

USBee DX
Test Pod
Users Manual

CWAV
www.usbee.com

2 USBee DX Test Pod User’s Manual

USBee DX Test Pod User’s Manual 3

USBee DX Test Pod

Users Manual

CWAV
www.usbee.com
(951) 693-3065

support@usbee.com

4 USBee DX Test Pod User’s Manual

USBee DX License Agreement

The following License Agreement is a legal agreement between you (either an individual or entity),
the end user, and CWAV. You have received the USBee Package, which consists of the USBee
Pod, USBee Software and Documentation. If you do not agree to the terms of the agreement, return
the unopened USBee Pod and the accompanying items to CWAV for a full refund. Contact
support@usbee.com for the return address.

By opening and using the USBee Pod, you agree to be bound by the terms of this
Agreement.

Grant of License
CWAV provides royalty-free Software, both in the USBee Package and on-line at www.usbee.com,
for use with the USBee Pod and grants you license to use this Software under the following
conditions: a) You may use the USBee Software only in conjunction with the USBee Pod, or in
demonstration mode with no USBee Pod connected, b) You may not use this Software in
conjunction with any pod providing similar functionality made by other than CWAV, and c) You may
not sell, rent, transfer or lease the Software to another party.

Copyright
No part of the USBee Package (including but not limited to manuals, labels, USBee Pod, or
accompanying diskettes) may be reproduced, stored in a retrieval system, or transcribed, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the
prior written permission of CWAV, with the sole exception of making backup copies of the diskettes
for restoration purposes. You may not reverse engineer, decompile, disassemble, merge or alter the
USBee Software or USBee Pod in any way.

Limited Warranty
The USBee Package and related contents are provided “as is” without warranty of any kind, either
expressed or implied, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose, with the sole exception of manufacturing failures in the USBee Pod
or diskettes. CWAV warrants the USBee Pod and physical diskettes to be free from defects in
materials and workmanship for a period of 12 (twelve) months from the purchase date. If during this
period a defect in the above should occur, the defective item may be returned to the place of
purchase for a replacement. After this period a nominal fee will be charged for replacement parts.
You may, however, return the entire USBee Package within 30 days from the date of purchase for
any reason for a full refund as long as the contents are in the same condition as when shipped to
you. Damaged or incomplete USBee Packages will not be refunded.

The information in the Software and Documentation is subject to change without notice and, except
for the warranty, does not represent a commitment on the part of CWAV. CWAV cannot be held
liable for any mistakes in these items and reserves the right to make changes to the product in order
to make improvements at any time.

IN NO EVENT WILL CWAV BE LIABLE TO YOU FOR DAMAGES, DIRECT, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL, INCLUDING DAMAGES FOR ANY LOST PROFITS, LOST
SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF THE
USE OR INABILITY TO USE SUCH USBEE POD, SOFTWARE AND DOCUMENTATION, EVEN IF
CWAV HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR FOR ANY CLAIM
BY ANY OTHER PARTY. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION
OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE ABOVE
LIMITATION MAY NOT APPLY TO YOU. IN NO EVENT WILL CWAV’S LIABILITY FOR DAMAGES
TO YOU OR ANY OTHER PERSON EVER EXCEED THE AMOUNT OF THE PURCHASE PRICE
PAID BY YOU TO CWAV TO ACQUIRE THE USBEE, REGARDLESS OF THE FORM OF THE
CLAIM.

Term
This license agreement is effective until terminated. You may terminate it at any time by returning
the USBee Package (together with the USBee Pod, Software and Documentation) to CWAV. It will
also terminate upon conditions set forth elsewhere in this agreement or if you fail to comply with any
term or condition of this agreement. You agree that upon such termination you will return the USBee
Package, together with the USBee Pod, Software and Documentation, to CWAV.

USBee DX Test Pod User’s Manual, Version 2.0
Copyright 2007 CWAV. All Rights Reserved

USBee DX Test Pod User’s Manual 5

Table of Contents

1 INTRODUCING THE USBEE DX POD................................. 9
1.1 PC SYSTEM REQUIREMENTS ... 11
1.2 EACH PACKAGE INCLUDES.. 11
1.3 HARDWARE SPECIFICATIONS... 11
1.4 SOFTWARE INSTALLATION .. 12
1.5 CALIBRATION .. 12

2 LOGIC ANALYZER AND OSCILLOSCOPE (MSO) 15
2.1 QUICK START .. 15
2.2 MIXED SIGNAL OSCILLOSCOPE/LOGIC ANALYZER
SPECIFICATIONS... 17
2.3 FEATURES ... 18

2.3.1 Setup Configuration... 18
2.3.2 Signal Names ... 19
2.3.3 Pod Status .. 19
2.3.4 Acquisition Control.. 20
2.3.5 Trigger Control.. 20
2.3.6 Waveform Display and Zoom Settings......................... 24
2.3.7 Measurements and Cursors ... 27
2.3.8 Bus Decoding... 29

2.3.8.1 Bus Setup .. 29
2.3.8.2 Decoding Bus Traffic – Click and Drag...................... 31
2.3.8.3 Decoding Bus Traffic – Multiple Busses 32
2.3.8.4 Generic Bus Setup... 33
2.3.8.5 CAN Bus Setup... 34
2.3.8.6 USB Bus Setup ... 36
2.3.8.7 I2C Bus Setup ... 38
2.3.8.8 Async Bus Setup... 40
2.3.8.9 Parallel Bus Setup... 42
2.3.8.10 1-Wire Bus Setup.. 44
2.3.8.11 SPI Bus Setup ... 46
2.3.8.12 SM Bus Bus Setup .. 48
2.3.8.13 Serial Bus Setup.. 50
2.3.8.14 I2S Bus Setup.. 52
2.3.8.15 PS/2 Bus Setup.. 54

2.3.9 File Save, Open and Export ... 57
2.3.9.1 Output File Format.. 57
2.3.9.2 Export to Text Format... 59

2.3.10 Calibration.. 60
3 DIGITAL SIGNAL GENERATOR 61

3.1 DIGITAL SIGNAL GENERATOR SPECIFICATIONS................. 61
3.2 QUICK START .. 62

6 USBee DX Test Pod User’s Manual

3.3 FEATURES ... 62
3.3.1 Pod Status .. 62
3.3.2 Channel Setup.. 63
3.3.3 Generation Control.. 63
3.3.4 Waveform Edit, Display and Zoom Settings 64

3.3.4.1 Setting Waveform Sections... 65
3.3.4.2 Creating Clocks... 66
3.3.4.3 Creating Pulses ... 66

3.3.5 Measurements and Cursors ... 67
3.3.6 File Save and Open.. 67
3.3.7 Printing.. 68

4 DIGITAL VOLTMETER (DVM) .. 69
4.1 DIGITAL VOLTMETER SPECIFICATIONS 69
4.2 QUICK START .. 69
4.3 FEATURES ... 70

4.3.1 Pod Status .. 70
4.3.2 Voltage Measurement .. 70

5 DATA LOGGER.. 71
5.1 DATA LOGGER SPECIFICATIONS.. 71
5.2 QUICK START .. 71

6 FREQUENCY COUNTER ... 73
6.1 FREQUENCY COUNTER SPECIFICATIONS 73
6.2 QUICK START .. 73
6.3 CHANNEL SETUP ... 74

7 REMOTE CONTROLLER... 75
7.1 REMOTE CONTROLLER SPECIFICATIONS 75
7.2 QUICK START .. 76

8 PWM CONTROLLER .. 77
8.1 PWM CONTROLLER SPECIFICATIONS 78
8.2 QUICK START .. 78

9 FREQUENCY GENERATOR.. 79
9.1 FREQUENCY GENERATOR SPECIFICATIONS 79
9.2 QUICK START .. 80

10 I2C CONTROLLER.. 81
10.1 I2C CONTROLLER SPECIFICATIONS 82
10.2 QUICK START .. 82

USBee DX Test Pod User’s Manual 7

11 PULSE COUNTER.. 83
11.1 PULSE COUNTER SPECIFICATIONS..................................... 83
11.2 QUICK START .. 84

12 USBEE TOOLBUILDER.. 85
12.1 OVERVIEW .. 85

12.1.1 Voltmeter Mode... 85
12.1.2 Signal Capture .. 86
12.1.3 Digital Signal Generator .. 86
12.1.4 Bi-Directional and Uni-Directional Modes 87

12.2 SYSTEM SOFTWARE ARCHITECTURE 88
12.3 THE USBEE DX POD HARDWARE 88
12.4 INSTALLING THE USBEE DX TOOLBUILDER 90

12.4.1 USBee DX Toolbuilder Project Contents................ 90
12.5 USBEE DX TOOLBUILDER FUNCTIONS 91

12.5.1 Initializing the USBee DX Pod................................ 91
12.5.1.1 EnumerateDXPods.. 91
12.5.1.2 InitializeDXPod .. 91

12.5.2 Bit Bang-Modes .. 92
12.5.2.1 SetMode.. 92
12.5.2.2 SetSignals - Setting the USBee DX Output Signals.... 93
12.5.2.3 GetSignals - Reading the USBee DX Input Signals.... 93

12.5.3 Logic Analyzer and Oscilloscope Functions........... 94
12.5.3.1 MakeBuffer... 94
12.5.3.2 DeleteBuffer.. 94
12.5.3.3 StartCapture .. 95
12.5.3.4 CaptureStatus.. 96
12.5.3.5 StopCapture .. 97
12.5.3.6 LoggedData... 97
12.5.3.7 DecodeUSB .. 97
12.5.3.8 DecodeSPI .. 98
12.5.3.9 DecodeI2C .. 99
12.5.3.10 DecodeCAN.. 100
12.5.3.11 Decode1Wire .. 101
12.5.3.12 DecodeParallel .. 102
12.5.3.13 DecodeSerial... 103
12.5.3.14 DecodeASYNC... 104
12.5.3.15 DecodeSetName.. 105

12.5.4 Digital Signal Generator Function 106
12.5.4.1 SetData.. 106
12.5.4.2 StartGenerate .. 106
12.5.4.3 GenerateStatus .. 107
12.5.4.4 StopGenerate... 108

12.5.5 Digital Voltmeter (DVM) Function....................... 108
12.5.5.1 GetAnalogAverageCount.. 108

8 USBee DX Test Pod User’s Manual

12.6 EXAMPLE C CODE ... 109
12.6.1 Performance Analysis of the “Bit-Bang” Routines113

USBee DX Test Pod User’s Manual 9

1 Introducing the USBee DX Pod

The USBee DX Test Pod is a large sample buffer PC and USB based
programmable multifunction digital storage 2-channel oscilloscope, 16-
channel logic analyzer and digital signal generator in a single compact
and easy to use device. It is the ideal bench tool for engineers,
hobbyists and students

Connecting to your PC, the USBee DX Test Pod uses the power and
speed of the USB 2.0 bus to capture and control analog and digital
information from your own hardware designs. The USBee DX takes
advantage of already existing PC resources by streaming data over the
High-Speed USB 2.0 bus to and from the PC. This allows the PC to
perform all of the triggering and data storing and makes possible an
affordable USBee DX, while pushing the sample storage capabilities
orders of magnitudes beyond that of traditional dedicated oscilloscopes,
logic analyzers or signal generators. The USBee DX Test Pod can utilize
available PC memory as the sample buffer, allowing selectable sample
depths from one to many hundreds of millions of samples.

The USBee DX Test Pod can capture and generate samples up to a
maximum of 24 million samples per second depending on the PC
configuration. The USBee DX Auto-Calibration feature automatically
reduces the sample rate to ensure accurate and reliable timing, even
on systems with slower processor and USB bus speeds. The USBee DX
Test Pod perfectly merged features and functions to provide exactly

10 USBee DX Test Pod User’s Manual

the performance needed for hardware and microprocessor designs
such as BASIC Stamp and PIC systems to ensure an affordable and
compact unit.

The USBee DX Test Pod does not need an external power supply. The
USB bus supplies the power to the pod, so your PC will be supplying
the power. The Pod does, however, require a self powered hub (not
bus powered) if a hub is used between the PC and Pod.

WARNING

As with all electronic equipment where you are working with live
voltages, it is possible to hurt yourself or damage equipment if not
used properly. Although we have designed the USBee DX pod for
normal operating conditions, you can cause serious harm to humans
and equipment by using the pod in conditions for which it is not
specified.

Specifically:

• ALWAYS connect at least one GND line to your circuits ground
• NEVER connect the digital signal lines (0 thru 7, TRG and CLK) to

any voltage other than between 0 to 5 Volts
• NEVER connect the analog signal lines (CH1 and CH2) to any

voltage other than between -10 and +10 Volts
• The USBee DX actively drives Pod signals 0 through F in some

applications. Make sure that these pod test leads are either
unconnected or connected to signals that are not also driving.
Connecting these signals to other active signals can cause damage
to you, your circuit under test or the USBee DX test pod, for which
CWAV is not responsible.

• Plug in the USBee DX Pod into a powered PC BEFORE connecting the
leads to your design.

 The USBee DX system is also expandable by simply adding more
USBee DX pods for more channels and combined features.

USBee DX Test Pod User’s Manual 11

1.1 PC System Requirements
The USBee DX Test Pod requires the following minimum PC features:

• Windows® 2000, XP or Vista operating system
• Pentium or higher processor
• One USB2.0 High Speed enabled port. It will not run on USB 1.1

Full Speed ports.
• 32MBytes of RAM
• 125MBytes of Hard disk space
• Internet Access (for software updates and technical support)

1.2 Each Package Includes
The USBee DX contains the following in each package:

• USBee DX Universal Serial Bus Pod
• Set of 24 multicolored test leads and high performance miniature

test clips
• Getting Started Guide
• USB Cable (A to Mini-B)
• USBee DX Test Pod CD-ROM

1.3 Hardware Specifications

Connection to PC

USB 2.0 High Speed (required)
Power

via USB cable
Test Leads

24 9" leads with 0.025" square
sockets

USB Cable Length
6 Feet

Dimensions
2.25" x 1.5" x 0.75"

Minigrip Test Clips
24

The maximum sample rate for any mode depends on your PC
hardware CPU speed and USB 2.0 bus utilization. For the fastest
possible sample rates, follow these simple steps:

• Disconnect all other USB devices not needed from the PC
• Do not run other applications while capturing or generating samples.

The maximum sample buffer size also depends on your PC available
RAM at the time the applications are started.

12 USBee DX Test Pod User’s Manual

1.4 Software Installation
Each USBee DX pod is shipped with an installation CD that contains
the USBee DX software and manuals. You can also download the
software from the software from our web site at www.usbee.com.
Either way, you must install the software on each PC you want to use
the USBee DX on before you plug in the device.

To install the software:

• Download the USBee DX Software from
http://www.usbee.com/download.htm and unzip into a new
directory. Or insert the USBee DX CD in your CD drive. Unzip the
downloaded file into a new directory.

• From the “Start|Run” Windows® menu, run the SETUP.EXE.
• Follow the instructions on the screen to install the USBee DX

software on your hard drive. This may take several minutes.
• Now, plug a USB A to USB Mini-B cable in the USBee DX and the

other end into a free USB 2.0 High Speed port on your computer.
• You will see a dialog box indicating that it found new hardware and

is installing the software for it. Follow the on screen directions to
finish the driver install.

• You will see another dialog box indicating that it found new
hardware and is installing the software for it. Follow the on screen
directions to finish the driver install.

• The USBee DX Software is now installed.
• Run any of the applications by going to the Start | Program Files |

USBee DX Test Pod and choosing the application you want to run.

1.5 Calibration
Since electronic components vary values slightly over time and
temperature, the USBee DX Pod requires calibration periodically to
maintain accuracy. The USBee DX has been calibrated during
manufacturing and should maintain accuracy for a long time, but in
case you want to recalibrate the device, follow these steps. The
calibration values are stored inside the USBee DX pod. Without
calibration the measurements of the oscilloscope may not be accurate
as the pod ages.

