PROTAX User Manual

August 2015

Panu Somervuo
Department of Biosciences
University of Helsinki
Finland

Contents

000D 01 <) 4L 2
0L 076 L1 T) o PPN 2
HOW t0 ZEL ThE SOfTWATE ..ottt e bbb 4
SYSTEIM FEQUITEIMENES ... ceieereeeeeessessessessesses s sss s sessesses s s bbb s R R seE s AR 4
WHhat €1S€ IS NEEAEM ...t 4
Quick Start fOr the IMPAtIENT ...t ser s s s ses s s s s b s paes 5
How PROTAX classification results should be interpreted........ o eneeneeneesesseesseesseesesssesseessesnes 5
€214 01 0] (=0 OO TSP S 6
EXQIMPLE 2 oottt et st s s s e s s R SRR AR AR bR 6
Detailed examples Of @ll fFUNCHIONS ...t ses e s s raes 6
= D000 0 00 U T PPN 6
Case A) PROTAX with pre-computed sequence Similariti€s.oreneenmeeneeseensesseeseeseesesseesseennes 7
Step 1. Generating traiNing Aatacooceereereesreeeesseeses s seessesses e ssssssessse s s s s s sse s s s sassssasans 7
Step 2. Estimating Model PArameEters. ... eeeneeneseesnesssessessessesssesssesssssssssssssssssssessssssesssssssssssssees 11
Step 3. Classifying NEW SEQUENCE AALA ...ocoweureeeeureereereerereesseseessesssessesssesssesssssssssssssessssssessssssasssessssssessees 14
Step 4. Getting node probabilities for each taxonomy level ... 15
Case B) Computing sequence similarities with online BLASToooneneenneneeseseeseeseeseeseeees 16
Case C) uSing PROTAX WIth TIPP ..t sesssessss st sessssssssssssssssssssss s sssesssssssssnes 17
Case D) combining BLAST and TIPP COVATIAtESccoemerreerreensessesssesseesssssessessessesssssssssssssesssssssssees 20
Integrating new covariate sources in PROTAX ... ssssssss s sssssssssesens 21
Large taxonomy and Sparse SEQUENCE Aata ... ssssssssssssssssssssssssssssens 21
SPEEAING UP MUMUceieeeeeereeeesseeseteesse s sessesssesseessesss s sss s s s s R seEaEEseE AR R s s e 21
LiSt Of PROTAX fUNCLIONS coouvvuieeerirsirsssssssssseessssssess s sesssssssesssesssssssssssssssssssssssss s sssssssesssessssssssssssssssssssssassssnens 22
=) o Y00 5§ OO ON 22
R 00 0 L1) o PPN 22
Introduction

This documentation serves as a manual for using PROTAX (Probabilistic taxonomic
classification). PROTAX is flexible for using any number of covariates in its multinomial
regression model, and therefore user may use various methods for computing sequence
similarities and linking sequences into taxonomical units. Obviously, the same sources of
information must be available both when estimating the model parameters with training data
and when using PROTAX in classification of new sequence data.

Instead of integrating everything into a single monolithic system, we have implemented small
Perl and R scripts to perform all necessarily steps required for model training and
classification of new data. The benefit of this is that user can easily include their own sequence
similaritity methods when building new models.

We will explain how to use PROTAX with multiple covariate sources for DNA data and give
specific code to extract the similarity information from BLAST and TIPP outputs. Since each
new covariate source may give its output in a different format, we haven't prepared to all
possible variations in the existing scripts, however, it is straightforward and easy to make the
required changes if necessary. Also, PROTAX can be used with pre-computed sequence

2

similarity files. This is useful in preliminary studies and small scale experiments if the user
wants to experiment new types of sequence similarities. Detailed instructions how to use
PROTAX is illustrated with four examples. The first case describes all steps in detail and the
other cases focus in how to define different covariate sources BLAST, TIPP, and the
combination of BLAST and TIPP.

Sequence
Reference q

Taxonomy data to be
identified

sequences

Generation of

training data
Sequence

classification

parameterization

Covariate sources .
- N Sequence data with
1 2 N taxonomic labels

Figure 1.1, Flowchart of PROTAX. Covariate sources denote different sequence similarity
computation methods.

How to get the software

PROTAX can be downloaded from
http://www.helsinki.fi/science/metapop/Software.htm
All Perl scripts and R functions have been packed in a single file protax.zip.

System requirements

PROTAX can be run in Linux, Mac, and Windows. System requirements depend on the
covariate sources of the model. For example, BLAST can be run in all three platforms.

What else is needed

PROTAX is written in Perl and R. In Linux and Mac, Perl is usually already installed. Windows
users can obtain Perl e.g. from http://strawberryperl.com/.

R can be obtained for all three platforms from http://www.r-project.org/.

External software is used when computing pairwise sequence similarities. The need of external
software depends on the covariate sources user decides to include in the model.

One of the main functions of Perl scripts is to transfer the information computed by external
software to PROTAX multinomial regression model. Also the generation of the training
samples, which is a crucial part of the process before training the model, is implemented in
Perl. Model parameter estimation is based on Markov chain Monte Carlo (MCMC) and it is
implemented in R because R provides good means for interactive visualization. Visualization is
useful for making decisions concerning the quality of MCMC training, e.g. whether additional
adaptation step or more MCMC iterations are needed. R functions do not require any changes
when adding new covariate sources to the model.

Required input data for training consists of sequences with known taxonomical classification
and the tree structure of taxonomy. Sequence data is in FASTA format, taxonomy tree in a text
file, and the taxonomy information of each FASTA entry is in another text file. The latter file
provides the information for the location of training sequence data in the taxonomy tree.

Required input data for classification consists of a file of sequences to be classified in FASTA
format, a text file of PROTAX model parameters, and the same sources of information to
calculate sequence similarities which were used in the model training stage.

Quick start for the impatient

After uncompressing file ‘protax.zip’, Perl scripts and R functions will be in directory 'scripts'.
Another directory 'data’ contains a small example data set which can be used for checking that
the software works. In this example it is assumed that the user is in the data directory.

