
3D Visualization using virtual view generation for

stereoscopic hardware

Jordi de la Torre Lara

Directors: Javier Ruiz Hidalgo, Ramon Morros Rubio

February 2010

2

Contents

1 Introduction 7

1.1 3D Virtual Views . 7

1.2 Objectives . 8

1.3 Overview of the Project . 10

2 Background Information 13

2.1 Stereoscopic Vision . 13

2.2 Accelerometer. A theoretical aproach . 15

2.2.1 Usage . 17

2.3 Basic Notions on the Creation of Virtual Views 17

2.3.1 Camera Model and its Parameters 19

2.4 Rotation of a 3D Point . 24

3 State of the Art 27

3.1 Virtual View Generation Methods . 27

3.1.1 Model-based rendering . 28

3.1.1.1 Active methods . 28

3.1.1.2 Passive methods . 29

3.1.2 Image-based rendering . 30

3.1.2.1 Seitz-Dyer . 30

3.1.2.2 Brief Explanation of the 3D Reconstruction used in this

Project . 31

3.2 Different 3D Devices . 33

3.2.1 eDimensional Wireless 3D Glasses 34

3

4 CONTENTS

3.2.2 Vuzix iWear VR920 . 35

3.2.2.1 Calibration . 36

3.2.2.2 Errors in the Accelerometer of the VR920 37

3.2.2.3 Linux incompatibility 38

4 Virtual Views Generator Tool. Algorithm 39

4.1 Reproducing Sequences in the VR920 39

4.1.1 Direct3D Textures and Devices 40

4.2 Creation of Stereoscopic Virtual Views 41

4.2.1 Automatic Camera Selection . 43

4.2.2 Obtaining the virtual parameters 44

4.2.2.1 Rotation of the Virtual View 44

4.2.3 Image Projection . 45

4.2.4 Composition . 46

4.2.5 Gaps and Occlusions . 47

5 Implementation and interpretation of results 49

5.1 Accelerometer in the iWear VR920 . 50

5.1.1 Yaw Error . 50

5.1.1.1 Compensation . 54

5.1.2 Conclusion . 58

5.2 Generation of Rotated Virtual Views in a Random Position 58

5.2.1 Corners . 59

5.2.2 Different Basic Rotations . 59

5.2.2.1 Roll . 60

5.2.2.2 Pitch . 63

5.2.2.3 Yaw . 65

5.2.3 How to deal with gaps, occlusions and other issues 67

5.2.3.1 Interpolation . 68

5.2.3.2 A Third Camera . 72

5.2.3.3 Two Separated Cameras 74

5.3 Time Performance . 76

5.3.1 Comparison between Windows and Linux 76

CONTENTS 5

6 Conclusions 79

6.1 Conclusions and Contributions . 79

6.1.1 An applicaction . 80

6.2 Future Research . 82

7 Bibliography 85

8 Annex 89

8.1 Direct3D . 89

8.1.1 Textures . 90

8.1.2 Devices . 91

8.2 Rotated Virtual Views . 92

8.2.1 Combinated Rotations . 92

8.2.1.1 Pitch and Yaw . 93

8.2.1.2 Pitch, Yaw and Roll . 94

6 CONTENTS

Chapter 1

Introduction

1.1 3D Virtual Views

In these early years of the new millenium, the rising possibilities of 3D technology have

led to an important and unfinished effort in order to turn several fields into amazing

immersing experiences, being the most important entertainment. Its applications in

videogames go beyond the wildest dreams of our predecessors, and the possibility of

actually living a movie as one of the characters is no longer a chimera, and is regarded

as a way to take people back to the cinemas and thus fight piracy.

Figure 1.1: VirtualView

In order to introduce the viewer into a certain scene, giving them the feeling of be-

ing inside a 3D environment, plenty of information about it is necessary. It must be

previously recorded by different cameras from several points of views, so that they all

7

8 CHAPTER 1. INTRODUCTION

together cover every angle. The previous situation leads to Multiview video (MVV)

applications.

If the goal is to have a full 3D representation of the scene, so that the viewer can move

freely around it and have a view of every spot, an excessive number of cameras should

be used, and consequently, two much memory and CPU would be required.

Hence, the creation of virtual views stands as a major challenge, as a way of reducing

the number of cameras by reconstructing a specific point of view from the information

of two nearby cameras. A clear example would be the scene in Figure 1.1. If the

purpose is to move around the kitchen with total freedom, it is necessary to have the

information from different cameras covering the area. For instance, the current view

makes it impossible to see whether there is something behind the table or not, while a

camera placed one meter on the right might provide more information. Then, if both

informations were combined, every spot could be reconstructed by one or the other

image.

1.2 Objectives

Sometimes, the available cameras cannot provide images of a certain position in a con-

crete scene, and then, instead of using more cameras, which may not be possible in some

cases, image processing techniques reconstruct the desired view, taking into account the

position and the rotation desired, and using images from the nearest cameras, as long

as other information. The idea, always, is to recreate the maximum space with a re-

duced number of cameras, which would be the first goal of the project: the creation

of virtual views.

Another example of this can be seen in Figure 1.2, where there is a circular room

surrounded by eight cameras. Each of them is placed in a different spot so they all

together cover a major part of the scene. Therefore, using the information of two of

them, considering the redundancy in their images, it is possible to create a virtual

camera in any position between the original ones.

1.2. OBJECTIVES 9

Figure 1.2: FreeViewpoint

However, sometimes two cameras are unable to provide enough information about a

certain position, and then it is necessary to interpolate the missing pixels with the ones

around them, or even, if the unknown regions are wide enough, use a third camera.

Unfortunately, due to the involved computational complexity, it is difficult to perform

this process in real-time.

At this point, a virtual view can be recreated in a certain position, the viewpoint freely

chosen by the user, with information from some cameras distributed on the area. But

the second goal is to have 3D views. It is now time to introduce the stereoscopic effect.

It consists on two slightly different images sent to each eye so that the brain mix them

creating a 3D image. In order to do so, the information must be send to a device,

a pair of glasses that the user must wear. As they move around a scene (which is not

actually the one he is seeing), or rotates his head, the new views must be generated and

shown to them.

10 CHAPTER 1. INTRODUCTION

The device used for that purpose is the Vuzix iWear VR920 [3], the so-called first video

eyewear to let you step inside virtual worlds, MMOs (massively multiplayer online game)

and 3D games. It provides information about the relative movement, and therefore

angles of rotation, using the acceleremoters, devices that will be explained in the next

chapter.

To summarize, the final purpose is to create a compact tool that generates virtual

stereo views at a desired position, being able to move and rotate it, from the information

of several cameras spread in the area. These views will allow to visualize the scene in

3D, using a device that reproduces the stereoscopic effect, from the current point of

view.

1.3 Overview of the Project

The document is divided into five main sections, from Chapter 2 to Chapter 6. Each

of them is a step towards the final goal: the creation of virtual 3D Views in a Free

Viewpoint environment using a specific device (the Vuzix iWear VR920).

In Chapter 2, some basic information will be provided regarding the theoretical con-

cepts on which the whole project will be constructed. There will be a brief explanation

about stereoscopic vision and how it is used in order to have a 3D Virtual View. More-

over, the concept of accelerometer, which was mentioned when introducing the glasses,

and its usage, will also be clarified.

Once those concepts have been studied, there will be a brief explanation in Chapter 3,

State of the Art, of the different devices available to show the virtual views in 3D,

and among them, the so-called iWear VR920 , which will be the one used in the project.

Finally, the process of creating 3D virtual views, will also be dealt with here. Those

views must be at any point in a scene, and rotated in any direction the user wants.

The next two chapters might be considered the core of the project. In the fourth,

Virtual Views Generator Tool: Algorithm, the developed program will be studied.

1.3. OVERVIEW OF THE PROJECT 11

There are two differenciated parts in the project: the interaction with the device and

the generation of the virtual views. The second part has already been studied in other

projects, and in this one, several functions already created by other students of the

department are used, others being modified and some created.

After the fourth chapter, where the necessary background for the project is concluded,

in the fifth, Implementation and Interpretation of Results, the behaviour of the

accelerometer in the VR920 and the virtual views obtained will be tested. Different

rotations, and the problems that may appear during the process of constructing them,

with possible solutions, will be the main part of the section. Moreover, computational

performance will also be tackled here, comparing the results of the different alternatives.

In the last section, Chapter 6, Conclusions, a comparison will be done between the

initial goals of the project and the final results achieved, as long as a brief explanation

of the possible lines of future research in the area.

In the end, the different parts of the project become a single unity, as a powerful tool

able to work with the device in the creation of virtual views and showing 3D sequences

of a certain scene with a reduced number of information.

Finally, it is necessary to say that this project is actually, in some way, the culmination

of many others developed in the last years in the Image Processing Group in UPC.

Creation of virtual views is a subject which has been studied by some colleagues for

their own projects. However, in order to make a strong tool, some aspects have been

improved, as long as developing some new software as far as rotation is concerned. Also,

one of the biggest challenges was to join all the previous work and use it in a physical

device, the VR920. The final result is a promising experience, putting into practice

with in a real case all the software developed during the last years.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Background Information

2.1 Stereoscopic Vision

In order to understand how a certain scene will be constructed from different 2D images

into a 3D Virtual View, the first step is to clarify the concept of steoscopic vision (also

known as stereographic vision). What it is, and how it is used, will provide a tool to

convert single 2D views into complete inmersing scenes.

Most of the animals (including humans) have steoscopic vision. Objects are seen with

two eyes simultaneously, both set in the same plane. Of course, there are exceptions,

for instance fishes, with their eyes located on opposite sides of the head. They generate

and independent image in each eye, while in humans, the image in each retina is only

slightly different, as we can see in Figure 2.1. The two images will be far more different

for an object which is near the viewer than in the case that the object is far away. This

effect is imperceptible for distant objects such as mountains.

Afterwards, the perceptions of the eyes are combined in the brain, and interpreted in

terms of depth and distances to the objects seen. The final picture that is created in

the human brain is a 3D stereo image.

13

14 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.1: Stereoscopic Vision

The main feature of stereo vision is the ability to see objects as solid in three spatial

dimensions–width, height and depth (x, y and z), being the added perception of the

depth dimension the most important, thanks to which it is possible to locate objects in

relation to a specific point.

It is so important that stands as the major reason why some species are hunters while

others are hunted. Stereoscopic vision allows the hunters to know how far away their

food is. Most predators (humans, lions, wolves, tigers...) have it. Hunted animals,

however, need to see danger coming from all directions, not just in front of them. This

is why they have eyes on the sides or on top of their heads (deers, squirrels, most

birds...).

Figure 2.2: Stereoscopic Vision in Humans

Human eyes have an overlapping field of view of about 120◦. It is only in this field that

they have stereoscopic vision. Beyond this 3-D area out to 160-180◦, objects are seen

2.2. ACCELEROMETER. A THEORETICAL APROACH 15

only in two dimensions, without depth.

People looking at a stereoscopic picture may find the third dimension develops slowly.

The longer they look, the more computation the brain gets through and the 3D impres-

sion gets better. Therefore, stereoscopic vision is partly a learned response.

One of the goals of this project is to reproduce the process using a certain device.

Two 2D images will be necessary to create a 3D one, each of which must show the

same scene from slightly different positions. The separation between them will be 6cm

aproximately, the standarized eye separation. The process followed to obtain a 3D

image is a projection of the one taking place in the brain. The device used to do that

is called iWear VR920, and it will be extensively studied in further chapters.

