
Traffic Simulation Toolbox
User’s Manual

Jesse Haber-Kucharsky
Shreyas Sundaram

University of Waterloo
Department of Electrical and Computer Engineering

May 31, 2011

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

Contents
1 Introduction 1

2 Basic Use 2
2.1 Quick-Start Example . 2
2.2 Modelling Cars as Feedback-Control Systems 5
2.3 The Main Window . 9
2.4 Adjusting Car Properties . 11

2.4.1 Example: Acceleration Function 13

3 Using, Defining, and Modifying Models 15
3.1 Included Models . 17

3.1.1 Controllers . 17
3.1.2 Plants . 18

3.2 Defining and Modifying Models 19

A Derivation of Conditions for stableFollower 19

B License 22

1 Introduction
The Traffic Simulation Toolbox is a set of interfaces, classes, and functions for
Matlab which help to simulate the motion of a sequence of moving bodies
(cars). Each individual car’s motion is governed by a feedback control system
in which the controller and the plant can be chosen arbitrarily. The Traffic
Simulation Toolbox can be used to explore the effect of different models for
the plant and the controller on the emergent behaviour of the sequence of
cars.

The Traffic Simulation Toolbox consists primarily of a main GUI combin-
ing configuration, the simulation window, and some useful plots. This GUI
should be sufficient for the vast majority of cases. However, should extra
flexibility or programmability be required, a set of functions are provided
which can be used independently of the GUI.

The first section of this manual, Section 2, discusses how to run basic sim-
ulations using the Traffic Simulation Toolbox main window and the included
models.

1

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

The next section, Section 3, discusses how to add new models to the
system, how to modify existing models, and how integrate them with the
main GUI window.

2 Basic Use
This section discusses the basic use of the Traffic Simulation Toolbox. The
following quick-start guide demonstrates the core functionality of the main
GUI window.

2.1 Quick-Start Example
To run the main GUI window for the Traffic Simulation Toolbox, execute
trafficSimulation.m. You should be presented with the window shown in
Figure 1.

We are going to run a simulation involving ten cars, for five seconds,
using the default settings for the individual cars and the default models for
the control system. We will then change a parameter of the model dictating
the behaviour of the cars and observe the result on the sequence of cars.

1. Adjust the Simulation Time field in the Simulation section of the
main window to 5. This adjusts the span of the simulation to five
seconds.

2. Using the drop-down menu in the Settings section of the main window,
adjust the Number of Cars to 10. For now, we will accept the default
car properties so ignore the button titled Modify Car Properties.

3. To begin the simulation, press the Play button in the Simulation
section of the main window. At any time the simulation can be paused
by pressing the Pause button and resumed by pressing the Play button
again.

4. Once the simulation has completed it can be reset by pressing the Reset
button in the Settings section of the main window. The simulation
can then be run again, or the parameters can be changed.

After running the simulation (but before it is reset), the main window
should look as it does in Figure 2.

2

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

Figure 1: The main window of the Traffic Simulation Toolbox when it has
been started.

Each of the black rectangles represents a car, and the red rectangle in-
dicates the leader car. The leader car is the only car in the sequence which
has its motion predetermined. More specifically, the leader car’s acceleration
can be any function of time. By default, the leader’s acceleration is given by

alead(ti) = 100 sin (5ti)
where ti is the ith instant in time.
We can see the plot of this function in the upper plot of the main window.
The motion of each of the cars in the sequence is determined from the

motion of the cars which precede it. The exact nature of this behaviour
depends on the model chosen for the controller and plant. For the purposes
of this quick-start guide, we can consider these to be mathematical models
for a given car’s motion (acceleration, velocity, and position) as a function
of some other car’s motion (the leader) and the current state of the car.

Note that every car in the sequence can be set to follow an arbitrary
leader (provided that the leader car is ahead in the sequence). By default,
each car’s leader reference is the car immediately preceding it in the sequence.

