J #77

s 5

T B

k<3 ﬁ-.'r:

nflrl

1'..-5';

L)

5
i S

emScon — Tracker Programming Interface

User Manual

Geosystems

|
User Manual

emScon TPI

Metrology Division

Jeica

Geosystems

Metrology Division

Preface

T

'@ These are original instructions and part of the
product. Keep for future reference and pass on to
subsequent holder/user of product. Read
instructions before setting-up and operating the
hard- and software. The emScon TPI reference
manual and the emScon TPI user manual should
always be used together.

This reference manual contains information
protected by copyright and subject to change
without notice. No part of this reference manual may
be reproduced in any form without prior and
written consent from Leica Geosystems AG.

Leica Geosystems AG shall not be responsible for
technical or editorial errors or omissions.

Product names are trademarks or registered
trademarks of their respective companies.

The software described herein is furnished under
license and non-disclosure agreement, and may be
used only in accordance with the terms of the sales
agreement.

© Leica Geosystems AG
Feedback

Your feedback is important as we strive to improve
the quality of our documentation. We request you to
make specific comments as to where you envisage
scope for improvement. Please use the following E-
Mail address to send in suggestions:

documentation.metrology@leica-geosystems.com

Software and version emScon TPI;1.5
Manual release June 2003
Manual order number None

ii e Preface

User Manual * emScon TPI

Metrology Division

Jeica

Geosystems

Preface
Contact

Leica Geosystems AG
Metrology Division
Moenchmattweg 5
5035 Unterentfelden
Switzerland

Phone ++41 +62 737 67 67
Fax ++41 +62 737 68 34

www leica-geosystems.com/ims/index.htm

User Manual * emScon TPI Preface e iii

Metrology Division iewa

Geosystems
Contents
1. Introduction 11
Prerequisitesccomireeeiiiiiniiinnnnens s 1
Hardwareooooiiiiii e, 11
Programming Environment............ccccccvvin. 11
TCP/IP Communicationcc.cooeevveeiiiiiiiceeeeennn. 11
Version Compatibility...............co 12
Future Compatibility............cccooeeeiiiiiiii 12
Backward Compatibility ... 12
Sample Code........oovvviiiiiiiiiiiee e, 14
Error Handling ... 15
Interface Designooovviiiiiiiiiiiie 15
Hard Coded Informationcccceeeeieinnnnnn. 15
Integration in Application Software 15
Initial sStepscovveeciirrr 16
Essential Steps.....cooovvvviiiiiiiiiiice, 16
Command SEqUENCE...........coeevivviiiieeeeeeeeeeeeia, 16
General information...........ccceeeeeeccciiiiireeeeeee, 18
Initialize Laser Tracker.........ccccooovviiiiiiiiiiiiiceeeee, 18
Current Temperature and Pressure...................... 18
Set Reflector.........oovciiiiiii, 19
Set Temperature Rangecccoeeeeeeeieeeeeeeee, 19
Station Parameters...........ccooovviieiieeiieeeee, 20
Transformation Parameters............ccccooeeeivineee, 20
Coordinate System Typeoovvvvvieeiiiiiiiieeeeie, 21
2. C Interface 23
Low-level programmingcccomeemmmnnininnnnnnnns 23
Introduction ..o, 23
TCP/IP Connection..........ccceeeeiviiiieeeeiieeeeeee, 23
Sending Commandsccooevveiiiiiiiieeeeeeeeeees 23
Code SeqUENCE........uvveiiieeeeeeeeeeiieee e 24
Initialization Macros............ccveeeievviiiie e, 24
C++ Initializationccoveeiiiiiiee, 25
Answers from Tracker Server...........cccccuuuennn... 25
Asynchronous Communication...........ccccc......... 26
DataArrived Notification.............ccccoovvvnineeenn. 26
PacketHeader Codecccooeeeiviiiiiiiiiiiieeee 27
Command Subtype Switchcccccceeeeiiii, 28
C Client Applications.........cccceeeeeeccciierireeeeennee. 30

User Manual * emScon TPI Contents e v

cfeica Metrology Division

Geosystems

Sample 1-Tutorialccoooviiiiiiiiiii e, 30
Step 1: Creating an Application Framework using
APPWizZardeeeiiieeeeeeieee e 30
Step 2: Import the Winsock Control.................. 30
Step 3: Create a Winsock Controls Instance 31
Step 4: User Controls on the Dialog 32
InitDialog() Handler.............cccooiiiiiiiiiiiiii, 33
Connect/Disconnect Handlers 33
Step 5: Connect/Disconnect TCP/IP Handlers . 35
Step 6: Implementing Command Handlers....... 36
Tracker Initialization................cccoiieiiiieen, 37
Hard Coded data........cccccccceeieiiiiiiiiee 38
Step 7: Receiving Data...........ccccccvveiiiiiiiiiinnnne 38
Function Body.........cccoovviiiiiiiiiiieeeeee, 39
GetData Functioncccccoeeiiiiiiiiiiieee, 39
ProcessData().........cccoovviiiiiiiieeeeieeceeee e 41
Asynchronous Communication............cccc......... 44

Remarksccoovviiiiiiiiie e, 44
Interface Design ... 45
Error Handlingoooovviiiiiii e 45
Network Traffic Jams.........ccccoooeiiiiiiiiiie, 45
MSWinsock Controlcccoeeeeeeiiiiiiiiiieeeee, 45
Essential code ..o 46
Build Sample 1 ... 46
TCP/IP addresscooeevvviiieieiiiiieeeeeecee e, 46

Visual Basic Client Application....................... 46

Sample 2-Tutorial ..o, 46
Step 1: Adding a Winsock Control and Designing
AFOrM . 46
Step 2: Connect to the Tracker Server 47
[P AdAreSSooeeeiiiee e 47
WINSOCKT ..o, 48
Step 3: Translate the C- enums and Structs to VB
... 48
Step 4: Implementing the Init Tracker Command
... 49
Step 5: Implementing Answer Data Receiving.. 50
Running the applicationcccoeviiiiiciinnnnn. 51
Remarksoooeeiuiiiiiiii e 51
SErUCIUIES ..o, 51
COM Interfacecccceeeeieieiiiieeee e, 52

Sample 13 LT BUI Launch..........ccccooeeiiiiniiiiinnn. 52

Winsock 2.0 Client Applications...............ccceu.. 52

SAMPIE 3 oo 52
Console applicationccccoeeeviiieeeiiiiiieeeeenn, 52
CoOMMENES ... 53
Queuing (Traffic Jams)cccccceoviciiiiiiieeeees 54
Remarkscoovvieiiiiic 54

3. C++ Interface 56

vi ¢ Contents User Manual * emScon TPI

Metrology Division

Jeica

Geosystems
Class Interface ..., 56
Class desSigncoovvviiiiieeeeeeeeee e 56
Sample 4 ... 57
Sample 4 specifiCs.......ccoovvvvieiiiiiiiieeeiiieeeeee, 57
Class for Commandsccooveeeiiiiiiineeeeeeeeeees 58
Receiving Data Sample 4oooovviiiieeeeieeenens 61
CESAPIReceive class Sample 9ccoevvneeeen. 61
CESAPIReceive Class Description................... 62
Procedurecoooe e 62
Single Point Measure Data Sample.................. 64
Remarkscoooviiiiii 64
GUI DESIgN ..ot 65
Receiving Data Sample 9 ... 66
ActiveX Component Sample 12...........cccoevveeenne. 66
Remarkscooiviiiiii e 67
Keyboard Interface Limitation........................... 68
Sample 10 ..o 68
4. COM Interface 69
High-level Interface.........ccccoooiiiiiiiiicnee 69
Introduction............ooiiiiiii e, 69
COM vs. Low-Level Programming...........ccc.......... 71
Registering COM Objects.........ccccvviviiiiiiiiiiiiiinnnnnn. 72
Visual Basic client ... 73
Sample 5 Tutorial ..., 73
Implementing Synchronous Commands........... 77
Implementing Asynchronous Commands......... 79
Catching Events and Messages 79
Extended Synchronous Functions.................... 81
Remark ..o 82
C++ Console Applicationccccceevireenncienneeee. 83
SAMPIE 6B .o 83
C++ Windows-MFC Application....................... 84
SAMPIE 7 e 84
Source Code Description..........cccceeeevviiieeeenn, 85
Handling Data Arrival — Continuous Measurements
... 86
Methods to Catch Packets..........cccccviien. 86
Known Bugs in ATL Event Sink Implementation91
Queues and Scattered Data..............cccoeeeeiiiinnnns 91
Problem Solution ..., 92
Cause of Data LOSScovveeeeiiiiiiiiiciieeeeeeeeeeee 95
Reading Data Blocks with Visual Basic 95
VBA Macro-Language Support (Excel, Word,
ACCESS) ..ttt 97
User-defined Types, the Differences between
Visual Basic and VBA9I7cccooviiiiiiiiiiiiinnnnn. 98
CoNCIUSION ... 100
Continuous measurements and VBA.................. 100

User Manual * emScon TPI

Contents e vii

Jeica

Geosystems

Metrology Division

Masking Data............ccovvviiiiiiiiiiiiiiiiiiiiiiiiieee 101
Scripting Language Supportcceeevvveiiiinnnnn. 103
Excel Control for Tracker Server................... 103
SaMPIE 8 ..., 103
Sample 11 GetStilllmage..............cccoeeeeeeeeeeennnnnnn. 104
Asynchronous interfaceccccccoeeeeeeennn, 104
Remarksoooiiiiiii e 105
Command Description 107
Special Functionscccccceeiimieciiirreeecceeeees 107
Get Reflectors Commandccccccoovvieeeen. 107
Related Commands...........cccoeeveevviiceeeeeeninnnn.. 107
ComMMENES ...ccveeeeeeee e 107
Still Image Commandviiieeeieiiiieeees 110
Related Commands...........cccceeeeiiiiieieeiiiiceeeeee, 110
Preconditions.........ccoooiiiiiiiiiii e 110
Application of GetStilllmage — C/C++ 110
COM/NVB(A)...c e 114
Live Image displaycceevvviiiiiiiiiiiiiiiiiiiieeeeen. 115
Live Image Control LTVideo2.0cx................... 115
Registering LTVide02.0CX..........ccevveeereeeeeennnee. 115
Development Platformsccccvvviiieeeo. 116
Server Address.......ooueeeveveeeieieeeeeeeeeeee e 116
Events/Methods...........coceeeiviiiiiiiiiieeeeeeen 116
Orient To Gravity Procedure..............cccovvvevvnnnnnn. 117
Related Command............ccoceeeiiiiiiieeeeeeiinne. 117
ComMMENES ...coeeeeeeeee e 118
Transformation Procedure...............coouuneee. 118
Related Commands..........cccccceeeeiiiiiiieeeeninn, 118
CommMENtScoeveeiiiieeee e 119
Automated Intermediate Compensation 119
Tracker Geometry.........coooeevvvieiiiciiiiieeeeeeeeee, 119
Intermediate vs. Full Compensation 120
SetUP e 120
Area Requiredccooooiiiiiiiiiiiiiiiie e 121
Procedure..........ooueeeiiiiiiiiieeiieeeeeeeeeeee 121
Related Commands..........ccccoeeeeiiiieieeeenin, 122
CommMENtScoeveieiiiceee e 122
Two Face Field-Check..........cccooeiiiiiiiiii 123
PeriodiCityuueeieeiieieeec 123
Field check two face Measurement................. 123
Client Routineccoveiiiiiiiiiiiiiicceeeeeeee 123
Procedure - Preparationccccevvvinnnn.. 124
Procedure - Measurement.................cceeeeeee.. 126
Procedure - Calculationccccceeeeennnnnn..n. 127
Mathematics 129
Transformation..........ccoeeeciiiriecci e, 129
INtroduCtion.........oiiiei e, 129

viii ¢ Contents

User Manual * emScon TPI

Metrology Division

Jeica

Geosystems

Transformation Parameters.........cccccoevvvveineennnn. 129
Transformation Types.......ccccceeviiiiiiiiiiiiiieeeeee, 130
Transformation vs. Orientation 132
Orientationcoevvieeiiii e 132
Transformationcoeeveviiiiiiieeeeeeee 132
Point ACCUracy.........cccoveeiiiiiiiieeiie e, 133
Input of Transformation Computation 134
Nominal Pointscooiiiiiiiiieeeeeee 134
Actual Points........coooiiiii e 135
Parameter Constraints..........cccoooovveveiivneeennnn... 135
Output of Transformation Computation............... 135
Transformation Parameters...........cccccceeuune... 135
Transformed Points and Residuals................. 135
StatistiCs ..vuiieeiie e, 136
EXamPIeS.....oueiiiei i 137
Standard Case with 3 Pointsccceeeeennee.e. 137
Pure Dilation ..o 138
3-2-1 Alignmentcoooeiiiiiiii e, 138
[270) Q070] 1 o 1= LA 139
Orientation Using Nivel20 measurements 139
7. Appendix 140
TPI File Listing ..cccceeiiiiiiciiirrecceerreee e, 140
Programming Interface Defining Files 140

User Manual * emScon TPI

Contents ¢ ix

Metrology Division iewa

Geosystems

1.Introduction

Prerequisites

Hardware The tracker-programming interface (TPI)
supports the following laser trackers:

e L[LT300

e LT500 & LTD500
e LT600 & LTD600
e LTD700

e L[T800 & LTDS800

Programming This manual (notation, samples/tutorials) is based
Environment on Microsoft Visual Studio 6.0 (VC++ 6.0, Visual
Basic 6.0) running on Microsoft Windows

(98/N'T/2000).

For Unicode applications, install VC++ with
Unicode libraries (custom installation).
Linker/runtime errors, such as: mfc42u.lib,
mfc42ud.lib or mfc42u.dll missing, indicate that
VC++ was installed without Unicode support.

TCcpip TCP/IP communication functions are not part of
Communication the TPI and have to be provided, except when

using the high-level TPL

The TCP/IP API functions of your operating
system (OS) can also be used. Keywords under
VC++ include Win32 Sockets API, or (if using
MEFC) CAsyncSocket and CSocket. Visual Studio
contains a TCP/IP communication library,

User Manual - emScon TPI Chapter 1 o Introduction ¢ 11

Jeica

Geosystems

Version
Compatibility
Future Compatibility

Backward
Compatibility

Metrology Division

MSWinsck.ocx, as an ActiveX control (COM
object).

Applications with ActiveX controls must be
Windows based, i.e. with a graphical user
interface (GUI). Console applications are not
suitable for ActiveX controls.

The use of a static TCP/IP library (for example
Win32 Sockets API), or a TCP/IP communication
DLL enables console (DOS) applications. Console
applications have the advantage of comprising
minimal overhead and are often 'single source
file' applications.

The sample codes have examples of both GUI
applications, with MSWinsck.ocx as the TCP/IP
communication library with VC++ and DOS
applications.

E See also the Reference Manual.

This is a very important issue in order to prevent
client application software adjustments upon
future emScon server software upgrades.The
coming versions of emScon will include new data
over the TCP/IP connection, such as new packet
types, status messages and new error messages.
The existing applications will be valid in future
emScon versions with one important caveat.

E See "Backward Compatibility" on page 12 for
details.

Backward compatibility will be provided, in that
existing packets/information structure are neither
changed nor removed. In practice, this generally
means that the default case in switch statements
should always be treated as 'neutral' (no action).

12 « Chapter 1 o Introduction User Manual - emScon TPI

Metrology Division

Example

Solution

Backward Compatibility
v1.0/1.1

Jeica

Geosystems

The enum ES_SystemStatusChange in v1.2
contains only two members.

enum ES_SystemStatusChange
{
ES_SSC_DistanceSet,
ES_SSC_LaserWarmedUp,
};

A future programming statement as follows
would cause an 'Unexpected Status' message,
with future emScon upgrades.

switch (status)
{
case ES_SSC_DistanceSet:
MessageBox (“ADM Distance
re-established”) ;
break;

case ES_SSC_LaserWarmedUp:
MessageBox (“Laser is now
ready”) ;
break;

default:
MessageBox (“Unexpected Status”);
break; // WRONG!!!
Y

Ignore the default case with no 'default’ entry tag
or one that just has an effect to debug versions.

default: // No action at all
break;

or

default: // no effect to retail versions
TRACE (“Unexpected Status”);
ASSERT (false) ;
break;

A minor change to version 1.2 may cause
backward compatibility problems, in rare cases, if
all of the following conditions apply:

e Application is based on LTControl (COM-
Interface).

e EmScon server and LTControl have been
upgraded (there is no problem if only the
server is upgraded but the client still uses
v1.x LTControl).

e One of
MeasureStationaryPoint/MeasureStationary?
ointEx methods is used.

User Manual - emScon TPI Chapter 1 ¢ Introduction ¢ 13

cfeica Metrology Division

Geosystems

e The Measurement mode before calling these
functions was one of the 'Continuous' modes
(i.e. not explicitly set to 'Stationary"’).

e In this case, vl.x emScon versions
implicitly changed to 'Stationary'. This is
no longer the case in v1.2. There will be
an error message, 'that it is not possible
to make a stationary point measurement,
while not being in stationary mode'.

Solution If this situation should occur to your v1.x emScon
client, try the following workaround:

1. A compatibility switch is required, in order
to make v1.2 LTControl behave the same as
vl.x.

2. Place file LTControl.ini in Windows
directory (e.g. C:\ WinNT).

3. Make following entry :
[Settings]
V1BackwardCompatibility=1

T

% Do not forget to delete this file or to set the
Entry to ='0" if the backward compatibility
behavior is no longer wanted. It is recommended
to change applications to new v1.2. behavior, as
soon as changes are made to the client software.

Sample Code The samples/tutorials show the principles of TPI
programming. However, the sample applications
may not be of real practical use, in the specific
TPI commands they implement.

% In a practical application, in order to get
accurate results, it is crucial to implement all the
steps as listed under 'Initial steps'.

14 ¢« Chapter 1 o Introduction User Manual - emScon TPI

Metrology Division

Error Handling

Interface Design

Hard Coded
Information

Jeica

Geosystems

E See "Integration in Application Software" on
page 15 for details.

The number of files and overhead has been kept
to a minimum. Code generated from wizards,
such as recompiled headers, icon, res2 includes and
'cosmetic functions', have been stripped off.

Following the tutorial instructions may result in
some blown-up code compared with the samples
bundled with this manual/SDK. However, the
essential code remains the same.

E See also the numerous comments in the
sample source files.

E See "Appendix " on page 140 for a complete
list of sample source files.

The samples do not always implement complete
error handling and may need to be run through
the debugger.

The user interface design is kept at a minimum
level (for example, unavailable buttons are not
grayed out). Such items are general issues of
Windows programming.

The samples contain some hard coded
information (IP address/coordinate values) that
must be adapted to the local environment.

Integration in Application Software

The emScon graphical user interface, emScon
Base User Interface (emScon BUI), provides a
browser based access from the Application
Processor. Access over the browser requires the
IP address of the emScon Tracker Server.

The BUI includes:

User Manual - emScon TPI Chapter 1 o Introduction ¢ 15

Jeica

Geosystems

Essential Steps

Command
Sequence

Metrology Division

e A Toolbar for sensor control and display of
results and their statistics.

e Web pages providing access for sensor and
server settings.

Integration of the application software running
on the Application Processor with the emScon
BUI is explained in Sample 13.

E See the emScon Reference Manual for BUI
details.

Initial steps

A client application must carry out all steps upon
startup. Omitting some of these steps will prevent
the tracker from measuring or lead to inaccurate
results. Inaccurate results are difficult to detect.

W Setting correct environment parameters
(temperature, pressure) or configuring the system
for automatic, environment parameter reading is
crucial.

% The environment parameter setting needs to
be done before tracker initialization.

E Sample 7 implements all essential steps.
Other samples are not exhaustive and show
programming principles only.

E See also Leica Tracker/Training Manual.

Steps TPI command
1. Establish TCP/IP Depends upon TCP/IP
connection. communication — See

different samples

2. Set units (length, ES_C_SetUnits
angle, temperature and
pressure)

16 ¢ Chapter 1 o Introduction User Manual - emScon TPI

Metrology Division

3.

4.

5.

o N

10.

Set current
environmental
temperature, pressure
and humidity

Initialize the Laser
Tracker

Measurement mode
(stationary, continuous
time...)

Get reflectors
Set reflector

Go bird bath

Station parameters

Transformation
parameters

11. Coordinate system

type (RHR, LHR...)

Jeica

Geosystems

ES_C_SetEnvironmentPa
rams

ES_C_Initialize

ES_C_SetMeasurementM
ode

ES_C_GetReflectors
ES_C_SetReflector
ES_C_GoBirdBath
ES_C_SetStationOrientati

onlParams
ES _C_SetTransformation

Params

ES_C_SetCoordinateSyst
emType

User Manual * emScon TPI

Chapter 1 ¢ Introduction ¢ 17

cfeica Metrology Division

Geosystems

General information

Provides an overview of the parameters and their
implications.
Initialize Laser Definition Comment
Tracker Initialize encoders and ~ This command has to be
internal components performed every time
you set up a new Leica
Tracker system station. It
is strongly recommended
to use this function 2-3
times a day to initialize
encoders and its internal
components. This is
important due to thermal
expansion of the tracker
hardware, which has a
direct influence on the
measurements

Current Definition Comment

Temperature and Set index of refraction With the input of the

Pressure environmental
temperature, pressure
and humidity, the system
calculates the light
refraction index of the
interferometer (IFM) and
the absolute distance
meter (ADM). These
parameters have a direct
influence on the
measurement accuracy

A change of 1°C causes a
measurement difference
of 1ppm.

A change of 3.5mbar
causes a measurement
difference of 1ppm.

18 ¢ Chapter 1 o Introduction User Manual - emScon TPI

Metrology Division

Set Reflector

Set Temperature
Range

Definition

Definition

Select a specific reflector

Definition

The laser's mode of
operation depends on
external temperature.
Select one of the
following temperature
ranges corresponding to
your application:
Low: +5 - +20 °C
Medium: +10 - +30 °C
High: +30 - +40 °C

Jeica

Geosystems

Comment

Change environmental
parameters when
significant changes take
place.

Default values:

20.0 °C, 1013.3mbar
Comment

A wrong reflector results
in a wrong initial IFM
distance, e.g. when using
the Go Birdbath
command. This has a
direct influence on the
absolute positioning
accuracy of the
measurement network.

