
Volume 5, Number 3
Septem berl0c tober 1983

$2.50

n u I

U I nsions

I II II I
I 1

8088
RAMdisk

FEATURES
FIG-Forth Vocabulary Structure Evan Rosen 5
An Easy Directory System Wil Baden 11
A RAMdisk for 808618088 FIG-Forth John Irwin 14
In-word Parameter PaSsing Timothy Huang 19
S tack-Orie n ted Co-Processors

and Forth .. Dana Redington 20
Code and Colon Compatibility David Held 23
CORDIC Algorithm Revisited Dave Freese 24
Forth-83: A Minority View Glenn Tenney 27

DEPARTMENTS
Letters ... 3
Editorial: Standard Fare ... 3
Standards Corner Robert L. Smith 26
Techniques Tutorial:

Meta Compiling Ill Henry Laxen 31
FIG Chapter News John D. Ha11 34
New Product Announcements .. 36

PRICES START at $1,295 fo ra SINGLE COMPUTER LICENSE (HPSeries 200 32 bit version) .
OK!!! I’m interested! Please send me more information about the Multi-FORTHTM system.

Name Company

Address

Phone Hardware Type
I
Ti

4801 Randolph Road
Rockville, Maryland 20852

(30 1) 984-0262
Mulri FORTHTMis a registered rrademark of CreativeSolut ions. Inc

Volume V, No. 3 GORTH Dimensions 2

FORTH Dimensions
Published by FORTH Interest Group

Volume V, No. 3
September/October 1983

Editor
Marlin Ouverson

Publisher
Roy C. Martens

’&pesetting/Production
LARC Computing, Inc.

Cover Art
Al McCahon

FORTH Dimensions solicits editorial
material, comments and letters. No re-
sponsibility is assumed for accuracy of
material submitted. Unless noted other-
wise, material published by the FORTH
Interest Group is in the public domain.
Such material may be reproduced with
credit given to the author and the
FORTH Interest Group.

Subscription to FORTH Dimensions
is free with membership in the FORTH
Interest Group at $15.00 per year
($27.00 foreign air). For membership,
change of address and/or to submit
material, the address is: FORTH Inter-
est Group, P.O. Box 1105, San Carlos,
CA 94070.

letters to the Editor
Unfinished Business

Dear Editor,
I am a novice to Forth, but a pro-

grammer and analyst for small com-
panies, especially in engineering and
scientific work. I would like to see
more and better information and pro-
grams for new Forth programmers.

Since Forth textbooks are scarce, I
learn mostly from Forth Dimensions.
Many programs are not easy because
often they are not fully compatible
with my software, or contain words
that are not defined. In one program
(from “A Techniques ntorial on
Defining Words,” Vol. IV, No. l),
there is only one word, WITHIN, that I
am not able to define at all. I have
checked three different textbooks, but
the program is still left unfinished.

I would like Forth Dimensions to
evaluate Forth software like other
magazines (e.g., Info World). I had to
buy three different Forths before find-
ing one I feel comfortable with. I need
more information on each piece of
software, like which follows the Forth
Standard, disk format suppozted, and
options like eighty-column screen,
lower-case, editor, etc. These would
save my time and money.

Thank you for your time and
patience with this comment about pub-
lication and evaluation.

Yours sincerely,
William A. Paine

11025 - 131st Ave. NE
Kirkland, WA 98033

(Continued)

Editorial

Standard Fare
Once a month, a pioneering group of

Forth aficionados meets to coordinate
the considerable business of running a
world-wide organization. That it is a
not-for-profit affair does not make
their duties less complex than those as-
sociated with any international busi-
ness. That the board members are
unpaid does not make them less com-
mitted, diligent, and effective as
managing leaders.

The work of Forth Interest Group
members has been largely responsible
for the growing public acceptance of
Forth. They have called attention to
Forth as a practical language and, for
more and more projects, as the lan-
guage of preference. Whenever ele-
ments of the language have posed
obstacles, they have contributed hours
of labor to modify, argue, test, debate,
and re-modify to create an improved
Forth standard.

Forth-83 has been accepted as the
official standard. Tho articles in this
issue provide a summary of some of
the changes that have been introduced,
and of some objections that have been
raised. Our purpose in publishing these
items is to show some of the changes
that have been introduced and to let
readers see at least part of the process
(as well as the importance) of arriving
at a new standard.

Of course, the people responsible for
all this are just FIG members who get
involved. There is always room for
another contributor to this loose-knit
band. Particularly welcome are ar-
ticles, ideas, and letters to the editor
from the many new members receiving
Forth Dimensions this year. Let us
know how we can help you, and let
others know how Forth can help them!

Meanwhile, make good use of this is-
sue and the ones to come. Articles and

code are still being accepted for our is-
sues on data acquisition, instrument
control, and math. Utilities and useful
applications are always welcome.
Writers guidelines are available to
authors (and potential authors) who
send a self-addressed, stamped en-
velope to:

Editor
Forth Dimensions
Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

We look forward to hearing from
each of you!

-Marlin Ouverson
Editor

Volume V, No. 3 3 FORTH Dimensions

for V~CTOR 9000
Microcomputer
DAI-E Chinese Language
Computing System Including:
0 5000 most common Chinese

c ha rac ters-can be transmitted
in accordance with established
CCCl 1 Communications Code.

0 Chinese word processor
0 Chinese Forth
Available Fourth Quarter 1983-Cali For Price

Dai-E FORTH=
Beginner‘s Package in

Fig-FORTH Style

US $1 5000

Dai-E FORTH Leveln
Professional Level FORTH

Conforms with proposed 1983 standara

Features

Package

On line Documentation,
Deco m p i I e r, Debugger (tracer)
Viewer (help), Line Editor
and Screen Editor, 8086/8088
Assembler, Meta Compiler,
Double precision Math
extensions, Native Operating
System file handler, True LRU
disk buffer mechanism, Separate
header, Graph ics/Sound
Interface, Hashed dictionary
structure, Multi-tasking

Available for CP/M, MS-DOS, or
stand-alone versions

US $35000

DAI-E GRAPHICS with optical mouse
Available fourth quarter 1983

S E E US AT BOOTH #16
FORTH INTERNATIONAL CONFERENCE

Oct. 14 & 15,1983 - PAL0 ALTO, CA.

DAI-E
SYST
INC.

’EMS

MULTI-LANGUAGE
COMPUTING SYSTEMS

503/682 -32 0 1
29783 Town Center Loop West 0 P 0 Box 790

Wilsonville, Oreqon 97070 U.S.A.

RPN Blues - Revisited
Dear FIG:

I have been trying to implement
Forth on my system for two years now,
but failed because of not having a good
assembler for my system. In those two
years I mostly did not work on the
Forth system because of frustration.
But now I had the opportunity to work
with Forth on a friend’s machine. Su-
per!

There is one thing I think could pro-
vide an improvement in readability of
Forth programs: do the control struc-
tures have to be in reversed polish no-
tation, or wouldn’t it fit in the Forth
concept otherwise? How about control
structures as below:

FIG-Forth 79

DO (+)mop

(cond) IF (true) THEN
(cond) IF (true) ELSE (false) THEN

BEGIN (cond) UNTIL

BEGIN (cond) WHILE (true) REPEAT

Other version

kept as it is

IF (cond) THEN (true) ENDIF
[IF is only documentary, THEN checks
condition
ELSE is as before]

BEGIN UNTIL (cond) FULFILLED
[BEGIN is where to jump; UNTIL is
documentary; FULFILLED
is formerly UNTIL]

WHILE (cond) REPEAT (true) ENDWHILE
[WHILE marks where to jump; REPEAT
checks if cond is true;
ENDWHILE jumps to WHILE

What do you think about it?
Horst G. Kroker

HCH-V-Meissen Str. 37
Mainz LL2 6500

W. Germany

Model Behavior

Dear FIG:
While working with a FIG-Forth sys-

tem, I found a couple of things which
may be of interest for inclusion in
other compilers. First, there is a bug in
the model’s implementation of the
logic associated with ?RLIIRS which al-
lows the construct
IF . . . ELSE . . . ELSE . . .

ELSE . . . THEN

to be compiled without error. The ex-
ecution of the resulting code is enter-
taining, but not particularly useful. I
would suggest fixing it via the follow-
ing changes to the model:

Screen 4 0 :

: ?PAIRS AND O= 1 3 ?ERROR i

screen 73:

: ENDIF ?COnP 6 ?PAIRS HERE OVER - SWAP ! i IMMEDIATE

: DO COMPILE (D O) HERE 8 i IMMEDIATE

: LOOP 0 ?PAIRS COMPILE (LOOP) BACK i IMMEDIATE

: +LOOP 8 ?PAIRS COWPILE (+ L O O P) BACK i IMMEDIATE

s c r e e n 7 4 :

: ELSE 2 ?PAIRS COMPILE BRANCH HERE 0,
SWAP 2 [COMPILE1 ENDIF 4 i IMMEDIATE

Use of a bit-masked test thus allows
THEN to follow either IF or ELSE but
only allows ELSE to follow IF, which is
what we want.

The other thing is a compiler speed-
up enhancement. I had always won-
dered why the dictionary search scan-
ned each entry character by character,
even though the length was known, but
just chalked it up to one of the mys-
teries of Forth that I’d figure out some
day. It should be noted, incidentally,
that I always use a WIDTH of thirty-one.

Just recently, however, I found out
how things work with a width of less
than thirty-one (I think) so I see the
basic reason. However, I believe that
things could be speeded up dramatical-
ly by just using the lower of WIDTH and
the length found in the dictionary
header as an increment to skip to the
end of the name. I use a 6801-based
FIG system which was so modified and
the compile times went down by over
thirty percent for one system (around
300 screens, would you believe).
Best regards,

Mike Armstrong
7502 S.W. 143rd Ave.

Miami, FL 33183

(Continued on page 29)

-
Volume V. No. 3 FORTH Dimensions 4

FIG-Forth Vocabulary Structure
Evan Rosen

Bayside, New York

Vocabulary structure and linking in
FIG-Forth is a clever and complex af-
fair. FIG-Forth makes extensive use of
the linked list in vocabulary manage-
ment and creates a structure that al-
lows the dumb primitive (FIND) to look
in the right places without (FIND) ever
realizing it. This note attempts to make
both the creation and search processes
a little clearer.

Before explaining how vocabulary
structures work, let’s talk about what
they do.

You may recall that during typical
dictionary searches, first the context
and then the current vocabularies are
searched. These two searches are per-
formed in the same way. Take the con-
text search as an example, first looking
at the broad picture and then the de-
tails.
Vocabulary Search (big picture)

Assume we have the vocabulary
“tree” shown in Figure One, and that
the vocabulary NEWVOC has had a few
words added to it. Assume that NEW-
voc is the context vocabulary. When
context is searched, first NRNVOC is
searched, then me, then VOCI, and
then FORTH, assuming no match has
been found. W) C ~ is not searched.
Thus, the context vocabulary is actual-
ly composed of a sequence of vocabu-
laries. The word “vocabulary” itself
is, therefore, somewhat ambiguous in
FIG-Forth usage.

After a few setup details, the actual
search is done by the not-very-smart
primitive (FIND), which returns only on
a match, or on finding a zero for the
next name field address in the search.
(The zero shows up in the name field of
the first word in FORTH, usually LIT.
Try ’ UT LFA 7). Hence (FIND) has
somehow to be guided in order to
search all the right vocabularies. This is
where Dummy Name Fields,
containing the two bytes 81 and AO,
come in. To understand the details we
have to look at the structure of a
vocabulary word.

i,
V

voc 1

c2 1

ASSEMBLER I J

For UT

Schematic of Example Vocabulary nee
Note that lines emerging from the sides of vocabulary words
do not represent real pointers. See Figure n o for actual con-
figuration.

Figure One

t
86 NEWVOC I LINK I BDCFA(s) I 81 A 0 I GRAFT I VOC-LINK

I Figure Two I
I 1

Vocabulary Searches (detailed picture)

Performing VOCABULARY NEWVOC The length byte of the new word,
will create the elements shown in with high bit set, for detection by m-
Figure n o in the dictionary. Taking VERSE. If NEWVOC were immediate, bit
these items in order, we have: 6 would be set also, making this byte

C6.

Volume V, No. 3 5 FORTH Dimensions

- A -- - A - - -- - - -- t --I latest word in NEWVOC vocabulary

87 NEWWORE I LINK I etc.
I

I

r-example-,
r - i CONTEXT I
I ------
I

A

I I I
I
I I

ASSEMBLER words not shown

r-----3 I
I

I

C4 VOCS 1 LINK 1 BDCFA(s) 1 81 A0 I GRAFT I VOC-LINK
VOC3 words not shown

i I
84 VOC2 I LINK I BDCFA(s) I 81 A0 I GRAFT I VOC-LINK

latest word in V O C l vocabulary

~~

t I
84 V O C l I LINK I BDCFAb) I 81 A0 I GRAFT I VOC-LINK

t

I C5 FORTH I LINK 1 BDCFAk) I 81 A0 I GRAFT I VOC-LINK I
1
t I ,I, LIT I 00 I etc.

L l a t e e t word In FORTH vocabulary I
Detailed Structure of Example Vocabulary Tree

Figure Three

6 VolurneV, NO 3 FORTH Dimenstons

NEWVOG 1
ASCII of the new word’s name.

High bit of last character will be set,
with very occasional machinedepend-
ent variations, e.g., on 6502 systems.

1 LINK I
Link back to name field address of

the previous word defined in the cur-
rent vocabulary, i.e., the vocabulary in
which the word NEWVOC is defined. All
normal so far.

The < BUILDS. . . DOES> code field
address(es). This field is generally four
bytes long, though the shorter, faster
two-byte renderings are gaining pro-
minence. This need not concern us
now. You can tell how long this field is
by looking for 81 A0 which will follow
it.

181 7 1
This is how AOSlH, will show up in

the dictionary. It is a Dummy Name
Field with name of length one (the 1 in
81) and actual ASCII name 20 with
high bit set, to become AO. (ASCII
20H is a blank, which was chosen be-
cause it was rather unlikely to occur as
an actual name in a working system.
Back to this in a moment.)

IGRAFT 1
It’s not clear if this field has another

name, but calling it the Graft Field is
useful for the moment, as this field
helps in “grafting” the new vocabulary
onto the vocabulary tree. The Graft
Field in a vocabulary-name word like
NEWVOC or FORTH is the actual field
that is pointed to when we say some-
thing like, “CONTEXT points to NEW-
voc.”

Right after NEWVOC is defined, the
Graft Field of NEWVOC points to the
Dummy Header Field of the vocabu-
lary in which it was defined. In the tree

in Figure One, for example, N E W C
was defined in the vocabulary VOC2.
This is caused by the action of the
<BUILDS part of the word VOCABU-
LARY, when it performs

(This is how the standard is written.
CFA is misleadingly used as slang for 2
- and should be replaced.)

When the first word, call it NEW-
WORD, in the vocabulary NEWVOC is
defined, its LF (Link Field) takes the
value in the Graft Field, and the Graft
Field takes a new value, namely, the
NFA (Name Field Address) of NEW-
WORD. The trick is that this is accom-
plished in the usual way by CREATE,
which looks at where CURRENT is
pointing when CREATE is ready to set
up the new links for NEWWORD. CREATE
then gets the value in the Graft Field
(which in our example points to the
Dummy Name Field in VOCz), and puts
this into the link field of NEWWORD.
The graft has then been created. More
in a moment.

CURRENT@ CFA,

This points to the voc-link field of
the previously defined vocabulary. For
the bottom vocabulary, generally

cate the end of the list. We’re not going
to talk about voc-links here.

Okay, now, let’s see what happens
when (FIND) unsuccessfully searches the
context vocabulary, NEWVOC. Assume
that some setup routine has properly
arranged both the stack and the string
that (FIND) will be trying to find. The
address where (FIND) will start looking
will be at the top of the stack. In this
case it will be CONTEXT @ @, since
CONTEXT points to the Graft Field of
NEWVOC which points to the Name
Field of the last word defined in NEW-
voc. Then (FIND) starts looking.

When (FIND) reaches the first word
defined in NEWVOC, which you recall
was NEWWORD, (FIND) again fails to
find a match and so looks in the Link
Field of NEWWORD to find out where to
search next. What is there, if you re-
call, is the address of the Dummy
Name Field of voc2. The unsuspecting
(FIND) then looks at this field, where it
sees the “name” 81 AO, again fails to
match, and so goes to what it thinks is
the link field corresponding to this

FORTH, this (VOCLINK) will be 0 to indi-

C64-FORTH
for the

Commodore 64

FORTH SOFTWARE
FOR THE

COMMODORE 64

C64-FORTH (TM) for the Commodore 64 -

0 Fig Forth-79 implementation with extensions
0 Full feature screen editor and macro

Trace feature for easy debugging
320x200, 2 color bit mapped graphics

0 16 color sprite and character graphics
0 Compatible with VIC peripherals including

disks, data set, modem, printer and cartridges
Extensive 144 page manual with examples and
application screens
”SAVETURNKEY normally allows
application program distribution without
licensing or royalties

699.9s

assembler

C64-XTEND (TM) FORTH Extension for c64-
FORTH - $S9.9S

(Requires original C64-FORTH copy)
Fully compatible floating point package
including arithmetic, relational, logical and
transcendental functions

0 Floating point range of 1E+38 to 2E-39
0 String extensions including LEFT$, RIGHT$,

and MID$
BCDfunctions for lodigit numbers including
multiply, divide, and percentage. BCD
numbers may by used for DOLLAR.CENTS
calculations without the round-off error
inherent in BASIC real numbers.

outputting DOLLAR.CENTS values

applications screens

(Commodore 64 is a trademark of Commodore)

0 Special words are provided for inputting and

Detailed manual with examples and

TO ORDER- Specify disk or cassette version
- Check, money order, bank card,
COD’S add $1.50
- Add $4.00 postage and handling in
USA and Canada
- Mass. orders add 5% sales tax
- Foreign orders add 20% shipping
and handling
- Dealer inquiries welcome

PERFORMANCE
MICRO

PRODUCTS
770 Dedham Street, S-2

Canton, MA 02021
(617) 828-1209

Next- Generation
Micro-Computer Products

7 FORTH Dimensions Volume V, No. 3

THE FORTH SOURCE^^
MVP-FORTH

0 MVP-FORTH Meta Compiler for CP/M Programmer's kit Use
for applicatons on CPlM based computer Includes public Stable - Transportable - Public Domain - Tools

You need two primary features in a software development package a domain source $1 50
stable operating system and the ability to move programs easily and
quickly to a variety of computers. MVP-FORTH gives you both these
features and many extras. This public domain product includes an editor,
FORTH assembler, tools, utilities and the vocabulary for the best selling
book "Starting FORTH". The Programmer's Kit provides a complete
FORTH for a number of computers. Other MVP-FORTH products will
simplify the development of your applications.

MVP Books - A Series
0 Volume 1, A// about FORTH by Haydon. MVP-FORTH

glossary with cross references to fig-FORTH, Starting FORTH
and FORTH-79 Standard. 2"d Ed.

CP/M@ , IBM-PC@ , and APPLE" listing for kernel

$25

$20
0 Volume 2, MVP-FORTH Assembly Source Code. includes

MVP-FORTH Software - A Transportable FORTH

0 MVP-FORTH Fast Floating Point for APPLE Programmer's
Kit. Includes 951 1 math chip on board with disk and
documentation.

