration file.

 probe_com_cfg.h is the μC/Probe configuration file.

 LPC1768-OS-Probe.* are the IAR Embedded Workbench project files for the IAR
LPC1768-SK board.

\Micrium\Software\EvalBoards\NXP\LPC1768 \IAR\BSP

This directory contains the Board Support Package and chip support package for the IAR
LPC1768-SK development board and LPC1768 processor.

 bsp.c /h contain generic BSP functions which initialize critical processor functions (e.g., the
PLL) and provide support for peripherals such as the push button and LEDs.

 bsp_int.c/h contain routines to install ISRs and enable/disable interrupt sources.

 bsp_pmc.c/h Contain basic function to enable, disable and retrieve clock frequency
information from the peripheral and system clocks.

 bsp_ser.c/h Provide simple serial interface for tracing functionality.

 bsp_gpio.c/h Contain basic functionality to configure and manipulate I/Os pins.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

16

3. Application Code

The example application described in this appnote, AN-1080, is a simple demonstration of μC/OS-II and

μC/OS-Probe for the NXP LPC1768 processors on the IAR LPC1768-SK developments board.

3.01 app.c

Four functions of interest are located in app.c:

1. main() is the entry point for the application, as it is with most C programs. This function

initializes the operating system, creates the primary application task, App_TaskStart(), begins

multitasking, and exits.

2. App_TaskStart(), after creating the application events and tasks, enters an infinite loop in

which it blinks the LEDs.

3. App_TaskKbd()polls the user inputs—Board‟s Joystick—and, if new input is detected, places a

message in a mailbox for App_TaskUserIF().

4. App_TaskUserIF(),Outputs the state of the system based on the display state passed to it by

App_TaskKbd().

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

17

int main (void) /* Note 1 */

{

#if (OS_TASK_NAME_EN > 0)

 CPU_INT08U err;

#endif

#if (CPU_CFG_NAME_EN == DEF_ENABLED)

 CPU_ERR cpu_err;

#endif

 CPU_Init(); /* Note 2 */

#if (CPU_CFG_NAME_EN == DEF_ENABLED)

 CPU_NameSet((CPU_CHAR *)"LPC1768",

 (CPU_ERR *)&cpu_err);

#endif

 CPU_IntDis(); /* Note 3 */

 OSInit(); /* Note 4 */

 OSTaskCreateExt((void (*)(void *)) App_TaskStart, /* Note 5 */

 (void *) 0,

 (OS_STK *)&AppTaskStartStk[APP_CFG_TASK_START_STK_SIZE - 1],

 (INT8U) APP_CFG_TASK_START_PRIO,

 (INT16U) APP_CFG_TASK_START_PRIO,

 (OS_STK *)&AppTaskStartStk[0],

 (INT32U) APP_CFG_TASK_START_STK_SIZE,

 (void *) 0,

 (INT8U)(OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR));

#if (OS_TASK_NAME_EN > 0) /* Note 6 */

 OSTaskNameSet(APP_CFG_TASK_START_PRIO, (CPU_INT08U *)"Startup", &err);

#endif

 OSStart(); /* Note 7 */

 return (1);

}

Listing 3-1, main()

Listing 3-1, Note 1: As with most C applications, the code starts in main().

Listing 3-1, Note 2: CPU_Init() initialize the μC/CPU module. CPU_NameSet() set the CPU Host

Name

Listing 3-1, Note 3: CPU_IntDis() Disable all the interrupts. All interrupts are disabled to make sure

the application does not get interrupted until is fully initialized.

Listing 3-1, Note 4: OSInit() must be called before creating a task or any other kernel object, as must

be done with all μC/OS-II applications.

Listing 3-1, Note 5: At least one task must be created (in this case, using OSTaskCreateExt() to

obtain additional information about the task). In addition, μC/OS-II creates either one or two

internal tasks in OSInit(). μC/OS-II always creates an idle task, OS_TaskIdle(), and will

create a statistic task, OS_TaskStat() if you set OS_TASK_STAT_EN to 1 in os_cfg.h.

Listing 3-1, Note 6: You can name μC/OS-II tasks (and other kernel objects) and display task names at

run-time or with a debugger. In this case, the App_TaskStart() is given the name “Start Task”.