ADM measurements are
inaccurate due to the
different reflector
constants.

Tooling ball reflector
(TBR) =5.310 mm
Cat eye =59.114 mm

Comment

The Laser Startup Mode
is set by default to
medium (+10 - +30 °C).
When the external
temperature exceeds this
range, the system tries to
stabilize the
interferometer. During
this process (10 - 20
minutes), no
measurements can be
taken (Green LED on the

User Manual * emScon TPI

Chapter 1 ¢ Introduction ¢ 19

Jeica

Geosystems

Station
Parameters

Transformation
Parameters

Definition

Definition

The station parameters
describes the translation
and rotation of the
tracker station in a
coordinate system:

X, Y, Z, Omega, Phi,
Kappa

Definition

A transformation
describes a change into
another coordinate
system, which is different
from the tracker
coordinate system. It has
the following parameters:
X, Y, Z, Omega, Phi, and
Kappa and scale factor.

Metrology Division

Comment

tracker blinks). Switch
mode to low or high.

Comment

In case the station
parameters are not set
explicitly, TPI will set the
parameters as follows:
(X=0/Y=0/2=0/Omega=0/
Phi=0/Kappa=0).

Comment

The object coordinate
system is located in the
measured object, which
may correspond to the
coordinate system of the
design.

Either a controlled
orientation or a
transformation can create
the object coordinate
system.

Data is created in the
object coordinate system
if the transformation
parameters are applied to
the TPL. In case these
parameters are not set,
the TPI will deliver the
data based on the tracker
coordinate system
(X=0/Y=0/Z=0/Omega=0/
Phi=0/Kappa=0/Scale = 1.

E See "Mathematics" on page 129 for more

information.

20 o Chapter 1 o Introduction

User Manual * emScon TPI

Metrology Division

Coordinate
System Type

Definition

Selects the coordinate
system type:

RHR/LHR X, LHRY,
LHR
Z/CCW/CCC/SCW/SCC

Jeica

Geosystems

Comments

The TPI delivers the data
in the current coordinate
system type. By default
the tracker system will
work in the right handed
rectangular coordinate
system (RHR) type:

3D rectangular
coordinates are defined
by 3 mutually
perpendicular axes X, Y
and Z given in the order
XY, 2).

Since the axes can be
arranged in two different
ways, right and left-
handed systems are
defined according to the
convention illustrated in
a simple 2D case.

Cylindrical Clockwise
(CCW)

Cylindrical Counter
Clockwise (CCQ)

In a cylindrical system
the X and Y values are
expressed in terms of a
radial (distance) offset
from the Z-axis and a
horizontal angle of
rotation. The Z
coordinate remains the
same.

Spherical Clockwise
(SCW)

Spherical Counter
Clockwise (SCC)

User Manual * emScon TPI

Chapter 1 ¢ Introduction e 21

cfeica Metrology Division

Geosystems

Definition Comments
In a spherical system a
point is located by a
distance and two angles
instead of the 3
coordinate values along
the rectangular axes. For
axes labeled XYZ, with Z
vertical, the point is
located by its distance
from the origin,
horizontal angle in the
XY plane and zenith
angle measured from the
Z-axis.

22 ¢ Chapter 1 ¢ Introduction User Manual - emScon TPI

Metrology Division

Geosystems

2.C Interface

Introduction

TCP/IP Connection

Sending Commands

Low-level programming

Before designing the client application, refer to
the ES_C_API_Def.h file. The C-TPl is a pure
collection of enumeration types and data
structures. The data structures reflect the
‘architecture’ of the data packets (= byte arrays)
sent and received over the TCP/IP network,
between the Application Processor and the
Tracker Server.

T

% No functions or procedures are defined.

T

% Since C++ is an extension of C, a C++
compiler can also be used for C programming.

1. Establish a TCP/IP connection to the tracker
server. This is typically achieved by invoking
a Connect function of the TCP/IP
communication library or toolbox. This
function will take the IP address (or its
related hostname) of your Tracker Server.

2. Set the TCP/IP Port Number to 700 for the
Tracker Server.

3. Call a SendData function from the TCP/IP
communication library or toolbox (Function
name may differ). This function typically
takes a pointer to a data packet and probably
the size of it (unless the packet is wrapped

User Manual - emScon TPI Chapter 2 ¢ C Interface o 23

Jeica

Geosystems

Code Sequence 5

Metrology Division

into a structure that knows its size implicitly,
for example a Variant structure).

The architecture of the packets (TPI protocol)
is defined by the data structures in the
ES_C_API_Def.h file.

E See the Reference Manual for a detailed
description of these structures.

. For invoking a GoPosition command.

Assign appropriate initialization values. For
example, assign an ES_Command and an
ES_C_GoPosition to a GoPositionCT struct
variable.

% The compiler will not detect, if, for
example, an ES_DT_SingleMeasResult as
type, or an ES_C_SwitchLaser as command is
assigned to a GoPositionCT variable.
Inappropriate initialization values cause the
command to fail.

GoPositionCT data; // declare packet variable
data.packetInfo.packetHeader.type = ES_DT_Command;
data.packetInfo.packetHeader.lPacketSize = sizeof (data);
data.packetInfo.command = ES_C_GoPosition;

data.dvall = -1.879;
data.dval2 = 2.011;
data.dval3 = 0.551;

data.bUseADM = FALSE;

Initialization Macros 6. To avoid such errors, which may happen

through copy/paste errors and are difficult to
trace, it is recommended to use initialization
macros for correct assignment of type, size
and command values.

An INITStopMeasurement macro , for
example, requires two statements, the
parameter declaration and the parameter
initialization (macro call). The
StopMeasurement has no additional command
parameters. If there are any, these can be
incorporated into the macro.

24 o Chapter 2 o C Interface

User Manual * emScon TPI

Metrology Division

Jeica

Geosystems

StopMeasurementCT cmdStop; // declaration
INITStopMeasurement (cmdStop) ; // initialization
C++ Initialization C++ offers a much more elegant way for

initialization — the 'constructor' approach, which

eases the initialization issues.

E See "C++ Interface” on page 56 for details.

Answers from
Tracker Server

7. After initialization of the data variable, send

it to the tracker server using the TCP/IP
SendData() function (or whatever this
function is called). Depending on the TCP/IP
communication library used, the data packet
may need to be packed into a Variant vrtData
variable, followed by a SendData (vrtData)
call. Alternatively, a Send() function takes the
address and size of the data packet variable,
Send (&data, sizeof(data)).

. The SendData() function does not wait for the

Tracker Server (tracker) to complete the
requested action - SendData() will return
immediately. On completion of the requested
action, the tracker server sends an answer to
the client. Depending on the command, it
may take a few seconds between sending the
command and receiving an answer. This
requires some type of notification or callback
mechanism. That is, as soon as data arrives
from the Tracker Server, some sort of event
needs to trigger a ReadData() procedure in
the client application. Depending on the
TCP/IP communication, this notification
could be a Windows Message, an Event or a
Callback Function.

% This type of communication is asynchronous.

User Manual * emScon TPI

Chapter 2 ¢ C Interface ¢ 25

Jeica

Geosystems

Asynchronous 9.
Communication

Metrology Division

From the programmer's point of view,
asynchronous communication is much more
difficult to handle than synchronous
communication. The programmer must
ensure, not to send a new command until the
answer of the previous one has returned
(commands might be queued under certain
circumstances).

DataArrived 10. All TCP/IP communication libraries/toolkits

Notification

DataArrived Notification 11
Queue

contain either a DataArrived() notification or
a similar function, which is called by the
framework each time data has arrived.
Depending on the toolkit:

e The function may directly return a
Variant type parameter that contains the
data.

e The function may deliver the data within
a byte array.

e The function returns the size of the data
packet that is ready to be read. In this
case, the DataArrived() function
subsequently calls a ReadData() function
immediately, in order to get the data into
a local byte array.

.If a 'traffic jam' occurs on the incoming

TCP/IP line, i.e., if incoming data is being
queued, a ReadData() call will read all the
currently available data with no notification
for each individual packet. Many packets
may be queued and only one DataArrived
notification might be issued. This means that
the byteArr butfer will contain more than one
packet. This may occur on high frequency,
continuous measurement streams. The
application has to make provisions to

26 o Chapter 2 o C Interface

User Manual * emScon TPI

Metrology Division

PacketHeader Code

Jeica

Geosystems

correctly treat such cases. The [PacketSize
value is most convenient when parsing the
byteArr buffer.

If the byteArr buffer is completely filled with
data, it is likely that the last packet in the
byteArr is incomplete. The packet fragment
needs to be saved and padded to complete
upon the subsequent read-call.

E See "Queues and Scattered Data" on page 91
for details.

12. Assuming a received data block has been
read into a byte buffer named byteArr. In
order to interpret the data, a mask is
required. This requires knowledge of the
type of data packet (enum ES_DataType). A
typical PacketHeader interpreting code is as
follows:

|PacketHeaderT *pData = (PacketHeaderT*)byteArr;

13. Access the type and the size of the packet can
be with:

pData->type;
pData->1PacketSize;

The packet size is only for convenience.
Sizeof(type) also returns the packet size.

T
& This redundancy may be used for

consistency checks and is helpful when using
programming languages other than C that lack
the sizeof() operator).

The packet size is reliable on received packets.
When sending packets to the Tracker Server, it is
recommended to initialize the [PacketSize variable
correctly, although the Tracker Server ignores it.
This approach has been chosen to reduce possible
programming errors.

User Manual * emScon TPI

Chapter 2 ¢ C Interface o 27

cfeica Metrology Division

Geosystems

Command Subtype 14. Command type answers require a switch

Switch statement to distinguish the command
subtype. Non-data returning commands can
all be treated the same and are handled in
the default switch statement. All other
command answers need to be masked with
the appropriate result structure. The code
fragment below demonstrates this with the
GetUnits command, and shows part of the
handling of a single measurement answer:

28 ¢ Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division iewa

Geosystems

switch (pData->type)
{
case ES_DT_Command: // 'command- type' answer arrived
{
BasicCommandRT *pData2 = (BasicCommandRT *)byteArr;

// if something went wrong, no need to continue
if (pData2->status != ES_RS_A110K)
{
// TODO: evaluate and handle the error
return false;

}

switch (pData2->command)
{
case ES_C_Initialize:
case ES_C_PointLaser:
case ES_C_FindReflector:
break;

case ES_C_GetUnits:

{
GetUnitsRT *pData3 = (GetUnitsRT *)byteArr;

// Diagnostics - check whether packet size
// as expected (in debug mode only)
ASSERT (pData3->packetInfo.
packetHeader.lPacketSize ==
sizeof (GetUnitsRT)) ;

// now you can access Unit specific data.
pData3->unitsSettings.lenUnitType;
pData3->unitsSettings.tempUnitType;

break;
}

// case XXX:
// Todo: add other command type evaluations
// break;

default:
break;
}
}
break;

case ES_DT_SingleMeasResult: // single-meas-result-
{ //type answer has arrived
SingleMeasResultT *pDatad =
(SingleMeasResultT *)byteArr;

if (pDatad4->packetInfo.status != ES_RS_A1l10K)
return false;

break;
// Todo: add further 'case' statements

// for remaining packet types

}

e Declaring variables within case statements,
which are suitable for masking data, require curly
brackets around a particular case block.
Otherwise the compiler will claim.

e If-then-else can be used instead of switch
statements. However, switches are more efficient.

User Manual - emScon TPI Chapter 2 ¢ C Interface ¢ 29

Jeica

Geosystems

Sample 1-Tutorial

Step 1: Creating an
Application
Framework using
AppWizard

Step 2: Import the
Winsock Control

Metrology Division

e Frequent items should be treated at the top of
a switch statement, for example multi-
measurement results (not covered above).

C Client Applications

The EmsyCApiClient sample is presented in
tutorial form, based on Visual C++ v6.0, it uses
MSWinsck.ocx for TCP/IP communication. The
application is given a dialog box 'look and feel'.

% An OCX control requires a dialog/Windows
based application, with VARIANT data types.

1. Launch Microsoft Visual C++ (Visual Studio).
Select File > New > Projects.

Select MFC AppWizard (exe) from list.

=W N

Type EmsyCApiClient in the Project Name
field.

Click OK.
Select Dialog-based. Click Next.
Uncheck AboutBox.

Check 3D controls and ActiveX Controls. Click
Next.

® N & o

9. Select (optional) No, thank you under, "Would
you like to generate source file comments?”
Leave other settings unchanged. Do not
change any file names.

10. Click Finish. Click OK on last pane.
11. Compile the application.
12. Run the application.

1. Select menu Project > Add to Project >
Components and Controls.

2. Change to Registered ActiveXControl folder.

30 e Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division cfewa

Geosystems

3. Select Microsoft Winsock Control, version 6.
4. Click Insert, Click OK.

5. Reregister MSWinsck.ocx, if Microsoft
Winsock control version 6.0 is not available,
in the list of Registered ActiveX controls. Use
Regsvr32.exe utility. Reinstall VC++, if file
cannot be found.

6. Dialog box 'Confirm Classes' appears.

7. Check item 'CMSWinsockControl'. Leave
proposed class and file names unchanged.

8. Click OK.

9. Close Components and Controls Gallery
dialog. Two files MSWinsockControl.h and
MSWinsockControl.cpp have been generated
as a wrapper class to the OCX's COM-
Interface and inserted in the project. No
changes are to be made to these files. Only a
few of the many functions of
MSWinsockControl are required by the
application.

Step 3: Create a Knowledge about placing controls on dialog

Winsock Controls b +h the Dialoc B ditor i d

Instance oxes with the Dialog box editor 1s presumed.
The Controls palette (the window from which
buttons, edit fields etc. are dragged to the dialog
template) is padded with a new icon at the
bottom (two small computers are shown). Its tool-
tip info reads 'MS Winsock control version 6.0".

1. Create one such control in the dialog;:
Activate the resource editor and the dialog
template. In the 'Controls' toolbox, click the
Winsock icon.

2. Draw a rectangle on the dialog. The icon
should now appear as a 32x32-pixel icon.
Place icon out of the way, where it does not

User Manual - emScon TPI Chapter 2 o C Interface ¢ 31

cfeica Metrology Division

Geosystems

disturb other controls.

T

% This icon will be invisible in the real
dialog.

3. Right click to look at the properties: ID:
IDC_WINSOCKI1. Do not change the ID.

4. Click Control TAB of the property box. Add
an empty string "" to Remote Host field. This
prevents an exception when running the
application.

5. Do not change any remaining properties. No
Remote host ID or port #. This information
will be added later.

6. Add member variable of type
CMSWinsockControl (see MSWinsockControl.h
file for class definition).

Manually: Continue with step 7.
With Class Wizard: Continue with step 9.

7. Add following declaration:
manually to the applications dialog class
CEmsyCApiClientDIg.

| CMSWinsockControl m_winSockCtrl;

8. Create the control explicitly or make a
correct entry to the DoDataExchange()
function.

9. Let the ClassWizard do the work.
Call it from the View menu or press Ctrl+W.

10. Activate the Member Variables TAB.

11. Select IDC_WINSOCKT1 in the list. Click Add
Variable... button. Name the variable
m_winSockCtrl.

12. Click OK, close the ClassWizard window.

Step 4: User Controls The MSWinsock control's functions take all string

on the Dialo .
J and data parameters as Variants.

32 ¢ Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division

InitDialog() Handler

Connect/Disconnect
Handlers

Jeica

Geosystems

Use of Variants (packing/unpacking before
sending/receiving data) is necessary, due to the
Variant parameters of the MSWinsck.ocx
Send/Receive functions.

Use of an alternative TCP/IP library (with C or
C++ Interface) or the native TCP/IP
communication functions of the operating system
enable design of non Win32- based or non-
Windows (e.g. console applications, Apple
OS/Linux etc) applications. These will not require
Win32 specific Variants.

E See "Sample 3" on page 52 or "Receiving Data
Sample 9" on page 66 for details.

E See "Sample 4" on page 57 for explanation of
the InitDialog() handler with the implicit Connect()
function and close with WM_DESTROY.

The ClassWizard's Message Maps TAB can be
used to add push buttons to dialog templates and
to attach appropriate message handlers to them,
together with Static and Edit controls to dialogs
with member variables.

E See "Sample 1-Tutorial" on page 30 for
explicit Connect and Disconnect handlers, bound
to appropriate push buttons with all required
controls added to the dialog template.

E Refer to VC++ 'Scribble' tutorial for
information on dialog box design.

1. Remove the OK button and the TODO label
from the dialog template.

2. Replace the caption of the Cancel button with
Exit.

User Manual - emScon TPI Chapter 2 ¢ C Interface ¢ 33

Jeica

Geosystems

Metrology Division

3. Add the following 7 pushbuttons and the
related message handlers to the dialog

template.

T

% In order to correspond with the Sample 1

source code, the following names are

recommended:
Button Caption |Button ID Name of
Message
handler
Connect DC_BUTTON_ |OnButtonConne
CONNECT ct

Disconnect IDC_BUTTON _ |OnButtonDiscon
DISCONNECT |nect

Init Tracker IDC_BUTTON_ |OnButtonlnit
INIT

Laser Pointer IDC_BUTTON _ |OnButtonPointl
POINTLASER |aser

Find Reflector |IDC_BUTTON_ |OnButtonFindre
FINDREFLECT |flector
OR

Set Reflector IDC_BUTTON _ |OnButtonSetrefl
SETREFLECTO |ector
R

Start Meas IDC_BUTTON_ |OnButtonStartm
STARTMEAS eas

4. Add two 'Statics' and relate them to
appropriate member variables (type

Control):

Static ID

Member variable name

IDC_STATIC_RESULT

m_staticResult;

IDC_STATIC_STATUS

m_staticStatus;

5. Eliminate the 'captions' of these Statics.

6. Check the 'sunken' property (to make then
visible). Their size should permit three (3)

34 ¢ Chapter 2 ¢ C Interface

User Manual * emScon TPI

Metrology Division iewa

Geosystems

coordinate values (Result) or a three (3) digit-
number (Status).

A label (static) may be added, with caption
'Status' in front of the status field. No
member variable need be added and no
change of the ID is necessary.

7. The dialog template should now look as

follows:
D\ EmeyChpiChentoes -1
|... NI MRt i e o i iars IR T S TR R
- EmeyCApiChent. 2l01.x -
Connect | It Trackes | SetBeflector | Startbteas |
Disconvect | LassiPointer | EndRefecior| Bt | |
- |E Skalus: i
: | i
gtep 5: D . The EmsyCApiClientDIg.cpp.h should now contain
ngz;cHa,;ztl::’gnec 'skeleton’ code for all push button handlers

(generated by the ClassWizard).

1. Implement the OnButtonConnect() and
OnButtonDisconnect() handlers.

2. Include atlbase.h to know CComBSTR and
ES_C_API_Def.h. Add these files to the
project with Menu 'Project’ > Add to "Project’
> Files.

#include <atlbase.h>
#include "ES_C_API_Def.h"

3. The essential OnButtonConnect() code reads
as follows (fragment only).

User Manual - emScon TPI Chapter 2 o C Interface ¢ 35

cfeica Metrology Division

Geosystems

VARIANT vRemoteHostName;
VariantInit (&vRemoteHostName) ;
vRemoteHostName.vt = VT_BSTR;

// CComBSTR ensures allocating and freeing the string
CComBSTR bstr(_T(“192.168.0.1")); // hostname or IP adress
vRemoteHostName.bstrVal = bstr;

VARIANT vRemoteHostPort;

VariantInit (&vRemoteHostPort) ;

vRemoteHostPort.vt = VT _I4;

vRemoteHostPort.1lval = 700; // port 700 reserved for ES

// So far, all was Variant preparation. Do connect call now
m_winSockCtrl.Connect (vVRemoteHostName, vRemoteHostPort) ;

T

% When MSWinsock control throws exceptions
on failure use try {}/catch {} statements.

E See "Sample 1-Tutorial" on page 30 for the
complete implementation of the
OnButtonConnect() function with useful
comments.

4. The essential code of the
OnButtonDisconnect() handler:

|m_winSockCtrl.Close();

5. To trap MSWinsock errors, the entire
implementation of OnButtonDisconnect() is
shown here:

void CEmsyCApiClientDlg: :0OnButtonDisconnect ()
{
try
{
m_winSockCtrl.Close() ;
}
catch(...)
{
AfxMessageBox (_T("Failed to close connection\n"));

}

}

Build the application and connect/disconnect to
the Tracker Server. The netstat.exe Windows tool
checks whether the connection was established
correctly.

Step 6: Implementing 1. Implement the remaining command

Command Handlers handlers for the commands (Buttons) that
have been previously added. Select the
appropriate command structure (as defined
in the ES_C_API_Def.h file) and initialize it.

36 e Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division

Tracker Initialization

Jeica

Geosystems

2. Sample Initialize Tracker command handler:

void CEmsyCApiClientDlg: :0OnButtonInit ()

{
// clear status field, just cosmetics!
m_staticStatus.SetWindowText (_T(""));

try
{
InitializeCT data;

data.packetInfo.packetHeader.type = ES_DT_Command;
data.packetInfo.packetHeader.lPacketSize =

sizeof (data) ;
data.packetInfo.command = ES_C_Initialize;

COlevVariant variantData =
PackIntoVariant (&data, sizeof (data));
m_winSockCtrl.SendData (variantData) ;
}
catch(...)
{
AfxMessageBox (
_T("MSWinSockCtrl Exception (Initialize)\n"));

% PackIntoVariant() helper function is necessary
due to the Variant type parameters of MSWinsock.
The PackIntoVariant() needs to be defined in the
application code (for example locally in the
EmsyCApiClientDIg.cpp file)

PackIntoVariant() requires <atlbase.h>:

COlevVariant PackIntoVariant (void *pData, UINT sizeOfData)
{

BYTE* pByteArr = new BYTE[sizeOfDatal];

memcpy (pByteArr, pData, sizeOfData);

CByteArray byteArr;

for (UINT i = 0; 1 < sizeOfData; i++)
byteArr.Add (* (pByteArr+i)) ;

delete [] pByteArr;
COlevVariant vrt (byteArr) ;

return vrt;

}

The application should now be able to initialize
the tracker.