In our simulation (and by default), the stableFollower model is used

3

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

Figure 2: The main window of the Traffic Simulation Toolbox after the first
simulation (described above) has completed.

as the controller. The stableFollower model calculates a car’s acceleration
at a given instant in time as follows:

a(ti) = K1 [pL(ti)− p(ti)−D] +K2 [vL(ti)− v(ti)]
Conceptually, the acceleration of the car is a function of two errors: the

error between the car’s position and its ideal position and the error between
the cars velocity and its ideal velocity.

a(ti) represents the acceleration of the car at a given time, ti.
p(ti) and pL(ti) represent the position of the car and the car’s leader

reference at ti, respectively.
v(ti) and vL(ti) represent the velocity of the car and the car’s leader

reference at ti, respectively.
The constants K1 and K2 represent the gain associated with each error.

For example, if K1 is larger than K2 then error in the separation of the cars
will contribute more to the car’s acceleration than error in the velocity of the
cars.

Lastly, D represents the ideal separation between the cars. For cars which
follow a leader immediately in front of them, this ideal separation is D =

4

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

L0 = 10 m. For cars with an arbitrary leader reference n cars away in the
sequence, this separation is D = nL0.

In our simulation, parameters for the stableFollower model are K1 =
100 and K2 = 50. This choice of parameters resulted in a stable system: the
cars appeared to travel at uniform velocity and they maintained the ideal
separation distances. We can see this information plotted in the lower axis.
It shows the distance error (i.e. the difference between the ideal position of
a car and its actual position) for a selection of cars in the sequence.

As time progressed in the simulation, we can observe that the error con-
verged to approximately zero for all cars (though there was a slight sinusoidal
pattern around zero).

Now, let’s change the value of K2 and observe the effect on the sequence
of cars. By reducing the value of K2, we might expect that the velocity error
contributes less to the acceleration of the car.

1. If the simulation has not yet been reset, make sure to do so by pressing
the Reset button in the Settings section of the main window.

2. Adjust the second parameter of stableFollower in the Controller
field in the Settings section of the main window from 50 to 20.

3. Press the Play button in the Simulation section of the main window
to begin the simulation.

Once the simulation has completed, the main window should appear as
it does in figure Figure 3.

We can observe that the distance error is more pronounced. More notice-
able though is the wave that appears to propagate through the sequence of
cars whenever the leader abruptly accelerates.

Clearly, these constants are not as desirable for maintaining a steady
stream of traffic.

2.2 Modelling Cars as Feedback-Control Systems
Fundamentally, the Traffic Simulation Toolbox models the motion of each
car as a feedback-control system as shown in Figure 4.

The motion of each car is represented as its time-domain acceleration,
stored as a vector of discrete indexed values. The simulation time is stored
similarly. The car’s velocity and position are (approximately) determined

5

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

Figure 3: The main window of the Traffic Simulation Toolbox after the
second simulation has completed.

Controller Plant
+

−

Error FollowerLeader

Figure 4: An overview of the feedback-control system model governing the
behaviour of each car.

6

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

from its acceleration such that the velocity and position of the car at some
instant are a function of the acceleration of that car until just before that
instant. i.e. v(ti) and p(ti) – the car’s velocity and position – are functions
of its acceleration up to and including ti−1.

Each car has associated with it some reference car (or as described in the
quick-start guide, a leader). The motion of this leader car (it’s acceleration,
velocity, and position) serves as the ideal reference for the motion of the car.
This leader reference is denoted as Leader in the figure.

The motion of the car is then compared in some way against the reference
car and the result is some error signal which indicates the extent of the
difference between the car’s motion and its ideal motion. In many cases, this
is simply the difference between, for example, the velocity of the leader and
the velocity of the car.

The Controller calculates the new acceleration of the car as some function
of the error signals. In the quick-start guide above, the controller consisted
of the sum of the error in the distance and velocity with a gain of K1 and
K2 respectively. i.e.,

a(ti) = K1ed(ti) +K2ev(ti)

In reality, the Traffic Simulation Toolbox does not restrict the controller
to be a function of the errors. The controller can be any arbitrary function
of the car’s motion and the motion of its leader. However, most controllers
will result in unstable systems unless they are carefully chosen.

The plant represents the car itself and its behaviour in the absence of any
external controller. Once the acceleration of the car has been determined by
the controller, it can be further modified by the natural behaviour of the car
itself. For example, if there is wind resistance present, then the acceleration
of the car could be modelled as follows:

ap(ti) = ac(ti)−Kvc(ti)

ac(ti) and vc(ti) represent the acceleration and velocity of the car as deter-
mined from the controller and ap(ti) represents the new acceleration taking
into account the effect of wind resistance which is here modelled as a constant
gain of the car’s velocity.

