
Open Research Online
The Open University’s repository of research publications
and other research outputs

Relating Developers’ Concepts and Artefact Vocabu-
lary in a Financial Software Module

Conference Item
How to cite:

Dilshener, Tezcan and Wermelinger, Michel (2011). Relating Developers’ Concepts and Artefact Vocab-
ulary in a Financial Software Module. In: 27th IEEE International Conference on Software Maintenance,
25-30 September 2011, Williamsburg VA, USA.

For guidance on citations see FAQs.

c© 2011 IEEE

Version: Version of Record

Link(s) to article on publisher’s website:
http://www.cs.wm.edu/icsm2011/?page id=689

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copy-
right owners. For more information on Open Research Online’s data policy on reuse of materials please consult
the policies page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://www.cs.wm.edu/icsm2011/?page_id=689
http://oro.open.ac.uk/policies.html

Relating Developers’ Concepts and Artefact
Vocabulary in a Financial Software Module

Tezcan Dilshener Michel Wermelinger
Center for Research in Computing, Department of Computing

The Open University
Milton Keynes, United Kingdom

Abstract—Developers working on unfamiliar systems are
challenged to accurately identify where and how high-level
concepts are implemented in the source code. Without
additional help, concept location can become a tedious, time-
consuming and error-prone task. In this paper we study an
industrial financial application for which we had access to the
user guide, the source code, and some change requests. We
compared the relative importance of the domain concepts, as
understood by developers, in the user manual and in the source
code. We also searched the code for the concepts occurring in
change requests, to see if they could point developers to code to
be modified. We varied the searches (using exact and stem
matching, discarding stop-words, etc.) and present the
precision and recall. We discuss the implication of our results
for maintenance.

Keywords-business software maintenance; domain
vocabulary; change requests; empirical study

I. INTRODUCTION
Prior to performing a maintenance task, the designated

developer has to become familiar with the application in
concern. She has to search the application source code to
identify the program elements implementing the concepts
referred by a change request (CR) document. If unfamiliar
with the application, she has to read the source code to
understand how those program elements interact with each
other to accomplish the described use case. One approach is
to debug the described application flow and step through the
executed code to identify the program elements called during
the execution stage of the referred use case. However, such
dynamic trace may not always be adequate because not all
the relevant sections of the code may get executed. To
compensate for the missing program elements, without
program slicing tool support, she would have to perform
search tasks using the terminology found in the CR
document. Subsequently, she would then be in a position to
correlate both results to determine how to implement the
change.

During application development, it would have been

ideal for program comprehension to use the same words
found in the requirements documentation when declaring
identifier names. However, the developers often choose the
abbreviated form of the words and names found in the text

documentation as well as use nouns and verbs in compound
format to capture the described actions. In addition, the
layered multi-tier architectural guidelines better known as
Parnas’ information hiding principle [1], which advocate the
separation of concerns, in turn cause the concept
implementations to be scattered across the application. This
design principle leads to loss of information and creates
challenges during maintenance when linking the application
source code to the text documentation.

Also, the separation of concerns coupled with the abstract

nature of OOP (Object Oriented Programming) obscures the
implementation and causes additional complexity for
programmers during concept location and comprehension
tasks [9]. Shepherd et al. argue that OOP promotes the
decomposition of concepts into several class files scattered
across multiple layers of an application's architecture
opposed to procedural programming languages where all of
the implementation of a concept is usually done in one
source file. Furthermore, if a program is coded by using only
abbreviations and no meaningful words such as the ones
from its text documentation, then searching for the
vocabulary found in the supporting documentation would
produce no results. According to Lawrie et al. [2], industrial
software tends to use more abbreviations than open source
code. In such circumstances, the developer, responsible for
performing a change request, is now confronted with the task
of comprehending the words represented by the
abbreviations before being able to link them to those
described in the text document.