To calibrate your USBee DX Pod you will need the following equipment:

• External Voltage Source (between 5V and 9V)
• High Precision Multimeter

When you are ready to calibrate the USBee DX Pod, plug in the pod
and run the Oscilloscope and Logic Analyzer application. Then go to

USBee DX Test Pod User’s Manual 13

the menu item Setup | Calibrate. You will be asked to confirm that
you really want to do the calibration. If so, press Yes, otherwise press
No. Then follow these steps:

• Connect the CH1 and CH2 signals to the GND signal using the test
leads and press OK. A measurement will be taken.

• Connect the GND signal to the ground and the CH1 and CH2 signals
to the positive connection of the External Voltage Source using the
test leads and press OK. A measurement will be taken.

• With the Multimeter, measure the actual voltage between the GND
signal and the CH1 signal and enter this value in the dialog box.

• The calibration is now complete. The calibration values have been
saved inside the pod.

The analog measurements of your USBee DX pod are only as accurate
as the voltages supplied and measured during calibration.

14 USBee DX Test Pod User’s Manual

USBee DX Test Pod User’s Manual 15

2 Logic Analyzer and Oscilloscope
(MSO)

This section details the operation of the Logic Analyzer and
Oscilloscope application that comes with the USBee DX, also known as
a Mixed Signal Oscilloscope, or MSO. Below you see the application
screen after startup.

The USBee DX Mixed Signal Oscilloscope functions as a standard
Digital Storage Oscilloscope combined with a Digital Logic Analyzer,
which is a tool used to measure and display analog and digital signals
in a graphical format. It displays what the analog and digital input
signals do over time. The digital and analog samples are taken at the
same time and can be used to debug mixed signal systems.

2.1 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to view a mixed signal
(analog and digital) waveform trace.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

16 USBee DX Test Pod User’s Manual

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

• Connect the CH1 pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire. Connect the
other end of the wire to your circuit you would like to test. You can
either use the socket to plug onto a header post, or connect it to
one of the mini-grabber clips and then attach it to your signal of
choice.

• Connect any of the digital inputs 0 thru F on the USBee DX pod to
one of the signal wires using the small socket on the end of the wire.
Connect the other end of the wire to your circuit you would like to
test. You can either use the socket to plug onto a header post, or
connect it to one of the mini-grabber clips and then attach it to your
signal of choice.

• Run the Oscilloscope and Logic Analyzer Application.
• Press the Run button. This will capture and display the current

activity on all of the signals.
• You can then scroll the display, either by using the slider bars, or by

clicking and dragging on the waveform itself. You can also change
the knobs to zoom the waveform.

• You can make simple measurements by using the Cursors area
(gray bars under and along side the waves). Click the left mouse
button to place one cursor and click the right mouse button to place
the second. The resulting measurements are then displayed in the
Measurements section of the display.

USBee DX Test Pod User’s Manual 17

2.2 Mixed Signal Oscilloscope/Logic
Analyzer Specifications

Analog Channels 2
Maximum Analog Sample Rate
[1] 24 Msps

Analog Bandwidth 40 MHz

Input Impedance 1M Ohm/30 pF

Analog Input Voltage Range -10V to +10V

Analog Sensitivity 78mV

Analog Resolution 256 steps

Channel Buffer Depth [2] >200k Samples

Volts per Division Settings 100mV to 5V in 6 steps

Time per Division Settings 100ns to 2s in 23 steps

Trigger Modes Auto, Normal, Analog and Digital
Triggers

Analog Trigger Voltage Between -10V and +10V

Cursors 2 Time and 2 Voltage

Voltage Display Offset Up to maximum inputs

Time Display Offset Up to available buffer depth

Trigger Position Setting 10% to 90%

Measurements Min, Max

Digital Channels 16
Maximum Digital Sample Rate
[1] 24 Msps

Internal Clocking Yes
External Clocking

Yes – through Parallel Decoder
Digital Trigger Levels

4
Digital Trigger Qualifiers

Rising Edge, Falling Edge, High,Low
Trigger Prestore

Yes
Trigger Poststore

Yes
Sample Clock Output

Yes
Maximum Digital Input
Voltage +5.5V

18 USBee DX Test Pod User’s Manual

Digital Input Low Level
< 0.8V

Digital Input High Level
> 2.0V

[1] Maximum sample rate depends on your PC hardware CPU speed,
USB 2.0 bus utilization and number of channels selected.

For the fastest possible sample rates, follow these simple steps:

• Disconnect all other USB devices not needed from the PC
• Do not run other applications while capturing or generating

samples.

[2] Maximum buffer size depends on your PC available RAM at the
time the application is started. Each sample requires 4 bytes of RAM
(16 bits for the 16 digital lines and 8 bits each for the 2 analog
channels)

2.3 Features

2.3.1 Setup Configuration
The MSO can capture 16 channels of digital and 2 channels of analog
at the same time. All of the captured data is streamed over the USB
bus to your PC to be stored in the RAM of the PC. In order to optimize
the sample bandwidth you can choose to see only the channels of
interest to you.

The configurations available are as follows:

Analog Channels Digital Channels Max Sample Rate

0 8 24 Msps
0 16 12 Msps
1 0 24 Msps
1 8 12 Msps
1 16 6 Msps
2 0 12 Msps
2 8 6 Msps
2 16 6 Msps

To select a configuration, click Setup on the menu and select the
configuration of your choice. Below are examples of the application in
various modes.

USBee DX Test Pod User’s Manual 19

16 Digital–2 Analog Channels 8 Digital–0 Analog Channels

8 Digital–1 Analog Channels 0 Digital–2 Analog Channels

2.3.2 Signal Names
To change the names shown for a signal, click on the signal name and
enter a new name.

2.3.3 Pod Status
The MSO display shows a current USBee DX Pod Status by a red or
green LED. When a USBee DX is connected to the computer, the
Green LED shows and the list box shows the available Pod ID List for
all of the USBee DX’s that are connected. You can choose which one
you want to use. The others will be unaffected. If a USBee DX is not
connected, the LED will glow red and indicate that there is no pod
attached.

If you run the software with no pod attached, it will run in
demonstration mode and simulate data so that you can still see how
the software functions.

20 USBee DX Test Pod User’s Manual

2.3.4 Acquisition Control
The MSO captures the behavior of the digital and analog signals and
displays them as “traces” in the waveform window. The Acquisition
Control section of the display lets you choose how the traces are
captured. Below is the Acquisition Control section of the display.

When the MSO is first started, no
acquisition is taking place. You need to
press one of the acquisition buttons to
capture data.

The Run button is the Run/Stop control.
This Run mode performs an infinite series
of traces, one after the other. This lets
you see frequent updates of what the
actual signals are doing in real time. If

you would like to stop the updating, just press the Stop button and the
updating will stop. This run mode is great for signals that repeat over
time.

The Single button captures a single trace and stops. This mode is
good for detailed analysis of a single event, rather than one that
occurs repeatedly.

The Buffer Size lets you select the size of the Sample Buffer that is
used. For each trace, the buffer is completely filled, and then the
waveform is displayed. You can choose buffers that will capture the
information that you want to see, but remember that the larger the
buffer, the longer it will take to fill.

You can also choose the Sample Rate that you want samples taken.
You can choose from 1Msps (samples per second) to up to 24 Msps.
The actual maximum sample rate depends on your PC configuration
and the number of channels that you are using. See the table below
for maximum sample rates for a given channel setting.

Analog Channels Digital Channels Max Sample Rate

0 8 24 Msps
0 16 12 Msps
1 0 24 Msps
1 8 12 Msps
1 16 6 Msps
2 0 12 Msps
2 8 6 Msps
2 16 6 Msps

2.3.5 Trigger Control
The Mixed Signal Oscilloscope uses a Trigger mechanism to allow you
to capture just the data that you want to see. You can use either a

USBee DX Test Pod User’s Manual 21

digital channel trigger or an analog trigger. You can not use a
combination of analog and digital.

For an Analog trigger, you can specify the trigger voltage level (-10V
to +10V) by using the slider on the left hand side of the analog
waveform display. A red line that indicates the trigger level will
momentarily be shown as you scroll this level. A small T will also be
shown on the right hand side of the screen (in the cursors bar) that
shows where this level is set to.

For an analog trigger, the trigger position is where the waveform
crossed the Trigger Voltage level that you have set at the specified
slope. To move the trigger voltage level, just move the slider on the
left of the waveform. To change the slope, press the Analog Trigger
Slope button.

You can also specify if you want the MSO to trigger on a Rising or
Falling Edge. The following figures show a trace captured on each of
the edges.

Analog Trigger
Level Slider

Analog Trigger
Channel

Analog Trigger
Slope

Trigger
Position

Analog
Trigger
Level
Indicator

22 USBee DX Test Pod User’s Manual

Analog Trigger Slope = Rising Edge

Analog Trigger Slope = Falling Edge

The Trigger position is placed where the actual signal crosses the
trigger voltage with the proper slope. The USBee DX allows for huge
sample buffers, which means that you can capture much more data
than can be shown on a single screen. Therefore you can scroll the
waveform back and forth on the display to see what happened before
or after the trigger.

USBee DX Test Pod User’s Manual 23

For a Digital trigger, you can specify the digital states for any of the
16 signals that must be present on the digital lines before it will trigger.
Below shows the trigger settings (to the right of the Signal labels).
This example shows that we want to trigger on a falling edge of Signal
6, which is represented by a high level followed by a low level. To
change the level of any of the trigger settings, just click the level
button to change from don’t care to high to low.

The digital trigger condition is made up of up to 4 sequential states of
any of the 16 signals. Each state for a single signal can be high, low
or don’t care. This allows you to trigger on rising edges, falling edges,
edges during another signals constant level, or one edge followed by
another edge.

The waveforms are shown with a trigger position which represents
where the trigger occurred. This sample point is marked on the
waveform display with a Vertical red dotted line and a “T” in the
horizontal cursors bar.

You can use the Trigger Position setting to specify how much of the
data that is in the sample buffer comes before the actual trigger
position. If you place the Trigger Position all the way to the left, most
of the samples taken will be after the trigger sample. If you place
Trigger Position all the way to the right, most of the samples taken will
be before the Trigger sample. This control lets you see what actually
happened way before or way after the trigger occurred.

Digital Trigger
Level Settings

Trigger
Position

24 USBee DX Test Pod User’s Manual

Trigger Position to the Right Trigger Position to the Left

2.3.6 Waveform Display and Zoom Settings
The Waveform display area is where the measured signal information
is shown. It is displayed with time increasing from left to right and
voltage increasing from bottom to top. The screen is divided into
Divisions to help in measuring the waveforms.

The position of the waveform defaults to show the actual trigger
position in the center of the screen after a capture. However, you can
move the display to see what happened before or after the trigger
position.

To Scroll the Waveforms in Time left and right, you can use the
scroll bar at the bottom of the waveform display (right above all of the

Seconds Per
Division Scrollbar

Waveform Time
Scrollbar

Volts Per Division
Scrollbar

Volts Display
Offset Scrollbar

Volts Display
Offset Click and
Drag Indicator

USBee DX Test Pod User’s Manual 25

controls), or you can simply click and drag the waveform itself with the
left mouse button.

To Scroll the Analog Waveform in Voltage up and down, you can
use the scroll bar at the left of the waveform display (one for each
channel), or you can simply click and drag the waveform itself by
using the colored bar to the immediate left of the actual waveform.

To change the number of Seconds per Division use the scrollbar at
the bottom left of the waveforms. To change the number of Volts
per Division for an analog channel, use the scrollbars at the left of
the analog waveforms. You can also zoom in and out in time by
clicking on the waveform. To zoom in, click the left mouse on the
waveform window. To zoom out in time, click the right mouse button
on the waveform window.

The Display section of the screen shows three
selections that affect the way the waveform is
displayed.

The Wide setting shows the wave using a wider pixel
setting. This makes the wave easier to see.

The Vectors setting draws the waveform as a line
between adjacent samples. With this mode turned
off, the samples are shown simply as dots on the

display at the sample position.

The Persist mode does not clear the display and writes one trace on
top of the other trace.

The benefits of these display modes can be seen when you are
measuring fast signals and want to get more resolution out of the
oscilloscope than the maximum sample rate allows. See the below
traces to see the difference. Each trace is taken of the same signal,
but the right one shows much more wave detail over a short time of
display updates.

26 USBee DX Test Pod User’s Manual

Persist = OFF, Vectors = ON, Wide = ON

Persist = ON, Vectors = OFF, Wide = ON

USBee DX Test Pod User’s Manual 27

2.3.7 Measurements and Cursors
The main reason for using an oscilloscope or logic analyzer is to
measure the various parts of a waveform. The USBee DX uses cursors
to help in these measurements.

The X1 and X2 Cursors are placed on any horizontal sample time.
This lets you measure the time at a specific location or the time
between the two cursors. To place the X cursors, move the mouse to
the gray box just below the waveform. When you move the mouse in
this window, you will see a temporary line that indicates where the
cursors will be placed. Place the X1 cursor by left clicking the mouse
at the current location. Place the X2 cursor by right clicking the mouse
at the current location.

The Y1 and Y2 Cursors are placed on any vertical voltage level. This
lets you measure the voltage at a specific location or the difference in
voltage between the two cursors. To place the Y cursors, move the
mouse to the gray box just to the right of the scroll bar to the right of
the waveform. When you move the mouse in this window, you will see
a temporary line that indicates where the cursors will be placed. Place
the Y1 cursor by left clicking the mouse at the current location. Place
the Y2 cursor by right clicking the mouse at the current location.

28 USBee DX Test Pod User’s Manual

In the Measurement window, you will see the various measurements
made off of these cursors.

• X1 Position – time at the X1 cursor relative to the trigger position
• X2 Position – time at the X2 cursor relative to the trigger position
• X2-X1 – time difference between X1 and X2 cursors
• 1/(X2-X1) – the frequency or the period between X1 and X2

cursors
• Y1 Position – voltage at the Y1 cursor relative to Ground for both

CH1 and CH2
• Y2 Position – voltage at the Y2 cursor relative to Ground for both

CH1 and CH2
• Y2-Y1 – voltage difference between Y1 and Y2 cursors for both CH1

and CH2

There are also a set of automatic measurements that are made on the
analog waveform for each trace. These are calculated without the use
of the cursors. These are:

• Max – the maximum voltage of all samples in the current trace for
both CH1 and CH2

• Min – the minimum voltage of all samples in the current trace for
both CH1 and CH2

USBee DX Test Pod User’s Manual 29

2.3.8 Bus Decoding
The USBee DX Logic Analyzer and Oscilloscope has a power embedded
bus decoder feature that allows you to quickly analyze the contents of
embedded communications captured by the pod.

2.3.8.1 Bus Setup

To setup a single line on the waveform display as a bus, click on the
white box to the left of the signal name. The Channel Settings dialog
box will appear as below.

Click here to
configure the bus

30 USBee DX Test Pod User’s Manual

Select which bus you would like displayed on this line using the Bus
Type radio buttons, select the required channels for the given bus type,
and click OK. Below is an example of a setup for an I2C bus.

Once set, you see the bus identifier to the left of the signal name on
the main screen.

Each bus is renamed with the bus type followed by a number. This
allows you to have many of the same types of busses, yet uniquely
identify them in decoder listings.

Bus Type

USBee DX Test Pod User’s Manual 31

2.3.8.2 Decoding Bus Traffic – Click and Drag
Once a bus is defined you can capture data as usual. You can then
scroll and zoom to find the area of interest on that bus.

To decode a portion of the bus traffic, simply Right-Click and Drag
across the waveform you want to decode. When you let go of the
mouse button, the selected section of traffic will be decoded into the
decoder window as shown below.

You can then scroll and zoom to see a different portion of the capture
and decode a different section of bus traffic in the same way. You can
decode up to 4 different sections and each section will display in its
own window with matching color highlights.