0 MVP-FORTH Programming Aids for CPIM, IEM or APPLE
Programmer's Kit. Extremely useful tool for decompiling.
callfinding, and translating. $1 50

4001800 Standalone with screen editor License required

$400

0 MVP-FORTH by ECS Software for IEM-PC or ATARI"

Upgradeable $1 00

0 MVP-FORTH by ECS Software for IEM-PC or ATARl 4001800
Enhanced with color animation, multitasking sound, utilities,
and unlimited run time license.

0 MVP-FORTH Professional Application Development System
(PADS) for CPIM, IEM-PC. or APPLE A three level integrated
system with complete documentation Complete system $400

$1 75

0 MVP-FORTH Programmer's Kit including disk, documen-
tation, Volumes 1 & 2 of MVP-FORTH Series (All About
FORTH. 2nd Ed. & Assembly Source Code), and Starting
FOR JH. Specify 0 CPIM. 0 CP/M 86, 0 CP/M + , 0 APPLE,

4 0 IBM PC, 0 MS-DOS, 0 Osborne. 0 Kaypro. 0 H891289.
++ 0 ZIOO. 0 TI-PC, 0 MicroDecisions. 0 Northstar,

0 Compupro, 0 Cromemco
0 MVP-FORTH Cross Compiler for CP/M Programmer's Kit.

Can also generate headerless code for ROM or target
CPU $300

0 MVP-FORTH PADS enhanced virtual system $1 50
0 MVP-FORTH PADS Programming Aids $1 50
0 MVP-FORTH PADS Meta Compiler $1 50

*** MVP-FORTH operates under a variety of CPU's. computers. and
operating systems CPlM" disks can be supplied 8", SS/SD. 3740
format or 5'/4 for &borne@ Northstarm Micro Decisions" Kaypro@ or
HE912890 Specify your computer and operating system *

FORTH MANUALS, GUIDES & DOCUMENTS

$1 50

FORTH DISKS
FORTH with editor, assembler, and manual. 0 ALL ABOUT FORTH by 0 1980FORMLRoc. $25

$ loo iBM-PC@ by LM $100 Haydon. See above. $25 0 1981 FORML Roc 2 Vol-$40 0 APPLE by MM
0 APPLE by Kuntze $90 0 NOVA by CCI 8" DS/DD$I 50 0 FORTH Encyclopedia by 0 1982 FORML Roc. $25
0 ATARI" valFORTH $60 0 z80 by LM $50 I Derick & Baker. 0 1981 Rochester FORTH

0 HP-85 by Lange
0 CP1W by MM $100 0 8086188 by LM oo d,$\d Programmer's manual to fig- Roc. $25

FORTH with FORTH-79

$25

,,% 0 Understanding FORTH by +%* 0 1983 Rochester FORTH $25

$25 +& 0 FORTH Fundamentals, Vol. A Rimer
$1 6 0 Threaded interpretive

$23
I by McCabe

+%' 0 FORTH Fundamentals, Vol.
$13 METAFORTH by

$30
II by McCabe

,,& 0 Beginning FORTH by
$1 7 0 Systems Guide to fig-

$25 0 FORTH Encyclopedia
$7 0 invitation to FORTH $20

Car t r idges by HES references. Flow charted, 2"d lga2 'OChester
ROC.

ROC.

$25
d

Hp-75 byCassady% IC20 $50 Corn 64 $bod Ed.
Enhanced FORTH with: F-Floatinggint , G-Graphicsf7-Tutoria1,

Extras, 79-FORTH-79.
0 APPLE by MM.

S-Stand Alone, M-Math Chip Support. MT-Multi-Tasking, X-Other Reymann $3

0 Extensions for LM Specify
$1 40 IBM. Z80. or 8086 Languages

0 ATARi by PNS, F,G, & X $90
0 CPlM by MM. F & 79 $140
0 Apple, GraFORTH by I $75 (IBM-PC or 8086) $1 00 Chirlian
0 Multi-Tasking FORTH by SL,

F, G. & 79

Cassady

FORTH

02zp $1 00
0 8087 Support

0 951 1 Support
CP/M, X & 79 $395 (280 or 8086) $1 00 Pocket Guide

0 Color Graphics

0 Data Base
$1 00

Management $200

victor 9ooo by DE, G,X +

0 TRS-8OII or 111 by MMS
$1 30 (IBM-PC) + 6 0 Timex F . x , & 7 9 by FD. tape G.X, &

d $45 Requires LM FORTH disk 79
0 TUTORIAL by LH. includes

$1 50 Startmg FOR JH $95

0 fig-FORTH Programming Aids for decompiling, callfinding.

CROSS COMPILERS Allow extending, modifying and compiling tor
speed and memory savings, can also produce ROMable code
*Requires FORTH disk

and translating CP/M IEM-PC, 280, or Apple $1 50

0 CPlM $300 0 IEM. $300
0 8086. $300 0 280. $300
0 Northstar $300 0 Apple 11/1i+ $300

0 FORTH Computer - Jupiter Ace
0 16K RAM Pack
0 48K RAM Pack +&
0 Par/Sec Interface

$1 50
$50

$1 25
$1 00

Key to vendors: LM Laboratory Mlcroayatems
MM MlcroMotlon
MMS Miller Microcomputer Senlcer
NS Nautilus Systems
PNS Pink Noise Studio
SL Shaw Labs

CCI Capstone Computing Inc.
DE Dai-E Systems
FD Forth Dimension
I lnsoft
LH Laxen and Harris

0 And So FORTH by Huang A $20
college level text $25 +& 0 FORTH-83 Standard $1 5

0 FORTH Programming by 0 FORTH-79 Standard $1 5
Scanlon 0 FORTH-79 Standard

$1 0 0 FORTH on the ATARl by E

$1 5 0 Starting FORTH by Brodie
Best instructional manual 0 NOVA by CCI User's Manual
available (soft cover) $1 8 includes editor. assembler,

0 PDP-11 User Man.

Conversion

Source Listing
Floegel $8 0 NOVA fig-FORTH by CCI

(hard cover) $23 and utilities $25
$1 5 0 Installation Manual for fig-FORTH

Source Listings of fig-FORTH, for specific CPU's and computers The
Each $1 5 Installation Manual IS required for implementation

0 1802 0 6502 0 6800 0 AlphaMicro
0 8080 0 8086188 0 9900 0 APPLE II

0 68000 0 Eclipse 0 VAX 0 Z80
0 PACE 0 6809 0 NOVA 0 PDP-1 IILSI-11

Ordaring Inlormation: Check Money Order (payable to MOUNTAIN VIEW PRESS
INC) VISA Mastercard COD s $5 extra No billing or unpaid PO s California
residents add sales tax Shipping costs in US included in price Foreign orders pay
in US funds on US bank include for handling and shipping by Air $5 for each item
under $25 $10 for each item between $25 and $99 and $20 for each item over
$1 00 Minimum order $1 5 All prices and products subject to change or withdrawal
without notice Single system andlor single user license agreement required on
some Droducts

Dummy Name Field. What it finds in-
stead is the Graft Field of VOCZ. (FIND)
then looks in this field, gets the pointer
to the Name Field of the last-defined
work in WC?, and continues its search.
This same tricking of (FIND) occurs at
each intersection in the tree until (FIND)
finally ends up at the base of the tree,
in the FORTH vocabulary, at the Link
Field of LIT, where it finds a zero and
exits.

The term “vocabulary” has been
carried over from pre-FIG Forths,
where it had a meaning closer to what
one would expect. A more descriptive
name for the FIG-Forth version might
well be VOCABULARY.BRANCH.

To review, in the current setup in
FIG-Forth,

(1) Dictionary searches may
repeatedly search various voca-
bularies within one search. For
instance, the FORTH vocabulary is
generally searched twice.

(2) Dictionary searches search all
of each vocabulary-branch
through which they pass, not just
the part “below” the intersec-
tion. “Chronology” of defini-
tions does not, per se, determine

P the search path.

6
ilr

d

Where does this lead us? The struc-
ture can be customized, to an extent,
once it is understood: for instance,
storing a zero into a word’s link field
can stop a search, or redirecting a link
can alter the search pattern. Remem-
ber, though, that some definition for
the word whose name is the null char-
acter must remain in the search chain,
or the system won’t know how to deal
with the end of a line. The usual defini-
tion is next to that of QUERY, or,

HEX 8081 HERE
: X R> DROP ; ! IMMEDIATE
DECIML

compiled above where you’re going to
zero a link field should allow you to ex-
periment from the terminal (but not
from screens).

There are at least two major short-
comings to the present vocabulary or-
ganization:

(1) No pointer is kept to the first
word in a new vocabulary, only
to the last; hence, rearranging the
branches on the vocabulary tree
is cumbersome.

(2) The search routine only looks
at the “current” and “context”
vocabularies, and is thus limited
in regard to generalized search
patterns.

In my next article, we’ll look at some
of the proposals for vocabulary struc-
turing.

Illustrative figures were kindly pro-
vided by Valpar International, -E.R.

FOR TRS-80 MODELS 1,3 & 4
IBM PC, XT, AND COMPAQ

The MMSFORTH
System.

Compare.
The speed, compactrress and
extensibility of the
MMSFORTH total software
environment, optimized for
the popular IBM PC and
TRS-80 Models 1, 3 and 4.
An integrated system of
sophisticated application
programs: word processing,
database management,
communications, general
ledger and more, all with
powerful capabilities, sur-
prising speed and ease of use
With source code, for custom
modifications by you or MMS.
The famous MMS support,
including detailed manuals
and examples, telephone tips,
additional programs and
inexpensive program updates,
User Groups worldwide, the
MMSFORTH Newsletter,
Forth-related books, work-
shops and professional
consulting.

NWJFORTh
A World of
Difference!

0 Personal licensing for TRS-80:
$129.95 for MMSFORTH, or
“3+4TH” User System with

HANDLER and FORTHCOM
for $399.95.
Personal licensing for IBM
PC: $249.95 for MMSFORTH,
or enhanced “3+4TH” User
System with FORTHWRITE,

FORTHCOM for $549.95.

sions from $1,000.

FORTHWRITE, DATA-

DATAHANDLER-PLUS and

Corporate Site License Exten-

If you recognize the difference
and want to profit from it, ask us
or your dealer about the world
of MMSFORTH.

MILLER MICROCOMPUTER SERVICES
61 Lake Show Road, Natick, MA 01760

(611) 653-6136

Volume V. No. 3 9 FORTH Dimensions

8080/280 FIG-FORTH for CP/M & CDOS s y s t e m s
FULL=SCREEN EDITOR for DISK & MEMORY

$50 saves you keying the FIG FORTH model and many published FIG FORTH screens onto diskette and
debugging them. You receive TWO diskettes (see below for formats available). The first disk is readable by
Digital Research CP/M or Cromemco CDOS and contains 8080 source I keyed from the published listings of
the FORTH INTEREST GROUP (FIG) plus a translated, enhanced version in ZILOG 280 mnemonics. This
disk also contains executable FORTH.COM files for 280 81 8080 processors and a special one for Cromemco
3102 terminals.

The 2nd disk contains FORTH readable screens including an extensive FULL-SCREEN EDITOR FOR
DISK & MEMORY. This editor is a powerful FORTH software development tool featuring detailed terminal
profile descriptions with full cursor function, full and partial LINE-HOLD LINE-REPLACE and LINE-
OVERLAY functions plus line insert/delete, character insert/delete, HEX character display/update and
drive-track-sector display. The EDITOR may also be used to VIEW AND MODIFY MEMORY (a feature not
available on any other full screen editor we know of.) This disk also has formatted memoryand I/O port dump
words and many items published in FORTH DIMENSIONS, including a FORTH TRACE utility, a model data
base handler, an 8080 ASSEMBLER and a recursive decompiler.

The disks are packaged in a ring binder along with acomplete listing of the FULL-SCREEN EDITOR and a
copy of the FIG-FORTH INSTALLATION MANUAL (the language model of FIG-FORTH, a complete glossary,
memory map, installation instructions and the FIG line editor listing and instructions).

This entire work is placed in the public domain in the manner and spirit of the work upon which it is based.
Copies may be distributed when proper notices are included.

0 FIG-FORTH 81 Full Screen EDITOR package
USA Foreign

AIR
Minimum system requirements:
80x24 video screen w/ cursor addressability
8080 or Z80 or compatible cpu
CP/M or compatible operating system w/ 32K or more user RAM

0 8" SSSD for CP/M (Single Side, Single Density)

0 8"SSSD 0 8"SSDD 0 5'/4"SSSD 0 5%"SSDD

0 8" DSSD 0 8" DSDD 0 5%" DSSD 0 5%'' DSDD

Select disk format below, (soft sectored only). $50 $65

Cromemco CDOS formats, Single Side, S/D Density

Cromemco CDOS formats, Double Side, S/D Density

Other formats are belng consldered, tell us your needs.
OPrinted 280 Assembly listing w/ xref (Zilog mnemonics) $15 $18
0 Printed 8080 Assembly listing ... $15 $18

I TOTAL $- -
Price includes postage. No purchase orders without check. Arizona residents add sales tax. Make check

or money order in US Funds on US bank, payable to:
Dennis Wilson c/o
Aristotelian Logicians
2631 East Pinchot Avenue
Phoenix, AZ 85016
(602) 956-7678

Volume V, No 3 FORTH Dimensions 10

An Easy Directory System
Will Baden

Costa Mesa, California

A problem many have with Forth is
remembering where things are located.
The usual solution is to prepare a direc-
tory, i e . , a screen with the names of
things and the number of the screen
which contains the thing named; or, if
you are lucky enough to have a printer,
you can list a hard copy of an index
which contains the first line of every
screen. Then you eyeball it for what
you want.

A better way is to let Forth do the
lookup for you. Define a word which
will search the directory, find the
screen number for you, and then push
it on the stack. With this value, you
can list it or do anything else you want
with it.

NAME word LIST

This will list the screen where
"word" is located.

A directory consists of alternating
names (or subjects) and associated
values in free format, beginning on the
second line of each screen. The first
line is reserved for heading and date.
(To begin with line 0 instead of line 1,
change CIL to o in CONNIVE.)

A fragment of a directory is shown
in Figure One and will be used in our
examples.

SCR # 78
(DIRECTORY WWR/WWR 830714)

INITIAL. . 31.1 STARTING-FORTH 32
KERNEL 'S 96 SOLO 98 TRACE 89
FORMATTER 50 P R I N T 66
DISCARD 100 RECREATE 100 RELOAD 100
PHONES 49
DOC-DIR 45 DOC-DIR-END 47

SORT 13 .) SORTED 130 ID.(131 NAMES 13Z
ALLNAMES 132 .NAMES 132
SWORDS 1 5 3

Figure One

Of course, the values in a directory
do not have to be screen numbers.
They could be anything that you want,
e.g., phone numbers, part numbers, or
operating system constants.

Directories do not have to be in a
neat order, and the user is responsible
for maintaining them. Obviously, it is

helpful if there is some semblance of
order. For best performance, the most
frequently used words should be at the
beginning.

If you want to list the screen where
the word SWORDS is located, then all
you have to do is type NAME S W R D S
LIST or you can say VIEW SWORDS and
the result will be the same. VIEW is
defined

:VIEW (---<name>)
NAME LIST ;

This will list screen 133 where SWORDS
is defined. The word S W R D S after
NAME or VIEW is sought in the direc-
tory, the number 133 which follows the
word SWORDS is pushed onto the stack,
and screen #133 is listed. You can
define other words like VIEW to per-
form any operation with the number
on the stack.

If you want to load that screen, then
another word named NEED can be used,
e.g.,

NEED S W R D S

This will search the current working
directory screen and then load the
screen which has SWORDS defined on
it. It checks to see if the word which is
needed has been already defined; if so,
it will not be loaded again. This word is
very useful, since it can load other
screens when and where they are
needed. (See Figure Two.)

If any of the words needed are not
already defined, they will be loaded
before the rest of the screen. This way
you can load the screens in any order as
long as you have stated on each screen
what words need to be loaded before
that screen.

When screen 133 is loaded it checks
for SORT, ID< and NAMES. If any of
these is not defined it will load screen
130, 131 and/or 132 as appropriate. It
then checks for .NAMES which just hap-
pens to be on the same screen as NAMES
and so will always be already defined.
"NEED something-else" may have been
used on needed screens, and so forth.

This way all words will get their loca-
tion from the directory. If at any time
you move the screen to another loca-
tion, just change the directory to show
the proper screen number. Any screen
which depends on the word whose
screen location has changed will not be
affected.

A directory is specified by two screen
numbers: starting screen and ending
screen. The system remembers these
values for the current working direc-
tory. DIR will list the first screen of the
current working directory.

To change the screen numbers of the
current working directory, ESTABUSH
can be used.
< starting-scr# > < ending-scr# >

ESTABLISH

Screen 133 i . s

SCR # 133
("SWORDS" SORTED WORDS WWE/WWH 820317)

NEED SORT NEED ID.:: NEED NAMES NEED .NAMES

: SWORDS (--)
NAMES (A,N
DUP CR . . " NAMES DEFINED " CR
2DUP SORTED ID.: . NAMES ;

Figure %o

FORTH Dimensions Volume V, N o 3 11

,

The defining word DIRECTORY at
compile time takes two values from the
stack which at run time will be used as
arguments for ESTABLISH.

: DIRECTORY 2CONSTANT DOES >
2@ ESTABLISH ;

You could define a word DOC which,
when executed, would establish the
current working directory for
documentation as follows (assuming it
to be on 45 through 47):

45 47 DIRECTORY DOC

You can even get the values from the
current working directory

NAME DOCDlR

DIRECTORY DOC
NAME DOC-DIR-END

assuming that the current working
directory has entries

DOC-DIR 45 DOCDIR-END 47

DOC will change the current working
directory to the documentation direc-
tory. Any number of working direc-
tories can be thus defined.

Every system will have a standard or
default working directory. To get back
to it we say MAIN. On this disk it is
defined

78 82 DIRECTORY MAIN

The actual work of NAME is done by
SUBJECT. NAME picks up the limits for
the current working directory and
executes SUBJECT. SUBJECT takes the
next word in the input stream and puts
it in PAD. It then does CONNIVE, which
will look for that word on the screens
indicated. Only the names are
compared - the values are skipped
over to make the search faster.
INTRIGUE is used by CONNIVE to look up
the word in PAD on a single screen.
When and if the word in PAD is found,
the next word will be interpreted.

SUBJECT can be used to define words
similar to NAME and VIEW for special
directories. A "help" system could be
defined something like:

: HELP (---)
HELP% 2@ SUBJECT LIST ;

With shadow screens it could be even
easier.

: HELP (---)
NAME >SHADW LIST ;

SCR# 71
(you may a l ready have some of these.)
-1 CONSTANT TRUE 0 CONSTANT F A L S E
: DEFINED (--.:name:';. a , f 1 < -' rift --or-)

- F I N D (t h i s i s . f i g f o r t h " - F I N D)
I F 64 (pr-ecedence blt 1 AND

ELSE HEKE 0 THEN ;

I F 1 (i t ' s immediate 1 E L S E - 2 THEN
SWAP CFA SWAF

: HAVE (--<:name::. f) DEFINED SWAP DROP 0= NOT ;

: C[
(* word word here ;) I homonym)
: OMP PARE (a i , a 2 , n l -- negat ive /zero /pos i t ive)

OVEK + swap
DO CUUNT I C3 - ?DUP

LOOP
I F 0 THEN ;

I F SWAP O= LEAVE THEN

SCR# 72
(@as d i r e c t o r y system wwb/wwb 830714)
: MORE (-- addr f 1 (b l word dccp c 3 -or-

B E G I N EL WORD bUP 2+ C 3 BL OR EL -

WHILE DROP 1 E L K + ! 0 >.IN !