1. get reference sequences all.pl example taxonomy.txt
example trainsegid2taxname.txt my rsegs.txt

2. generate training data.pl example taxonomy.txt
example trainsegid2taxname.txt my rsegs.txt 100 1 no
my trainsamples.txt

3. create xdata segsimfile.pl my trainsamples.txt
example taxonomy.txt example trainseqgid2taxname.txt
my rseqgs.txt example trainsegsim.txt my trainxdata.txt

4. R commands for estimating model parameters
> source("../scripts/amcmc.rcode.txt")
> dat=read.xdata("my trainxdata.txt")
> pp=adaptiveMCMC(dat,9,1e4,1000,500,rseed=1,info=1)
> write.postparams(pp, "my mcmc.txt",501:1000)

5. classify segsimfile.pl example testseqgids.txt
example taxonomy.txt example trainseqgid2taxname.txt
my rseqgs.txt my mcmc.txt map example testsegsim.txt 1 0.01
my testclas.txt

6. add taxonomy info.pl example taxonomy.txt my testclas.txt

How PROTAX classification results should be interpreted

Before going into details how to build the model and do the classification, here are two
examples of PROTAX classification results with explanation how they should be interpreted.
These examples are from fungal classification (not from the example data set in directory
‘data’). For each test sequence, three best classification outcomes have been listed. The
taxonomy consisted of two levels under root: genus (level 1) and species (level 2). Output of
classification consists of sequence id, numeric taxon id, probability, taxonomy level, and textual
taxon name.

It is important to know that by default, PROTAX classification outputs only the probabilities of
the leaf nodes of the taxonomy. That is, the internal nodes are not present in the default output.
E.g. if we are interested in the probability of a genus (which is the sum of the probabilities of all
species nodes under it), it is not present in the classification output. There is a separate
program for listing the top-N nodes (with threshold defined by user) within each taxonomy
level including both internal and leaf nodes. The programs for classification start by the name
‘classify’ and the programs for listing top-N nodes within each taxonomy level start by name
‘nodeprob’.

Example 1

query_ seqID taxID probability level taxon_ name

testseql 177 0.893021 2 Perenniporia_ subacida
testseql 175,unk 0.068136 2 Perenniporia,unk
testseql 0,unk 0.0252711 1 root,unk

This is an example where the classification outcome with the largest probability (0.89) is
species Perenniporia subacida (taxon id 177) with large margin compared to the second-best
classification outcome. The second-best outcome with taxonomy id '175,unk’ means that the
sequence could belong a) to the unknown species of genus Perenniporia (taxon id 175) or b) to
the known species of Perenniporia for which there are no reference sequences available in our
database. In PROTAX, the probabilities of these child nodes are summed into a single value. In
the same way, the third-best outcome '0,unk' means that the test sequence could belong to a)
unknown genus or b) the known genus in our taxonomy for which no reference sequences are
available. Here the probabilities of the 2nd and 3rd best outcomes are small compared to the
1st outcome.

Example 2

query_ seqID taxID probability level taxon_ name
testseq2 19 0.506796 2 Antrodia_serialis
testseq2 16 0.179652 2 Antrodia primaeva
testseq2 13 0.123044 2 Antrodia_infirma

This example shows the case where the best outcome has smaller margin to the 2nd and 3rd
best outcomes compared to the first example. Although the largest probability is assigned to
Antrodia serialis, there is also some probability that the test sequence could belong to the other
species . However, all three best outcomes belong to the same genus Antrodia.

Detailed examples of all functions

Preliminaries

After uncompressing protax.zip, Perl scripts and R functions will be in directory 'scripts'. The
content of the scripts directory must be made available to Perl. In Linux, we can define a
variable which contains the path to this directory, e.g. in Bash shell using the following
command where after '=' character is the path to the directory:

PROTAX=~/Work/protax/scripts

After this Perl scripts can be used in the following way independently of the location of our
working directory:

perl $PROTAX/generate training data.pl
Alternatively, in Linux the scripts directory can be included in the PATH variable:

PATH=$ {PATH}:~/Work/protax/scripts

and then Perl scripts can be run just typing their name
generate training data.pl

All PROTAX related Perl scripts print their required input when running them without
arguments. The expected order of input is important since there is no checking for the content
of the arguments. In case the given output file already exists, it will be over-written unless
otherwise informed. In most scripts the last argument is optional and it is mainly used for
debugging purposes. When omitted, the value of the debug_mode is zero and all scripts work
silently. Value of 1 gives some information, and value of 2 may give lots of information. This
extra information is written to standard output (computer screen), and what is written to an
output file remains the same independently on the value of the debug mode.

We give examples how to use PROTAX in four cases A,B,C,D. They all share the first step,
generation of training data, so we only explain it for case A. Also the model parameter
estimation is explained in detail only for case A. All input and output files of PROTAX are ASCII
text files.

Case A) PROTAX with pre-computed sequence similarities

This is most useful for preliminary studies and small scale experiments. For large data sets,
storing all pairwise sequence similarities in a file may not be practical.

Step 1. Generating training data

Our example taxonomy tree is in file ‘example_taxonomy.txt’ and the taxonomic information of
our reference sequences is in file ‘example_trainseqid2taxoname.txt’. Taxonomy tree file is a
text file consisting of four columns separated by space or tab in each line:

* nodeid nodepid level taxname

where nodeid and nodepid are the numeric node identifiers. They can be in principle any
integers but the nodeid of the root node must be 0. Nodepid is the parent nodeid (for root node
it is the root node itself). Level is the level of the node in taxonomy (root node has level 0) and
taxname is the taxonomic name. Any unique character string can be used for the taxonomic
name but it should not contain any spaces or tabs (only the first part separated by space will be
used as a name). The structure of the taxonomy is constructed based on the (nodeid,nodepid)
pairs but the reference sequence data is linked into taxonomy based on the taxname.
Taxonomy file does not have any header line so the first row contains already the first values.