32 USBee DX Test Pod User’s Manual

When you click on the text portion of the decode window, the main
waveform screen will move to make sure that the decoded section for
that window is displayed.

Once the decoded text window contains the data you want to see, you
have the option to use the menus to print that data, save it to a text
file, or select it and copy it to the clipboard for importing to other
programs such as Excel.

2.3.8.3 Decoding Bus Traffic – Multiple Busses
You can also decode multiple busses at the same time and get the
traffic displayed in chronological order from the different busses.

First place the X1 and X2 cursors around the section of time you want
decoded. Then choose the menu item View | Decode Busses Between
Cursors. The decoder will then decode all busses defined, extract the
data for each bus and interlace all data so that each transaction is
listed chronologically.

USBee DX Test Pod User’s Manual 33

2.3.8.4 Generic Bus Setup
Although not decoded in the decoder windows, you can combine
multiple DX signals into a single line on the waveform display using
the Generic Bus setting.

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

The resulting waveform shows the signals 0 through 6 on a single line
of the display and shows the value on the waveform for those signals.

34 USBee DX Test Pod User’s Manual

2.3.8.5 CAN Bus Setup

The CAN Bus Decoder takes the captured data from a CAN bus (11 or
29-bit identifier supported), formats it and allows you to save the data
to disk or export it to another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The CAN Bus Decoder connects to the digital side of your CAN bus
transceiver and only needs to listen to the receiving side of the
transceiver (such as the RxD pin on the Microchip MCP2551 CAN bus
transceiver chip). Use signal 0 as the RxD data line and connect the
GND line to the digital ground of your system. Connect these signals
to the CAN bus transceiver IC using the test clips provided.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

USBee DX Test Pod User’s Manual 35

On the above dialog box, select the CAN data signal, what speed the
bus is operating at, what filter value for the ID you want (if any), and
what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

36 USBee DX Test Pod User’s Manual

2.3.8.6 USB Bus Setup
The USB Bus Decoder decodes Low and Full Speed USB. It does NOT
decode High Speed USB. To decode Full Speed USB, the sample rate
must be 24Msps, meaning you must sample with just 8 digital
channels only. To decode Low Speed USB, you can sample as low as
3Msps.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

Connect two of the DX digital signals to the D+ and D- of your
embedded USB bus, preferably at the IC of the USB device or the
connector that the USB cable plugs into.

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

USBee DX Test Pod User’s Manual 37

On the above dialog box, select the DPlus and DMinus signals, what
speed the bus is operating at, if you want Start of Frames (SOF’s)
displayed, and what output format you want the traffic. You can also
specify a specific USB Address or Endpoint you want to see. All other
transactions will be filtered out. Leave the fields blank to see all
transactions.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

38 USBee DX Test Pod User’s Manual

2.3.8.7 I2C Bus Setup

The I2C Bus Decoder takes the captured data from a I2C bus, formats
it and allows you to save the data to disk or export it to another
application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The I2C Bus Decoder connects to the SDA and SCL lines of the I2C bus.
Use one signal as the SDA data line and one signal as the SCL clock
line. Also connect the GND line to the digital ground of your system.
Connect these signals to the I2C bus using the test clips provided.

USBee DX Test Pod User’s Manual 39

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

On the above dialog box, select the SDA and SCL signals, what
portions of the transaction packet you want to see, and what output
format you want the traffic.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

40 USBee DX Test Pod User’s Manual

2.3.8.8 Async Bus Setup

The Async Bus Decoder takes the captured data from an asynchronous
bus (UART), formats it and allows you to save the data to disk or
export it to another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The Async Bus Data Extractor uses one or more of the 16 digital signal
lines (0 thru F) and the GND (ground) line. Connect any of the 16
signal lines to an Async data bus. Connect the GND line to the digital
ground of your system.

USBee DX Test Pod User’s Manual 41

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

On the above dialog box, select the channels you want to observe.
Each channel can be attached to a different async channel. Also enter
the baud rate (from 1 to 24000000), how many bytes per line you
want output, the number of data and parity bits, and what output
format you want the traffic.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

42 USBee DX Test Pod User’s Manual

2.3.8.9 Parallel Bus Setup

The Parallel Bus Decoder takes the captured data from a parallel bus,
formats it and allows you to save the data to disk or export it to
another application using Cut and Paste. The Parallel Bus decoder is
also a way to capture the data using an external clock.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The Parallel Bus Data Extractor uses the 16 digital signal lines (0 thru
F), the GND (ground) line. Connect the GND line to the digital ground
of your system.

USBee DX Test Pod User’s Manual 43

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

On the above dialog box, select the channels you want to include in
the parallel data bus. You can also use any one of the 16 digital
signals as an external clock. Choose if you want to use the external
clock signal, the external clock edge polarity, how many bytes per line
you want output, and what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

44 USBee DX Test Pod User’s Manual

2.3.8.10 1-Wire Bus Setup

The 1-Wire Bus Decoder takes the captured data from a 1-Wire bus,
formats it and allows you to save the data to disk or export it to
another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The 1-Wire Bus Data Extractor uses any one of the 16 digital signal
lines (0 thru F), the GND (ground) line. Connect the GND line to the
digital ground of your system.

USBee DX Test Pod User’s Manual 45

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

On the above dialog box, select the signal running your 1-Wire
protocol. Choose if you want to see just the data or all information on
the bus and what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

46 USBee DX Test Pod User’s Manual

2.3.8.11 SPI Bus Setup

The SPI Bus Decoder takes the captured data from an SPI bus,
formats it and allows you to save the data to disk or export it to
another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The SPI Bus Decoder uses any one of the 16 digital signal lines (0 thru
F) for the SS (slave select), SCK (clock), MISO (data in), MOSI (data
out), and the GND (ground) line. Connect the SS, SCK, MISO, and
MOSI to your digital bus using the test leads and clips. Connect the
GND line to the digital ground of your system.

USBee DX Test Pod User’s Manual 47

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

On the above dialog box, select the signals you plan to use for the SPI
protocol. Also set the appropriate sampling edges for both data lines
and if you would like to use the SS (slave select) signal. If you turn
off the SS, all clocks are considered valid data bits starting at the first
clock detected. Also choose what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

48 USBee DX Test Pod User’s Manual

2.3.8.12 SM Bus Bus Setup

The SM Bus Decoder takes the captured data from an SM bus, formats
it and allows you to save the data to disk or export it to another
application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The SM Bus Decoder uses any one of the 16 digital signal lines (0 thru
F) for the SM Clock and SM Data, and the GND (ground) line. Connect
the SM Clock and SM Data to your digital bus using the test leads and
clips. Connect the GND line to the digital ground of your system.

USBee DX Test Pod User’s Manual 49

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

On the above dialog box, select the signals you plan to use for the SM
Bus protocol. Also choose what output format you want the traffic.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

50 USBee DX Test Pod User’s Manual

2.3.8.13 Serial Bus Setup

The Serial Bus Decoder takes the captured data from a Serial bus,
formats it and allows you to save the data to disk or export it to
another application using Cut and Paste. The serial data can be from
any clocked serial bus and can be aligned using a hardware signal or
an embedded sync word.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The Serial Bus Decoder uses any one of the 16 digital signal lines (0
thru F) for the Clock, Data and optional Word Align signal, and the
GND (ground) line. Connect the Clock, Data and Word Align to your
digital bus using the test leads and clips. Connect the GND line to the
digital ground of your system.

USBee DX Test Pod User’s Manual 51

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

On the above dialog box, select the signals you plan to use for the
Serial Bus protocol. Select whether you have an external word align
signal (Align Mode = Signal) or if your serial data has an embedded
sync word in the data stream (Align Mode = Value). The Bits/Word is
the size of the Sync word as well as the output word size. Choose the
bit ordering as well as the output format of the traffic.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

52 USBee DX Test Pod User’s Manual

2.3.8.14 I2S Bus Setup

The I2S Bus Decoder takes the captured data from an I2S bus,
formats it and allows you to save the data to disk or export it to
another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The I2S Bus Decoder uses any one of the 16 digital signal lines (0 thru
F) for the Clock, Data and Word Align signal, and the GND (ground)
line. Connect the Clock, Data and Word Align to your digital bus using
the test leads and clips. Connect the GND line to the digital ground of
your system.

USBee DX Test Pod User’s Manual 53

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

On the above dialog box, select the signals you plan to use for the I2S
Bus protocol. Select the start edge for the external word align signal,
the Bits/Word and the Clock sampling edge. Choose the bit ordering
as well as the output format of the traffic.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

54 USBee DX Test Pod User’s Manual

2.3.8.15 PS/2 Bus Setup

The PS/2 Bus Decoder takes the captured data from an PS/2 bus,
formats it and allows you to save the data to disk or export it to
another application using Cut and Paste.

Hardware Setup

To use the Decoder you need to connect the USBee DX Test Pod to
your hardware using the test leads. You can either connect the test
leads directly to pin headers on your board, or use the test clips for
attaching to your components.

Please note that the USBee DX Test Pod digital inputs are
strictly 0-5V levels. Any voltage outside this range on the
signals will damage the pod and may damage your hardware.
If your system uses different voltage levels, you must buffer
the signals externally to the USBee DX Test Pod before
connecting the signals to the unit.

The PS/2 Bus Decoder uses any one of the 16 digital signal lines (0
thru F) for the Clock and Data signals, and the GND (ground) line.
Connect the Clock and Data to your PS/2 bus using the test leads and
clips. Connect the GND line to the digital ground of your system.

USBee DX Test Pod User’s Manual 55

Software Setup

Activate the below Channel Settings Dialog by clicking the white box
on the left of the signal names on the main application screen.

On the above dialog box, select the signals you plan to use for the
PS/2 Bus protocol.

Then when you click and drag (with the right mouse button) on the
waveform screen on that waveform, the bus traffic will be decoded as
in the following screen.

56 USBee DX Test Pod User’s Manual

USBee DX Test Pod User’s Manual 57

2.3.9 File Save, Open and Export
Using the File menu functions, you can save, open or export the
current set of configuration and trace sample data.

Choose the menu item File | Save As to save the current configuration
and sample data to a binary ULD file.

To load a previously saved waveform and display it, choose File | Open
and specify the filename to load. This waveform will then be displayed
as it was saved.

2.3.9.1 Output File Format
The following is the format of the saved files for the Logic Analyzer/
Oscilloscope application.

 String, "USBee DX Data File " + Format(Date, "LONG DATE")
 String, "WaveHighlighted", WaveHighlighted

 For x = 0 To 15
 String, "BusType" & Str(x), BusType(x)
 String, "Bus" & Str(x), Bus(x)
 String, "ShowVal" & Str(x), ShowVal(x)
 String, "HexVal" & Str(x), HexVal(x)
 String, "Delimiter" & Str(x), Delimiter(x)
 String, "ShowAll" & Str(x), ShowAll(x)
 String, "BytesPerLine" & Str(x), BytesPerLine(x)
 String, "Channels" & Str(x), Channels(x)
 String, "ClockSignal" & Str(x), ClockSignal(x)
 String, "UseClock" & Str(x), UseClock(x)
 String, "ClockEdge" & Str(x), ClockEdge(x)

 String, "SerialChannel" & Str(x), SerialChannel(x)
 String, "AlignValue" & Str(x), AlignValue(x)
 String, "AlignEdge" & Str(x), AlignEdge(x)
 String, "AlignChannel" & Str(x), AlignChannel(x)
 String, "UseAlignChannel" & Str(x), UseAlignChannel(x)
 String, "ClockChannel" & Str(x), ClockChannel(x)
 String, "BitsPerValue" & Str(x), BitsPerValue(x)
 String, "msbfirst" & Str(x), msbfirst(x)
 String, "DPlusSignal" & Str(x), DPlusSignal(x)
 String, "DMinusSignal" & Str(x), DMinusSignal(x)
 String, "USBSpeed" & Str(x), USBSpeed(x)
 String, "USBAddr" & Str(x), USBAddr(x)
 String, "USBEndpoint" & Str(x), USBEndpoint(x)
 String, "SOF" & Str(x), SOF(x)
 String, "SDASignal" & Str(x), SDASignal(x)
 String, "SCLSignal" & Str(x), SCLSignal(x)

 String, "ShowAck" & Str(x), ShowAck(x)
 String, "SSsignal" & Str(x), SSsignal(x)
 String, "SCKsignal" & Str(x), SCKsignal(x)
 String, "MOSISignal" & Str(x), MOSISignal(x)
 String, "MISOSignal" & Str(x), MISOSignal(x)
 String, "MISOEdge" & Str(x), MISOEdge(x)
 String, "MOSIEdge" & Str(x), MOSIEdge(x)
 String, "SSOn" & Str(x), SSOn(x)
 String, "CanSignal" & Str(x), CanSignal(x)
 String, "BitRate" & Str(x), BitRate(x)
 String, "MinID" & Str(x), MinID(x)
 String, "MaxID" & Str(x), MaxID(x)
 String, "OneWireSignal" & Str(x), OneWireSignal(x)

 String, "I2SWordSelectSignal" & Str(x), I2SWordSelectSignal(x)
 String, "I2SClkSignal" & Str(x), I2SClkSignal(x)
 String, "I2SDataSignal" & Str(x), I2SDataSignal(x)
 String, "ClkSignal" & Str(x), ClkSignal(x)
 String, "DataSignal" & Str(x), DataSignal(x)
 String, "AsyncSignal" & Str(x), AsyncSignal(x)
 String, "BaudRate" & Str(x), BaudRate(x)
 String, "DataBits" & Str(x), DataBits(x)
 String, "Parity" & Str(x), Parity(x)
 String, "ASCII" & Str(x), ASCII(x)
 String, "PS2DataSignal" & Str(x), PS2DataSignal(x)

58 USBee DX Test Pod User’s Manual

 String, "PS2ClockSignal" & Str(x), PS2ClockSignal(x)
 Next x

 String, "TCenterSample", TCenterSample
 String, "Infinite", Infinite
 String, "TimelineMode", TimelineMode
 String, "OffsetValue", OffsetValue
 String, "OffsetValue", OffsetValue
 String, "TimePerDiv", TimePerDiv
 String, "MaxNumberOfSamples", MaxNumberOfSamples
 String, "ActualNumberOfSamples", ActualNumberOfSamples
 String, "TimeFlag", TimeFlag
 String, "Rate", Rate
 String, "MaxRate", MaxRate
 String, "Captured", Captured
 String, "TRIGValidSetting", TRIGValidSetting
 String, "CLKEdgeSetting", CLKEdgeSetting
 String, "TriggerOffset", TriggerOffset
 String, "KnobValue2", KnobValue2
 String, "NumberOfSections", NumberOfSections
 String, "ScopeVoltsPerDiv", ScopeVoltsPerDiv
 String, "TCenterSample", TCenterSample
 String, "ScreenMax", ScreenMax
 String, "ScreenMin", ScreenMin
 String, "Initialized", Initialized
 String, "NumberOfSamples", NumberOfSamples

 For x = 0 To 255
 String, "TBuffer" & Str(x), TBuffer(x)
 Next x

 For x = 0 To 15
 For Y = 0 To 3
 String, "TriggerSetting" & Str(x) & "-" & Str(Y), TriggerSetting(Y, x)
 String, "Trigg" & Str(x) & "-" & Str(Y), Trigg(Y, x)
 Next Y
 Next x