I F TRUE E X I T THEN
ELK 3 1 + B/SCR MOD

REPEAT F A L S E -
(i n t e r p r e t s a word 1
DEFINED
I F EXECUTE
ELSE NUMRER (dDl 3 CN i f drop then)

: INTERPRET-&-WORD (--<::word>.)

THEN ;
CONTINUED (n --) (b/scr Ir) RLK ! 0 > I N ! ;

73 LOAD 74 LOAD (d i r e c t o r y system)
78 82 DIRECTORY M A I N M A I N

SCK# 73
(@a+ d i r e c t o r y system wwb/wwb 830714)
: I N T g I G U E (-- f l a) (search t h e screen)

R E G I N MORE (a i d r , f)
I F PAD DUP C 3 1+ COMPARE (0 f o r e ual)

E(L WORD 01 (0) E L S E TRUE EXIT THEN I F
THEN

UNTIL-. .FALSE ;
: CONNIVE (s c r i , s c r 2 --) ((name>. i s i n "PAD")

ELK 3 >.IN 3 >.R >.R TFUE ROT ROT 1+ SWAP
DO I (b/scr Ir) BLK C / L (sk ip top l i n e) > I N

LOOP ABORT" not. in d i r e c t o r y It

INTERPRET-?-WORD,
R>. R > >.IN . ELK . ;
EL WORD COUNT'PAD 2DUP C ! 1+ SWAP CMOVE CONNIVE ;

INTRIGIJE IF NOT L E ~ V E THEN

: S U E J E I X (s c r i . s c r 2 --*:name>) (f i n d and execute

8CRY 74 - .-

(eas d i r e c t o r y system wwbl
~VFIRI~RLE DIRX
I %DJR (.-- scr 2 scr2
I E S r A B L I S H (s c r i , s c r 2 --
: DIRECTORY (s c r i , s c r 2 --
: NAME (--<;name::l. n --or- d
: VIEW (--<name::. 1
1: NEED (--(:name>.)

ZZCONSTANT DOES) (-- 1

> I N 3 HAVE I t - DROP ELSE >

'wwb 830724)

) D I R Z 2: 5) D I R X 2 . j

k9 F S T A B L I S H :
) A D I R SUBJEC

NAME L I S T ;

. IN ! NAME LOAD

T D

THEN J

i !

)

-
: FOLLOW (--<::name>.)

> I N 3 I iAVE I F . DROP ELSE :,.IN ! WAM$ CONTINUED THEN ;
: RUN (--*:name.:. 1 > I N 3 NEED .>.IN , ;
: D I R (---(:name;?) X D I H M I N L I S T
: SUE((scr ---%:name:;. n -or ci D U ~ SUBJECT i

PROCEDAMlJS WWB '7/ 14/83

End Listing

FORTH Dimensions 12 Volume V, No. 3

A primitive phone list can be set up:
: .PH# (DN ---)

< # # # # #ASCII - HOLD
Us #> TYPE S M E ;

: REACH (---)
[NAME PHONES 1 LITERAL
DUP SUBJECT .PH# ;

Since the value of a name or subject
is interpreted, SUBJECT could be used
for menus. Assuming that #MENU is a
screen with one- or two-character
codes alternating with associated
words to process them, something like
the following could be done.

: MENU (---)
#MENU US1 PROMPT
QUERY 0 >IN !
#MENU DUP SUBJECT ;

“RUN something” is equivalent to
“NEED something something”.

‘‘FOLLOW name” has a somewhat
similar relation to “NEED name” that
“-->” has to “LOAD”. It is used at the
beginning of a screen to get to an ear-
lier screen that will lead to the current
screen. This allows an entire applica-
tion, spanning several screens, to be
loaded from a request for any one of
the constituent words.

In the original conception, we
thought that directories would be

sparse, with only major entries like
traditional directory screens. We soon
found that all definitions could be put
in the directory (and a utility to do this
was developed). This makes VIEW act
like its homonym, which vectors
CREATE. An important difference is
that our VIEW can list the source of
words that are not yet defined.

Since June 1982, this system has
been installed on Apple, Atari, CP/M
and Heath Figforth, Micromotion
Forth79, MVP Forth, and the Starting
Forth dialect. The following utility
words or their equivalent are required:

MORE returns (address,true) if there
are more words in the input stream,
(address,false) if the input stream is ex-
hausted. Our definition should work
for any system, even when BISCR is not
1. On a standard system, the definition
may be replaced with

: MORE (--- a,f)
BL WORD DUP C@ ;

(See Suralis and Brodie, “Checksum
for Hand-Entered Source Screens,”
Forth Dimensions, Vol. IV, No. 3, p.
15.)

next word in the input stream. NUMBER
is like the Starting Forth word, and
returns a number or double number. In
FIG-Forth you will have to remove the
parenthesis marks from DPL @ o< IF

INTERPRET-A-WORD interprets the

DROP THEN.

DEFINED returns a compilation ad-
dress (which can be executed) and a
true flag if the next word is defined, or
a string address (which can be further
massaged) and a false flag if the next
word is unknown. It can be replaced
with -’ NOT in some systems.

HAVE returns TRUE Or FALSE
depending on whether you already
have the next word or not. In Forth79
you may replace it with FIND.

All that is required of COMMRE is
that strings at HERE and P#D can be
compared for equality. INTRIGUE can
be adapted to use the Starting Forth
-m or the FIG-Forth - T E ~ instead.

CONllNUED is from the reference
word set and goes to a screen with no
return. It is used in the definition of
F O W . A “named --> ” can be done

NAME word CONTlNUED

If WSCR is not 1 then remove the
parentheses from around B/SCR m in
CONTINUED and CONNIVE.

First Screen of “FORMATTER” Directory

I FM’T KtP/WWB E3.30714 1
L I N E S 23C) =‘7 230 DATE 230 .DATE 230 TODAY 230 PGGELEN 231
PAGEWID.TH 231 HlJGE 231 MAXSTRING 2151 CURPGGE 232 NEWPAGE 232
LINENU 232 PLVGL 232 MlVAL. 232 M2VAL 232 M3VGL 232 M4VGL 292
BOTTOM 232 HEADER 232 FOOTER 292 F I L L I N G 239 RJUST 233
L.SVAL ,233 SPVAL 2.33 I N V A L 2.33 RMVAI- 233 T I V A L 233 CEVAL 233
lJLVAL 233 OUTP 234 OUTW 234 OUTWDS 234 D I R E C T I O N 234
BETWEEN 2.34 CAP 234 AL.LCAP 234 OUTBUF 234 DATE 235 .DATE 235
TODAY 235 PUTTL 235 PUTHEGD 236 PUTFOUT 23h P U T L I N E 237 HR 238
PUTSPACE 238 PLJTPAGE 2.39 GETPARGM 240 SETVAL 240 S E T L S 241
SETCE 241 SETUL 241 GETTL 242 SETPAGE 242 SETSP 242 SETNE 242

SE’TM1 244 SE.TM2 244 SETM.3 2 4 4 SETM4 2 4 4 .FI 245 .NF 245
.BH 245 .J \J 243 .RJ 245 . N J 245 . L S 2 4 6 .CE 246 .UL 246
.HE 246 .FO 2 4 6 .HF 247 .SP 247 .NE 247 . I N 247 .RM 247

SETIN 243 SETRM 243 s n r x 2 4 3 SETBOTTOM 244 SETPL 244

Figure Three

Volume V, No. 3 13 FORTH Dimensions

A RAMdisk for
808618088 FIG-Forth

John FK Irwin
Austin, Texas

My IBM Personal Computer, with
320K of RAM, has far more memory
than is used by most Forth programs.
The desire to eliminate wear and tear
on my diskette drives and diskettes
prompted me to develop a RAMDisk
application in Forth to make use of this
resource. The program measures the
unused RAM space remaining after
Forth is loaded and makes the free
space into a virtual diskette drive of
that maximum capacity. The perform-
ance increase is impressive and the ab-
sence of the usual diskette commotion
is welcome. By copying a set of screens
to RAMDisk, program changes may be
tried non-destructively and then copied
back to the original screens when com-
pletely debugged.

Non-Standard Words

My Forth, although similar to the
FIG 8086 implementation, is a greatly
expanded version with dictionaries for
multi-tasking, full-screen, color, and
provision for DOS-compatible, named
disk files. The RAMDisk program
presented here is a subset of my pro-
gram; the omitted material pertains
mainly to presenting the RAMDisk to
the user as a DOS file.

This program makes use of several
words from past issues of Forth Di-
mensions: the Kitt Peak GOM), and the
modular programming words INTER-
NAL, EXTERNAL and MODULE. These
definitions are presented for reference.
The extended segment load and store
words EC@, EC!, E@ and El in my sys-
tem address the segment defined by a
user variable EB (Extended Base). My
input/output words are lo@, 10!,10c@,
and IOC!. The meaning is obvious and
equivalent words may exist in other
8086/88 Forths or may be coded by the
user. The assembler words used in
(MEM) have obvious functions.

0 (K i t t Peak GODO and M o d u l a r P r o g r a m m i n g Words)

1
2
3 : (GODO) 2 t 0 MAX R 3 4 - WIN R T DUP DUP 3 + >R
4 + 2+ P EXECUTE ;
5
6 : GODO COMPILE (GODO) HERE 0 , 2 ; I M M E D I A T E
7
B
9 : I N T E R N A L CURRENT 3 3 ; (s t a r t p r i v a t e p r o g r a m sec t ion)

1 0
1 1 : EXTERNAL HERE ; (end p r i v a t e p r o g r a m s e c t i o n)
12
13 : MODULE
14
15

P F A L F A ! ; (h ide t h e p r i v a t e w o r d s)

R

SCR # 768
0 < RamDis1, P r o g r a m) I N T E R N A L
1
2 0 CONSTANT R A N I (t o t a l n u m b e r of R a m D i s k bu f fe rs)

; 16384 CONSTANT RAMBLK (f l r s t b l o c k n u m b e r)
4 0 CONSTANT RAMSEG (base s e g m e n t address of R a m D i s k)

6 HEX
7
6 ASSEMBLE CODE (MEM) 12 I N T PSHAX PSHCS END-CODE

c

7
1 0 :
1 1
12
13
14
15

SCH #
I3 (

1
2 :
3
4

6
7
8
7 :
10
1 1
12
13
14
1s

c

SCR #
0 (
1
2 :
3
4
5
6
7
8
7
10
1 1
12
13
14
15

(stores seg base, RAMSEG, and # b f r s) H D m e m s i r e (---)

(MEM) 1000 + DUP ' RAMSEG ! >R 40 t R > -
1 1 / ' RAM# ! ;

DEC I MAL -- ,:>

769
R a m D i s l P r o g r a m) HEX

R D c l e a r (---) (m a r l ' a l l b u f f e r s e m p t y)

RAMSEG DUP RAM# 1 1 t + sww
DO

I ER ' (access a bu f fe r 1
CJ 0 E ' (m a r k buf fsr unused)

1 1 +Loor : (t o n e x t bu f fe r)

R D s e g (b l k --- b l k 1 (sets EB t o b u f f e r s t a r t)

wr RAMBL~; - (get o f f se t)

1 1 t RAMSEG + ER : (c a l c u l a t e bu f fe r address)

DECIMAL

770
R a m D i s k P r o g r a m) HEX

R D w r i t c (b f r b l k ---) (copy r e l a t i v e b lock)

61 I O C 3 J OR (c h i r p beeper)

61 I O C '
61 I O C P F C AND (q u i t beep)

61 roc!
R D s e g (set bu f fe r segment)

(w r i t e b l o c k n u m b e r) 0 E !
102 2 DO

DUP 3 I E! 2+ copy b lock t o RamDisk :)

Program Interface

The RAMDisk program should be
loaded before other applications. The
only nucleus word affected is FUW. In
order to make existing words, such as
FLUSH, work with the RAMDisk, this
program replaces the first parameter
word of W (R>) with the execution
address of R D W . R D W checks the
block number to see if the call is to
RAMDisk. If not, then the R >
replaced at 'URMT is emulated and
execution proceeds with the native W
code. Since the RAMDisk program
modifies a nucleus word, it should be
"sealed" under FENCE to prevent
accidental FORGETing .

.

SCR #
0 (

1
.7 . & .
4 :

6
7
8
9

1 0
11
12
1;
14
15

J

SCR #
0 (
1
7 :

4
5
t
7
a
9

10
11
12
13
14
15

-

SCR #
I:] (

1
2 :

4
5 :
6
7
D
9

10
11
12
1 .;
14
15

-

771
R a m D i s l P r o g r a m) HEX

R D e r r CR . " R a m D i s l ERROR. i m p r o p e r funct ion c a l l " Q U I T :

R U r e a d (b f r b l l ---) (

R D s e g (
0 E,S = (
I F (

102 2 DO (

2 +LOOP DROP
I E.3 OVER ' 2+

E L S E (
1 0 0 BL FILL (

E N D I F :

copy r e l a t i v e b l o c k)

set b u f f e r s e g m e n t)
see if data present 1
read ac tua l bu f fe r)
copy R a m D i s k t o b u f f e r)

R a m D i s k bu f fe r no t v a l i d)

f i l l bu f fe r w i t h b lanks)

D E C I M A L - - .

772
RamDis l : P r o g r a m 1

RDR/W (addr b l k f) (a u g m e n t s FORTH R/W)

OVER DUP (see i f i n RamDis i . :)

RAMBLE: 1- :> SWAP RAM# RAMBLK + 4: AND
I F (then m e m o r y read or w r i t e)

1.C GODO

THEN
R D e r r R D w r i t e R D r e a d R D e r r

R:. DROP (drop re turn l i n k t o R/W)
E L S E (e lse r e a l r e a d or w r i t e)

R::. SWAP ?R ?R (rep lace R > f r o m R/W)

E N D I F ; (and return t o R/W)

_-

77:
R a m D i s l P r o g r a m)

K D i n i t (---) (i n i t i a l i z e a p h a n t o m d i s k e t t e i n RAM)

H D m e m s i i e R D c l e a r ' RDR/W CFA ' R/W ' ;

R D p a r m s (---) (d i s p l a y R a m D i s k p a r a m e t e r s)

DECIMAL CR CR . " R a m D i s k 'I CR CR
." C a p a c i t y : I' RAM# 4 / . ." k - b y t e s ' ' CR ." B l o c k s : " RAMBLk. .

RAM# RAMBLK + 1- . CR
. I ' S c r e e n s : " RAMELK 4 / DUP .

RAM# 4 / + . CR ;

I, - 8 ,

I D - I,

-- >

SCR # 774
0 (R a m D i s k P r o g r a m)
1
2 EXTERNAL
3
4 : RD (0 --- i n i t i a l i z e RD,
5 1 --- return i n i t i a l b l o c k 0 ,
6 2 --- return n u m b e r of blocks,
7 >2 --- type i n f o r m a t i o n b lock)
8 l+ GODO R D p a r m s R D i n i t RAHBLK RAM# R D p a r m r THEN ;
9

10 MODULE FORTH
11
12 0 RD 3 RD (i n i t i a l i z e RD and s h o w user the s i z e)
13
14
15

The assembler word (MEW returns
two values from which the available
memory is determined. The PC-DOS
call 12 I N 1 returns the memory size in
Kbytes. Pushing the CS register returns
the beginning address of the Forth code
segment. From these values, GET-MEM-
SIZE determines space available for the
RAMDisk so that the compiled ap-
plication can be moved freely between
machines with differing memory size.
If Forth is loaded at a fixed location in
a fixed memory-size machine, the word
(MEW can be replaced by a constant for
memory size and a constant for the end
of the Forth segment.

My Forth uses 256-byte blocks.
Each block is assigned seventeen six-
teen-byte 8086/88 "paragraphs". This
wastes twelve bytes per block but sim-
plifies buffer addressing. The extra
segment pointer (EB) is set to the start-
ing address of RAMDisk plus seven-
teen times the relative block number
within the RAMDisk. The block iden-
tifier is then at offset zero and the
block proper at offset two to 257 rela-
tive to the segment register (EB). This
scheme is easily adapted to other buff-
er sizes. For systems with 1K blocks,
each block is assigned sixty-five para-
graphs.

End Listing
Program Functions

RD is the only RAMDisk word visible
to the user. This word accepts a func-
tion flag as follows:

Volume V, NO. 3 15 FORTH Dimensions

FORTH for Z-80@ ,8086,68000, and IBM@ PC
FORTH Application Development Systems include interpreterlcompiler with virtual memory management and
multi-tasking, assembler, full screen editor, decompiler, utilities, and 130 + page manual. Standard random ac-
cess files used for screen storage, extensions provided for access to all operating system functions.

2-80 FORTH for CPIM@ 2.2 or MPIM II . .$ 50.00
8080 FORTH for CPIM 2.2 or MPIM II . $ 50.00
8086FORTHforCPIM-86orMS-DOS . $100.00
PCIFORTHTM for PC-DOS, CPIM-86, or CCPM . $100.00
68000FORTHforCPIM-68K ..$25 0.00

83 - Standard version of all application development systems available soon. Al l registered users will be entitled
to software update at nominal cost.

FORTH + Systems are 32 bit implementations that allow creation of programs as large as 1 megabyte. The en-
tire memory address space of the 68000 or 8086188 is supported directly for programs and data.

PCIFORTH + for PC-DOS or CPIM-86 . .$250.00
8086 FORTH + for CPIM-86. $250.00
68000 FORTH + for CPIM-68K . .$400.00

Software floating point (2-80,8086, PC only). .$100.00
Intel 8087 support (8086, PC only). .$lOO.OO

Color graphics with animation support (PC only) . .$100.00
Symbolic interactive debugger (PC only). .$lOO.OO
Cross reference utility. .$ 25.00

(custom character sets, PC only) . .$ 50.00
PClTERM communications program for PC and Smartmodem. .$ 60.00
Hierarchical file manager . .$ 50.00

Extension Packages for FORTH systems

AMD9511support(8086,2-80only) ... 0.00

TM PCIGEN

B-treeindexmanager . 5.00
B-treeindexandfilemanager ...$20 0.00

QTF + Screen editor and text formatter by Leo Brodie,
forIBM PCwithIBMor Epsonprinter ..$lO 0.00

Nautilus Cross Compiler allows you to expand or modify the FORTH nucleus, recompile on a host computer for
a different target computer, generate headerless and ROMable code. Supports forward referencing. Produces
executable image in RAM or disk file. No license fee for applications. Prerequisite: Application Development
System for host computer.
Hosts: 2-80 (CPIM 2.2 or MPIM II), 8086188 (CPIM-86 or MS-DOS). IBM PC (PC-DOS or CPIM-86). 68000 (CPIM-68K)
Targets: 8080, Z.80. 8086188, 6502, LSI.11. 68000. 1802. 2-8

Cross-Compiler for one host and one target . $300.00

AUGUSTATM ADA subset compiler from Computer Linguistics, for 2-80 computers under CPIM 2.2 $ 90.00

"Starting FORTH" (8" format only). $ 95.00

Eachadditionaltarget .. 0.00

LEARNING FORTH computer-assisted tutorial by Laxen and Harris for CPIM, includes Brodie's

2-80 Machine Tests Memory, disk, printer, and console tests with all source code in standard Zilog
mnemonics . . .$ 50.00
8080 and 2-80 application development systems require 48 kbytes RAM and 1 disk drive, 8086 and 68000 require 64 kbytes. Prices include shipping by UPS or first ClaSS
mail within USA and Canada. California residents add appropriate sales tax. Purchase orders accepted at our discretion. Master Charge and Visa accepted.