1. Run the application and immediately click
the Init Tracker button.

2. An error message reads: MSWinSockCtrl
Exception (Initialize) \n (the message specified
in the OnButtonlInit() 'catch’ part). The

User Manual - emScon TPI Chapter 2 ¢ C Interface o 37

Jeica

Geosystems

Hard Coded data

Step 7: Receiving
Data

Metrology Division

Winsock control threw an exception because
it was not connected before!

. Press the Connect button, then the Init Tracker

button again.

% Only one, single Connect at a time is
possible. Pressing the Connect button more
than once without a Disconnect in-between,
will get an error message, although the
connection is still OK.

. Implement the remaining Handlers:

OnButtonPointlaser()
OnButtonFindreflector()
OnButtonSetreflector()
OnButtonStartmeas()
Refer to Sample 1 code.

Some of these functions include hard coded data,
for example coordinates for OnButtonPointlaser().
Invoking this command just toggles the beam
between two locations. This is not of practical
use, but for demonstration.

The coordinates may need to be changed to
reflect your environment. It is recommended that
a reflector is placed somewhere with approximate
coordinates specified in (one of) the
OnButtonrPointlaser() toggle positions. It is also
assumed that a reflector with ID 1 exists, as set in
OnButtonSetreflector(1). Change the ID as
required.

In order to receive data, the events sent out by the
Winsock control need to be caught, as soon as
arriving data is signalled by the framework (by
an Event).

1. Display the ClassWizard dialog, choose the

Message Maps TAB and select the

38 e Chapter 2 ¢ C Interface

User Manual * emScon TPI

Metrology Division

Jeica

Geosystems

IDC_WINSOCKTI item in the Object IDs table.

@ Ensure the dialog class in the 'class
name' list box is selected . The 'Messages' list
shows all events the Winsock control is able
to send.

. Select DataArrival, press Add Function... and

confirm the name OnDataArrival Winsock1.
Finish the ClassWizard with OK.

. Searching all project files by 'arrival' shows,

that the class wizard has inserted code in 3
locations:

e Function declaration in the header files
message map section.

e An entry in the implementation files
EVENTSINK map.

e An empty function body.

void

FunCt’on BOdy CEmsyCApiClientDlg: :OnDataArrivalWinsockl (long bytesTotal)

{

}

// TODO: Add your control notification handler code here

4. If a Data Arrived event happens, the number

of bytes that are ready to be read is passed as
a parameter to OnDataArrival Winsock1()
handler. An OnDataArrivalWinsock1() call
requires the Winsock control's GetData()
function.

|m_winSockCtr1.GetData(&m_vtData, vtType, vtMaxlen) ;

GetData Function

5. The address of a variant must be passed as

tirst parameter, since the data is delivered as
a variant. To avoid frequent
allocation/deallocation and initialization of
(an automatic local) Variant variable, a
Variant member variable is defined in the
dialog class.

User Manual * emScon TPI

Chapter 2 ¢ C Interface o 39

cfeica Metrology Division

Geosystems

6. Add the following declaration to the
CEmsyCApiClientDlg class (protected or
private) in the EmsyCApiClientDIg.h file:

[VARIANT m_vtData;

7. Initialize this variable once to the 'dialog
class' constructor:
Upon receiving data, the application may
crash without initialized m_vtData

| VariantInit (&m_vtData) ;

8. To maintain modularity, implement data-
reading (GetData) in the
OnDataArrivalWinsock1() function, and
implement a separate processing (parsing)
member-function named ProcessDatal().

9. The OnDataArrivalWinsock1()
implementation reads as follows:

40 ¢ Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division iewa

Geosystems
void
CEmsyCApiClientDlg: :OnDataArrivalWinsockl (long bytesTotal)
{
TRACE (_T ("OnDataArrival\n")) ;
// m_vtData (output parameter variant) as member var
// !1! Note: m_vtData must be initialized with
// VariantInit; see constructor !!!
// pass expected result-type through ival
VARIANT vtType;
vtType.vt=VT_I2;
vtType.iVal = VT_ARRAY|VT_UIl;
// pass packet length through 1lval (long) parameter
VARIANT vtMaxlen;
vtMaxlen.vt=VT_I4;
vtMaxlen.1lvVal = bytesTotal;
try
{
// read data from socket into variant
m_winSockCtrl.GetData (&m_vtData, vtType, vtMaxlen) ;
}
catch(...)
{
AfxMessageBox (
_T("MSWinSockCtrl Exception (GetData)\n"));
}
// check if all data has arrived - just diagnostics
if (m_vtData.parray->rgsabound->cElements ==
(unsigned long)bytesTotal)
{
// now data can be processed
if (!ProcessDatal())
Beep (200, 100) ;
}
else
ASSERT (false); // will only raise in debug mode
}
ProcessData) To implement ProcessData() parse incoming data

as described earlier in this document. The
implementation of ProcessData() as a member
function does not require passing data as a
parameter. The m_vtData member variable can be
directly accessed.

10. Mask the data buffer (byte-array) with a
PacketHeaderT struct to identify the packet

type.
11. Depending on the packet type, use the

appropriate 'Sub-mask' (BasicCommandRT,
SingleMeasResultT etc.).

% This simple application handles only a few
packet types/commands, and the ProcessData
function remains compact. For applications that

User Manual - emScon TPI Chapter 2 o C Interface ¢ 41

cfeica Metrology Division

Geosystems

implement virtually all Tracker Server answers,
the parsing code must be split into smaller
functions for ease of handling.

T

% Note the statements to display return status
numbers (0 = OK, non zero = errors) and
measurement results to the appropriate static
controls of the dialog.

42 ¢ Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

{

bool CEmsyCApiClientDlg::ProcessData ()

CString sStatus, s;

ProcessData() is a parser for the incoming data.

When ProcessData() is being called, we can assume
that 'm_vtData.parray->pvData' points to a valid and
complete 'answer block' (just an array of bytes).
Next we must mask this data block with BasicCommandRT
in order to figure out type. Once the type (for
example ES_DT_SingleMeasResult) is known, we can mask
it with the appropriate structure (e.g.
'SingleMeasResultT'). mask arrived data with RT
structure in order to figure out type/status

PacketHeaderT *pData =

(PacketHeaderT*)m_vtData.parray->pvData;

switch (pData->type)

{

case ES_DT_Command: //'command- type' answer arrived
{
BasicCommandRT *pData2 =
(BasicCommandRT *)m_vtData.parray->pvData;

switch (pData2->command)

{
// here you may treat answers individually
// as needed. Within this sample, we just do
// a general handling for all command answers.
// Thus the 'switch (pData->command)' block
// could be entirely omitted. It is just here
// for documentation purposes

case ES_C_Initialize:

case ES_C_PointLaser:

case ES_C_FindReflector:

case ES_C_StartMeasurement:

case ES_C_SetReflector:
// common error handling for all commands.
// display error status. In a real program,
// we would have to map these codes to text
// strings describing the error

sStatus.Format (_T("%d"), pData2->status);
m_staticStatus.SetWindowText (sStatus) ;

// handle error

if (pData2->status != ES_RS_A11lOK)
return false;
break;

// TODO: add further cases as other

// commands become implemented.

// See file ES_C_API_Def.h for further

// commands and related answer structures.

default:
return false;
} // switch (pData->command)
}

break;

case ES_DT_SingleMeasResult:

{
// A 'single-meas-result- type' answer
// has arrived so mask it with
// SingleMeasResultT structure

SingleMeasResultT *pData3 =
(SingleMeasResultT *)m_vtData.parray->pvData;

// if something went wrong, there
// 1s no reason to continue

if (pData3->packetInfo.status != ES_RS_A11lO0K)

User Manual * emScon TPI

Chapter 2 o C Interface ¢ 43

Jeica

Geosystems

Asynchronous
Communication

Remarks

Metrology Division

return false;
// Do something with the data (display it)

s.Format (_T("X=%.31f, Y=%.31f, z=%.31f\n"),
pData3->dvall, pData3->dval2, pData3->dval3l);

m_staticResult.SetWindowText (s) ;
// also display return status

sStatus.Format (_T("%d")
pData3->packetInfo.status) ;

m_staticStatus.SetWindowText (sStatus) ;
}
break;

// case
// Todo: add other answer- cases

default:
return false;
break;
} // switch (pData->type)

return true;
} // ProceessDatal()

T

& Single points can be measured and displayed
in the dialog. Set Reflector followed by a Find
Reflector must be called before a measurement is
triggered.

The application must have provisions to prevent
pressing another button before an answer has
arrived. (Some commands may be queued). An
answer has arrived, when the status code is
displayed. The command is OK when code is
zero (0). The Tutorial sample does not fully
handle these errors.

E If the code is a number, refer to the Tracker/
Software reference manual.

This sample demonstrates the C-TPI together
with C++ clients and an MFC-using Windows
application. Writing in C is still an option for
non-Windows or non- Win32 applications.
Further issues to be considered in a real
application:

44 ¢ Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division

Interface Design

Error Handling

Network Traffic Jams

MSWinsock Control

Jeica

Geosystems

User interface design: Grayed-out controls
depending on context. Lock buttons in a
situation when it is not appropriate to press
them. Graying out all buttons during the
time gap between commands sent and
answer received is recommended for
asynchronous communication.

Other design issues include: proper TAB
order of the controls and assigning shortcuts
to dialog controls.

Error handling: Errors should be handled
exhaustively. Provisions should be made for
all possible errors. Error messages should be
defined as resources instead of hard coded
strings. Implement exception handling
where it applies (try/catch).

Make provisions for 'network traffic jams'
and receiving buffers of constant size. When
the buffer is completely filled upon a read
operation, it is very likely that part of the last
packet will be 'distributed' over the buffer
boundary. That is, part of the packet will not
become available before the next 'Read' call.

% The buffer size (variant array) is
allocated dynamically in this sample.

& See "Queues and Scattered Data" on
page 91 for details.

Using the MSWinsock control is very
convenient together with VC++ (ClassWizard
etc.). A problem, however, may be its
performance (COM interface and Variant
copy). An MSWinsock based application may
not be able to carry high frequency
continuous measurements. For such high

User Manual * emScon TPI

Chapter 2 ¢ C Interface ¢ 45

Jeica

Geosystems

Essential code

Build Sample 1

TCP/IP address

Sample 2-Tutorial

TCP/IP

Step 1: Adding a

Winsock Control and

Designing a Form

Metrology Division

performance applications, use of low-level
C/C++ TPl is recommended in combination
with a high performance TCP/IP
communication library.

e All essential code is concentrated in only two
tiles EmsyCApiClientDIg.cpp and
EmsyCApiClientDIg.h (apart from the
generated wrapper classes for the OCX,
which reside in mswinsockcontrol.cpp/h).

To build Sample 1 from the files in the SDK, open
EmsyCApiClient.dsw with VC++ and choose 'Build'
(or click F7).

e Change the (hard coded) TCP/IP default
address ('192.168.0.1") according to the Tracker
Server's address.

Visual Basic Client Application

The ES_C_API_Def.h cannot be directly included
in Visual Basic (or Pascal, Java etc.) applications.
It needs to be translated to other languages'
syntax with the risk of errors (typing errors,
different structure byte alignment, different sizes
of basic data types etc.).

T
% The use of languages other than C/C++ for

using the low-level TPI is not recommended or
supported.

This sample serves primarily to enable a better
understanding of the TPI principles. It has
functions limited to connecting to the tracker,
initializing and disconnecting.

TCP/IP communication uses MSWinsck.ocx.

1. Launch Visual Basic 6.0.
Select File > New Project > Standard.exe. Click
OK.

46 ¢ Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division iewa

Geosystems

2. Save the form as EmsyVBClient.frm and the
project as EmsyVBClient.vbp.

3. Select Menu Project > Components (or Ctrl+T).

4. In dialog list box, check Microsoft Winsock
Control 6. Click OK.

5. Place an instance of the Winsock control icon
in the application form (default name
Winsockl1).

% Do not change the default name.

6. Right mouse click the Winsock control icon
on the form. Select Properties.

7. Enter the IP address or hostname of the
Tracker Server in the RemoteHost field and
the port number 700 to RemotePort. Leave the
other settings as they are.

8. Add three buttons to Form Winsock1
Connect, Disconnect and Init Tracker. Add a
(sunken) label named AnswerStatus.

9. The form reads as follows:

=
O O 1
i

o Connect = = Irit Tracker 1y

o Disconmect | Answer I :

;S’:‘epTZ: io"";ec’ to 1. Double click the Connect button. This adds a
e Tracker server handler and switches the focus directly to the

appropriate source location.

2. Insert one line of code, Winsock1:

Private Sub Connect_Click()
Winsockl.Connect
End Sub

IP Address 3. If IP address and port number have not been
passed through the properties.

User Manual - emScon TPI Chapter 2 ¢ C Interface o 47

Jeica

Geosystems

Winsock1

Step 3: Translate the
C- enums and Structs
to VB

Metrology Division

E See Point 7 "Step 1: Adding a Winsock
Control and Designing a Form" on page 46.
Use the Connect call to insert address and

port number of the Tracker Server:
Winsock1.Connect “193.8.34.133"”, 700.

4. Double click the Disconnect button on the
form and complete the handler as follows:

Private Sub Commandl_Click()

Winsockl.Close

AnswerStatus.Caption = “” 'Just for cosmetics
End Sub

5. Entering Winsockl: As soon as ' (dot) is
entered a dropdown list offers all available
methods and properties for the respective
object. Typing a blank (or opening bracket)
behind a method name gives IntelliSense
support for all the method's parameters.
Similar support is available in VC++.

In order to create a command packet, the
structures defined in the ES_C_API_Def.h tile
need to be translated to Visual Basic. Visual Basic
uses four (4) Byte alignments by default and a VB
'long' is necessary for a C 'init'. A VB integer is
only two (2) Bytes and therefore relates to a C
'short'. Doubles are eight (8) Bytes in both C and
VB.

To implement the Init Tracker command, the
following subset of 'enum' translations is
provided. 'Enum' members VC start with zero (0)
as default. Explicit values need to be assigned,
since only subsets of the original C- enum types
are translated (only as far as needed):

48 ¢ Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

Enum ES_DataType
ES_DT_Command
ES_DT Error

End Enum

Enum ES_Command
ES_C_Initialize = 7
End Enum

Enum ES_ResultStatus
ES_ES_Al110K
ES_RS_NotImplemented = 2

End Enum

Further we need the following 'struct' translations:

Private Type PacketHeaderT
lPacketLength As Long
type As ES_DataType

End Type

Private Type BasicCommandCT
packetHeader As PacketHeaderT
command As ES_Command

End Type

Private Type BasicCommandRT
packetHeader As PacketHeaderT
command As ES_Command
status As ES_ResultStatus

End Type

Private Type InitializeCT
packetInfo As BasicCommandCT
End Type

Private Type InitializeRT
packetInfo As BasicCommandRT
End Type

% See also detailed comments in the VB source
code (File EmsyVBClient.frm)

Step 4: Implementing
the Init Tracker
Command

1. Create the function body for the command

handler with a double click to the InitTracker
button.

Declare a variable of InitializeCT and the
ES_C_Initialize and ES_DT_Command tags
filled in.

Send the data packet over the TCP/IP
network.

The InitializeCT variable has to be copied to a
Variant.

The SendData function of the Winsock
control takes a Variant parameter.

User Manual * emScon TPI

Chapter 2 ¢ C Interface ¢ 49

Jeica

Geosystems

Init (Tracker) handler

Step 5: Implementing
Answer Data
Receiving

Metrology Division

5. 'Borrow' the function CopyMemory from the

Win32 APIL

Declare this function in the declaration part

of the form:

Private Declare Sub CopyMemory Lib “kernel32” Alias _
“Rt1lMoveMemory” (pDest As Any, pSource As Any, _
ByVal ByteLen As Long)

6. If InitializeCT variable is named mt. The

sequence to copy mt into a variant reads as

follows:

Dim bt () As Byte

ReDim bt (LenB(mt)) As Byte
Dim vtdata As Variant
CopyMemory bt (0), mt, LenB(mt)
vtdata = bt

Private Sub Init_Click()
AnswerStatus.Caption = “”

Dim mt As InitializeCT

' Just for cosmetics

mt.packetInfo.command = ES_C_Initialize
mt .packetInfo.packetHeader.type = ES_DT Command

' This code-block should be rather put into a subroutine

Dim bt () As Byte

ReDim bt (LenB(mt)) As Byte

Dim vtdata As Variant

CopyMemory bt (0), mt, LenB(mt)

vtdata = bt

Winsockl.SendData vtdata '
End Sub

Finally send the data

7. An Initialize Tracker can now be invoked,

however, no answers can be received.

1. Select the Winsockl object in the code editor
for Form1, top left drop down list.

2. Select DataArrival and Error , to create the
bodies of these two handlers out of the
Winsock control, top right drop down box.

3. Call GetData, which delivers the result in a
Variant. Copy the variant into a variable of

type InitializeRT.

50 e Chapter 2 ¢ C Interface

User Manual * emScon TPI

Metrology Division iewa

Geosystems

Private Sub Winsockl_DataArrival (ByVal bytesTotal As Long)
Dim vta
Dim mt As InitializeRT
Dim bt () As Byte
Winsockl.GetData vta, vbArray + vbByte, LenB(mt)
bt = vta
CopyMemory mt, bt(0), LenB(mt)

Beep 'Beep on Answer received

If mt.packetInfo.status = ES_ES_Al110K Then

AnswerStatus.Caption = " Al110K"
Else

AnswerStatus.Caption = " Unknown Error"
End If

End Sub

4. Implement the error handler:

T

% Refer to comments in the source file.

Private Sub Winsockl_ Error (ByVal Number As Integer, _
Description As String, ByVal _
Scode As Long, ByVal Source As _
String, ByVal HelpFile As _
String, ByVal HelpContext As _
Long, CancelDisplay As Boolean)
Beep 'Beep on error received
MsgBox "Winsock Error: " & Number
End Sub

Running the 5. Set the IP Address before compiling and
application . .
running the application.

& See Sample 2 folder in SDK for complete
source code.

Remarks This application can be extended to a full-

featured Tracker Server 'controller' . It shows that
the TPI is both language and platform
independent (pure TCP/IP). Languages such as
Pascal or Java can be used to build clients based
on the C TPI directly.

& The use of languages other than C/C++ for
using the low-level TPI is not recommended or
supported.

% The Winsock control may not be efficient
enough when dealing with 1000 points/second
from a continuous measurement stream.

Structures Structures are convenient for this purpose, and,
in principle, pure Byte-arrays would also do,

User Manual - emScon TPI Chapter 2 o C Interface ¢ 51

-
Jeica
Geosystems

COM interface

Sample 13 LT BUI
Launch

Sample 3

Console application

Metrology Division

which would lead to more complex initialization
and interpretation.

A COM interface can be used with virtually any
programming language, without the hassle of
translating the packet structures and Enums.

E See "COM Interface" on page 69.

This sample is a BUI launcher, which is to be
used in the application, to launch the emScon
BUL

E Refer to the documentation with the SDK for
details.

Winsock 2.0 Client Applications

Implements a 'lightweight' C-TPI client
application, with no graphical interface, variant
overhead or MFC or ATL. This sample fits into a
single file with 350 lines of code (including
comments and empty lines), and compiles into a
48KB executable file.

T

% This sample implements only Initialize
Tracker and Start Measurement for single points,
and requires events, threads and Winsock API
functions.

This EmsyCApiConsoleClient is not presented as a
tutorial. The VC++ AppWizard or a text editor
can be used to create a 'Console Application'
skeleton, and to implement the C standard entry
function:

int main(int argc, char* argvl([])
{
}

Add all the source code, save the file (.c or .cpp
extension) and invoke the C compiler from the
command line.

52 ¢ Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division

Geosystems

Comments These comments refer to the file
EmsyCApiConsoleClient.cpp.

The following include- files are required:

T

% Windows.h need not be included

#include <stdio.h> // standard C input/output
#include <Winsock2.h> // win32 socket stuff

1. The main() function first does a TCP/IP

connection by calling the function
TcplpConnect(), starts the Data Receiver thread
and enters an endless 'User Interface loop'.

This loop looks for user input of one of the
two TPI commands i’ for Initialize Tracker
and 'm’ for Start Measure.

. If the user enters x, the loop is stopped, the

TCP/IP connection is closed and the
application terminates.

@ The TeplpConnect() function is
straightforward up to the call of connect().

. Call WSAStartup. After connecting, call

WSAEventSelect(), which takes the following
parameters:

e A socket handle (that has been created
before) as a global variable.

e An event of type WSAEVENT as a global
variable. This variable must be

initialized with the return value of a
WSACreateEvent() call.

e A flags parameter. FD_READ is passed,
indicating an interest in data-arrival
events (a realistic application would
have to also trap FD_CLOSE events).

User Manual * emScon TPI

Chapter 2 ¢ C Interface o 53

cfeica Metrology Division

Geosystems

5. Calling this function will cause the TCP/IP
framework to signal the passed event,
whenever data has arrived at the socket.

6. The DataRecvThread() has an infinite loop
with the following statement:

|WaitForSingleObj ect (g_hSocketEvent, INFINITE) ;

7. This is a blocking call and causes the loop to
stop, until the event is signalled to be read.
The blocking by the WaitForSingleObject is
released and the loop passes on.

8. Reset the event before available data is read
into a buffer.

9. Call a function ProcessData() that does the
interpretation of the buffer.

Queuing (Traffic There are no provisions to handle 'traffic jams' on

Jams) the network. A real application needs to make
provisions to handle such situations with a
packet size transmitted in the header of each
packet. The Winsock function setsockopt() may be
used to 'tune' TCP/IP transmission rate by
increasing buffer sizes.

E See Win32 documentation for more
information about Winsock API (especially the
WSA... function), threads and events.

E See "Receiving Data Sample 9" on page 66 for
a more sophisticated data receiving thread.

E See also "Queues and Scattered Data" on
page 91 and comments in source code.

Remarks This sample can easily be ported to non-Win32
platforms (Unix, Linux, and Mac).

54 ¢ Chapter 2 ¢ C Interface User Manual - emScon TPI

Metrology Division

Windows application

Winsock API

Jeica

Geosystems

T

& Creating a 'console' application requires the
use of the WSAEventSelect() function with events
and threads.

