
User Manual

emScon – Tracker Programming Interface

User Manual

emScon TPI

Metrology Division

 Metrology Division

Preface

 These are original instructions and part of the
product. Keep for future reference and pass on to
subsequent holder/user of product. Read
instructions before setting-up and operating the
hard- and software. The emScon TPI reference
manual and the emScon TPI user manual should
always be used together.
This reference manual contains information
protected by copyright and subject to change
without notice. No part of this reference manual may
be reproduced in any form without prior and
written consent from Leica Geosystems AG.
Leica Geosystems AG shall not be responsible for
technical or editorial errors or omissions.
Product names are trademarks or registered
trademarks of their respective companies.
The software described herein is furnished under
license and non-disclosure agreement, and may be
used only in accordance with the terms of the sales
agreement.
© Leica Geosystems AG
Feedback
Your feedback is important as we strive to improve
the quality of our documentation. We request you to
make specific comments as to where you envisage
scope for improvement. Please use the following E-
Mail address to send in suggestions:
documentation.metrology@leica-geosystems.com
Software and version emScon TPI;1.5
Manual release June 2003
Manual order number None

ii • Preface User Manual • emScon TPI

Metrology Division

Preface
Contact
Leica Geosystems AG
Metrology Division
Moenchmattweg 5
5035 Unterentfelden
Switzerland
Phone ++41 +62 737 67 67
Fax ++41 +62 737 68 34
www.leica-geosystems.com/ims/index.htm

User Manual • emScon TPI Preface • iii

Metrology Division

Contents

1. Introduction 11

Prerequisites ...11
Hardware .. 11
Programming Environment 11
TCP/IP Communication .. 11
Version Compatibility .. 12

Future Compatibility.. 12
Backward Compatibility 12

Sample Code.. 14
Error Handling .. 15
Interface Design ... 15
Hard Coded Information 15

Integration in Application Software15
Initial steps ..16

Essential Steps... 16
Command Sequence.. 16

General information..18
Initialize Laser Tracker.. 18
Current Temperature and Pressure...................... 18
Set Reflector... 19
Set Temperature Range 19
Station Parameters... 20
Transformation Parameters 20
Coordinate System Type 21

2. C Interface 23

Low-level programming23
Introduction... 23

TCP/IP Connection... 23
Sending Commands ... 23
Code Sequence.. 24
Initialization Macros .. 24
C++ Initialization ... 25
Answers from Tracker Server 25
Asynchronous Communication 26
DataArrived Notification.................................... 26
PacketHeader Code ... 27
Command Subtype Switch 28

C Client Applications..30

User Manual • emScon TPI Contents • v

 Metrology Division

Sample 1-Tutorial ... 30
Step 1: Creating an Application Framework using
AppWizard .. 30
Step 2: Import the Winsock Control 30
Step 3: Create a Winsock Controls Instance 31
Step 4: User Controls on the Dialog 32
InitDialog() Handler... 33
Connect/Disconnect Handlers 33
Step 5: Connect/Disconnect TCP/IP Handlers . 35
Step 6: Implementing Command Handlers 36
Tracker Initialization.. 37
Hard Coded data .. 38
Step 7: Receiving Data..................................... 38
Function Body... 39
GetData Function ... 39
ProcessData()... 41
Asynchronous Communication 44

Remarks ... 44
Interface Design ... 45
Error Handling .. 45
Network Traffic Jams.. 45
MSWinsock Control .. 45
Essential code .. 46
Build Sample 1 ... 46
TCP/IP address .. 46

Visual Basic Client Application46
Sample 2-Tutorial ... 46

Step 1: Adding a Winsock Control and Designing
a Form .. 46
Step 2: Connect to the Tracker Server 47
IP Address .. 47
Winsock1.. 48
Step 3: Translate the C- enums and Structs to VB
... 48
Step 4: Implementing the Init Tracker Command
... 49
Step 5: Implementing Answer Data Receiving.. 50
Running the application 51
Remarks ... 51
Structures ... 51
COM interface .. 52

Sample 13 LT BUI Launch.................................... 52
Winsock 2.0 Client Applications......................52

Sample 3 .. 52
Console application .. 52
Comments .. 53
Queuing (Traffic Jams) 54
Remarks ... 54

3. C++ Interface 56

vi • Contents User Manual • emScon TPI

Metrology Division

Class Interface ..56
Class design ... 56
Sample 4 .. 57

Sample 4 specifics.. 57
Class for Commands .. 58

Receiving Data Sample 4 61
CESAPIReceive class Sample 9 61

CESAPIReceive Class Description................... 62
Procedure ... 62
Single Point Measure Data Sample.................. 64
Remarks ... 64
GUI Design ... 65

Receiving Data Sample 9 66
ActiveX Component Sample 12............................ 66

Remarks ... 67
Keyboard Interface Limitation 68

Sample 10 .. 68

4. COM Interface 69

High-level Interface...69
Introduction... 69
COM vs. Low-Level Programming........................ 71
Registering COM Objects 72

Visual Basic client ..73
Sample 5 Tutorial ... 73

Implementing Synchronous Commands........... 77
Implementing Asynchronous Commands 79
Catching Events and Messages 79
Extended Synchronous Functions 81
Remark... 82

C++ Console Application83
Sample 6 .. 83

C++ Windows-MFC Application.......................84
Sample 7 .. 84

Source Code Description.................................. 85
Handling Data Arrival – Continuous Measurements
... 86

Methods to Catch Packets................................ 86
Known Bugs in ATL Event Sink Implementation91

Queues and Scattered Data 91
Problem Solution .. 92
Cause of Data Loss .. 95

Reading Data Blocks with Visual Basic 95
VBA Macro-Language Support (Excel, Word,
Access)... 97

User-defined Types, the Differences between
Visual Basic and VBA97................................... 98
Conclusion.. 100

Continuous measurements and VBA.................. 100

User Manual • emScon TPI Contents • vii

 Metrology Division

Masking Data.. 101
Scripting Language Support 103

Excel Control for Tracker Server...................103
Sample 8 .. 103
Sample 11 GetStillImage 104