Disk formats avallable: Standard CPIM 8" SSSD. Northstar 5 % " QD. Micropolis 5% " QD, Sage 5% " DO. Apple 5% ", Victor 9000 5% ". Kaypro 5 % ", Osborne 5% " OD,
Micromate 5 % ", IBM PC 5 % ", Standard MS.DOS 5 % " SSDD. Most other formats can be special ordered.

.

Laboratory Microsystems, Inc.
4147 Beethoven Street
Los Angeles, CA 90066

(21 3) 306-741 2

2-60 is a registered trademark of Zilog. Inc.
CPIM is a registered trademark of Digital Research, Inc.
IBM is a registered trademark of International Business Machines COrp.

Augusta is a trademark of Computer Linguistics
dBASE I I is a trademark of Ashton-Tale

PClFORTH and PClGEN are trademarks of Laboratory Microsystems Inc.

16 Volume V, No. 3 FORTH Dimensions

I

ock?i!s()FdDisk, sets RAMDisk
length.

1 RD (1 --- n)
returns initial block of RAMDisk.

2 RD (2 --- n)
returns number of blocks in
RAMDisk.

types a summary block on the
screen.

> 2 RD (3 ---)

This function call interface is
implemented by G O W and is very easy
to interface to existing programs.

Clearing the RAMDisk (0 RD)
should be done before use and is done
simply by writing zero to the block
numbers in the RAMDisk. This opera-
tion checks the memory size and resets
the RAMDisk origin and length, allow-
ing the program to dynamically adapt
to a different memory size and pro-
gram load address each time it is used.

RDWW is equivalent to FIG-Forth
RIW. The stack at entry contains the
standard ww call (addr blk# f). If the
block number is in the RAMDisk, a
GOD0 is used to interpret the flag, else
control is passed back to w with the
flag moved to the R-stack.

RDwrite copies the Forth buffer into
the RAMDisk buffer, including the
block number. The update flag is never
set in RAMDisk buffers since the
RAMDisk represents the physical dis-
kette. To provide some (very needed)
feedback to the user that his EDIT is in-
deed being saved, a speaker click is
emitted for each RAMDisk buffer
write. This is done very simply in the
two lines containing I/O words by
gating and immediately de-gating a bit
in the speaker port. These lines can be
deleted for other systems or if feedback
is not desired.

RDread compares the RAMDisk
buffer block number to the requested
block number to see if the buffer has
been written. A valid buffer is indi-
cated by a match while an invalid buff-
er contains the zero put there by
initialization. If the buffer is valid, the
RAMDisk buffer is copied to the Forth
buffer, else the Forth buffer is blanked
using FILL.

5th FORML Conference
November 23-25,1983

Asilomar Conference Center
Pacific Grove, California, U.S.A.

FORML is a technically advanced conference of FORTH
practitioners. The topics to be discussed will affect the future
evolution of FORTH. FORTH programmers, managers, vendors, and
users will benefit from several informative conference sessions. All
attendees are asked to participate and are encouraged to write a
paper for presentation in an oral or poster session.

Topics Suggested for Resentation

Hardware FORTH implementation Nucleus Variations
Large Address Space Environments Operating System Environments

Multiprogramming Architectures System Generation Techniques

Registration and Papers

Complete the registration form, selecting accomodations desired
and send with your payment to FORML. Include a 100 word abstract
of your proposed paper. Upon acceptance by FORML, a complete
author’s packet will be sent. Completed papers are due September
30, 1983.

Registration Form
Complete and return with check made out to:
FORML P.O. Box 51351, Pa10 Alto, Calif. 94303

Name

Company

Address

City State ZIP

Phone (day) (evening)

I have been programming in FORTH for: (years) (months)

Accommodations Desired:
Prices include coffee breaks, wine and cheese parties, use of Asilomar
facilities, rooms Wednesday and Thursday nights, meals from lunch
Wednesday through lunch Friday. Conference attendees receive notebooks
of papers presented.

Conference attendees, share a double room:
number of people

Attendees in single room (limited availability)
number of people

Non-conference guests:
number of people

x $200 = $

x $250 = $

x $165 = $

TOTAL ENCLOSED $
Options: Vegetarian meals?

Non-smoking roommate? 0

FORML, P.O. Box 51351, Paio Alto, Califomla 94303, U.S.A.

17 FORTH Dimensions Volume V, No. 3

Break Through the
64K Barrier!

FORTH-32'" lets you use up to one megabyte
of memory for programming. A Complete

Development System! Fully Compatible
Software and 8087 Floating Point Extensions.

303 Williams Ave.
Huntsville, AL 35801

(205) 533-9405 800155818088

Now available for the IBM PC, PC-XT, COMPAQ, COLUMBIA MPC,
and other PC compatibles!

IBM, COMPAQ, MPC, and FORTH-32 are trademarks of IBM, COMPAQ, Columbia Data Products, and Quest Research, respectively.

Volume V , No. 3

InIword Parameter

SCH fi 312
k i \ &X CTRL-X $XX SXXXX 'i'Dt113DEC82
1 DECICAL
2 1 KIDTH !
3 : &X \ p u t A s c i i constant of X on s tack

5 : $XX \ pu t Hex constant of XX on stack
6 EASE @ HERE I+ " E T R ROT BASE ! [COMPILE] LITERAL ;
7 IZlMEDIATE
8 : SXXXX \ put 16 b i t Flex constant of XXXX on stack
5 [COMPILE] $XX ; IMPTDIATE

4 HERR 2+ C@ [COXPILE] LITCPRL ; IPLYEDIATE

lfl 5 IvIDTI1 !
11 : CTRL-X \ P u t Control charac te r of X on stack
1 2 tlERE: 6 + C@ C/L - [COF!PILC] LITFRAL ; IMPEDIATE
13 31 WIDTM !
14 ;S
15

SCR 4 313
0 \ DUPX DROPX
1 DECIMAL
2 3 :!IDTI1 !
3 : DUPX \ dup x-th i t e m on stack
4 HERF [WIDTH e 1 L81TE:FAL + NUMnFP DROP
5 [COMPILT'] LITERAL PICK ; IMKRDIATF
6 4 WIDTH !
7 : DPOPX
8 HERF [WIDTH cd 1 LITPRAL + 'IUP%BI:R DROP
9 [COMPILT] LITEFAL ROLL PROP ; IWICDIATE

TIN1 3DK8 2

\ drop x-th iterr. on s tack

18 3 1 WIDTII ! ; S ..
11
1.7
1 L

1 3
1 4
15

SCR # 314
(? \ SWAPXY TDH13DEC82
1 DECIMAL
2 : X (addr --- stack-addr) \ g e t x-th cell address

4 : Y (addr --- stack-addr) \ g e t y-th cell address
5 1 + x ;
6 4 VIDTH !
7 : SIYAPXY
8 HERF [KIDTH cd I+ 1 LITERAL + DUP
9 x SW4P Y

3 C@ ASCII 0 - 2* SP!? 2+ + ;

\ swap t h e x-th & y-tb e n t r i e s

VSWAP ; IWEDIATr
11 31 WIDTH !

13
14
15

1 2 ;s

End Listing

Passing
Timothy Huang

Portland, Oregon

This article and short program was
stimulated by one of the L.A. FIG'S
handouts. Screen 312 is basically a
copy from that. The word &x functions
similar to ASCII, except that the
parameter resides within the word, i.e.,
the x.

The concepts from these words are
so intriguing that I decided to explore
them further (Screen 313). As normal
Forth will not allow the parameter to
be passed within the word's name
itself, by adjusting the user variable
WIDTH, one can play the game of
passing the bulk through the name of
the word. Screen 399 provides two
examples of how DUPX will duplicate
the xth stack entry to the top of the
stack. This is similar to < x > PICK,
except the index is included in the
name. DROPX performs similar to the
combination of C n > ROLL DROP.

The word SWAPXY (Screen 314)
extends the same concept one step fur-
ther in that it passes two single-digit
parameters. It swaps the xth and the
yth stack entry. The word

VSWAP (a d d r l addr2 --- 1

used in line 10 will swap the contents of
two addresses < a d d r l > and
< addr2>. This word can be defined
as :

: VSWAP (addrl aMr2 --- 1
2DUP @ >R @ S W P ! R> SWAP ! ;

Figure One displays some examples
of usages.

9 8 7 6 5 4 3 2 1 CP S .
9 8 7 G 5 4 3 2 1 CK
DUP5 CP s.

DROP CF S.
9 G 7 6 5 4 3 2 101:
DROP7 CR S.
0 8 G 5 4 3 2 1 CK
SP! OY
9 8 7 G 5 4 3 2 1 OK
SCvAP37 C' S.
9 8 3 6 5 4 7 2 1 O K
SI*!FP29 CR s.
2 8 3 6 5 4 7 9 1 OK
SWAP15 CP S. 5 SPACF'S SWAP51 S.
2 8 3 6 1 4 7 9 5 2 8 3 6 5 4 7 9 1 0 K

9 R 7 G 5 4 3 2 1 5 np

"

Figure One

~ ~ _ _ _ _ _

Volume V, No 3

L
19 FORTH Dimensions

Stack-Oriented Co-Processors
and Forth

Dana Redington
Redwood City, California

Ideally, a computer can be adapted
to a wide variety of laboratory situa-
tions, provided that two conditions are
met. The first condition requires using
an appropriate, interactive environ-
ment. Here, Forth provides one of the
best alternatives. The second condition
usually requires extending software to
meet current needs. Since Forth is in-
tentionally extensible, this means
molding the environment to fit the
situation by enhancing the dictionary.
Occasionally, increasing the vocabu-
lary is not sufficient and more direct
enhancements are needed in the form
of hardware, as in floating-point com-
putation.

This paper focuses on hardware en-
hancements to the Forth environment.
It briefly reviews the structure of
Forth, introduces co-processing, out-
lines the 8087 numeric processor with
example words, and suggests the future
of stacks in Forth.

The Structure of Forth
Forth is a unique, interactive lan-

guagelenvironment . It is an example
of what Loeliger (1981) calls a “thread-
ed interpretive language.” Additional-
ly, Forth utilizes stacks, as do other
languages (like UCSD Pascal). But, it
is more than just an interactive, stack-
oriented, threaded interpreter. The
sum, in this case, is greater than the in-
dividual parts. Hofstadter’s (1979)
description of “strange loops” form-
ing emergent phenomena is appropri-
ate for describing what happens in
Forth: “an interaction between levels
in which the top level reaches back
down towards the bottom level and in-
fluences it, while at the same time be-
ing itself determined by the bottom
level.” (p. 709).

Using this analogy, the stack resides
near the bottom level of Forth. The
stack is a temporary place to store and

transpose elements. Usually, stack ele-
ments are inferred to be 16-bit num-
bers even though other types of ele-
ments exist (e.g. character strings on a
string stack or sprite planes on a gra-
phics stack). The stack elements are
stored one on top of the other where
the most recently placed element on the
stack is usually the first to come off,
that is, a last-in-first-out stack. The
stack is also a place to transform ele-
ments-using the (reverse polish) num-
ber sequence: “1 3 + .” yields “4
OK”.

There are different types of stacks in
Forth. The type is determined by the
meaning of the stack elements-what
function the elements serve. A data or
parameter stack is used to store ele-
ments that usually represent data or the
address of a variable. A return stack is
used to store numbers that usually rep-
resent program flow-control parame-
ters like the code field address of the
next word to be executed.

Unfortunately, in Forth it becomes
increasingly awkward to deal with
numbers of larger sizes as in the “rip-
ple of the carry bit” problem beyond
16 bits. The problem of larger numbers
becomes more apparent on 16- and
32-bit computers. Examples include
attempting to access memory beyond
the 64K byte limit and dealing with
numbers well beyond 16 bits as in qua-
druple-word arithmetic or floating-
point computation. In such cases an al-
ternative is necessary.

There are three primary alternatives
to augmenting the Forth stack environ-
ment. They are, in increasing order of
complexity: (1) simply devising Colon
and/or Code definitions like writing
floating-point routines in software and
(2) adapting memory-mapped or port-
ed hardware like a floating-point pro-
cessor (such as adding a 9511 or 9512)
with the necessary interface words, or
(3) incorporating a co-processor spe-
cially equipped to deal with the desired

I stack elements. Incorporating a co-
processor is the most interesting, but
seldom used, alternative.

Stack-Oriented Co-Processing
Co-processing is a special form of

multi-processing . The co-processor, as
a guest, lacks some of the faculties of
the host processor. The guest must rely
on the host for some faculties such as
memory segmentation and address
generation. One advantage of co-pro-
cessing is that almost no overhead is in-
curred in setting up the guest to execute
an instruction when the host and guest
are working in unison. A second ad-
vantage of co-processing is that the
guest can be performing a complex cal-
culation (like raising a number to the
ith power) while the host is performing
a few “housekeeping” chores; this is
referred to as an asynchronous co-pro-
cessing mode, A third advantage of co-
processing is that host and guest can
work together in what is called maxi-
mum synchronized co-processing; the
host “waits” until the instant the guest
has completed a computation before
continuing with the instruction stream.

Obviously, a co-processor is a device
that augments a processor by extending
and/or redefining the host’s capability.
An ideal co-processor shares the host’s
resources. This shared resources ap-
proach also has a severe hardware limi-
tation: a special co-processor must ex-
ist for a specific microprocessor. And
in the case of Intel’s 8086, a special
8087 Numeric Data Processor (NDP) is
available. (The 16081 numeric co-pro-
cessor exists for National’s 16OOO series
and Motorola is developing an NDP
for the 68000).

I

I
I

The 8087
The 8087 is a true co-processor. It

augments the register and instruction
sets of the host 8086(88) microproces-
sor; it enhances the variety of numeric
data types; and it accelerates the
8086(88)’s numeric computation capa-
bilities. The (5Mhz) 8087 was initially

FORTH Dimensions 20 Volume V, No. 3

introduced in July 1980. A newer, fast-
er (8 Mhz) 8087 is projected for Janu-
ary 1984. The 8087 has eight 80-bit
registers, two pointers, a control regis-
ter and a status register; supports seven
data or number types; performs all
computations on a temporary real for-
mat (80 bit); and has six principle in-
struction types. Detailed technical in-
formation on the 8086(88)/8087 can be
found elsewhere.

\

I
I One of the unique features of the

8087 illustrates how co-processing in-
structions are interpreted. In a maxi-
mum synchronized mode, the NDP in-
terprets the instruction stream along
with the host processor. The NDP
remains poised until a special com-
mand sequence is detected (ESC).
When the special co-processor com-
mand is read, the 8087 interprets the
subsequent commands, accessing me-
mory as necessary and executing the in-
terpreted commands. The 8086 waits
until the NDP has completed the com-
mands before continuing. In a true co-
processing fashion the 8086(88) and
8087 interpret the same instruction
stream containing embedded NDP
commands.

The 8087 was designed with a stack
structure: “the charter of the 8087
design team was first to achieve excep-
tional functionality and then obtain
high performance.” (iAPX manual, p.
S.3). The 8087 is a Stack-Oriented Co-
processor (maybe an “SOC”?). This
structure makes it compatible not only
with the 8086 but also with the archi-
tecture of Forth.

Forth and a Stack-Oriented
Co-processor

The stack-oriented structure of the
8087 provides an easy incorporation in-
to an 8086 Forth environment. All that
is needed is a small 8087 assembler that
contains the primitive commands to
communicate with the NDP (this kind
of assembler is described elsewher$).
The operation of a stack-oriented co-
processor is identical to the operation

I
i

of existing stacks; two examples help il-
lustrate the simple extensibility of
stack-oriented co-processing.

The first example involves a variant
of integer computation. Usually, one
integer is placed on the stack, then a
second integer is placed on the stack
and in reverse polish fashion a com-
mand is given to multiply the two num-
bers; for example,

1234 5 m .
would produce

6170 0 OK

My 8 Mhz 8086 Forth environment
performs 3230 (integer multiply) oper-
ations per second, or 3.23 KOPS (pro-
nounced “K-OPS”).

In the co-processing case, a similar
sequence is repeated. Again two num-
bers are placed on the stack. But, in-
stead of issuing a m command, which
would result in the 8086 multiplying
the numbers, four additional steps
must take place: (1) the first number
must be moved to the co-processor’s
stack (the stack that physically resides
within the 8087 chip; for this the word
W>F defined in the 8087 assembler
moves an integer or word from the
data stack to the floating-point stack);
(2) the second number must be moved
to the 8087 stack, again using w > F; (3)
the numbers must be multiplied using
Fm: (the floating-point analog of m ;
and then (4) the resulting number must
be returned to the Forth data stack
using F>W (which converts a floating-
point number to a 16-bit integer and
transfers it to the top of the data
stack). The typed sequence

1234 5 W>F W>F FmF>W .
would produce, again

6170 OK

FORTH Dimensions Volume V, No 3 21

1. Good references on the 8087 include: Duncan
(1982), Field (1983), Palmer, et ul., (1980), Rash
(1981), Simington (1983).

2. I resurrected an 808618087 assembler written
in Forth by John Bumgarner on my Seattle Com-
puter Products 8086/8087 (Gazelle) system run-
ning at 8 Mhz. John Bumgarner and myself are

completing a draft of an article on “An Exten-
sible Assembler for the 8087.” The 8087 was
placed in a copper “girdle” (only recommended
for Forth artisans) to enhance heat dissipation at
the increased clock frequency (thank you TZ). I
have also been beta-testing a newer (non-girdled)
8 Mhz 8087 (thank you LM, JT, Dc).

In this case “more is less.” Even
though four steps are required, the
8086 + 8087 actually performs floating-
point multiplication at 29.41 KOPS.
The addition of a numeric co-processor
increases the computational speed for
integer multiplication by about nine
times.

As a side point, the NDP is capable
of performing in excess of 88,8000
floating-point multiplies per second.
But the observed computational speed
is slower due to the overhead needed to
run Forth. (What if a Forth co-pro-
cessor chip existed for DOCOL, SEMIS,
and NEXT?)

The second example of stack-orient-
ed co-processing involves extending the
Forth environment. This example is an
extension of the first one. A significant
difference between Forth and other
languages and/or environments is the
Divide-Test-Conquer approach; first
divide the application into easily test-
able parts, test each part, and then con-
quer the application. Having already
tested the fast variant of an integer
multiply, we can now define a new
word and extend the vocabulary. For
added clarity let us define the new
word as:

CODE m (W>F) (W>F)
(Fm) (F>W) NEXT;

The words in parentheses are the
primitives of their “colon-level” coun-
terparts. CODE m operates on the
stacks in an identical fashion as:

W>F WF Fm F>W

but at 45.45 KOPS.
Additionally, after this word has

been defined, any subsequent applica-
tions of m uses the “newer” and faster
definition. The definition for integer
multiply has been literally redefined.
This Forth feature is rarely found in
other languages. For example, attempt-
ing to redefine the integer multiply in
UCSD Pascal is next to impossible.