The file containing the taxonomic information of the reference data
(example_trainseqid2taxname.txt) contains two fields separated by space or tab. The file

doesn't have a header line.

* seqgid taxname

For each seqid there should be only one taxname which is the most specific taxonomic
classification. Like seqid, also taxname should be unambiguous and unique. Lower level
taxonomic classes (taxonomy nodes towards the root of the tree) of each sequence can be
obtained based on the taxonomy tree.

Step 1.1. Defining representative sequences

Each node of the taxonomy is associated with the set of representative sequences. These
contain a subset or all of the reference sequence data. There are three possibilities to define
the representative sequences:

1. using all available reference sequences
2. selecting a random subset of reference sequences
3. using clustering with threshold for pairwise sequence similarity of reference sequences

The corresponding Perl scripts are get_reference_sequences_all.pl,
get_reference_sequences_random.pl, and get_reference_sequences_clustering.pl. Please note
that these are the three ways to define the set of representative sequences automatically at the
moment and there is no guarantee that the resulting set would be optimal. Since the
classification of a new sequence is based on the representative sequences, the selection
process is important. As the name ‘representative sequences’ implies, they should be selected
so that they characterize the entire taxon.

Here is an example of the case for limiting the number of representative sequences by using a
random subset of reference sequences. Our example taxonomy has 2 levels and here we define
that each node may have at most 10 representative sequences from its child nodes. This
number must be specified for each level. Although in the example below we have the same
number two times, it is possible to define different number for each level. The order is from the
most specific node to the root. The number before the output file ‘my_rseqs.txt’, here defined to
be 1, is the seed value for the random number generator.

get reference sequences random.pl example taxonomy.txt 2 10 10
example trainseqgid2taxname.txt 1 my rseqgs.txt

In case the number of available reference sequences is smaller than the user defined number
(like in our example data), as many representative sequences as possible are included. Output
file has one line for each node and each line consists of three columns where the first one is
node id, the second column lists the representative sequences of the node, and the third
column contains the weights of the representative sequences

* nodeid seqidl,seqid2,...,seqidN, weightl,weight2,...,weightN

The third column is optional for PROTAX, in case it is missing, each representative sequence
has a default weight 1. For the first two selection processes (all and random), the weight is the
inverse number of the representative sequences coming from each child of a node. This results
that each child node has the same importance when computing the average of pairwise
sequence similarities regardless of the differences in the number of representative sequences
coming from different child nodes. So in effect, the mean similarity is the mean of means in the

corresponding PROTAX covariate. When the selection of representative sequences is based on
clustering, the weight is the size (number of sequences) of each cluster.

Step 1.2 Sampling the taxonomy to get training data

In this example, we generate 100 samples representing the nodes of the taxonomy. Each node
is associated with a training sequence. The details how the sampling is done can be found in
the manuscript. In the present implementation, only leaf nodes of the taxonomy are sampled.
The number of samples should represent the taxonomy, here we use only 100 samples because
the example taxonomy and the reference data set are tiny and the purpose of the example is
mainly to demonstrate the syntax of all commands.

generate training data.pl example taxonomy.txt
example trainseqgid2taxname.txt my rsegs.txt 100 1 no
my trainsamples.txt

The number 1 after the number of training samples (100) is the seed for random number
generator. The next parameter is yes/no indicating whether sequences to be ignored when
calculating sequence similarities from the randomly selected training sequence are included in
the output file. This information can be reconstructed based on the taxonomy and the other
fields of the file, so it should not be selected unless there is a reason for doing so. With large
data sets, the amount of this extra information can be excessive resulting in large output files.
The last argument of the command is the name of the output file.

Each line of the output file consists of 6 columns
* weight nodeid priprob nodeclass rnodeid trainseqid

The value for the first column weight is 1, nodeid is the randomly sampled node and priprob is
the associated prior probability of this node. Nodeclass gives information of the type of the
node, there are 4 classes:

* nseq2:node is a known taxon and has at least 2 reference sequences

* nseql : node is a known taxon but has only 1 reference sequence

* nseq0 : node is a known taxon but doesn't have any reference sequences
* unk :node represents an unknown taxon

If nodeclass is nseqZ2, it has been possible to pick training sequence directly from the sequences
belonging to nodeid. In other cases, another node (rnodeid in 5th column) has been randomly
selected among the closest neighbors of the original node (nodeid) which is at the same level
and has sufficient amount of reference sequences (1 or 2 depending on the case). The details of
the process can be found in our manuscript. The new node will mimick the originally sampled
node. For nodeclass nseql, additional information is needed regarding the reference sequence
and this information is included in the 4th column field separated by a comma from the
nodeclass, as an example nseq1,seqid. The last column is the id of the training sequence. If the
6th argument is 'yes' instead of 'no' for generate_training_data.pl, there will be 7th column in
the output file which lists all sequences to be deleted when computing sequence similarities for
the training sample in the present line.

Step 1.3. Creating X matrices

In order to create input data for model estimation, we have to construct design matrices
related to logistic regression for each training sample. Here the design matrix will be denoted
by X. For each training sample, there will be X matrix for each level of the taxonomy starting
from the parent node of training sample node and then proceeding to the root. In this example,
X matrices are calculated based on sequence similarity file. By default, two values, mean
similarity and max similarity are calculated based on pairwise sequence similarities. In
addition, there are two other covariates, one for the case when the node does not contain any
reference sequences, and another for the intercept of mean and max similarities, so altogether,
there are four covariates per taxonomy level.

create xdata segsimfile.pl my trainsamples.txt example taxonomy.txt
example trainsegid2taxname.txt my rsegs.txt example trainsegsim.txt
my_ trainxdata.txt

The file ‘example_trainseqsim.txt’ contains pairwise sequence similarities in the sparse matrix
format, each line consisting of three columns

* seqidl seqgid2 sim

where sim is the similarity between seqid1 and seqid2. Not all pairwise similarities need to be
listed in the file. If similarities are symmetric, only one of similarity(seqid1,seqid2) and
similarity(seqid2,seqid1) needs to be present in the file. However, if for some reasons the user
wants to use asymmetric similarities, then both similarities need to be present in the file in
separate lines. If the similarity between two seqids is missing, there are two options, either it is
ignored (considered as missing information) or it is treated as being zero. This affects to the
calculation of mean similarity. At the moment, missing similarities are treated as missing and
mean similarity is calculated only based on present similarities.