 String, "TriggerStates", TriggerStates
 String, "ScaleP", ScaleP
 String, "TOCursor", TOCursor
 String, "TCurrentCursor", TCurrentCursor
 String, "TXCursor", TXCursor
 String, "TY1Cursor", TY1Cursor
 String, "TY2Cursor", TY2Cursor
 String, "TScale", TScale
 String, "TSubScale", TSubScale
 String, "TStartingSample", TStartingSample
 String, "TCenterSample", TCenterSample
 String, "CalibrationSlope", CalibrationSlope
 String, "Scope1GroundCalibrationLevel", Scope1GroundCalibrationLevel
 String, "Scope1DisplayCenterVolts", Scope1DisplayCenterVolts
 String, "Scope1TriggerLevel", Scope1TriggerLevel
 String, "Scope1TriggerSlope", Scope1TriggerSlope
 String, "VoltsPerPixel", VoltsPerPixel
 String, "NumberOfDiv", NumberOfDiv
 String, "AnalogWaveIndex", AnalogWaveIndex
 String, "DigitalHighOn", DigitalHighOn
 String, "DigitalLowOn", DigitalLowOn
 String, "AnalogHighOn", AnalogHighOn
 String, "AnalogLowOn", AnalogLowOn

 For x = 0 To 16
 String, "SigColor" & Str(x), SigColor(x)
 String, "SigBackColor" & Str(x), SigBackColor(x)
 String, "SigForeColor" & Str(x), SigForeColor(x)
 Next x

 String, "AnalogColor", AnalogColor
 String, "XCursorsOn", XCursorsOn
 String, "YCursorsOn", YCursorsOn

 For x = 0 To 15
 For Y = 0 To 15
 String, "SignalsInWave" & Str(x) & "-" & Str(Y), SignalsInWave(Y, x)
 Next Y
 Next x

 String, "GlobalCalValue", GlobalCalValue

 For x = 0 To 15
 String, "SignalLabel" & Str(x), Form1.SignalLabel(x).Caption
 Next x

 String, "A0D8", Form1.A0D8.Checked
 String, "A0D16", Form1.A0D16.Checked
 String, "A1D0", Form1.A1D0.Checked
 String, "A1D8", Form1.A1D8.Checked

USBee DX Test Pod User’s Manual 59

 String, "A1D16", Form1.A1D16.Checked
 String, "A2D0", Form1.A2D0.Checked
 String, "A2D8", Form1.A2D8.Checked
 String, "A2D16", Form1.A2D16.Checked

 String, "CH1V", Form1.CH1V.Value
 String, "CH2V", Form1.CH2V.Value
 String, "Ch1Offset", Form1.Ch1Offset.Value
 String, "Ch2Offset", Form1.Ch2Offset.Value
 String, "VScroll1", Form1.VScroll1.Value
 String, "HScroll1", Form1.HScroll1.Value
 String, "SizeList", Form1.SizeList.ListIndex
 String, "RateList", Form1.RateList.ListIndex

 String, "NormalMode", Form1.NormalMode.Value
 String, "AutoMode", Form1.AutoMode.Value

 String, "TriggerPositionScroll", Form1.TriggerPositionScroll.Value

 String, "Persist", Form1.Persist.Value
 String, "Vectors", Form1.Vectors.Value
 String, "Wide", Form1.Wide.Value

 String, "ScaleP", Form1.ScaleP.Text
 String, "SubScale", Form1.SubScale.Text

 ' The sample data follows this last record
 String "[Samples]"

 Sample Buffer: NumberOfSamples times 4 byte samples. The low 16 bits are the digital
channels. The high 2 bytes are the 8-bit ADC values for each of the two analog channels.

2.3.9.2 Export to Text Format
You can also export a specific portion of the sample data by placing
the X1 and X2 cursors. When you choose File | Export to Text the
samples between the X1 and X2 cursors will be written to a file in
comma delimited text format as below.

The format of the text output file is a header that specifies Digital0-F,
CH1, and CH2 titles. The following lines are the actual values of the
16 digital lines in hex format, and the CH1 and CH2 voltage level in
volts.

Digital0-F, CH1, CH2
0xFF0F, -0.16, 3.67
0xFF0F, -0.08, 3.75
0xFF0F, -0.16, 3.67
0xFF0F, -0.08, 3.75
0xFF0F, -0.08, 3.67
0xFF0F, -0.08, 3.75
0xFF0F, -0.08, 3.67
0xFF0F, 0.00, 3.75
0xFF0F, 0.00, 3.75
…

60 USBee DX Test Pod User’s Manual

2.3.10 Calibration
Since electronic components vary values slightly over time and
temperature, the USBee DX Pod requires calibration periodically to
maintain accuracy. The USBee DX has been calibrated during
manufacturing and should maintain accuracy for a long time, but in
case you want to recalibrate the device, follow these steps. The
calibration values are stored inside the USBee DX pod. Without
calibration the measurements of the oscilloscope may not be accurate
as the pod ages.

To calibrate your USBee DX Pod you will need the following equipment:

• External Voltage Source (between 5V and 9V)
• High Precision Multimeter

When you are ready to calibrate the USBee DX Pod, go to the menu
item Setup | Calibrate. You will be asked to confirm that you really
want to do the calibration. If so, press Yes, otherwise press No. Then
follow these steps:

• Connect the CH1 and CH2 signals to the GND signal using the test
leads and press OK. A measurement will be taken.

• Connect the GND signal to the ground and the CH1 and CH2 signals
to the positive connection of the External Voltage Source (9V) using
the test leads.

• With the Multimeter, measure the actual voltage between the GND
signal and the CH1 signal and enter this value in the dialog box and
press OK. A measurement will be taken.

• The calibration is now complete. The calibration values have been
saved inside the pod.

The analog measurements of your USBee DX pod are only as accurate
as the voltages supplied and measured during calibration.

USBee DX Test Pod User’s Manual 61

3 Digital Signal Generator
This section details the operation of the Digital Signal Generator
application that comes with the USBee DX. Below you see the
application screen.

The Digital Signal Generator is used to actively drive the 16 digital
signals with a voltage pattern that you define.

When using this application, the USBee DX signals 0 through F
are actively driven. Do not connect these signals to your circuit
if your circuit is also driving the signals or you will damage the
USBee or your circuit or both.

To define the pattern that you want to generate, you will use the
waveform screen and draw the timing of pulses that you require.

3.1 Digital Signal Generator
Specifications

Digital Output Channels 16 or 8

Maximum Digital Sample
Rate [1] 24 Msps for 8 channels, 12Msps for 16

channels

Internal Clocking Yes
External Clocking

No

62 USBee DX Test Pod User’s Manual

Number of Samples [2]
1 million samples up to PC RAM

Sample Rates [1]
1Msps to 24 Msps

Sample Clock Output
Yes

Channel Output Drive
Current 4mA
Output Low Level

< 0.8V
Output High Level

> 2.4V

Looping Yes

External Trigger Signal Yes

3.2 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to generate a set of
digital waveforms.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

• Connect any of the Signal 0 thru F pins on the USBee DX pod to one
of the signal wires using the small socket on the end of the wire.

• Connect the other end of the wire to your circuit you would like to
actively drive.

• Run the Signal Generator Application.
• Draw a waveform you want to generate using the waveform edit

controls at the top of the waveform window.
• Press the Generate button. This will generate the waveform you

have drawn on the pod signals.

3.3 Features

3.3.1 Pod Status
The Signal Generator display shows a list with the available Pod ID
List for all of the USBee DX’s that are connected to your PC. You can
choose which one you want to use. The others will be unaffected. If a
USBee DX is not connected, the list box will read Demo to indicate that
there is no pod attached.

USBee DX Test Pod User’s Manual 63

If you run the software with no pod attached, it will run in
demonstration mode so that you can still see how the software
functions.

3.3.2 Channel Setup
The Signal Generator operates in either an 8-channel or 16-channel
mode. Select which mode you want to use by clicking the menu item
Setup, 8 (or 16) Channels. Below you see the 8 Channel mode.

The maximum sample rate that your system can achieve varies
depending on the number of channels you select.

For 8 Channel mode, the maximum sample rate is 24M samples per
second.

For 16 Channel mode, the maximum sample rate is 12M samples per
second.

3.3.3 Generation Control
The Signal Generator lets you draw the behavior of digital signals and
then generates them as a “trace” on the pod signals. The Generation
Control section of the display lets you choose how the traces are
generated. Below is the Generation Control section of the display.

The Generate button starts and stops a data output. When the signal
generator is first started, the Generate button is not pressed and is
waiting for you to draw a waveform. The Generate button outputs a

64 USBee DX Test Pod User’s Manual

single trace and stops, unless you check the Loop box. If the Loop
checkbox is checked, the wave is played until the end and then
restarted at the beginning sample without breaks in between the first
and second trace.

The Buffer Size lets you select the size of the Sample Buffer that is
used. For each trace, the buffer is completely played back. No partial
buffers can be generated. You can choose buffers that will hold the
information that you want to output, but remember that the larger the
buffer, the longer it will take to generate.

You can also choose the Sample Rate that you want samples to be
aligned to. This uses an internal clock at that sample rate you choose.
You can choose from 1 Msps (samples per second) to up to 24 Msps.
The actual maximum sample rate depends on your PC configuration.
If the sample rate is too high for your system, you will see a dialog
box appear when you generate the waveform that informs you that
the rate is too high. You must lower the sample rate and try again.

While the pod is generating the waveform on the pod signals, the CLK
line is an output and toggles once for each of the samples provided.
You can specify the CLK Edge that the output data changes on using
the two radio buttons above.

The TRG signal can be used as an External Trigger for the pattern
generation. Select the state of the TRG signal you want to start the
output on by pressing the toggle pushbutton above.

The Status Box on the display will show red when the unit is not
outputting samples, flash blue when it is waiting for a trigger, and
glow green when the trigger condition has been met. It will glow red
again when the generation is completed.

3.3.4 Waveform Edit, Display and Zoom
Settings

The Waveform display area is where the signal information is shown.
It is displayed with time increasing from left to right and voltage
increasing from bottom to top. The screen is divided into Divisions to
help in measuring the waveforms.

USBee DX Test Pod User’s Manual 65

To Scroll the Waveforms in Time left and right, you can use the left
and right arrows highlighted above, click and drag the Overview Bar
(right under the Display Control title), or you can simply click and drag
the waveform itself.

To change the zoom ratio for the time, click the Zoom In or Zoom
Out buttons. You can also zoom in and out in time by clicking on the
waveform. To zoom in, click the left mouse on the waveform window.
To zoom out in time, click the right mouse button on the waveform
window.

The cursor in the waveform window can be in one of two modes: Pan
and Zoom, or Select. In pan and zoom, you can click and drag the
waveform around on the screen. In Select, you click and drag to
select a portion of the waveform to edit. Change modes by clicking
the left-right arrow (pan and zoom), or the standard arrow (select).

Editing the Waveform is done by selecting the portion of the
waveform by clicking and dragging to highlight a section, and then
pressing one of the Edit Control buttons at the top. You can set the
specified samples to a high level, low level, create a clock on that
signal, create a single pulse, or copy and paste. You can also Undo
the last change if needed.

3.3.4.1 Setting Waveform Sections
To create a waveform you need to scroll or zoom to the section of
wave you want to change. Then change the cursor to an arrow by
pressing the arrow button at the top.

66 USBee DX Test Pod User’s Manual

Then select a section of a wave by using the left mouse button with a
click and drag. Once the selection is highlighted you can press the
High or Low button to set that section to the desired level.

3.3.4.2 Creating Clocks
To create a clock on a given signal you first select the wave you want
to set. Then click the Clock button at the top of the waveforms to get
the following dialog box.

Select the period or the frequency that you would like and press
Create Clock. Your selected channel will then be replaced by a clock
with that frequency.

3.3.4.3 Creating Pulses
To create a series of pulses with known duration on a given signal you
first select the wave you want to set. Then click the Pulses button at
the top of the waveforms to get the following dialog box.

USBee DX Test Pod User’s Manual 67

Set the duration time and voltage level and press Create Pulse. You
can then create consecutive pulses just by entering the new duration
and pressing the button again.

3.3.5 Measurements and Cursors
To help you create time accurate waveforms, the cursors can be used
to get exact timing.

The X and O Cursors are placed on any horizontal sample time. This
lets you measure the time at a specific location or the time between
the two cursors. To place the X and O cursors, move the mouse to the
white box just below the waveform. When you move the mouse in this
window, you will see a temporary line that indicates where the cursors
will be placed. Place the X cursor by left clicking the mouse at the
current location. Place the O cursor by right clicking the mouse at the
current location.

In the Measurement window, you will see the various measurements
made off of these cursors. To change the selected relative cursor,
click the T,X or O buttons next to the “Timeline Relative To” text.

• X Position – time at the X1 cursor relative to the selected cursor
• O Position – time at the X2 cursor relative to the selected cursor
• X to O - difference between X and O cursors

3.3.6 File Save and Open
Using the File menu functions, you can save and open a current set of
configuration and trace sample data.

68 USBee DX Test Pod User’s Manual

Choose the menu item File | Save As to save the current configuration
and sample data to a binary ULC file.

To load a previously saved waveform and display it, choose File | Open
and specify the filename to load. This waveform will then be displayed
as it was saved. If the loaded file is smaller than the current buffer
size, the file will be loaded at the beginning of the current buffer. The
ending samples in the buffer remain unchanged. If you load a file with
more samples than the current buffer, the loaded samples will be
truncated.

3.3.7 Printing
You can print the current screen to any printer by choosing the File |
Print menu item.

USBee DX Test Pod User’s Manual 69

4 Digital Voltmeter (DVM)
This section details the operation of the Digital Voltmeter (DVM)
application that comes with the USBee DX. Below you see the
application screen.

4.1 Digital Voltmeter Specifications
Analog Channels Displayed 2
Analog Input Voltage
Range -10V to +10V
Minimum Measurable
Resolution 78mV

Analog Resolution 256 steps

Update Rate 3 samples per second

4.2 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to measure two analog
voltages.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

• Connect the CH1 pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire. Connect the
other end of the wire to your circuit you would like to test.

70 USBee DX Test Pod User’s Manual

• Connect the CH2 pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire. Connect the
other end of the wire to your circuit you would like to test.

• Run the DVM Application.
• The voltages of the CH1 and CH2 signal will be displayed and

updated about three times per second.

4.3 Features

4.3.1 Pod Status
The DVM display shows a current USBee DX Pod Status by a red or
green LED. When a USBee DX is connected to the computer, the
Green LED shows and the list box shows the available Pod ID List for
all of the USBee DX’s that are connected. You can choose which one
you want to use. The others will be unaffected. If a USBee DX is not
connected, the LED will glow red and indicate that there is no pod
attached.

If you run the software with no pod attached, it will run in
demonstration mode and simulate data so that you can still see how
the software functions.

4.3.2 Voltage Measurement
The DVM takes a 250 msec measurement of each of the channels and
displays the average voltage over that time period. Although the
resolution of each individual sample is 78.125mV, the averaged values
are far more accurate.

USBee DX Test Pod User’s Manual 71

5 Data Logger
This section details the operation of the Data Logger application that
comes with the USBee DX. Below you see the application screen.

5.1 Data Logger Specifications
Digital Channels Logged 16

Analog Channels Logged 2

Sample Rates 500ms to 300sec

5.2 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to log analog and digital
data.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

• Connect the CH1 and/or CH2 pins on the USBee DX pod to one of
the signal wires you would like to test.

72 USBee DX Test Pod User’s Manual

• Connect the digital Signal 0 thru F pins on the USBee DX pod to one
of the signal wires you would like to test.

• Run the Data Logger Application.
• Select the sample time and press the Start Logging button. Select

the filename for the logged data to be exported to and press OK.
• This will start the logging process. Data will be displayed as it is

logged. When you are finished, press the Stop Logging button.
• The data is then displayed in the list format for review. You can

also post process the text based log file using other programs.

USBee DX Test Pod User’s Manual 73

6 Frequency Counter
This section details the operation of the Frequency Counter application
that comes with the USBee DX. Below you see the application screen.

6.1 Frequency Counter Specifications
Digital Channels Measured 8 or 16

Analog Channels Measured 0

Maximum Measured Frequency [1] 12MHz (8-channel) or 6MHz
(16-channel)

Maximum Digital Input Voltage
+5.5V

Resolution 1Hz

Gate Time 1 sec

6.2 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to measure the frequency
of a digital signal.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

74 USBee DX Test Pod User’s Manual

• Connect the Signal 0 thru F signals on the USBee DX pod to your
circuit you would like to test.