Finally, the resulting acceleration of the car is fed back and compared
against the new behaviour of the leader and the process begins again. This

7

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

is the crucial step, without which stable systems would not be possible. The
feedback compensates for any abrupt changes in the leader’s motion.

For example, consider the simple controller described above. If the leader
car begins to accelerate rapidly, then the differences between its velocity and
position and the follower’s velocity and position will increase rapidly as well.
In other words, the errors will increase. These increased errors will result in
an acceleration in the car which will itself reduce the difference in velocity
and position. In conclusion, the system compensates for deviations in the
car’s motion as compared to the reference car.

Controller Plant
+

−

Error FollowerLeader

Car 2Car 1 ... Car nAbsolute
Leader

Figure 5: A sequence of cars led by the absolute leader where each follower
car is governed by the control system shown in Figure 4

.

The Traffic Simulation Toolbox models a sequence of cars as a chain
of individual cars where each is governed by the control system shown in
Figure 4. Figure 5 shows the sequence. In the default case, each car’s leader
reference is the car directly ahead of it in the sequence. The sequence of cars
is lead by a car whose motion is predetermined; its acceleration is given as
some function of time. This car is named the absolute leader since its motion
is not effected by any other cars.

8

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

2.3 The Main Window
Much of the functionality of the main window of the Traffic Simulation Tool-
box is explained in the quick-start example of Section 2.1. However, this
section will describe it in more depth.

A

B

C
D

E

Figure 6: The main window of the Traffic Simulation Toolbox showing a
simulation in-progress after it has been paused.

Figure 6 shows the main window of the Traffic Simulation Toolbox run-
ning a simulation. The different parts of the window are annotated and
described below.

A Leader Acceleration Plot

The motion of the absolute leader car – the car that leads the sequence
– is specified exactly in terms of its acceleration as a function of time.
This plot simply shows the acceleration of the leader car up-to-and-
including the current instant of time in the simulation.
In the figure (and by default), the leader’s acceleration is a sinusoidal
function.

9

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

The exact function which gives the acceleration is entirely arbitrary and
can be customized in the car properties dialogue, which is explained in
Section 2.4.

B Distance Error Plot

A natural indicator of the effectiveness of a given controller is to exam-
ine the magnitude of the difference between a car’s ideal position and
its actual position (i.e. the distance error).
This plot shows the distance error for multiple cars in the sequence. For
performance reasons, the distance error is only shown for a selection of
cars in the sequence. The choice and number of cars which have their
distance error plotted depends on the number of cars in the sequence,
as shown in Table 1.

C Traffic Animation

While the simulation is running an animation is shown which includes
the position and velocity of each car, here represented by a numbered
black rectangle.
The leader car is distinguished in the animation by a red rectangle.
The left side of the animation area represents a position of 0 m. The
position of the right side of the animation area is dynamic. In general,
it will adjust itself so that at the end of the simulation the leader car
will end up at the right side of the animation area.

D Simulation Configuration

This section of the main window is used to adjust the simulation time
(in seconds) and control the simulation once it has started. A running
simulation can be paused and resumed an arbitrary number of times.

E Settings

This section of the main window is used to adjust the properties of
the cars in the sequence and the models used for the plant and the
controller.
The number of cars is selected by using the drop-down menu. The
minimum number of cars is 5, and the maximum (for performance and
space reasons) is 35.

10

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

The button labelled Modify Car Properties is used to launch the car
properties dialogue which is described in Section 2.4.
Finally, the models and parameters for the controller and plant are
specified here. For more information on the models included with the
Traffic Simulation Toolbox and how to use them, see Section 3 where
the subject is covered exclusively.

Table 1: For performance reasons, the distance error is not plotted for every
car in the sequence. The selection of cars for which it is plotted
depends on the number of cars in the sequence as shown.

Cars in Sequence Cars with Error Distance Shown Selection Criterion
5 4 Every car
10 9 Every car
15 14 Every car
20 7 Every 3rd car
25 8 Every 3rd car
30 6 Every 5th car

2.4 Adjusting Car Properties
The car properties dialogue is opened by pressing the button labelled Modify
Car Properties as shown in Figure 6. The dialogue is shown in Figure 7.