Asynchronous interface 104
Remarks ... 105

5. Command Description 107

Special Functions ...107
Get Reflectors Command 107

Related Commands.. 107
Comments .. 107

Still Image Command ... 110
Related Commands.. 110
Preconditions.. 110

Application of GetStillImage – C/C++ 110
COM/VB(A)... 114

Live Image display.. 115
Live Image Control LTVideo2.ocx................... 115
Registering LTVideo2.ocx............................... 115
Development Platforms 116
Server Address... 116
Events/Methods.. 116

Orient To Gravity Procedure............................... 117
Related Command.. 117
Comments .. 118
Transformation Procedure.............................. 118
Related Commands.. 118
Comments .. 119

Automated Intermediate Compensation 119
Tracker Geometry... 119
Intermediate vs. Full Compensation 120
Setup .. 120
Area Required .. 121
Procedure ... 121
Related Commands.. 122
Comments .. 122

Two Face Field-Check.. 123
Periodicity ... 123
Field check two face Measurement 123
Client Routine ... 123
Procedure - Preparation 124
Procedure - Measurement 126
Procedure - Calculation 127

6. Mathematics 129

Transformation..129
Introduction... 129

viii • Contents User Manual • emScon TPI

Metrology Division

Transformation Parameters 129
Transformation Types... 130

Transformation vs. Orientation 132
Orientation .. 132
Transformation ... 132

Point Accuracy.. 133
Input of Transformation Computation 134

Nominal Points ... 134
Actual Points... 135
Parameter Constraints.................................... 135

Output of Transformation Computation............... 135
Transformation Parameters 135
Transformed Points and Residuals................. 135
Statistics ... 136

Examples.. 137
Standard Case with 3 Points 137
Pure Dilation ... 138
3-2-1 Alignment .. 138
Box Corner ... 139
Orientation Using Nivel20 measurements 139

7. Appendix 140

TPI File Listing ..140
Programming Interface Defining Files 140

User Manual • emScon TPI Contents • ix

Metrology Division

1.Introduction

Prerequisites
Hardware The tracker-programming interface (TPI)

supports the following laser trackers:

• LT300

• LT500 & LTD500

• LT600 & LTD600

• LTD700

• LT800 & LTD800
Programming
Environment

This manual (notation, samples/tutorials) is based
on Microsoft Visual Studio 6.0 (VC++ 6.0, Visual
Basic 6.0) running on Microsoft Windows
(98/NT/2000).

For Unicode applications, install VC++ with
Unicode libraries (custom installation).
Linker/runtime errors, such as: mfc42u.lib,
mfc42ud.lib or mfc42u.dll missing, indicate that
VC++ was installed without Unicode support.

TCP/IP
Communication

TCP/IP communication functions are not part of
the TPI and have to be provided, except when
using the high-level TPI.

The TCP/IP API functions of your operating
system (OS) can also be used. Keywords under
VC++ include Win32 Sockets API, or (if using
MFC) CAsyncSocket and CSocket. Visual Studio
contains a TCP/IP communication library,

User Manual • emScon TPI Chapter 1 • Introduction • 11

 Metrology Division

MSWinsck.ocx, as an ActiveX control (COM
object).

Applications with ActiveX controls must be
Windows based, i.e. with a graphical user
interface (GUI). Console applications are not
suitable for ActiveX controls.

The use of a static TCP/IP library (for example
Win32 Sockets API), or a TCP/IP communication
DLL enables console (DOS) applications. Console
applications have the advantage of comprising
minimal overhead and are often 'single source
file' applications.

The sample codes have examples of both GUI
applications, with MSWinsck.ocx as the TCP/IP
communication library with VC++ and DOS
applications.

 See also the Reference Manual.
Version
Compatibility
Future Compatibility

This is a very important issue in order to prevent
client application software adjustments upon
future emScon server software upgrades.The
coming versions of emScon will include new data
over the TCP/IP connection, such as new packet
types, status messages and new error messages.
The existing applications will be valid in future
emScon versions with one important caveat.

 See "Backward Compatibility" on page 12 for
details.

Backward
Compatibility

Backward compatibility will be provided, in that
existing packets/information structure are neither
changed nor removed. In practice, this generally
means that the default case in switch statements
should always be treated as 'neutral' (no action).

12 • Chapter 1 • Introduction User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 1 • Introduction • 13

The enum ES_SystemStatusChange in v1.2
contains only two members.

Example

enum ES_SystemStatusChange
{
 ES_SSC_DistanceSet,
 ES_SSC_LaserWarmedUp,
};

A future programming statement as follows
would cause an 'Unexpected Status' message,
with future emScon upgrades.
switch (status)
{
 case ES_SSC_DistanceSet:
 MessageBox(“ADM Distance
 re-established”);
 break;

 case ES_SSC_LaserWarmedUp:
 MessageBox(“Laser is now
 ready”);
 break;

 default:
 MessageBox(“Unexpected Status”);
 break; // WRONG!!!
};

Solution Ignore the default case with no 'default' entry tag
or one that just has an effect to debug versions.
 default: // No action at all
 break;

or

 default: // no effect to retail versions
 TRACE(“Unexpected Status”);
 ASSERT(false);
 break;

Backward Compatibility
v1.0/1.1

A minor change to version 1.2 may cause
backward compatibility problems, in rare cases, if
all of the following conditions apply:

• Application is based on LTControl (COM-
Interface).

• EmScon server and LTControl have been
upgraded (there is no problem if only the
server is upgraded but the client still uses
v1.x LTControl).

• One of
MeasureStationaryPoint/MeasureStationaryP
ointEx methods is used.

 Metrology Division

• The Measurement mode before calling these
functions was one of the 'Continuous' modes
(i.e. not explicitly set to 'Stationary').

• In this case, v1.x emScon versions
implicitly changed to 'Stationary'. This is
no longer the case in v1.2. There will be
an error message, 'that it is not possible
to make a stationary point measurement,
while not being in stationary mode'.