The Future of Stack-Oriented
Co-processors and Forth

Stack-oriented co-processors pro-
vide a means of extending a Forth sys-
tem. For now, numeric co-processors
are easily applied. Their addition not
only extends computations to include

floatingpoint calculations but also en-
ables microprocessor systems to rival
larger mini and mainframe computers
in number crunching ability. In the
near future, other types of stack-
oriented co-processors may become
available, including string and graphics
co-processors. Until a Forth processor
is available, and maybe even after, a
Forth co-processor chip also provides a
means of extending a Forth system. In
the co-processor approach, very pow-
erful microprocessor systems can be
built of various combinations of guest
processors and host processors. U1-
timately, each element type that re-
quires a stack might have a custom co-
processor.

The most important benefit of stack-
oriented co-processors is their special
ability to operate on an internal stack
of predefined elements. These proces-
sors provide an effective balance of in-
creased speed with a minimum of addi-
tional hardware and additional voca-
bulary. The interaction between Forth
and stack-oriented co-processors forms

a strange loop where the sum is con-
veniently greater than the computa-
tional parts.

This paper has evolved from two
earlier papers presented at the 4th An-
nual Forth Convention, San Jose, 9
October 1982 and at the Eighth Annual
West Coast Computer Faire, San Fran-
cisco, 18-20 March 1983. Address
communications to: D. Redington,
Sleep Research Center, Department of
Psychiatry and Behavioral Science,
Stanford University School of Medi-
cine, Stanford, California 94305.

References

Duncan, R. “Intel’s 8087 Numeric
Data Processor.” Dr. Dobb’s Journal,

Field, T. “The IBM P C and the Intel
8087 Co-processor, Part 1 : Overview
and Floating-point Assembly-Lan-
guage Support.” Byte, 8(8), 1983, pp.

1982, 7(8), pp. 47-50.

331-374.

Hofstadter, D. R. Godel, Escher,
Bach: an eternal golden braid. New
York: Basic Books. 1979.

Loeliger, R. G . Threaded Interpretive
Languages. Peterborough, NH: Byte
Books. 1981.

Palmer J . , Nave R., Wymore C.,
Koehler R., & McMinn C. “Making
Mainframe Mathematics Accessible to
Microcomputers.” Electronics, 8 May,

Rash B., “Application Note AP-113
- Getting Started with Numeric Data
Processors.” Intel Corporation, Feb-
ruary 198 1 .

Simington, R. B. “The Intel 8087 Nu-
merics Processor Extension. ” Byte,

iAPX 86,88 USER’S Manual. Intel
Corporation, 1981.

1980, pp. 114-121.

8(4), 1983, pp. 154-172.

1 proFORTH COMPILER

0

8080/8085,280 VERSIONS
SUPPORTS DEVELOPMENT FOR DEDICATED APPLICATIONS
INTERACTIVELY TEST HEADERLESS CODE

MULTIPLE, PURGABLE DICTIONARIES
IN-PLACE COMPILATION OF ROMABLE TARGET CODE

FORTH-79 SUPERSET
AVAILABLE NOW FOR TEKTRONIX DEVELOPMENT SYSTEMS - $22

2 MICROPROCESSOR-BASED PRODUCT DESIGN
SOFTWARE ENGINEERING

ELECTRONICS AND PRINTED CIRCUIT DESIGN
0 PROTOTYPE FABRICATION AND TEST

REAL-TIME ASSEMBLY LANGUAGE/proFORTH
MULTITASKING

0 DIVERSIFIED STAFF

DESIGN STUDIES - COST ANALYSIS

Volume V, No. 3 FORTH Dimensions 22

Code and
Colon Compatibility

David Held
Hermosa Beach, California

I recently developed an approach to
a problem which may be of interest to
others. I was developing a communica-
tions application in Forth-79 which
would require some code definitions
due to speed requirements. For the
development process, however, I
preferred to begin with colon defini-
tions, planning to convert progressive-
ly higher-level words into code as the
work progressed. Thus, I faced the
problem of creating code definitions
for words that might be called either as
subroutines from other code words, or
as Forth-compatible words from colon
definitions.

The critical difference between the
two is that a machine-language sub-
routine should end by returning to its
caller (pop the stack for the caller’s
address), whereas a Forth code defini-
tion ends by jumping to NEXT. To
resolve the dilemma, I used the tech-
niques illustrated in Figure One by
8080 machine language.
These words would permit me to make
calls to any machine-language sub-
routine (such as in my system’s
monitor); for example,

: SCROLL F010 CALL ;

would write FO10 over the zero in the
definition of (CALL), and would then

execute (CALL). Thus the monitor sub-
routine at (~ 0 1 0) would be executed,
followed by a jump to NEXT.

Now we want to create subroutines
that can be used either from colon
definitions or code words. Here is a
defining word which defines such sub-
routines. When invoked from colon
definitions, the run-time behavior is
similar to CALL, above. To use the sub-
routine from code definitions, merely
“tick” its address and CALL it in as-
sembly language. Figure l k o shows
the defining word SUBROUTINE:

For example, this word might be
used to define subroutine SUB1, as fol-
lows:
SUBROUTlNE SUBl
80 A MV1
C010 STA
RE1

Now we can invoke SUB1 from
Forth, as follows:
: TEST1 SUB1 ;

as follows:
Or, from a machine-language word,

CODE TEST2
’ SUBl CALL,
NEXT JMP ,
ENPCODE

The advantage we gained by all this
manipulation is that the definition of
SUB1 is unchanged, whether it is used
by a colon or code word.

CODE (C A L L 1 I a word which ralls a subroutine, then jumps to N E X l I
CD C, 0 , I equivalent to CALL 0 I
NEXT JMP, I equivalent to JMP NEXT I
END- CODE

’ l C A l L I l i CONSTANT CALL- ADDH I a constant containing the address I
I of the zero in the above definition. I

: CALI I addr - - - I I a word which calls the subroutine at addr I
CALL-ADDR , I write the desired subroutine address I

I C A L L I ; I and execute I C A L L I
I over the zero in definition of I C A L L I

Figure One

: SUBROUTINE I create a code subroutine useable either from colon I
I or code definitions. I

CCOMPILEll ASSEMBLER I invoke assembler vocabulary I
CREATE I create a header for the subroutine 1
GOES) CALL ; I this happens when subroutines so I

I defined are invoked from FORTH I

Figure Tho

nner Access holds
:he key to your
software solutions

When in-house staff can’t
solve the problem,
make us a part of your team.
As specialists in custom designed
software, we have the know-how
to handle your application
from start to finish.

Call us for some straight talk
about:
a Process Control
I Automated Design
I Database Management
I System Software & Utilities
I Engineering

Scientific Applications
I Turn Kev Svstems

a .

Inner Access Corporation n P.O. Box 888, Belmont, CA 9400 - -
PHONE (41 5) 591 -8295

Volume V, No. 3 23 FORTH Dimensions

~

CORDIC Algorithm Revisited
Dave Freese

Cape May Court House, New Jersey

I am employed as a senior engineer-
ing analyst and routinely use PL/I,
Pascal, Fortran and BASIC at my place
of employment. Until recently, Forth
was just for hacking around at home,
but it may just prove to be the answer
to a “real” estate problem at work. I
am developing special purpose wind
speed/direction instruments for the
U.S. Navy and have been frustrated by
the “fat” code produced by all of the
compilers at my disposal. None of the
compilers have the option of pruning
the object code by removing unwanted
support code. When you are
downloading the resultant code to
ROMs, a trade-off must be made be-
tween code size and speed. Forth may
just let me have the best of both
worlds.

Which brings me to the subject of
source code. The Volume IV, Number
1 issue of Forth Dimensions has found
a permanent place on my desk. It con-
tains some of the best material on
fixed-point arithmetic that is available
(at least with regard to Forth). The
article on vector rotation using the
CORDIC algorithm was particularly
useful to me, as that type of conversion
is routinely performed in wind
speed/direction computation. The
original code did not, however, meet
my expectations with regard to ac-
curacy. In particular, it failed to return
correct values for rotations of 0,45, 90
and 180 degrees. The accompanying
listing of a double-precision version of
the algorithm will provide the needed
accuracy. It converts all input into
double-precision numbers with the bi-
nary point between bits 15 and 16 (i.e.,
the upper half of a number represents
the integer part and the lower half
represents the fractional part.

This was written for 280 Forth by
Laboratory Microsystems. This inter-
preter allows double number literals in
colon definitions. Modify these entries
for FIG-Forth or other interpreters
which do not allow this extension. The
conversion is fast due to the machine
code divide-by-factor-of-two, 2SRA
routine.

Screen # 27 crc = 25114
0
1
2 HEX
3
4
5 : :CODE (-) BASE @ HEX CREATE ;
6
7
8 (j p next)

(CORDIC ALGORITHM -- words for machine code)

(create header with CFA pointing t o body of word)

(terminate body of word with a jump t o NEXT)

9 : ;NEXT (--) 0C3 C, NEXT-LINK , SMUDGE
10 BASE ! ;
11
1 2 DECIMAL
13
1 4
15 ->

Screen # 28 crc = 5781
0 (CORDIC ALGORITHM-- double number words)
1 (2DUP 2SWAP 2DROP D+ D- 2@ 2! previously defined)
2 : 20VER (d l d2 - dl d2 dl) >R >R 2DUP R> R> 2SWAP ;
3 : 2ROT (d l d2 d3 - d2 d3 dl) >R >R 2SWAP R> R> 2 M P ;
4 : 2VAR (--) GUILDS 0 0 , , DOES> ;
5 : 2CON (--) <BUILDS , DOES> 2@ ;
6 : D< ROT 2DUP = IF ROT ROT DMINUS D+ 0< ELSE
7 SWAP < SWAP DROP THEN SWAP DROP ;
8 : D* (d l d2 -- d3) OVER 5 PICK U* 6 ROLL 4 ROLL * +
9 2SwAP * + ;

1 0
11 :CODE 2SRA (d n -- W2-n
1 2 0CA C, NEXT-LINK ,
13 01D C, 0E3 C, 0CB C,
14 03D C, 020 C, OF3 C,
15 ->

0 E l C, 07D C,
0 E l C, 0CB C,

BE5 C, ;NEXT
01c c, OCB c,

Screen # 29 crc = 51411
0 (W R D I C ALGORITHM) ->
1
2
3 POP HL $1: SRA
4 LD AIL RR
5 OR A,A Ex
6 J P Z,NEXT RR
7 POP HL RR
8 Ex
9 cont’d next column DEC

10 J R
11 PUSH
1 2 J P
13
1 4
15

Z i l o g meumonics for def ini t ion of 2SRA

0E37 c,
0 2 c c, OCB C,
01D C, 0E3 C,

H
L

H
(SP) ,HL

FORTH Dimensions 24 Volume V, No. 3

Screen # 30 crc = 16435
0 (ORDIC ALGORITHM)
1 (ALpHA[il = 65536 * 32768 * arctan[l/2^il / Pi 1
2 2vARALpHAs-4ALlLoT
3 536870912. 1 I 316933406. I I 167458907. I 1 85004756. I I

4 42667331. I I 21354465. 1 1 10679838. 1 5340245. I I

5 2670163. I I 1335087. 1 1 667544. 1 333772. I I

6 166886. I I 83443. ,
7 (convert double to single with round up 1
8 : D->S 32768 0 D+ SWAP DROP ;
9 : RVSUBl >R 2ROT 2ROT 20WR 20WR R) 2SRA ;

10 : RVSUB2 >R 2ROT 2ROT ZSWAP ED 2SRA ;
11 : RVSuB3 >R 2ROT R) 4 * ALPHAS + 2@ ;
12 : *KN (n -- d = n * 65536 * 0.60725293)
13
14 R) S->D 39797. D* D+ ;
15 ->

256 /MOD SWAP >R S->D 10188014. D*

Screen # 31 crc = 23246
0 (COEDIC ALGORITHM)
1 : R O m R (n.y-old n.x-old n.ang - n.: .ner
2 >R (save angle)
3 >R (save n.x) *KN (convert n.y)

n.x-new)

4
5
6
7
8
9

10
11
12
13
14
15

R) *KN (convert n.x) 0 R> (retrieve angle -> double)
BUP 0 0 D< IF 0 16384 D+ 2ROT 2ROT DMINUS 2SWAP 2ROT

ELSE 0 16384 D- 2ROT 2ROT 2SWAP DMINUS 2ROT THEN
14 0 DO

2DUP 0 0 D< IF
I RVSUBl D- I RVSUB2 D+ I RVSUB3 D+ ELSE
I RVSUBl D+ I RVSUB2 D- I RVSUB3 D- THEN

Lx)(IP 2DROP (drop d.angle)
D->S >R D->S R) ; ->

screen # 32 CKC = 40282
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(&RDIC ALGORITHM)
(single precision angular conversions 1
: PIRADIANS MINUS 32768 ROT ROT */ ;
: DEGREES 180 PIRADIANS ;
: POLAR-> (rad ang - y x) 0 ROT ROT ROTVECPOR ;

i s

End Listing

FOR 8080,280,8086". 68000"

M U LTI U S E R
MULTITASKING
A professional quality full feature
FORTH system at a micro price.

TaskFORTH'"
Single, double, triple,

quadruple and floating point
math, trigonometric functions

Case statements

Interactive debugger

Novice Prog ra m me r
Protect i o n Pa c ka g eT"

Multiple thread dictionary

System date/calender clock

Hierarchical file system

Screen and serial editor

Inter-task communications

Unlimited number of tasks

Starting FORTH, FORTH-79
and FORTH-83t compatible

Graphics support

TaskFORTH is the FORTH
system you would write,
if you had the time . . .

ALL included for just $395
(plus applicable taxes)

Available for CP/M. Northstar DOS.
Micropolis and Stand-alone.

Visa & MC Accepted

' Available soon
1 When standard is approved

:P/M is a trademark of Digital Research
raskFORTH is a reg. trademark of Shaw Labs, Ltd.

jingle user. single computer license agreement
s required.

SHAW LABORATORIES, LIMITED
24301 Southland Drive, Suite 216

Hayward, California 94545
(4 15) 276-5953

Volume V. No. 3 25 FORTH Dimensions

Standards Corner

Forth-83 Standard
Robert L. Smith

Sunnyvale, California

As many readers are aware, the
Forth-83 Standard has been approved
by the Forth Standards Team. By the
time you read this, copies of the stan-
dard should be available from the In-
stitute for Applied Forth Research,
MicroMotion, or Mountain View
Press. The majority of members of the
Forth Standards Team are vendors or
potential vendors of Forth systems and
applications. The Forth-83 Standard
represents a substantial input from the
team members, the referees, and the
Forth community. Literally hundreds
of proposals were received and ex-
amined. In contrast to the past, there
were two major meetings of the Stan-
dards Team as a whole, and very many
meetings of the referees. The result is a
document of substantial quality. The
team rules require a two-thirds affirm-
ative vote of the members to accept the
new standard. The actual vote as of the
time of this writing is twenty-two
“yes” votes, one “no” vote, and three
votes not received. We can see that the
vote was quite decisively in favor of the
new standard. In my opinion, the new
standard offers a significant improve-
ment over previous Forth standards.

Like all standards, Forth-83 is the
result of many compromises and,
therefore, not all readers will agree on
the desirability of some of the features.
It should be pointed out that the Forth
Standards Team is not forcing anyone
to adhere to the standard. In the for-
ward to the standard, the following
sentence appears: “A programmer or
vendor may choose to strictly adhere
with the standard, but the choice to
deviate is acknowledged as beneficial
and sometimes necessary. ” Certainly,
if one has programs which work on an
older standard or a non-standard sys-
tem, there is no requirement that the
old system be thrown away and the
programs rewritten just because a new
standard exists.

Let us briefly review some of the dif-
ferences from the previous standard

which may affect a more general accep-
tance of Forth-83. Most of the issues
have been previously aired in this
column for the purpose of information
and to encourage public input.

The new ~ 0 . ~ 0 0 ~ is somewhat dif-
ferent from previous DO-WOPs. Most
people now seem to prefer the new,
circular-arithmetic DO-WOP. Briefly,
the advantages are (1) the index I now
has a full 65K range, (2) there is no
longer a need to have a separate /LOOP
for unsigned indices, and (3) in most
cases the new loop is faster than most
older ones. A few vendors would
prefer that

0 0 DO ... LOOP

would cause a null result. It appears
that if that result is desirable, it could
be obtained by using the new System
Word Set and defining the desired
function with a different name. Note
that old code which used the construct

0 0 DO

would be incompatible in either case. A
closely related issue is that of the new
version of LEAVE which causes control
to transfer to the end of the loop.
There is an implementation issue here.
There is not adequate space to discuss
the issue thoroughly, but one vendor
would prefer to have either a more
complicated form (called LEAVES) or,
alternatively, to allow only one occur-
rence of LEAVE within a given loop.

The default value of “true” for
comparison operators now returns all
bits set rather than just the low-order
bit. In most cases, a comparison is fol-
lowed by a test for non-zero, such as
the word IF. In that case there will be
no difference. If old code uses com-
parisons in conjunction with arithmetic
operations, then some change will be
required to work under the new stan-
dard. The simplest change is to follow
the comparison with a negation
operator. The new default value for
“true” should be somewhat more use-
ful than the old value. A related side

benefit is that the word NOT is now
available to mean “take the one’s
complement,” whereas previously it
was synonymous with o = . In most
cases it is compatible with previous
usage.

Historically, division in Forth has
varied from system to system. Accord-
ing to Charles Moore, if a machine had
a hardware divide, then its characteris-
tics determined the division result. If
division had to be done in software as
with, say, the 8080, then floored divi-
sion was usually chosen. However, on-
ly positive denominators were
generally considered. In some cases I
took signed arguments and /MOD took
unsigned arguments. In Forth-83, the
result of the 1 operation is the mathe-
matical floor of the real number
quotient. Alternatively, one may say
that the quotient is more useful than
the 79-Standard version. For example,
one can readily perform an arithmetic
right shift by dividing by an ap-
p ropr i a t e power of two. I n
hexadecimal arithmetic,

8712 100 /MOD

will yield a quotient of FF87 and a
modulus of 12, so that the original
number is readily split into 8-bit com-
ponents. Under 79-Standard, the
operation would yield FF88 with a
remainder of FF12. A nice result is that
now the right-shift operator 2/ is identi-
cal to 2 1. In my opinion, the enhanced
utility of the Forth-83 quotient and
modulus function outweighs the disad-
vantage that some older code may need
to be somewhat modified when nega-
tive arguments are employed.

In many cases, previous ambiguities
have been resolved or clarified. There
is at least one word, 1, which is
ambiguous in certain rare cases. It is
important to realize that the new
standard has not changed the meaning
of this word from previous standards.
The problem arises from alternative

(Continued on page 30)

FORTH Dimensions Volume V, No. 3 26

Forth183: A Minority
Glenn S. Tenney

Belmont, California

Having participated as a member of
the Forth Standards Team (FST) and as
a referee of the 83-Standard, I am
strongly in favor of a new Forth Stan-
dard. Despite the many weeks I
devoted to this, my professional con-
science did not allow me to vote to ac-
cept the 83-Standard. For these
reasons, I was asked to document my
concerns as well as those of others. As
you read this, please remember that
many of the following are the concerns
of others and do not necessarily repre-
sent my own views.