For Windows applications, the WSAAsyncSelect()
function is more appropriate. It issues Window
messages instead of events and is simpler to
handle. No separate thread is required (the
window message loop takes this part).

E See Win32 documentation on
WSAAsyncSelect().

The Winsock API functions are more efficient
than the Winsock OCX control. The use of a MFC
library permits a very convenient class wrapper
around the Winsock API.

@ Refer to the CAsyncSocket and CSocket classes
in “C++ Windows-MFC Application” on page 84
for details.

User Manual - emScon TPI Chapter 2 ¢ C Interface ¢ 55

Jeica

Geosystems

Metrology Division

3.C++ Interface

Class design

Platform Independent

TCP/IP

Class Interface

The C++ interface does not provide any
additional functions for the Tracker Server. It
builds upon the C interface and is made up of one
include file, ES_CPP_API_Def.h with the
ES_C_API_Def.h as its basis. The C++ interface
implements two classes CESAPICommand and
CESAPIReceive, apart from wrapper classes for
each data structure (from C-TPI).
CESAPICommand handles sending commands
from the client application to the TS and
CESAPIReceive allows easy receiving and parsing
of data sent by the TS to the client application.

T

& The advantage of a class design is the
availability of constructors to perform (struct)
initialization. A Tracker Server C++ interface is
preferable to a C low-level interface, if a C++
compiler is available.

& See the Reference Manual for more
information.

Tracker Server client programming remains
platform independent since C++ compilers are
available for virtually every platform.

This chapter does not touch TCP/IP issues. This
sample uses the MSWinsock OCX for

communication, as in Sample 1 & 2.

56 e Chapter 3 ¢ C++ Interface User Manual - emScon TPI

Metrology Division

SendPacket()

ReceiveData

Sample 4

Sample 4 specifics

Application Framework

Jeica

Geosystems

The class CESAPICommand contains a pure-
virtual function SendPacket(), which must be
overwritten. This approach allows convenient
'Send...' command functions.

@ Dealing with C data structures for sending
commands is no longer required, as they are
completely hidden'.

In order to select the data the application is
interested in, CESAPIReceive offers a method
ReceiveData, which is called on data arrival
events, as well as numerous virtual member
functions.

All class member functions are defined 'inline’.
Neither a library nor a .cpp file is required. One
single include file suffices. The C++ interface is
fully transparent with complete source code
provided.

This sample is not a tutorial as the
implementation process is essentially the same as

Samplel. Sample 4 specific differences will be
highlighted.

1. Creating an application framework and user-
interface

1. Name the project EmsyCPPApiClient.

2. Do not add explicit Connect /Disconnect
buttons.

3. Implement the TCP/IP connection code
to the InitDialog() function and use the

WM_DESTROY handler to close the
connection.

% Not a key difference. It performs the
connection/disconnection
‘automatically’.

User Manual - emScon TPI Chapter 3 e C++ Interface ¢ 57

cfeica Metrology Division

Geosystems

m See EmsyCPPApiClientDIg.cpp/.h
files for details.

4. More buttons and appropriate handlers
are added with the Class Wizard. The
dialog template reads as follows:

£ EmsyCPPApiClient.rc - 1DD_EMS =10l =
I||| laosvvwlaav o lwaaalewanalsnwalsswwlarinblan
A | FidRefiector | Toggle Speed |

PoirtLacer | Single Mess Mode| StaMeas |

SetReflector | MuliMeasMode| StopMess |

-
il | M

Class for Commands 2. Deriving a class for sending commands.

% Key difference to Sample 1.

1. Create a new class named, for example,
CESCppClientApiCommand, which is
derived from the base class
CESAPICommand, and add to project.
This gives a new file pair:

EsCppClient ApiCommand.h /.cpp

2. The core of this class declaration reads as
follows:

58 e Chapter 3 ¢ C++ Interface User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

{

Y

#define ES_USE_EMSCON_NAMESPACE
#include "ES_CPP_API_Def.h"

class CMSWinsockControl;
class CESCppClientApiCommand : public EmScon: :CESAPICommand

public:

CESCppClientApiCommand () ;
virtual ~CESCppClientApiCommand() ;

void SetSocketPtr (CMSWinsockControl *pWinSockCtrl) {
m_pWinSockCtrl = pWinSockCtrl;}

protected:

CMSWinsockControl* m_pWinSockCtrl;
COleVariant PackIntoVariant (void *pData, UINT sizeOfData) ;

// virtual override
bool SendPacket (void* pPacketStart, long lPacketSize);

Winsock Control

3. For programming convenience, the class
has a member variable pointing to the
Winsock control, including an
initialization function. The Variant
packing helper has been designed as a
(protected) member function of this
class.

E See "Sample 1-Tutorial" on page 30
for more information.

3. Based on the Winsock control, the
implementation of SendPacket reads as
follows:

% This function is dependent on
MSWinSockCtrl, SendPacket() function and
connect/disconnect code changes, if some
other TCP/IP communication (Winsock AP]I,
CAsyncSocket or a third party library) is used.

User Manual * emScon TPI

Chapter 3 e C++ Interface o 59

Jeica

Geosystems

C TPI Source code

Metrology Division

bool CESCppClientApiCommand: :SendPacket (void* pPacketStart,
long lPacketSize)
{
try
{
COlevariant variantData =
PackIntoVariant (pPacketStart, lPacketSize);

if (m_pWinSockCtrl)
m_pWinSockCtrl->SendData (variantData) ;
else
ASSERT_VALID(m_pWinSockCtrl); // pointer valid?
}
catch(...)
{
TRACE (_T("MSWinSockCtrl Exception (SendData)\n"));
return false;

}

return true;

1. In the dialog class
CEmsyCPPApiClientDIg, declare an
instance of type
CESCppClientApiCommand :

private:
CESCppClientApiCommand m_EsApiCommand;

2. The implementation of the command
handlers (dialog buttons) reads as
follows:

void CEmsyCPPApiClientDlg::0OnButtonStartmeas ()
{
if (!m_EsApiCommand.StartMeasurement ())
TRACE (_T("StartMeasurement failed\n"));

3. OR

void CEmsyCPPApiClientDlg: :0OnButtonPointlaser ()
{
if (!m_EsApiCommand.PointLaser(1.342, 2.09, 0.5))
TRACE (_T("PointLaser failed\n"));

& Textual Error messages, directed to debug
window using TRACE statements, are not
sufficient for an end-user application.

4. The same function designed with C, with a
code reduction of about 80%, instead of C++
reads as follows:

& See "Sample 1-Tutorial" on page 30.

60 e Chapter 3 ¢ C++ Interface User Manual - emScon TPI

Metrology Division

Receiving Data
Sample 4

CESAPIReceive
class Sample 9

Jeica

Geosystems

void CEmsyCApiClientDlg::OnButtonLaserpointer ()
{
try
{
PointLaserCT data;

data.packetInfo.packetHeader.type = ES_DT_ Command;
data.packetInfo.packetHeader.lPacketSize =

sizeof (data) ;
data.packetInfo.command = ES_C_PointLaser;

data.dvall = 1.342;
data.dval2 = 2.09;
data.dval3 = 0.5;

COlevVariant vrtData =
PackIntoVariant (&data, sizeof (data));

m_winSockCtrl.SendData (vrtData) ;
}
catch(...)
{
TRACE (_T ("MSWinSockCtrl Error (PointLaser)\n"));
}
}

This Sample requires a client implemented
CDataReceive class, which implements a limited
reception of command-answers, as needed by the
Sample. The CESAPIReceive class, which is
provided in Sample 9, can be used to replace the
CdataReceive, and thereby discard two application
files.

% This replacement is to be treated only as an
exercise for users. It is not recommended to
implement your own receiver class (as part of the
client application).

E See file ES_CPP_API_Def.h, for an example
of CESAPIReceive class.

E See file DataReceive.h/.cpp, for an example
of CDataReceive class.

This Sample, EmsyCPPApiConsoleClient, with a
CESAPIReceive class demonstrates Sending and
Receiving features of the C++ TPI (among other
features). This Sample is a simple console
application and has no GUI or Winsock Control
(Variants) overhead.

User Manual - emScon TPI Chapter 3 e C++ Interface o« 61

cfeica Metrology Division

Geosystems

T
% Functions OnDataArrivalWinsock1() and

ProcessData() can be copied from Sample 1, with
minor extensions to the 'switch' statement of
ProcessDatal().

E See also "Receiving Data Sample 9" on page
66 for more information.

CESAPIReceive Class The following describes the class CESAPIReceive.
Description

E See file ES_ CPP_API Def.h.

This class is represented by the file pair
DataReceive.cpp/.h. CDataReceive is a native class,
i.e. it is not derived from some other base class.

ProcessData() is designed as a member function of
the class. It takes the data as it comes from the
TCP/IP network, and is the 'switch' statement for
arrival data interpretation. Results are not written
directly from the switch statement to the user
interface. A virtual function is called for each type
of arriving data. These virtual functions pass the
data through their command type dependent
parameter to the calling function.

T

% The interpretation of incoming data in this
switch statement is implemented only as far as
needed for this sample, which is not the case for
CESAPIReceive.

Procedure 1. Derive a class from CdataReceive.

2. Call the ProcessData() function of the class
derived, where the data comes in from the
network, only at one location in the
OnDataArival notification handler.

The derived class must implement only
virtual functions for answer packet types the
client application is expecting. Unrequired

62 e Chapter 3 ¢ C++ Interface User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

data will just be ignored and the virtual
function of CDataReceive will be called — with
no effect. These functions are 'empty’, apart
from a Trace statement for developing
purposes.

3. Using a CDataReceive class (CESAPIReceive

class) allows hiding the awkward data
arrival 'switch' statement from the main
code. In other words: The arrival data
parsing-function becomes a member function
of CESAPIReceive, and is, therefore,
completely hidden from the client
applications.

4. This sample does not exclusively derive a

class from CDataReceive. The dialog class
inherits from CDialog and CDataReceive
(multiple inheritance). This is appropriate
because the dialog class comprises the
OnDataArrivalWinsock1() arrival data
notification handler, which has to call
ProcessData().

m See "Class for Commands" on page 58
for the appropriate declaration.

ES| EmsyLPPApiClientrc - 1 =10l x|
i e s SR S

— | ST =1 o
: intTracker | FindRefisctor | Toggle Speed |
PoirtLacer | Single Meas Mode| StaMea: |

Set Reflector] tulli Meaz Mod:| Siop Meas

W Lo |

class CEmsyCPPApiClientDlg: public CDialog,

public CDataReceive

5. The dialog class must, therefore, implement
the CDataReceive virtual function overrides.

User Manual * emScon TPI

Chapter 3 e C++ Interface o 63

cfeica Metrology Division

Geosystems

. . void CEmsyCPPApiClientDlg::0OnSingleMeasurementAnswer (
Slngle Point Measure SingleMeasResultT *pSingleMeas)

Data Sample {

CString s, sStatus;

// Do something with the data (format it)

s.Format (_T("X=%.61f, Y=%.61f, z=%.61f\n"),
pSingleMeas->dvall,
pSingleMeas->dval2,
pSingleMeas->dval3) ;

m_staticResult.SetWindowText (s); // then display it

// also display return status

sStatus.Format (_T("%d")
pSingleMeas->packetInfo.status);

m_staticStatus.SetWindowText (sStatus) ;

if (pSingleMeas->packetInfo.status != ES_RS_A110K)
Beep (100, 100); // command failed

6. The data is delivered through a pointer to a
SingleMeasResultT struct function parameter.
This function neither needs to perform any
DataRead, nor any ProcessData
(interpretation).

'S It solely uses the data (just display it).

7. This function uses a pointer argument while
the OnCommandAnswer() function has been
designed to take a 'reference' argument (see
comment in code). This constellation is used
to demonstrate the two possibilities. The
actual class should consistently use one or
the other method.

& References should be preferred to pointers
whenever possible in C++ programming.

E See the many comments in the sample source
code.

Remarks e Change the IP address and hard-coded
numbers (coordinates for PointLaser
command) in the sample code as required.

e Replace the Winsock control by some other
TCP/IP communication API, as an exercise.

64 ¢ Chapter 3 ¢ C++ Interface User Manual - emScon TPI

Metrology Division

GUI Design

Jeica

Geosystems

If the Winsock 2.0 APl is used, it is
recommended to use the WSAAsyncSelect()
function rather than the WSAEventSelect() for
data receiving.

% Ina Windows framework, using
messages is simpler than using events and
threads. Use of MFC CAsyncSocket on the
other hand requires no such consideration —
CAsyncSocket provides a message handler for
data receiving by default.

The function Laser Pointer toggles the
location of the laser beam between two
(hard-coded) positions. This is not of real
practical use.

The 'Toggle Speed’, toggles the continuous
measurement speed from 1/second to
100/second. To change speed during a
continuous measurement, the measurement
must be stopped before the speed is reset.

T

% The Stop Meas command is not valid in
single measurement mode.

Inactive buttons are not grayed out. The user
must wait for arrival of the answer from the
previous command, before sending a new
command.

Radio buttons or list boxes are
recommended, to implement Multi Meas
Mode (continuous) and Single Meas mode
(stationary) mode, rather than simple push
buttons.

The parameters for Pointer Laser need to be
entered in fields, in a dialog. The present
design has not considered this aspect.

User Manual * emScon TPI

Chapter 3 e C++ Interface o 65

Jeica

Geosystems

Receiving Data
Sample 9

ActiveX
Component
Sample 12

Metrology Division

e Before leaving the application, make sure
that the TS is set to Stationary Measurements
(Single point measurement). Failure to do so
may have unexpected effects, upon starting
another client.

T

% Reboot the Tracker Server in such cases.

This Sample, an EmsyCPPApiConsole client with
the CESAPIReceive class in the C++ TP],
implements a 'safe' data-reading thread (in order
to handle 'clustered' and/or 'scattered' answer
packets correctly, in case of a data 'traffic jam').

E See explanations in "Sample 3" on page 52,
on the multithreaded console application based
on WinSocket APL

E See also explanations in "Sample 4" on page
57 on using a Receiver class similar to
CESAPIReceive.

% This Sample is a minimal, 'single-source' file
and easy to understand, in spite of being a
multithreaded application.

‘% Set the IP address to the actual TS address,
before building the application.

This ReflectorCtl sample provides an ActiveX
component comprising the most common
reflector commands.

This control skips building up a lookup table for
ID/Name mapping, querying all the defined
reflectors from the system and providing the
appropriate user interface controls.

66 e Chapter 3 ¢ C++ Interface User Manual - emScon TPI

Metrology Division cfewa

Geosystems

The Sample contains full source code (Visual C++)
and has a compiled component Reflector.ocx,
which allows use without a Visual C++ compiler.

T

% No support for this ActiveX component is
provided.

Remarks e The Reflector.ocx control must be registered
before it can be used.

e Only one instance of such a control can be
instantiated per Form/Dialog box.

e The properties 'ServerAddress' and
'PortNumber' can be specified at
(Form/Dialog) design time. However, this
only makes sense if these parameters are
constant. The more common way is to set
these properties programmatically.

e C(Call the method Initialize after having set
the properties and not before the client
application has successfully connected to
the same address/port. This lets the client
application, instead of the Reflector.ocx,
handle any connecting problems.

e The client application must ignore answers
from commands triggered by the
Reflector.ocx (Get Reflectors, GetReflector and
SetReflector).

e Do not implement an Error Event handler
for Reflector.ocx. The control has a built- in
handler. Visual Basic does not allow it- it
causes a compiler error. If correctly applied,
the component should never fire an error
event.

User Manual - emScon TPI Chapter 3 e C++ Interface ¢ 67

Jeica

Geosystems

Keyboard Interface
Limitation

Sample 10

Metrology Division

e Hereis a code sequence for a VB
application. Typically executed in Form
Load:

Reflectorl.ServerAddress = "193.8.34.213"
Reflectorl.PortNumber = 700
Reflectorl.Initialize

e [tis assumed that the client application has
already successfully connected to the same
address/port before these calls.

e This component is primarily designed for
mouse control and does not work properly
with a keyboard interface (E.g. use of arrow
keys in VB).

E See VC/VBA/VB documentation for general
information on ActiveX controls, and how to
include them in applications.

This Sample ('keasytracker') is an EmScon client
application developed on SUSE 7.2 Linux (KDE)
by a third- party provider. It has been published
according to GNU General Public License (GPL).

T
% For further details see 'README’ file in the

Sample 10 project folder.

68 e Chapter 3 ¢ C++ Interface User Manual - emScon TPI

Metrology Division

Geosystems

4.COM Interface

Introduction

High-level Interface

Unlike the C and C++ TPI, the COM TPl is a DLL
library and not an include file. This DLL provides
an easy to use programming interface for the
Tracker Server. This makes it suitable for
programmers with minimal programming
expertise to design simple tracker applications.

The interface consists of a COM object. It is
designed as an ATL DLL COM server and a
LTControl.dll, as part of the tracker server SDK,
with a built-in TCP/IP communication. The
LTControl COM-object DLL is based on the
tracker server C++ TPI, the Win32 Sockets 2.0 API
and VC++ ATL. The LTControl.dll is, in a sense, a
tracker server C++ client, allowing design of such
a control.

T

% The programmer is not required to deal with
TCP/IP communication libraries or system
programming interfaces.

The high-level TPI supports both synchronous
and asynchronous methods.

COM objects expose 'interfaces’, described by a
Type-Library, which is implicitly included in the
DLL. A pure Type Library LTControl.tlb is also
available, although not really needed. This High-
level interface does not provide any additional
functions (in terms of Tracker Server controlling

User Manual - emScon TPI Chapter 4 ¢« COM Interface ¢ 69

cfeica Metrology Division

Geosystems

functions). LTControl is strictly based on the C++-
TPI, with a high-level, convenient programming
interface.

& See chapter 'COM Interface' in the Reference
Manual TPI, for more information on the
interfaces provided.

T
% COM interfaces work well together with

Visual Basic and other programming languages
on the Win32 platform, unlike the low-level
interface.

E See "Sample 2-Tutorial" on page 46.

70 e« Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division iewa

Geosystems

COM vs. Low- Advantages Disadvantages
Level No include-file to deal A DLL (ATL COM
Programming with, therefore no component). Its source

translation required of C- |code is not public
structs and enums to VB

syntax.
No TCP/IP library or Is limited to Win32
function needs to be platforms.

provided. All these
functions are built-in.
Only the IP address of
the tracker server needs
to be provided.

The high-level interface |Due to the COM
offers both synchronous |interface, the

and asynchronous performance may be
communication support. |affected.

There are wide varieties |Since TCP/IP
of notification methods communication is built-

for arrival data when in, there are no 'tuning'
using asynchronous possibilities.
communication.

Supports various The component needs to

programming languages. |be registered on the client

Easy to use due to PC.
support of 'IntelliSense'
for Microsoft Visual and
Office programming
tools.

Interfaces and All interfaces of the LTControl, including their
Notification Methods . .)
methods and properties, are listed in the
Reference Manual.

E See chapter 'COM Interface' in the Reference
Manual, for more information on the interfaces
provided.

User Manual - emScon TPI Chapter 4 ¢« COM Interface o 71

Jeica

Geosystems

LTControl COM Viewer:

Registering COM
Objects

LTControl.dll
Installation

ATL.dIl Installation

Metrology Division

In order to get detailed information about the

Interfaces (including data types, properties,
methods and events) exposed by a COM object, a
COM viewer may be used. Visual Studio offers
such a viewer: The OLE/COM Object Viewer can
be launched from the Tools menu of VC++.

File > View Type Lib > LTControl.dll or LTControl.tlb.

COM objects must be registered on the
application PC before they can be used.

1.

Register LTControl.dll on the client PC (both
developer and customer PCs).

If LTControl.dll is located in the
C:\WINNT \system32 directory, call
Regsvr32 C:\WINNT \system32\ LTControl.dll

from the Start/Run menu of the explorer task-

bar.

T
% The LTControl.dll does not depend on

any other custom DLL, it can be registered
anywhere. The Windows system directory is
the common location.

A message box appears Confirming
registration — 'Registering of LTControl.dll
succeeded'.

A message such as: Error 'Load Library
failed, error 0x0000007e" most likely indicates
that the PC lacks a correct ATL.dIl
installation (missing, wrong version or not
registered).

In this case, first install ATL.dll as described
below. After that, repeat registering of
LTControl.dlL

. Copy Atl.dll from ES SDK 'Lib' directory to

Windows system/system32 directory OR to
LTControl.dll directory.

72 « Chapter 4 ¢« COM Interface

User Manual * emScon TPI

Metrology Division cfewa

Geosystems

Unicode version for WinNT/Win2000. ANSI

version for Win9x/Win ME.

T
% See properties of ATL.dll for operating

systems supported.

2. Register Atl.dll — Regsvr32.exe
<path>\ Atl.dlL

3. Repeat registration of LTControl.dll.

Visual Basic client

Sample 5 Tutorial The use of the LT Control provides the right tool
to build a VB Tracker Server client, LtcVBClient.
In contrast to the VB application in Sample 2 with
the Tracker Server low-level interface, which was
not recommended.

T

‘% For the application framework and for
initializing COM objects: The LTControl.dll must
be correctly registered before proceeding.

E See "LTControl.dll Installation" on page 72
for details.

1. Launch Visual Basic 6.0, choose from menu
File > New Project > Standard exe. Click OK.

2. Save the form as LtcVBClient.frm and the
project as LtcVBClient.vbp.

3. Choose menu Project > References.

4. In the dialog list box, check the entry
LTControl 1.2 Type Library. Click OK.

% Ensure file path at the bottom of the
dialog matches the control's registration
location, browse for the correct location,
using the 'References' dialog.

ATL Type COM object The LTControl.dll is not an ActiveX (OCX) control.
It is a general ATL type COM object, which can

User Manual - emScon TPI Chapter 4 ¢« COM Interface o 73

cfeica Metrology Division

Geosystems

be used in non-window based applications. It will
also support, for example, pure C-clients (console
applications).

4

% Itisnot possible to place an LTControl
instance to the VB Form (as MSWinsck.ocx
requires it).

Differences between Ditferences between object LTConnect and the
LTConnect &

ILTConnect related interface ILTConnect.

e In VB clients, interfaces are not dealt with
directly as objects are.

e The keyword New in the declaration of
LTConnect creates this object within the client
application.

e Local or remote object creation, in the COM

server, depends on the design of a particular
COM object.

e The LTConnect object needs to be created
with New.