It must be pointed out that this process is already used in several applications nowadays.

In most cases, the same scene is recorded twice using different cameras. Using image

processing techniques , it is possible to achieve the same results with a reduced number

of cameras, generating the missing views from the ones available. Needless to say, it

has many benefits, from economical to computational.

2.2 Accelerometer. A theoretical aproach

An accelerometer is an electromechanical device that measures acceleration forces. These

forces may be static, like gravity, or they could be dynamic - caused by moving or vi-

brating the accelerometer. They are always measured in relation to freefall.

The accelerometer can be divided into two parts: the first, a single-degree-of-freedom

vibrating mass, which converts the acceleration into a movement; the second, a trans-

ducer converting the displacement of the mass into an electric signal. They both can

have different natures. The first one has two possibilities:

• Spring-Retained Seismic Mass. In most accelerometers, acceleration forces a

seismic mass, that is damped, and restrained by a spring, so that it moves relative

16 CHAPTER 2. BACKGROUND INFORMATION

to the casing along a single axis. The displacement of the mass and the extension

of the spring are proportional to the acceleration only when the oscillation is below

the natural frequency.

• Double-Cantilever Beam. Few accelerometers use it. The dual-cantilever beam

can be modeled as a spring-mass-dashpot.

Accelerometers have developed from a simple water tube with an air bubble that showed

the direction of the acceleration to an integrated circuit that can be placed on a circuit

board. They are currently small micro electro-mechanical systems (MEMS), consisting

of little more than a cantilever beam with a proof mass. Future advancements will use

nanotechnology, dramatically reshaping this area.

There are several types of accelerometers, depending on how they measure the acceler-

ation, or in other words, depending on the nature of the second transducer (how they

produce the electric signal). Some of the most important are shown on Table 2.1:

Type of Accelerometer Features

Capacitive The accelerometer senses the capacitance change between a

static condition and the dynamic state

Piezoelectric Use materials such as crystals, which generate electric po-

tential from an applied stress (piezoelectric effect)

Magnetoresistive Measures changes in resistance due to a magnetic field.

Hall Effect measure voltage variations stemming from a change in the

magnetic field around the accelerometer

Heat transfer A single heat source is centered in a substrate and suspended

across a cavity. Thermoresistors are spaced on all four sides

of it. Under zero acceleration the heat gradient is symmet-

rical, and it becomes asymmetrical under any acceleration

Table 2.1: Different Types of Accelerometers

Currently, they can measure: vibrations (to isolate the vibration of mechanical systems

from outside forces), shocks, impacts (determine the severity of it), tilt and motion of

2.3. BASIC NOTIONS ON THE CREATION OF VIRTUAL VIEWS 17

an object. The last feature is extremely helpfull if the purpose is to walk around an

area and have information of the position constantly, or at least, of the rotation of the

device in order to generate the proper virtual view.

That is the reason for using a device as the one chosen, the iWear VR920. Not only it

allows to show two images (one for each eye) and therefore enables stereoscopic effect,

but is has three accelerometers inside, with the consequent motion information.

2.2.1 Usage

Accelerometers have many applications. These range from triggering airbag deploy-

ments to the monitoring of nuclear reactors. Cell phones (being the iPhone a good

example), computers and washing machines nowadays contain then. They can be used

to measure the performance of an automobile, the vibration of a machine or the motions

of a bridge. They are useful in computer peripherals, and essencial in head mounted

displays (being the iWear VR920, the center of this project, one of the latest mod-

els). They also have medical applications, such as patient monitoring (emergency call),

hospital bed control and physical therapy.

As an example of its popularity, IBM and Apple have recently started using accelerom-

eters in their laptops to protect hard drives from damage. In case the laptop is acci-

dentally dropped, the accelerometer detects the sudden freefall, and switches the hard

drive off so the heads don’t crash on the platters.

In a similar fashion, they are the industry standard way of detecting car crashes and

deploying airbags at just the right time.

2.3 Basic Notions on the Creation of Virtual Views

Although in the next chapter, State of the Art, the used method to create the virtual

views will be studied, it is necessary to have some knownledge of certain concepts before.

18 CHAPTER 2. BACKGROUND INFORMATION

The scene has several cameras on it, and the virtual views are created in intermediate

positions between them. Therefore, each of the cameras has to be completely charac-

terized. Three items are required for that purpose:

• The image that each of the cameras provide. In Figures 2.3 and 2.4 there are the

views from camera 1 and 2. They are very similar, as the cameras are separated

few centimeters, a feature that will make it possible to reconstruct intermediate

views from their redundancy.

Figure 2.3: Camera 1 Figure 2.4: Camera 2

• The depth map: a two-dimensional array where the x and y corresponds to the

rows and columns of pixels of an ordinary image, and depth readings (z values) are

stored in the element, scaled and represented with values between 0 (the furthest)

255 (the nearest). Depth map is like a grey scale image except the z information

replaces the intensity information.

Figure 2.5: Depth Map Camera 1

2.3. BASIC NOTIONS ON THE CREATION OF VIRTUAL VIEWS 19

• The camera parameters. They are divided into intrinsic and extrinsic. The

intrinsic include the most relevant internal parameters of the camera and the

parameters of the sensor, while the extrinsic ones determine the position and the

rotation of the camera. But before getting into details with them, it is important

to understand the camera model that is used, as the parameters strongly depend

on it.

2.3.1 Camera Model and its Parameters

The model used is called the Pinhole Camera Model [1].

The principle of a pinhole camera is simple. In it, light rays from an object, in the case

of Figure 2.6 a tree, pass through a small hole to form an image (an inverted one) in

a plane (one side of the box). The pinhole camera can be described, therefore, as a

light-proof box with a hole in one side.

The model states that the camera is fully caracterized with the hole, which is called

aperture, and the plane where the image is projected.

The reason for using this model is that is assumes perfect pinhole cameras, hence mea-

suring with infinite accuracy the image in <2. Also, the principal point is in the center

of the image. On the other hand, physical camera lenses provide distorted imaging pro-

jections, finite resolutions defined by the sensing devices in digital cameras, and offset

between image center and optical center.

Considering a certain point p = [X,Y, Z]T ∈ <3 and its image x = [x, y]T ∈ <2, as in

Figure 2.7

where x : X = y : Y = -f : Z

being f the perpendicular distance between the aperture and the image plane.

Then x = −fX/Z and y = −fY/Z

20 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.6: Pinhole camera. An example of a projection

Figure 2.7: Pinhole camera model. The image is inverted

In Figure 2.6, as long as in the last equation, it is noted that the mapping from 3D to 2D

coordinates is not only a perspective projection, but also a 180o rotation of the image.

In order to produce an unrotated image, which is what is expected from a camera, there

are two possibilities:

• Rotate the coordinate system in the image plane 180o (in either direction).

• Place the image plane so that it intersects the X axis at f instead of at -f and

rework the previous calculations. This would generate a virtual (or front) image

plane which cannot be implemented in practice, but provides a theoretical camera

2.3. BASIC NOTIONS ON THE CREATION OF VIRTUAL VIEWS 21

which may be simpler to analyse than the real one.

The first option is chosen, and then, the initial model of Figure 2.7 becomes the one in

Figure 2.8, where the point (x,y) can now be expressed as:

(
x

y

)
= f/Z

(
X

Y

)
(2.1)

Figure 2.8: Frontal Pinhole camera model. The coordinate system in the image plane

is rotated 180o

In homogenous coordinates, the Equation 2.1 can be expressed as:

Z

x

y

1

 =

f 0 0 0

0 f 0 0

0 0 1 0

X

Y

Z

1

 (2.2)

The need for this transformation from 2D to 3D (or from 3D to 2D) will be explained

when the reconstruction method is analised in the State of the Art.

Now, it is necessary to transform from image coordinates (meter units) to pixels. In

Figure 2.9 there is a representation of the process. It is divided in two stages.

22 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.9: Transformation from image coordinates to pixel coordinates

(
Xs

Y s

)
=

(
Sx 0

0 Sy

)(
x

y

)
(2.3)

Where Sx and Sy are the number of pixels per cm in the horizontal and vertical direction,

a parameter that should be modified in case of a change in the resolution of the images.

Moreover, as it was previously mentioned, the image origin must be now the center of

the image. This is done in Equation 2.4

x′ = Xs+Ox; y′ = Y s+Oy. (2.4)

(Ox,Oy) is the center of projection, located where the optical axis passes through the

camera plane. It is normally the center of the image.

Expressed in homogeneous coordinates:

x′

y′

1

 =

Sx 0 Ox

0 Sy Oy

0 0 1

x

y

1

 (2.5)

And using equation 2.2 and 2.5 to express the complete transformation from 3D to 2D,

2.3. BASIC NOTIONS ON THE CREATION OF VIRTUAL VIEWS 23

results equation 2.6

Z

x′

y′

1

 =

Sx 0 Ox

0 Sy Oy

0 0 1

f 0 0 0

0 f 0 0

0 0 1 0

x

y

1

 (2.6)

Also expressed as in equation 2.7

Z

x′

y′

1

 =

fSx 0 Ox

0 fSy Oy

0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

x

y

1

 (2.7)

However, this is only a projection from a 3D world to pixels of a 2D image. In equa-

tion 2.7, there is include the so-called Calibration Matrix, which includes the intrinsic

parameters of the camera. Named K, it is included in the file provided along with the

images and the depth maps. Its generical form is:

K =

fSx fsθ Ox

0 fSy Oy

0 0 1

 (2.8)

But sometimes (most times actually), the camera is not in the (0,0,0) position, so it is

required to be able to rotate and translate the images. This is done using equation 2.9.

Xw = RX + T (2.9)

Finally, to sum up, the points of the original images are projected into the camera plane

multiplying them by the Projection Matrix, being the general form of it the one seen

on Equation 2.10.

P = K[R|T] (2.10)

24 CHAPTER 2. BACKGROUND INFORMATION

2.4 Rotation of a 3D Point

In geometry and linear algebra, a rotation is a transformation in a plane or in space

that describes the motion of a body around a fixed point. It leaves the distance between

any two points unchanged.

A two-dimensional object rotates around a center (point) of rotation, while a three-

dimensional one rotates around a line (axis). Then, in the 3D case, rotation must be

defined by three Euler angles, or by a single angle of rotation and the direction of a

vector. As a result, rotation in three dimensions have three degree of freedom, which

lies in a unit sphere.

Rotations about the origin are calculated using a 3x3 Rotation Matrix.

There are three matrices representing clockwise rotations of an object relative to fixed

coordinate axes, by an angle of α. The direction of the rotation: Rx rotates the y-axis

towards the z-axis, Ry rotates the z-axis towards the x-axis, and Rz rotates the x-axis

towards the y-axis.

Figure 2.10: angles

These rotations are also known as yaw, pitch and roll. A yaw is a counterclockwise

rotation of α degrees about the Z axis, a pitch about the Y axis, and a roll about the

2.4. ROTATION OF A 3D POINT 25

X axis. Therefore, they correspond to the Rx, Ry and Rz equations.

Rx = Rroll =

1 0 0

0 cosα sinα

0 − sinα cosα

 (2.11)

Ry = Rpitch =

cosα 0 − sinα

0 1 0

sinα 0 cosα

 (2.12)

Rz = Ryaw =

cosα sinα 0

− sinα cosα 0

0 0 1

 (2.13)

Each rotation matrix is a simple extension of the 2D rotation matrix. For example,

the yaw matrix, Rz(α) , essentially performs a 2D rotation with respect to the x and y

coordinates while leaving the z coordinate unchanged. Thus, the third row and third

column of Rz(α) look like part of the identity matrix, while the upper right portion of

Rz(α) looks like the 2D rotation matrix.