The Forth 83-Standard has recently
been accepted and is now being
published. Many people have been ex-
pressing varying degrees of concern
over this new standard. After discard-
ing a certain amount of gripes, these
concerns fall into one of four
categories: minor and non-technical;

incompatibilities to the prior standard
or existing systems; specific technical
points; and general philosophical
points. This is an overview of some of
those concerns.

The new standard is almost com-
pletely reworded. This was done to
make it more readable, yet this
generated some fairly minor concerns,
the most obvious being the process of
locating underlying technical aspects
that were actually changed. In fact, the
new wording actually changed the
published version of the standard SO
that BASE and D< reflect a technical
change from the 79-Standard.

The new standard is incompatible
with prior systems partly because the
function of many words changed yet
the word names remained the same.
These functional changes range from
obscure to obvious. This shows itself in
the following ways:

Ver. 2 For your APPLE II/II+
The complete professional software system, that meets
ALL provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!
FEATURES OURS OTHERS

79~Standard system gives source portabi l i ty.
Professionally written tutorial & user manual
Screen editor wi th userdefinable controls.
Macro-assembler wi th local labels
Virtual memory.
Both 13 & 16-sector format.
Multiple disk drives.
Double-number Standard & String extensions.
Upperilower case keyboard input
LO-Res graphics.
80 column display capability
Z-80 CP/M Ver. 2.x & Northstar also available
Affordable1
Low cost enhancement option

Hi-Res turtle-graphics.
Float I ng-point mat hematics
Powerful package wi th own manual,
50 functions in all.
AM951 1 compatlble.

YES -
200 PG. -

YES -
YES -
YES -
YES -
YES -
YES -
YES ___
YES -
YES -
YES -

$ 9 9 9 5 -
YES -
YES -

FORTH-79 V 2 (requires 48K & 1 disk drive) $ 9 9 9 5
ENHANCEMENT PACKAGE FOR V 2

$ 4 9 9 5
COMB INATION PACKAGE $139 9 5

Floating point & Hi-Res turtle-graphics

(CA res. add 6% tax COD accepted)

MicroMotion j, - - . - . . - . .
12077 Wilshire Blvd # 506
L A , CA 90025 (213) 8214340
Specify APPLE. CP/M or Northstar
Dealer inquiries invited. ~-

PICK and ROLL were changed, with
no strong technical reason, from 1
origin to 0 origin, totally invalidating
prior source code.

Many changes were made, albeit for
valid technical reasons, which are not
always incompatible. These are the
most dangerous, since when the incom-
patibility crops up it is often buried in-
side a previously functional definition.

The following changes affect many
standard words:

* The true flag (-1) returned from
standard words provides some extra
power, but can be incompatible if
the flag is used in calculations.
* Division is now floored towards
negative infinity rather than
towards zero.

83-Standard does not have state-
smart required words. This seems to
have grown from the problems using

Version 2 For 2-80, CP/M (1.4 & 2.x),
& Northstar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!

79-Standard system gives source portability. YES -
FEATURES OURS OTHERS

Professionally writ ten tutorial & user manual. 200 PG. -
Screen editor wi th userdefinable controls. YES -
Macro-assembler wi th local labels. YES -
Virtual memory. YES -
BDOS. BlOS & console control functions (CP/M). YES -
FORTH screen files use standard resident
file format. YES -

Double-number Standard & String extensions. YES -
Upper/lower case keyboard input. YES -
APPLE I I / I I+ version also available. YES -
Affordable! $99.95 -
Low cost enhancement options,
Floating-point mathematics YES -
Tutorial reference manual
50 functions (AM951 1 compatible format)

Hi-Res turtle-graphics (Nostar Adv. on ly) YES -
ENHANCEMENT PACKAGE FOR V.2:

COMBINATION PACKAGE (Base & Floating point)

FORTH-79 V.2 (requires CP/M Ver. 2.x). $99.95

Floating point $ 49.95
$139.95

(advantage users add $49.95 for Hi-Res)
(CA. res. add 6% tax; COD &dealer inauiries welcome)

MicroMotion
12077 Wilshire Blvd # 506
L A , CA 90025 (213) 821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited

Volume V, No 3 27

polyFORTH II
The Operating System and
Programming Language
designed especially for

REAL-TI M E

Robotics
Instrumentation
Process Control
Graphics

... and many more.

polyFORTH I I has the high-per-
formance features you need to
slash development time by months:

POWER
All the programming tools you
need - multiprogrammed OS,
FORTH compiler and assembler,
editor, over 400 primitives and de-
bugging aids - resident and ready
to use.

SPEED
3-5 times faster than Pascal, 20
times faster than Basic, with a resi-
dent assembler for time-critical
functions.

MULTITASKINGIMULTI-USER
Supports any number of tasks.
Even the smallest systems may
have two or more programmers
coding and testing interactively.

COMPACT CODE
Entire development system resi-
dent in under 12K. ROMable appli-
cations can run under 1K. Large
applications up to 10 times small-
er than with other techniques.

SUPPORT
On-line interactive documentation,
over a thousand pages of manuals,
FORTH Programming Courses,
and the FORTH, Inc. Hot Line plus
Contract Programming and Con-
sulting Services.
Available for most popular minis
and micros. From FORTH, Inc., the
inventors of FORTH, serving pro-
fessional FORTH programmers for
ten years.

FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach
CA 90254

(213) 372-8493
TWX 91 0-344-6408
(FORTH INC HMBH)

'(tick). In 79-Standard, FIND wasn't of
much use so most people used the
state-smart '(tick). This led to
problems, since some state-smart
words must be used cautiously when
compiled within a colon definition.
The solution adopted was to make all
words state-dumb and to add words to
handle some of the lost functions. FIND
was later made useful, yet state-dumb
words remain.

A side effect of the state-dumb
"sweep" is that some words were made
statedumb that would have been bet-
ter left state-smart regardless of the
'(tick) decision. For example, there is
no reason why ABORT" should be state-
dumb. The system-dependent func-
tions associated with ABORT only
appear within ABORT". ABOFrl" could
have been of great use outside of a
colon definition, yet that has now been
precluded.

Some current systems use mono-
addressing (e.g.CFA or PFA), yet the
standard now dictates dual-addressing
(e.g.CFA and PFA). This tradeoff
favors an easier implementation and
was the subject of many hours of dis-
cussion. Some of the original dissen-
tors still believe that a mono-
addressing system is easier to use.

Disk (mass storage) I/O has been
changed to disallow altering the data
within a block buffer unless UPDATE is
also used. Even if EMPTY-BUFFERS
(which is no longer a required word)
were used, the alterations might still be
written to disk. Combined with the
multi-tasking implications, BUFFER can
no longer be used for a temporary
scratch or data collection area. Al-
though this codifies good program-
ming practice, there are valid reasons
why the standard should not be so
restrictive.

A minor but grating problem is that
the FST itself is always trying to allow
a wide variety of actual or possible im-
plementations. This has caused some
problems and ambiguities within the
standard. This is more an underlying
political problem than a technical one,
but the results affect the standard tech-
nically:

The] (right-bracket) definition is
ambiguous. Different systems are im-

plemented such that the same sup-
posedly transportable standard
program produces different results on
the different systems.

Vocabularies have always been a
problem. The standard attempts to
resolve this issue, but actually leaves
some gaping holes. Because search or-
ders are not definitively stated, a stan-
dard program will have some difficulty
using vocabularies and search orders.

Consumers will have great difficulty
determining if a system is actually
Forth-83. Although this has always
been a problem, it will be worse this
time because 79-Standard systems
have been marketed. Implementors
will have difficulty determining or
choosing to make some of the subtle
changes from 79-Standard.

The standard should codify existing
practice. Instead, new concepts have
been accepted without a complete test-
bed existing with which to gain
experience. In most cases, these new
concepts are going to be proven
correct, but what about the ones that
aren't? Where will we be in four or five
years if next month we find that one of
these insufficiently tested concepts
causes a problem?

It is difficult to judge the impact of
some of these technical or philosophi-
cal concerns. Time and experience will
tell whether the decisions made for
Forth-83 were correct. Although it is
difficult, we must temper our frenzy
for having a new standard with a striv-
ing for reasonable perfection of the
standard.

FORTH Dimensions 28 Volume V, No. 3

Letters (Continued from page 4)

8080 Conditions
Dear FIG:

John Cassaday left conditional calls
out of his 8080 assembler, which he
published in Forth Dimensions (Vol.
111, No. 6). I have written a single word
that adds all the 8080 conditional calls
to his assembler:
: IFCALL SP@ OD TOGGLE C, , ;
The stack for proper use is:
c call-addr > < conditional > ---

Where c conditional > is any one of
John’s words 0 = , CS, PE, or O<, and
an optional NOT. John’s conditional
words leave an 8080 conditional jump
opcode on the stack. My word toggles
bits in it to make it into the appropriate
conditional call op-code. The call-ad-
dress must be next down on the stack.
A LABEL word can be used to define the
entry point to the subroutine.

Using similar techniques, I have also
written words for conditional return
from subroutine and conditional jump:
: IFRET SP@ OA TOGGLE C, ;
: IFJMP SP@ 08 TOGGLE C, , ;

IFJMP needs a jump address on the
stack, under the conditional, but IFRET,
of course, needs only a conditional on
the stack.

I think these words are yet more ex-
amples of an amazing property of
Forth: the solution to a problem is
usually less complicated than you think
it will be!
Sincerely,

Paul E. Condon
6219 Rockwell St.

Oakland, CA 94618

Yet Another Case Statement

The main feature of this CASE is the
technique used. It is presented as an
educational example of the power of
Forth. In this example, CASE is a defin-
ing word which creates TEST. If you’ll
notice in the definition of EXECUTES, it
looks like I’m jumping into the PFA
instead of the CFA. This is because I
am.

I was going to explain this, but after
giving it some thought, I decided that it
would be more beneficial to our fellow
Figgers to present it as a puzzle. By the
time you figure it out, you will under-
stand DOES, the return stack, and the
Forth compiler inside out.
As far as how this CASE compares to

other CASES: it compiles much smaller
than most, it branches to ENDCASE up-
on finding a match, and executes about
as fast. It will only execute one word
after EXECUTES and that must be a
word created in a colon definition. I
don’t use this CASE myself, nor do I
think it best. It’s just an example of the
unusual. If you figure it out, it will
help you understand Charles Moore’s
BASIC compiler (Vol. 111, No. 6),
which is even trickier. Good luck!

Marc Perkel
Perkel Software Systems

1636 N. Sherman
Springfield, MO 65803

Searching for Graves
Dear FIG,

I read with interest the letter from

Nick Francesco in Forth Dimensions
(Vol. IV, No. 6). I share his feeling
regarding the use of standard DOS
files. I current ly am using
MicroMotion’s Forth, which certainly
is fine as far as the normal Forth
operating systems go.

Mr. Francesco mentioned that Wil-
liam Graves’ Forth I1 for the Apple I1
uses Apple’s DOS. Looking through
your section on system vendors, I
could not find anything that looked
like a potential Graves source. If you
could supply me with more informa-
tion regarding Graves Forth 11, I would
appreciate it. Or, if you do not have
the information at hand, perhaps you
could,forward this letter to Mr. Fran-
cesco.

Thank you very much.
Sincerely,

James W. Patton
737 W. Davies Way
Littleton, CO 80120

(Continued)

SCR # B
0 (CASE EXAMPLE DEMONSTRATING FANCY BRANCHING9 D0ESlr.r AND
1 THE POWER O F THE FORTH COMPILER)

SET-RETURN R5. DUP @ 5.R 21. ::.R 6
IFJUMP OVER = I F DROP R> P :‘:.I? ELSE Rl:. 2t >R THEN i
CASE CREATE I CfiMPILE SET-RETUKN HERE 0 v DOES:. :::.H i
EXECUTES COMPILE IFJUMP F I N D 2t 9 i IMMEDIATE

COMPILE E X I T CCOMPILEI C i IMMEDIATE

ALL WORDS ARE 79-STANDARD, F I N D RETURNS .THE C F A OF THE NEX
WORD I N THE INPUT STREAM,)

ENDCASE COMPILE DROP HERE swap !

9CR # c
0 (CASE EXAMPLE)
1 : PRINT-1 .’ ONE ’ i
2 : PRINT-2 .’ TWO ’ i
:3 : PRINT-3 + ’ THREE ’ i
4
5 CASE TEST
6 1 EXECIJTES PRINT-1
7 2 EXECUTES PRINT-2
13 3 EXECIJTES PRINT-:3
9 END CASE

B (1 TEST ONE OK
C 2 TEST TWO OK
I:l 3 TEST THREE OK
E 4 TEST OK)
F

a

CASE Statement

FORTH Dimensions Volume V, No. 3 29

Forth Family Foiled
Dear Editor,

First, I heartily endorse your screen
CRC words (Forth Dimensions, Vol.
IV, No. 3).

Second, I am looking for a nice
Forth for Apple III CP/M. I am aware
of several systems for Apple 11, but
these require emulation mode, and this
hampers operations significantly. The
hard disk cannot be accessed with them
and time is wasted loading the
emulator.

Yesterday I told my two brothers-in-
law, who already own Apple IUs with
CP/M cards, “NO problem, there are
lots of good Forths out there.” Today I
spent an hour on the phone calling
Forth vendors and struck out. Is
anyone out there catering to deluxe
Apple III owners? They want a com-
plete Forth system with full source
code, some meta compiler, a screen
editor, maybe strings and floating

point, and perhaps some brief cus-
tomizing documentation.

Gary Nemeth
2727 Hampton Rd.

Rocky River, OH 441 16

Love Forth,

ENCLOSE Encounters
of the Second Kind

Dear Editor:
Reference ENCLOSE Encounters, in

the Technotes section of Vol. V, No. 1.
A line of code near the bottom of page
thirty-four was omitted. It should have
read,
HEX FIRST 2+ 400 BLANKS
(blanks a block buffer)
FlFS12 + BL ENCLOSE

(Continued from page 26)

techniques for compiling, and may
occur when] is compiled into a
definition. This subject will certainly
be a topic of discussion for the next
meeting of the Forth Standards Team.
Again, the definition of] has not
changed, and therefore should not be a
reason to reject the new standard.

By adopting the new standard, the
Forth Standards Team accepts Forth-83
as the current official FST standard,
superceding all prior standards. It is
important that we have a standard for
writing transportable application code,
as a basis for writing books and
documents, and for teaching and -
communication.

Thank you again for publishing the

Sincerely yours,
note.

Nicholas L. Pappas, Ph.D.
1201 Bryant St.

Palo Alto, CA 94301

Companies such as IBM, Atari, Varian, Hewlett Packard, FORTH Fundamentals
Dysan and Memorex are now using FORTH for a number Advanced Systems & ~~~l~
of applications. If you are concerned about efficiency and
transportability, then FORTH is a language YOU should (For further information, please send for our complete
learn.

$395.00
$495.00

FORTH workshop catalogue).

Inner Access Corporation
P.O. Box 888, Belmont, CA 94002
(41 5) 591 -8295

n Join the FORTH Revolution!
0 Intensive 5-day workshops
0 Small classes
0 Experienced professionals
0 On-site classes by special arrangement

~~ ~

FORTH Dimensions 30 Volume V, No. 3

Techniques Tutorial

Meta Compiling Ill
Henry Laxen

Berkeley, California

Last time we talked about how to
implement CODE words in the meta
compiler, and saw how such words
must operate in order to make meta :
definitions work. We also saw how to
define a symbol table for the
definitions that are created during
meta compilation by using the existing
vocabulary structure. We also looked
at how to create headers in the target
address space. If any of these concepts
are unfamiliar to you, I suggest you
reread the previous two articles in this
series, which discuss them in detail.

I would now like to talk about a few
of the subtle issue that come up during
meta compilation that must be handled
by some means or another. Some of
the subtle issues are how to handle for-
ward references, and how immediate
words such as .I are handled. Other
similar issues arise, but we must leave
some questions unanswered so that the
reader can experience the joy of dis-
covery.

The issue of forward references
during meta compiling has, for some
unknown reason, become almost a
religious issue. The regular Forth inter-
preter treats forward references as an
error condition, which has its pros and
cons. Fortunately, it is almost always
possible to write your Forth applica-
tion in such a way that you can avoid
forward references, hence one branch
of the religion considers the problem
solved, namely, don’t use forward
references. Unfortunately, in the meta
compiling process, forward references
are unavoidable, and we must develop
a technique to handle them. Before I
discuss a few solutions, I would like to
present my view of the forward
reference issue. The use of forward
references is not sinful, immoral, il-
legal, or fattening. It should be dis-
couraged but not banned. The problem
that arises with forward references is
that you can get yourself into big
trouble. It destroys the bottom-up na-
ture of Forth, and can cause you to re-
test previously working words because

they make use of a forward reference
which has changed. It also decreases
the usefulness of program listings, if
you are never sure of which way to turn
the pages when you encounter an un-
familiar word.

Forward references also complicate
the compiler, since it now must handle
another class of objects (other than
previously defined words and num-
bers). Most threatening, however, is
that if forward references are abused,
you can wind up with totally un-
decipherable spaghetti code. Just look
at almost any Fortran program larger
than 100 lines and written by a
physicist, and you will see what I
mean. The case for forward references
is that sometimes you must have them.
For example, if you are using recur-
sion, and word A calls word B which
calls word A, I am afraid a forward
reference is somewhat unavoidable; if
recursion is the natural solution to
your problem, it would be silly not to
use it. Also, error conditions are often
more easily handled if forward referen-
ces are allowed. You will often want a
fatal error, which could occur at a rela-
tively low level in your program, to
call, say, the main menu routine, which
obviously occurs at a very high level.
That is the case in Forth, where ABORT,
which is used at a very low level, calls
the Forth interpreter, which is defined
at a very high level.

Enough religion, let’s take a look at
some techniques for handling forward
references during meta compilation.
The simplest method to implement
(and the hardest to control) is to simply
use a place-holding word, and then
patch it later when the resolving for-
ward reference word is defined. Nor-
mally this word is called GAP(and it
behaves like a comment, skipping the
following text until the next 1 and sim-
ply compiling a zero into the target im-
age. The intervening text is usually the
name of the word which will later be
patched into this location. The prob-
lem with this approach is that you have

to index some number of bytes,
depending on the location of the gap,
into the word that was defined, and
patch it with another value. This ap-
proach is very inflexible and error
prone, since if you ever change the
definition in which the gap occurs, you
must also change the place where it gets
patched in a corresponding manner.
There is no intelligence required, just
conscientious effort , something
humans are not well equipped for.

Another approach is to explicitly
declare a forward reference before it
takes place, and then resolve it some-
how later when its target address is
known. This is the Pascal approach,
and is a pretty good compromise. At
least you no longer have to count bytes
into a word and hot patch it later. You
can simply name the forward referen-
ced word and define a mechanism that
resolves it. This approach also allows
you to have multiple forward referen-
ces by linking them into a chain, and
resolving the entire chain once the tar-
get address is known.