In this paper we undertake a preliminary investigation of

a commercial financial application’s module to see whether
vocabulary alone provides a good enough leverage for
maintenance when abbreviations are less used. More
precisely we are interested in comparing the vocabularies of
text documentation, change requests and source code to
determine whether (1) the source code identifier names
properly reflect the domain concepts in developers’ minds
and (2) identifier names can be efficiently searched for
concepts to find the relevant classes for implementing a
given change request.

The rest of this paper is organized as follows: Section II
describes the current research efforts related to our work,

Section III describes our work, Section IV presents our
results, Section V highlights the threats to validity, Section
VI discusses the results and Section VII concludes.

II. RELATED WORK
How vocabulary is distributed amongst the program

elements of an application as well as recovering traceability
links between source code and textual documentation has
been recognised as an underestimated area [3]. The case
study conducted by Lawrie et al. [10] investigated how
usage of identifier naming styles (abbreviated, full words,
single letters) assisted in program comprehension. They
concluded that although full words provide better results than
single letters, use of abbreviations are just as relevant and
report high confidence. Additionally, the work experience
and the education of the developers also play an important
role. They lobby for use of standard dictionaries during
information extraction from identifier names and argue that
abbreviations must also be considered in this process.
We investigate further in an environment where recognisable
names are used, if the change request and domain concept
terms result in higher quality of traceability between the
source code and the text documentation.

Haiduc and Marcus [4] created a list of graph theory

concepts by manually selecting them from the literature and
online sources. They extracted identifier names and
comments representing those concepts from the source code.
They then checked if the terms extracted from the comments
are identifiable in the set of terms extracted from the
identifiers. In addition they measured to see the degree of
lexical agreement between the terms existing in both sets.
They concluded that although comments reflect more
domain information, both comments and identifiers present a
significant source of domain terms to aid developers in
maintenance tasks. We also check whether independently
elicited concepts, in our case from the financial domain,
occur in identifiers, but we go further in our investigation:
we compare different artefacts beyond code, and we check
whether the elicited concepts can be used to map change
requests to the code areas to be changed.

In that, our work is similar to the efforts of Antoniol et al.

[5]. Their aim was to see if the source code classes could be
traced back to the functional requirements. The terms from
the source code were extracted by splitting the identifier
names, and the terms from the documentation were extracted
by normalising the text using transformation rules. They
created a matrix listing the classes to be retrieved by
querying the terms extracted from the text document. The
method relied on vector space information retrieval and
ranked the documents against a query. Applying precision
and recall validated their results. Although the authors
compare two different retrieval methods (vector space and
probabilistic), they conclude that semi-automatically
recovering traceability links between code and
documentation is achievable despite the fact that the
developer has to analyse a number of sources during a
maintenance task to get high values of recall. Our work

differs in two main ways. First, it is geared towards
maintenance, because we attempt to recover traceability
between change requests and source code classes, instead of
between requirements and code. Second, because we
improve the precision of the search by using project specific
stop-word filtering and vocabulary mapping. Stop-words are
those without any significant meaning in English, e.g. ‘a’,
‘be’, ‘do’, ‘for’.

III. METHODOLOGY
The subject of this study is an industrial web-based

financial application developed using the Java programming
language at our industrial partner as a proprietary application
and is not publicly available. Its functionality is to calculate
economical capital to evaluate operational risk. It consists of
four modules that are clones of each other: they implement
the same business concepts, but differ in how the
calculations are performed and parameterized. It has been in
production for 4 years and consists of about 2,043 artefacts
including source code, configuration files, and user guide
documentation.

The application has been maintained by five developers,

including in the past the first author, none of them being one
of the initial developers. Change requests and maintenance
tasks in the form of business functionality enhancements and
problem corrections are documented in a change
management and source control system and performed on an
on-going basis. The designated developer is responsible for
obtaining the assigned task and searching for the relevant
artefacts. The application is entirely developed by further
extending the in-house developed frameworks. So, prior to
starting the maintenance task, a developer who is new to the
technical architecture and vocabulary of the application is
faced with the challenge of searching the application
artefacts to identify the relevant sections. In order to assist
the developer, we attempt to see what clues can be obtained
from the vocabulary of the application domain.