The output file ‘my_xdata.txt’ contains one line for each training sample. The format is
* priprob iteml;item2;...;itemL

where priprob is the node prior probability (for details, see the manuscript) and the semicolon
separated list of items in the second column contain one or more matrices. These are the
design matrices of the regression model (denoted as X matrices below). The number of the
items depends on the level of the training sample node, there are matrices for each level from
the parent of the training sample node to the root of the taxonomy. Each item has the format

¢ level,index,nrows,ncols,x11,x12,...,xNM

where level indicates which level of taxonomy the N-by-M matrix X belongs, index is the child
node index where the current training sample belongs in this taxonomy level, nrows and ncols
are the number of rows and columns of matrix X, respectively, and the rest nrows*ncols values
are the elements of X listed row by row. The first row of each matrix which corresponds to the
unknown taxon contains only zeros. Since the xdata file will be used in R software where array
element indexing starts from 1 instead of 0, also here the index corresponding to the first row
of matrix X is 1 instead of 0.

10

Step 2. Estimating model parameters

Input to the model parameter estimation is given by xdat-file. The parameter estimation is
done using R. For MCMC estimation, all required functions are in the file amcmc.rcode.txt. Once
R is started, we can take PROTAX related functions into use by typing source command where
we define the location of the amcmc.rcode.txt file. In case the scripts directory is under the
parent directory (‘. . /') of our R working directory, we can type

> source("../scripts/amcmc.rcode.txt")

First we read the training data. In case the xdata-file is not in our R working directory, we have
to include path to the file name, but the following assumes that the data is in the working
directory.

> dat=read.xdata("my trainxdata.txt")

Now everything is ready for MCMC training. In our example xdata, there are 4 parameters for
each level of the taxonomy and an additional parameter for mislabeling probability, so the total
number of parameters is 2*4+1=9. Besides training data, we have to define variance s2 of prior
distribution (zero-mean Normal distribution), number of iterations, and how many of them are
used for adaptation (num.burnin). Additional parameters are random seed (rseed) and info. By
default, info is 0 which results in silent processing, but when it is 1, we can see the progress of
the iterations. Here we apply only 1000 iterations but in practice there should be more.

> num.params=9
> pp=adaptiveMCMC(dat,num.params,s2=10000, num.iterations=1000,
num.burnin=500, rseed=1, info=1)

Variance of prior distribution has been set large (10000) in order not to restrict the values of
parameters. However, the smaller the range of similarity values is, the larger the prior variance
should be in order to allow large value for the coefficients related to sequence similarity, i.e.
allowing steeper slope in the regression model. In general, all covariates should be scaled
properly before using them in PROTAX.

MCMC diagnostics

After training, it is good practice to check trace plots. In R it is simple to plot the values of
parameters during the entire MCMC history. Here we are interested in the values after burn-in,
so we can plot the parameter samples between iterations 501 and 1000.

traceplot.all(pp,ind=501:1000,num.levels=2,title="my MCMC")

Parameter num.levels is the number of levels in our taxonomy, it helps to layout the plot so
that parameters from each level are located in the same row. Values corresponding to the
largest posterior probability (MAP estimate) within the given iterations are denoted by red
circle. Panels next to each individual trace plot show the histograms of the parameter values.
This way it is easy to see e.g. whether the MAP estimate is close to the mode of the distribution.

11

log posterior Ioglt(mislabellng prob mislabeling prob

2 g %5;23 i 25y = % Q
my MCMC ¥ _gﬁi‘f M;x o v':i - _'g-s .: o’ {}:!:;)
g N M 1 ? -
§ T T . | ST T T T
2000 2400 2800 2000 2400 2800 00 04 08
LEVEL1 betat LEVEL1 beta2 LEVEL1 beta3 LEVEL1 betad
§Tm o .- | g N Ve
7] - o |4 « 74 "'5"' . .~
© » 8 7 %% , © _%*K‘é‘
- - ‘\r-” $_n - d .
8 4 ~ 8 3 - I
('?’ T 1 1 T T T N | T T T 1 1 I
2000 2400 2800 2000 2400 2800 2000 2400 2800 2000 2400 2800
o LEVEL2 beta1 LEVEL2 beta2 LEVEL2 beta3 LEVEL2 beta4
o 3 - | . -
o —
o s & 7 3 —:;‘,g“‘ ‘%&
- (o] -
? ﬁu\.ﬂ"?% T;..{!‘&,, _ @ :-‘_(_ oy .‘,.-x ef W
S : a S - 3—
? T T i T N 1T T o
2000 2400 2800 2000 2400 2800 2000 2400 2800 2000 2400 2800

Figure 2.1. Example of traceplot.all for MCMC iterations 2000-3000 (first 2000 were used for
burn-in). In this data set there were inconsistent sample labels (20% of the training sample
labels were incorrect) which resulted in nonzero value for mislabeling probability parameter
(top right corner).

In case there are too many parameters to fit into a single display, trace plots of individual
parameters can be visualized using command traceplot.one. Since it produces two figures, we
define mfrow to split the display into two subplots.

> ind=501:1000
> par(mfrow=c(1l,2))
> traceplot.one(ind,pp$params[ind, 3],name="Param3")

a b
o : o _
@ }‘ ¥ <
87 4 'vl"s
! A L
2 i MM .
f ’lf ' o
© - & L y
<« 1l A 2@’(
N N
% f |
R - % ! “
ig
o _} 1]
~ “5y
2 - ‘f w _| .
I | I I I | I o | I | I | I |
2000 2500 3000 3500 4000 4500 5000 2000 2500 3000 3500 4000 4500 5000

Figure 2.2. Two traceplots, a) not properly mixed chain (MCMC samples show strong
autocorrelation), b) converged MCMC chain. Horizontal histograms show the distributions of
the samples.