E Refer to a COM book for further details.

Accessing Interfaces 1. To access its interfaces, an object variable of

type LTConnect is needed in the declaration
part of the VB application:

|Dim ObjConnect As New LTConnect

2. Declare an object for each one of the
remaining types:

Dim WithEvents ObjAsync As LTCommandAsync
Dim WithEvents ObjSync As LTCommandSync

3. Provide either a synchronous or an
asynchronous interface.

& Declaring both, as done here for
demonstration purposes, will result in some
duplicate data arrivals.

74 ¢ Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division

LTCommand Objects

Jeica

Geosystems

4. The two objects ObjSync and ObjAsync

cannot be created with New (the VB compiler
does not even allow this).

T
& This is also by design of the COM

component, where these two objects have
been designed as Noncreatable - the object
instances are created in the LT Control's
control scope and not locally in the
application.

. The keyword WithEvents makes the

application recognize event notifications.

An LTConnect object is always required, whereas

only one of the LTCommandSync or
LTCommandAsync objects is required. Depending
on the selected notification mechanism,
LTCommandAsync or LTCommandSync is to be
declared with/without event support (WithEvents
keyword).

1. The non-createable LTCommandSync and

LTCommandAsync act like "pointers’. The
'pointers' are initialized with the properties
of LTConnect .

. In the Form_Load function, connect to Tracker

Server and select the desired notification
method.

. It ConnectEmbeddedSystem has succeeded (no

exception thrown), an LTCommand object has
been created.

4. Initialize the pointers by calling:

Set ObjSync = ObjConnect.ILTCommandSync
Set ObjAsync = ObjConnect.ILTCommandAsync

5. Do not reference

ObjConnect.ILTCommandSync OR
ObjConnect.ILTCommandAsync before the
ObjConnectConnectEmbeddedSystem call.

User Manual * emScon TPI

Chapter 4 ¢« COM Interface ¢ 75

Jeica

Geosystems

Metrology Division

6. The COM methods throw exceptions in case
of failure. The Form_Load() subroutine
shown below also shows how to handle
them (try/catch for Visual Basic).

7. Add an error handler as shown below in

every handler function that deals with the

COM objects.
T

% Do not use a global error handler.
Unhandled exceptions will lead to program
abort.

8. The initial code for every Tracker Server
Visual Basic client has to be as shown below,
except the SelectNotificationMethod.

9. Use the Form_Load subroutine as 'template
code' for other VB TPI clients.

10. Set the IP address of the Tracker Server.

Private Sub Form_Load()
On Error GoTo ErrorHandler

ObjConnect.ConnectEmbeddedSystem "127.34.8.161", 700

' This call may have different parameters in another project
ObjConnect.SelectNotificationMethod LTC_NM_Event, 0, 0

' NEVER FORGET THIS! Note: In real applications there is
' usually only one of these:

Set ObjSync = ObjConnect.ILTCommandSync

Set ObjAsync = ObjConnect.ILTCommandAsync

Exit Sub
ErrorHandler:
MsgBox (Err.Description)

End ' Exit application when connection fails
End Sub

% The End statement in the error case exits the
application, when connection to the tracker server

has failed.

11. Disconnect the Tracker Server in
Form_Unload(). Implement the following
handler:

76 o Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

Private Sub Form_Unload(Cancel As Integer)
ObjConnect.DisconnectEmbeddedSystem
End Sub

E See chapter 'COM Interface' in the Reference
Manual for an explanation of the function
ObjConnect.SelectNotificationMethod

LTC _NM_Ewvent, 0, 0.

Synchronous/Asynchro Differences between the synchronous and

nous Interface

asynchronous interface.

The functions of the synchronous interface
do not return before the task is completed,

while the asynchronous functions do so (see
C/C++-TPI).

In general, programming with synchronous
functions is much easier. Handling Data-
Arrival Events or Notifications is not required
(except in some special cases).

Use of either synchronous or asynchronous
objects depends on the application.

% Use of both is not recommended.

Running the application in the current state
implicitly connects and initializes the tracker
server upon Form Load and disconnects upon
Form Unload.

Implementing It is presumed that how to add buttons and their

Synchronous
Commands

related command handler 'skeletons' are known.

E See "Sample 2-Tutorial" on page 46.

1.

Add a button named InitSync (caption Init
Tracker (sync)). The command handler should
be completed with the following code:

User Manual * emScon TPI

Chapter 4 ¢« COM Interface ¢ 77

cfeica Metrology Division

Geosystems

Private Sub InitSync_Click()
On Error GoTo ErrorHandler

ObjSync.Initialize

Exit Sub
ErrorHandler:
MsgBox (Err.Description)
End Sub

2. Since this is a synchronous call:

e ObjSync.Initialize will not return before
the tracker has finished initializing.

e The Exit Sub statement will not be
reached until initialization is finished. A
real application would at least display an
hourglass cursor while the program
resides in the InitSync function.

e The error handler is implemented in
every single handler, otherwise the
application will terminate in case of an
error (unhanded exception).

3. Saving the pointer variables ObjSync and
ObjAsync, and making direct calls such as
ObjConnect.ILTCommandSync initialize will
not work with the VB compiler because
%ijnc/ ObjAsync are not real pointers.

% The Set ObjSync =
ObjConnect.ILTCommandSync statement is a
QuerylInterface.

4. Add another Button/Handler Measure Single
Point and implement the handler as shown
below. It is presumed the tracker server is set
to 'stationary' when triggering this
command, and the laser beam is attached to
a reflector. The result — as a synchronous
answer — can be shown directly in a message
box (only x, y and z are shown).

78 o Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division

Implementing
Asynchronous
Commands

Catching Events and
Messages

Jeica

Geosystems

Private Sub StartMeas_Click()
Dim x As Double
Dim y As Double
Dim z As Double
Dim d As Double 'd is a dummy variable
Dim b As Boolean

On Error GoTo ErrorHandler

ObjSync.MeasureStationaryPoint x, vy, z, 4, d, _
d, 4, 4, 4, 4, 4, _
d, 4, d, 4, d, d, b

MsgBox (x & CStr(" , ") & y & CStr(" , ") & z)

Exit Sub
ErrorHandler:

MsgBox (Err.Description)
End Sub

& If this command was an asynchronous call, it
would not be possible to display the result within
this function. A result display is performed in the
appropriate asynchronous answer handler.

E For other calls, refer to Sample 5 source code.

Visual Basic with 'IntelliSense' provides support
for the available functions of an interface with the
function parameters.

1. Add a button named InitAsync (caption Init
Tracker (async)). The command handler
should be completed with the following
code:

Private Sub InitAsync_Click()
On Error GoTo ErrorHandler

ObjAsync.Initialize

Exit Sub
ErrorHandler:

MsgBox (Err.Description)
End Sub

In contrast to the synchronous initialize function,
this one does not stop at the Initialize() function,
Exit Sub is reached immediately. When tracker
initialization is done, a notification or event is
sent.

2. For asynchronous commands, the answers
must be handled by some event mechanism.
This could be Events, Windows Messages

User Manual - emScon TPI Chapter 4 ¢« COM Interface o 79

cfeica Metrology Division

Geosystems

(custom window-bound, registered,
WM_COPYDATA).

For Visual Basic, Events are the right choice.
The event mechanism is provided by the
_ILTCommandAsyncEvents interface, which is
a subsidiary of ILTCommandAsync. To
activate this mechanism for a Visual Basic
application, provide the keyword WithEvents
upon the declaration:

When no requirements for catching events
exists, omit the WithEvents keywords in
order to save overhead.

|Dim WithEvents ObjAsync As LTCommandAsync

3. When no requirement for catching events
exists, omit the WithEvents keywords in
order to save overhead.

4. When no requirement for catching events
exists, omit the WithEvents keywords in
order to save overhead.

T

% The synchronous interface has an event
interface, _ILTCommandSyncEvents. It is used for
continuous measurements and (unsolicited) error
messages, which cannot be handled synchronous
by their nature.

T

‘% Events are one of the notification methods of
the LT Control. When using Windows messages
for asynchronous notifications the keyword
WithEvents is invalid. Windows messages are
appropriate for VC++ clients and will be
discussed later.

5. The application must declare what
notification mechanism to use. Do this with
the statement shown below. Without calling
this function in the initialization part of the

80 e Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division

Extended
Synchronous
Functions

Jeica

Geosystems

application, no notification mechanism will
be activated (when dealing with
synchronous commands exclusively)

& See remarks on continuous
measurement in “Handling Data Arrival -
Continuous Measurements” on page 86.

|ObjConnect.SelectNotificationMethod LTC_NM_Event, 0, 0

6. As soon as the WithEvents keyword is
declared, the ObjAsync object (or whatever
the variable is called) is listed in the top left
list box of the Form's source code window.

% Remove WithEvents and save the code —
the list entry will vanish.

7. It ObjAsync is selected in the list box, a list of
all available event handlers is shown in the
right drop-down list.

8. Select to generate the handler framework.
Selecting ErrorEvent will generate a function
named ObjAsync_ErrorEvent.

9. Complete this function with a message box
to read as follows:

Private Sub ObjSync_ErrorEvent (_
ByVal command As LTCONTROLLib.ES_Command, _
ByVal status As LTCONTROLLib.ES_ResultStatus)
MsgBox (command & CStr(" , ") & status)
End Sub

1. This event handler will now be called, for
example on a Beam Broken Event.

ObjSync.MeasurStationaryPoint has 18 (basic data
type) parameters. Basic data type parameters are
a requirement in order to use these functions
from VBA (Excel, Access...).

% For programming languages supporting
user-defined data types (VC++, Visual Basic),
having a function with only one struct parameter

User Manual - emScon TPI Chapter 4 ¢« COM Interface o 81

Jeica

Geosystems

Remark

Metrology Division

would be more convenient. LTControl offers a
collection of such 'extended' functions.

E See Reference Manual for details.

One of these functions is implemented in the
sample, MeasureStationaryPointEx:

Private Sub StartMeasEx_Click()
Dim result As SingleMeasResultT

On Error GoTo ErrorHandler
ObjSync. MeasureStationaryPointEx result

' display the result

MsgBox (result.packetInfo.status & CStr(" , ") & _
result.packetInfo.packetHeader.Type & _
cstr(" , ") & result.dvall & CStr(" , ") &
result.dval2 & CStr(" , ") & result.dval3l)

Exit Sub
ErrorHandler:

MsgBox (Err.Description)
End Sub

The data type SingleMeasResultT from the C-TPI
is transparent through the COM interface. The VB
application knows this type, through its reference
to the LT Control.

Do not test explicitly against the VB keyword
'True', if using the Get<FunctionName>Ex methods
of the LTControl, for those commands returning
Boolean data within their result structure. This is
because the Boolean member in these structures —
if true — are (1). However, the VB keyword "True'
evaluates to (-1).

Always test the variable directly, or against 'Not
False'.

82 ¢ Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division

Example

Sample 6

Synchronous Calls

Jeica

Geosystems

ObjSync.GetContinuousDistanceModeParamsEx dataout

If (dataout.bUseRegion) Then
MsgBox "bUseRegion is True"
End If

or

If Not (dataout.bUseRegion = False) Then
MsgBox "bUseRegion is True"
End If

are both correct. However, the following would evaluate to a
wrong result:

If (dataout.bUseRegion = True) Then
MsgBox "bUseRegion is True" ' No message even flag true!
End If

C++ Console Application

This is only a test/demo application, made up of
'one source file/function’, it should be easy to
understand without further comments.

e The LtcConsoleClient provides a minimal
Tracker Server application based on the
LTControl COM component.

e Itis designed as a so-called Console
Application and consists of only about 15
lines of code, to direct the tracker to a certain
point and measure it.

e Set the hard-coded values (IP address,
coordinates) for the Tracker Server.

This type of application only handles pure
synchronous calls. Receiving Windows messages
is not possible for a console application.
Implementing an event sink is possible , but
requires some advanced programming
knowledge.

%@ Include files from the C or C++ TPI are not
required. TPI information is provided by
importing LTControl.tlb.

User Manual - emScon TPI Chapter 4 ¢« COM Interface ¢ 83

Jeica

Geosystems

Sample 7

ATL/COM

Message Notifications

Metrology Division

C++ Windows-MFC Application

The LtcCPPClient provides a dialog- based MFC
C++ application. It uses the synchronous
interface, but also implements an event- sink to
catch asynchronous answers (continuous
measurements and error events).

Programmers need to be familiar with ATL/COM
in order to understand the event sink
implementation.

E Refer to a COM book for further details.

The LtcCPPClient covers all essential initial steps
for a successful system start and accurate results,
with some disabled code, which demonstrates all
other variants of notification methods, which
may be more familiar to programmers than event

handling.

E See comments in source code.
The disadvantages of message notifications are:

e The result parameters cannot be received
directly.

e There are only general messages for all types
of answers.

e Usually only the size of a data block is
passed with the message.

e The data block must be first read with
GetData() (except for WM_COPYDATA) and
then interpreted. Interpretation is done with
a 'switch' statement with the ProcessData()
sample code.

E See “Handling Data Arrival — Continuous
Measurements” on page 86.

84 ¢ Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

This sample also shows one of the features not
shown so far: How to retrieve the reflectors

known to the system. It also demonstrates

continuous measurements.

E View the source code for details. Note that
this code contains a relatively big overhead
needed for user interface issues. The Tracker
Server specific part is not that dominant.

Source Code ®
Description

Information that is displayed in list boxes,
such as units, CS type, is automatically read
from the Tracker Server upon startup. What
is seen has been actually selected.

Changing the items of one list box
automatically creates a 'Set' for the newly
selected item.

On changing units, CS type etc., some
dependent information may vanish from the
related edit fields to ensure consistency. This
is due to the paradigm 'What you see is
selected'. Do a 'Get' to recover it, which can
also be done by the application.

On setting new values, the 'Set' command is
automatically followed by a 'Get' (two beep
sounds). The 'Get' is not required (only for
testing and demonstration purpose).

Reflectors are read upon client startup. Can
be heard by characteristic beeps. They must
be selected in the reflectors list box.

% The GetReflectors button is only required
in 'emergency’ cases. If the client starts before
the Tracker Server is ready and the client
dialog shows up, but is not able to read the
reflectors yet.

User Manual * emScon TPI

Chapter 4 ¢« COM Interface ¢ 85

Jeica

Geosystems

Handling Data
Arrival —
Continuous
Measurements

Methods to Catch
Packets

Metrology Division

The application is based on LTC_NM_Event
notification selection. By changing the
parameter of SelectNotificationMethod in
CCPPClientDIg::OnlnitDialog() (all variants
are prepared), a different notification method
can be activated. However, there is only an
incomplete implementation of ProcessData()
for these alternate methods (reflector
processing, for example, is not yet complete).

Only the LTC_NM_Event notification method
is fully implemented in this sample.
However, data transfer works with message
methods. One or the other methods can be
activated for test reasons (a good exercise
would be to complete the missing
implementation).

& Only the last call of
SelectNotificationMethod is effective (there
should be only one call to this function).

& See “Handling Data Arrival -
Continuous Measurements” on page 86 for
details on obtaining data in general and
continuous measurements in particular.

Continuous measurement streams are always
handled asynchronous. That is, even if only a
LTCommandSync is implemented (through which
the Start Measurement command may be
invoked), the continuous measurement packets
will arrive asynchronously.

T

& A continuous measurement may last very
long. It is not suitable to block execution all the
time.

Provide a LTCommandSync object with a call
to SelectNotificationMethod, with

86 e Chapter 4 ¢ COM Interface

User Manual * emScon TPI

Metrology Division cfewa

Geosystems

LTC_NM_Event as first parameter.

This setting allows catching the continuous
measurement packets through the event
mechanism. This is especially convenient for
Visual Basic.

e Use one of the Windows Messages
notification methods.

E See "Sample 7" on page 84, as shown
(disabled) in the code.

These may be methods preferred with VC++
clients, especially if the programmer is not
familiar on setting up event sinks. On the
other hand, receiving Windows messages
within VB application is permissible.

e The MultiMeasResultT structure only covers
the first item of the array. The rest of the
INumberOfResults - 1-array elements are
};%dded to the packet without gaps.

% Continuous measurement packets
mostly contain more than one measurement
value. Iteration through an array of
measurements is necessary.

e A code fragment, on how to process a
continuous measurement packet using the
event mechanism, is shown below. This is a
client implementation, stripped down and
altered from sample 7, of the
ContinuousPointMeasDataReady event, which
exists for both _ILTCommandSyncEvents and
_ILTCommandAsyncEvents interfaces

User Manual - emScon TPI Chapter 4 ¢« COM Interface ¢ 87

Jeica

Geosystems

Metrology Division

void _ stdcall OnContinuousPointDataReady (long resultsTotal,
long bytesTotal)
{
CString s;
VARIANT vt;
VariantInit(&vt) ;

if (m_pLTConnect == NULL)
return;

m_pLTConnect->GetData (&vt) ;

MultiMeasResultT *pData =
(MultiMeasResultT *)vt.parray->pvData;

ASSERT (pData->1NumberOfResults == resultsTotal) ;

for (int i = 0; 1 < pData->1NumberOfResults; i++)
{
s.Format (_T(" %.71f, %.71f, %.71f"),
pData->datali] .dvall,
pData->datal[i] .dval2,
pData->datal[i].dval3) ;

// this i1s application dependent. May differ in your app
m_pMainWnd->m_edit_Result.SetWindowText (s) ;
} // for
} // OnContinuousPointMeasDataReady ()

e On using a Windows message notification
method, LTC_NM_WM_Notify, it looks quite
similar. However, with the event method
there is a unique event function for just
receiving continuous results. With message
notify methods, all types of data packets
come in through the the same message
handler. The data must be interpreted with a
'switch' statement. This is done in the
ProcessData() function.

T
% Use of the CESAPIReceive class of the
C++ interface is another possibility.

e The following implementation demonstrates
receiving, not only data of continuous
measurements, but also, any kind of data.

88 ¢ Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division iewa

Geosystems

LRESULT CCPPClientDlg: :0OnNotifyMsg (WPARAM wParam, LPARAM lParam)
{

CString s;

VARIANT vt;

VariantInit (&vt) ;

m_pLTConnect->GetData (&vt) ;

// wParam = msg ID = cookie!
ProcessData (vt.parray->pvData, wParam) ;

return true; // return non-zero if msg handled

e Activating this function calls
SelectNotificationMethod() with the following
parameters:

// cookie must be in the valid range for a user defined message

m_pLTConnect->SelectNotificationMethod (LTC_NM_WM_ Notify,
(long)m_hwnd,
MY_NOTIFY_MSG) ;

e The message ID (which also acts as a cookie
here) is defined as:

|#define MY NOTIFY_MSG (WM_USER+99)

e Entry in the message map must exist as
follows:

| ON_MESSAGE (MY_NOTIFY_MSG, OnNotifyMsg)

e Provide the ProcessData() subroutine.

% Not every type of data packet is fully
implemented:

User Manual - emScon TPI Chapter 4 ¢« COM Interface ¢ 89

Jeica

Geosystems

Metrology Division

void CCPPClientDlg: :ProcessData(void *ptr, int nCookie)

{
CString s, s2;

PacketHeaderT *pHeader = (PacketHeaderT*)ptr;

switch (pHeader->type)
{

case ES_DT MultiMeasResult: // most frequent ones on top

{
MultiMeasResultT *pData = (MultiMeasResultT *)ptr;

for (int 1 = 0; i < pData->1NumberOfResults; i++)
{
s.Format (_T("%1f, %$1f, %1f"),
pData->datal[i].dvall,
pData->datali] .dval2,
pData->datali].dval3) ;

// do something with data
// application dependent
m_staticContMeas.SetWindowText (s) ;
} // for
}
break;

case ES_DT Error:

{

ErrorResponseT *pCmdData = (ErrorResponseT *)ptr;

s.Format (_T("error: command=%d, status=%d\n"),
pCmdData->command,
pCmdData->status) ;

AfxMessageBox(s) ;
}

break;

case ES_DT_SingleMeasResult:

{
SingleMeasResultT *pData = (SingleMeasResultT *)ptr;
ASSERT (pData->measMode == ES_MM_Stationary) ;

// TODO: do something with data

}
break;

case ES_DT_ReflectorPosResult:

{
// Not implemented

}

break;

case ES_DT_Command:
break; // nothing to do

default:
Beep (100, 100); // all other data currently unhandled

} // switch

} // ProcessData/()

& For further details refer to the sample source
code.

% Limitations for high frequency continuous
measurements (like loss of data) may occur due
to hardware (LAN, PC performance) limitations.
Tests have shown that under good conditions

90 e Chapter 4 ¢« COM Interface User Manual - emScon TPI

Metrology Division

Known Bugs in ATL
Event Sink
Implementation

Queues and
Scattered Data

Jeica

Geosystems

(LAN, PC, Client program design), the LT
Control is able to handle the maximum data rate
of 1000 points per second, even through the event
notification mechanism, which might have
slightly less performance than the message
methods — Low performance of IDispatch
Interfaces.

There are currently two known bugs confirmed
by Microsoft in VC++ 6.0 concerning event
handlers.

o (Q237771): Events Fail in ATL Containers
when Enum Used as Event Parameter.

e (Q241810) IDispEventImpl Event Handlers
May Give Strange Values.

Apply one of the workarounds provided in
MSDN and in Sample 7 (file DataArrived.h) for a
practical application of one of the workarounds
provided.

When the Tracker Server delivers more data
through the TCP/IP network than the client is
able to process, it results in 'traffic jams'.
Although, the TCP/IP network buffers such data
(up to the configured buffer size), single data
packets will be queued. That is, there are no more
'gaps' between the data packets. When the client
is notified from the TCP/IP communication
framework that data has arrived, it has to react to
this notification by a Read call (depending on
your communication tools, this can be recv,
GetData, CAsyncSocket::Receive() etc.).

These read functions are not able to recognize
packet boundaries. Read functions read all data
that is currently available (In practice, the data
will be read in one read- cycle, limited to a certain
buffer size).

User Manual - emScon TPI Chapter 4 ¢« COM Interface o 91

Jeica

Geosystems

Problem Solution

Metrology Division

% These might be several combined packets or
only a fraction of a (trailing) packet.