Solution If this situation should occur to your v1.x emScon
client, try the following workaround:

1. A compatibility switch is required, in order
to make v1.2 LTControl behave the same as
v1.x.

2. Place file LTControl.ini in Windows
directory (e.g. C:\WinNT).

3. Make following entry :
[Settings]
V1BackwardCompatibility=1

 Do not forget to delete this file or to set the
Entry to ='0' if the backward compatibility
behavior is no longer wanted. It is recommended
to change applications to new v1.2. behavior, as
soon as changes are made to the client software.

Sample Code The samples/tutorials show the principles of TPI
programming. However, the sample applications
may not be of real practical use, in the specific
TPI commands they implement.

 In a practical application, in order to get
accurate results, it is crucial to implement all the
steps as listed under 'Initial steps'.

14 • Chapter 1 • Introduction User Manual • emScon TPI

Metrology Division

 See "Integration in Application Software" on
page 15 for details.

The number of files and overhead has been kept
to a minimum. Code generated from wizards,
such as recompiled headers, icon, res2 includes and
'cosmetic functions', have been stripped off.

Following the tutorial instructions may result in
some blown-up code compared with the samples
bundled with this manual/SDK. However, the
essential code remains the same.

 See also the numerous comments in the
sample source files.

 See "Appendix " on page 140 for a complete
list of sample source files.

Error Handling The samples do not always implement complete
error handling and may need to be run through
the debugger.

Interface Design The user interface design is kept at a minimum
level (for example, unavailable buttons are not
grayed out). Such items are general issues of
Windows programming.

Hard Coded
Information

The samples contain some hard coded
information (IP address/coordinate values) that
must be adapted to the local environment.

Integration in Application Software
The emScon graphical user interface, emScon
Base User Interface (emScon BUI), provides a
browser based access from the Application
Processor. Access over the browser requires the
IP address of the emScon Tracker Server.

The BUI includes:

User Manual • emScon TPI Chapter 1 • Introduction • 15

 Metrology Division

• A Toolbar for sensor control and display of
results and their statistics.

• Web pages providing access for sensor and
server settings.

Integration of the application software running
on the Application Processor with the emScon
BUI is explained in Sample 13.

 See the emScon Reference Manual for BUI
details.

Initial steps
Essential Steps A client application must carry out all steps upon

startup. Omitting some of these steps will prevent
the tracker from measuring or lead to inaccurate
results. Inaccurate results are difficult to detect.

 Setting correct environment parameters
(temperature, pressure) or configuring the system
for automatic, environment parameter reading is
crucial.

 The environment parameter setting needs to
be done before tracker initialization.

 Sample 7 implements all essential steps.
Other samples are not exhaustive and show
programming principles only.

 See also Leica Tracker/Training Manual.
Steps TPI command

1. Establish TCP/IP
connection.

Depends upon TCP/IP
communication – See
different samples

2. Set units (length,
angle, temperature and
pressure)

ES_C_SetUnits

Command
Sequence

16 • Chapter 1 • Introduction User Manual • emScon TPI

Metrology Division

3. Set current
environmental
temperature, pressure
and humidity

ES_C_SetEnvironmentPa
rams

4. Initialize the Laser
Tracker

ES_C_Initialize

5. Measurement mode
(stationary, continuous
time…)

ES_C_SetMeasurementM
ode

6. Get reflectors ES_C_GetReflectors

7. Set reflector ES_C_SetReflector

8. Go bird bath ES_C_GoBirdBath

9. Station parameters ES_C_SetStationOrientati
onParams

10. Transformation
parameters

ES_C_SetTransformation
Params

11. Coordinate system
type (RHR, LHR…)

ES_C_SetCoordinateSyst
emType

User Manual • emScon TPI Chapter 1 • Introduction • 17

 Metrology Division

General information
Provides an overview of the parameters and their
implications.
Definition Comment
Initialize encoders and
internal components

This command has to be
performed every time
you set up a new Leica
Tracker system station. It
is strongly recommended
to use this function 2-3
times a day to initialize
encoders and its internal
components. This is
important due to thermal
expansion of the tracker
hardware, which has a
direct influence on the
measurements

Initialize Laser
Tracker

Definition Comment

Set index of refraction With the input of the
environmental
temperature, pressure
and humidity, the system
calculates the light
refraction index of the
interferometer (IFM) and
the absolute distance
meter (ADM). These
parameters have a direct
influence on the
measurement accuracy
A change of 1°C causes a
measurement difference
of 1ppm.
A change of 3.5mbar
causes a measurement
difference of 1ppm.

Current
Temperature and
Pressure

18 • Chapter 1 • Introduction User Manual • emScon TPI

Metrology Division

Definition Comment
Change environmental
parameters when
significant changes take
place.
Default values:
20.0 °C, 1013.3mbar

Definition Comment
Select a specific reflector A wrong reflector results

in a wrong initial IFM
distance, e.g. when using
the Go Birdbath
command. This has a
direct influence on the
absolute positioning
accuracy of the
measurement network.
ADM measurements are
inaccurate due to the
different reflector
constants.
Tooling ball reflector
(TBR) = 5.310 mm
Cat eye = 59.114 mm

Set Reflector

Definition Comment

The laser's mode of
operation depends on
external temperature.
Select one of the
following temperature
ranges corresponding to
your application:
Low: +5 - +20 °C
Medium: +10 - +30 °C
High: +30 - +40 °C

The Laser Startup Mode
is set by default to
medium (+10 - +30 °C).
When the external
temperature exceeds this
range, the system tries to
stabilize the
interferometer. During
this process (10 - 20
minutes), no
measurements can be
taken (Green LED on the

Set Temperature
Range

User Manual • emScon TPI Chapter 1 • Introduction • 19

 Metrology Division

Definition Comment
tracker blinks). Switch
mode to low or high.

Definition Comment

The station parameters
describes the translation
and rotation of the
tracker station in a
coordinate system:
X, Y, Z, Omega, Phi,
Kappa

In case the station
parameters are not set
explicitly, TPI will set the
parameters as follows:
(X=0/Y=0/Z=0/Omega=0/
Phi=0/Kappa=0).