12

If trace plots indicate non-convergence, usually another round of adaptation helps to solve the
problem. The result of MCMC adaptation can be investigated by amcmc.diagnostic.plot. In
addition to acceptance ratios, it shows the adaptive step size and proposal directions. The
latter are the eigenvectors of parameter covariance matrix. Parameters may be correlated by
incidence due to the random initialization. Diagnostic plot reveals which parameters are
correlated in MCMC proposal.

> amcmc.diagnostic.plot(pp)
The acceptance ratios should be close to 0.44, the numeric values can be seen by typing
> ppac/ppcc

pp$k contains the step size for each dimension. Typically step sizes are fairly constant when
the model is properly parameterized and the Markov chain is mixing well. For documentation,
these values can be saved in a file

> write.table(data.frame(acr=ppSSac/ppcc,stepsize=pps$k),
"mcmc.acr.txt", row.names=F, col.names=T)

If the Markov chain is not mixing well, usually some parameters are correlated, either due to
random initialization or otherwise. The following demonstrates how to continue training from
previous MCMC state with new adaptation. Here we use last value of previous MCMC chain for
parameter estimates but initialize other values (adaptation step size and proposal direction
vectors).

> initstate=initialize.adaptation(pp$params[1000,])

> pp=adaptiveMCMC(dat, num.params, s2=10000, num.iterations=1000,
num.burnin=500, rseed=1, info=1, prev.state=initstate)

> traceplot.all(pp,ind=501:1000,num.levels=2,title="my MCMC\nafter
re-adaptation")

When we are satisfied with MCMC training, the posterior samples can be saved. Either we can
save the entire chain, or values after burn-in, e.g. the following writes all values starting from
iteration 501:

> write.postparams(pp, "my mcmc.txt",501:1000)

Alternatively, we can choose a single parameter vector corresponding to the largest posterior
probability within iterations 501-1000 (MAP estimate)

> ind=501:1000
> i=which.max(ppS$postli[ind])
> write.postparams(pp, "my mcmc.txt",ind[1])

The output MCMC sample file is a text file where the first value in each line is the posterior

probability of the sample and the rest are the parameter values, i.e. if there are 9 parameters,
each line contains 10 numbers.

13

Step 3. Classifying new sequence data

After the model has been trained, new sequences can be classified. Here we use validation data
which are the sequences which were not present in the model training but we know their true
taxonomic labels. Therefore they can be used as an independent data set to validate the model.
The first file ‘example_testseqids.txt’ contains all sequence ids which we want to classify.
Sequence similarities between them and representative sequences are in
‘example_testseqsim.txt’.

classify segsimfile.pl example testseqgids.txt example taxonomy.txt
example trainseqgid2taxname.txt my rsedgs.txt my mcmc.txt map
example testsegsim.txt 1 0.01 my testclas.txt 0 1

Taxonomy tree is the same which was used in the model training and seqid2taxname file
contains the taxonomy information of reference data, ‘my_rseqs.txt’ lists the representative
reference sequences for each taxonomy node, ‘my_mcmc.txt’ contains the model parameters
after which comes the parameter mode (here ‘map’ for Maximum A Posteriori). The following
file contains the pairwise sequence similarities between the sequences to be classified and
training sequences. The next parameter (here 1) is the number of outcomes for each validation
sequence, if it is set to 0 probabilities of all outcomes are included in the output. The next
parameter (here 0.01) is the probability threshold which is applied in hierarchical
classification. Only those nodes are proceeded which exceed the threshold. Value of 0 implies
no restrictions, the closer the threshold is to 1, more strict and therefore more narrow the
search becomes. The name of the output file is here ‘my_testclas.txt’, parameter 1/0 after it
denotes if classification should be done in validation mode (1) or not (0). In validation mode,
the reference sequence is not used if it has the same seqid as the the sequence to be classified.
The last parameter 1 results that the name of the sequence being processed is printed on the
screen. In case of 0, processing is silent. Last two parameters are optional, in case they are not
defined, default value 0 is used for both. Since the order of parameters is important, if verbose
output is wanted (last parameter nonzero), the validation mode parameter must be also
defined (e.g. to be zero).

Classification output contains the node id of taxonomic units. For visual inspection it helps to
use textual names. The following script adds the level and the name of taxonomic node (4th
column of taxonomy tree file) to the output.

add_taxonomy info.pl example taxonomy.txt my testclas.txt >
my testclasname.txt

In case we have the access to true taxonomic label of each test sequence, we can calculate
whether the classification is correct or not. It is important to note that by default PROTAX
output gives only the probabilities of the leaf nodes so in the following the correctness
information is based on only the single output leaf of the taxonomy in each line. The following
script outputs 1/0 indicating whether the classification is correct (1) or not (0) in each level of
the taxonomy based on the single classification outcome. It works by listing the nodes in two
paths, one starting from the classification output node and proceeding to root, and another
starting from the true answer node and proceeding to root. Classification in each level is
correct if the two node paths intersect in that level. The file containing the true class labels of
test sequences (‘example_testseqid2taxname.txt’) has the same format which was described

14

earlier for training data, each line contains two fields seqid and taxname (textual identifier of
taxonomy node).

correct path.pl my testclas.txt example taxonomy.txt
example testsegid2taxname.txt > my testresults.txt

Summary of the classification can be done in R.