TABLE I. CHANGE REQUEST DESCRIPTIONS

CR Description
1088 Change the layout of not editable fields in the calculation mask to

formatted text.
1090 Allow to edit the market values at the asset level, calculation mask

with edit.
2002 Export data to an importable excel format.
2003 Pdlgd export data to an importable excel format.
2010 Allow volatility values greather than 1.
2017 The get changed values doesn't update the time base for volatilities.
2049 Out of date of the baseline calculation is not displayed in the

planning overview page.
2063 New reallocation method "Use Asset Diversified Risk".
2068 Show in both sub systems Market and PD/LGD all calculation states

similar to the Roundup module.
2074 Dialog to distribute lambda factors similar to other module.
2081 Show approx. group values and diversification effects.
2095 Error during risk calculation. The market values should be set to null

instead of 0 until the next release.

In the first stage of our process, we obtained, for one of
the modules, the complete source code, the user guide, and
12 change requests. The code comprises 80,517 LOC over
282 classes and 29 packages. The user manual is 80 pages
and 25,069 words long. The change requests are those
implemented most recently, for the latest production release.
Change requests are very terse, as shown in Table I.

Using the source code mining tool JIM [6], we parsed the

code, extracted the identifiers and split them into single
terms referred to as hard words [7] (their component words
and abbreviations). JIM automates the extraction and
analysis of identifiers from Java source code files. First, the
identifiers and metadata from the Java source code abstract
syntax tree (AST) are extracted and added to a central store,
with information about their location. Second, the tool INTT
[8] within JIM is used to tokenise the identifier names by
using camel case, separators (assumed to mark boundaries)
and algorithms to split ambiguous boundaries, digits and
lower case, but no abbreviation expansion is performed. The
extracted information, the identifier names, their
tokenisations and metadata, including their source code
location, are stored in a Derby1 database. Parsing the code,
extracting the identifiers, splitting them, and storing all
information in the database took 33 seconds on a dual core
Mac Book Pro with 4Gb memory. The resulting database
size is 31Mb, containing 12,020 identifiers and 30,873 hard
word instances forming 677 unique hard words.

In the second stage, we saved the user guide (in

Microsoft Word format) as a text file to ignore images,
graphics, and tables. Confidential information, such as
names, email addresses and phone numbers was then
manually removed from the text. We next extracted the
words from the resulting text document. For this task, we
developed a simple Java application using the Lucene2
framework to analyse and tokenise the sentences into single
terms. We use the word ‘term’ because it covers non-English
words, prefixes, abbreviations and business terminology [4].
We chose Lucene’s StandardAnalyzer class because it
tokenises alphanumerics, acronyms, company names, email
addresses, etc. using a JFlex-based lexical grammar. It also
includes stop-word removal. We used a custom stop-words
list3 to filter them out. Running our Java program over the
user manual text, we obtained 697 unique terms with a total
of 13,801 instances.

We applied the same process as described above to

extract the terms from the change requests (CRs). We
obtained 169 unique terms with 1,602 occurrences. The
reason for such a high number of terms is because the CRs
are forms containing fields for tracking purposes e.g.
Priority, Assigned Date, Defect Id and terms are repeated in
the different fields. We also compiled a list of business
concepts used in this financial application domain based on
our experience. The business concepts are made up of
multiple words (n-grams), e.g. “Investment Market Risk”,
“Market Value Calculation”, “Lambda Factors”. The list was
distributed as a Likert type survey with a “strongly agree”-

“strongly disagree” scale amongst three other developers and
a business analyst to rate each concept and to make
suggestions in order to reduce any bias we might have
introduced. After evaluating the survey results and
consolidating the suggestions, we took the 45 unique single
words (like ‘market’ and ‘lambda’) occurring in the business
concepts as basis for further analysis. Henceforth, those 45
words are called concepts in the paper. The turn around time
for the whole process was less than 3 days.