There are different rotation systems depending on the three angles chosen. From equa-

tions 2.11, 2.12 and 2.13, using matrix multiplication, complete rotation can be obtained

towards any position in the 3D space.

R(α, β, γ) = Ryaw(α)Rpitch(β)Rroll(γ) (2.14)

R(α, β, γ) =

cosβ cosα − sin γ sinβ cosα+ cos γ sinα − cos γ sinβ cosα+ sin γ sinα

− cosβ sinα − sin γ sinβ sinα+ cos γ cosα cos γ sinβ sinα+ sin γ sinα

sinβ − sin γ cosβ cos γ cosβ

(2.15)

It is important to note that R(α, β, γ) performs the roll first, then the pitch, and finally

the yaw. If the order was changed, a different rotation matrix would result.

26 CHAPTER 2. BACKGROUND INFORMATION

Chapter 3

State of the Art

Generation of Virtual Views and its usage in videogames, movies and even military

purposes, is an area of current study, where advances are made every day. In the UPC

Image Processing Department, several functions are being developed in order to achieve

the reconstruction of those views as perfect as possible.

In this project, as it was said previously, the main purpose is to use this software in a

real case, using a helmet that shows the views in 3D. From the information of different

cameras in a remote scene, a person wearing it might walk through an empty room and

see himself immersed in that virtual world.

3.1 Virtual View Generation Methods

In order to generate images from any virtual view point between two selected real views

(from the two nearest cameras), there are two different rendering approaches. The

first one is using a 3D model (shape reconstruction), a technique called model-based

rendering. The other is image-based rendering (IBR), where the shape of the objects in

the scene is not taken into account. After an explanation of the main characteristics of

each, some examples will be presented.

27

28 CHAPTER 3. STATE OF THE ART

3.1.1 Model-based rendering

In this model, the geometry of the real scene is recovered and then rendered from

desired virtual view points. In this context the research is focused on improving model

fidelity by using image-based modeling. In particular: geometric model extraction

and representations for rendering purposes, object-texture extraction and mapping to

geometric models, illumination effects recovery and rendering.

At a high level a model-based rendering approach involves three processes. First, an

event or a scene must be recorded, then, a 3D model of the environment has to be ex-

tracted using computer vision techniques, and finally, the obtained 3D model is rendered

from the view of a virtual camera.

Methods for the automatic construction of 3D models have found applications in many

fields, including Mobile Robotics, Virtual Reality and Entertainment. They fall into

two categories: active and passive methods.

3.1.1.1 Active methods

They often require laser technology and structured lights or video, which might result

in very expensive equipments. However, new technologies have extended the range of

possible applications, (Levoy et al. [11]), and new algorithms have solved many problems

inherent to laser scanning, (Castellani and Livatino [13]).

An example of this is the Digital Michelangelo Project. The target of this project

[11] was to be able to store the information of a piece of art, and thus, Professor Marc

Levoy has been investigating methods for digitizing the shape of three-dimensional

objects using laser scanners.

Before him, nobody had digitized a large statue with enough precision to serve as a

primary resource for scientific work.

3.1. VIRTUAL VIEW GENERATION METHODS 29

Figure 3.1: David 3D Reconstruction

3.1.1.2 Passive methods

They involve generating a 3D model given multiple 2D photographs of a scene. There

are different ways of doing it, from simple 3D silhouette models dynamically cut-out

and texture-mapped from video-sequences, (Livatino and Hogg, [14]), to polyhedral

visual hulls generated by multiple-view silhouettes 2and estimated stereo disparities,

(Li, Schirmacher and Seidel, [15]). In general they do not require a very expensive

equipment, but a specialized set-up, (Fuch [12]).

For example, Fuch’s paper [12] proposes the use of image data acquired by many

stationary cameras installed around a small environment such as a conference room and

the use of stereo methods to compute time-varying 2.5-D depth maps representing the

scene geometry. The depth maps are updated, maintained, and then combined to create

a virtual scene from viewer current position and orientation. The data can be acquired

in a remote site while the viewer position and orientation is local.

A depth image of a human subject is calculated from 11 closely spaced video camera

positions. The user is wearing a head-mounted display and walks around the 3D data

that has been inserted into a 3D model of a simple room.

The system is suitable for teleconferencing applications, provide 3D structure of events

for virtual reality applications, safe training, user guided visualization of events. How-

ever, only play-back is allowed, because the speed of the algorithm is limited by the

30 CHAPTER 3. STATE OF THE ART

poor machine performance.

3.1.2 Image-based rendering

This approach relies on real images taken as reference in place of a geometric

3D model. However, input reference images sometimes are not enough for the pur-

pose of rendering novel views, so that many of the proposed systems require additional

knowledge, such as image-correspondences, depth information, epipolar relations, etc.

This will be the used method in this project.

The advantage avoiding model reconstruction is no software rendering and no exploita-

tion of graphic hardware.

Image-based rendering methods were developed in the half of the nineties (some of them

are Chen [16] and Seitz and Dyer [17] [18]). Research is still very active in the field

and new techniques have also been proposed for investigation. For example, the new

projection model based on the two-slit camera (Granum [19]).

3.1.2.1 Seitz-Dyer

S.M. Seitz and C.R. Dyer propose View Morphing [17] [18], a way to generate new

views of a scene from two basis views. This can be applied to both calibrated and

uncalibrated images. At minimum, two basis views and their fundamental matrix are

needed.

The proposed technique uses basic principles of projective geometry, and introduces an

extension to image morphing that correctly handles 3D projective camera and scene

transformations. The authors propose to exploit monotonicity along epipolar lines to

compose physically valid intermediate views without the need for full correspondence

information. Under the assumption of monotonicity, it is shown that the problem is

theoretically well-posed.

3.1. VIRTUAL VIEW GENERATION METHODS 31

This result is significant in light of the fact that is not possible to fully recover the

structure of the scene due to the aperture problem 1. Moreover, they demonstrate

that for a particular range of views, the problem of view synthesis is in fact well-posed

and does not require a full correspondence, that is, images interpolation is a physically

valid mechanism for view interpolation. Views can consequently be generated by linear

interpolation of the basis images.

Among the advantages: the method represents a practical and simple way of generating

new views of a scene (under monotonicity assumptions), view synthesis does not suffer

from the aperture problem, the technique may be applied to photographs as well as

rendered scene, ability to synthesize changes both in viewpoint and image structure,

interesting 3D effects via simple image transitions, applicable to both calibrated and

uncalibrated images, suitable for application in entertainment industry and for limited

bandwidth teleconferencing.

Among the disadvantages: the method requires multiple image re-sampling (loss of

quality), local blurring when monotonicity assumption is violated, artifacts arising from

errors in correspondence, it is only suitable for static scenes, the method needs four user

provided feature correspondences, visualized regions need to be free of occluders.

There are different approaches to this method: implicit-geometry rendering [20], volu-

metric reconstruction [21], geometric-valid pixel reprojection [22].

3.1.2.2 Brief Explanation of the 3D Reconstruction used in this Project

For the reconstruction of the scenes, an Image-based rendering method has been used,

very similar to the one used by Seitz-Dyer [17][18]. It is based on a projection algorithm,

used by Carolina Martinez in his PFC [7]. The idea is to find the position of each of

the pixels of the image of the reference camera into the virtual camera’s image plane.

1”The Aperture problem arises due to uniformly colored surfaces in the scene. In the absence of

strong lighting effects, a uniform surface in the scene appears nearly uniform in projection. It is then

impossible to determine correspondences within these regions”

32 CHAPTER 3. STATE OF THE ART

An overview first. Each camera image plane has its own bi-dimensional coordinate

system. Thanks to the calibration of the cameras and the depth maps it is possible to

transform the coordinate points from that bi-dimensional space to the three-dimensional

coordinate system common to all the cameras. This is why the transformation between

a 2D point to a 3D one was studied in the chapter Background Information.

To perform the projection, the following steps should be followed:

1. De-normalize the depth map. The goal is to determine the z-coordinate on the

reference coordinate system for each pixel on the reference image plane.

2. Carry out an inverse projection from the reference image plane to the 3D space.

3. Define the new camera parameters and project the available 3D points in order

to determine its position in the new camera’s image plane.

Depth-map normalization

Zpoint =
1

d
255 ∗ (1

Zmin −
1

Zmax) + 1
Zmax

(3.1)

The depth values are in the corresponding depth map, a gray-scale image with range

between 0 to 255. The scenario is situated between a minimum and a maximum distance

(Zmin and Zmax respectively), so Zpoint is the Z coordinate on the common camera’s

coordinate system, corresponding to a given pixel with depth value d.

For each set of images the Zmin and Zmax values have to be known in order to obtain

the correct z-coordinate on the projection algorithm.

Inverse Projection: 2D to 3D

Now the goal is to know the X and Y coordinates in the 3D scenario of a certain point

in the image. The procedure is based on the perspective projection from Euclidean 3-

space, seen in Equation 3.2. The nature of P, the Projection Matrix, has been explained

3.2. DIFFERENT 3D DEVICES 33

in the Background Information Chapter, its final expression in 2.10. X and Y should

be isolated in the equation, where the known variables are x, y and Z (previously

calculated).

x

y

1

 = P ·

X

Y

Z

1

 (3.2)

X

Y

Z

1

 = P−1 ·

x

y

1

 (3.3)

Recapturing the Image: 3D to 2D

Once the reference camera image points have been projected onto the 3D scene, the

projection algorithm is done to recapture the image in the virtual camera’s image plane.

Now equation 3.2 can be used straight. Then, with the new coordinates for each point,

the pixel values from the original image can be copied into the virtual camera’s image

plane.

The virtual view can therefore be created.

3.2 Different 3D Devices

First of all, a complete 3D experience is not possible without a special Stereo-3D software

and hardware. There are two basic types; still, the goal is the same for both: guarantee

that the eyes get the images from the projector, differently for each one, and combine

them creating the stereoscopic effect:

34 CHAPTER 3. STATE OF THE ART

Figure 3.2: Glasses Figure 3.3: Helmets

• Glasses which just influence the way the image is seen on a standard monitor:

Liquid Crystal-Shutterglasses, Polarization Glasses. This last type includes two

polarizing lenses which have their polarization directions adjusted to be 90 degrees

different. This makes is possible that one eye sees the picture but for the other

it seems black. They are used in conjunction with a cathode-ray-tube-monitor or

projector. This is the type used in cinemas.

• Devices which actually produce an image: VR-Helmets, Head Mounted Devices...

In a virtual reality (VR) helmet each eye is given a small monitor (LCD or CRT

screen) to watch and the computer creates the proper left or right images for each.

Since the computer can monitor the position of the helmet it can continuously

change the images seen by the viewer to match his movements. This can give the

viewer the sensation he is moving in a computer generated world.

3.2.1 eDimensional Wireless 3D Glasses

Figure 3.4: Wireless 3D Glasses

Its main advantage is that no USB or serial ports are required for the installation.

After installing the software once, using an infrared transmitter for wire-free operation

of the glasses, this system gives a wide viewing angle and range available and is used to

beam a signal to perfectly synchronize the refresh rate of the monitor with the glasses.