Finally, the last approach I will men-
tion is that of handling forward
references on the fly. I do not mean to
imply that there are only three ways of
doing this; there are many more, but
three is enough for now. In order to
handle forward references on the fly,
we must modify the meta compiler’s
compiler. Instead of issuing an error
message when an undefined word turns
out not to be a number, we must define
the word in question and remember the
fact that it is a forward reference. Basi-
cally, all this entails is to change the
compile loop to decide upon one of
three cases instead of only two. Case
one is that the word to be compiled al-
ready exists, in which case we simply
compile it by executing it and letting it
compile itself. Case two is that the
word is a number in the current base,
in which case we compile the code field
for literal, followed by the value of the
literal. Case three is that the word to be
compiled is not already defined and is

~~~~~ 

Volume V, No. 3 31 FORTH Dimensions 



not a number, hence it must be a for- 
ward reference. In this case we must 
create an entry for it in the symbol 
table of forward references, compile a 
gap in the word currently being 
defined, and set up the run time of the 
forward reference to either link itself 
into a chain if it is not already resolved, 
or to compile itself if it is already resol- 
ved. Thus, forward references become 
basically transparent, except that they 
must be resolved somehow. This reso- 
lution can either be automatic as the 
word is actually defined, or explicit, 
requiring you to issue commands that 
will cause the resolution. Personally, I 
prefer the explicit method, since I am 
afraid of things happening behind my 
back, and it slightly discourages the use 
of forward references, which deep in 
my heart I know is right. 

Enough about forward references, 
let’s talk for a moment about im- 
mediate words. Immediate words 
present a special problem since they 
must be executed at compile time. They 
may do arbitrarily crazy things, and 
must do them in the target environ- 
ment. For example, 1’1 must look up the 
next word in the input stream and com- 
pile its code field as literal. Another ex- 
ample is .- which must scan the input 
until another is encountered, and 
then compile the runtime address for 
(.“I which may not even be known yet, 
followed by the count-delimited string 
that  was scanned. The usual 
mechanism used to implement im- 
mediate words is through a new defin- 
ing word called T: which behaves just 
like Forth’s : except that the definition 
it creates is placed in the target 
vocabulary, or symbol table. As you 
recall from last time, the main compil- 
ing loop looks up words in the symbol 
table and executes them. Words that 
are defined by CODE and : are placed in 
this symbol table, and when executed 
compile themselves. By using T: we can 
place words into this symbol table that 
do things other than compile themsel- 
ves. For example .“ would have to first 
compile the run time for .” namely (.”, 
and then get the string and compile it 
into the target image. This is totally 
different behaviour from, say, the 
meta version of DUP, which simply 
compiles a pointer to the code field of 
DUP when it is executed. Thus, for each 

immediate word that passes through 
the meta compiling process, we must 
define a special case compiling word 
that “does the right thing” in the meta 
context. 

Now I must apologize for not 
providing any code this time around. 
The problem is that all of the issues I 
discussed above are implemented in a 
very system-dependent manner; hence 
I would have to make a lot of assump- 
tions about exactly how vocabularies 
work and how different system details 
operate. Rather than do that and pro- 
vide code that would not run on any 
existing systems, I decided not to pro- 
vide any code, but simply to discuss 
some of the remaining concepts invol- 
ved in meta compiling. The best way to 
really learn about meta compilers is to 
write one. Hopefully, I have provided 
you with enough ammunition to at- 
tempt such an undertaking. Let me tell 
you that if you do, you will raise your 
level of Forth consciousness many 

levels, and I think it is an exercise well 
worth the effort. 

Next time I will talk about multi- 
tasking, an issue many have heard 
about but few have seen. We will im- 
plement a very simple (and slow) high- 
level multi-tasker and discover its 
principles of operation. Until then, 
good luck and may Forth be with you! 

Copyright 01983 by Henry Laxen. AN 
rights reserved. The author is Chief 
Software Engineer f o r  Universal 
Research, 150 North Hill Drive #lo, 
Brisbane, CA 94005, specializing in the 
development of portable computers. 

FORTH Vendors (Continued from page 39) 

InnoSys 
2150 Shattuck Ave. 
Berkeley, CA 94704 
415/843-8114 

Consultation & %ining Only 
See System Vendor Chart 
for others 

Bartholomew, Alan 
2210 Wilshire Blvd. #289 
Santa Monica, CA 90403 
213/394-07% 
Boulton, Dave 
581 Oakridge Dr. 
Redwood City, CA 94062 
Brodie, Leo 
9720 Baden Ave. 
Chatsworth, CA 91311 

Eastgate Systems Inc. 
P.O. Box 1307 
Cambridge, MA 02238 
Girton, George 
1753 Franklin 
Santa Monica, CA 90404 
21 3/82%1074 
Go FORTH 
504 Lakemead Way 
Redwood City, CA 94062 
41513666124 

213/998-8302 

Harris, Kim R. Redding Co. 
Forthright Enterprises P.O. Box 498 

Georgetown, CT 06829 P.O. Box 50911 

Schleisiek, Klaus 415/858-0933 
Intersystems Management Eppendorfer Landstr. 16 
Computer Consultancy D uw)o Hamburg 20 
Story Hill Rd. RFD3 West Germany 
Dunbarton, NH 03045 (040)480 8 154 

Schrenk, Dr. Walter 603/174-7762 
Laxen, Henry H. Postfach 904 
1259 Cornell Ave. 7500 Karlstruhe-41 
Berkeley, CA 94706 West Germany 
415/525-8582 Software Engineering 
McIntosh, Norman 
2908 California Ave., #3 

Palo Alto, CA 94303 203/938-93 81 

6308 Troost Ave. #210 
Kansas City, MO 64131 

Softweaver 
Metalogic Corp. P.O. Box 7200 

Santa Cruz, CA 95061 4325 Miraleste Dr. 
Rancho Pales Verdes, CA 90274 408/425-8700 
21 3/5 19-101 3 Technology Management, Inc. 
Peschke, Manfred 1520 S. Lyon St. 
Intersystems Mgmt. & Consult. Santa h a ,  CA 92705 

Timin, Mitchel Dunbarton NH 03045 
603/114-1162 3050 Rue d’Orlean #307 
Petri, Martin B. San Diego, CA 92110 

619/222-4185 Computer Consultants 
16005 Sherman Way 
Suite 104 
Van Nuys, CA 91406 
213/908-0160 

San Francisco, CA 941 15 
41 5/563-1246 

816/363-1024 

Story Hill Rd. RFD 3 714/835-9512 

Volume V. No. 3 FORTH Dimensions 32 



quality and reliability, contact your nearest 

I GmpuPro @I 
&mpUPlQ, A 6oDBO~rCOMPANV 

3506 Breakwater Ct., Hayward, CA 94545 

~~ 

Volume V, No. 3 33 FORTH Dimensions 



FIG Chapter News 
John D. Hall 

Oakland, California 

We now have forty-four chapters! The 
six new chapters are: 

Rockwell FIG Chapter 
Hoffman Estates, Illinois 

Wichita FIG Chapter (FIGPAC) 
Wichita, Kansas 

Kansas City FIG Chapter 
Kansas City, Missouri 

Colombia FIG Chapter 
Bogota, Colombia 

Forth Interest Group - U.K. 
London, England 

Taiwan FIG Chapter 
Taipei, Taiwan 

Orange County Chapter 

At the June 22 meeting, Dr. David 
E. Winkel of the University of Wyom- 
ing drew a full house. He spoke 
primarily about computer processor 
development and bit-slice design. He 
also introduced a bit-slice development 
system which he developed. There was 
a short discussion about an HP-75 
Forth which one member is developing. 

Wil Baden went through the fun- 
damentals of conditionals at the July 6 
meeting. Near the end of the meeting, 
Wil introduced non-compiling condi- 
tionals which allow one to occasionally 
compile. Also, Greg Stevenson devel- 
oped a compiling buffer approach for 
condi t iona ls .  Bob  Waters  
demonstrated Forth on a Timex- 
Sinclair, as advertised in Forth Dimen- 
sions. The Forth was direct compiling, 
multi-tasking, and had windowing 
capability. 

On July 27, Wil Baden presented the 
ONLY ALSO vocabulary concepts of Wil- 
liam F. Ragsdale. Many were already 
using the concept and were pleased 
with its performance. Wil added some 

News from the FIG Chapter of Taiwan 

Volume V, No. 3 FORTH Dimensions 34 



words that increased its performance. 
Zane Thomas is implementing a 
modem system for the Orange County 
Chapter to transfer screens. Bob 
Snook presented a short discussion on 
alternatives to CASE statements. 

William Vock, who was visiting Greg 
Stevenson and collaborating with him 
on the development of software for the 
Epson QX-10 computer, presented a 
graphics package on August 3. Its 
performance was impressive. Mr. Vock 
is a graphics expert and knows the 
subject very well: he had done it with 
8K of Forth. 

Rochester Chapter 

The Rochester (New York) FIG 
Chapter had its second meeting on 
June 25 at the University of Rochester. 
The group looked at the new 
83-Standard draft, and Larry Forsley 
repeated the talk Bob Smith gave at the 
Rochester Conference on the specific 
differences between Forth-79 and 
83-Standard. There was much 
discussion of the implications for 
ROMmed systems of the new mono- 
addressing rules. Specifical, does 
BODY> reference an address in RAM 
or ROM? It was suggested that copies 
of Bob’s slides accompany distributed 
copies of the new standard. 

Nova Scotia Chapter 

The Nova Scotia Chapter held their 
first meeting on June 29. The group 
took a survey at this meeting and 
found (as in most chapters) that the 
members had a wide range of ex- 
perience with Forth. Some people had 
no Forth experience at all, while others 
had written meta-compilers. They 
decided, for purposes of code ex- 
change, that  they would use 
79-Standard.  People were 
“volunteered” (a common Forth 
practice) to look into transferring 
screens to dissimilar computers and 
into collecting a list of all Forth 
information owned by various mem- 
bers in order to generate a master list. 
Graphics standards were also discussed 
and, as with any standards discussion, 
grew heated. As the bell rang, each side 
went to their respective corners. We 
will hear more about this in the future! 

Dayton Chapter 

At the June 25 meeting, Dr. Leonard 
Spialter gave a slide show of the 
Rochester conference. On July 12, the 
group decided to have a Forth tutorial 
and Dr. Spialter presented a flow chart 
for a “Day of the Week” program. 
The group spent the rest of the meeting 
programming it in Forth. Gary Grang- 
er gave a talk about Forth to the 
Columbus Ohio Heath Users Group on 
July 11, and a Forth talk and demo to 
the Timex-Sinclair Users group on July 
19. 

Kansas City Chapter 

The first two meetings of the Kansas 
City Chapter had twenty to twenty-five 

attendees. The first meeting was spent 
getting acquainted and discovering 
who was doing what with Forth. At the 
second meeting, the group generated a 
list of topics of special interest for 
groups or programs. The highest items 
o n  the  l ist  were: p rog ram 
organization/coding style, graphics, 
data-base applications, and target 
compilers. 

Support your local chapter! 

John D. Hall is the Chapter Coor- 
dinator for the Forth Interest Group 
and is a consulting programmer. 

Chapters in Formation 

Here are more of the new chapters 
that are forming. If you live in any of 
these areas, contact one of these people 
and offer your support in forming a 
FIG chapter. 

Contact: 

Michael Perry 
1446 Stannage Ave. 
Berkeley, CA 94702 

Dick Turpin 
3109 Breton Ave. 
Davis, CA 95616 

Samuel J. Cook 
115 N. Washington Ave. 
Batavia, IL 60510 

Dr. Edward Newberger 
2739 Elmwood Ave., Apt. 3 
Kenmore, NY 14217 

David Whitely 
1163 West 550 North 
Clearfield, UT 84015 

Arnold Pinchuk 
2130 Menasha Ave. 
Manitowoc, WI 54220 

T. William Rudolph 

592 Plymouth St. 
Halifax, MA 02338 

Tony Van Muyden 
P.O. Box 7396 
Edmonton, Alberta 
TSE 6C8 Canada 

Jack Hung 
Comx World Operations 
15/F Wo Kee Hong Bldg. 
585-609 Castle Peak Rd. 
Kwai Chung, N.T. 
Hong Kong 

FIG-GRAPH East 

Ravizza Donato 
Sonnenbergstr. 34A 
Uster 8610 
Switzerland 

Greg Stevenson 
8002 Poinsettia Place 
Buena Park, CA 90620 

Glen Bowie 
25746 North Player Dr., #Q-1 
Valencia, CA 91355 

Marc Perkel 
Perkel Software Systems 
1452 N. Clay 
Springfield, MO 65802 

H. Marcus Bacon 
704-1H E.I. DuPont 
Savannah River Plant 
Aiken, SC 29808 

Richard Bloch 
Eastern VA Center for MH Studies 
Drawer A 
Williamsburg, VA 23 187 

Wes Thomas 
Jupiter Ace SIC 
Frank Barth, Inc. 
500-5th Ave. 
New York, NY 101 10 

Scott Miles 
Robotics 
Christensen Diamond Products 
2532 South 3270 West 
Salt Lake City, UT 84119 

Erick Ostergaard 
COMPEX 
2 Gertsvej 
2300 Copenhagen S. 
Denmark 

Marc (Tamir) Weiner 
Moshav Neve Ilan 
D.N. Harei Yehuda 90850 
Israel 

(417) 862-9830 

FORTH Dimensions Volume V, No. 3 35 



New Product Announcements 
Forth Dimensions welcomes press 

releases and product announcements, 
as well as reader letters regarding pro- 
duct performance. Addresses of the 
distributors and manufacturers men- 
tioned in this column may be found in 
the Vendors List section. 

The latest Forth news from Little 
Rock is that Hawg Wild Software of- 
fers the XFORTH XCHANGE to 
original users of the XFORTH 
Forth-79 product. Questions, ideas 
and implementations should be sent to 
that company, who says their newest 
service will be “free and unrestricted.” 

Atari owners will be interested in 
Power Forth (for the 800/800XL, and 
1200XL) from Elcomp Publishing. It is 
an extended FIG-Forth with editor and 
110 routines. The utilities package in- 
cludes decompiler, sector copy, Atari 
filehandling, graphics and sound, joy- 
stick program and player missile. The 
$39.95 price also covers two game 
demos and a mailing list application. 
Floating point with trig is an added 
$29.95, and the beginners’ subset 
“Learn Forth” (requires 32K for disk 
or 16K for tape version) costs $19.95. 

“UNIX-like word processing in 
Forth” is the claim made for Forth-ms. 
The licensed source code runs on Apple 

I1 computers using Epson printers with 
Graphtrax Plus, but can be configured 
by the user for other printers. Print 
spooling allows “simultaneous” use of 
printer and keyboard, and Greek let- 
ters and other symbols are available by 
typing a command followed by the 
name of the desired letter or symbol. 
The price (in single quantity) is $200 
from Innovatia Laboratories. 

The TDS900 is a single-board Forth 
computer with on-board screen editor, 
compiler and debug facilities. It uses 
FIG-Forth and provides simple inter- 
face to serial and parallel devices. All 
the user needs is a power supply, CRT 
and $395. If more than 12K RAM and 
8K ROM is needed, up to 160K is avail- 
able in increments of 20K per extra 
board. The computer and RAM boards 
use CMOS throughout, in single- 
Eurocard format. Information is avail- 
able from Stynetic Systems, Inc. in the 
U.S. and from %angle Digital Ser- 
vices, Ltd. in the U.K. 

Forth classes will demonstrate how 
Forth can be used as an algorithm 
development tool and as a total pro- 
gramming environment. Problem solv- 
ing will be emphasized by instructor 
Leo Brodie, author of Starting Forth. 

Students will apply design and 
problem-solving techniques in the 
design and coding of actual problems. 
East coast classes are planned for 
November, and the Los Angeles area 
will be covered in January. 

“Any desired data file format’’ can 
benefit from INDEX+. By using its 
B-nee ISAM utilities, Forth program- 
mers can create and maintain keyed 
indexes in order to perform searches 
randomly, or sequentially in either 
direction. The program supports 
BLOCK disk I/O and the CP/M and 
MS-DOS interface by Laboratory Mic- 
rosystems. Retail orders (the price is 
$125) should be sent to Laboratory 
Microsystems, for whose Forth systems 
INDEX+ is written; others should 
contact Business Computing Press. 

Sylmar Software now offers FIG- 
Forth for the Otrona Attache. The 
two-disk set costs $50 and includes a 
full-screen editor and various utilities. 
A Towers of H a n o i  version 
demonstrates the Attache’s direct 
cursor operations. The user should 
obtain the FIG-Forth Installation 
Manual, which provides definitions for 
the Forth words. 

Fig Chapters 

U.S. 

ARIZONA 

Phoenix Chapter 
Call Dennis L. Wilson 
602/956-7678 

CALIFORNIA 

Los Angeles Chapter 
Monthly, 4th Sat., 11 a.m. 
Allstate Savings 
8800 So. Sepulveda Boulevard 
Los Angeles 
Call Phillip Wasson 

Northern California Chapter 
Monthly, 4th Sat., 1 p.m. 
FORML Workshop at 10 a.m 

213/649-1428 

palo Alto area. 
Contact FIG Hotline 
415/%2-8653 

Orange County Chapter 
Monthly, 4th Wed., 7 p.m. 
Fullerton Savings 
Talbert & Brookhurst 
Fountain Valley 
Monthly, 1st Wed., 7 p.m. 
Mercury Savings 
Beach Blvd. & Eddington 
Huntington Beach 
Call Noshir Jesung 
7 14/842-3032 

San Diego Chapter 
Weekly, Thurs., 12 noon. 
Call Guy Kelly 
619/268-3100 ext. 4784 

COLORADO 

Denver Chapter 
Monthly, 1st Mon., 7 p.m. 
Call Steven Sarns 
303/477-5955 

ILLINOIS 

Rockwell Chicago Chapter 
Call Gerard Kusiolek 
312/885-8092 

KANSAS 
Wichita Chapter (FIGPAC) 
Monthly, 3rd Wed., 7 p.m. 
Wilber E. Walker Co. 
532 S. Market 
Wichita, KS 
Call Arne Flones 
316/267-8852 

MASSACHUSElTS 
Boston Chapter 
Monthly, 1st Wed., 5 p.m. 
Mitre Corp. Cafeteria 
Bedford, MA 
Call Bob Demrow 
617/688-5661 after 7 p.m. 

MICHIGAN 

Detroit Chapter 
Call Dean Vieau 
3 13/493-5105 

MINNESOTA 

MNFIG Chapter 
Monthly, 1st Mon. 
1156 Lincoln Avenue 
St. Paul, MN 
Call Fred Olson 
612/588-9532 

FORTH Dimensions 36 Volume V, No. 3 



MISSOURI 

Kansas City Chapter 
Call Terry Rayburn 

St. Louis Chapter 
Monthly, 3rd 'he., 7 p.m. 
Thornhill Branch of 
St. Louis County Library 
Call David Douda 
3 14/867-4482 

8 16/363- 1024 

NEVADA 

Southern Nevada Chapter 
Suite 900 
101 Convention Center Drive 
L a  Vegas, NV 
Call Gerald Hasty 
702/453-3544 

NEW JERSEY 

New Jersey Chapter 
Call George Lyons 
20 1 /45 1-2905 eves. 

NEW YORK 

New York Chapter 
Monthly, 2nd Wed., 8 p.m. 
Queens College 
Call Tom Jung 
212/432-1414 ext. 157 days 
21 2/26 1-32 13 eves. 
Rochester Chapter 
Monthly, 4th Sat., 2 p.m. 
Hutchison Hall 
Univ. of Rochester 
Call Thea Martin 

Syracuse Chapter 
Call C. Richard Corner 

7 16/235-0168 

315/456-7436 

OHIO 

Athens Chapter 
Call Isreal Urieli 

Dayton Chapter 
Tivice monthly, 2nd 'hes & 
4th Wed., 6:30 p.m. 
CFC, 11 W. Monument Ave. 
Suite 612 
Dayton, OH 
Call Gary M. Granger 

614/594-373 1 

5 13/849-1483 

OKLAHOMA 

Tulsa Chapter 
Monthly, 3rd Tbes., 7:30 p.m. 
The Computer Store 
4343 South Peoria 
U s a ,  OK 
Call Art Gorski 
918/743-0113 

OREGON 
Greater Oregon Chapter 
Monthly, 2nd Sat., 1 p.m. 
Computer & Things 
3460 SW 185th, Aloha 
Call Timothy Huang 
503/289-9135 

TEXAS 
Dallas/Ft. Worth 
Metroplex Chapter 
Monthly, 4th Thurs., 7 p.m. 
Software Automation, Inc. 
14333 Porton, Dallas 
Call Marvin Elder 
214/392-2802 or 
Bill Drissel 

San Antonio Chapter 
T.L. Schneider 
8546 Broadway, Suite 207 
San Antonio, TX 78217 

214/264-9680 

VERMONT 

Vermont Fig Chapter 
Monthly, 4th Thurs., 7:30 p.m. 
The Isley Library, 3rd fl. 
3rd Floor Meeting Room 
Middleburynes, VT 
Call Hal Clark 
802/877-2911 days 
802/452-4442 eves 

VIRGINIA 

Potomac Chapter 
Monthly, 1st 'hes., 7 p.m. 
Lee Center 
Lee Highway at Lexington St. 
Arlington, VA 
Call Joel Shprentz 
703/437-9218 eves. 

FOREIGN 

AUSTRALIA 

Australia Fig Chapter 
Contact: Ritchie Laird 
25 Gibsons Road 
Sale, Victoria 3850 
05 1/44-3445 
FIG Australia Chapter 
Contact: Lance Collins 
65 Martin Road 
Glen I n s ,  Victoria 3146 

Sydney Chapter 
Monthly, 2nd Fri., 7 p.m. 
Morven Brown Bldg., Rm LG16 
Univ. of New South Wales 
Sydney 
Contact: Peter Pegeagle 
10 Binda Rd., Yowie Bay 

03/29-2600 

02/524-7490 

BELGIUM 
Belgium Chapter 
Contact: Luk Van Loock 
Lariksdreff 20 
B2120 Schoten 
03/658-6343 

CANADA 

Nova Scotia Chapter 
Contact: Howard Harawitz 
P.O. Box 688 
Wolfville, Nova Scotia BOP 1x0 

Southern Ontario Chapter 
Monthly, 1st Sat., 2 p.m. 
General Sciences Bldg, Rm 312 
McMaster University 
Contact: Dr. N. Solntseff 
Unit for Computer Science 
McMaster University 
Hamilton, Ontario L8S 4K1 
416/525-9140 ext. 2065 

Quebec Chapter 
Call Gilles Paillard 
418/871-1960 or 

9O2/542-78 12 

41 8/643-256 1 

COLOMBIA 

Colombia Chapter 
Contact: Luis Javier Parra B. 
Aptdo. Aereo 100394 
Bogota 
214-0345 

ENGLAND 

Forth Interest Group -- U.K. 
Monthly, 1st Thurs., 
7 pm.,  Rm. 408 
Polytechnic of South Bank 
Borough Rd., London 
Contact: Keith Goldie-Morrison 
15 St. Albans Mansion 
Kensington Court Place 
London W8 5QH 

ITALY 

FIG Italia 
Contact: Marco Tausel 
Via Gerolamo Forni 48 
20161 Milano 
02/645-8688 

NETHERLANDS 

HCC-FORTH Interest 
Group Chapter 
F.J. Meijer 
Digicos 
Aart V.D. Neerweg 31 
Ouderkerk A.D. 
Amstel, The Netherlands 

SOUTH AFRICA 

Contact: Edward Murray 
Forthwith Computers 
P.O. Box 27175 
Sunnyside, Pretoria 0132 

SWITZERLAND 
Contact: Max Hugelshofer 
ERN1 & Co. Elektro-Industrie 
Stationsstrasse 
8306 Bruttisellen 
01/833-3333 

TAIWAN 

Taiwan Chapter 
Contact: J.N. Tsou 
Forth Information Technology 

Taipei 
P.O. BOX 53-200 

02/331-1316 

WEST GERMANY 

West German Chapter 
Klaus Schleisiek 
FIG Deutschland 
Postfach 202264 
D 2000 Hamburg 20 
West Germany 

SPECIAL GROUPS 
Apple Corps FORTH 
Users Chapter 
?\Nice Monthl, , 1 st & 
3rd 'hes., 7:30 pm 
1515 Sloat Boulevard, #2 
San Francisco, CA 
Call Robert Dudley Ackerman 

Baton Rouge Atari Chapter 
Call Chris Zielewski 
5O4/292- 1910 
FIGGRAPH 
Call Howard Pearlmutter 
408/425-8700 
MMSFORTH Users Groups 
Monthly, 3rd Wed., 7 p.m. 
Cochituate, MA 
Dick Miller 

(25 groups worldwide) 

41 5/626-6295 

617/653-6136 