> a=read.table(“my_ testresults.txt”, header=T)
> summary(a)

In the output, mean of columns levelL.correct is the correct classification rate at level L. The
number of times each level was the most specific level of classification (noting that in case of
unk-node, the level of the parent node is given) can be obtained by

> table(a$level)

Bias-accuracy plot can be investigated by plotting the cumulative probability of the best
classification outcome from each test sequence against the cumulative number of the correct
classification results. In order to be useful, the input file should contain only the best
classification outcome for each sequence. Note that the outcome probability a$prob is only for
the most probable leaf node of the taxonomy and the probabilities of its parent nodes are not
saved in file ‘my_testresults.txt’. Therefore some care must be taken how to choose against
which the outcome probabilities are compared. In this particular example, we can use column
a$correct.level2.

> accuracy.plot(a$prob, a$correct.level2, name="my results”)

The plot is a straight line along the diagonal of the display when there is no bias in the output
probabilities.

In addition to producing only the most probable taxon as a result of classification, it is possible
to output multiple taxa. The following outputs 2 best taxa for each test sequence (in this
example we set the probability threshold equal to zero)

classify segsimfile.pl example testseqgids.txt example taxonomy.txt
example trainseqgid2taxname.txt my rsegs.txt my mcmc.txt map

example testsegsim.txt 2 0.0 my testclas2.txt 0 1

Again, the most informative way to investigate the results is to add the taxon name

add_taxonomy info.pl example taxonomy.txt my testclas2.txt >
my testclas2Zname.txt

Step 4. Getting node probabilities for each taxonomy level
The previous PROTAX classification lists only leaf nodes as an outcome. In order to investigate

node probabilities in different levels of taxonomy, we can use another program. The input is
similar as in the previous step, but now the maximum number of outcomes to be outputted is

15

the maximum number of nodes within each taxonomy level. Here we specify to get only the
best node in each taxonomy level whose probability must be above 0.01

nodeprob segsimfile.pl example testseqgids.txt example taxonomy.txt
example trainseqgid2taxname.txt my rsegs.txt my mcmc.txt map
example testsegsim.txt 1 0.01 my testnodeprobs.txt 0 1

The output file consists of four columns: seqid, probability, nodeid, and level.

When we combine this output with the information of correct taxonomic membership, we get
the classification results for each taxonomy level. The following program outputs 1/0
depending if the classification is correct/false for each taxonomy level in a separate column.
The output includes also the best classification result of the query sequence (probability and
taxon name) in each level. In case the previous program outputted more than one node per
level, the correct one is selected, otherwise the node with the largest probability. There is only
one output line for each query sequence.

correct levels.pl my testnodeprobs.txt example taxonomy.txt
example testseqgid2taxname.txt > my testresults2.txt

Taxonomy level specific classification summaries can now be calculated e.g. in R using the
output file ‘my_testresults2.txt’.

> a=read.table(“my_ testresults2.txt”, header=T)
> summary(a)

Case B) Computing sequence similarities with online BLAST

Script create_xdata_BLAST.pl uses BLAST searches which are done online in the user's local
computer. Standalone BLAST+ can be obtained from
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/. Once it is installed, the
directory where BLAST binaries are located is given as an argument to Perl script
create_xdata_BLAST.pl. It utilizes two BLAST commands, makeblastdb and blastn, when
constructing X matrices.

create xdata BLAST.pl my trainsamples.txt example trainseq.fasta
example taxonomy.txt example trainseqgid2taxname.txt my rsegs.txt
~/ncbi-blast-2.2.31+/bin "-dust no —word size 11" tmp

my train blast xdata.txt 1

The first argument of create_xdata_BLAST.pl is the file containing training samples. After that
comes fasta file of training sequences, then the taxonomy tree file, the file containing the
taxonomic labels of training data, and the file containing the information which sequences are
representative for each taxonomic node. Then comes the path to BLAST binaries. The next
argument contains additional information to BLAST, e.g. as in the example, if we don't want to
use low-complexity filter which is by default used in BLAST, we can specify -dust no to
BLASTN. This information must be in double quotes. If we define many BLAST parameters,
they all must be within a single pair of double quotes. One BLAST related argument which
might need to be changed is the maximum number of hits which BLAST reports. By default it is
500 so for taxonomy nodes with many child nodes and large number of representative

16

sequences, this number needs to be changed by using BLAST option —-max_target_seqs. User
is referred to the BLAST manual for all relevant BLAST arguments.

A word of warning is that by definition, BLAST finds local hits between two sequences but the
pairwise sequence similarity covariate in PROTAX is defined as the number of matching
nucleotides divided by the length of the “true” overlap between the two sequences. The “true”
overlap length is not necessarily the alignment length of HSP given by BLAST since BLAST hits
may be fragmented if long enough mismatching regions occur between the matching regions.
How well BLAST finds the “true” overlap depends on the sequence data, amount of indels and
mismatches. Although we have implemented also a function which uses BLAST results as
anchors for rigorous dynamic programming and this way we can get the sequence similarity
from the entire overlap between the two sequences, this comes with the cost of computation
and reduced speed and at the moment it is not included in the current version of
create_xdata_BLAST.pl.

In case we don't want to give additional parameters to BLAST, we have to still specify the
empty string in double quotes, i.e. "", in the Perl command. The next argument is the basename
of temporary files for BLAST. The last mandatory argument is the name of the output file
where all X matrices are written. The final argument is optional, the default value is 0 which
results in silent processing, 1 gives some information (showing which training sample is being
processed) and value 2 gives detailed information from each BLAST result. These additional
information are only printed on screen and they don't affect the content of the output file.

Model parameter estimation is done similarly as described in Case A. Suppose we save the
MCMC parameter file as ‘my_blast_mcmc.txt’, in classification, online BLAST is again needed
and the command is

classify BLAST.pl example testseq.fasta example taxonomy.txt
example trainseq.fasta example trainseqgid2taxname.txt my rseqgs.txt
my blast mcmc.txt map ~/ncbi-blast-2.2.31+/bin "-dust no —word size
11" tmp 1 0.01 my test blast clas.txt 0 1

Case C) using PROTAX with TIPP

Instead of using pairwise sequence similarities, it is possible to use the similarity between the
sequence and the taxonomic node. An example of this is to use an output of another taxonomic
classifier as an input to PROTAX. Here we use TIPP (Taxon Identification and Phylogenetic
Profiling, Nguyen et al. 2014). The software can be obtained from
http://www.cs.utexas.edu/~phylo/software/sepp/tipp-submission/. The examples below are
for the current version of TIPP. It is possible that future versions might have changes and
require different kinds of inputs, so user is referred to TIPP manual for further details.