3.2. DIFFERENT 3D DEVICES 35

Additional users need only an additional set of eyewear to simultaneously view 3D.

It uses the so-called TrackIR2, an infra-red sytem to track your head movements, using

technology created for military targeting systems. As the head is moving, the TrackIR2

sends a real-time stream of instructions to the computer via USB to move the mouse

pointer or pan the view in game play.

The depth-of-field is simulated using shutter-glasses with lenses that can alternate be-

tween clean and opaque (blocks light). A left eye image is first displayed on a computer

monitor, and the shutter-glasses left lens is clear, while the right lens is dark. The

image on the monitor is then switched to the right-eye view, and the lens of the shutter-

glasses is reversed. This switching occurs many times per second, and the brain fuses

the images creating the 3D effect.

Unfortunately, its most remarkable drawback is the fact that it is not possible to com-

municate with the glasses through software, and two separate images cannot be sent to

each of the screens, which is the intention of this project. The device follows the process

explained previously, using the same image for both eyes.

3.2.2 Vuzix iWear VR920

The device chosen fits perfectly the initial requirements. It can be used to test the

stereoscopic effect, as it has two screens, one for each eye, and allows to develop a

program that creates the two virtual views and sends each one to a specific screen. The

refresh rate of the device is 60Hz, and different views have to be generated in real time

and be sent as it moves though the scene, in order to give the sensation of actually being

there. The purpose is to introduce the user in a virtual reality of a distant location.

However, working in real time is not easy, as it will be seen in further chapters.

The VR920 is able support resolutions of 1024x768, 800x600 and 640x480 pixels, a very

important feature as it would be disappointing to inmerse yourself in a virtual world

where the quality of the images is poor. The device also includes a microphone and

earphones so the experience is fullfilling. However, the main problem is that it must be

36 CHAPTER 3. STATE OF THE ART

Figure 3.5: Vuzix iWear VR920

connected to the computer throught a USB and a VGA connector. Therefore, it results

in a lack of mobility.

The eyewear has a cable that splits into two with a USB connector on one (for the data

transmision) and a VGA connector on the other. There are two possible configurations,

depending on whether the computer has two graphic ports or only one. It must be

pointed out that the device can also be connected to a single VGA port as the only

monitor.

Figure 3.6: Single Graphics

Port w/splitter

Figure 3.7: Dual Graphics

Ports

3.2.2.1 Calibration

The iWear VR920 computes head tracking data through a series of 3 magnetic sensors

and 3 accelerometers mounted inside the display enclosure, that provide rotation in-

formation. As the magnetic fields change constantly, the VR920 must be periodically

calibrated to adjust for these fluctuations and their effect on the magnetic sensors. Any

3.2. DIFFERENT 3D DEVICES 37

change of location, even from one side of room to another, implies a recalibration.

Magnetic fluctuations caused the rotation of the earth also affect the magnetic sensors

of the VR920 slowly over a period of time. Therefore, anytime that the results are

suspicious, or directly wrong, recalibration must be done again.

The device provides information about three angles of rotation: yaw, pitch and roll,

which will be further studied on in this chapter. To calibrate, a program is provided.

It is important to outline that those three angles are the only information the glasses

provide. If the position is required for any purpose, it should be obtained externally, as

the device data is independent to translation.

3.2.2.2 Errors in the Accelerometer of the VR920

Immediately after calibration, a problem was noticed while testing the accelerometer

values. One of the parameters, yaw, was specially sensitive to movement. It must be

remembered that those angles should not vary with horizontal displacements, at least

in a reduced space.

Being the goal to move the glasses around a scene, that is a severe issue. When the

device was moved horizontally, without a variation of any of the three angles, the yaw

parameter increased or decreased depending on the direction of the movement. After

considering several hypothesis such as the possible usage of polar coordinates, which is

not the case, it was decided to study whether the variation follow some pattern or not.

This will be developed in Chapter 3.

However, being aware of the dependency on the earth magnetic field, a simple test was

performed, with interesting results. It is said in the user’s manual, and reproduced

here, that moving the glasses through the room may cause an undesirable change in

the rotation parameters. The yaw error is an extreme example. Thus, in the test

performed, the device was moved towards the magnetic north, with no variation at all of

the information provided, while if the direction was any other, the parameters showed

unexpected values.

38 CHAPTER 3. STATE OF THE ART

The need for trustworthy information led to the creation of a correction tool of the

yaw parameter, which will be presented in Chapter 5 (Section 5.1).

3.2.2.3 Linux incompatibility

It is now important to outline one important drawback of the glasses, one that has lead

to a greater complexity while developing the project: the fact that they are unable to

operate in a Linux environment.

Therefore, the software created in this project was developed in Windows using Mi-

crosoft Visual Studio. Everything was written in C++. In the website of the Vuzix

company there was available a SDK including several very helpful examples in order to

understand how to send images to the eyes separately. There were several options, but

comparing the possibilities, the complexity and benefits of each one, it was decided to

use DirectX to do so. However, there was an importante issue: some of the functions

were really slow, so it was necessary to debug and modify some of them in order to have

a correct performance.

Chapter 4

Virtual Views Generator Tool.

Algorithm

Once clarified the several issues that will involve the project separately, it is time to

put them together forming the tool that will make it possible to use the iWear VR920

as complement to the creation of virtual views. The first step, however, is to develop

an eficient software able to communicate with the glasses.

4.1 Reproducing Sequences in the VR920

The company that developed the glasses, Vuzix[3], provides an SDK (Software Devel-

opment Kit), a set of tools that allows to create applications. Two modes are provided

in order to send images to the device: Direct3D [9] and OpenGL [24]. Both of them

are perfectly suitable for the purpose of this project, considering their features and the

possible uses.

It is important to clarify first the difference between DirectX and Direct3D. DirectX is

a Windows-based suite of libraries (including input, audio and graphics libraries), while

39

40 CHAPTER 4. VIRTUAL VIEWS GENERATOR TOOL. ALGORITHM

Direct3D and OpenGL are cross-platform graphics-only API.

They describe vertices as a set of data consisting of coordinates in space that define the

vertex location and any other vertex related data. Graphics primitives, such as points,

lines, and triangles, are defined as an ordered set of vertices. They differ in how each

API handles how vertices are combined to form primitives.

Both are updated every few months, and thus it would be pointless to describe differ-

ences between them that may not be true soon. However, some design features remain

unchanged. For instance, for Direct3D, its reliance on Microsoft’s COM. One advan-

tage of using COM is that the API can be used in any COM-aware language, notably

Microsoft Visual C++, Delphi, C++ and Visual Basic .NET.

A drawback of Direct3D is that it is for Windows only, while OpenGL is available for

all other platforms. As the iWear VR920 itself is only able to work under Windows, it is

not a problem for the moment to use Direct3D. Moreover, the examples provided in the

SDK use Microsoft Visual C++ Projects, and it is also slightly faster than OpenGL, so

it was decided to use it.

4.1.1 Direct3D Textures and Devices

The use of Direct3D makes it possible to show a certain image (in this case, the created

virtual view) in the screen. In order to do so, textures are used (See Annex Direct3D

Textures for detailed information). To sum it up, a primitive (triangle or squared) is

created, and the desired image is drawn on it. Creating a square that occupies the whole

screen, and putting the virtual view on it, the goal has been achieved. The main benefit

is the possibility of working with several textures at the same time, in this project, the

two views, one for each eye.

In order to set the virtual view as the texture there is an independent function (which

can be found in the Annex, Section 8.1.1). After calling it, render() is executed. Here,

the first thing to do is clearing the background. Before drawing anything, or loading

the texture, it is necessary to tell Direct3D that the process is about to start. The same

4.2. CREATION OF STEREOSCOPIC VIRTUAL VIEWS 41

must be done at the end. The last command tells the device to show the back buffer

content on the screen.

Direct3D also allows a user to interact with a physical hardware. Then, a device is the

programmatic representation of it. A device object is needed for all graphical actions.

If the intention is to to draw, load and build textures, it has to be known which device

is used (in the current case the only device involved is the VR920).

The device class is a vital class in every DirectX namespace. One of the difficulties

when working with devices (especially graphic devices) is that there is a wide variety

of videocards on the market. Each of those supports a different set of features, so one

have to be very careful to use one that runs smoothly on a lot of machines. Fortunately,

Direct3D makes it easy to query which features are available.

The process of creating a device is developed in the Annex Direct3D Devices (Section

8.1.2).

As the VR920 has two screens, it is possible to communicate with each of them sepa-

rately. The first images goes as a texture for one, and the second for the other. This

has to be done frame to frame, changing the image in the next frame, so the motion is

appreciated.

4.2 Creation of Stereoscopic Virtual Views

The process of creating a virtual view can be divided into several steps, from the first

one, the decision of the optimal cameras among the finite number that are available,

to the reduction of imperfections or significant errors after the reconstruction of the

view. They will all be discussed in the next sections. It must be noticed that the only

external information needed is the position of the virtual view. The user has to provide

it. Everything else is automatically obtained during the process.

Before going into details, in Figure 4.1 there is a scheme of the process.

42 CHAPTER 4. VIRTUAL VIEWS GENERATOR TOOL. ALGORITHM

Figure 4.1: Creation of Virtual Views

4.2. CREATION OF STEREOSCOPIC VIRTUAL VIEWS 43

4.2.1 Automatic Camera Selection

It must be pointed out that in the whole project a sequence of images called Ballet has

been used. There are images from eight different cameras distributed around the scene,

as long as all the other information needed (the parameters of each camera). Their

distribution can be seen in Figure 4.2. The reference camera is number 4. All values

for the Ballet sequence are relative to the ones of Camera 4.

Figure 4.2: Distribution of the Cameras in the Ballet sequence

When the user wearing the glasses moves around the scene, each virtual view he sees at

any moment is created using the information of the two nearest cameras. However, it is

essencial to create a function that selects those cameras from the ones available every

certain time.

For that purpose, the position of the device has to be known constantly, and that

information has to be provided externally, as the glasses are unable to obtain it by

themselves. Afterwards, the euclidean distance between the different cameras in the

scene and the user is calculated, and the minimum distance is chosen.

This has to be made twice, as two cameras are used to reconstruct the virtual view.

One of them (the closest) will be the principal, and the other the secondary.

44 CHAPTER 4. VIRTUAL VIEWS GENERATOR TOOL. ALGORITHM

4.2.2 Obtaining the virtual parameters

Before projecting the images, however, a virtual camera has to be created. Now that the

two original cameras have been chosen, using their information it is possible to obtain

the necessary parameters.

Actually, it is not only one virtual camera but two, as two slightly different images are

required for the stereoscopic effect. They must be separated 6cm, the aproximate eye

separation.

The parameters of those virtual cameras are already known. The translation matrix

is the position of the virtual camera with reference to the original one (Camera 4), which

has to be obtained by external means. The rotation matrix can be constructed from

the information of the yaw, pitch and roll that the device provides. And finally, the

calibration matrix, with its intrinsic parameters. It must be noticed that calibration

matrix depends on the resolution of the images. All the tests will be done with images

of 1024x768 in the first steps.

4.2.2.1 Rotation of the Virtual View

The glasses are able to provide the value of three angles that altogether define the

rotation of the device itself. Now, it is possible to use those angles to generate the

correct virtual image.

In order to get the values, the function IWRGetTracking() was provided. It returns

three values, correspondent to yaw, pitch and roll, at any moment, read from the glasses

accelerometers. In order to be able to generate the sequence with the proper rotation

in each frame (and of course show it as a video sequences), it is necessary to modify the

rotation matrix accordingly to the variation of those angles. After that, the projection

matrix is also changed.