Station
Parameters

Definition Comment
A transformation
describes a change into
another coordinate
system, which is different
from the tracker
coordinate system. It has
the following parameters:
X, Y, Z, Omega, Phi, and
Kappa and scale factor.

The object coordinate
system is located in the
measured object, which
may correspond to the
coordinate system of the
design.
Either a controlled
orientation or a
transformation can create
the object coordinate
system.
Data is created in the
object coordinate system
if the transformation
parameters are applied to
the TPI. In case these
parameters are not set,
the TPI will deliver the
data based on the tracker
coordinate system
(X=0/Y=0/Z=0/Omega=0/
Phi=0/Kappa=0/Scale = 1.

Transformation
Parameters

 See "Mathematics" on page 129 for more
information.

20 • Chapter 1 • Introduction User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 1 • Introduction • 21

Definition Comments
Selects the coordinate
system type:
RHR/LHR X, LHR Y,
LHR
Z/CCW/CCC/SCW/SCC

The TPI delivers the data
in the current coordinate
system type. By default
the tracker system will
work in the right handed
rectangular coordinate
system (RHR) type:
3D rectangular
coordinates are defined
by 3 mutually
perpendicular axes X, Y
and Z given in the order
(X, Y, Z).
Since the axes can be
arranged in two different
ways, right and left-
handed systems are
defined according to the
convention illustrated in
a simple 2D case.
Cylindrical Clockwise
(CCW)
Cylindrical Counter
Clockwise (CCC)
In a cylindrical system
the X and Y values are
expressed in terms of a
radial (distance) offset
from the Z-axis and a
horizontal angle of
rotation. The Z
coordinate remains the
same.
Spherical Clockwise
(SCW)
Spherical Counter
Clockwise (SCC)

Coordinate
System Type

 Metrology Division

Definition Comments
In a spherical system a
point is located by a
distance and two angles
instead of the 3
coordinate values along
the rectangular axes. For
axes labeled XYZ, with Z
vertical, the point is
located by its distance
from the origin,
horizontal angle in the
XY plane and zenith
angle measured from the
Z-axis.

22 • Chapter 1 • Introduction User Manual • emScon TPI

Metrology Division

2.C Interface

Low-level programming
Introduction Before designing the client application, refer to

the ES_C_API_Def.h file. The C-TPI is a pure
collection of enumeration types and data
structures. The data structures reflect the
'architecture' of the data packets (= byte arrays)
sent and received over the TCP/IP network,
between the Application Processor and the
Tracker Server.

 No functions or procedures are defined.

 Since C++ is an extension of C, a C++
compiler can also be used for C programming.

TCP/IP Connection 1. Establish a TCP/IP connection to the tracker
server. This is typically achieved by invoking
a Connect function of the TCP/IP
communication library or toolbox. This
function will take the IP address (or its
related hostname) of your Tracker Server.

2. Set the TCP/IP Port Number to 700 for the
Tracker Server.

Sending Commands 3. Call a SendData function from the TCP/IP
communication library or toolbox (Function
name may differ). This function typically
takes a pointer to a data packet and probably
the size of it (unless the packet is wrapped

User Manual • emScon TPI Chapter 2 • C Interface • 23

 Metrology Division

into a structure that knows its size implicitly,
for example a Variant structure).

4. The architecture of the packets (TPI protocol)
is defined by the data structures in the
ES_C_API_Def.h file.

 See the Reference Manual for a detailed
description of these structures.

Code Sequence 5. For invoking a GoPosition command.
Assign appropriate initialization values. For
example, assign an ES_Command and an
ES_C_GoPosition to a GoPositionCT struct
variable.

 The compiler will not detect, if, for
example, an ES_DT_SingleMeasResult as
type, or an ES_C_SwitchLaser as command is
assigned to a GoPositionCT variable.
Inappropriate initialization values cause the
command to fail.

GoPositionCT data; // declare packet variable
data.packetInfo.packetHeader.type = ES_DT_Command;
data.packetInfo.packetHeader.lPacketSize = sizeof(data);
data.packetInfo.command = ES_C_GoPosition;
data.dVal1 = -1.879;
data.dVal2 = 2.011;
data.dVal3 = 0.551;
data.bUseADM = FALSE;

Initialization Macros 6. To avoid such errors, which may happen
through copy/paste errors and are difficult to
trace, it is recommended to use initialization
macros for correct assignment of type, size
and command values.
An INITStopMeasurement macro , for
example, requires two statements, the
parameter declaration and the parameter
initialization (macro call). The
StopMeasurement has no additional command
parameters. If there are any, these can be
incorporated into the macro.

24 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

StopMeasurementCT cmdStop; // declaration
INITStopMeasurement(cmdStop); // initialization

C++ Initialization C++ offers a much more elegant way for
initialization – the 'constructor' approach, which
eases the initialization issues.

 See "C++ Interface" on page 56 for details.

7. After initialization of the data variable, send
it to the tracker server using the TCP/IP
SendData() function (or whatever this
function is called). Depending on the TCP/IP
communication library used, the data packet
may need to be packed into a Variant vrtData
variable, followed by a SendData (vrtData)
call. Alternatively, a Send() function takes the
address and size of the data packet variable,
Send (&data, sizeof(data)).

Answers from
Tracker Server

8. The SendData() function does not wait for the
Tracker Server (tracker) to complete the
requested action - SendData() will return
immediately. On completion of the requested
action, the tracker server sends an answer to
the client. Depending on the command, it
may take a few seconds between sending the
command and receiving an answer. This
requires some type of notification or callback
mechanism. That is, as soon as data arrives
from the Tracker Server, some sort of event
needs to trigger a ReadData() procedure in
the client application. Depending on the
TCP/IP communication, this notification
could be a Windows Message, an Event or a
Callback Function.

 This type of communication is asynchronous.

User Manual • emScon TPI Chapter 2 • C Interface • 25

 Metrology Division

26 • Chapter 2 • C Interface User Manual • emScon TPI

9. From the programmer's point of view,
asynchronous communication is much more
difficult to handle than synchronous
communication. The programmer must
ensure, not to send a new command until the
answer of the previous one has returned
(commands might be queued under certain
circumstances).