Because C-Spy can work with the Kernel Awareness Plug-In available from Micriμm, task names
can be displayed during debugging.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

18

Listing 3-1, Note 7: Finally multitasking under μC/OS-II is started by calling OSStart(). μC/OS-II will

then begin executing App_TaskStart() since that is the highest-priority task created (both

OS_TaskStat() and OS_TaskIdle() having lower priorities).

static void App_TaskStart (void *p_arg)

{

 (void)p_arg;

 BSP_Init(); /* Note 1 */

 BSP_OS_TmrTickInit(OS_TICKS_PER_SEC); /* Note 2 */

#if (OS_TASK_STAT_EN > 0)

 OSStatInit(); /* Note 3 */

#endif

 Mem_Init(); /* Note 4 */

 Math_Init();

 BSP_SerInit(115200); /* Note 5 */

 APP_TRACE_INFO(("\n\n\r"));

#if (APP_CFG_PROBE_COM_MODULE_EN == DEF_ENABLED) || \

 (APP_CFG_PROBE_OS_PLUGIN_EN == DEF_ENABLED)

 App_ProbeInit(); /* Note 6 */

#endif

 APP_TRACE_INFO(("Creating Application Events...\n\r"));

 App_EventCreate(); /* Note 7 */

 APP_TRACE_INFO(("Creating Application Tasks...\n\r"));

 App_TaskCreate();

 while (DEF_TRUE) { /* Note 8 */

 BSP_LED_Toggle(0);

 OSTimeDlyHMSM(0, 0, 0, 100);

 }

}

Listing 3-2, App_TaskStart ()

Listing 3-2, Note 1: BSP_PostInit() initializes the Board Support Package drivers that are related to

the OS or use a OS service (semaphores, mutexes, queues, etc)

Listing 3-2, Note 2: BSP_OS_TmrTickInit() Initializes the tick interrupt

Listing 3-2, Note 3: OSStatInit() initializes μC/OS-II‟s statistic task. This only occurs if you enable

the statistic task by setting OS_TASK_STAT_EN to 1 in os_cfg.h. The statistic task measures

overall CPU usage (expressed as a percentage) and performs stack checking for all the tasks
that have been created with OSTaskCreateExt() with the stack checking option set.

Listing 3-2, Note 4: Mem_Init() initializes the μC/LIB memory management module.

Mem_Math()initializes the μC/LIB mathematical module.

Listing 3-2, Note 5: BSP_Ser_Init() Initializes the RS-232 communication port at 115200.

Listing 3-2, Note 6: If µC/OS-Probe is enabled, then the module‟s initialization procedure

App_ProbeInit() is called. App_ProbeInit()calls OSProbe_Init() which initializes the

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

19

µC/Probe plug-in for µC/OS-II, which maintains CPU usage statistics for each task,

ProbeCom_Init() that initializes the µC/Probe generic communication module and

ProbeRS232_Init() that initializes the RS-232 communication module. After these have been

initialized, the µC/Probe Windows program will be able to download data from the processor.

For more information, see Section 6.

Listing 3-2, Note 7: App_EventCreate()Creates all the application uC/OS-II events and

App_TaskCreate()creates all the application tasks.

Listing 3-2, Note 8: Any task managed by µC/OS-II must either enter an infinite loop „waiting‟ for some

event to occur or terminate itself. This task enters an infinite loop in which it toggles the LEDs .

3.02 os_cfg.h

The file os_cfg.h is used to configure µC/OS-II and defines the maximum number of tasks that your

application can have, which services will be enabled (semaphores, mailboxes, queues, etc.), the size of
the idle and statistic task and more. In all, there are about 60 or so #define that you can set in this file.

Each entry is commented and additional information about the purpose of each #define can be found in

Task sizes for the Idle (OS_TASK_IDLE_STK_SIZE), statistics OS_TASK_STAT_STK_SIZE) and timer

(OS_TASK_TMR_STK_SIZE) task are set to 128 OS_STK elements (each is 4 bytes) and thus each task

stack is 512 bytes. If you add code to the examples make sure you account for additional stack usage.

 OS_DEBUG_EN is set to 1 to provide valuable information about µC/OS-II objects to IAR‟s C-Spy

through the Kernel Awareness plug-in. Setting OS_DEBUG_EN to 0 should some code space

(though it will not save much).

 OS_LOWEST_PRIO is set to 63, allowing up to 64 total tasks.

 OS_MAX_TASKS determines the number of “application” tasks and is currently set to 20 allowing

13 more tasks to be added to the example code.

 OS_TICKS_PER_SEC is set to 1000 Hz. This value can be changed as needed and the proper

tick rate will be adjusted when the BSP_OS_TmrTickInit() is called. if you change this value.