~~~ ~ ~ ~~~ 

Volume V, No 3 37 FORTH Dimensions

FORTH System Vendors
(by Category)

(Codes refer to alphabetical listing
e.g., A1 signifies AB Computers, etc.)

Processors

1802 . C2, C3, F3, F6, L3
6502(AIM, KIM, SYM) R1, R2, S2
6800 C3, F3, F5, K1, L3, M6, T1
6801 P4
6809 C3, F3, L3, M6, T1
68000 C3, C5, D1, El , K1
68008 P4
8080/85 A5, C2, C3, F4, 15, L1, L3, M3,

M6, R1, T3
Z80/89 A3, A5, C3, F4, 13, L1, M2, M3,

M5, N1, T3
280000 . I3
8086/88 C3, F2, F3, Ll , L3, M6
9900 E4,L3

Operating Systems

CP/M A3, AS, C3, F3, 13, L3, M1, M2,
M6, T3

CP/M-86 C3

Computers

AlphaMicro .. . ,. P3, S4
Apple A4, El, E2, F4, 12, 15, J1, U,

M2, M6, M8,02, 0 3
Atari El, E2, M6, P2, Q1, V1
Compaq M5
Cromemco A5, M2, M6
DEC PDP/LSI-11 C3, F3, L2, S4

Hewlett-Packard 85
Hewlett-Packard 9826/36 C5
IBMPC A8, C3, M, L1, M5, M6, Q2, S8,

w 2
IBMOther L3, W1
Kaypro II/Xerox 820 M 2
Micropolis A2, M2, S3
North Star 15, M2, P1, S11
Nova C6
OhioScientific A6, B1, C4, 01, S7, T2
Osborne M2
PetSWTPC Al, A6, B1, C3, 01, S7, T2, T5
Poly Morphic Systems A7
TRSIOI, 11, and/or111 15, M2, M5, M6, S5, S6, S9
TRS-80Color . . , , A3, A8, F5, M4, T1
Vector Graphics M2

Heath-89 M2, M6, M7

Other Products/Services

Applications P4
Boards, Machine M, M3, P4, W , S10
Consultation C3, C5, N1, P4, T3, W1
CrossCompilers C3, F3, 13, M6, N1, P4
Products, Various A5, B2, C3, C7, F3, 14, 15,

S8, S12, W2
Training C3, F3, 13, P4, W1

FORTH Vendors (Alphabetical)
The following vendors offer FORTH systems, applications, or con-

sultation. FIG makes no judgment on any product, and takes no
responsibility for the accuracy of this list. We encourage readers to

keep us informed on availability of the products and services listed.
Vendors may send additions and corrections to the Editor, and must
include a copy of sales literature or advertising.

FORTH Systems
A

1. AB Computers
252 Bethlehem Pike
Colmar, PA 18915
21 5422-7727

2. Acropolis
17453 Via Valencia
San Lorenzo, CA 94580
415/276-6050

4. Applied Analytics Inc.
8910 Brookridge Dr., #300
Upper Marlboro, MD 20870

5 . Aristotelian Logicians
2631 E. Pinchot Ave.
Phoenix, AZ 85016

7. Abstract Systems, etc.
RFD Lower Prospect Hill
Chester, MA 0101 1

P.O. Box 7661
Austin, TX 78712

8. Armadillo Int'l Software

5 12/459-7325

B
1. Blue Sky Products

729 E. Willow
Signal Hill, CA 90806

2. Business Computing Press
2210 Wilshire Blvd.
Suite 289
Santa Monica, CA 90403
213/394-07%

C
1. Capstone Computing, Inc.

5640 Southwyck Blvd., #2E
Toledo, OH 43614
4 19/866-5503

2. Chrapkiewicz, Thomas
16175 Stricker
East Detroit, MI 48021

P.O. Box 44037
Sylmar, CA 91342

3. CMOSOFT

4. COMSOL, Ltd.
Beway House
Hanworth Lane
Chertsey, Surrey
England KT16 9LA

5 . Consumer Computers
8907 La Mesa Blvd.
La Mesa, CA 92041

6. Creative Solutions, Inc.
4801 Randolph Rd.
Rockville, MD 20852
301/984-0262

7 14/698-8088

7. Curry Associates
P.O. Box 60324
Palo Alto, CA 94306

E
1. Elcomp Publishing, Inc.

53 Redrock Lane
Pomona, CA 91766

Telex 29 81 91
(714) 623-8314

2. Elcomp-Hofacker
Tegernseerstr. 18
D-8150 Holzkirchen
West Germany
08024/733 1
Telex 52 69 73

P.O. Box 1176
Milton, WA 98354
206/63 1-4855

4. Engineering Logic
1252 13th Ave.
Sacramento, CA 95822

3. Emperical Research Group

F
1. Fantasia Systems, Inc.

1059 The Alameda
Belmont, CA 94002
415/593-5700

3. FORTH, Inc.
2309 Pacific Coast Highway
Hermosa Beach, CA 90254
21 3/372-8493

FORTH Dimensions 38 Volume V, No. 3

4. FORTHWare
639 Crossridge Terrace
Orinda, CA 94563

5 . Frank Hogg Laboratory
130 Midtown Plaza
Syracuse, NY 13210
3 15/474-7856

6. FSS
P.O. Box 8403
Austin, TX 78712
5 12/477-2207

H
1. HAWG WILD So..ivare

P.O. Box 7668
Little Rock, AR 72217

I
1. IDPC Company

P.O. Box 11594
Philadelphia, PA 191 16
215/676-3235

2. IUS (Cap’n Software)
281 Arlington Ave.
Berkeley, CA 94704
415/525-9452

3. Inner Access
517K Marine View
Belmont, CA 94002

4. Innovatia Laboratories
5275 Crown St.
West Linn, OR 97068

10175 S.W. Barbur Blvd.
Suite #202B
Portland, OR 97219
503/2WI 8 1

6. Interactive Computer
Systems, Inc.
6403 Di Marco Rd.
Tampa, FL 33614

415/591-8295

5 . Insoft

J
1. JPS Microsystems, Inc.

361 Steelcase Rd., W.
Markham, Ontario
Canada L3R 3V8
41 6/475-2383

K
1. Kukulies, Christoph

Ing. Buro Datentec
Heinrichsallee 35
Aachen, 5100
West Germany

L
1. Laboratory Microsystems

4147 Beethoven St.
Los Angeles, CA 90066
213/306-7412

2. Laboratory Software
Systems, Inc.
3634 Mandeville Canyon
Los Angeles, CA 90049
213/472-6995

3. Lynx
3301 Ocean Park, #301
Santa Monica, CA 90405
213/450-2466

4. Lyons, George
280 Henderson St.
Jersey City, NJ 07302
201/45 1-2905

M
1. M & B Design

820 Sweetbay Dr.
Sunnyvale, CA 94086

12077 Wilshire Blvd., #506
Los Angeles, CA 90025
213/82 14340

2500 E. Foothill Blvd., #I02
Pasadena, CA 91 107

2. MicroMotion

3. Microsystems, Inc.

213/577-1477
4. Micro Works, The

P.O. Box 1110
Del Mar, CA 92014

5. Miller Microcomputer
61 Lake Shore Rd.
Natick, MA 01760

6. Mountain View Press

714/942-2400

61 71653-6136

P.O. Box 4656
Mountain View, CA 94040
41 5/961-4103

8 Newfield Ln.
Newtown, CT 06470

8. Metacrafts Ltd.
Beech Trees, 144 Crewe Rd.
Shavington, Crewe
England CWI 5AJ

7. MCA

N
1. Nautilus Systems

P.O. Box 1098
Santa Cruz, CA 95061
408/475-7461

0
1. OSI Software & Hardware

3336 Avondale Court
Windsor, Ontario
Canada N9E 1x6

2. Offete Enterprises
1306 S “B” St.
San Mateo, CA 94402

3. On-Going Ideas
RD # I , Box 810
Starksboro, VT 05487
802/453-2

519/%9-2500

P
1. Perkel Software Systems

1636 N. Sherman
Springfield, MO 65803

2. Pink Noise Studios
P.O. Box 785
Crockett, CA 94525
4 1 5 /7 87- 1 534

3. Professional Mgmt. Services
724 Arastradero Rd., #I09
Palo Alto, CA 94306

4. Peopleware Systems Inc.
5190 West 76th St.
Minneapolis, MN 55435
61 2/831-0827

408/252-2218

Q
1. Quality Software

6660 Reseda Blvd., #I05
Reseda, CA 91335

2. Quest Research, Inc.
P.O. Box 2553
Huntsville, AL 35804
800/558-8088

R
2. Rockwell International

Microelectronics Devices
P.O. Box 3669
Anaheim, CA 92803
7 14/632-2862

S
1. Satellite Software Systems

288 West Center
Orem, UT 84057
80 1 /224-8554

2. Saturn Software, Ltd.
P.O. Box 397
New Westminister, BC
Canada V3L 4Y7

3. Shaw Labs, Ltd.
P.O. Box 3471
Hayward, CA 94540
4 15/276-6050

4. Sierra Computer CO.
617 Mark NE
Albuquerque, NM 87123

5 . Sirius Systems
7528 Oak Ridge Highway
Knoxville, TN 37921
6 1 Y693-6583

6. Software Federation
44 University Drive
Arlington Hts., IL 6ooo4
3 12/259-1355

7. Software Works, The
1032 Elwell Ct., #210
Palo Alto, CA 94303
415/96@1800

8. Spectrum Data Systems
5667 Phelps Luck Dr.
Columbia, MD 21045

9. Stearns, Hoyt Electronics
30 1 /992-5635

4131 E. Cannon Dr.
Phoenix, AZ 85028

10. Stynetic Systems, Inc.
Flowerfield, Bldg. 1
St. James. NY 11780

11. Supersoft Associates

602/%6- 17 17

5 16/862-7670

P.O. Box 1628
Champaign, IL 61820
217/359-2112

12. Sylmar Software
P.O. Box 44037
Sylmar, CA 91342

T
1. Talbot Microsystems

1927 Curtis Ave.
Redondo Beach, CA 90278

2. Technical Products Co.
P.O. Box 12983
Gainsville, FL 32604

3. Timin Engineering Co.
904/372-8439

C/o Martian Technologies
8348 Center Dr. Suite F
La Mesa, CA 92041
619/464-2924

4. Thansportable Software
P.O. Box 1049
Hightstown, NJ 08520
609/448-4175

V
1. Valpar International

3801 E. 34th St.
’kcson, AZ 85713
800/528-7070

W
1. Ward Systems Group

8013 Meadowview Dr.
Frederick, MD 21701

2. Worldwide Software
2555 Buena Vista Ave.
Berkeley, CA 94708
41 5/644-2850

Z

1. Zimmer, Tom
292 Falcato Dr.
Milpitas, CA 95035

Boards & Machines Only
See System Vendor Chart
for others
Controlex Corp.
16005 Sherman Way
Van Nuys, CA 91406
213/780-8877
Datricon
7911 NE 33rd Dr., #200
Portland, OR 97211

Golden River Corp.
7315 Reddfield Ct.
Falls Church, CA 22043
Triangle Digital Services Ltd.
23 Campus Road
London El7 5PG
England

Application Packages Only
See System Vendor Chart
for others
Curry Associates
P.O. Box 11324
Palo Alto, CA 94306

503/284-8277

4 15/322- 1463

(Continued on page 32)

Volume V. No. 3 39 FORTH Dimensions

J 1 FORTH INTEREST GROUP

MAIL ORDER

OMembenhip in FORTH Intereat Group and

=Back Volumes o f FORTH DIMENSIONS. Rica per eaeh.

Ofig-FORTH Installation Manual, containing the language model

Volume V of FORTH DIMENSIONS

L7I on C I I U O N
of fig-FORTH, a complete glossary, memory map and installation instructions

OAss&ly Language Swrca Lbtin& of f ig iORTH for specific CPUs
and machines. The above manual is required for installation.
Check appropriate box(ea1. Ria per each.

O8080 OM86/8088 0 9 9 0 0 OAPPLE U OECLIPSE
C~PACE JNOVA OPDP-11 a68000 OALPHA MICRO

O l e o 2 06502 0 6 8 0 0 06809 O V A X 0 2 8 0

4 " S t a r t i n g FORTH, by Brodie . BEST book on FORTH. (Paperback)
n " S t a r t i n g FORTH" by Brodie. (Hard Cover)

a 1980, $25USA/$35Foreign
12 1981, Two Vol., $40USA/$55Foreign

1982, $25USA/$35Foreign
ROCHESTER FORTH Conference a 1981, $25USA/$35Foreign
/-J 1982, $25USA/$35Foreign

PROCEEDINGS: FORML (FORTH Modif ica t ion Conference)

1983, $25USA/$35Foreign Tota - /I STANDARD: a FORTH-79, FORTH-83. $15USAf$l8Foreign EACH. Tota
Kitt Peak Primer, by Stevens. An in-depth s e l f - s t u d y book.

,IMAGAZINES ABOUT FORTH: =BYTE Repr in ts 8180-4/81
-rDr Dobb's J r n l , -J 9/81, 12 9/82. ~ 9 1 8 3

Poplar Computing, 9/83 $3.50USA/$SForeign w. Tot a1
3 FIG T-sh i r t s : r 3 Small a Medium a Large X-Large n Poster , BYTE Cover 8 /60 , 16"x22"
DFORTH Programmer's Reference Card. I f ordered s e p a r a t e l y , send

a stamped, s e l f addressed envelope.

TOTAL

FORRW
USA AIR
$15 $27

$15 $18

$15 $18

$15 $18

$18
$23

$22
$28

$
$25 $35

$
$10 $12
$ 3 $ 5

Free

NAME MS /APT

ORGANIZATION PHONE ()

CITY STATE ZIP COUNTRY

VISA# MASTERCARD#

AMERICAN EXPRESS# Card Expi ra t ion Date
Winimum of $15.00 on Charge Cards)

Make check or money o r d e r i n US Funds on US Bank, payable to: FIG.
postage. No purchase o r d e r s without check. C a l i f o r n i a r e s i d e n t s add sales tax. 10183

A l l p r i c e s i n c l u d e

-- FORTH INTEREST GROUP* PO BOX 110s * SAN CARLOS, CA 94070

EST GROUP
-2 Box 1102,
5zr.t Carios. CA 94070

Address Correction Requested