• Run the Frequency Counter Application.
• The frequency of each of the 16 signal lines will then be displayed.
• You can log the frequency data to a file by pressing the “Start

Logging Data” button.

6.3 Channel Setup
The Frequency Counter can operate on either 8 channels or 16
channels at a time. For 8 channels, the maximum frequency
measured is 12MHz. For 16 channels, the maximum frequency
measured is 6MHz.

Change setup modes by clicking the menu item Setup and selecting
the desired number of channels. Below shows the 8 channel setup
mode.

USBee DX Test Pod User’s Manual 75

7 Remote Controller
This section details the operation of the Remote Controller application
that comes with the USBee DX. The Remote Controller application is a
simple way to control the output settings for all of the 16 digital lines
on the USBee DX. Since this application drives the digital signals, you
will see a warning message alerting you to this fact before the lines
are driven.

Click OK to enter the application. Below you see the application screen.

To change the digital output, simply press the Toggle Output button to
change the output from a 1 to 0 or visa versa.

7.1 Remote Controller Specifications
Digital Channels Controlled 16

Analog Channels Controlled 0

Control Mechanism Toggle Button per channel
Channel Output Drive Current

4mA

76 USBee DX Test Pod User’s Manual

Output Low Level
< 0.8V

Output High Level
> 2.4V

7.2 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to control the output of
each of the digital signal lines.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

• Connect the Signal 0 thru F lines on the USBee DX pod to your
circuit you would like to actively drive.

• Run the Remote Controller Application.
• Press any of the Toggle buttons and the level of the output will

toggle (Low to High, High to Low)..

USBee DX Test Pod User’s Manual 77

8 PWM Controller
This section details the operation of the Pulse Width Modulator
application that comes with the USBee DX. The Pulse Width Modulator
application creates a Pulse Width Modulated output for all of the 16
digital lines on the USBee DX. Since this application drives the digital
signals, you will see a warning message alerting you to this fact before
the lines are driven.

Click OK to enter the application. Below you see the application screen.

Each channel outputs a repeating waveform with a 1kHz frequency.
The period of the repeating waveform is made up of a high duration
followed by a low duration and has 256 steps. The length of the High
duration is the PWM value that is shown. The length of the Low
duration is 256 – the High duration.

You can create a simple analog output voltage by using a series
resistor and a capacitor to ground on each channel.

78 USBee DX Test Pod User’s Manual

The above shows 2 outputs of the PWM Controller. Signal 1 shows the
PWM value set to 31 (out of 255) and Signal 0 shows the PWM value of
137. A value of 0 is all low, and a value of 255 is mostly high (one out
of 256 is low).

8.1 PWM Controller Specifications
Digital Channels Controlled 16

Analog Channels Controlled 0

Resolution 256 steps
PWM Frequency

1.02kHz

Control Mechanism Slider Switch
Channel Output Drive Current

4mA
Output Low Level

< 0.8V
Output High Level

> 2.4V

8.2 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to create 16 PWM signals.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

• Connect the Signal 0 thru F lines on the USBee DX pod to your
circuit you would like to actively drive with a PWM signal.

• Run the PWM Controller Application.
• Use the scroll bars to set the desired PWM level, with 0 being all low

and 255 being all high outputs.

USBee DX Test Pod User’s Manual 79

9 Frequency Generator
This section details the operation of the Frequency Generator
application that comes with the USBee DX. The Frequency Generator
is used to generate a set of commonly used digital frequencies on the
low 8 digital channels.

Below you see the application screen.

To set the frequencies generated, use the drop down list box to choose
which subset you would like to generate. Then refer to the screen for
which signal is generating which frequency.

9.1 Frequency
Generator Specifications

Digital Channels Controlled 8

Analog Channels Controlled 0

Sets of Frequencies 6
Set 1

1MHz, 500kHz, 250kHz,
62.5kHz,31.25kHz,
15.625kHz, 7.8125kHz

Set 2 32kHz, 16kHz, 8kHz, 4kHz,
2kHz, 1kHz, 500Hz, 250Hz

Set 3
750kHz, 375kHz, 187.5kHz,
93.75kHz, 46.875kHz,
23.4375kHz, 11.1875kHz,
5.5893kHz

Set 4 19.2kHz, 9600Hz, 4800Hz,

80 USBee DX Test Pod User’s Manual

2400Hz, 1200Hz, 600Hz,
300Hz, 150Hz

Set 5
64Hz, 32Hz, 16Hz, 8Hz,
4Hz, 2Hz, 1Hz, 0.5Hz

Set 6 1920Hz, 960Hz, 480Hz,
240Hz, 120Hz, 60Hz, 30Hz,
15Hz

Channel Output Drive Current
4mA

Output Low Level
< 0.8V

Output High Level
> 2.4V

9.2 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to generate one of the
fixed sets of frequencies on the digital lines.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

• Connect the Signal 0 thru 7 lines on the USBee DX pod to your
circuit you would like to actively drive.

• Run the Frequency Generator Application.
• From the dropdown list, select the set of frequencies that you want

to generate out the pod.
• These frequencies are now being generated on the pod digital

signals.

USBee DX Test Pod User’s Manual 81

10 I2C Controller
This section details the operation of the I2C Controller application that
comes with the USBee DX. The I2C Controller lets you control (be the
I2C Master) an I2C device using the SDA and SCL lines of the device.

The Below you see the application screen.

The To control a device you must first create an I2C text script in the
script window. You can either type in the window as you would a text
editor or you can use the buttons on the left to quickly insert the
correct tokens for the various parts of an I2C transaction.

The valid tokens are as follows:

<START> To generate a Start condition

<STOP> To generate a Stop conditon

<Slave Address Read: A0> <ACK=?> To generate a Read Command

<Slave Address Write: A0> <ACK=?> To generate a Write Command

82 USBee DX Test Pod User’s Manual

<Data to Slave: 00> <ACK=?> To send a byte to the slave

<Data from Slave: ??> <ACK> To read a byte from the slave

<Data from Slave: ??> <No ACK> To read a byte from the slave
with no ACK following the byte

10.1 I2C Controller Specifications
I2C Clock Speed 2.2 KHz average

I2C Control Method Text Script

I2C Script Tokens Start, Stop, Ack, Nak, Read,
Write, Data

Script Edit Functions Cut, Copy, Paste, Save, Open,
New

I2C Output Format Text File (includes read data
and Ack state)

Channel Output Drive Current
4mA

Output Low Level
< 0.8V

Output High Level
Open Collector (requires
external pull-up resistor)

10.2 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to generate I2C
transactions.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

• Connect the Signal 0 pin on the USBee DX pod to your circuit SDA
line.

• Connect the Signal 1 pin on the USBee DX pod to your circuit SCL
line.

• Run the I2C Controller Application.
• Press the buttons to create a script of the I2C transaction you want

to run.
• Press the Run Script button to generate the I2C transaction.
• The transaction result is written to the output window (and text file)

including and read data and ACK states..

USBee DX Test Pod User’s Manual 83

11 Pulse Counter
This section details the operation of the Pulse Counter application that
comes with the USBee DX. The Pulse Counter is used to count the
number of cycles or edges that are detected on up to 16 of the digital
lines.

Below you see the application screen.

To start counting the pulses or edges on the signals press the Start
Puls Counting button. The pulses are counted and the current range of
pulses is displayed. In this case the system is counting all pulses
down to 166.7nsec wide.

You can use any of the 15 lines as a gate to enable the counting
during specified times. For example, you can count pulses only when
Signal 0 is high by setting the Signal 0 Gate to High. Pulses that occur
when Signal 0 is low are not counted

11.1 Pulse Counter Specifications
Digital Channels Measured 16

Analog Channels Measured 0

Minimum Pulse Width [1] 83.3nS

Pulse Count Control Clear, Start and Stop
Display Mode

Pulse or Edge Count

External Gate Signals up to 15

Gate Conditions High or Low

84 USBee DX Test Pod User’s Manual

11.2 Quick Start
In order to quickly get up and running using this application, here is a
step by step list of the things you need to do to count the number of
edges or pulses of a digital signal.

• Connect the GND pin on the USBee DX pod to one of the signal
wires using the small socket on the end of the wire.

• Connect the other end of the wire to the Ground of your circuit you
would like to test. You can either use the socket to plug onto a
header post, or connect it to one of the mini-grabber clips and then
attach it to the Ground.

• Connect the Signal 0 thru F signals on the USBee DX pod to your
circuit you would like to test.

• Run the Pulse Counter Application.
• Press the Start Counting button.
• The number of pulses one each of the 8 digital signals is displayed.
• You can use any of the 15 lines as a gate to enable the counting

during specified times. For example, you can count pulses only
when Signal 0 is high by setting the Signal 0 Gate to High. Pulses
that occur when Signal 0 is low are not counted.

USBee DX Test Pod User’s Manual 85

12 USBee Toolbuilder

12.1 Overview

The USBee DX Test Pod System consists of the USBee DX Test Pod
connected to a Windows® 2000, XP or Vista PC High Speed USB 2.0
port through the USB cable, and to your circuit using the multicolored
test leads and clips. Once connected and installed, the USBee can then
be controlled using either the USBee DX Windows Software or your
own USBee DX Toolbuilder software.

The USBee DX system is also expandable by simply adding more
USBee DX pods for more channels and combined features.

The USBee DX Test Pod is ideal for students or designers that need to
get up and running with High Speed USB immediately. With a mini-B
USB connector on one end and signal pin headers on the other, this
simple pod will instantly USB 2.0 High-Speed enable your
design. Then using the source code libraries, drivers and DLL's that
are included here you can write your own PC application to control and
monitor the signal pins on the pod.

The USBee DX has headers that are the interface to your circuits. The
signals on these headers represent a 16 bit data bus, a
Read/Write#/TRG signal (T) and a clock line (C). Using the libraries
and source code provided you can do reads and writes to these signals.
The USBee DX acts as the master, driving the T and C signals to your
circuit.

There are six modes of data transfers that you can use depending on
your system needs.

• Voltmeter Mode
• Signal Capture
• Digital Signal Generator
• Bi-Directional “bit-bang” mode
• Uni-Directional High Speed mode

12.1.1 Voltmeter Mode
The simplest of the analog functions is the DVM (Digital Voltmeter)
routine called GetAllSignals. It simply samples all of the signals on the
USBee DX pod and measures the voltage on both analog channels.
This measurement is taken over a second an the average is returned.

The routine GetAllSignals () samples the specified channel and returns
the measurement.

86 USBee DX Test Pod User’s Manual

12.1.2 Signal Capture
The USBee DX has the ability to capture samples from the 16 digital
signals and two analog channels at the same time. Each analog
sample is time synchronized with the corresponding digital samples.

In signal capture modes, there is a single capture buffer where each
sample is a long value made up of 4 bytes. The low order 2 bytes
represent the 16 digital channels. Digital Signal 0 is bit 0 of each long
value. The Analog samples are the high two bytes where each byte is
an 8-bit ADC value taken during that sample period for that channel.
The samples range from 0 (at -10.0V) to 255 (at +10.0V). Each count
of the ADC equates to 78.125mV, which is the lowest resolution
possible on the USBee DX without averaging.

The maximum sample rate that is possible in Signal Capture mode is
24Msps. This value can depend on your PC system and available
processing speed and how many byte lanes are sampling data. The
basic rule of thumb is that the maximum bandwidth through USB 2.0
is near 24Mbytes/second. Therefore to capture 2 bytelanes (16 digital
channels for example) would equate to a maximum sample rate of
12Msps.

The method for performing a single data capture, or sampling, using
the Signal Capture routines is as follows:

• Allocate the sample buffers (MakeBuffer())
• Start the capture running (StartCapture(…))
• Monitor the capture in progress to determine if it is triggered, filling,

or completed. (CaptureStatus()).
• End the capture when it is finished. (StopCapture())
• Process the sample data that is now contained in the sample buffers.

Once the data is captured into a buffer, you can call the Bus Decoder
routines to extract the data from these busses.

12.1.3 Digital Signal Generator
The USBee DX has the ability to generate (output) samples from 8 or
16 digital signals at up to 24Msps or 12Msps in Signal Generator mode.

In this mode, there is a single buffer that stores the samples to
generate. Each sample is a long value made up of 4 bytes. The low
order 2 bytes represent the 16 digital channels. Digital Signal 0 is bit
0 of each long value. The high two bytes are not used. These
samples can then be generated on command.

The maximum sample rate that is possible Signal Generator mode is
24Msps. This value can depend on your PC system and available
processing speed and how many byte lanes are generating data. The
basic rule of thumb is that the maximum bandwidth through USB 2.0
is near 24Mbytes/second. Therefore to generate 2 bytelanes (16

USBee DX Test Pod User’s Manual 87

digital channels for example) would equate to a maximum sample rate
of 12Msps.

The method for generating a single output pattern using the Signal
Generator routines is as follows:

• Allocate the sample buffer (MakeBuffer())
• Fill the sample buffer with the pattern data you want to generate.
• Start the generation running (StartGenerate (…))
• Monitor the generation in progress to determine if it is triggered,

filling, or completed. (GenerateStatus()).
• Terminate the generation. (StopGenerate())

The USBee DX can not generate analog output voltages using this
mode. Variable analog outputs are possible using the PWM Controller
and an external RC circuit.

12.1.4 Bi-Directional and Uni-Directional
Modes

These two modes allow bit-level data transfers to and from the USBee
DX pod. The first offers complete flexibility of the 8 digital signal lines,
while the other gives you very high transfer rates.

In the Bi-Directional Mode, each of the 16 data signals can be
independently setup as inputs or outputs. When sending data to the
pod, only the lines that are specified as outputs will be driven. When
reading data from the pod, all 16 signals lines will return the actual
value on the signal (whether it is an input or an output)

In the High-Speed Mode, all of the 16 data signal lines are setup in the
same direction (as inputs or outputs) at the same time. When sending
data to the pod, all signals become outputs. When reading data from
the pod, all signals become inputs.

Also in High Speed mode, you can specify the CLK rate. Available CLK
rates are 24MHz, 12MHz, 6MHz, 3MHz, and 1MHz. For slower rates
you can use the bi-directional mode

In each of the modes you can specify the polarity of the CLK line. You
can set the CLK line to change data on the falling edge and sample on
the rising edge, or visa versa.

The routines used to read and write the data to the pod are the same
for both modes. You call the SetMode function to specify the mode
you want to use. All subsequent calls for data transfers will then use
that mode of transfer.

The following table shows the possible transfer rates for the various
modes. This assumes that your USB 2.0 host controller can achieve
these rates. USB 2.0 Host controllers can vary greatly.

88 USBee DX Test Pod User’s Manual

Mode Transfer Type Burst Rate Sustained
 Average Rate
Bi-Directional Write-SetSignals 300k Bytes/sec ~300k Bytes/sec

Bi-Directional Read-GetSignals 175k Bytes/sec ~175k Bytes/sec

High-Speed Write-SetSignals 24M Bytes/sec ~20M Bytes/sec

High-Speed Read-GetSignals 16M Bytes/sec ~13M Bytes/sec

12.2 System Software Architecture
The USBee DX Pod is controlled through a set of Windows DLL function
calls. These function calls are defined in following sections and provide
initialization and data transfer routines. This DLL can be called using a
variety of languages, including C. We have included a sample
application in C that show how you can use the calls to setup and
control the pod. You can port this example to any language that can
call DLL functions (Delphi, Visual Basic, …)

After installing the software on your computer, you can then plug in
the USBee DX pod. Immediately after plugging in the pod, the
operating system finds the USBEEDX.INF file in the \Windows\INF
directory. This file specifies which driver to load for that device, which
is the USBEEDX.SYS file in the \Windows\System32\Driver directory.
This driver then remains resident in memory until you unplug the
device.