Asynchronous
Communication

DataArrived
Notification

10. All TCP/IP communication libraries/toolkits
contain either a DataArrived() notification or
a similar function, which is called by the
framework each time data has arrived.
Depending on the toolkit:

• The function may directly return a
Variant type parameter that contains the
data.

• The function may deliver the data within
a byte array.

• The function returns the size of the data
packet that is ready to be read. In this
case, the DataArrived() function
subsequently calls a ReadData() function
immediately, in order to get the data into
a local byte array.

DataArrived Notification
Queue

11. If a 'traffic jam' occurs on the incoming
TCP/IP line, i.e., if incoming data is being
queued, a ReadData() call will read all the
currently available data with no notification
for each individual packet. Many packets
may be queued and only one DataArrived
notification might be issued. This means that
the byteArr buffer will contain more than one
packet. This may occur on high frequency,
continuous measurement streams. The
application has to make provisions to

Metrology Division

correctly treat such cases. The lPacketSize
value is most convenient when parsing the
byteArr buffer.
If the byteArr buffer is completely filled with
data, it is likely that the last packet in the
byteArr is incomplete. The packet fragment
needs to be saved and padded to complete
upon the subsequent read-call.

 See "Queues and Scattered Data" on page 91
for details.

12. Assuming a received data block has been
read into a byte buffer named byteArr. In
order to interpret the data, a mask is
required. This requires knowledge of the
type of data packet (enum ES_DataType). A
typical PacketHeader interpreting code is as
follows:

PacketHeaderT *pData = (PacketHeaderT*)byteArr; PacketHeader Code
13. Access the type and the size of the packet can

be with:
pData->type;
pData->lPacketSize;

The packet size is only for convenience.
Sizeof(type) also returns the packet size.

 This redundancy may be used for
consistency checks and is helpful when using
programming languages other than C that lack
the sizeof() operator).

The packet size is reliable on received packets.
When sending packets to the Tracker Server, it is
recommended to initialize the lPacketSize variable
correctly, although the Tracker Server ignores it.
This approach has been chosen to reduce possible
programming errors.

User Manual • emScon TPI Chapter 2 • C Interface • 27

 Metrology Division

28 • Chapter 2 • C Interface User Manual • emScon TPI

14. Command type answers require a switch
statement to distinguish the command
subtype. Non-data returning commands can
all be treated the same and are handled in
the default switch statement. All other
command answers need to be masked with
the appropriate result structure. The code
fragment below demonstrates this with the
GetUnits command, and shows part of the
handling of a single measurement answer:

Command Subtype
Switch

Metrology Division

switch (pData->type)
{
 case ES_DT_Command: // 'command- type' answer arrived
 {
 BasicCommandRT *pData2 = (BasicCommandRT *)byteArr;

 // if something went wrong, no need to continue
 if (pData2->status != ES_RS_AllOK)
 {
 // TODO: evaluate and handle the error
 return false;
 }

 switch (pData2->command)
 {
 case ES_C_Initialize:
 case ES_C_PointLaser:
 case ES_C_FindReflector:
 break;

 case ES_C_GetUnits:
 {
 GetUnitsRT *pData3 = (GetUnitsRT *)byteArr;

 // Diagnostics - check whether packet size
 // as expected (in debug mode only)
 ASSERT(pData3->packetInfo.
 packetHeader.lPacketSize ==
 sizeof(GetUnitsRT));

 // now you can access Unit specific data.
 pData3->unitsSettings.lenUnitType;
 pData3->unitsSettings.tempUnitType;

 break;
 }

 // case XXX:
 // Todo: add other command type evaluations
 // break;

 default:
 break;
 }
 }
 break;

 case ES_DT_SingleMeasResult: // single-meas-result-
 { //type answer has arrived
 SingleMeasResultT *pData4 =
 (SingleMeasResultT *)byteArr;

 if (pData4->packetInfo.status != ES_RS_AllOK)
 return false;

 break;
 }

 // Todo: add further 'case' statements
 // for remaining packet types
}

• Declaring variables within case statements,
which are suitable for masking data, require curly
brackets around a particular case block.
Otherwise the compiler will claim.

• If-then-else can be used instead of switch
statements. However, switches are more efficient.

User Manual • emScon TPI Chapter 2 • C Interface • 29

 Metrology Division

• Frequent items should be treated at the top of
a switch statement, for example multi-
measurement results (not covered above).

C Client Applications
Sample 1-Tutorial The EmsyCApiClient sample is presented in

tutorial form, based on Visual C++ v6.0, it uses
MSWinsck.ocx for TCP/IP communication. The
application is given a dialog box 'look and feel'.

 An OCX control requires a dialog/Windows
based application, with VARIANT data types.

Step 1: Creating an
Application
Framework using
AppWizard

1. Launch Microsoft Visual C++ (Visual Studio).

2. Select File > New > Projects.

3. Select MFC AppWizard (exe) from list.

4. Type EmsyCApiClient in the Project Name
field.

5. Click OK.

6. Select Dialog-based. Click Next.

7. Uncheck AboutBox.

8. Check 3D controls and ActiveX Controls. Click
Next.

9. Select (optional) No, thank you under, "Would
you like to generate source file comments?"
Leave other settings unchanged. Do not
change any file names.

10. Click Finish. Click OK on last pane.

11. Compile the application.

12. Run the application.
Step 2: Import the
Winsock Control

1. Select menu Project > Add to Project >
Components and Controls.

2. Change to Registered ActiveXControl folder.

30 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

3. Select Microsoft Winsock Control, version 6.

4. Click Insert, Click OK.

5. Reregister MSWinsck.ocx, if Microsoft
Winsock control version 6.0 is not available,
in the list of Registered ActiveX controls. Use
Regsvr32.exe utility. Reinstall VC++, if file
cannot be found.