However, looking into the rotation matrix of a certain camera, in the file provided (see

4.2. CREATION OF STEREOSCOPIC VIRTUAL VIEWS 45

Annex), it is easy to see that it is not an identity. The cameras have a slight rotation

themselves. This is why, when calculating the necessary parameters in order to generate

the rotation matrix of the intermediate virtual camera, the yaw, pitch and roll values

have to be added to the previous angles.

4.2.3 Image Projection

Figure 4.3: Image Camera 1 Figure 4.4: Image Camera 2

Figure 4.5: Depth Map 1 Figure 4.6: Depth Map 2

Consider and intermediate position between cameras 1 and 2. The algorithm selects

those cameras and use their images and matrices to project their images into the desired

position. The information used for that purpose is the images 4.3 and 4.4, and the depth

maps 4.5 and 4.6, from cameras 1 and 2. In this first case, there will be no rotation.

Figures 4.7 and 4.8 are the resulting projections. It is possible to see the shadows

behind the dancer and the teacher, as long as other spots where there wasn’t enough

information to cover the area, including small black spots all over the wall or on the

46 CHAPTER 4. VIRTUAL VIEWS GENERATOR TOOL. ALGORITHM

floor. Those are the so-called gaps and occlusions.

However, looking at both pictures, it seems interesting to compare them and fill the

empy spaces of one with the data from the other. This is what the function joinim-

ages() does.

Figure 4.7: Projected Image

from Camera 1

Figure 4.8: Projected Image

from Camera 2

4.2.4 Composition

Figure 4.9: Combining the Projections

One of the two images is the base, so most of the final information will come from it,

and, using the map of holes, it is completed with data from the other. Once the two

projections are combined, as in Figure 4.9, it is easy to see that there are still some

4.2. CREATION OF STEREOSCOPIC VIRTUAL VIEWS 47

black spots. However, most of the signficant ones have been corrected.

4.2.5 Gaps and Occlusions

Now it is time to study the black holes that can be appreciated in the first projected

images and in Figure 4.9. The empty spaces are caused by two possible reasons. De-

pending on which one caused them, they are called gaps or occlusions. The purpose is

to reduce them as much as possible. In order to do so, it is necessary to know its nature.

In Figure 4.10, extracted from Carolina Martinez’s PFC [7], there is a representation of

the nature of both.

Figure 4.10: Projection

Gaps: These are the pixels on the virtual image where no original pixels are projected

due to the change of perspective. They are filled through gap interpolation: each one

of the four valid neighbors of the gap pixel will be added to the final result pondered by

its the distance to the gap; therefore, close pixels have more influence than the further

ones

Occlusions: Formed by points of the scene that are overlapped or shadowed on the

reference image but not from the point of view of the virtual one. It is the case of an

object behind the dancer of the teacher that might be visible from a virtual camera on

the right or on the left. It is normally bigger than a gap. However, there is not an easy

way to fill an occlusion.

48 CHAPTER 4. VIRTUAL VIEWS GENERATOR TOOL. ALGORITHM

In Image 4.7, for instance, it is very easy to differenciate between the gaps and occlu-

sions. The shadow of the two characters, as well as the left part of the image, are clearly

occlusions, while the black spots spread through the whole image are spots.

In order to have a clear view of the two of them, the so-called Map of Gap and

Occlusions will be created after performing a projection. It is a binary representation

of the image where the revelant data (coloured pixels) has been homogenized becoming

white, and therefore, the black spots (gaps and occlusions) are more distinguishable.

Occlusions are the reason for the use of another camera in order to reconstruct the view.

As it was seen in Figure 4.9, after the combination of the projections they disappeared.

However, there are still some gaps that can be eliminated after the gap interpolation.

In Figure 4.11 there is the finally obtained view for one of the eyes.

Figure 4.11: View 1

Chapter 5

Implementation and

interpretation of results

In previous chapters, the concepts involving the generation of virtual views, along with

the necessary software to communicate and operate with the device chosen, the iWear

VR920, has been studied. The two parts of the project have been thus stablished.

In the first one, there is a need of a confident interaction with the glasses, and for that

purpose Direct3D was a perfect solution. Once this was solved, the other issue was the

obtention of the Yaw, Pitch and Roll, the angles that will make it possible to create

rotated virtual views. As it was seen, one of them, yaw, is not very reliable. Therefore,

it needs and extra calibration. How to do that and the results will be shown in the next

section.

Once the angles are ready to be used, the second part of the project stands. The

generation of virtual views was studied in a previous PFC that this one complements.

From the images of two cameras, their depth maps and the intrinsic and extrinsic

parameters, it was possible to create an intermediate virtual view. Although it may

seem that the goal has been already achived, much work is still to be done. The

rotation of the view means some serious problems, the most important of which are the

49

50 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

occlusions that didn’t exist in the non-rotated case.

Moreover, there is another problem, which is a clear example of the difference between

developing a software and actually using it in a real case. The fact that the device

can only operate in Windows has been a serious issue for the whole project, but it was

really critic when it came to speed. The functions developed in ImagePlus 1 were really

slow in that operating system. A comparison will be made between their performance

in Linux and in Windows.

In this chapter, then, several points will be studied. The Yaw compensation will be

tested, choosing the best option. Moreover, rotated virtual views will be generated, and

when the problems start to appear, they will be gradually solved.

For the tests, the Ballet sequence has been used (its details are explained in Chapter

3.3). The pictures shown are always the first frame of the sequence. Some tests in

different positions were done, being the most interesting case the intermediate one. If

the desired view is too close to one of the cameras, it would take most of the information

from it and therefore there will not be significant occlusions.

Then, from now on, the virtual point will be in a position between cameras 1 and 2.

The exact point will be (-5.78486, -0.431597, 0.001), not too close to each of them.

5.1 Accelerometer in the iWear VR920

5.1.1 Yaw Error

Although the generation of the virtual views may be good enough to create the feeling

that the viewer is moving around a certain scene, it is essential to be able to trust

the rotation parameters that the device provides. With that in mind, some tests were

performed and a troubling discovery was made. One of the angles, yaw, didn’t gave the

expected results.

1Development platform in C++ language for the Video and Image Processing Group at UPC

5.1. ACCELEROMETER IN THE IWEAR VR920 51

An example can be found on Figure 5.1, the result of a horizontal movement. The

original point is placed right in front of the computer, and the device is moved to the

left without any rotation. The yaw results should be values around 0, which is not the

case.

Figure 5.1: Yaw variation through a horizontal movement of 70cm to the left

Looking into the information provided by Vuzix, as seen in section 3.2.2.1. Calibration,

they warn the user that magnetic fluctuations caused the rotation of the earth affect

the magnetic sensors of the VR920. Their recomendation is to recalibrate again each

time the values are suspicious. However, the variation of yaw (and the lack of variation

of the other angles) seems too deterministic, and further study was required.

Some tests

In order to check the yaw variation, a software was developed. As the glasses are unable

to give information about their position, the user himself must move the glasses and

ask the program to save the angles in each position. The first step is to place the device

in the original position. The user must manually specify the movement of 10 cm, and

aftwards again, and again until the device has reached the final position.

52 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

In Figure 5.2 there is another graphic, this time a movement of 1,5 meters. The device

was originally placed in a position where it was calibrated, and it was moved without

any rotation to the final position. The variation of the three angles showed that the

yaw parameter doesn’t behave as it should, and needed to be compensated.

First, it was tried to find some pattern in the variation of yaw. However, another

important problem was found: the variation is not similar in different places. As it

depends on magnetic fields, and it is different in each spot of the earth, two graphics of

the yaw variation were obtained in separated spots (even in the same room), and they

were significantly different. The comparison between Figures 5.2 and 5.3 is the proof.

Therefore, compensation must be done for a certain area.

In order to do so, a new software was developed. A previous calibration is required

to be able to compensate the yaw error in a certain area. Therefore, the first need is

to determine the size of that area. Afterwards, the user is asked to move horizontally

around it, without rotating the device, and the values are stored. They will be used

afterwards, substracting them from the yaw obtained in a certain position.

The calibration was performed exactly as the obtention of the angles in Figures 5.2 and

5.3, with the user moving the glasses horizontally and storing the values. The tool can

be easily modified to obtain the values of two dimensions and store them in a convenient

2D matrix. Then, the device would be ready to operate in any environment without

(or with few) errors. But for the further tests, one direction and therefore a 1D array

was used.

It is not possible, or at least not viable, to obtain the yaw values in every single position

of the scene, as it would be extremely annoying for the user. Then, some tests were

made with different separations. In the first one, values every each 10cm were stored.

These experiments and their results will be developed in the next section.

5.1. ACCELEROMETER IN THE IWEAR VR920 53

Figure 5.2: Yaw, Pitch and Roll in a movement of 150cm to the left

Figure 5.3: Yaw, Pitch and Roll in a movement of 150cm to the left in another spot

54 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

5.1.1.1 Compensation

This will be the first item put into practise. Before creating the rotated virtual view, it

is necessary to have the right angles, so the software developed to correct the yaw error

must be tested. For that purpose, a previous calibration is done. The user must move

the glasses through the scene without any rotation, and the values are stored, and will

be used afterwards to compensate.

The calibration was done with different separations. In each case, the efficiency of the

correction was analysed, and it was decided which of them is the best practical option.

It is not practical to ask the user to move from 1cm to 1cm and store the results. Is

is important to point out that the correction is only possible in the area previously

calibrated. If for any reason it is necessary to move out of the area, the yaw error will

be present. Then, it would be necessary to calibrate again.

Calibration with 10cm separation

Figure 5.4: Yaw drift measurement through a horizontal movement with 10cm separa-

tion

This is the first case. Figure 5.4 corresponds to the plot representing the variation of

the yaw parameter (which should always be aproximately 0 degrees in the ideal case,

as the glasses are not rotated) depending on the horizontal movement (in cm). Those

5.1. ACCELEROMETER IN THE IWEAR VR920 55

values are stored for further use, and can be seen in Figure 5.4. There is no actual error

until a movement of 80cm.

Several conclusions can be obtained from it. The first one is that the error is not a known

function, nor follows a predictable pattern, as it was previously seen when analysing it

on previous chapters.

However, the most important conclusion is that the error is never beyond 13 degrees.

The goal is to have a variation of no more than 5 degrees in all cases, which corresponds

approximately to the precision of the glasses.

Automatic compensation

Figure 5.5: Yaw variation through a horizontal movement of 140cm to the left with and

without the compensation tool developed

Now that the calibration was done, the device was put again in the original position. The

captures were now from 5 to 5 cm (to test the most troubling case for the algorithm),

and they were automatically corrected. In Figure 5.5 there are the results before and

56 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

after compensation.

Studying the results is is easy to see that there is a point, in -75cm, where the error

has not been properly compensated. This is because the variation between -70 and -80

is so abrupt that the resolution taken (10cm) is not enough to guarantee a complete

elimination of the error. Anyway, taking into account that the normal variance of the

three parameters is around 5 degrees, the average error is not only acceptable, but

enough to work with the glasses with confidence.

Calibration with 20cm separation

In this case the user has an easier calibration, as the necessary values are half of the

ones in the previous case. The likely problem is that the intermediate values, due to a

sudden variation, doesn’t match the numbers stored in the calibration.