Once you run your USBee Toolbuilder application, it will call the
functions in the USBEEDX.DLL file in the \Windows\System32 directory.
This DLL will then make the correct calls to the USBEEDX.SYS driver to
perform the USB transfers that are required by the pod.

12.3 The USBee DX Pod Hardware
The USBee DX has two sets of header pins that can be connected to a
standard 0.025” square socketed wire. One section of pins is for the
digital interface and the other is for the analog channels. Below is the
pinout for these two interfaces.

USBee DX Test Pod User’s Manual 89

Digital 20 pin Header Pinout: (0-5V Max input levels)

Pin 0 Data In/Out Bit 0

Pin 1 Data In/Out Bit 1

Pin 2 Data In/Out Bit 2

Pin 3 Data In/Out Bit 3

Pin 4 Data In/Out Bit 4

Pin 5 Data In/Out Bit 5

Pin 6 Data In/Out Bit 6

Pin 7 Data In/Out Bit 7

Pin 8 Data In/Out Bit 8

Pin 9 Data In/Out Bit 9

Pin A Data In/Out Bit 10

Pin B Data In/Out Bit 11

Pin C Data In/Out Bit 12

Pin D Data In/Out Bit 13

Pin E Data In/Out Bit 14

Pin F Data In/Out Bit 15

Pin T Read/Write# Output (bit-bang mode),TRG

(Signal Generator Mode) (R/W#/TRG)

Pin C Clock Output (CLK)

Pin G (x2) Ground

Analog 4 pin Header Pinout: (-10V to +10V Max input levels)

Pin 1 Analog Channel 1 Input

Pin 2 Analog Channel 2 Input

Pin G (x2) Ground

Each of the calls to the USBee DX interface libraries operate on a
sample buffer. For each sample that is sent out the signal pins or read
into the signal pins, the R/W#/TRG (T) line is set and the CLK line (C)
toggles to indicate the occurrence of a new sample. Each of the bits in
the sample transferred maps to the corresponding signal on the DX
pod. For example, if you send out a byte 0x80 to the pod, first the
Read/Write# line (T) will be driven low, then the signal on Pin 7 will go
high and the others (pin 0-6 and pin 8 - F) will go low. Once the data

90 USBee DX Test Pod User’s Manual

is on the pins, the Clock line (C) is toggled to indicate that the new
data is present.

12.4 Installing the USBee DX
Toolbuilder

Do not plug in the USBee DX pod until after you install the
software.

The USBee DX Toolbuilder software is included as part of the
installation with the USBee DX Installation CD and can be downloaded
from www.usbee.com. Run the setup.exe install program in the
downloaded file to install from the web. The install program will install
the following USBee Toolbuilder files and drivers into their correct
location on your system. Other files will also be installed, but are not
necessary for Toolbuilder operation.

12.4.1 USBee DX Toolbuilder Project
Contents

Contents of the USBee DX Toolbuilder Visual C Program
(contained in the \Program Files\USBee
DX\USBeeDXToolbuilder\HostInC directory after the install).

USBeeDX.dsp Visual C Project File

USBeeDX.dsw Visual C Workspace File

USBeeDX.cpp Visual C program

UsbDXla.lib USBee DX Interface library file

The USBee DX Toolbuilder also depends on the following files for
proper operation. These files will be installed in the following
directories prior to plugging in the USBee DX pod to USB.

• USBDXLA.DLL in the Windows/System32 directory
• USBEEDX.INF in the Windows/INF directory
• USBEEDX.SYS in the Windows/System32/Drivers directory

Once the above files are in the directories, plugging in the USBee DX
pod into a high speed USB port will show a “New Hardware Found”
message and the drivers will be loaded.

USBee DX Test Pod User’s Manual 91

12.5 USBee DX Toolbuilder Functions
This section details the functions that are available in the usbdxla.dll
and defines the parameters to each call.

12.5.1 Initializing the USBee DX Pod

12.5.1.1 EnumerateDXPods
This routine finds all of the USBee DX pods that are attached to your
computer and returns an array of the Pod IDs.

Calling Convention

int EnumerateDxPods(unsigned int *PodID);

where PodID is a pointer to the list of Pod IDs found.

Return Value:

Number of USBee DX Pods found

12.5.1.2 InitializeDXPod
This routine initializes the Pod number PodNumber. This routine must
be called before calling any other USBee DX functions.

Calling Convention

int InitializeDXPod(unsigned int PodNumber);

where PodNumber is the Pod ID of the pod used found on the back of
the unit.

Return Value:

0 = Pod Not Found

1 = Pod Initialized

92 USBee DX Test Pod User’s Manual

12.5.2 Bit Bang-Modes

12.5.2.1 SetMode
This routine sets the operating mode for the Pod number PodNumber.
This routine must be called before calling the SetSignals or GetSignals
functions.

Calling Convention

int SetMode (int Mode);

• Mode is the type of transfers that you will be doing and includes a
number of bit fields.

o Bit 0 – High Speed or Bi-Directional mode
§ Bit 0 = 0 specifies independent Bi-

Directional transfer mode. In this mode,
each of the 16 data signals can be
independently setup as inputs or outputs.
When sending data to the pod, only the
lines that are specified as outputs will be
driven. When reading data from the pod,
all 16 signals lines will return the actual
value on the signal (whether it is an input or
an output).

§ Bit 0 = 1 specifies high speed all-input or
all-output transfer mode. In this mode, all
of the 16 data signal lines are setup in the
same direction (as inputs or outputs).
When sending data to the pod, all signals
become outputs. When reading data from
the pod, all signals become inputs.

o Bit 1 – CLK mode
§ Bit 1 = 0 specifies that data changes on the

Rising edge and data is sampled on the
Falling edge of CLK.

§ Bit 1 = 1 specifies that data changes on the
Falling edge and data is sampled on the
Rising edge of CLK.

o Bits 4,3,2 – High Speed CLK rate (don’t care in bi-
directional mode)

o Bits 4,3,2 = 0,0,0 CLK=24MHz
o Bits 4,3,2 = 0,0,1 CLK=12MHz
o Bits 4,3,2 = 0,1,0 CLK=6MHz
o Bits 4,3,2 = 0,1,1 CLK=3MHz
o Bits 4,3,2 = 1,0,0 CLK=1MHz

Return Value:

0 = Pod Not Found

USBee DX Test Pod User’s Manual 93

1 = Pod Initialized

12.5.2.2 SetSignals - Setting the USBee DX
Output Signals

Calling Convention
int SetSignals (unsigned long State,
 unsigned int length,

 unsigned long *Samples)

• State is not used for High-Speed Mode. In Bi-Directional mode,
State is the Input/Output state of each of the 16 USBee signals (0
through F). A signal is an Input if the corresponding bit is a 0. A
signal is an Output if the corresponding bit is a 1.

• length is the number of bytes in the array Samples() that will be
shifted out the USBee pod. The maximum length is 16383.

• Samples() is the array that holds the series of samples that
represent the levels driven on the output signals. When set as an
output, a signal is driven high (3.3V) if the corresponding bit is a 1.
A signal is driven low (0V) if the corresponding bit is a 0. In Bi-
Directional mode, if a signal is set to be an Input in the State
parameter, the associated signal is not driven. The
Read/Write#/TRG (T) line is set low prior to data available, and the
CLK line (C) toggles for each output sample (Length times).

Return Value:

1 = Successful

0 = Failure

12.5.2.3 GetSignals - Reading the USBee
DX Input Signals

Calling Convention

int GetSignals (unsigned long State,
 unsigned int length,
 unsigned long *Samples)

• State is not used for High-Speed Mode. In Bi-Directional mode,
State is the Input/Output state of each of the 16 USBee digital
signals (0 through F). A signal is an Input if the corresponding bit is
a 0. A signal is an Output if the corresponding bit is a 1.

• length is the number of bytes in the array Samples() that will be
read from the USBee pod. The maximum length is 16383.

94 USBee DX Test Pod User’s Manual

• Samples() is the array that will hold the series of samples that
represent the levels read on the input signals. The Read/Write# (T)
line is set high prior to data available, and the CLK line (C) toggles
for each input byte (Length times).

• Return Value is the digital level of all 16 USBee pod Signals (bit 0 is
signal 0, bit 15 is signal F)

12.5.3 Logic Analyzer and Oscilloscope
Functions

The following API describes the routines that control the Logic Analyzer
and Oscilloscope functionality of the USBee DX Test Pod.

12.5.3.1 MakeBuffer
This routine creates the sample buffer that will be used to store the
acquired samples.

Calling Convention

unsigned long *MakeBuffer(unsigned long Size)

where Size is the number of samples to allocate. Each sample is
contained in a long (4 byte) value with the low two bytes being the 16
digital lines and the high two bytes being two 8-bit ADC values for
each of the two analog channels.

Return Value:

0 = Failed to allocate the buffer

other = pointer to allocated buffer

12.5.3.2 DeleteBuffer
This routine releases the sample buffer that was used to store the
acquired samples.

Calling Convention
unsigned int *DeleteBuffer(unsigned long
 *buffer)

where buffer is the pointer to the allocated buffer.

Return Value:

0 = Failed to deallocate the buffer

other = Success

USBee DX Test Pod User’s Manual 95

12.5.3.3 StartCapture
This routine starts the pod capturing data at the specified trigger and
sample rates.

Calling Convention

int StartCapture(unsigned int Channels,
unsigned int Slope,
unsigned int AnalogChannel,
unsigned int Level,
unsigned int SampleRate,
unsigned int ClockMode,
unsigned long *Triggers,
signed int TriggerNumber,
unsigned long *buffer,
unsigned long length,
unsigned long poststore);

• Channels represent which samples to take:
o Bit 0: 1 = Sample Digital 0-7 signals
o Bit 1: 1 = Sample Digital 8-F signals
o Bit 2: 1 = Sample Analog Channel 1
o Bit 3: 1 = Sample Analog Channel 2

• Slope is as follows:
o 0 = Analog Slope for Trigger is Don’t Care. Uses

Digital Triggers instead.
o 1 = Analog Slope for Trigger is Rising Edge. Ignores

digital triggers.
o 2 = Analog Slope for Trigger is Falling Edge. Ignores

digital triggers.
• AnalogChannel specifies which analog channel to use for triggering

o 1 = Channel 1
o 2 = Channel 2

• Level: if Slope is not 0, this value specifies the analog trigger level.
This value is in ADC counts, which go from 0 at -10V to 255 at
+10V (78.125mV per count).

• SampleRate is as follows:
o 247 = 24Msps
o 167 = 16 Msps
o 127 = 12 Msps
o 87 = 8 Msps
o 67 = 6 Msps
o 47 = 4 Msps
o 37 = 3 Msps
o 27 = 2 Msps
o 17 = 1 Msps

• ClockMode: Always 0 - reserved

96 USBee DX Test Pod User’s Manual

• Triggers: array of Mask/Value sample pairs used for triggering on
the digital samples. Mask is a bit mask that indicates which bit
signals to observe. 1 in a bit position means to observe that signal,
0 means to ignore it. Value is the actual value of the bits to
compare against. If a bit is not used in the Mask, make sure that
the corresponding bit is a 0 in Value. These triggers are only in
effect if the Slope is 0.

• TriggerNumber: the number of pairs of Mask/Value in the above
Triggers Array.

• buffer: pointer to the sample buffer to store the acquired data into.
This buffer must be created using the MakeBuffer routine. Each
sample is contained in a long (4 byte) value with the low two bytes
being the 16 digital lines and the high two bytes being two 8-bit
ADC values for each of the two analog channels.

• Length: The total number of samples to acquire. This value must be
a multiple of 65536.

• Poststore: The total number of bytes to store after the trigger event
happens. If the trigger happens early, the samples are stored until
the buffer is full.

Return Value:

0 = Failed

1 = Success

12.5.3.4 CaptureStatus
This routine checks the status of the data capture in progress.

Calling Convention
int CaptureStatus(char *breaks,
 char *running,
 char *triggered,
 long *start,
 long *end,
 long *trigger,
 char *full)

• Break: The number of breaks that have occurred in the data
sampling since the start of the acquisition. This value is zero (0) if
the acquisition has been continuous. If the value is 1 or greater,
there was a break in the capture for some reason. If breaks occur
repeatedly, your PC is not capable of the sample rate you’ve chosen
and a lower sample rate is needed to achieve continuous sampling.

• Running: 1 = Acquisition is still running, 0 = Acquisition has
completed

• Triggered: 1 = Trigger has occurred, 0 = still waiting for the trigger
• Start: Sample Number of the start of the buffer. 0 unless there is

an error.

USBee DX Test Pod User’s Manual 97

• End: The sample number of the last sample.
• Trigger: The sample number at the point of trigger.
• Full: The percentage of the buffer that is currently filled. Ranges

from 0 to 100.

Return Value:

Number of breaks in the sampling

12.5.3.5 StopCapture
This routine terminates a pending capture.

Calling Convention

int StopCapture(void)

Return Value:

1 = Capture Stopped

0 = Stop Failed

12.5.3.6 LoggedData
This routine returns the 4 byte value of a particular sample. The low 2
bytes contain the 16 digital channels. The high two bytes contain two
8-bit ADC values for the two analog channels.

Calling Convention

long LoggedData(unsigned long index)

Index: sample number to return

Return Value:

Value of the given sample

12.5.3.7 DecodeUSB
This routine decodes bus traffic and outputs the data to an output file.
This routine works on a sample buffer captured using the StartCapture
routine.

Calling Convention

int DecodeUSB (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long
NumberOfSamples, long ShowEndpoint, long ShowAddress, long

98 USBee DX Test Pod User’s Manual

DPlus, long DMinus, long Speed, long Rate, long SOF, long
delimiter, long showall, long hex);

• SampleBuffer: pointer to the sample buffer that contains the
acquired sample data. Each sample is contained in a long (4 byte)
value with the low two bytes being the 16 digital lines and the high
two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

• OutFilename: pointer to the filename string to write the decoded
data to.

• StartSample: the index of the first sample to start decoding
• EndSample: the index of the last sample to decode
• NumberOfSamples: The total Sample Buffer Size
• ShowEndpoint: 999 = show all traffic, otherwise show only this USB

endpoint number traffic
• ShowAddress: 999 = show all USB devices, otherwise only show the

USB device with this USB address
• DPlus: Which signal (0 – 15) to use for the D Plus signal
• DMinus: Which signal (0 – 15) to use for the D Minus signal
• Speed: 0 = Low Speed USB, 1 = Full Speed USB
• Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)
o 167 = 16 Msps
o 127 = 12 Msps
o 87 = 8 Msps
o 67 = 6 Msps
o 47 = 4 Msps
o 37 = 3 Msps
o 27 = 2 Msps
o 17 = 1 Msps

• SOF: 0 = do not show the SOF (Start of Frames), 1 = show SOFs
• Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space

delimeter
• Showall: 0 = Only show the data payload, 1 = show all packet

details
• Hex: 0 = display data in decimal, 1 = display data in hex

Return Value is always 0

12.5.3.8 DecodeSPI
This routine decodes bus traffic and outputs the data to an output file.
This routine works on a sample buffer captured using the StartCapture
routine.

Calling Convention

int DecodeSPI (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate,
unsigned long SS, unsigned long SCK, unsigned long MOSI,
unsigned long MISO, unsigned long MISOEdge, unsigned long

USBee DX Test Pod User’s Manual 99

MOSIEdge, unsigned long delimiter, unsigned long hex,
unsigned long UseSS, long BytesPerLine);

• SampleBuffer: pointer to the sample buffer that contains the
acquired sample data. Each sample is contained in a long (4 byte)
value with the low two bytes being the 16 digital lines and the high
two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

• OutFilename: pointer to the filename string to write the decoded
data to.