Finally, in the last stage of our process, we developed a

search application in Java to read the comma separated text
files containing the concepts and terms obtained in stage 2,
and then run SQL queries to (1) search for occurrences of the
concepts in the three artefacts (CRs, user guide and code)
and (2) search for all classes that included hard words
matching the concepts found in CRs. For each search, we
performed exact match and then stem match to see if we
obtained more accurate results. For the stem searches, the
Java application in stage 2 was modified to use Lucene’s
PorterStemmer class to compute the term’s or concept’s
stem word by removing the common and morphological
endings (a.k.a. inflections). This takes lexical variations into
account, e.g. all words in Table IV have stem ‘calcul’. In
addition, for search (2), we manually listed the classes
involved by each CR in a traceability matrix based upon our
development experience with the application to then
compute the search’s precision and recall.

Figure 1 illustrates the extraction search and analysis

stages of our process. The top part represents the extraction
and storing of hard words from the source code using the
JIM tool and the lower part shows the extraction of terms
from the user guide and CR documents. The search stage is
shown in between. The search results are saved in a comma
separated file and imported into the spreadsheet program for
analysis.

Figure 1. Extraction, Search and Analysis processes.

IV. RESULTS

Figure 2. Searching for exact occurrences of concepts in the Extraction,

Figure 1. Search and Analysis processes.

1. http://db.apache.org/derby/
2. http://lucene.apache.org/java/docs/index.html
3. http://armandbrahaj.blog.al/2009/04/14/list-of-english-stop-words/

IV. RESULTS
Searching for exact occurrences of concepts in the

artefacts, we found that while each concept occurred in at
least one artefact, only 16 concepts occurred in all three
artefacts. Table II shows the 16 common concepts, sorted by
frequency in CRs, and their respective frequency in the other
two artefacts.

TABLE II. CONCEPT SEARCH RESULTS USING EXACT TERMS

Concept
(exact search)

Instances
in CR

Rank
CR

Instances
in Guide

Rank
Guide

Instances
in Code

Rank
Code

market 32 1 605 1 558 2
value 24 2 198 7 472 3
calculation 14 3 513 2 56 14
risk 12 4 259 4 371 4
asset 8 5 49 12 171 8
roundup 8 6 8 16 5 15
diversification 4 7 11 15 59 13
time 3 8 205 6 297 5
lambda 3 9 101 9 187 7
base 3 10 104 8 127 9
volatility 3 11 208 5 124 10
group 3 12 13 14 61 12
factors 3 13 92 11 5 16
index 2 14 322 3 661 1
unit 1 15 44 13 271 6
portfolio 1 16 100 10 86 11

Subsequently, we wanted to identify if the concepts also

have the same degree of importance across artefacts, based
on their occurrences. For example, among those concepts
occurring both in the code and in the guide, if a concept is
the n-th most frequent one in the code, is it also the n-th most
frequent one in the guide? We applied Spearman’s rank
correlation coefficient, to determine how well the
relationship between two variables in terms of the ranking
within each artefactual domain can be described [11]. The
correlation was computed pair-wise between artefacts, over
the instances of the concepts common to both artefacts, i.e.
between the CRs and the user guide, then between the CRs
and the source code, and finally between the user guide and
the source code. Table III shows the results using the online
Wessa statistical tool4 and the number of common concepts
occurring in pairs of artefacts.

TABLE III. SPEARMAN CORRELATION FOR EXACT AND STEM SEARCH

 Exact Search / Stem Search
Correlation Between => CR & Guide CR & Code Guide & Code
Common concepts 17 16 36
Spearman rank correlation 0.32 / 0.52 0.093 / 0.13 0.55 / 0.67
p-value 0.19 / 0.037 0.72 / 0.62 0.0016 / 0.0002

The correlation is low and not statistically significant (p-

value > 0.05) between CRs and the other two artefacts,
because there are relatively few common concepts and they
have few exact occurrences in CRs. The correlation between

user guide and code is much greater and statistically
significant.