1. Provide a sufficient read-buffer and read all

that is currently pending. The client
application parses the data block into
packets, using the header information and
size of each packet. With a fragmented last
packet, the next read- cycle is started and the
two fragments from the previous and the
current reading are assembled together. This
is probably the most efficient method, since
it minimizes the number of reading
interrupts. However, it is also the most
complex one in terms of data parsing.

Read only the header to determine the size of
the first pending packet. The rest of the
packet is estimated by reading (packetSize —
headerSize) bytes.

Variant method: 'Peek’ (instead of Read) the
header, without removing data from the
socket. With known size, read as many bytes
as indicated by packetSize. See code sample
below.

The sample code demonstrates a method to
ensure complete packets (if data blocks
arrive scattered) and to avoid data
congestion (traffic jams). It is based on
Winsock 2.0 API functions:

92 ¢ Chapter 4 ¢« COM Interface User Manual - emScon TPI

Metrology Division ,fewa

Geosystems

LRESULT CMsgSink: :0OnMessageReceived (UINT uMsg, WPARAM wParam,
LPARAM lParam,
BOOL& bHandled)

// The read-buffer is kept static for performance reasons.
// In a real application better make it a member

// variable of CMsgSink

//

static char szRecvBuf [RECV_BUFFER_SIZE];

bool bOK = true;
long lReady = 0;
int nCounter = 0;
long 1Missing = 0;
long 1BytesRead = 0;

long 1BytesReadTotal = 0;

int nHeaderSize = sizeof (PacketHeaderT) ;
PacketHeaderT *pHeader = NULL;

ATLTRACE (_T ("CMsgSink: :OnMessageReceived (%1lu, %$lu)\n"),
wParam, lParam) ;

if (WSAGETSELECTEVENT (lParam) == FD_READ)
{
// Just peek the header, do not remove data from queue
1Ready = recv((SOCKET)wParam, szRecvBuf,
nHeaderSize, MSG_PEEK) ;

if (lReady < nHeaderSize)
{

if (1lReady == SOCKET_ERROR)
{
if (WSAGetLastError () == WSAEWOULDBLOCK)
Sleep(50); // busy - try later
else

{
Beep (1000, 100);
// not able to get header

} // else
Yy // if
return true; // non-fatal only a peek, try next time!
Yy // if
pHeader = (PacketHeaderT*)szRecvBuf;
bOK = bOK && 1lReady == nHeaderSize &&

pHeader->1PacketSize >= nHeaderSize &&
pHeader->1PacketSize < RECV_BUFFER_SIZE &&
pHeader->type >= ES_DT_Command &&
pHeader->type <= ES_DT ReflectorPosResult;

if (bOK)
{

do

{

nCounter++;

if (1BytesRead > 0)
1BytesReadTotal += 1BytesRead;

1Missing = pHeader->1PacketSize - 1BytesReadTotal;

1BytesRead = recv((SOCKET)wParam,
(szRecvBuf + 1BytesReadTotal),
IMissing, 0);

if (1BytesRead == SOCKET_ERROR)
{
if (WSAGetLastError () == WSAEWOULDBLOCK)
{
Sleep(50); // busy - try later
continue;
}
else
Beep (1000, 100);

User Manual - emScon TPI Chapter 4 ¢« COM Interface ¢ 93

Jeica

Geosystems

Metrology Division

Y // if

if (nCounter > 64) // emergency exit
{
if (1BytesReadTotal <= 0)
{
ATLTRACE (_T("not able to read data
(recv)\n")) ;
return true; // nothing read, can leave safely
Yy // if
else
{
bOK = false;
break;
}
Yy // if

ATLTRACE(_T("Loop: BytesRead %1d, BytesReadTotal \
%$1d, PacketSize %1d, Missing = %1d\n"),
1BytesRead, 1BytesReadTotal+1BytesRead,
pHeader->1PacketSize,
1Missing - 1BytesRead) ;

} while (1BytesRead < 1Missing) ;

if (1BytesRead > 0)
1BytesReadTotal += 1BytesRead;

Yy // if

bOK = bOK && 1BytesRead == 1Missing &&
1BytesReadTotal <= RECV_BUFFER_SIZE;

if (bOK)

{
// ProcessReceivedData() is assumed to take one single
// (complete) data packet. It contains a 'switch'
// statement to evaluate the packet (we have seen this
// method several times in this manual / samples)

if (1BytesReadTotal == pHeader->1PacketSize)
ProcessReceivedData (szRecvBuf, 1BytesReadTotal) ;
Yy // if
}
else
bOK = false;

if (!bOK)

{
// make sure socket is cleaned up on data jam
// in order to recover ordinary data receiving

do
{
nCounter++;
1BytesRead = recv((SOCKET)wParam, szRecvBuf,
RECV_BUFFER_SIZE, 0);
ATLTRACE (_T("Recover in loop\n"));
} while (1BytesRead > 0 && nCounter < 128);

ATLTRACE (_T ("Unexpected data - fatal error\n"));

Beep (250, 10); // data lost
Y // else

return bOK; // true when message handled
} // OnMessageReceived ()

This code ensures that only complete packets are
processed. However, the client may still not be
fast enough to process all the incoming data. The

94 ¢ Chapter 4 ¢« COM Interface User Manual - emScon TPI

Metrology Division

Cause of Data Loss

Reading Data
Blocks with Visual
Basic

Jeica

Geosystems

TCP/IP framework will buffer data, up to a limit.
If such limits are reached, arbitrary data may
arrive. The above function has (limited) recovery
ability in case this should happen. Data will be
lost in such situations.

e The network is not fast enough.
e The client PC is not powerful enough.

e The application is not able to process data fast
enough.

e The application is not designed appropriately.

% The client application can still buffer
incoming data, for example, in a FIFO list (taking
the data packets as list elements). This approach
can be chosen if the performance constraint is
caused by intensive data processing. The
Winsock API offers certain 'tuning' functions.
These allow, for example, to alter internal
network buffers. Increasing the receive- buffer
with setsockopt(), for example, may increase data
throughput significantly.

#define SOCKET_READ_BUFFER_SIZE (256 * 1024) // 256 KB buffer

int nBufSize = SOCKET_READ_BUFFER_SIZE;
int nVarSize = sizeof (nBufSize); // it's 4 byte, but sizeof is
better style!

nRet = setsockopt (m_sock, SOL_SOCKET, SO_RCVBUF,
(char *)&nBufSize, nVarSize) ;
ATLASSERT (nRet != SOCKET_ERROR) ;

E See documentation on setsockopt() for further
details.

Arrival data reading with C++, as shown in
'Handling Data Arrival — Continuous
Measurements', can also be ported to VB. Events
for VB are used here, with unique events for
almost every type of arrival data (especially when
using the asynchronous interface). Most of these

User Manual - emScon TPI Chapter 4 ¢« COM Interface ¢ 95

cfeica Metrology Division

Geosystems

pass their results through basic data type
parameters.

E See “Handling Data Arrival — Continuous
Measurements” on page 86.

T

% Message notification methods with VB are
not demonstrated here.

However, there are some exceptions where the
data must be retrieved explicitly upon an
incoming event. These types of events can be
identified by the DataReady term in their names.
The continuous measurement events are among
these.

The code below shows an implementation of the
ContinuousPointMeasDataReady() event handler. It
does not demonstrate the processing of the data
received. This handler does some diagnostics —
checks whether the size of read data complies
with the passed parameter. If OK, the size is
displayed, otherwise an error message is shown.

By calling the ObjConnectGetData() function, the
arrived data (that caused the event) is being read
into a local buffer. The application interprets and
processes the data. In order to get the
measurement values, loop through the array and
interpret the array elements with MeasValueT (not
shown here).

% VB may not be the right choice to process
(high rate) continuous measurements, especially
when running the interpreter. The VB project
must be compiled first.

96 e« Chapter 4 ¢« COM Interface User Manual - emScon TPI

Metrology Division

VBA Macro-
Language Support
(Excel, Word,
Access)

Jeica

Geosystems

Private Sub ObjAsync_ContinuousPointMeasDataReady (_
ByVal resultsTotal As Long, _
ByVal bytesTotal As Long)
Dim data As Variant
Dim tp As VbVarType
Dim sz As Long

ObjConnect.GetData data
tp = VarType(data) ' type; we expect a Byte arryay

If (tp
sz

= vbArray + vbByte) Then ' Byte Array
= UBound(data) + 1 ' index is zero based!
If (bytesTotal = sz) Then

MsgBox sz 'display # of bytes received
Else

MsgBox CStr ("Unexpected size:") & sz _
& CStr (", expected:") & bytesTotal
End If
End If
End Sub

T

% [tisnotnecessary to read data here (with
GetData). Answers may be filtered out and only
those data packets of interest can be read.

With TCP/IP data must be read at socket level
(see previous samples) otherwise no notification
will arrive again.

The principles shown here also apply to message
handlers, if one of the message notification
mechanisms is selected.

E See “Answers from Tracker Server” on page
25 on how to mask/evaluate incoming data
blocks.

The LTControl COM component can also be used
with VBA (Visual Basic for Applications), the
built-in Macro language of MS Excel, Word and
Access — with the exception that structs and enums
are not fully supported with VBA that comes
with Office 97. 'Ex' functions that take struct
parameters cannot be used. VBA that comes with
Office 2000 no longer has such limitations.

T

% Itis highly recommended to use Office 2000
or higher for Tracker Server VBA Programming.
Office 97 (Excel 97/Word 97) - apart from a

User Manual - emScon TPI Chapter 4 ¢« COM Interface ¢ 97

cfeica Metrology Division

Geosystems

missing UDT - contain some bugs that make
development of Tracker Server clients virtually
impossible, as soon as events are involved. This
bug leads to a completely corrupted file upon file
saving, after an event has arrived.

For this reason, Excel samples delivered with the
TPI-SDK are in Excel 2000 format. They may run
with Excel 97, but may be destroyed as soon as
any changes are saved. Always maintain a safe
(read-only) copy.

The following remarks only apply to Office 97
programming (Office 2000 VBA behaves as

ordinary VB).
User-defined Types, .. .
the Differencesyp e Both allow defining user-defined structs
between Visual Basic locally. However, those structs exported by
and VBA97 the LTControl (such as PacketHeaderT,

SingleMeasResultT) are only recognized from
within Visual Basic. VBA claims an error
Automation type not supported if declaring, for
example, a variable like:

[Dim val As SingleMeasResultT // works with VB, but not VBA97

e Enums are not supported by VBA97. The
compiler does not know the keyword Enum.
User-defined enums cannot be defined
locally, although this works with ordinary
Visual Basic. It is also not possible to use
enum- type variables that are exported by the
LTControl. Declaration as follows are not
possible in VBA97:

|Dim cmd as ES_Command // works with VB, but not VBA97

e When implementing an EventHandler that
has enum-type parameters in Visual Basic will
read as follows (only function header
shown):

98 ¢ Chapter 4 ¢« COM Interface User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

Private Sub CommandSync_ErrorEvent (_

ByVal command As LTCONTROLLib.ES_Command, _
ByVal status As LTCONTROLLib.ES_ResultStatus)

When doing the same in VBA97 it will read
as follows:

Private Sub CommandSync_ErrorEvent (ByVal command As Long, _

ByVal status As Long)

Visual Basic keeps the enum type
information and recognizes the parameters
with their correct enum- types, while VBA just
passes them as long parameters.

However, the symbols of the enum values are
correctly recognized, although not checked
by the compiler for correct typing (which can
lead to errors, which are difficult to find).
This problem is not specific to VBA, it also
exists in VB. There are two different
situations where enums and their value-
symbols affect the interface:

Method takes enum type parameters, for
example, call SetMeasurementMode the same
way for both VB and VBA:

|ICommandSync::SetMeasurementMode(ES_MM_ContinuousDistance);

ES_MM_ContinuousDistance will be correctly
recognized as having the value 2' (see enum
definition).

Correct typing of values: VB as well as the
VBA interpreter will not recognize typing
errors in enum symbols here. However, both
VB and VBA provide 'IntelliSense’, providing
for a selection from a list rather than having
to type them in.

Event handlers, as we have seen above, pass
enums as long values in VBA. The incoming
values can be tested against enum symbols.
In an event handler, the following code

User Manual * emScon TPI

Chapter 4 ¢« COM Interface ¢ 99

Jeica

Geosystems

Conclusion

Continuous
measurements
and VBA

Metrology Division

might be typical (example ErrorEvent in
VBA):

Private Sub CommandSync_ErrorEvent (ByVal command As Long, _
ByVal status As Long)
If (command = ES_C_Initialize) Then
' do something
End If

If (status = ES_RS_NoTPFound) Then
' do something

End If

End Sub

% Use extreme caution while typing the
symbols with VBA 97. No 'IntelliSense' support is
available.

e There is no problem with enums and VBA97.
It is just a potential error source due to
missing type checking.

e Structs (unless locally defined) are not
supported in VBA97. LTControl offers an
alternative to these functions offering no
significant restriction on using VBA97.

¢ None of the event functions has struct
parameters, and have, therefore, no
restriction with VBA97 (both synchronous
and asynchronous interface).

Events of continuous measurements do not
directly pass the data.

E See “Handling Data Arrival — Continuous
Measurements” on page 86 for details.

Handling continuous measurements within VBA
requires care. Events can be 'subscribed' with the
WithEvent keyword and pending data can be read
with GetData(), as shown in:

E See “Reading Data Blocks with ” on page 95
for details.

100 ¢ Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division

Masking Data

Jeica

Geosystems

The unavailability of (LTControl) structures
prevents masking the data. With the byte-layout
of the data blocks the appropriate bytes can be
extracted 'manually’ and assigned to basic data

types.
T

% This is not convenient and exceeds the
typical Excel programmer's expertise.

Even with VB, although structs are available,
masking data is not that easy as in C++. By
providing some helper functions, data blocks can
be copied to appropriate struct parameters
instead of pointer type-casts:

ILTConnect: :ContinuousDataGetHeaderInfo ()
ILTConnect: :ContinuousPointGetAt ()
ILTConnect: :ContinuousPoint2GetAt ()
ILTConnect: :Continuous6DDataGetAt ()

This allows extracting information of interest
from data blocks of type ES_DT_MultiMeasResult,
ES DT MultiMeasResult?2 and

ES DT Multi6 DMeasResult.

A VB (VBA) implementation, with comments, of
the ContinuousPointMeasDataReady event handler
that demonstrates usage of these functions reads
as follows:

User Manual - emScon TPI Chapter 4 ¢« COM Interface o 101

Jeica

Geosystems

Metrology Division

Private Sub LtSync_ContinuousPointMeasDataReady (_
ByVal resultsTotal As Long, ByVal bytesTotal As Long)

' a continuous point meas packet came in. Note that in

' case of continuous measurements (due to multiple points /
' variable size of packet) only # of results and packet size
' are passed in (which both are not really needed here)

' So we first must GET the data, then retrieve information

' out of the gotten block.

' since we are doing function calls to a COM object

' (LtConnect) that can throw exceptions, we need an error

' handler. Note we would not require an error handler in the
' other Event Handlers (LtSync_ReflectorsData,

' LtSync_ReflectorPositionData) because (usually) no COM

' functions are called there subsequently

On Error GoTo ErrorHandler
' 1. Get the data

Dim data As Variant
LtConnect.GetData data

' 2. Get header info. Calling this function is optional.
' the only thing we need here is numResults. However,
' it's the same as resultsTotal passed to the functions.

Dim numResults As Long
Dim measMode As Long
Dim temperture As Double
Dim pressure As Double
Dim humidity As Double

LtConnect.ContinuousDataGetHeaderInfo data, numResults,
measMode, temperture, pressure, humidity

' since we have numResults twice from different paths, lets
' check them for compliance!

If Not (numResults = resultsTotal) Then
MsgBox "Fatal Error - unexpected discrepancy"

End If

' since we know how many results, we can loop over the index
' Note that index runs form 0 to numResults - 1

For index = 0 To numResults - 1
' data and index are input parameters, rest output

LtConnect.ContinuousPointGetAt data, index, status, _
timel, time2, dvall, dval2, dval3

' TODO: do something with each result here
Next
Exit Sub
ErrorHandler:

MsgBox (Err.Description)
End Sub

T

-

ContinuousPointGet At()/Continuous6 DDataGet At()
may have an impact on performance. They have
been primarily designed for use with VB(A). For
C++ applications, more efficient ways to extract
continuous measurements exist.

102 ¢ Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division

Scripting
Language Support

Sample 8

Jeica

Geosystems

VBA applications, depending on data processing,
may not have enough performance when using
continuous high data rates. Always run compiled
versions. In special cases the incoming results
need to be buffered.

Use of values instead of symbols, in Visual Basic,
avoids the problem of typing incorrect enum
symbols, which cause errors difficult to detect.

% A complete .tlh file is automatically
generated when importing LTControl.tlb into a
VC++ project.

Pure scripting languages VBS (Visual Basic
Script), JavaScript etc. are currently not
supported by the LTControl COM component.

This would require IDispatch interfaces rather
than custom interfaces. Combinations of IDispatch
and custom interfaces (dual interfaces) have the
same disadvantage as IDispatch —lack of
performance.

Excel Control for Tracker Server

This sample works only with Excel 2000, and
consists of an Excel sheet with a VBA macro
LtcExcel. Tracker server client VBA-
programming with Excel 97 (Office 97) is not
recommended. The variant
LtcExcelWithlmage2.xls is an extended version of
the LtcExcel.xls application and includes “Still
Video Image’ support. This feature requires the
tracker being equipped with a video camera.

E See “VBA Macro-Language Support (Excel,
Word, Access)” on page 97.

The essential difference between a VB client and
an Excel client is that the Excel sheet takes the

User Manual - emScon TPI Chapter 4 ¢« COM Interface o 103

Jeica

Geosystems

Sample 11
GetStilllmage

Asynchronous
interface

Metrology Division

role of a VB Form. That is, data input/output goes
through cells.

This LtcWin32Client sample demonstrates the
GetStilllmage command, which requires a camera
mounted on the tracker. The application skips the
physical disk bitmap file. The bitmap file contents
is read directly into memory buffers and shown
on screen. This also allows a simple full size
scaling option.

Before application start, the system settings flag
'Has Video Camera' must be enabled.

This sample implements the more complex (from
programmer's point of view) asynchronous
interface. The complexity comes from the fact that
the programmer has to perform the task of
synchronizing, because command calls are non-
blocking. This is required for data that is non-
synchronous (for example continuous
measurements — not in this application,
however.).

E See implementation of synchronous

command for GetStilllmage in “Remarks” on page
105.

T
% This sample uses a different method than the

relatively complex connection point interface in
Sample 7. The connection point interface is a
solution, when using Visual Basic/VBA.

This is a pure Win32 application and does not use
the MFC library. This was intended in order to
make everything as transparent and 'lightweight'
as possible. The implemented bitmap (file)
reading algorithm is not intended for general
purpose other than the simple b/w camera image
format currently provided.

104 « Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division cfewa

Geosystems

Remarks When designing a client application using the
LTControl COM component, either the
synchronous or the asynchronous command
interface must be used.

e With the asynchronous interface and the
events notification (that is, calling
SelectNotificationMethod with
LTC_NM_Event), an Event- Sink must be
implemented. In VB, this is done by defining
the WithEvents keyword, but in C++ thisis a
bit more complicated. In addition, the
appropriate event handlers must be
implemented .

% With any other notification mechanism,
the event sink is not required and the
WithEvents keyword must be removed.
Implement Windows message handlers and
not event handlers, in this case.

e With the synchronous interface, some
answers remain asynchronous by their
nature - continuous measurement packets,
Reflector Positions and error answers (these
may partly occur non-command related, for
example beam broken).

With synchronous commands, events or
notifications must still be caught - See former
paragraph. Any other notification
mechanism does not need an event sink, and
the WithEvents keyword must be removed.
In this case, do not implement event
handlers; appropriate Windows message
handlers must be implemented instead.

e Using both interfaces in the same LTConnect
instance — although possible — usually makes

User Manual - emScon TPI Chapter 4 ¢« COM Interface o 105

cfeica Metrology Division

Geosystems

no sense and partly leads to duplicate
answers.

e On multi tracker (multi tracker server)
systems, create a separate instance of
LTConnect for each tracker.

e Do not test explicitly against the VB keyword
"True', if using the Get<FunctionName>Ex
methods of the LTControl, for those
commands returning Boolean data within
their result structure. This is because the
Boolean member in these structures, if true,
is one (1). However, the VB keyword "True'
evaluates to (-1). Always test the variable
directly, or against 'Not False'.

ObjSync.GetContinuousDistanceModeParamsEx dataout

Example

If (dataout.bUseRegion) Then
MsgBox "bUseRegion is True"

End If

or

If Not (dataout.bUseRegion = False) Then
MsgBox "bUseRegion is True"
End If

are both correct. However, the following would evaluate to a
wrong result:

If (dataout.bUseRegion = True) Then
MsgBox "bUseRegion is True" ' No message even flag true!
End If

106 ¢ Chapter 4 ¢ COM Interface User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

5.Command Description

Get Reflectors
Command

Related Commands

Comments

iTotalReflectors

Special Functions

Some of the commands/procedures, which have
been referred to in this manual are described in
detail, with some background information.

The GetReflectors command is often
misinterpreted. GetReflectors is used to 'ask' the
Tracker Server, which reflectors are currently
defined, and to get the relation between reflector
names and reflector IDs.

e SetReflector
e GetReflector

GetReflectors causes as many GetReflectorsRT data
packets to arrive, as reflectors are defined in the
tracker database. Each one of these packets
contains the following information:

struct GetReflectorsRT
{

struct BasicCommandRT packetInfo;

int iTotalReflectors;

int iInternalReflectorId;

enum ES_TargetType targetType;

double dSurfaceOffset;

short cReflectorName[32]; // Unicode!

}; of Reflector data packets of the following

iTotalReflectors is just for programmers’
convenience.

e Names the number of reflectors known to
the system and has the same value in every
packet.

User Manual - emScon TPI Chapter 5 ¢ Command Description ¢ 107

Jeica

Geosystems

Metrology Division

Provides information, on arrival of the first
packet, as to how many packets are still
outstanding.

Counts the incoming packets to know when
the last one has arrived.

linternalReflectorld/cRe The commands ilnternalReflectorld and
cReflectorName provide important information for
the user interface/programmer

flectorName

List index °

The reflector name is a string value (in
Unicode), which is see on the user interface
of the application software.