You would typically set the tick rate between 10 and 1000 Hz. The higher the tick rate, the more

overhead µC/OS-II will impose on the application. However, you will have better tick granularity

with a higher tick rate.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

20

4. Board Support Package (BSP)

The Board Support Package (BSP) provides functions to encapsulate common I/O access functions and
make porting your application code easier. Essentially, these files are the interface between the
application and LPC1768-SK board.

4.01 BSP, bsp_xxx.c and bsp_xxx.h files

Figure 4-1 shows the relationship between the BSP‟s functions list and the most important components
on the Processor/development boards

Figure 4-1. BSP’s Functions List for the LPC1768-SK

Interrupt Controller
bsp_int.c/h

BSP_IntDis()

BSP_IntDisAll()

BSP_IntEn()

BSP_IntClr()

BSP_IntInit()

BSP_IntVectSet()

LEDs
bsp.c/h

BSP_LED_On()

BSP_LED_Off()

BSP_LED_Toggle()

Serial Interface

bsp_ser.c/h

BSP_SerInit()

BSP_SerPrintf()
BSP_SerRdByte()

BSP_SerRdStr()

BSP_SerWrByte()

BSP_SerWrStr()

Power Management controller
bsp_pmc_ctrl.c/h

BSP_PM_PerClkEn()

BSP_PM_PerClkDis(

BSP_PM_PerClkFreqGet()

BSP_PM_CPU_ClkGet()

Parallel Input/Output

Controller

bsp_gpio.c/h

BSP_GPIO_Cfg()

BSP_GPIO_Clr()

BSP_GPIO_StatusGet()

BSP_GPIO_Toggle()

BSP_GPIO_Set()

BSP_GPIO_IntClr()

OS Layer
bsp_os.c/h

BSP_OS_SemCreate()

BSP_OS_SemWait()

BSP_OS_SemPost()

BSP_OS_TmrTickInit()

BSP_OS_TimeDlyMs()

Push Buttons
bsp.c/h

BSP_PB_GetStatus()

Joystick
bsp.c/h

BSP_Joy_GetStatus()

BSP_Joy_GetPos()

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

21

4.02 Board Support Package Configuration

The serial port used to output the system state can be configured at compile-time using the following
#define:

BSP_CFG_SER_COMM_SEL
BSP_SER_COMM_UART_00

BSP_SER_COMM_UART_01

Defines the
serial port used
to output the
system state.

4.03 Tick Interrupt code.

Listings 5-2 gives the μC/OS-II timer tick initialization function, BSP_OS_TmrTickInit().

void BSP_OS_TmrTickInit (CPU_INT32U tick_per_sec)

{

 CPU_INT32U cnts;

 CPU_INT32U cpu_freq;

 cpu_freq = BSP_PM_CPU_FreqGet(BSP_SYS_CLK_ID_MCLK); /* Note 1 */

 cnts = (cpu_freq / tick_rate); /* Note 2 */

 OS_CPU_SysTickInit(cnts);

}

Listing 5-2, BSP_OS_TmrTickInit()

The µC/OS-II ARM Cortex M3 port uses the SysTick timer. On the NXP LPC17xx processors the

SysTick clock is the CPU clock.

Listing 5-2, Note 1: Get the CP clock frequency.

Listing 5-2, Note 2: Calculate the reload value.

Listing 5-2, Note 3: OS_CPU_SysTickInit() initialize the SysTick timer with the number of SysTick

counts between two OS tick interrupts.

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

22

5. μC/Probe

µC/Probe is a Windows program which retrieves the values of global variables from a connected

embedded target and displays the values in a engineer-friendly format. To accomplish this, an ELF file,
created by the user‟s compiler and containing the names and addresses of all the global symbols on the

target, is monitored by µC/Probe. The user places components (such as gauges, labels, and charts) into

a Data Screen in a µC/Probe workspace and assigns each one of these a variable from the Symbol

Browser, which lists all symbols from the ELF file. The symbols associated with components placed on
an open Data Screen will be updated after the user presses the start button (assuming the user‟s PC is
connected to the target).

µC/Probe currently interfaces with a target processor with a RS-232. A small section of code resident on

the target receives commands from the Windows application and responds to those commands. The
commands ask for a certain number of bytes located at a certain address, for example, “Send 16 bytes
beginning at 0x0040102C”. The Windows application, upon receiving the response, updates the
appropriate component(s) on the screens with the new values.

Figure 5-1. µC/Probe Windows Program

Symbol Browser.

Contains all symbols

from the ELF files added

to the workspace.

Data Screen.

Components are placed

onto the data screen and

assigned symbols during

Design View. During Run-

Time View, these

components are updated

with values of those

symbols from the target

Start Button.

This button switches

between Design and

Run-Time Views.