We searched again for concepts in the terms and hard

words extracted from the artefacts, but using stemming. This
did not increase the number of common concepts between
artefacts. However, it changed the number of instances
found, as Table IV illustrates: there are 56 exact occurrences
of concept ‘calculation’ in the code’s hard words, but
searching for the concept’s stem returns 29 additional
instances. This changed the relative ranking of the common
concepts. The Spearman correlation became stronger and
statistically more relevant, as Table III shows. Only the
correlation between CRs and code remains statistically not
significant.

TABLE IV. STEMMING EXAMPLE

Term Instances Guide Instances Code
calculate 50 11
calculated 27 5
calculating 1 4
calculation 513 56
calculations 129 2
calculator 0 7

Next we identified the domain concepts each CR refers to

(compare Tables I and V) and then did an exact search of
those concepts among the hard words belonging to class
identifiers. The retrieved classes were compared to those that
should have been returned, i.e. those that were affected by
implementing the CR as listed in the traceability matrix
described in section III. The results for the CRs of Table I
are shown in Table V.

TABLE V. SEARCH RESULTS USING EXACT CR CONCEPTS

CR concepts searched relevant
classes

relevant
retrieved

recall
(%)

retrieved
classes

precision
(%)

1088 calculation, market 8 8 100 148 5.41
1090 calculation, asset,

market
11 10 90.91 148 6.76

2002 roundup 15 0 0 0 0.00
2003 pdlgd 6 0 0 0 0.00
2010 volatility, market 6 6 100 141 4.26
2017 base, market, time 4 4 100 144 2.78
2049 calculation, market 7 7 100 148 4.73
2063 asset, index,

market, risk
7 7 100 161 4.35

2068 calculation, market,
diversification,
holding, roundup

5 3 60 149 2.01

2074 factors, lambda 6 4 66.67 11 36.36
2081 group, roundup,

diversification
6 0 0 0 0

2095 market, risk 8 8 100 161 4.97

Exact CR concept search had very high recall but very
low precision. Since stemmed search returns a superset of

4. http://www.wessa.net/rankcorr.wasp

exact search, it likely deteriorates precision but it could
improve recall. In fact, the precision did deteriorate as shown
in Table VI, e.g. for CR #2074 it declined from 36.36% to
30.77%. The reason for this is that a stemmed term for
‘factors’ is ‘factor’, resulting in 2 additional classes to be
retrieved. The stemmed search did not improve recall either,
as shown in Table VI, e.g. no additional relevant classes
were found for CRs #2002 and #2074.

TABLE VI. SEARCH RESULTS USING STEMMED CR CONCEPTS

CR stemmed concepts
searched

relevant
classes

relevant
retrieved

recall
(%)

retrieved
classes

precision
(%)

1088 calcul, market 8 8 100 150 5.33
1090 calcul, asset,

market
11 11 100 150 7.33

2002 roundup 15 0 0 0 0.00
2003 pdlgd 6 0 0 0 0.00
2010 volatil, market 6 6 100 141 4.26
2017 base, market, time 4 4 100 144 2.78
2049 calcul, market 7 7 100 150 4.67
2063 asset, index,

market, risk
7 7 100 161 4.35

2068 calcul, market,
diversif, holding,
roundup

5 3 60 151 1.99

2074 factor, lambda 6 4 66.67 13 30.77
2081 group, roundup,

diversif
6 0 0 0 0

2095 market, risk 8 8 100 161 4.97

We looked further at the reasons for low precision. In the

case of CR #2002 (0% recall and precision), the request is
about a generic action (exporting) on the concept (roundup),
and as such the concept does not appear in the relevant class
names. Other CRs involve the frequent concept ‘market’ (see
Table II), which due to the project naming conventions
occurs in almost every class name of the module, causing
many false positives.