This reflector name is an alias for the
reflector ID and cannot be resolved by the
system.

The system can (internally) only deal with
reflector IDs, which are integer numbers.

The commands take/return a reflector ID as a
parameter.

It is crucial to provide the correct reflector ID

to SetReflector.

T
@ Passing the ID of an unintended (but

existing) reflector will cause wrong
measurement results.

Programmers often fill all reflector names in
a list box. When the user selects one of the
reflectors shown in the list box, a SetReflector
command is carried out.

T
% Hence the need for a 'lookup table'.

It is not correct to use the index of the list box
as a reflector ID. This is because the reflector
IDs are arbitrary in sequence and may
contain gaps.

108 ¢ Chapter 5 ¢« Command Description User Manual - emScon TPI

Metrology Division

Lookup Table

Reflector Name -
Unicode Format

Jeica

Geosystems

e The programmer must not assume that the
reflector IDs are a sequence of 1....n without
any gaps. Although most systems may
deliver reflectors with sequential reflector
IDs starting from 0 with no gaps

% This may not be presumed. Every
system behaves differently.

o GetReflectors may deliver for example 3
reflectors with the following Names and IDs:

Name ID

CCR-75mm

CCR-1.5in

TBR-0.5in

The list box indices will range from 0 to 2, when
the three names are entered in a control list box,
in the order shown above. A lookup table is
therefore required to match the index values to
the reflector IDs. Such a lookup table is shown
below:

Index ID
0
1 2
2

‘% The call to SetReflector must pass the reflector
ID, not the list box index. A frequent source of a
programming error.

The reflector name is always in Unicode format,
irrespective of whether the application is in
Unicode or ANSI.

% Names in C/C++ applications may have to be
converted accordingly.

User Manual - emScon TPI Chapter 5 ¢ Command Description ¢ 109

Jeica

Geosystems

Still Image
Command

Related
Commands

Preconditions

Application of
GetStilllmage — C/C++

Metrology Division

E See "Sample 7" on page 84, which
implements reflector handling with a list box. It

uses a MFC Map as a lookup table.
T

% Simpler solutions exist with just an integer
array.

E See also "Sample 7" on page 84 or "Receiving
Data Sample 9" on page 66, on how to interpret
reflector names in Unicode format correctly.

For trackers equipped with an Overview Camera,
the GetStilllmage command takes an image and
delivers it as a file image data block.

o GetStilllmage

e SetCameraParams

o GetCameraParams

o StilllmageGetFile (COM, not in C++)

e WriteDiskFile (COM only)
T

% These commands are available on all TPI
levels (C, C++, COM). Set/GetCameraParameters is
not explained here further.

E See Reference Manual for details.

The following preconditions have to be fulfilled:
e Camera mounted on tracker
e System settings: “Has video” flag activated

e Tracker must be in camera view (command
ActivateCameraView)

The application of GetStilllmage is explained
below using code fragments.

110 ¢ Chapter 5 ¢« Command Description User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

T

% GetStilllmage must be called with the
parameter ES_SI_Bitmap. The parameter
ES_SI_Jpeg is not supported yet.

The answer to a successfully executed
GetStilllmage command results in a
GetStilllmageRT data structure.

Apart from the common header information,
this structure echoes the file type
(imageFiletype =ES_SI_Bitmap), the size of
the file (IFileSize), and the first Byte of the
file (cFileStart).

The following code accesses the core file data
and writes it to a physical disk file:

// assume pData contains the data- block received
// to a GetStillImage(ES_SI_Bitmap) command

long 1lFileSize = ((GetStillImageRT*)pData)->1FileSize;
char cFileStart = ((GetStillImageRT*)pData)->cFileStart;

FILE *pFile = NULL;

if ((pFile = fopen("C:\\Temp\\img.bmp", "wb")) != NULL)
{
long lWritten =
fwrite(&cFileStart, 1, 1lFileSize, pFile);

if (lwritten != 1lFileSize)

printf ("File could not be written(\n");
else

printf ("wrote %d bytes\n", 1lWritten);

fclose(pFile);

The disk- file can be skipped and a memory-
mapped file can be used instead. OR

With the file structure of the Bitmap file, the
bitmap information can be extracted from
the data block and used directly with GDI
functions.

In the code above, it was assumed that pData
contained a complete GetStilllmageRT
structure with complete file data padded.

User Manual * emScon TPI

Chapter 5 ¢ Command Description ¢ 111

cfeica Metrology Division

Geosystems

WinSock2 API/MFC e Using WinSock2 API or MFC CasyncSocket,
CasyncSocket to read directly from the socket, must

consider the implications of large file data.

e Since the file data is relatively big (~70
KB), it is very unlikely that it will arrive
as one single data block over TCP/IP.

e Provisions must be made to repeat
reading data until the data packet is
complete.

e A technique to achieve this is shown in
the OnMessageReceived code sample

E See "Queues and Scattered Data" on
page 91.

E See also receiver thread in
"Receiving Data Sample 9" on page 66.

COM TPl within C/C++ ‘When using the COM TPI (within a C/C++
application), the results of the LTControls
GetStilllmage (synchronous) function can be
assumed to be complete. See related code extract
below. When receiving Stilllmage data
asynchronously (Event Handler,
MessageHandler), the difference is that the data
will not be provided directly through a
parameter. So ILTConnect::GetData() must be used
first.

T

% Note the Variant- type parameter of the
fileData.

E See "Application of GetStilllmage — C/C++" on
page 110.

112 « Chapter 5 ¢ Command Description User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

. void CCPPClientDlg::OnButtonStillImage ()
GetStilllmage — (
Synchronous HRESULT hr = 0;
long 1lFileSize;
VARIANT vt;
VariantInit (&vt) ;
try
{
if ((hr = m_pLTCommandSync->GetStillImage (ES_SI_Bitmap,
&lFileSize, &vt)) == S_OK)
{
ASSERT (vt.parray->rgsabound|[0] .cElements ==
(unsigned long)lFileSize);
FILE *pFile = NULL;
// write file to current runtime location
if ((pFile = fopen("image.bmp", "wb")) != NULL)
{
long 1lWritten = fwrite(vt.parray->pvData, 1,
1lFileSize, pFile);
if (lWritten != 1lFileSize)
AfxMessageBox (_T("File could not be written\n"));
fclose(pFile);
// Display the image using MSPaint,
// but first close previous instance
//
HWND hWnd = ::FindWindow(_T ("MSPaintApp"), NULL) ;
if (hwWwnd) // paint is already running - close first
: :SendMessage (hWwnd, WM_SYSCOMMAND, SC_CLOSE, O0);
WinExec ("mspaint.exe image.bmp", SW_SHOWNOACTIVATE) ;
Yy // if
Yy // if
}
catch(_com_error &e)
{
Beep (4000, 100);
AfxMessageBox ((LPCTSTR) e.Description());
}
VariantClear (&vt); // Avoid memory leak
}

User Manual * emScon TPI

Chapter 5 ¢ Command Description ¢ 113

Jeica

Geosystems

GetStilllmage —
Asynchronous

COM/VB(A)

Event handler

Metrology Division

void __ stdcall OnStillImageDataReady (ES_StillImageFileType
imageFileType, long fileSize, long bytesTotal)
{
ASSERT (m_bUseAsync) ;

VARIANT vt;
VariantInit (&vt) ;

m_pLTConnect->GetData (&vt) ;

ASSERT (vt.parray->rgsabound|[0] .cElements ==
(unsigned long)bytesTotal) ;

GetStillImageRT *pData =
(GetStillImageRT *)vt.parray->pvData;

ASSERT (pData->1FileSize== fileSize);

// Do something with the file, for example write out
// to a disk file - like shown in code above

VariantClear (&vt); // Avoid Memory leak
}

Neither type- casts nor writing binary files are
common tasks in VisualBasic. In order to achieve
the same Stilllmage features from VB(A), some
convenience Functions have been added to the
COM TPI: StilllmageGetFile and WriteDiskFile.

This is an extract from an Excel application. The
image is displayed in an Image dialog control
(named Imagel):

Private Sub GetStillImage_Click()
On Error GoTo ErrorHandler

Dim fileData As Variant
Dim size As Long

ObjSync.GetStillImage ES_SI_Bitmap, size, fileData
ObjConnect.WriteDiskFile fileData, "C:\Temp\img.bmp"

' Now load picture into sheet
Imagel.Picture = LoadPicture("C:\Temp\img.bmp")

Exit Sub
ErrorHandler:
MsgBox (Err.Description)
End Sub

Within an event handler, the file data structure
must be extracted first, since GetData delivers the
complete data packet including header
information. A similar helper function is required
in VB, since no casting to (GetStilllmageRT*) is
available.

& See "Continuous measurements and VBA" on

114 « Chapter 5 ¢ Command Description User Manual - emScon TPI

Metrology Division

Image Click Position

Live Image display

Live Image Control
LTVideo2.ocx

Registering
LTVideo2.ocx

Jeica

Geosystems

page 100 for similar method using
ContinuousDataGetHeaderInfo.

Private Sub ObjAsync_StillImageDataReady (ByVal imageFileType As
LTCONTROLLib.ES_StillImageFileType, ByVal fileSize As Long,
ByVal bytesTotal As Long)

Dim fsize as Long ‘dummy

ObjConnect.GetData data 'Get whole packet (incl header)

' retrieve out size and file data
ObjConnect.StillImageGetFile data, fsize, file

ObjConnect.WriteDiskFile file, "img.bmp"

' Now load picture into sheet
Imagel.Picture = LoadPicture("img.bmp")

End Sub

T

& Although designed for use with VB,
StilllmageGetFile and WriteDiskFile can also be
used in LTControl based C++ applications.

Click positions on the Image are currently written
out to Excel cells. These values can be used to
calculate relative tracker movement angles, call
MoveRelativeHV to direct the tracker there and
then request a new Image.

Private Sub Imagel_MouseDown (ByVal Button As Integer, ByVal
Sshift As Integer, ByVal X As Single, ByVal Y As Single)
Beep
ws.Cells (2, 2).Value
ws.Cells (3, 2).Value
ws.Cells (5, 2).Value
End Sub

X
Y
Shift

The live camera display from the Overview
Camera can be implemented into user
applications by using an ActiveX control,
LTVideo2.ocx. See SDK lib directory,
ANSI/Unicode subdirectories.

LTVideo2.ocx is an ActiveX type COM object and
requires registration on the Application
Processor.

From the command line perform the following
command:

User Manual - emScon TPI Chapter 5 ¢ Command Description ¢ 115

Jeica

Geosystems

ANSI/Unicode Version

Development
Platforms

LTVideo2.tlb

Server Address

Events/Methods

Metrology Division

Regsvr32 <Path>\LTVideo2.ocx, where <path>
depends on the location of the file — typically
C:\WINNT\ System32.

Use the Ansi version for Win98/ME platforms
and the Unicode version for WinNT/2000.

E See Version info of LTVideo2.o0cx for details,
under File Properties > Version TAB.

For Visual Basic or Office, the ActiveX controls
must be added as a reference.

For VC++, a wrapper class is generated using:

Add to Project/Components > Controls > Controls
type library from Visual Studio.

LTVideo2.tlb is the related type library delivered
for convenience. LTVideo2.ocx contains all type
information required.

LTVideo2.ocx has a property server address,
which must be set according to your server
address.

The port number is 5001. Any changes to the port
number must also be done on the server side.

The size must have a width/height proportion of
4:3. The image must be started/stopped by
invoking the method Start/StopLivelmage.

E See Microsoft documentation, for further
information on how to use ActiveX controls in
general.

The essential methods of the camera OCX are:
e StartLivelmage()
e StopLivelmage()

To alter the default frame rate (15/sec), the
following methods are used:

116 ¢ Chapter 5 ¢« Command Description User Manual - emScon TPI

Metrology Division

Orient To Gravity
Procedure

Related Command

Jeica

Geosystems

e FrameRateStepUp()
e FrameRateStepDown()

The following event, VideoClick, is used:

void VideoClick (double deltaHz,
double deltavt,
long posX,
long posy,
long flags);

This event occurs when clicking on the image
with the mouse. The event parameters are as
follows:

e DeltaHz, deltaVt: The angles that can be
passed to the MoveHV command, in order to
move the tracker to the clicked position.

e DPosX, posY: The pixel values of the clicked
position within the image coordinate system
(top/left =0, 0).

e The flags parameter can be used to figure out
which modifier keys are pressed during the
click. The flags parameter is the same as
provided by the OnLButtonDown standard
message.

E See Microsoft MFC documentation, for
details.

e Server address and Port number must be
passed as properties.

e An RGB triplet can be passed to alter the
color of the crosshair

This function is used to measure the tilt of the
tracker's primary z-axis (standing axis) with
respect to the vertical. This can be used to orient
the measurement network to gravity. The tilt is
specified by two angular components about the
tracker's internal x and y-axes.

CallOrientToGravity

User Manual - emScon TPI Chapter 5 ¢ Command Description ¢ 117

Jeica

Geosystems

Metrology Division

Comments e This command is only available in

combination with a Nivel20 Inclination Sensor.

e Executing this command drives the tracker
head to 4 different positions on the xy plane:

e Taking Nivel20 measurement samples.

e In addition, the station inclination
parameters Ix and Iy are calculated and
returned as result parameters.

Executing this command does not 'implicitly'
apply any orientation values to the system.

In order to 'activate' the station orientation to
gravity, the two result values, Ix and Iy, must
be explicitly set with the command
SetStationOrientationParams (Rotation angles
rotl and rot2).

& See "Mathematics" on page 129 for
mathematical description.

Transformation This procedure matches a measured set of points

Procedure

to a given set of nominal points by using a least
squares, best fit method. The procedure calculates
the 7 parameters (x,y,z, omega, phi, kappa, scale),
which describe the 'transformation filter' to be
applied to the measured points in order to
represent these in the coordinate system defined

by the nominal points.

Related Commands °

ClearTransformationNominalPointList
ClearTransformationActualPointList
AddTransformationNominalPoint
AddTransformationActualPoint
SetTransformationInputParams
GetTransformationInputParams

CallTransformation

118 ¢ Chapter 5 ¢« Command Description User Manual - emScon TPI

Metrology Division

Comments

EmScon System
Settings

Automated
Intermediate
Compensation

Tracker Geometry

Jeica

Geosystems

e GetTransformedPoints

The command CallTransformation displays a
transformation carried out with
Set/GetTransformationParams

Before doing a CallTransformation, both point lists,
nominal and actual must be prepared. They must
contain the same number of elements.

The system settings of emScon (units, coordinate
type and coordinate system) must reflect the
current input data. Point input values
(nominal/actual) are interpreted by emScon based
on the current emScon system settings.

e Additional parameters can be set by using
the SetTransformationlnputParams command
(For example to fix or weigh certain
parameters).

e After a successful calculation, additional
results in terms of transformed points and
residuals can be retrieved optionally by
using GetTransformedPoints.

T

% None of the 7 calculated transformation
parameters (received as output from
CallTransformation) are automatically applied
to the system. This must be done explicitly
by calling SetTransformationParams.

& See "Mathematics" on page 129 for
mathematical description.

The Intermediate Compensation is a simple and
fast procedure to perform a fully automated
intermediate compensation, where the tracker is
in a fixed installation.

Out of a total of 15 parameters, which affect the
trueness of the tracker geometry, the most

User Manual - emScon TPI Chapter 5 ¢ Command Description ¢ 119

Jeica

Geosystems

Intermediate vs. Full
Compensation

Setup

Metrology Division

significant changes are affected by these three
parameters:

E See emScon manuals, for more information.
e Transit axis tilt, i
e Mirror tilt, ¢
e Vertical index error, j

Intermediate Compensation refreshes these three
parameters by taking a small number of Two-face
measurements. If the result is accepted, it updates
only these three parameters and takes over the
rest of the overall 15 parameters from the last Full
Compensation. It is a simpler and faster
procedure than a Full Compensation.

Intermediate Compensations do not replace Full
Compensations. Regular intermediate
compensations extend the interval at which full
compensations need to be carried out.

A recommended setup is shown below with a
network of fixed targets. Based on a given drive
library the laser tracker measures the target
points automatically and calculates the
Intermediate Compensation results.

approx. 2m approx. 2m :

Pt - !

e High

Horizontal

L b Low

Two face measurements in the verical plane

% The automated Intermediate Compensation
routine requires that all target locations are fitted

120 « Chapter 5 ¢« Command Description User Manual - emScon TPI

Metrology Division

Area Required

Procedure

Requirements

Minimum
Measurements

Jeica

Geosystems

with reflectors (recommended 0.5” Tooling Ball
or Corner Cube), before the routine is started.

Make sure that no one walks around the area
during the whole Compensation procedure.
Vibration can affect the measurement and
walking through the beam causes the signal to
break. If a measurement fails, the system
automatically repeats the measurement to
achieve a successful measurement, a maximum of
three times.

The automated Intermediate Compensation can
only be started when the Leica Tracker system is
ready to measure.

E See "Integration in Application Software" on
page 15.

For the initial setup it is required that the
locations of the fixed targets are measured
manually. These locations provide the
information for the driver points.

e Six Two Face measurements, in two groups
of 3 each.

e Each group of 3 points is in an approximate
vertical line.

e Minimum distance from the tracker is
2m.

e The high and low measurements should
be more than 30° from the horizontal.

e The groups should have a horizontal angle
separation of about 180°, i.e. all
measurements should lie approximately in
the same vertical plane.

A minimum of 4 measurements is required
(mathematically). More measurements reduce the

User Manual - emScon TPI Chapter 5 ¢ Command Description ¢ 121

Jeica

Geosystems

Related Commands

Comments
Settings

Metrology Division

influence of errors. In addition, unstable
conditions, such as vibrations and rapid
temperature changes, make it necessary for more
measurements to be taken. The following
combinations are examples:

e Eight measurements in 4 pairs (high and
low) separated by approx. 90°.

e Twelve measurements in 4 groups of 3 each
(high, low, horizontal), separated by approx.
90°.

e C(ClearDrivePointList

e AddDrivePoint

e CallIntermediateCompensation

e SetCompensation

Current emScon system settings, such as units,
coordinate system and coordinate type, are taken
over when emScon interprets point input (driver
point) values. All points in the drive library must
be known within + 2mm (0.0787 in) tolerance,
otherwise this will cause an error in the
measurements.

The settings, such as units, coordinate system and
coordinate system type, must correspond to the
input data. Ensure that the settings describe the
environment of the driver points before they are
uploaded to the server.

One of the first actions of the automated
compensation algorithm is to check the geometry
of the used driver points. If the target setup fits
the requirements (as described above), then the
process continues with the measurements,
otherwise it will abort.

122 « Chapter 5 ¢« Command Description User Manual - emScon TPI

Metrology Division

Compensation Results

Compensation Intervals

Two Face Field-
Check

Periodicity

Field check two face
Measurement

Client Routine

Jeica

Geosystems

A successful Intermediate Compensation
procedure returns the following information:

e Total RMS
e Max. Deviation

e Error bit filed with the information of
warnings and errors.

An intermediate compensation is recommended
when the maximum deviation is < 0.0012 deg
(13<). With the command SetCompensation the
new calculated compensation can be activated.

A field check is a control process of the
Compensation parameters. It checks the
condition of the Leica Tracker, with respect to
predefined parameters. It does not, however,
provide for compensatory corrections.

If the tracker is used in a stationary position,
conduct the field check on a weekly basis. If the
field check results show no change, over a period
of six weeks, carry out field checks at least once a
month.

If the tracker has been moved, always carry out a
field check before taking measurements.

T

- Compensations and field checks must be
carried out in normal working conditions, under
which the measurements are taken.

Two face measurements with 4 to 5 reflector
positions, distributed over the whole object
range, will indicate whether the Tracker
compensation is within specifications. To achieve
a 2-sigma accuracy, 95 % of the measurements
must be within the specification.

The Tracker Server Programming Interface does
not have a specific two face measurement mode.

User Manual - emScon TPI Chapter 5 ¢ Command Description ¢ 123

cfeica Metrology Division

Geosystems

A client routine is required, which can use the
basic functionality provided.

E See "Procedure - Measurement" on page 126

Procedure - The procedure requires the following three
Preparation
setups:

1. Two measurements on a straight line.
2. One measurement set on a vertical line.

3. One measurement plus or minus 90° to the
vertical line.

Measurements on a

S ! 1. The two measurements must be taken on a
Straight Line

straight line (ray) at the same level as the as
the Tilting mirror of the Tracker. Point A
<0.5 m and Point B within 5-10 m.

© i >
A B
<0.5m >5-10 m

Measurements on a 2

s " . All 3 measurements should be taken in a
Vertical Line

vertical line.
1. Mid point 0° at Tracker head height.
2. Upper measurement at +40° deg.

3. Lower measurement at -40° deg.

T

% During measurements, the Birdbath should
not point in the direction of measurement.

124 « Chapter 5 ¢« Command Description User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

4 .
e
,"/
=N
=N
l \\
\\
N |
o

. Bird Bath

Measurement + 90° to 3. Setup the tripod at 90°, as shown in the
the Vertical Line.

graphic below.

q The Tracker is setup such that it can turn to

the 90° position, without running into stop.
| ;

User Manual * emScon TPI Chapter 5 « Command Description e 125

Jeica

Geosystems

Procedure -
Measurement

Metrology Division

. Set up the tracker.

E See "Integration in Application
Software" on page 15 for details.

. Set the coordinate system type to spherical

clock wise, SCW,
TPI command: SetCoordinateSystemType.

. Set the Stationary Measurement Mode.

TPI command: SetMeasurementMode

. Set the Stationary measurement parameter.

MeasTime to 10000ms
TPI command: SetStationaryModeParams

. Attach the reflector to the target location.

. Point the tracker to the target location.

TPI command: e.g. GoPostion. This is only
possible when the coordinates of the point
are known within + 2mm, otherwise track
the reflector manually from the Bird bath.

. Execute the Stationary Measurement in

Face I and save it.
TPI command: StartMeasurement

. Execute the command Change Face, which

puts the Laser Tracker from Face I to Face

II.

T
% The pointing to a fixed reflector

position from a station should be the same
in both faces.
TPI command: ChangeFace

. Execute the Stationary Measurement in

Face Il and save it.
TPI command: StartMeasurement.