A Initial Conditions and Leader References

Each car in the sequence is identified with an integer. The absolute
leader has the identifier of 1 and each subsequent car is identified by
the next integer (2, 3, 4, ..., n).
Before the simulation begins, each car in the sequence begins at some
fixed position. Once the simulation begins, each car has some initial
velocity.
Both of these parameters can be specified independently for each car
in the sequence.

11

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

A

B

Figure 7: The default state of the car properties dialogue.

12

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

As mentioned many times in this manual, the default leader reference
of each car in the sequence is the car immediately in front of it. As
shown in the figure, the leader reference for car 2 is car 1, the leader for
car 3 is car 2, and so on. A natural restriction on the leader reference
of a car is that it must be a car which is ahead in the sequence. This
means that the leader reference of car 3 could not be car 5.
In the car properties window, each car’s properties are given in a row
in the table. To change any of the properties for a car, simply edit the
appropriate cell in the table. If an invalid value is entered for a given
cell, then a context-appropriate error message will be displayed.

B Leader Acceleration

The motion of the absolute leader of the sequence of cars is given by
its acceleration as a function of time.
Any valid Matlab function handle can be used as the acceleration
function, provided that the function itself obeys the following condi-
tions:

1. The function must accept a vector of size N consisting of time val-
ues as input. Additional parameters are allowed, but the function
must accept an invocation with only the time parameter.

2. The function must return as output a vector of size N consisting
of the acceleration of the leader at each time value given as input.

For examples of different acceleration functions, see Table 2. For an
in-depth description of the different types of function handles, see the
Matlab documentation.
The following section goes through the process of crafting an example
acceleration function.

2.4.1 Example: Acceleration Function

This example will work through the process of crafting an appropriate accel-
eration function in order to model a specific scenario in the Traffic Simulation
Toolbox.

13

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

Table 2: Examples of different leader acceleration functions.

Example Description
@sin The handle for the sin(t) function built into Matlab.
@(t) 5 * ones(size(t)) A constant acceleration of 5 m/s2.
@(t) foobar(t, 15) User-defined function with two parameters.
@baz A reference to a user-defined m-file.
@(t) abruptStop(t, 20, 3, 0.2) See Section 2.4.1.

We would like to model the impact on traffic if a car abruptly stops, and
then resumes its previous speed. The car may have been trying to avoid
running over a squirrel on the road.

The words “abruptly stop” could be interpreted to mean that the car –
travelling at some velocity v0 – suddenly stops at some time t0. A short
time later, the car resumes travelling at its previous velocity. This velocity
function is plotted in Figure 8.

t

v(t)

(0, 0)

v0

t0 t1 t2 t3

tstop

Figure 8: The desired velocity function of the leader car.

Since the motion of the leader car must be expressed in terms of its accel-
eration, we need to translate the above velocity function into its equivalent
acceleration function. The equivalent acceleration function – the first deriva-
tive of the velocity function – is shown in Figure 9.

14

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

t

a(t)

(0, 0)

a0

−a0

t0 t1 t2 t3

tstop

Figure 9: The equivalent acceleration function of the car with the velocity
function shown in Figure 8.

We can see that in order to bring the car to a complete stop, we must
have:

a0 = v0

t3 − t2
= v0

t1 − t0
assuming that t1 − t0 = t3 − t2.
Writing a function in Matlab to produce this acceleration is fairly easy.

The listing is shown in Figure 10.
Running the simulation while with the new function (and some example

parameter values) results in the figure shown in Figure 11.

3 Using, Defining, and Modifying Models
The usefulness of the Traffic Simulation Toolbox comes from the flexibility
allowed in defining models for the controller and the plant.

Each model calculates the motion of a follower car in a different mat-
ter. Models can also include accept parameters which further refine their
behaviour.

15

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

%% abruptStop .m
%%
function a = abruptStop (t , i n i t i a l V e l o c i t y , stopTime , stopDurat ion)

% t
% −− The time vec t o r s u p p l i e d au t oma t i c a l l y to the func t i on .

% i n i t i a l V e l o c i t y
% −− The i n i t i a l v e l o c i t y s p e c i f i e d f o r the l e ade r
% car in the car p r o p e r t i e s t a b l e . This i s used
% to c a l c u l a t e the necessary a c c e l e r a t i o n
% to br ing the car to a complete s top .