Figure 5.6: Calibration Values Every 20cm

Automatic compensation

In this case, there weren’t troubling points, as the abrupt transition was perfectly

corrected by the algorithm. The reason is that the nearest values may vary within few

centimeters, but with a separation of 20cm, the value used is the better in the region.

The conclusion is that a separation between samples of 20cm provides enough informa-

5.1. ACCELEROMETER IN THE IWEAR VR920 57

Figure 5.7: Yaw variation through a horizontal movement of 140cm to the left with and

without the compensation tool developed

tion to compensate the yaw error in the area. An abrupt variation of the yaw error

at some point might cause some trouble, but this will happen even with a 10cm sep-

aration. It is up to the user to choose the calibration. Obviously, the smaller the

separation the bigger the efficiency of the correction tool. But for the general case, 20

cm is recommended.

Calibration with 30cm separation

A final test was done, where the calibration was performed with a separation of 30cm.

Again, the correction is acceptable, so the user can can choose whether the precision

required is enough or not, but there are too many values of more than 5 degrees. Then,

the recommended resolution is still 20cm. No further tests were necessary.

58 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

Figure 5.8: Yaw variation through a horizontal movement of 150cm to the left using the

compensation tool developed with 30cm separation

5.1.2 Conclusion

The problem of the undesirable yaw variation has been properly corrected using the

described tool. However, although the compensation itself doesn’t mean a problem-

atic computational time, the user must perform the calibration manually each time the

device is moved a significant distance. It results in a waste of time that might be un-

acceptable for some applications. Then, if it is possible, another accelerometer without

that error should be used, as the one present in the VR920 was not optimal.

5.2 Generation of Rotated Virtual Views in a Random

Position

Now that the yaw is reliable, in a certain area that the user should specify at the start,

it is time to create rotated virtual views and send them to the VR920 with the idea of

getting sequences of movements in the scene. In order to do so, the rotation matrix is

modified with the information from the glasses, and the projection is done.

5.2. GENERATION OF ROTATED VIRTUAL VIEWS IN A RANDOM POSITION59

Tests with 5 degrees rotation in each angle were performed, with the results that will

be presented in further subsections. The software is good enough for a full rotation if

there is properly information of the scene.

5.2.1 Corners

One of the several issues that are noticed when creating a rotated virtual view is that in

some parts of the image, such as the corners for the roll rotation, the upper and lower

part for the pitch, and the right and left for yaw, blank spaces are filled with undesirable

information due to the implementation method. An example can be seen on Figure 5.9.

Figure 5.9: Corners when rotating an image

This is caused by the interpolation function, that was created to fill the gaps with an

average of the information of the surrounding pixels. In this case, as those areas are

regarded as empty spaces, they are filled with an average of the closest non-empty pixels:

the borders. This behaviour is not desirable, it is preferable to have nothing at all than

information which is not controlled. The software was modified so these areas are not

filled and remain black.

5.2.2 Different Basic Rotations

A rotation can be performed through any of the three angles: yaw, pitch and roll. It is

also possible to rotate two or even the three of them at the same time. Some examples

are shown.

60 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

5.2.2.1 Roll

Using the information from cameras 3 and 2, and choosing an intermediate position

between them, as long as a certain rotation of the roll parameter (5 degrees), the

projections shown of Figures 5.2.2.1 and 5.2.2.1 are created. They are the first step

of the reconstruction of the virtual view. Their gaps and occlusions must be analysed

separatedly and corrected as much as possible.

In the following figures there are the two projections as long as the depth maps and the

map of gaps and oclusions. Some of the most important issues in the reconstruction

will also be dealt with. The first one is the projection from camera 3, the nearest to

the position of the virtual wiew.

Figure 5.10: Projection and Depth Map from 3 with Roll Rotation

Figure 5.11: Map of Holes of the Reconstruction from Camera 3

5.2. GENERATION OF ROTATED VIRTUAL VIEWS IN A RANDOM POSITION61

Now the second projection, from Camera 2:

Figure 5.12: Projection and Depth Map from 2 with Roll Rotation

Figure 5.13: Map of Holes of the Reconstruction from Camera 2

In order to eliminate the occlusions, which are the greater problem, the two resulting

images and their depth maps are compared and joined to fill the black spaces in one

with the information from the other. However, it may happen that none of the cameras

have information of one spot, and then it will be difficult if not impossible to fully

reconstruct those areas.

An example of this problem can be found over the ballerina’s arm, seen with greater

detail on Figures 5.14 and 5.15. They are each taken from one of the projections, and

it is easy to see that none has information of the spot, so the occlusion will certainly

appear in the combined view, as there is no original data to fill it.

62 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

Figure 5.14: Projection1 Figure 5.15: Projection2

Combining the Two Projections

Comparing the two projections from the reference cameras 2 and 3, both the images

and the depth maps, it is possible to see that the most significant holes are not shared

by the two of them. Then, when they are compared and joined (see Figure 5.16), the

resulting image has few of the original problems, thus being very close to the desired

view.

Figure 5.16: Result of joining the projections from Cameras 3 and 2

But as it was said before, besides the gaps (solved afterwards with the interpolation),

some holes are present in both of the projections, such as the shadow of the dancer’s

arm (Figures 5.14 and 5.15), or the square behind the teacher, and then, they will also

appear in the joining. These are the occlusions, very difficult to solve (as there is no

actual information to reconstruct them).

The resulting view, appart from obvious gaps all around (a problem that will be solved

5.2. GENERATION OF ROTATED VIRTUAL VIEWS IN A RANDOM POSITION63

with the interpolation function), have some occlusions which have not been erased.

Further on, some possibilities to minimize them will be developed.

Figure 5.17: Most important occlusions in the resulting image

5.2.2.2 Pitch

The same process will be done for a pitch rotation of 5 degrees.

Figure 5.18: Projection and Depth Map from 3 with Pitch Rotation

Figure 5.19: Map of Holes of the Reconstruction from Camera 3

64 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

First, the projection from the closest camera (in this case, Camera 3). It is remarkable

that in this case, the occlusions are similar to the non-rotated case (4.7).

Afterwards, the projection from the second camera (in this case, Camera 2).

Figure 5.20: Projection and Depth Map from 2 with Pitch Rotation

Figure 5.21: Map of Holes of the Reconstruction from Camera 2

Combining the Two Projections

Figure 5.22 is the resulting image.

Unfortunately, there wasn’t enough information in the original images to eliminate every

occlusion, so there are still some in the final result, as seen on detail in Figure 5.23. The

interpolation function may not be able to deal with them, so they must be included in

the next section, like the ones in the roll rotated case.

5.2. GENERATION OF ROTATED VIRTUAL VIEWS IN A RANDOM POSITION65

Figure 5.22: Join the two Projections with a Pitch Rotation

Figure 5.23: Most important occlusions

5.2.2.3 Yaw

Now, 5 degree rotation of the yaw angle to the left is done, moving the device.

Figure 5.24: Projection and Depth Map from 3 with Yaw Rotation

66 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

Figure 5.25: Map of Holes of the Reconstruction from Camera 3

Figure 5.26: Projection and Depth Map from 2 with Yaw Rotation

Figure 5.27: Map of Holes of the Reconstruction from Camera 2

5.2. GENERATION OF ROTATED VIRTUAL VIEWS IN A RANDOM POSITION67

Combining the two Projections

Figure 5.28: Join the two Projections with a Yaw Rotation

Again, there are certain occlusions that have not been solved, as seen on Figure 5.29.

Figure 5.29: Most important occlusions

5.2.3 How to deal with gaps, occlusions and other issues

In the image obtained there are plenty of gaps and occlusions that need to be treated.

The first ones disappear after calling the function filtering, as seen on Figure 5.16.

However, there are certain areas, where there was no information from any of the two

used cameras. There are several possibilities to minimize cclusions:

• Use of a Third Camera. This is the first idea that comes to mind, and although it

can be tested and proved that some of the most important occlusions are removed,

the computational time (which is already a problem) becomes inviable.

68 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

• Use of Two Separate Cameras. The two closest cameras to a certain point may

not have enough information from some spots behind the characters or objects in

the scene. Then, using two different cameras, more separated, provides sometimes

more information. However, the problem is how to choose those cameras.

5.2.3.1 Interpolation

For the three basic rotations (yaw, pitch, roll), once the view has been created, it is

necessary to perform an interpolation (filling the black pixels with an average of the

surrounding information) in order to eliminate or at least reduce as much as possible

gaps and occlusions. However, although the first ones are eliminated, the occlusions are

not correctly handled.

As it was expected, the areas where none of the two cameras had information has been

filled by wrong data for the three cases. The average of the surrounding pixels is not

close to be good enough to consider it acceptable data. The most significant issues can

be seen in Figures 5.31, 5.36 and 5.17.

It will be seen that the same problem is common for the three cases. The occlusions

are filled with wrong information, a problem that must, and will be, solved in order to

have a proper virtual view.

Yaw

The first view is corrected, with the expected results. Most of the occlusions have been

properly corrected.

However, before dealing with the next rotations, it is interesting to focus on one spot

of the image, pointed out in Figure 5.32. Ignoring the repeated arm of the girl for now,

which is an occlusion and it is not the issue at the moment, something else is wrong

there, as the finger of the dancer appears twice. This was no occlusion at all, so the

reason for the error must be another.

5.2. GENERATION OF ROTATED VIRTUAL VIEWS IN A RANDOM POSITION69

Figure 5.30: Final image with yaw rotation

Figure 5.31: Most important occlusions

Figure 5.32: Problem with the finger of the dancer

70 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

The answer stands when checking the original information that has lead to the creation

of the virtual view. The problem is the quality of the depth map utilized, that is

realiable in most pixels of the image, but still has some faults.

The proof is in Figures 5.33 and 5.34, where there are the parts of the original image and

the depth map corresponding to it. It is seen that a part of the finger is not properly

characterized, and therefore the algorithm considers that it is part of the background

(because they both -the part of the finger and the background- have the depth). Then,

when creating the virtual view, it is separated from the rest of the hand.

Figure 5.33: Original Image

from Camera 3

Figure 5.34: Depth Map from

Camera 3

Pitch

Figure 5.35: Final image with pitch rotation

5.2. GENERATION OF ROTATED VIRTUAL VIEWS IN A RANDOM POSITION71

Figure 5.36: Most important occlusions

Roll

Figure 5.37: Final image with roll rotation

Figure 5.38: Most important occlusions

72 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

5.2.3.2 A Third Camera

The most obvious solution to correct the occlusions (caused by the lack of information

of the two cameras used) is to include a third camera to fill the empty spaces. Unfor-

tunately, the third camera cannot be automatically chosen, as the occlusions are due

to the objects in in the image, which cause indeterminated spaces behind them, and a

more detailed knownledge of the scene is needed in order to create an algorithm that

selects it. Then, the user must choose himself among the different cameras available.

The position where the virtual view has been created for all cases is (-5.78486, -0.431597,

0.001), an intermediate spot between cameras 2 and 3. The projection from those

cameras are shown on 5.43 and 5.41. Then, a projection from camera 1, seen on Figure

5.39, is done, being that the most suitable for the purpose (in this case camera 4 was

also tested with worse results).

Figure 5.39: From Camera 1 Figure 5.40: Depth Map

Figure 5.41: From Camera 2 Figure 5.42: Depth Map

5.2. GENERATION OF ROTATED VIRTUAL VIEWS IN A RANDOM POSITION73

Figure 5.43: From Camera 3 Figure 5.44: Depth Map

It is interesting to study this third projection before continuing. The main problems

that take place in the other two, this is, the shadow of the arm and the head of the

dancer are not present here. Then, the use of it to create the final virtual view may

result in a correction of the occlusions. It can be corroborated in Figure 5.45.