10.Execute the command Change face, which

puts the Laser Tracker from Face II to Face

126 « Chapter 5 ¢« Command Description User Manual - emScon TPI

Metrology Division

Procedure -
Calculation

Example

Tolerances

Geosystems

I.
TPI command: ChangeFace.

11.Repeat the steps 5 - 10 for all target
locations.

Devwt = vertical angle Face I — vertical angle Face
II

Devn = horizontal angle Face I — horizontal angle
Face Il

Both measurements are in Face I representation.
Face Il measurements are represented in Face I.

Devvt = 90.7289893- 90.7287338 = 0.0003 Deg
Devh =269.9877001- 269.9879985 = -0.0003 Deg

The recommended tolerances of the deviations
are:

Vertical angle = +13cc (0.0012 Deg)

Horizontal angle = +13cc (0.0012 Deg)
T

% When the tolerance is exceeded, an
Intermediate Compensation is recommended.

User Manual - emScon TPI Chapter 5 ¢ Command Description ¢ 127

Metrology Division iewa

Geosystems

6.Mathematics

Transformation

Introduction It is a mapping of a set of points called actuals or
measurements to an equal number of points
called nominals or reference. The transformation
parameters consists of the following:

e scaling
e rotation
e translation

Computation of a point to point transformation
should not be confused with applying a given
transformation.

In mathematical terms, the computation of a
transformation is a nonlinear, weighted, least
squares problem. It is solved through a Newton
iteration (linearization) consisting of the
following steps.

1. An initial approximation is calculated,
ignoring the accuracy (statistics) of the
input.

2. The initial approximation is improved
iteratively, until a certain accuracy goal is
achieved.

Transformation A transformation is described numerically by
Parameters three (3) translation, three (3) rotation and one (1)
scale parameter. The scale is typically close to 1,
e.g. when describing a temperature dependent

User Manual - emScon TPI Chapter 6 « Mathematics o 129

Jeica

Geosystems

Transformation
Types

Metrology Division

dilation. The accuracy of the nominal and actual
points is propagated to the transformation
parameters and the transformed points.

The transformation is a similarity map either
given in its forward form

T(x)=1+Rx/s
or as an inverse
T(x) = R_ls(x - t)
with
e t=3D translation vector
e R =3*3 rotation matrix
e s=scale
These seven parameters are determined such that
T (actual) = nominal + residual

for all points with small residuals in the weighted
least squares sense. The transformation can be
interpreted as a coordinate system with its origin
at t and the axes given by the columns of R. In
terms of the Euler ang]les.

In terms of the Euler angles Q,®,K the rotation
matrix assumes the form

cos(K) cos(®) —sin(K) cos(®) sin(®)
sin(K) cos(Q)+ cos(K) sin(®)sin(Q) cos(K) cos(Q) - sin(K) sin(®) sin(Q) —cos(®)sin(Q)
sin(K)sin(Q) - cos(K) sin(®) cos(Q) cos(K)sin(Q)+sin(K) sin(®) cos(Q) cos(®)cos(Q)

The current implementation fails if ®=+7/2. As a
workaround, an arbitrary pre-rotation can be
applied to one of the point sets.

Usually transformations are calculated for two
purposes:

e Orientation — (Fig. 1 & Fig. 2)Alignment of
a tracker with respect to a world coordinate
system (WCS). The world coordinate
system is either defined at a principal

130 « Chapter 6 ¢ Mathematics User Manual - emScon TPI

Metrology Division

Jeica

Geosystems

station or at an object, as a (CAD)
coordinate system. In Orientation, the
reference points are given in a world
coordinate system, while the actual point
coordinates refer to the tracker's coordinate
system.

Transformation — (Fig. 3) Creation of an
object coordinate system (also called UCS -
user coordinate system) to view the actual
point coordinates with respect to an object
coordinate system. The reference points are
given in the object coordinate system and
the measurements in the world coordinate
system (WCS).

Orientation

WCs S

Active station

Principal station

Fig. 1

Orientation Y

Active station X

Yh

z
X
Fig. 2

User Manual * emScon TPI

Chapter 6 ¢« Mathematics ¢ 131

cfeica Metrology Division

Geosystems

Y Object coordinate system

Y
WCS X +

CYLB/ VA ///////'

S5

N .
Active station

Transformation

Fig 3

Transformation vs. Transformation and orientation are inverse to

Orientation .
each other as mappings. For
orientation/alignment, the world coordinate
system (WCS) is the reference, for the creation of
an object coordinate system the object is the
reference. The transformation, which is
downloaded to emScon, will be a transformation
from/to a world coordinate system to/from an

object coordinate system.

Orientation To orient a station use

|SetTransformationlnputParams(ES_TR_AsOrientation, R

The transformation has the form

nominal =t + R * actual / s + residual

Setting the calculated transformation parameters
as orientation parameters and remeasurement of
the reference points yields actual coordinates

approximately equal to the nominal coordinates.

Transformation To calculate transformation parameters use

|SetTransformationlnputParams(ES_TR_AsTransformation, R

In this case the transformation has the form

nominal = sR™' (actual — t) + residual

132 ¢ Chapter 6 ¢ Mathematics User Manual - emScon TPI

Metrology Division

Point Accuracy

Jeica

Geosystems

which is inverse to the one in the orientation case.
Setting the calculated transformation parameters
and remeasurement also yields actual coordinates
approximately equal to the nominal coordinates.

Each nominal point, measured point, transformed
point or residual vector has accuracy information
stored in a symmetric 3 by 3 covariance matrix.

stdDev’ covar,, covar,
. . 2
covarianceMatrix =| covar,, stdDev,” covar,

2
covar,, covar,, stdDev,

Its eigenvectors and eigenvalues define the error
ellipsoid. If the covariance matrix is diagonal, the
axes of the error ellipsoid are parallel to the
coordinate axes. In correlations

covarlj

0, satisfy

a stdDev, * stdDev

-1<p; =1

All statistical points and 3D vectors can be
represented in the following non-redundant form
consisting of 9 values:

Coordl, Coord2, Coord3, StdDev1, StdDev2, StdDev3,
Covarl2, Covarl3, Covar23

This format is used throughout the emScon TPIL
For continuous measurements the a priori
covariance matrix of a point measurement is
calculated according to the tracker accuracy. For
single point measurements (stationary, sphere
center and circle center) the a posteriori or
repeatability covariance is calculated from the
actual statistical variation of the many
measurements.

In the (spherical) tracker coordinate system the a
priori covariance matrix is diagonal. Conversion
to Cartesian coordinates results in a full matrix.

User Manual - emScon TPI Chapter 6 « Mathematics o 133

Jeica

Geosystems

Input of
Transformation
Computation

Nominal Points

Metrology Division

Transformation to other coordinate systems again
transforms the covariance matrix. Maximal
consistency is achieved by using the full matrix.
However, at any stage the standard deviations,
i.e. the square roots of the diagonal entries
provide sufficient condensed information on the
accuracy of the respective triple.

The covariance matrix of nominal points is
diagonal. However, if measured points are used
as reference, a full matrix may apply to nominal
points as well.

Nominal points are added as shown in the
following example:

AddNominalPoint (1, 2, 3, ES_FixedStdDev, ES_UnknownStdDev,
ES_ApproxStdDev, 0, 0, 0);

The parameters listed are the three coordinates
together with their standard deviations and
covariances.

We recommend use of the following predefined
standard deviations:

Coordinate Symbol Value

accuracy

Fixed (exactly |ES_FixedStdDev |0

known)

Unknown (free) |ES_UnknownSt |1E35
dDev

Approx. ES_Approx5StdD |1E15

(reasonable) ev

Weighted >0,<1E10

Approximately known coordinates are used to
calculate an initial approximation. In a minimum
configuration, the solution would be ambiguous
without this additional information.

E See "Examples"” on page 137.

134 ¢ Chapter 6 ¢ Mathematics

User Manual * emScon TPI

Metrology Division

Actual Points

Parameter
Constraints

Output of
Transformation
Computation

Transformation
Parameters

Transformed Points
and Residuals

Jeica

Geosystems

Actual points are added in the following form

AddActualPoint (-12.487, -5.79687, 5.49683, 0.0001, 0.0001,
0.0001, 0, O, 0);

The number and order of actuals must agree with
that of the nominals. The parameters are typically
obtained from a single point measurement. The
unit settings and transformation parameters must
be the same for the measurement and for adding
the actuals.

If any of the seven (7) transformation parameters
is known, a priori, its value can be fixed, in the
same way as for the nominal coordinates.
Frequently the scale is fixed to be 1 and the other
parameters are free as in the following example:

SetInputParams (0, 0, 0, 0, 0, 0, 1, ES_UnknownStdDev,
ES_UnknownStdDev, ES_UnknownStdDev, ES_UnknownStdDev,
ES_UnknownStdDev, ES_UnknownStdDev, ES_FixedStdDev) ;

The values of unknown parameters can be set
arbitrarily. In the current implementation
constraints are not used to reduce the required
number of known nominal coordinates.
Constraints are not taken into account for the
initial approximation. Erroneous constraints
usually result in large point residuals, RMS,
Maxdev. and variance factor. To fix some or all
components of the translation vector the
coordinate type must be Cartesian.

The command CallTransformation() returns a
structure CallTransformationRT containing the
seven parameters of the transformation
(translation, Euler angles and scale) together with
their standard deviations. The standard deviation
of a fixed parameter is zero (0).

The command GetTransformedPoints() returns a
list of structures, each containing a transformed
point together with its covariance matrix and the
three coordinates of the residual vector

User Manual - emScon TPI Chapter 6 « Mathematics o 135

cfeica Metrology Division
Geosystems

residual = nominal — transformed

The covariance matrix of the residual is obtained
by adding those of the nominal and the
transformed point.

Statistics The command CallTransformation() also returns
the

e RMS of residuals
e Maximal deviation

e Variance factor

RMS of Residuals The RMS of residuals is defined as

n

Z|residual |12

i=1

RMS ={\|F=———
noEquations

where the number of equations is the number of
fixed or weighted nominal coordinates.

Only those components of the residual vector
corresponding to a fixed or weighted nominal
coordinate are taken into account.

Maximum Deviation The maximum deviation is defined as

maxDev = max,_, , |residual |,~

Only fixed and weighted nominals are taken into
account.

‘é‘gﬂg':;egu'}:“d“a' The transformation algorithm determines the
values of the transformation parameters, to
minimize the target function, weighted residual
square sum.

RSS = ZresidualiTweightMatrix[residual,

i=1
The weight matrix is the inverse of the covariance

matrix of the residual. Both matrices are scalars
for constraints. The term, in the weighted least

136 ¢ Chapter 6 ¢ Mathematics User Manual - emScon TPI

Metrology Division

Variance factor

Redundancy

Examples

Standard Case with 3
Points

Jeica

Geosystems

squares sense, refers to the fact that RSS is the
target function of the minimization algorithm.

The variance factor (mean error) takes the
accuracy of the input into account:

RSS

varianceFactor = ———
redundancy

The variance factor is dimensionless, i.e. it does
not depend on the length or angle units. The
value of the variance factor may vary
considerably depending on the accuracy of the
input and the model error, i.e. the size of the
residuals. If the residuals are systematically
bigger than the standard deviations of the
actuals, the variance factor exceeds 1. Otherwise
it is less than 1.

E See "Examples" on page 137.
The redundancy is an integer defined as
redundancy = noEquations — noParameters .

In a minimum configuration, the redundancy is
zero (0) and the variance factor is set to one (1).

If the redundancy is negative, the solution is non-
unique. The error message multiple solutions is
returned. In this case more fixed nominals or
parameter constraints are needed to pick a
unique solution.

AddNominalPoint (1, 2, 3, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint (2, 3, 4, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint (0, -4, 2, Fixed, Fixed, Fixed, 0, 0, 0);

SetInputParams (0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Unknown) ;

In this example redundancy = 3* noPoints —7=2.

User Manual - emScon TPI Chapter 6 « Mathematics o 137

Jeica

Geosystems

Pure Dilation

3-2-1 Alignment

Metrology Division

AddNominalPoint (1, 1, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint (-1, 1, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint (1, -1, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint (-1, -1, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddActualPoint (1.1, 1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);
AddActualPoint(-1.1, 1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);
AddActualPoint (1.1, -1.1, 0, 0.001, 0.001, 0.001, O, O, 0O);
AddActualPoint(-1.1, -1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);

SetInputParams (0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Fixed);

In this example the desired transformation is the
identity with parameters 0, 0,0, 0, 0, 0, 1. The
length of all residuals is 0.12 . Their covariance
matrix is

107 0 0
covar=| 0 10°° 0
0 0 10°

The weight matrix is

10° 0 0
weight=| 0 10° 0
0 0 10°

Thus

RSS =4 * 10° * (0.1\/5)2 = 80000

redundancy =12—-6=6

varianceFactor = @ =13333.

AddNominalPoint (1, 2, 3, Fixed, Fixed, Approx, 0, 0, 0);
AddNominalPoint (2, 3, 4, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint (0, -4, 2, Approx, Fixed, Approx, 0, 0, 0);

SetInputParams (0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Fixed);

This is a minimum configuration since
redundancy =6-6=0

The approximate coordinates are necessary to
select a unique solution from the 8 possible
solutions. This fact can be easily observed in the
following example:

138 ¢ Chapter 6 ¢ Mathematics User Manual - emScon TPI

Metrology Division iewa

Geosystems

AddNominalPoint (0, 0, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint (1, 0, 0, Unknown, Fixed, Fixed, 0, 0, 0);
AddNominalPoint (1, 1, 0, Unknown, Unknown, Fixed, 0, 0, 0);

Here each of the Euler angles can be 0 or . The scale
must be fixed in 3-2-1 situations. Otherwise the
solution 1s undetermined.

Box Corner The corner of a box is defined by three mutually
perpendicular planes. Each plane contains two

measured points. Only the nominal coordinate
defining the plane is exactly known.

AddNominalPoint (0, 1, 1, Fixed, Approx, Approx, 0, 0, 0);
AddNominalPoint (0, 2, 2, Fixed, Approx, Approx, 0, 0, 0);
AddNominalPoint (1, 0, 1, Approx, Fixed, Approx, 0, 0, 0);
AddNominalPoint (1, 0, 2, Approx, Fixed, Approx, 0, 0, 0);
AddNominalPoint (1, 1, 0, Approx, Approx, Fixed, 0, 0, 0);
AddNominalPoint (2, 2, 0, Approx, Approx, Fixed, 0, 0, 0);

This is also a minimum configuration with
redundancy =6—-6=0

provided the scale is fixed.

Orientation Using Suppose the horizontal angles w and ¢ have been
Nivel20 .)
measurements obtained from a Nivel20 measurement. To

complete the orientation of the station, use a
number of reference points with:

SetInputParams (0, 0, 0, omega, phi, 0, 1, Unknown, Unknown,
Unknown, Fixed, Fixed, Unknown, Fixed);

User Manual - emScon TPI Chapter 6 « Mathematics o 139

Geosystems

Industrial Measurement Systems

7.Appendix

Programming
Interface Defining
Files

TPI File Listing

The tiles ES_C_API_Def.h, ES_CPP_API_Def.h,
LTControl.dll /tlb as well as all the sample projects
are an integral part of the SDK.

e ES C_API Def.h
e ES CPP _API Def.h
e Enum.h

e LTControl.dll (Unicode version for
WinNT/2000/XP)

e LTControl.dll (ANSI version for Win98/ME)

e LTControl.tlb

T
% The ES_C_API_Def.h file may currently be

distributed in two parts, that is, with a sub-
include file named enum.h.

If only one file is being distributed and no
tinclude enum.h statement is included in
ES_C_API_Def.h, it can be assumed that enum.h
has been directly merged with the API include
file.

& Sample files are no longer listed here. See
'Samples' folder on the SDK distribution medium.

140 « Chapter 7 ¢ Appendix User Manual * emScon TPI

	User Manual TPI
	Preface
	Contents
	Introduction
	Prerequisites
	Hardware
	Programming Environment
	TCP/IP Communication
	Version Compatibility
	Future Compatibility
	Backward Compatibility
	Example
	Solution
	Backward Compatibility v1.0/1.1
	Solution

	Sample Code
	Error Handling
	Interface Design
	Hard Coded Information

	Integration in Application Software
	Initial steps
	Essential Steps
	Command Sequence

	General information
	Initialize Laser Tracker
	Current Temperature and Pressure
	Set Reflector
	Set Temperature Range
	Station Parameters
	Transformation Parameters
	Coordinate System Type

	C Interface
	Low-level programming
	Introduction
	TCP/IP Connection
	Sending Commands
	Code Sequence
	Initialization Macros
	C++ Initialization
	Answers from Tracker Server
	Asynchronous Communication
	DataArrived Notification
	DataArrived Notification Queue

	PacketHeader Code
	Command Subtype Switch

	C Client Applications
	Sample 1-Tutorial
	Step 1: Creating an Application Framework using AppWizard
	Step 2: Import the Winsock Control
	Step 3: Create a Winsock Controls Instance
	Step 4: User Controls on the Dialog
	InitDialog() Handler
	Connect/Disconnect Handlers
	Step 5: Connect/Disconnect TCP/IP Handlers
	Step 6: Implementing Command Handlers
	Tracker Initialization
	Hard Coded data
	Step 7: Receiving Data
	Function Body
	GetData Function
	ProcessData()
	Asynchronous Communication

	Remarks
	Interface Design
	Error Handling
	Network Traffic Jams
	MSWinsock Control
	Essential code
	Build Sample 1
	TCP/IP address

	Visual Basic Client Application
	Sample 2-Tutorial
	TCP/IP
	Step 1: Adding a Winsock Control and Designing a Form
	Step 2: Connect to the Tracker Server
	IP Address
	Winsock1
	Step 3: Translate the C- enums and Structs to VB
	Step 4: Implementing the Init Tracker Command
	Init (Tracker) handler

	Step 5: Implementing Answer Data Receiving
	Running the application
	Remarks
	Structures
	COM interface

	Sample 13 LT BUI Launch

	Winsock 2.0 Client Applications
	Sample 3
	Console application
	Comments
	Queuing (Traffic Jams)
	Remarks
	Windows application
	Winsock API

	C++ Interface
	Class Interface
	Class design
	Platform Independent
	TCP/IP
	SendPacket()
	ReceiveData

	Sample 4
	Sample 4 specifics
	Application Framework

	Class for Commands
	Winsock Control
	C TPI Source code

	Receiving Data Sample 4
	CESAPIReceive class Sample 9
	CESAPIReceive Class Description
	Procedure
	Single Point Measure Data Sample
	Remarks
	GUI Design

	Receiving Data Sample 9
	ActiveX Component Sample 12
	Remarks
	Keyboard Interface Limitation

	Sample 10

	COM Interface
	High-level Interface
	Introduction
	COM vs. Low-Level Programming
	Interfaces and Notification Methods
	LTControl COM Viewer:

	Registering COM Objects
	LTControl.dll Installation
	ATL.dll Installation

	Visual Basic client
	Sample 5 Tutorial
	ATL Type COM object
	Differences between LTConnect & ILTConnect
	Accessing Interfaces
	LTCommand Objects
	Synchronous/Asynchronous Interface
	Implementing Synchronous Commands
	Implementing Asynchronous Commands
	Catching Events and Messages
	Extended Synchronous Functions
	Remark
	Example

	C++ Console Application
	Sample 6
	
	Synchronous Calls

	C++ Windows-MFC Application
	Sample 7
	ATL/COM
	Message Notifications
	Source Code Description

	Handling Data Arrival – Continuous Measurements
	Methods to Catch Packets
	Known Bugs in ATL Event Sink Implementation

	Queues and Scattered Data
	Problem Solution
	Cause of Data Loss

	Reading Data Blocks with Visual Basic
	VBA Macro-Language Support (Excel, Word, Access)
	User-defined Types, the Differences between Visual Basic and VBA97
	Conclusion

	Continuous measurements and VBA
	Masking Data

	Scripting Language Support

	Excel Control for Tracker Server
	Sample 8
	Sample 11 GetStillImage
	Asynchronous interface

	Remarks
	Example

	Command Description
	Special Functions
	Get Reflectors Command
	Related Commands
	Comments
	iTotalReflectors
	IInternalReflectorId/cReflectorName
	List index
	Lookup Table
	Reflector Name – Unicode Format

	Still Image Command
	Related Commands
	Preconditions
	Application of GetStillImage – C/C++
	WinSock2 API/MFC CasyncSocket
	COM TPI within C/C++
	GetStillImage – Synchronous
	GetStillImage – Asynchronous

	COM/VB(A)
	Event handler
	Image Click Position

	Live Image display
	Live Image Control LTVideo2.ocx
	Registering LTVideo2.ocx
	ANSI/Unicode Version

	Development Platforms
	LTVideo2.tlb

	Server Address
	Events/Methods

	Orient To Gravity Procedure
	Related Command
	Comments
	Transformation Procedure
	Related Commands
	Comments
	EmScon System Settings

	Automated Intermediate Compensation
	Tracker Geometry
	Intermediate vs. Full Compensation
	Setup
	Area Required
	Procedure
	Requirements
	Minimum Measurements

	Related Commands
	Comments
	Settings
	Compensation Results
	Compensation Intervals

	Two Face Field-Check
	Periodicity
	Field check two face Measurement
	Client Routine
	Procedure - Preparation
	Measurements on a Straight Line
	Measurements on a Vertical Line
	Measurement ± 90\(to the Vertical Line.

	Procedure - Measurement
	Procedure - Calculation
	Example
	Tolerances

	Mathematics
	Transformation
	Introduction
	Transformation Parameters
	Transformation Types
	Transformation vs. Orientation
	Orientation
	Transformation

	Point Accuracy
	Input of Transformation Computation
	Nominal Points
	Actual Points
	Parameter Constraints

	Output of Transformation Computation
	Transformation Parameters
	Transformed Points and Residuals
	Statistics
	RMS of Residuals
	Maximum Deviation
	Weighted Residual Square Sum
	Variance factor
	Redundancy

	Examples
	Standard Case with 3 Points
	Pure Dilation
	3-2-1 Alignment
	Box Corner
	Orientation Using Nivel20 measurements

	Appendix
	TPI File Listing
	Programming Interface Defining Files