TIPP produces probabilistic taxon membership for each input sequence. Its output is typically
sparse so only few taxa get nonzero probabilities. These probabilites can be used as similarity
measures in PROTAX. They are transformed using logit-function in PROTAX.

In order to use TIPP, we need to create a phylogeny for the training data. Since we already have
taxonomic information for the training data, we utilize it when constructing the phylogenetic
tree. However, in taxonomy there can be several child nodes for a single parent node (e.g.
many species belonging to the same family) but phylogeny assumes only nodes with two

17

output branches. Therefore, we need to first change the multifurcation taxonomy into a
bifurcating tree. The file containing the multifurcation tree of training sequences is
‘example_trainseq_mftree.txt’ below and it is in Newick format. We also need to convert both
the taxonomy file and the sequence-taxon mapping file suitable to TIPP (these files must be in
a format suitable for pplacer, which is a piece of software TIPP utilizes internally), these are
‘example_tipptaxonomy.txt’ and ‘example_tipptxm.txt’ in the example data. Please note that
taxon ids (column ‘tax_id’" in TIPP taxonomy file and first column of PROTAX taxonomy file)
must be identical in order to use TIPP output with PROTAX, however, taxon names are allowed
to be different in the two files.

We use RAXML for creating the phylogeny for training sequences where the existing taxonomy
information is used for constraining the process. Therefore, RAXML software needs to be
installed. First we need to align the training sequences and the resulting multi-alignment file is
then used as an input to RAxML. Note that the example data here is very simplistic, there are
no insertions nor deletions in the sequences so as a consequence the alignment file looks
exactly like the original FASTA file, however in general this is not the case. Here we specify
general time reversal Gamma model for evolution rates, -—-no-bfgs is for handling our small
data set.

raxmlHPC -p 1 -m GTRGAMMA -n train -s example trainseq alignment.fa
-f example trainseq mftree.txt --no-bfgs

For PROTAX, when computing the taxon probabilities for each training sample, the phylogeny
of the reference data needs to be adjusted accordingly. Since creating a phylogeny for a large
data set may take long time, it is impractical to do it separately for each training sample.
Therefore, we create a single phylogeny for the entire training sequence set and then modify
the resulting tree individually for each training sample. Phylogenetic tree is in Newick format.
Since Newick file is a text file it is straightforward to modify it. Modification of the tree consists
simply deleting those sequences from the tree which should not be present when calculating
the taxon probability for a given training sample. There are many ways to do it, here we do the
deleting using R-package 'ape’, so it needs to be installed.

We are going to use the same training samples which were generated in Case A. We have to
add the information which sequences should be deleted for each training sample, last
argument below is the name of the output file.

get deletesegs.pl my trainsamples.txt example taxonomy.txt
example trainseqgid2taxname.txt my rsegs.txt
my trainsamples with delsegs.txt

Then in R we generate a file which contains the modified Newick tree for each training sample.
Newick tree file 'RAXML_bestTree.train' is the output of RAXML. Notice that here the output file
will be appended, so it should be empty before running the script below, i.e., the file
‘my_trainmodtrees.txt’ should be deleted if it exists before the following commands.

> library("ape")

> infile.newick = "RAXML bestTree.train"

> infile.delseq = "my trainsamples with delsegs.txt"
> outfile.newick = "my trainmodtrees.txt"

18

ptree = read.tree(infile.newick)
a=read.table(infile.delseq,header=F)
pois=strsplit(as.character(a[,6]),',")

for (i in l:nrow(a)) {

ptree2 = drop.tip(ptree,pois[[i]])
write.tree(ptree2,outfile.newick,append=T)

}

VVVYV

In output file 'my_trainmodtrees.txt', each line contains a full Newick-format tree
corresponding to the training sample. Now we use TIPP to get taxon probabilities for these
trees. TIPP utilizes pplacer, and the output of RAXML must be adjusted to be suitable for it. For
the current version of pplacer we need to make small adjustment to the content of info-file
produced by RAXML in order to run pplacer successfully (pplacer thinks that there are
partitions although in our example data there are not). In Linux terminal, we can delete the
extra line in the following way:

grep -v 'Partition: 0 with name' RAxXML info.train > modRAxML info

After this we are ready to run TIPP for each of our training samples. We use Perl script
tipptrain.pl for this which is simply a wrapper for executing a loop calling run_tipp.py for each
of our training samples. Most arguments for the script tipptrain.pl below are for the
run_tipp.py itself. Value 0.5 is related to alignment process, the next number 0 is the threshold
for probabilities, and parameters A and P (here the values 26 and 26 were used) needs to be
adjusted based on the amount of training data, e.g. P could be the number of all sequences and
A could be 0.1*P (for more information please look the TIPP manual). Location of tipp
configuration file ‘tipp.config’ should be defined corresponding to the local system.

tipptrain.pl example trainseq.fasta my trainsamples.txt

my trainmodtrees.txt tmptrain example trainseq aligned.fasta
modRAXML info example tipptaxonomy.txt example tipptxm.txt 0.5 0 26
26 ~/.sepp/tipp.config tmptipp 1 tmp my train tippout.txt

The output file 'my_train_tippout.txt' contains now all information what is needed to construct
X matrices for PROTAX training, value 0.001 in the command below is a small constant to avoid
singularities in logit-transformation when converting TIPP probability into PROTAX covariate.

create xdata TIPP.pl my trainsamples.txt example taxonomy.txt
example trainseqgid2taxname.txt my rsegs.txt my train tippout.txt
0.001 my train tipp xdata.txt

Estimating the parameters in R (small number of iterations are used in order to run the
example fast, but in practice more iterations could/should be used)