Figure 5.45: Joining the 3 projections

The gaps still present, as long as the small occlusions which have not been erased, are

treated with the interpolation algorithm, and the result is Figure 5.46. The comparison

between this view and the one with 2 cameras makes it very interesting (if the increase

of time is acceptable for the purpose of the program) to create the virtual view from

three cameras, in the rotated case.

74 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

Figure 5.46: Final Virtual View

The view is now as good as it can be. The only problems still present are the finger

of the dancer (which was explained in previous sections and can only be solved with a

better depth map), and the borders.

5.2.3.3 Two Separated Cameras

However, as interesting as the latests results may be, there is always a counterback:

time. Every extra projection represents an increase that for some applications can be

unacceptable. Therefore, it would be interesting to improve the quality of the virtual

view without requiring that third camera. The idea of how to do it comes from the

study of the previous three projections. Looking at the one from cameras 1 and 3, it

seems possible that the use of them only results in a good outcome.

In order to use this method, the user must choose two cameras that have enough in-

formation of the desired spot. This is impossible to do automatically. The occlusions

present in the scene are due to the objects present in it, that may cover some important

areas behind them. It is not possible from the original images and the depth maps to

5.2. GENERATION OF ROTATED VIRTUAL VIEWS IN A RANDOM POSITION75

know what there is behind those objects, or which camera will reveal that information

before performing the projection.

The projections from camera 1 and 3 can already be seen on Figures 5.39 and 5.43,

and the joining of both of them is seen now on Figure 5.47. The occlusions have been

solved, as in the three cameras case.

Figure 5.47: Joining of Projections from Cameras 1 and 3

The result is as good as in the three cameras case. However, several issues must be

pointed out. First, the use of separated cameras results in a decrease of the quality

of the virtual view. In this case, as the cameras are separated by few centimeters,

this problem is not present, but must be taken into account for future tests in other

environments. Moreover, deciding which two cameras are the optimal for the generation

is not easy, and cannot be done automatically at the moment.

The conclusion, then, is that this will be the used method only if there is enough

information about the scene to determinte which cameras are optimal.

76 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

5.3 Time Performance

Once the image has been created, it is necessary to take into account the time required

for the program to work, and therefore find out whether it would be possible to reach

the desired behaviour, this is, creation of virtual view in real time. Then, the images

would be appearing in the screens as the user moves through the scene.

However, the results show that this objective is almost impossible to achieve at the

moment. Not only the functions are too slow for the real time purpuse, but the fact

that the glasses only work with Windows is an important drawback, as most of the

used functions were devolped in Linux. In Table 5.1 there is the comparison between

the performance in both systems. The main problem is that even in Linux, real time is

not possible.

5.3.1 Comparison between Windows and Linux

The process for the creation of a virtual view is the following. In the Preprojection part,

the original images, depth maps and extrinsic and intrinsic parameters (matrixes) are

loaded, and the virtual camera is created. In Table 5.1 it is easy to see that loading the

images is the most problematic part. In Linux the results are not presented since that

part of the code regarding the device cannot be executed (as it was said, it only works

in Windows), but loading an image is a matter of miliseconds.

Afterwards, the projection from the two cameras (or three if that is the case) is done.

And before combining the images, in order to improve the algorithm, the gaps on the

projected images are eliminated, letting only as empty areas the occlusions. This ways

only occlusion are considered at the combining step (join-images function), and the final

image has higher quality. This is the reason for the functions split, mask erosion and

merge masks.

Then, the combination is performed, with two or three cameras (in the table both cases

are done), and the result is filtered.

5.3. TIME PERFORMANCE 77

The results show a great difference between the two operating systems, and thus, the

recommendation would be to generate the views independently in Linux and send them

afterwards to the device, which would need interaction between Linux and Windows.

However, as it was said, even in Linux the process is unable to work in real time.

Functions Windows Linux

Preprojection 4.593 -

Load Images 3.922 -

Project 6.891 1.5

Split and Filter 3.36 1.64

Mask Erosion 2.36 0.5

Merge Masks 0.203 0.11

Combine Images 1 and 2 1.141 0.3

Combine Images 1 and 3 1.172 0.41

Combine the result of 1 and 2 with 3 1.14 0.41

Filtering the joining of 1 and 3 4.844 0.85

Filtering the joining of 1, 2 and 3 4.188 0.85

Table 5.1: Comparison of Time Performance between Windows and Linux

78 CHAPTER 5. IMPLEMENTATION AND INTERPRETATION OF RESULTS

Chapter 6

Conclusions

6.1 Conclusions and Contributions

The initial goal of the project was to be able to interact with the device called iWear

VR920, using it to reproduce sequences of virtual views created from a number of

cameras distributed in a certain area. Using DirectX textures, it was possible to show

different images in the screens of the device.

The creation of virtual views was a subject which had previously been studied, and that

research is this project’s starting point. From there, several problems which appeared

during the process were solved, such as the corners, where wrong data was created,

or the appearance of large occlusions when performing rotations (solved by the use of

two specifically selected cameras or even three), in order to have the most robust and

reliable tool.

The software, then, is able to send to each of the two screens of the VR920 a virtual

view independently, and a slightly different to the other, so the stereoscopic effect is

produced, and the user has a sensation of watching a 3D scenario. Unfortunately, the

performance of the process makes it impossible to send sequences of images creating

them in real time. In order to study the viability of the process, though, some tests

79

80 CHAPTER 6. CONCLUSIONS

were done, proving that if the algorithm was more efficient, a complete immersion in

this created 3D scenario would be possible.

Then, going back to the first steps of the project, when the goals were stablished, it

can be seen that the objectives have been accomplished. The final tool tested has

the following behaviour: the user moves the glasses freely and the program captures

the different rotating angles and the position and generates the virtual views from the

images of the different cameras, and the results are available some time after the user

has stopped moving. Then, at a certain point, a warning appears, introducing the

generated sequence. It is only then when the results can be seen.

Of course, if the generation time was faster, it would be possible to move the glasses

and feel that one is moving through a virtual world.

6.1.1 An applicaction

The developed tool can be used with different purpuses, all of them somehow related to

the generation of stereoscopic virtual views, but sometimes quite different to the ones

that were first thought. Here is an example of that.

For the generation of virtual views, depth maps are required, as it was previously seen.

However, for some uses where the number of images is considerable, a compression of

the depth maps, decoded afterwards in the remote end, may be extremely useful in

order to improve the time performance. In fact, time is one of the most troubling issues

in many applications, so every improvement is of great value. But there are drawbacks:

this process may involve some errors in the reconstruction that affect the final view.

In order to test that with the iWear VR920, a tool was developed. It creates the virtual

views with the two different depth maps, and showns them alternatively in the glasses,

in 3D, so that the differences are shown, as can be seen on Figures 6.1 and 6.2. It is

also possible to simply show views externally created.

6.1. CONCLUSIONS AND CONTRIBUTIONS 81

Figure 6.1: View created with an original Depth Map

Figure 6.2: View created with a compressed Depth Map

82 CHAPTER 6. CONCLUSIONS

6.2 Future Research

At this point, there are still plenty of possible things to do to make the developed tool

even more complete. In fact, the possibilies are overwhelming, and following the course

of action which has started in this project, the full interaction with created 3D scenerios

from few images is not far away. Some of the possibilites will be mentioned now, as a

way of opening new paths of investigation for the near future.

• The most important problem that has been faced in the project is time. In order

to improve the performance of the algorithm, it would be interesting to try a

parallel computing architecture such as CUDA [27]. It includes C/C++ software

development tools, function libraries, etc. The main benefit is that it can solve

complex computational problems in a fraction of the time required on a CPU.

New software should be created to use it though.

• The first idea in order to improve the tool is currently being studied in the de-

partment, and it is the improvement in the creation of depth maps. As it was

seen in previous chapters, a slight error in it caused an incorrect projection of the

dancer’s finger. Therefore, it the depth map was more reliable, the quality of the

final view would be much better.

• Although the occlusions that appeared when creating rotated virtual views were

erased with the use of a third camera, or two separated ones, the process of

choosing those cameras is not automatic. It would be really interesting, in order

to avoid the user a lot of work, to find a way to detect the optimal cameras. Several

trials were done in this project, without reaching any promising conclusions. For

instance, a study of the orientation of the reference cameras was done, comparing

it with the rotation of the virtual camera, in order to find the most similars and

use them. However, as it was said in previous chapters, the problem are the

objects in the scene, and those objects

• As the glasses are unable to work under Linux, and it has been proved that the

ImagePlus functions are slower in Windows, it would be of great value to develop

6.2. FUTURE RESEARCH 83

a software so that they do. As it can be seen in the comparison between both

systems’ time efficiency, in case the algorithm could work in Linux, creating virtual

sequences of a random scene in real time would be a real possibility.

• It may also be interesting to test the algorithm in other devices. Not only they

wouldn’t have the yaw error, and therefore wouldn’t need compensation (with the

result of a reduction of time). If a device that can work under Windows system

is used, the previous idea (developing extra softwore to adapt the VR920) would

not be necessary.

84 CHAPTER 6. CONCLUSIONS

Chapter 7

Bibliography

[1] Allen A.Yang (2007), Image Formation and Camera Models. Berkeley EE 225b.

[2] Josep R. Casas (2006), Camera Calibration and Calibration Matrices. A 10 minute

introduction for the better usage and understanding of L WORLD3D projection/reconstruction

routines. ACERCA Seminar. Universitat Politècnica de Catalunya.

[3] Vuzix Web Page. Section of dowloads, there is available the SDK used as a base of

this project. http://www.vuzix.com/support/downloads-drivers.html

[4] R. Hartley, A. Zisserman (2000), Multiple View Geometry in Computer Vision.

CAMBRIDGE. UNIVERSITY PRESS

[5] Carlo Alberto Avizanno, Patrizio Sorace, Damaso Checcacci, Massimo Bergamasco.

Head Tracking Based on Accelerometer Sensors. PERCRO, Scuola Superiore S.Anna.

[6] Mauricio Orozco, WonSook Lee and Abdulmotaleb El Saddik. Interaction of Free

Viewpoint 3D Video with a Haptic-Based Environment for Training Applications. Mul-

timedia Communications Research Laboratory. School of Information Technology and

Engineering, University of Ottawa.

85

86 CHAPTER 7. BIBLIOGRAPHY

[7] Carolina Martinez Ordinas (2009). PFC.Virtual View Generation for Viewpoint

Applications. Universitat Politècnica de Catalunya

[8] Sing Bing Kang and Larry Zitnick. Projection test and results for Microsoft Research

3D Video (Breakdancing frame). Interactive Visual Media Group. Microsoft Research.

Redmond, WA 98052

[9] Yahya H. Mirza and Henry da Costa. Introducing the New Managed Direct3D Graph-

ics API in the .NET Framework. MSDN Magazine. http://msdn.microsoft.com/en-

us/magazine/cc164112.aspx

[10] Thorn, A. (2005) DirectX 9 Graphics: the Definitive Guide to Direct 3D (Wordware

Applications Library). Wordware Publishing Inc.

[11] Levoy M. (2002), The digital michelangelo project: 3d scanning of large statues.