% stopTime
% −− The i n s t a n t in time (in seconds) at which the car
% shou ld beg in brak ing .

% stopDurat ion
% −− The durat ion o f time (in seconds) t ha t the car shou ld
% s tay s t a t i o n a r y .
%%

a = zeros (s ize (t) , ’ double ’) ;

% We w i l l assume a cons tant brak ing time .
brakingDurat ion = 0 . 2 ;
a c c e l = i n i t i a l V e l o c i t y / brakingDurat ion ;

% The car shou ld d e a c c e l e r a t e during the brak ing per iod .
a ((t >= stopTime) & (t < stopTime + brakingDurat ion)) = −a c c e l ;

% The car shou ld a c c e l e r a t e a f t e r the s top per iod .
a ((t >= stopTime + brakingDurat ion + stopDurat ion) . . .

& (t < stopTime + stopDurat ion + 2 ∗ brakingDurat ion)) = ac c e l ;
end

Figure 10: The code listing for abruptStop.m in Section 2.4.1.

16

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

Figure 11: The main window after a simulation has completed where the
acceleration of the leader is given by abruptStop.

Models and their parameters are specified using syntax similar to a func-
tion invocation. For example, a model exampleController with parameters
A andB could be specified in the main window as exampleController(23,-5)
with A = 23 and B = −5.

In the Traffic Simulation Toolbox distribution, models for controllers and
plants are simply Matlab m-files stored in the +controllers and +plants
directories, respectively.

3.1 Included Models
Traffic Simulation Toolbox comes with only a small selection of models. They
are explained below.

3.1.1 Controllers

stableFollower(K1, K2) The stableFollower controller (also described
in the quick-start example of Section 2.1) determines the car’s acceleration
as a weighted sum of the distance error and the velocity error as shown:

17

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

a(ti) = K1 [pL(ti)− p(ti)−D] +K2 [vL(ti)− v(ti)]

It can be shown through analysis in the frequency domain that this con-
troller will only result in stable systems provided that the following conditions
are met:

K1 > 0
K2 > 2

√
K1

These conditions are derived in Appendix A.

delayedFollower(K1, K2, T) The delayedFollower controller is simi-
lar to the stableFollower controller except that it incorporates a time delay
which accounts for the reaction time of the driver of the car. The T param-
eter is the number of “ticks” that elapse before the car responds to a change
in the reference signal.

Mathematically, this controller could be expressed as

a(ti) =

aSF(1) if ti ≤ T

aSF(ti − T) Otherwise

where aSF is the stableFollower controller previously discussed.
An important point is that internally, the number of discrete points is a

constant. Therefore, as the simulation time is increased, the duration of a
fixed number of “ticks” also increases.

3.1.2 Plants

ideal() This plant represents a system in which the motion of the plant
(car) is strictly determined by the controller. This plant model has no effect
on the acceleration of the car. In this way, it functions as a placeholder plant
for situations in which the effect of disturbances are not being investigated
as part of a simulation.

ap(ti) = ac(ti)

18

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

windResistance(W) This plant models the effects of a constant wind re-
sistance which is proportional to the velocity of the car.

ap(ti) = −Wv(ti) + ac(ti)

3.2 Defining and Modifying Models
The Traffic Simulation Toolbox stores the acceleration, velocity, and position
of each car individually as arrays.

Every controller or plant model must return a Matlab function handle
to a function with exactly three parameters: l, f , k. These are all integer
indices. l is the index of the car which is the leader reference for the car in
question. f is the index of the car itself. Finally, k is the index of the current
instant in time.

From these indices, the acceleration of the current time (at the kth instant)
can be calculated from the position and velocity of the car and its leader.

For an example of writing a model, it is advisable to look at the source
files for models included with the Traffic Simulation Toolbox.

A Derivation of Conditions for stableFollower

As described in Section 3.1.1, the stableFollower controller calculates the
acceleration at some instant as follows:

a(t) = K1 [pL(t)− p(t)−D] +K2 [vL(t)− v(t)]

The Traffic Simulation Toolbox stores acceleration, velocity, and position
values as discrete values. For the purposes of analysis, we have written the
equation of motion as if each signal were continuous.