> source("../scripts/amcmc.rcode.txt")

> dat=read.xdata("my train tipp xdata.txt")

> pp=adaptiveMCMC(dat,7,10000,1000,500,rseed=1)

> write.postparams(pp, "my tipp mcmc.txt",501:1000)

Now the model parameters are ready but before classifying new sequence data, we need to run
TIPP for it. This gives the locations for the new sequences in the existing phylogeny and gives

19

the probabilities for these assignments which are the covariates needed for PROTAX. Again, for
the explanation of TIPP parameters, user is referred to the TIPP manual.

run_tipp.py -f example testseq.fasta -t RAxXML bestTree.train -a
example trainseq aligned.fasta -r modRAxXML info -tx

example tipptaxonomy.txt -txm example tipptxm.txt -at 0.5 -pt 0 -A
27 -P 27 -c ~/.sepp/tipp.config -d my tipptest --cpu 1 -p tmp

Then we can use PROTAX classification for the test data

classify TIPP.pl example testseqgids.txt example taxonomy.txt
example trainsegid2taxname.txt my rsegs.txt my tipp mcmc.txt map
my tipptest/output classification.txt 0.001 1 0.01

my test tipp clas.txt

Taxon levels and names are added to the classification results by

add_taxonomy info.pl example taxonomy.txt my test tipp clas.txt

Case D) combining BLAST and TIPP covariates

When several covariate sources are combined, the corresponding X matrices of all sources are
simply merged. It is important that the X matrices represent the exactly same training samples
in each file in the same order. Therefore, the same trainingsample file must be used for each
create_xdata_SOURCENAME.pl command. Combination can be done in R. The following is the
example for merging the X matrices from two sources, BLAST and TIPP.

> source("../scripts/amcmc.rcode.txt")
> blast.dat=read.xdata("my train blast xdata.txt")
> tipp.dat=read.xdata("my train tipp xdata.txt")

X matrices generated from both sources (BLAST and TIPP) contain the same parameters betal
and beta2 in columns 1 and 2. We take them from the first blast-related matrix with the
columns 3 and 4, and from the tipp-related matrix we only take the 3rd column. Merged X-
matrices will have 5 columns.

> dat=merge.xdata(blast.dat,c(1,2,3,4),tipp.dat,3)

Since taxonomy has two levels, there are 2*5+1=11 parameters

> num.params=11

> pp=adaptiveMCMC(dat,num.params,10000,1000,500,rseed=1,info=1)

> write.postparams(pp, "my blast tipp mcmc.txt",501:1000)

Although generation of xdata files could be done separately for each information source, the
classification of new sequence data requires that all information sources must be available at

the same time. This is because in the training phase, the single path from the most specific
node to the root is known, but in the classification, the traversal in the taxonomy tree goes in

20

opposite direction and the more specific node where to proceed is known only after applying
the classification for its parent node. In case there are no probability thresholds, then all nodes
needs to be processed, but otherwise, only subset of them is considered. The decision which
paths to continue in classification requires all covariates to be present at the same time.
Although we could compute separate X matrices for each covariate sources corresponding to
each node of the taxonomy, this would be waste of computing since in case of probability
threshold is defined for the search process, majority of the candidate paths would be discarded
at every level when proceeding to the next level.

Combining TIPP output with online BLAST is done using Perl script classify_BLAST_TIPP.pl.

classify BLAST TIPP.pl example testseq.fasta example taxonomy.txt
example trainseq.fasta example trainsegid2taxname.txt my rseqgs.txt
my blast tipp mcmc.txt map ~/ncbi-blast-2.2.31+/bin "-dust no -
word _size 11" tmp my tipptest/output classification.txt 0.001 1
0.01 my test blasttipp clas.txt 0 1

The syntax is the same for the program nodeprob_BLAST_TIPP.pl.

Integrating new covariate sources in PROTAX

If user wants to integrate their own covariate sources in PROTAX, the required changes need to
be made to subroutine 'createX' in three programs: create_xdata_SOURCENAME.p],

classify_ SOURCENAME.pl, and nodeprob_SOURCENAME.pl. This subroutine extracts the
sequence similarity information from the output of the external software. Making the changes
requires only basic knowledge of Perl language. The three existing Perl scripts
create_xdata_BLAST.p], classify_BLAST.pl, and nodeprob_BLAST.pl can be used as a template.
They utilize locally installed BLAST through Perl system calls.

Large taxonomy and sparse sequence data

Perl script ‘compact_training_data.pl’ finds duplicated samples in the output file of
‘generate_training_data.pl’ and reduces the size of MCMC training data. The number of
replicates is used as a weight of each sample which is taken into account in the MCMC
parameter estimation.

Speeding up MCMC

In R, we have observed that the MCMC computation time reduces 40% when using the byte
code compiler for the following three functions before calling adaptiveMCMC function

library(compiler)
logprior=cmpfun(logprior)
loglikelihood=cmpfun(loglikelihood)

>
>
>
> adaptiveMCMC=cmpfun (adaptiveMCMC)

21

List of PROTAX functions

Perl scripts

get_reference_sequences_all.pl
get_reference_sequences_random.pl
get_reference_sequences_clustering.pl
generate_training_data.pl
compact_training_data.pl
get_deleteseqs.pl

create_xdata_seqsimfile.pl
create_xdata_BLAST.pl
create_xdata_TIPP.pl

tipptrain.pl

classify_segsimfile.pl
classify_BLAST.pl
classify_TIPP.pl
classify_BLAST_TIPP.pl

nodeprob_seqgsimfile.pl
nodeprob_BLAST.pl
nodeprob_TIPP.pl
nodeprob_BLAST_TIPP.pl

add_taxonomy_info.pl
correct_path.pl
correct_levels.pl

R functions

read.xdata
merge.xdata
initialize.adaptation
adaptiveMCMC
write.postparams
traceplot.one
traceplot.all
amcmc.diagnostic.plot
accuracy.plot

22