6. Dialog box 'Confirm Classes' appears.

7. Check item 'CMSWinsockControl'. Leave
proposed class and file names unchanged.

8. Click OK.

9. Close Components and Controls Gallery
dialog. Two files MSWinsockControl.h and
MSWinsockControl.cpp have been generated
as a wrapper class to the OCX's COM-
Interface and inserted in the project. No
changes are to be made to these files. Only a
few of the many functions of
MSWinsockControl are required by the
application.

Step 3: Create a
Winsock Controls
Instance

Knowledge about placing controls on dialog
boxes with the Dialog Box editor is presumed.
The Controls palette (the window from which
buttons, edit fields etc. are dragged to the dialog
template) is padded with a new icon at the
bottom (two small computers are shown). Its tool-
tip info reads 'MS Winsock control version 6.0'.

1. Create one such control in the dialog:
Activate the resource editor and the dialog
template. In the 'Controls' toolbox, click the
Winsock icon.

2. Draw a rectangle on the dialog. The icon
should now appear as a 32x32-pixel icon.
Place icon out of the way, where it does not

User Manual • emScon TPI Chapter 2 • C Interface • 31

 Metrology Division

disturb other controls.

 This icon will be invisible in the real
dialog.

3. Right click to look at the properties: ID:
IDC_WINSOCK1. Do not change the ID.

4. Click Control TAB of the property box. Add
an empty string "" to Remote Host field. This
prevents an exception when running the
application.

5. Do not change any remaining properties. No
Remote host ID or port #. This information
will be added later.

6. Add member variable of type
CMSWinsockControl (see MSWinsockControl.h
file for class definition).
Manually: Continue with step 7.
With Class Wizard: Continue with step 9.

7. Add following declaration:
manually to the applications dialog class
CEmsyCApiClientDlg.

CMSWinsockControl m_winSockCtrl;

8. Create the control explicitly or make a
correct entry to the DoDataExchange()
function.

9. Let the ClassWizard do the work.
Call it from the View menu or press Ctrl+W.

10. Activate the Member Variables TAB.

11. Select IDC_WINSOCK1 in the list. Click Add
Variable… button. Name the variable
m_winSockCtrl.

12. Click OK, close the ClassWizard window.
Step 4: User Controls
on the Dialog

The MSWinsock control's functions take all string
and data parameters as Variants.

32 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

Use of Variants (packing/unpacking before
sending/receiving data) is necessary, due to the
Variant parameters of the MSWinsck.ocx
Send/Receive functions.

Use of an alternative TCP/IP library (with C or
C++ Interface) or the native TCP/IP
communication functions of the operating system
enable design of non Win32- based or non-
Windows (e.g. console applications, Apple
OS/Linux etc) applications. These will not require
Win32 specific Variants.

 See "Sample 3" on page 52 or "Receiving Data
Sample 9" on page 66 for details.

InitDialog() Handler
 See "Sample 4" on page 57 for explanation of

the InitDialog() handler with the implicit Connect()
function and close with WM_DESTROY.
The ClassWizard's Message Maps TAB can be
used to add push buttons to dialog templates and
to attach appropriate message handlers to them,
together with Static and Edit controls to dialogs
with member variables.

Connect/Disconnect
Handlers

 See "Sample 1-Tutorial" on page 30 for
explicit Connect and Disconnect handlers, bound
to appropriate push buttons with all required
controls added to the dialog template.

 Refer to VC++ 'Scribble' tutorial for
information on dialog box design.

1. Remove the OK button and the TODO label
from the dialog template.

2. Replace the caption of the Cancel button with
Exit.

User Manual • emScon TPI Chapter 2 • C Interface • 33

 Metrology Division

3. Add the following 7 pushbuttons and the
related message handlers to the dialog
template.

 In order to correspond with the Sample 1
source code, the following names are
recommended:
Button Caption Button ID Name of

Message
handler

Connect DC_BUTTON_
CONNECT

OnButtonConne
ct

Disconnect IDC_BUTTON_
DISCONNECT

OnButtonDiscon
nect

Init Tracker IDC_BUTTON_
INIT

OnButtonInit

Laser Pointer IDC_BUTTON_
POINTLASER

OnButtonPointl
aser

Find Reflector IDC_BUTTON_
FINDREFLECT
OR

OnButtonFindre
flector

Set Reflector IDC_BUTTON_
SETREFLECTO
R

OnButtonSetrefl
ector

Start Meas IDC_BUTTON_
STARTMEAS

OnButtonStartm
eas

4. Add two 'Statics' and relate them to
appropriate member variables (type
Control):

Static ID Member variable name

IDC_STATIC_RESULT m_staticResult;

IDC_STATIC_STATUS m_staticStatus;

5. Eliminate the 'captions' of these Statics.

6. Check the 'sunken' property (to make then
visible). Their size should permit three (3)

34 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

coordinate values (Result) or a three (3) digit-
number (Status).
A label (static) may be added, with caption
'Status' in front of the status field. No
member variable need be added and no
change of the ID is necessary.

7. The dialog template should now look as
follows:

Step 5:
Connect/Disconnect
TCP/IP Handlers

The EmsyCApiClientDlg.cpp.h should now contain
'skeleton' code for all push button handlers
(generated by the ClassWizard).

1. Implement the OnButtonConnect() and
OnButtonDisconnect() handlers.

2. Include atlbase.h to know CComBSTR and
ES_C_API_Def.h. Add these files to the
project with Menu 'Project' > Add to 'Project'
> Files.

#include <atlbase.h>
#include "ES_C_API_Def.h"

3. The essential OnButtonConnect() code reads
as follows (fragment only).

User Manual • emScon TPI Chapter 2 • C Interface • 35

 Metrology Division

VARIANT vRemoteHostName;
VariantInit(&vRemoteHostName);
vRemoteHostName.vt = VT_BSTR;

// CComBSTR ensures allocating and freeing the string
CComBSTR bstr(_T(“192.168.0.1”)); // hostname or IP adress
vRemoteHostName.bstrVal = bstr;

VARIANT vRemoteHostPort;
VariantInit(&vRemoteHostPort);
vRemoteHostPort.vt = VT_I4;
vRemoteHostPort.lVal = 700; // port 700 reserved for ES

// So far, all was Variant preparation. Do connect call now
m_winSockCtrl.Connect(vRemoteHostName, vRemoteHostPort);

 When MSWinsock control throws exceptions
on failure use try {}/catch {} statements.