TABLE VII. SEARCH USING CR VOCABULARY, STOP-WORDS AND
MAPPING

CR vocabulary
searched

relevant
classes

relevant
retrieved

recall
(%)

retrieved
classes

precision
(%)

1088 calculation, helper 8 8 100 57 14.04
1090 calculation, asset,

adapter, data, edit,
operation, report,
version, workflow

11 6 54.55 98 6.12

2002 data, export 15 15 100 45 33.33
2003 pdlgd, data, export 6 6 100 45 13.33
2010 volatility, 6 4 66.67 20 20
2063 asset, index, risk,

common, method
7 5 71.43 52 9.62

2074 copy, distribute,
lambda

6 6 100 69 8.70

2095 risk 8 8 100 161 13.16

To improve precision, so that developers have to inspect
fewer classes for their relevance to the CR, we prepared a
customized search for a subset of the CRs from Table I.
First, we searched the classes’ hard words using the actual
words of the CR, rather than its associated concepts, because
they better describe the concept’s aspects or actions to be
changed. However, the CR and the class identifiers may use
different words. For example, the CR #1088 term ‘mask’
refers to the GUI, which is implemented by the Helper
pattern, explicitly referred to in class names. Hence we
introduced a project specific mapping mechanism, which in
our case includes ‘mask’→‘helper’. Finally, we discarded
from searches project specific stop-words, like ‘market’ in
our case. The new results obtained are shown in Table VII.
We see that in 4 out of 8 cases precision increased by 50%
compared to Table V, while the impact to recall has
remained minimal. To the contrary, the previously not
detected classes for CR #2002 are now all retrieved.

V. THREATS TO VALIDITY
The internal validity addresses the relationship between

the cause and the effect of the results to verify that the
observed outcomes are the natural product of the
implementation. A single developer (the first author) listed
the concepts. This threat to internal validity was partly
addressed by having the concepts validated by other
stakeholders.

The construct validity addresses whether the conclusions

can legitimately be made from the operationalization of the
theories. We only used single-word concepts, while business
concepts are usually compound terms. This threat to
construct validity will be addressed in future work: we will
see if term co-occurrence improves precision.

The external validity addresses the possibility of

applying the study and results to other circumstances. The
characteristics of this project (the domain, the terse CRs, the
naming conventions, the kind of documentation available)
are a threat to external validity, and we intend to repeat the
experiment with other projects and artefacts, but still within
the financial domain for comparison.

VI. DISCUSSION
Regarding our first aim (Section I), we note that,

together, the three artefacts explicitly include all the domain
concepts agreed upon by four developers and a business
analyst. This indicates (a) full business concept coverage,
and (b) in this project abbreviations are not required to
retrieve such concepts from the artefacts. Those are two good
indicators for maintenance. However, only 36/45 or 80% of
concepts occur both in the code and the documentation.
Since the latter is consulted during maintenance, this lack of
full agreement between both artefacts, regarding the concepts
in the developers’ heads, may point to potential
inefficiencies during maintenance. On the other hand, and
using stemming to account for lexical variations, those 36
common concepts correlate well (with a high statistical
significance of p=2·10-4) in terms of relative frequency, taken

as proxy for importance, i.e. the more important concepts in
the user guide tend to be the more important ones in the
code. This good conceptual alignment between
documentation and implementation eases maintenance,
especially for new developers. The weak conceptual overlap
and correlation between CRs and the other two artefacts is
not a major issue for us. Change requests are usually specific
for a particular unit of work and may not necessarily reflect
all implemented or documented concepts.

Regarding our second aim, we found that mapping a

CR’s wording to domain concepts and using those to search
for classes to be changed, is enough to achieve very good
recall, but precision is poor. We found both recall and
precision can be improved by (a) using the actual CR
vocabulary, (b) mapping some of it to different terms used in
class identifiers and (c) ignoring frequent concepts, which
act as stop-words. We note that such project specific, simple,
and efficient techniques can drastically reduce the false
positives a developer has to go trough to find the classes
affected by a CR. We also note that in projects like this,
where class identifiers are more descriptive than
abbreviations, the use of stem search is useless, as it
decreases precision, while not increasing recall.