We would like to determine the possible values of K1 and K2 such that
the sequence of traffic is stable. By this, we mean that each car maintains
its ideal separation distance.

We can define the positional error signal as follows:

e(t) = pL(t)− p(t)−D

such that

19

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

ė(t) = ṗL(t)− ṗ(t)
and

ë(t) = p̈L(t)− p̈(t) (1)
where the dot indicates the first derivative with respect to time (and each

additional dot indicates the next derivative).
We can therefore re-express the acceleration of the car as a function of

the error signals and their derivatives:

a(t) = K1e(t) +K2ė(t) (2)
Note also that the acceleration of the car is simply the second derivative

of its position:

a(t) = p̈(t)
Recognizing this fact and combining Equation (1) and Equation (2), we

get:

ë(t) = aL(t)−K1e(t)−K2ė(t)
Rearranged into a more standard form, this relation is expressed as:

ë(t) +K2ė(t) +K1e(t) = aL(t) (3)
Taking the Laplace transform of Equation (3) assuming zero-state condi-

tions, we have:

s2E(s) +K2sE(s) +K1E(s) = AL(s)
Finally, we can define the transfer function relating the position error to

the leader acceleration:

H(s) = E(s)
AL(s) = 1

s2 +K2s+K1
(4)

This is a second-order system and can be analyzed using standard tools
such as root-locus or Routh-Hurwitz. However, to make this discussion self-
contained, we will provide a basic derivation of the range of allowable con-
stants K1 and K2 here.

20

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

To analyze the stability of the system characterized by this transfer func-
tion, we can express it in pole-zero form:

H(s) = 1
(s− α)(s− β)

α and β are the poles of the system. Taking the inverse Laplace transform
of the transfer function, we can obtain the impulse response:

h(t) = C1e
αt + C2e

βt

where C1 and C2 are some yet undetermined constants and the charac-
teristic modes are eαt and eβt.

To ensure asymptotic stability (and therefore BIBO stability), we need
to ensure that the real part of both poles are negative (i.e., in the left part of
the s-plane). However, we also wish to avoid oscillations. Therefore, we will
choose the poles such that the system is overdamped and we require that
both poles be negative real numbers.

The poles can be solved quadratically. They are:

α =
−K2 +

√
K2

2 − 4K1

2

β =
−K2 −

√
K2

2 − 4K1

2

To satisfy the conditions that the poles both be negative real numbers,
we can produce the following system of inequalities:

K2
2 − 4K1 ≥ 0 (5)

−K2 +
√
K2

2 − 4K1 < 0 (6)

−K2 −
√
K2

2 − 4K1 < 0 (7)

To begin, consider Equation (5). We have:

21

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

K2
2 − 4K1 ≥ 0

K2
2 ≥ 4K1

This implies that K2 ≥ 2
√
K1 (a positive number) or K2 ≤ −2

√
K1

(a negative number). If K2 were negative, then Equation (6) could not be
satisfied since both terms would be positive. Therefore, only the positive
solution for K2 is valid and

K2 ≥ 2
√
K1

Now consider K1. If K1 were negative then K2 <
√
K2

2 − 4K1 and Equa-
tion (6) could not be satisfied since we would have −K2 > −

√
K2

2 − 4K1.
Therefore, we conclude that

K1 > 0

Finally, note that if K1 > 0 we have K2 >
√
K2

2 − 4K1 and this is a
re-statement of Equation (7).

Therefore, the constraints on K1 and K2 which result in a stable, over-
damped system are:

K1 > 0

K2 ≥ 2
√
K1

B License
The source code distributed with the Traffic Simulation Toolbox is released
under the terms of the following licence:

Copyright (c) 2011, Jesse Haber-Kucharsky. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

22

Traffic Simulation Toolbox Jesse Haber-Kucharsky, Shreyas Sundaram

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY Jesse Haber-Kucharsky "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Jesse Haber-Kucharsky OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

23

	Introduction
	Basic Use
	Quick-Start Example
	Modelling Cars as Feedback-Control Systems
	The Main Window
	Adjusting Car Properties
	Example: Acceleration Function

	Using, Defining, and Modifying Models
	Included Models
	Controllers
	Plants

	Defining and Modifying Models

	Derivation of Conditions for stableFollower
	License