 See "Sample 1-Tutorial" on page 30 for the
complete implementation of the
OnButtonConnect() function with useful
comments.

4. The essential code of the
OnButtonDisconnect() handler:

m_winSockCtrl.Close();

5. To trap MSWinsock errors, the entire
implementation of OnButtonDisconnect() is
shown here:

void CEmsyCApiClientDlg::OnButtonDisconnect()
{
 try
 {
 m_winSockCtrl.Close();
 }
 catch(...)
 {
 AfxMessageBox(_T("Failed to close connection\n"));
 }
}

Build the application and connect/disconnect to
the Tracker Server. The netstat.exe Windows tool
checks whether the connection was established
correctly.

Step 6: Implementing
Command Handlers

1. Implement the remaining command
handlers for the commands (Buttons) that
have been previously added. Select the
appropriate command structure (as defined
in the ES_C_API_Def.h file) and initialize it.

36 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

2. Sample Initialize Tracker command handler:
void CEmsyCApiClientDlg::OnButtonInit()
{
 // clear status field, just cosmetics!
 m_staticStatus.SetWindowText(_T(""));

 try
 {
 InitializeCT data;

 data.packetInfo.packetHeader.type = ES_DT_Command;
 data.packetInfo.packetHeader.lPacketSize =
 sizeof(data);
 data.packetInfo.command = ES_C_Initialize;

 COleVariant variantData =
 PackIntoVariant(&data, sizeof(data));
 m_winSockCtrl.SendData(variantData);
 }
 catch(...)
 {
 AfxMessageBox(
 _T("MSWinSockCtrl Exception (Initialize)\n"));
 }
}

 PackIntoVariant() helper function is necessary
due to the Variant type parameters of MSWinsock.
The PackIntoVariant() needs to be defined in the
application code (for example locally in the
EmsyCApiClientDlg.cpp file)

PackIntoVariant() requires <atlbase.h>:
COleVariant PackIntoVariant(void *pData, UINT sizeOfData)
{
 BYTE* pByteArr = new BYTE[sizeOfData];
 memcpy(pByteArr, pData, sizeOfData);

 CByteArray byteArr;

 for (UINT i = 0; i < sizeOfData; i++)
 byteArr.Add(*(pByteArr+i));

 delete [] pByteArr;

 COleVariant vrt(byteArr);

 return vrt;
}

Tracker Initialization The application should now be able to initialize
the tracker.

1. Run the application and immediately click
the Init Tracker button.

2. An error message reads: MSWinSockCtrl
Exception (Initialize)\n (the message specified
in the OnButtonInit() 'catch' part). The

User Manual • emScon TPI Chapter 2 • C Interface • 37

 Metrology Division

Winsock control threw an exception because
it was not connected before!

3. Press the Connect button, then the Init Tracker
button again.

 Only one, single Connect at a time is
possible. Pressing the Connect button more
than once without a Disconnect in-between,
will get an error message, although the
connection is still OK.

4. Implement the remaining Handlers:
OnButtonPointlaser()
OnButtonFindreflector()
OnButtonSetreflector()
OnButtonStartmeas()
Refer to Sample 1 code.

Hard Coded data Some of these functions include hard coded data,
for example coordinates for OnButtonPointlaser().
Invoking this command just toggles the beam
between two locations. This is not of practical
use, but for demonstration.

The coordinates may need to be changed to
reflect your environment. It is recommended that
a reflector is placed somewhere with approximate
coordinates specified in (one of) the
OnButtonrPointlaser() toggle positions. It is also
assumed that a reflector with ID 1 exists, as set in
OnButtonSetreflector(1). Change the ID as
required.

Step 7: Receiving
Data

In order to receive data, the events sent out by the
Winsock control need to be caught, as soon as
arriving data is signalled by the framework (by
an Event).

1. Display the ClassWizard dialog, choose the
Message Maps TAB and select the

38 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

IDC_WINSOCK1 item in the Object IDs table.

 Ensure the dialog class in the 'class
name' list box is selected . The 'Messages' list
shows all events the Winsock control is able
to send.

2. Select DataArrival, press Add Function... and
confirm the name OnDataArrivalWinsock1.
Finish the ClassWizard with OK.

3. Searching all project files by 'arrival' shows,
that the class wizard has inserted code in 3
locations:

• Function declaration in the header files
message map section.

• An entry in the implementation files
EVENTSINK map.

• An empty function body.
void Function Body CEmsyCApiClientDlg::OnDataArrivalWinsock1(long bytesTotal)
{
 // TODO: Add your control notification handler code here
}

4. If a Data Arrived event happens, the number
of bytes that are ready to be read is passed as
a parameter to OnDataArrivalWinsock1()
handler. An OnDataArrivalWinsock1() call
requires the Winsock control's GetData()
function.

m_winSockCtrl.GetData(&m_vtData, vtType, vtMaxlen); GetData Function
5. The address of a variant must be passed as

first parameter, since the data is delivered as
a variant. To avoid frequent
allocation/deallocation and initialization of
(an automatic local) Variant variable, a
Variant member variable is defined in the
dialog class.

User Manual • emScon TPI Chapter 2 • C Interface • 39

 Metrology Division

6. Add the following declaration to the
CEmsyCApiClientDlg class (protected or
private) in the EmsyCApiClientDlg.h file:

VARIANT m_vtData;

7. Initialize this variable once to the 'dialog
class' constructor:
Upon receiving data, the application may
crash without initialized m_vtData

VariantInit(&m_vtData);

8. To maintain modularity, implement data-
reading (GetData) in the
OnDataArrivalWinsock1() function, and
implement a separate processing (parsing)
member-function named ProcessData().