VII. CONCLUDING REMARKS
This paper presents an efficient approach to relate the

vocabulary of information sources for maintenance: change
requests, code, documentation, and the concepts in the
stakeholders’ minds. The approach consists in first
extracting and normalising (incl. splitting identifiers and
removing stop words) the terms from the artefacts, while
independently eliciting domain concepts from the
stakeholders. Secondly, by doing exact and stemmed
searches – to account for lexical variations – of the concepts
within the terms extracted from artefacts, one can check
whether (a) the artefacts explicitly reflect the stakeholders’
concepts and (b) pairs of artefacts have good conceptual
alignment. Both characteristics help maintenance, e.g. (b)
facilitates locating code affected by given CRs.

The importance of descriptive and consistent identifiers

for program comprehension, and hence software
maintenance, has been extensively argued for in the
academic [3] and professional literature [12]. We applied the
approach to industrial code that follows good naming
conventions, in order to investigate whether they could be
leveraged during maintenance. We observed that the
conceptual alignment between documentation and code
could be improved, and that descriptive identifiers support
high recall of classes affected by CRs, but precision is low,
which is detrimental on maintenance. We found simple
techniques to improve precision, but further research is
needed. For example, the use of project specific stop-word
filtering, as well as project specific vocabulary mapping
between concept and class identifiers requires manual effort.
However, the mappings and stop-words can be added
incrementally as developers refine their searches, or

automatic heuristics (like looking for very frequent words)
could be developed.

 Although this work is only a preliminary exploration

of the vocabulary relationships between artefacts and the
developers’ concepts, it highlights that better programming
guidelines and tool support are needed beyond enforcing
naming conventions within code, because that by itself
doesn’t guarantee a good traceability between the concepts
and the artefacts, which would greatly help maintenance
tasks and communication within the team.

ACKNOWLEDGMENTS
We thank Simon Butler for his assistance in using the

JIM tool, and our industrial partner, a global financial IT
solutions provider located in southern Germany, for
providing the artefacts and their input on diverse information
required. Also, we are grateful to the ICSM’11 reviewers for
their constructive comments and suggestions.

REFERENCES
[1] D. Parnas, "On Criteria To Be Used in Decomposing Systems Into

Modules," Communications of the ACM, 14(1):221-227, April 1972.
[2] D. Lawrie, H. Feild, D. Binkley, “Quantifying identifier quality: an

analysis of trends,” Empirical Software Eng. 12:359-388, Feb. 2007.
[3] F. Deissenböck and M. Pizka, “Concise and consistent naming,” in

Proc. 13th Int’l Workshop on Program Comprehension, 2005, pp.
97– 106.

[4] S. Haiduc and A. Marcus, “On the Use of Domain Terms in Source
Code,” 16th Int’l Conf. on Program Comprehension, 2008, pp. 113-
122.

[5] G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,”
IEEE Transactions on Software Engineering, 28:970-983, 2002.

[6] S. Butler, M. Wermelinger, Y. Yu, H. Sharp, “Exploring the influence
of identifier names on code quality: an empirical study,” in 14th
European Conf. on Software Maintenance and Reeng., 2010, pp.
159–168.

[7] H. Feild, D. Lawrie, D. Binkley, “An Empirical Comparison of
Techniques For Extracting Concept Abbreviations from Identifiers“
Proc. Int'l Conf. on Software Engineering and Applications, 2006

[8] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the
tokenisation of identifier names,” in Proc. European Conf. on
Object- Oriented Programming, LNCS 6813, Springer-Verlag, 2011,
pp. 130-154

[9] D. Shepherd, L. Pollock, and k. Vijay-Shanker, "Towards Supporting
On-Demand Virtual Remodularization Using Program Graphs",
AOSD 2006, ACM, pp. 3-14.

[10] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What is in a Name?
A Study of Identifiers,” Proc. 14th Int’l Conf. on Program
Comprehension, IEEE, , 2006, pp. 3-12.

[11] S. Boslaugh, P. Watters, “Statistics in a nutshell”, O’Reilly, 2008, pp.
176-179.

[12] R. C. Martin, “Clean Code: A Handbook of Agile Software
Crafttsmanship”, Prentice Hall, 2008, pp. 17-30.