Dept. Computer Science, University of Standford. Information about the project in:

http://graphics.stanford.edu/projects/mich.

[12] H. Fuchs, G. Bishop, K. Arthur, L. McMillan, R. Bajcsy, S. Lee, H. Farid, and T.

Kanade (1994). Virtual space teleconferencing using a sea of cameras. First Interna-

tional Symposium on Medical Robotics and Computer Assisted Surgery, pages 161-167.

[13] U. Castellani and S. Livatino (2001). Scene reconstruction: Occlusion understand-

ing and recovery. In Robert B. Fisher, editor, CVonline: The Evolving, Distributed,

Non-Proprietary, On-Line Compendium of Computer Vision. School of Informatics,

University of Edinburgh.

[14] S. Livatino and D. Hogg (1999). Image synthesis for telepresence. In European

Workshop on Semi-Autonomous Monitoring and Robotics Technology, Las Palmas, Ca-

nary Islands, Spain.

[15] M. Li, H. Schirmacher, and H.P. Seidel (2002), Combining stereo and visual hull

for on-line reconstruction of dynamic scenes. In IEEE Workshop on Multimedia and

Signal Processing.

87

[16] S.E. Chen (1995), Quicktime vr - an image-based approach to virtual environment

navigation. In Computer Graphics (SIGGRAPH’95), pages 29-38.

[17] S.M. Seitz and C.R. Dyer (1995), Phisically-valid view synthesis by image interpo-

lation. In Workshop on Representations of Visual Scenes.

[18] S.M. Seitz and C.R. Dyer (1996), View morphing. In Computer Graphics (SIG-

GRAPH’96), pages 21-30.

[19] Granum E (2005), Being there without going (benogo), eu fet-project. CVMT lab.,

Aalborg University. http://www.benogo.dk.

[20] H. Shum and S. Kang (2000), A review of image-based rendering techniques. In

SPIE Int. Conf. on Visual Communication and Image processing, pages 2-13

[21] D. Forsyth and J. Ponce (2002), Computer Vision - A Modern Approach, chapter

26, Application: Image-Based Rendering, pages 780-808.

[22] S.B. Kang (1999), A survey of image based rendering techniques. VideoMetrics,

SPIE, 3641:2-16.

[23] D. Scharstein (1999), View synthesis using stereo vision. Lecture Notes Comput.

Sci., vol. 1583.

[24] D. Shreiner, M. Woo, J. Neider, and T. Davis (2003), OpenGL Programming Guide.

Addison-Wesley Publishing Company, 4th edition.

[25]R. Halfhill, Tom (2008), Parallel Processing with CUDA. Nvidia’s High-Performance

Computing Platform Uses Massive Multithreading

88 CHAPTER 7. BIBLIOGRAPHY

Chapter 8

Annex

8.1 Direct3D

The primary role of the Direct3D architecture is to provide the ground for a higher-level

solution such as a game engine or a scene graph API. In order to do so, the Direct3D

extension library explicitly provides additional functionality.

Two performance optimization techniques are used in 3D graphics architectures: pipelin-

ing and parallelizing. The algorithms exposed through Direct3D are organized into a

pipeline, which is a set of algorithms that operate on 3D geometric quantities; in the

case of Direct3D, vertices and primitives. The main purpose of the pipeline is to convert

geometric data into an image that is rendered on the video display.

The primary object that manages DirectX graphics is the Direct3D object. It is

created through the Direct3DCreate9 function. The Direct3D object implements the

IDirect3D9 interface and is responsible for determining the details of a particular device.

The Direct3DDevice9 interface provides methods with numerous algorithms for trans-

formation, lighting, rasterization, pixel, and frame buffer processing. They can be: a

set of properties that configures the Direct3D graphics pipeline or provides informa-

89

90 CHAPTER 8. ANNEX

tion about its current state, factory methods that create other objects in the Direct3D

architecture, or a set of methods that execute the actual graphics algorithms.

8.1.1 Textures

The Texture class represents an image that can be mapped onto a primitive for rendering

or used for bump mapping, normal mapping, or other effects. The fundamental function

of a texture is to map a pair of texture coordinates into a value, which is usually a color

value. The texture coordinates are normally part of the vertex data. The mapping from

texture coordinates to color or other values is done during the pixel processing stage of

the rendering pipeline. Direct3D allows up to eight textures to be used at a time.

3D texture (Three Dimensional Texture), also known as volume texture, is a logical

extension of the traditional (and better known) 2D texture. It can be thought of as a

number of thin pieces of texture used to generate a three dimensional image map. 3D

textures are typically represented by 3 coordinates.

Generally, 3D textures are packed into a rectangular parallelepiped with each dimension

constrained to a power of two. A rectangular parallelepiped is a 3D figure or 3D box

space, of whose face angles are right angles (also known as a cuboid). Therefore, all

of the faces of the three dimensional figure will be rectangles while all of its dihedral

angles will be right angles. This type of 3D texture mapping occupies a volume rather

than a rectangular region and is usually accessed with three texture coordinates.

Loading textures in Direct3D is very easy using the D3DX functions. Is is important

to notice that in order to use the D3DX functions the user must include the header

d3dx9.h and link with d3dx9d.lib (in debug build) or d3dx9.lib (in release mode).

In order to create a texture, the following function will be used:

• pDevice [in] Pointer to an IDirect3DDevice9 interface, representing the device to be

associated with the texture.

• Width [in] and Height [in]. In pixels.

8.1. DIRECT3D 91

• MipLevels [in] Number of mip levels requested. If this value is zero orD3DXDEFAULT ,

a complete mipmap chain is created.

• Usage [in] In this case, 0 will be used.

• Format [in] Member of the D3DFORMAT enumerated type, describing the requested

pixel format for the texture.

• Pool [in] Member of the D3DPOOL enumerated type, describing the memory class into

which the texture should be placed.

• ppTexture [out] Address of a pointer to an IDirect3DTexture9 interface, representing

the created texture object. If the method succeeds, the return value is OK.

If the purpose is to show a sequence of images, the texture should only be created once at the

beginning. Otherwise, the program would be really slow. The time needed to use one of the

created views as a texture, and show it in the glasses is X ms, wich makes it possible to do it in

real time.

Finally, as with all DirectX objects, the texture must be released once it is used, with the

command texture− > Release()

8.1.2 Devices

When creating a device, first it is necessary to choose an adapter to use. The system’s default

adapter is most times sufficient.

Next, there are the presentation parameters. These define how a device will behave once it is

created. For instance, the isWindowed property; setting it to true or false decides whether the

92 CHAPTER 8. ANNEX

application will run fullscreen or not. It can be fatal to run in fullscreen mode if any problem

happens and the application is not able to recover anymore. Sometimes it can be very hard

to gain control over the computer again. In fullscreen mode the cursor is removed and a back

buffer is added to the device, with the same format as the current display mode and the size of

the desired resolution.

A back buffer is used as a render target. All drawing operations will be applied to the backbuffer.

After the rendering, one calls a special command on the device that forces the content of the

backbuffer to be shown on the screen. Using back buffers increases performance and reduces

visual artefacts like flickering etc., because it reduces the amount of drawing operations on the

actual screen. There are different possibilities for the device to show the contents of the back

buffer which are controlled by the SwapEffect property of the presentation parameters. Unless

it was necassary to access the contents of the buffers after shown on the screen, the best option

is SwapEffect.

The last part of the presentation parameters control the Wait for VSync option. If it is set

to Immediate, rendering will not be synchronized to the monitor’s refresh rate, thus giving you

maximum performance. If tearing or other distortions are noticed, this option should be set to

One instead to wait for VSyncs.

Finally, it is time to call the CreateDevice() method.

8.2 Rotated Virtual Views

8.2.1 Combinated Rotations

Besides the basic rotations, it is possible to move the glasses so two or even the three angles

suffer a variation. In order to test the efficiency of the algorithm, some examples have been

created. The first one is a rotation of five degrees in the pitch and yaw angle, and the second,

a rotation of also five degrees in the three angles.

8.2. ROTATED VIRTUAL VIEWS 93

Figure 8.1: Projected Image from Camera 1 with Pitch and Yaw Rotation

Figure 8.2: Depth Map from Projection 1

8.2.1.1 Pitch and Yaw

Now, the joining of the two images is done. As it was said before, this view will not be used

afterwards when experimenting with the techniques used to reduce occlusions. Therefore, the

filtered result will be presented now, not only here, but in the next composed rotation as well.

The gaps and occlusions present on Figure 8.5 will be both treated with the interpolation

function, the only tool that is at the moment available.

94 CHAPTER 8. ANNEX

Figure 8.3: Projected Image from Camera 2 with Pitch and Yaw Rotation

Figure 8.4: Depth Map from Projection 2

The interpolation function has improved the occlusions, but they are still spots with wrong

information as can be seen on Figure 8.7. In the next section some improvements will be

considered.

8.2.1.2 Pitch, Yaw and Roll

8.2. ROTATED VIRTUAL VIEWS 95

Figure 8.5: Joining of the two projection with Yaw and Pitch rotation

Figure 8.6: Final View with Pitch and Yaw Rotation

96 CHAPTER 8. ANNEX

Figure 8.7: Occlusions solved with Pitch and Yaw Rotation

Figure 8.8: Projected Image from Camera 1 with Pitch and Yaw Rotation

8.2. ROTATED VIRTUAL VIEWS 97

Figure 8.9: Depth Map from Projection 1

Figure 8.10: Projected Image from Camera 2 with Pitch and Yaw Rotation

98 CHAPTER 8. ANNEX

Figure 8.11: Depth Map from Projection 2

Figure 8.12: Joining of the two projection with Pitch, Yaw and Roll rotation

8.2. ROTATED VIRTUAL VIEWS 99

Figure 8.13: Final View with Pitch, Yaw and Roll Rotation

	Introduction
	3D Virtual Views
	Objectives
	Overview of the Project

	Background Information
	Stereoscopic Vision
	Accelerometer. A theoretical aproach
	Usage

	Basic Notions on the Creation of Virtual Views
	Camera Model and its Parameters

	Rotation of a 3D Point

	State of the Art
	Virtual View Generation Methods
	Model-based rendering
	Active methods
	Passive methods

	Image-based rendering
	Seitz-Dyer
	Brief Explanation of the 3D Reconstruction used in this Project

	Different 3D Devices
	eDimensional Wireless 3D Glasses
	Vuzix iWear VR920
	Calibration
	Errors in the Accelerometer of the VR920
	Linux incompatibility

	Virtual Views Generator Tool. Algorithm
	Reproducing Sequences in the VR920
	Direct3D Textures and Devices

	Creation of Stereoscopic Virtual Views
	Automatic Camera Selection
	Obtaining the virtual parameters
	Rotation of the Virtual View

	Image Projection
	Composition
	Gaps and Occlusions

	Implementation and interpretation of results
	Accelerometer in the iWear VR920
	Yaw Error
	Compensation

	Conclusion

	Generation of Rotated Virtual Views in a Random Position
	Corners
	Different Basic Rotations
	Roll
	Pitch
	Yaw

	How to deal with gaps, occlusions and other issues
	Interpolation
	A Third Camera
	Two Separated Cameras

	Time Performance
	Comparison between Windows and Linux

	Conclusions
	Conclusions and Contributions
	An applicaction

	Future Research

	Bibliography
	Annex
	Direct3D
	Textures
	Devices

	Rotated Virtual Views
	Combinated Rotations
	Pitch and Yaw
	Pitch, Yaw and Roll