• StartSample: the index of the first sample to start decoding
• EndSample: the index of the last sample to decode
• NumberOfSamples: The total Sample Buffer Size
• Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)
o 167 = 16 Msps
o 127 = 12 Msps
o 87 = 8 Msps
o 67 = 6 Msps
o 47 = 4 Msps
o 37 = 3 Msps
o 27 = 2 Msps
o 17 = 1 Msps

• SS: Which signal (0 – 15) to use for the Slave Select signal
• SCK: Which signal (0 – 15) to use for the clock signal
• MISO: Which signal (0 – 15) to use for the MISO signal
• MOSI: Which signal (0 – 15) to use for the MOSI signal
• MOSIEdge: 0 = use falling edge of SCK to sample data on MOSI, 1

= use rising edge
• MISOEdge: 0 = use falling edge of SCK to sample data on MISO, 1

= use rising edge
• Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space

delimeter
• Showall: 0 = Only show the data payload, 1 = show all packet

details
• Hex: 0 = display data in decimal, 1 = display data in hex
• UseSS: 0 = don’t use an SS signal, 1 = use the SS signal
• BytesPerLine: How many output words are on each output line.

Return Value is always 0

12.5.3.9 DecodeI2C
This routine decodes bus traffic and outputs the data to an output file.
This routine works on a sample buffer captured using the StartCapture
routine.

Calling Convention

100 USBee DX Test Pod User’s Manual

int DecodeI2C (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate,
unsigned long SDA, unsigned long SCL, long showack, long
delimiter, long showall, long hex);

• SampleBuffer: pointer to the sample buffer that contains the
acquired sample data. Each sample is contained in a long (4 byte)
value with the low two bytes being the 16 digital lines and the high
two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

• OutFilename: pointer to the filename string to write the decoded
data to.

• StartSample: the index of the first sample to start decoding
• EndSample: the index of the last sample to decode
• NumberOfSamples: The total Sample Buffer Size
• Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)
o 167 = 16 Msps
o 127 = 12 Msps
o 87 = 8 Msps
o 67 = 6 Msps
o 47 = 4 Msps
o 37 = 3 Msps
o 27 = 2 Msps
o 17 = 1 Msps

• SDA: Which signal (0 – 15) to use for the SDA signal
• SCL: Which signal (0 – 15) to use for the SCL signal
• ShowAck: 0 = Do not show each byte ACK values, 1 = show the

ACK value after each byte
• Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space

delimeter
• Showall: 0 = Only show the data payload, 1 = show all packet

details
• Hex: 0 = display data in decimal, 1 = display data in hex

Return Value is always 0

12.5.3.10 DecodeCAN
This routine decodes bus traffic and outputs the data to an output file.
This routine works on a sample buffer captured using the StartCapture
routine.

Calling Convention

int DecodeCAN (unsigned long * SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, unsigned
long Rate, unsigned long Channel, unsigned long BitRate,

USBee DX Test Pod User’s Manual 101

unsigned long maxID, unsigned long minID, long delimiter,
long showall, long hex);

• SampleBuffer: pointer to the sample buffer that contains the
acquired sample data. Each sample is contained in a long (4 byte)
value with the low two bytes being the 16 digital lines and the high
two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

• OutFilename: pointer to the filename string to write the decoded
data to.

• StartSample: the index of the first sample to start decoding
• EndSample: the index of the last sample to decode
• NumberOfSamples: The total Sample Buffer Size
• Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)
o 167 = 16 Msps
o 127 = 12 Msps
o 87 = 8 Msps
o 67 = 6 Msps
o 47 = 4 Msps
o 37 = 3 Msps
o 27 = 2 Msps
o 17 = 1 Msps

• Channel: Which signal (0 – 15) to use for the CAN signal
• BitRate: The value of the bit rate in bits per second (for 250kbps

use 250000)
• MaxID: 0 = show all packets, otherwise this is the maximum ID to

display
• MinID: 0 = show all packets, otherwise this is the minimum ID to

display
• Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space

delimeter
• Showall: 0 = Only show the data payload, 1 = show all packet

details
• Hex: 0 = display data in decimal, 1 = display data in hex

Return Value is always 0

12.5.3.11 Decode1Wire
This routine decodes bus traffic and outputs the data to an output file.
This routine works on a sample buffer captured using the StartCapture
routine.

Calling Convention

int Decode1Wire (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate,
unsigned long Signal, long delimiter, long showall, long
hex);

102 USBee DX Test Pod User’s Manual

• SampleBuffer: pointer to the sample buffer that contains the
acquired sample data. Each sample is contained in a long (4 byte)
value with the low two bytes being the 16 digital lines and the high
two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

• OutFilename: pointer to the filename string to write the decoded
data to.

• StartSample: the index of the first sample to start decoding
• EndSample: the index of the last sample to decode
• NumberOfSamples: The total Sample Buffer Size
• Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)
o 167 = 16 Msps
o 127 = 12 Msps
o 87 = 8 Msps
o 67 = 6 Msps
o 47 = 4 Msps
o 37 = 3 Msps
o 27 = 2 Msps
o 17 = 1 Msps

• Signal: Which signal (0 – 15) to use for the 1-Wire signal
• Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space

delimeter
• Showall: 0 = Only show the data payload, 1 = show all packet

details
• Hex: 0 = display data in decimal, 1 = display data in hex

Return Value is always 0

12.5.3.12 DecodeParallel
This routine decodes bus traffic and outputs the data to an output file.
This routine works on a sample buffer captured using the StartCapture
routine.

Calling Convention

int DecodeParallel (unsigned long *SampleBuffer, unsigned
char *OutFilename, long StartSample, long EndSample, long
Rate, unsigned long Channels, unsigned long Clock, unsigned
long UseCLK, long CLKEdge, unsigned long delimiter,
unsigned long hex, long BytesPerLine);

• SampleBuffer: pointer to the sample buffer that contains the
acquired sample data. Each sample is contained in a long (4 byte)
value with the low two bytes being the 16 digital lines and the high
two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

• OutFilename: pointer to the filename string to write the decoded
data to.

USBee DX Test Pod User’s Manual 103

• StartSample: the index of the first sample to start decoding
• EndSample: the index of the last sample to decode
• NumberOfSamples: The total Sample Buffer Size
• Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)
o 167 = 16 Msps
o 127 = 12 Msps
o 87 = 8 Msps
o 67 = 6 Msps
o 47 = 4 Msps
o 37 = 3 Msps
o 27 = 2 Msps
o 17 = 1 Msps

• Channels: Bit mask which represents which signals are part of the
parallel data bus. Bit 0 is Pod signal 0. Bit 15 is pod signal F.

• Clock: Which signal (0 – 15) to use for the clock signal
• UseCLK: 0 – don’t use the Clock signal above, 1 – use the Clock

signal above to qualify the samples
• CLKEdge: 0 = use falling edge of the Clock to sample data, 1 = use

rising edge
• Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space

delimeter
• Showall: 0 = Only show the data payload, 1 = show all packet

details
• Hex: 0 = display data in decimal, 1 = display data in hex
• BytesPerLine: How many output words are on each output line.

Return Value is always 0

12.5.3.13 DecodeSerial
This routine decodes bus traffic and outputs the data to an output file.
This routine works on a sample buffer captured using the StartCapture
routine.

Calling Convention

int DecodeSerial (unsigned long *SampleBuffer, unsigned
char *OutFilename, long StartSample, long EndSample,
unsigned long Rate, unsigned long Channel, unsigned long
AlignValue, unsigned long AlignEdge, unsigned long
AlignChannel, unsigned long UseAlignChannel, unsigned long
ClockChannel, unsigned long ClockEdge, unsigned long
BitsPerValue, unsigned long MSBFirst, unsigned long
delimiter, unsigned long hex, long BytesPerLine);

• SampleBuffer: pointer to the sample buffer that contains the
acquired sample data. Each sample is contained in a long (4 byte)
value with the low two bytes being the 16 digital lines and the high

104 USBee DX Test Pod User’s Manual

two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

• OutFilename: pointer to the filename string to write the decoded
data to.

• StartSample: the index of the first sample to start decoding
• EndSample: the index of the last sample to decode
• NumberOfSamples: The total Sample Buffer Size
• Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)
o 167 = 16 Msps
o 127 = 12 Msps
o 87 = 8 Msps
o 67 = 6 Msps
o 47 = 4 Msps
o 37 = 3 Msps
o 27 = 2 Msps
o 17 = 1 Msps

• Channel: Which signal (0 – 15) to use for the serial signal
• AlignValue: When using word aligning, bus value which is used for

aligning the serial stream to byte boundaries.
• AlignEdge: When using an external signal for aligning, 0 = falling

edge, 1 = rising edge.
• AlignChannel: When using an external signal for aligning, which

signal (0 – 15) to use for the align signal
• UseAlignChannel: 0 = use word aligning, 1 = use external align

signal
• ClockChannel: Which signal (0 – 15) to use for the clock signal
• CLKEdge: 0 = use falling edge of the Clock to sample data, 1 = use

rising edge
• BitsPerValue: how many bits are in each word of the serial stream
• MSBFirst: 0 = LSBit is sent first, 1 = MSBit is sent first
• Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space

delimeter
• Showall: 0 = Only show the data payload, 1 = show all packet

details
• Hex: 0 = display data in decimal, 1 = display data in hex
• BytesPerLine: How many output words are on each output line.

Return Value is always 0

12.5.3.14 DecodeASYNC
This routine decodes bus traffic and outputs the data to an output file.
This routine works on a sample buffer captured using the StartCapture
routine.

Calling Convention

USBee DX Test Pod User’s Manual 105

int DecodeASYNC (unsigned long *SampleBuffer, unsigned char
*OutFilename, long StartSample, long EndSample, long Rate,
unsigned long Channels, unsigned long BaudRate, unsigned
long Parity, unsigned long DataBits, unsigned long
delimiter, unsigned long hex, unsigned long ascii, long
BytesPerLine);

• SampleBuffer: pointer to the sample buffer that contains the
acquired sample data. Each sample is contained in a long (4 byte)
value with the low two bytes being the 16 digital lines and the high
two bytes being two 8-bit ADC values for each of the two analog
channels which are not used.

• OutFilename: pointer to the filename string to write the decoded
data to.

• StartSample: the index of the first sample to start decoding
• EndSample: the index of the last sample to decode
• NumberOfSamples: The total Sample Buffer Size
• Rate is the rate at which samples were taken during StartCapture:

o 247 = 24Msps (must use this for Full Speed USB)
o 167 = 16 Msps
o 127 = 12 Msps
o 87 = 8 Msps
o 67 = 6 Msps
o 47 = 4 Msps
o 37 = 3 Msps
o 27 = 2 Msps
o 17 = 1 Msps

• Channels: Bit mask which represents which signals to decode. Bit 0
is Pod signal 0. Bit 15 is pod signal F.

• BaudRate: Baud Rate in bits per second (19.2K = 19200)
• Parity: 0 = No parity, 1 = Mark, 2 = Space, 3 = Even, 4 = Odd, 5 =

Ignore
• DataBits: Number of data bits (4 to 24)
• Delimeter: 0 = no delimiter, 1 = Comma delimeter, 2 = Space

delimeter
• Showall: 0 = Only show the data payload, 1 = show all packet

details
• Hex: 0 = display data in decimal, 1 = display data in hex
• ASCII: 0 = show byte values, 1 = show ASCII equivalent
• BytesPerLine: How many output words are on each output line.

Return Value is always 0

12.5.3.15 DecodeSetName
This routine sets the string that is output during any of the above
decoders and can represent a unique identifier for that bus.

Calling Convention

106 USBee DX Test Pod User’s Manual

int DecodeSetName (char *name);

12.5.4 Digital Signal Generator Function
The following API describes the routines that control the Signal
Generator functionality of the USBee DX Test Pod.

12.5.4.1 SetData
This routine sets the value of a given sample to the value specified.
You can also write directly to the allocated buffer after calling
MakeBuffer(). The low 2 bytes contain the 16 digital channels. The
high two bytes contain two 8-bit ADC values for the two analog
channels.

Calling Convention
long SetData(unsigned long index,
 unsigned long value);

• Index: sample number to change
• Value: 4-byte value to store in that sample

Return Value:

0 = Set failed

1 = Set successful

12.5.4.2 StartGenerate
This routine starts the pod generating data with the specified trigger,
sample rates, and data.

Calling Convention
int StartGenerate(unsigned long bits,
 unsigned int SampleRate,
 unsigned char triggermode,
 unsigned long *buffer,
 unsigned long length);

• Bits is the number of bits to generate
o 8 = the low 8 digital signals (0 thru 7)
o 16 = all digital signals (0 thru F)

• SampleRate is as follows:

USBee DX Test Pod User’s Manual 107

o 247 = 24MHz
o 167 = 16MHz
o 127 = 12MHz
o 87 = 8MHz
o 67 = 6MHz
o 47 = 4MHz
o 37 = 3MHz
o 27 = 2MHz
o 17 = 1MHz

• TriggerMode: Indicates the value on the external TRG signal (T)
that must occur before the waveforms are generated. 0 = Don’t
Care, 1 = rising edge, 2 = falling edge, 3 = high level, 4 = low level

• Buffer: pointer to the sample that holds the data to generate. This
buffer must be created using the MakeBuffer routine.

• Length: The total number of samples to generate. This value must
be a multiple of 65536.

Return Value:

0 = Failed

1 = Success

12.5.4.3 GenerateStatus
This routine checks the status of the data generation in progress.

Calling Convention
int GenerateStatus(char *breaks,
 char *running,
 char *triggered,
 char *complete);

• Breaks: The number of breaks that have occurred in the data
generating since the start of the generation. This value is zero (0)
if the sample timing has been continuous. If the value is 1 or
greater, there was a break in the generation for some reason. If
breaks occur repeatedly, your PC is not capable of the sample rate
you’ve chosen and a lower sample rate is needed to achieve
continuous sample timing.

• Running: 1 = Generation is still running, 0 = Generation has
completed

• Triggered: 1 = Trigger has occurred, 0 = still waiting for the trigger
• Complete: The percentage of the buffer that has been generated.

Ranges from 0 to 100.

Return Value:

0 = Status Failed

1 = Status Successful

108 USBee DX Test Pod User’s Manual

12.5.4.4 StopGenerate
This routine stops a signal generation in progress and terminates a
generation cycle.

Calling Convention

int StopGenerate(void);

Return Value:

0 = Stop Failed

1 = Stop Successful

12.5.5 Digital Voltmeter (DVM) Function
The following API describes the routine that samples both the digital
and analog voltages.

12.5.5.1 GetAnalogAverageCount
This routine reads the average analog voltage at the specified channel.

Calling Convention
unsigned long GetAllSignals(
 long *ch1,
 long *ch2,
 unsigned long *digital);

• *ch1 and *ch2 will be filled with the analog average voltage for
that channel. The value returned is 100 times the actual value so
you need to divide this by 100 to get the measured value in volts.

• *digital will be filled with the digital samples where each bit
represents one digital channel. Bit 0 is digital signal 0. Bit 15 is
digital signal F.

Return Value: Always 1

USBee DX Test Pod User’s Manual 109

12.6 Example C Code
The following code listing is an example in very simple C that calls the
DLL functions. It is a Command Prompt program that generates the
following output when run.