During Run-Time View

(when data is

collected), this will

appear as a stop button

(a blue square).

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC1768-SK CPUs

23

To use µC/Probe with the example project (or your application), do the following:

1. Download and Install µC/Probe. A trial version of µC/Probe can be downloaded from the

Micriµm website at

 http://www.micrium.com/products/probe/probe.html

2. Open µC/Probe. After downloading and installing this program, open the example µC/Probe

workspace for µC/OS-II, named OS-Probe-Workspace.wsp, which should be located in your

installation directory at

 /Program Files//Micrium/uC-Probe/Target/Plugins/uCOS-II/Workspace

3. Connect Target to PC. Currently, µC/Probe can use RS-232 to retrieve information from the

target. You should connect a RS-232 cable between your target and computer.

4. Load Your ELF File. The example projects included with this application note are already
configured to output an ELF file. (If you are using your own project, please refer to Appendix A of

the µC/Probe user manual for directions for generating an ELF file with your compiler.) This file

should be in

 /<Project Directory>/<Configuration Name>/exe/

 where <Project Directory> is the directory in which the IAR EWARM project is located (extension
*.ewp) and <Configuration Name> is the name of the configuration in that project which was built
to generate the ELF file and which will be loaded onto the target. The ELF file will be named

 <Project Name>.elf

in EWARM v4.4x and

 <Project Name>.out

in EWARM v5.1x unless you specify otherwise. To load this ELF file, right-click on the symbol
browser and choose “Add Symbols”.

5. Configure the RS-232 Options. In µC/Probe, choose the “Options” menu item on the “Tools”

menu. A dialog box as shown in Figure 6-2 (left) should appear. Choose the “RS-232” radio
button. Next, select the “RS-232” item in the options tree, and choose the appropriate COM port
and baud rate. The baud rate for the projects accompanying this appnote is 115200.

6. Start Running. You should now be ready to run µC/Probe. Just press the run button () to

see the variables in the open data screens update. Figure 6-3 displays two screens in the µC/OS-

II workspace which display detailed information about each task‟s state.

http://www.micrium.com/products/probe/probe.html

 Micriµm

µC/OS-II and µC/Probe for the

NXP LPC17xx CPUs

Figure 5.2. µC/Probe Options

Figure 5-3. µC/Probe Run-Time: µC/OS-II Task Information

 Micriµm

µC/OS-II and µC/Probe for the

 NXP LPC17xx CPUs

25

Licensing

μC/OS-II is provided in source form for FREE evaluation, for educational use or for peaceful research. If

you plan on using μC/OS-II in a commercial product you need to contact Micriμm to properly license its

use in your product. We provide ALL the source code with this application note for your convenience and

to help you experience μC/OS-II. The fact that the source is provided does NOT mean that you can use it

without paying a licensing fee. Please help us continue to provide the Embedded community with the
finest software available. Your honesty is greatly appreciated.

References

µC/OS-II, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-57820-103-9

Embedded Systems Building Blocks
Jean J. Labrosse
R&D Technical Books, 2000
ISBN 0-87930-604-1

Contacts

IAR Systems
Century Plaza
1065 E. Hillsdale Blvd
Foster City, CA 94404
USA

+1 650 287 4250
+1 650 287 4253 (FAX)

e-mail: Info@IAR.com
WEB : www.IAR.com

CMP Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
USA

+1 785 841 1631
+1 785 841 2624 (FAX)

e-mail: rushorders@cmpbooks.com
WEB : http://www.cmpbooks.com

Micriµm
949 Crestview Circle
Weston, FL 33327
USA

+1 954 217 2036
+1 954 217 2037 (FAX)

e-mail: support@micrium.com
WEB : www.micrium.com

mailto:Info@IAR.com
http://www.iar.com/
mailto:rushorders@cmpbooks.com
http://www.cmpbooks.com/subject/embedded_systems
http://www.micrium.com/

	About Micriµm
	About µC/OS-II
	Licensing
	About µC/Probe
	Manual Version
	Software Versions
	See Also
	Document Conventions
	Table of Contents
	Getting Started.
	1.01 Installing the Micirum Software
	1.02 Setting up the Hardware
	1.03 Opening the Examples Projects
	1.04 Running the Example Applications

	2. Directories and Files
	3. Application Code
	3.01 app.c
	3.02 os_cfg.h

	4. Board Support Package (BSP)
	4.01 BSP, bsp_xxx.c and bsp_xxx.h files
	4.02 Board Support Package Configuration
	4.03 Tick Interrupt code.

	5. μC/Probe
	Licensing
	References
	Contacts