110 USBee DX Test Pod User’s Manual

File USBeeDX.cpp

//**
// USBee DX Toolbuilder Sample Application
//
// This file contains sample C code that accesses the USBee DX Toolbuilder functions
// that are contained in the USBDXLA.DLL file. These routines are detailed in the
// USBee DX Toolbuilder document which includes the available routines and
// associated parameters.
//
// Copyright 2006, CWAV - All rights reserved.
// www.usbee.com
//**

#include "stdio.h"
#include "conio.h"
#include "windows.h"

#define CWAV_API __stdcall
#define CWAV_IMPORT __declspec(dllimport)

// DX DLL Routine Declarations

// Basic Bit-Bang I/O Routines
CWAV_IMPORT int CWAV_API SetSignals (unsigned long State, unsigned int length, unsigned long *Bytes);
 // Sets the Digital signals
CWAV_IMPORT int CWAV_API GetSignals (unsigned long State, unsigned int length, unsigned long *Bytes);
 // Reads the Digital I/O signals
CWAV_IMPORT int CWAV_API SetMode (int Mode); // Sets the I/O Mode
CWAV_IMPORT unsigned long CWAV_API GetAllSignals(long *ch1, long *ch2, unsigned long *digital);

// SetMode definitions
#define FAST_ONEWAY_DATA 1
#define SLOW_TWOWAY_DATA 0

#define DATA_CHANGES_ON_RISING_EDGE 2
#define DATA_CHANGES_ON_FALLING_EDGE 0
#define DATA_IS_SAMPLED_ON_RISING_EDGE 0
#define DATA_IS_SAMPLED_ON_FALLING_EDGE 2

#define _24MHz (0 << 2)
#define _12MHz (1 << 2)
#define _6MHz (2 << 2)
#define _3MHz (3 << 2)
#define _1MHz (4 << 2)

// Buffer Routines
CWAV_IMPORT unsigned long * CWAV_API MakeBuffer(unsigned long Size);
 // Makes a Logic Analyzer/ OScope or Signal Generator buffer
CWAV_IMPORT int CWAV_API DeleteBuffer(unsigned long *buffer); // Deletes the associated buffer
CWAV_IMPORT long CWAV_API SetData(unsigned long index, unsigned long value); // Sets the data in the logic buffer

CWAV_IMPORT int CWAV_API EnumerateDXPods(unsigned int *Pods); // Find all USBee DX pods attached to this computer
CWAV_IMPORT int CWAV_API InitializeDXPod(unsigned int PodNumber);
 // Inits the specified Pod. This must be done before operation.

// Logic Analyzer/ Oscilloscope Declarations
#define DIGITAL_HIGH 0x1
#define DIGITAL_LOW 0x2
#define ANALOG_LOW 0x4
#define ANALOG_HIGH 0x8

CWAV_IMPORT int CWAV_API StartCapture(unsigned int Channels,
 unsigned int Slope,
 unsigned int AnalogChannel,
 unsigned int Level,
 unsigned int SampleRate,
 unsigned int ClockMode,
 unsigned long *Triggers,
 signed int TriggerNumber,
 unsigned long *buffer,
 unsigned long length,
 unsigned long poststore);

CWAV_IMPORT int CWAV_API StopCapture(void); // End a Logic Analyzer trace
CWAV_IMPORT int CWAV_API CaptureStatus(char *breaks, char *running, char *triggered,// Monitor the capture in progress
 long *start, long *end, long *trigger, char *full);

// Signal Generator Declarations
CWAV_IMPORT int CWAV_API StartGenerate(unsigned long Bits, unsigned int SampleRate, unsigned char triggermode, unsigned
 long *buffer, unsigned long length);
CWAV_IMPORT int CWAV_API GenerateStatus(char *breaks, char *running, char *triggered, char *complete);
 // Generation Status
CWAV_IMPORT int CWAV_API StopGenerate(void); // Stops the Generation in progress

// StartGenerate External Trigger Settings
#define DONT_CARE_TRIGGER 0
#define RISING_EDGE_TRIGGER 1
#define FALLING_EDGE_TRIGGER 2
#define HIGH_LEVEL_TRIGGER 3
#define LOW_LEVEL_TRIGGER 4

#define DONT_CARE_SLOPE 0
#define RISING_EDGE_SLOPE 1
#define FALLING_EDGE_SLOPE 2

// Protocol Decoders
CWAV_IMPORT int CWAV_API DecodeUSB (unsigned long *LoggedData, unsigned char *OutFilename,
 long StartSample, long EndSample, long NumberOfSamples,
 long ShowEndpoint, long ShowAddress, long DPlus, long DMinus,
 long Speed, long Rate, long SOF, long delimiter, long showall,
 long hex);

CWAV_IMPORT int CWAV_API DecodeSPI (unsigned long *SampleBuffer, unsigned char *OutFilename,
 long StartSample, long EndSample, long Rate,

USBee DX Test Pod User’s Manual 111

 unsigned long SS,unsigned long SCK,unsigned long tMOSI,unsigned long tMISO,
 unsigned long MISOEdge,unsigned long MOSIEdge,
 unsigned long delimiter,unsigned long hex,unsigned long UseSS, long BytesPerLine);

CWAV_IMPORT int CWAV_API DecodeI2C (unsigned long *SampleBuffer, unsigned char *OutFilename,
 long StartSample, long EndSample, long Rate, unsigned long SDA,
 unsigned long SCL,
 long showack,
 long delimiter, long showall,
 long hex);

CWAV_IMPORT int CWAV_API DecodeCAN (unsigned long *InputDecodeBuffer, unsigned char *OutFilename,
 long StartSample, long EndSample, unsigned long Rate,
 unsigned long Channel, unsigned long BitRate,
 unsigned long maxID, unsigned long minID,
 long delimiter, long showall,
 long hex);

CWAV_IMPORT int CWAV_API Decode1Wire (unsigned long *SampleBuffer, unsigned char *OutFilename,
 long StartSample, long EndSample, long Rate, unsigned long Signal,
 long delimiter, long showall,
 long hex);

CWAV_IMPORT int CWAV_API DecodeParallel (unsigned long *SampleBuffer, unsigned char *OutFilename,
 long StartSample, long EndSample,
 long Rate, unsigned long Channels,unsigned long Clock,
 unsigned long UseCLK, long CLKEdge,
 unsigned long delimiter,unsigned long hex, long BytesPerLine);

CWAV_IMPORT int CWAV_API DecodeSerial (unsigned long *SampleBuffer, unsigned char *OutFilename,
 long StartSample, long EndSample, unsigned long Rate,
 unsigned long Channel,unsigned long AlignValue, unsigned long AlignEdge,
 unsigned long AlignChannel,unsigned long UseAlignChannel,
 unsigned long ClockChannel,unsigned long ClockEdge,
 unsigned long BitsPerValue, unsigned long MSBFirst,
 unsigned long delimiter,unsigned long hex, long BytesPerLine);

CWAV_IMPORT int CWAV_API DecodeASYNC (unsigned long *SampleBuffer, unsigned char *OutFilename,
 long StartSample, long EndSample, long Rate, unsigned long Channels,
 unsigned long BaudRate, unsigned long Parity, unsigned long DataBits,
 unsigned long delimiter,unsigned long hex,unsigned long ascii, long BytesPerLine);

CWAV_IMPORT int CWAV_API DecodeSetName (char *name);

unsigned char VoltsToCounts(float Volts) // Converts Volts into ADC counts
{
 unsigned char counts;

 counts = (char) ((Volts + 10.0) / 0.078125);

 return(counts);
}
float CountsToVolts(unsigned long Counts) // Converts ADC counts into Volts
{
 double Volts;

 Volts = (float)((double)Counts * 0.078125) - 10.0;

 return((float)Volts);
}

int main(int argc, char* argv[])
{
 unsigned long DataInBuffer[65536], DataOutBuffer[65536];
 unsigned int PodNumber, PodID[10], NumberOfPods;
 int ReturnVal;
 unsigned long x;

 printf("Sample USBee DX Toolbuilder application in C\n");

 //***********************************
 // Pod Initializations Functions - must call InitializeDXPod before using any functions
 //***********************************
 printf("Getting the PodIDs available\n");
 NumberOfPods = EnumerateDXPods(PodID);
 if (NumberOfPods == 0) {
 printf("No USBee DX Pods found\n");
 getch();
 return 0;
 }

 PodNumber = PodID[0]; // Use the first one we find. Change this to address your pod of choice.

 printf("Initializing the Pod\n");
 ReturnVal = InitializeDXPod(PodNumber);
 if (ReturnVal != 1) {
 printf("Failure Initializing the Pod\n");
 getch();
 return 0;
 }

 //***********************************
 // Basic I/O Functions
 //***********************************
 // Make some data to send out the pod signals
 for(x=0;x<65536;x++) DataOutBuffer[x]= (char)x;

 printf("Setting the Mode to fast mode\n");
 ReturnVal = SetMode(FAST_ONEWAY_DATA | DATA_CHANGES_ON_RISING_EDGE | _6MHz);

 if (ReturnVal != 1) {
 printf("Failure setting the mode\n");
 getch();
 return 0;
 }

 printf("Sending 80,000 bytes out the pod\n");
 for (x = 0; x < 5; x++)

112 USBee DX Test Pod User’s Manual

 {
 SetSignals (0xFFFF /* Don't Care */, 16000, DataOutBuffer);
 }

 printf("Reading 80,000 bytes from the pod signals\n");
 for (x = 0; x < 5; x++)
 {
 GetSignals (0x0000 /* Don't Care */, 16000, DataInBuffer);
 }

 printf("Setting the Mode to bi-directional mode\n");
 ReturnVal = SetMode(SLOW_TWOWAY_DATA | DATA_IS_SAMPLED_ON_RISING_EDGE);

 if (ReturnVal != 1) {
 printf("Failure setting the mode\n");
 getch();
 return 0;
 }

 printf("Sending 16000 bytes out the pod\n");

 SetSignals (0xFFFF, 16000, DataOutBuffer);

 printf("Reading 16000 bytes from the pod signals\n");

 GetSignals (0x0000, 16000, DataInBuffer);

 long ch1;
 long ch2;
 unsigned long digital;

 printf("Getting current state of the pod signals\n");

 for (int y = 0; y < 10; y++)
 {
 GetAllSignals (&ch1, &ch2, &digital);

 float ch1f = (float)ch1 / (float)100;
 float ch2f = (float)ch2 / (float)100;

 printf("Ch1:%5.2f Ch2:%5.2f Digital:%04X\n", ch1f, ch2f, digital);
 }

 //***********************************
 // Logic Analyzer/ Oscilloscope Functions
 //***********************************

 printf("\nSample USBee DX Logic Analyzer/ Oscilloscope Toolbuilder application in C\n");

 printf("Start Capturing Data from Pod\n");

 unsigned char Rate = 17;
 // Sample Rate = 1Msps
 unsigned char ClockMode = 2; // Internal Timing
 unsigned long Triggers[4];
 Triggers[0] = 0;
 // Trigger Mask = Don't Care
 Triggers[1] = 0;
 // Trigger Value
 char NumberOfTriggers = 1;
 long SampleBufferLength = 16 * 65536; // 1Meg Sample Buffer
 unsigned long *SampleBuffer = MakeBuffer(SampleBufferLength);
 long PostStore = SampleBufferLength;
 unsigned char Slope = DONT_CARE_SLOPE;
 unsigned char Level = VoltsToCounts(0.5); // Analog Trigger Level in ADC Counts
 unsigned char AnalogTriggerChannel = 1;
 // Ch1 = 1, Ch2 = 2
 PostStore = SampleBufferLength;
 long Channels = ANALOG_HIGH + ANALOG_LOW + DIGITAL_HIGH + DIGITAL_LOW;
 char Breaks;
 char Running;
 char Triggered;
 long Start;
 long End;
 long Trigger;
 char Full;

 ReturnVal = StartCapture(Channels, Slope, AnalogTriggerChannel, Level, Rate, ClockMode, Triggers,
 NumberOfTriggers, SampleBuffer, SampleBufferLength, PostStore);

 if (ReturnVal != 1) {
 printf("Failure Starting Capture\n");
 getch();
 return 0;
 }

 printf("Waiting for data to be captured...");

 do {

 Sleep(500);// This is required to put pauses between the status requests, otherwise the CaptureStatus
 // will eat into the USB bandwidth.

 ReturnVal = CaptureStatus(&Breaks, &Running, &Triggered, &Start, &End, &Trigger, &Full);
 printf(".");
 if (Running && (Breaks != 0)) {
 printf("LA Sample Rate too high\n");
 break;
 }

 } while (Running && (Breaks == 0));
 printf("\n");

 StopCapture();

 // The data is now available to read
 for(x = 0; x < 15; x++)

USBee DX Test Pod User’s Manual 113

 {
 printf("Sample %d: Signal[F..0] = %04X AnalogChannel1 = %5.2g AnalogChannel2 = %5.2g\n", x,
 (SampleBuffer[x] & 0xFFFF),
 CountsToVolts((SampleBuffer[x] >> 16) & 0xFF),
 CountsToVolts((SampleBuffer[x] >> 24) & 0xFF));
 }

 //***********************************
 // Signal Generator Functions
 //***********************************

 printf("Sample USBee DX Signal Generator Application in C\n");

 // Make some data
 for (y = 0; y < SampleBufferLength; y++)
 SampleBuffer[y] = y & 0xFFFF;

 ReturnVal = StartGenerate (16, 17, DONT_CARE_TRIGGER, SampleBuffer, SampleBufferLength);

 printf("Waiting for generate to finish.");

 Running = 1;

 while (Running)
 {
 GenerateStatus(&Breaks, &Running, &Triggered, &Full);
 Sleep(400);

 printf(".");

 if (Breaks) break;
 }
 printf("\nBreaks= %d\n", Breaks);
 printf("Running= %d\n", Running);
 printf("Triggered= %d\n", Triggered);
 printf("Complete= %d\n", Full);

 printf("Stopped\n");
 StopGenerate();

 DeleteBuffer(SampleBuffer);

 printf("Hit any key to continue...\n");

 getch();

 return 0;
}

12.6.1 Performance Analysis of the “Bit-
Bang” Routines

The following logic analyzer capture shows the timing of the execution
of the first part of the above example (The SetSignals and Get Signals
section) in FAST ONE-WAY mode. The Clock line (C) is the strobe for
each of the samples transferred and the Data line (DATA) represents
the data on each of the pod digital signal lines. The R/W# (T)
indicates if it is a read or a write.

114 USBee DX Test Pod User’s Manual

As you can see, this section takes about 38msec to execute. In this
time we perform:

• Initializing the Pod
• Setting the Mode to High Speed mode
• Sending 80,000 samples out the pod using High Speed mode
• Reading 80,000 samples from the pod signals using High-Speed

mode

The following trace shows the High-Speed Writes (80,000 samples)
followed by Reads (80,000 samples). We first send out 5 blocks of
16,000 samples which take about 19msec. Then we follow with reads
of 5 blocks of 16,000 samples which take about 19msec.

Below is a zoomed in trace showing the timing of each sample during
the SetSignal call in Fast Mode. As you can see the clock is running at
6Msps and the data is changing on the rising edge of the clock. For
Fast Mode writes and reads, each of the blocks of 16,000 bytes is
bursted at 6Mbytes/sec (set using the SetMode parameters). The time
between bursts is the time it takes for the PC to queue up the next
USB transfer. This time may vary depending on your processor speed.

As a comparison between the modes, all transfers in high speed mode
(all 160,000 samples) occur before the first dark blue cursor on the
logic analyzer trace below. The Bi-Directional writes from the
SetSignals (16000 samples) occur between the cursors, and the bi-
direction reads occur after the second cursor.

USBee DX Test Pod User’s Manual 115

The following traces show the low level timing for the Bi-Directional
Mode SetSignal and GetSignal calls.

Bi-Directional mode SetSignal byte timing

116 USBee DX Test Pod User’s Manual

Bi-Directional mode GetSignal byte timing

The above trace shows the end of the SetSignals cycles and the
following GetSignals timing. The data is sampled in the middle of the
low clock period.

All of the above traces can have the opposite polarity for the CLK line
by setting the appropriate bit in the SetMode parameter.

In Signal Generator mode, the samples come out at a constant rate
defined in the call the StartGenerate. Below you see a series of
samples that are output using the StartGenerate routine and the
resulting sample times.

USBee DX Test Pod User’s Manual 117

118 USBee DX Test Pod User’s Manual

Copyright 2007 CWAV. All Rights Reserved

Printed in the USA

Version 2.0