9. The OnDataArrivalWinsock1()
implementation reads as follows:

40 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

void
CEmsyCApiClientDlg::OnDataArrivalWinsock1(long bytesTotal)
{
 TRACE(_T("OnDataArrival\n"));

 // m_vtData (output parameter variant) as member var
 // !!! Note: m_vtData must be initialized with
 // VariantInit; see constructor !!!

 // pass expected result-type through iVal
 VARIANT vtType;
 vtType.vt=VT_I2;
 vtType.iVal = VT_ARRAY|VT_UI1;

 // pass packet length through lVal (long) parameter
 VARIANT vtMaxlen;
 vtMaxlen.vt=VT_I4;
 vtMaxlen.lVal = bytesTotal;

 try
 {
 // read data from socket into variant
 m_winSockCtrl.GetData(&m_vtData, vtType, vtMaxlen);
 }
 catch(...)
 {
 AfxMessageBox(
 _T("MSWinSockCtrl Exception (GetData)\n"));
 }

 // check if all data has arrived – just diagnostics
 if (m_vtData.parray->rgsabound->cElements ==
 (unsigned long)bytesTotal)
 {
 // now data can be processed
 if (!ProcessData())
 Beep(200, 100);
 }
 else
 ASSERT(false); // will only raise in debug mode
}

ProcessData() To implement ProcessData() parse incoming data
as described earlier in this document. The
implementation of ProcessData() as a member
function does not require passing data as a
parameter. The m_vtData member variable can be
directly accessed.

10. Mask the data buffer (byte-array) with a
PacketHeaderT struct to identify the packet
type.

11. Depending on the packet type, use the
appropriate 'Sub-mask' (BasicCommandRT,
SingleMeasResultT etc.).

 This simple application handles only a few
packet types/commands, and the ProcessData
function remains compact. For applications that

User Manual • emScon TPI Chapter 2 • C Interface • 41

 Metrology Division

implement virtually all Tracker Server answers,
the parsing code must be split into smaller
functions for ease of handling.

 Note the statements to display return status
numbers (0 = OK, non zero = errors) and
measurement results to the appropriate static
controls of the dialog.

42 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

bool CEmsyCApiClientDlg::ProcessData()
{
 CString sStatus, s;

 // ProcessData() is a parser for the incoming data.
 // When ProcessData() is being called, we can assume
 // that 'm_vtData.parray->pvData' points to a valid and
 // complete 'answer block' (just an array of bytes).
 // Next we must mask this data block with BasicCommandRT
 // in order to figure out type. Once the type (for
 // example ES_DT_SingleMeasResult) is known, we can mask
 // it with the appropriate structure (e.g.
 // 'SingleMeasResultT'). mask arrived data with RT
 // structure in order to figure out type/status

 PacketHeaderT *pData =
 (PacketHeaderT*)m_vtData.parray->pvData;

 switch (pData->type)
 {
 case ES_DT_Command: //'command- type' answer arrived
 {
 BasicCommandRT *pData2 =
 (BasicCommandRT *)m_vtData.parray->pvData;

 switch (pData2->command)
 {
 // here you may treat answers individually
 // as needed. Within this sample, we just do
 // a general handling for all command answers.
 // Thus the 'switch (pData->command)' block
 // could be entirely omitted. It is just here
 // for documentation purposes

 case ES_C_Initialize:
 case ES_C_PointLaser:
 case ES_C_FindReflector:
 case ES_C_StartMeasurement:
 case ES_C_SetReflector:
 // common error handling for all commands.
 // display error status. In a real program,
 // we would have to map these codes to text
 // strings describing the error

 sStatus.Format(_T("%d"), pData2->status);
 m_staticStatus.SetWindowText(sStatus);

 // handle error
 if (pData2->status != ES_RS_AllOK)
 return false;
 break;

 // TODO: add further cases as other
 // commands become implemented.
 // See file ES_C_API_Def.h for further
 // commands and related answer structures.

 default:
 return false;
 } // switch (pData->command)
 }
 break;

 case ES_DT_SingleMeasResult:
 {
 // A 'single-meas-result- type' answer
 // has arrived so mask it with
 // SingleMeasResultT structure

 SingleMeasResultT *pData3 =
 (SingleMeasResultT *)m_vtData.parray->pvData;

 // if something went wrong, there
 // is no reason to continue

 if (pData3->packetInfo.status != ES_RS_AllOK)

User Manual • emScon TPI Chapter 2 • C Interface • 43

 Metrology Division

 return false;

 // Do something with the data (display it)

 s.Format(_T("X=%.3lf, Y=%.3lf, Z=%.3lf\n"),
 pData3->dVal1, pData3->dVal2, pData3->dVal3);

 m_staticResult.SetWindowText(s);

 // also display return status

 sStatus.Format(_T("%d"),
 pData3->packetInfo.status);

 m_staticStatus.SetWindowText(sStatus);
 }
 break;

 // case
 // Todo: add other answer- cases

 default:
 return false;
 break;
 } // switch (pData->type)

 return true;
} // ProceessData()

 Single points can be measured and displayed
in the dialog. Set Reflector followed by a Find
Reflector must be called before a measurement is
triggered.

Asynchronous
Communication

The application must have provisions to prevent
pressing another button before an answer has
arrived. (Some commands may be queued). An
answer has arrived, when the status code is
displayed. The command is OK when code is
zero (0). The Tutorial sample does not fully
handle these errors.

 If the code is a number, refer to the Tracker/
Software reference manual.

Remarks This sample demonstrates the C-TPI together
with C++ clients and an MFC-using Windows
application. Writing in C is still an option for
non-Windows or non- Win32 applications.
Further issues to be considered in a real
application:

44 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 2 • C Interface • 45

• User interface design: Grayed-out controls
depending on context. Lock buttons in a
situation when it is not appropriate to press
them. Graying out all buttons during the
time gap between commands sent and
answer received is recommended for
asynchronous communication.

Interface Design

• Other design issues include: proper TAB
order of the controls and assigning shortcuts
to dialog controls.

Error Handling • Error handling: Errors should be handled
exhaustively. Provisions should be made for
all possible errors. Error messages should be
defined as resources instead of hard coded
strings. Implement exception handling
where it applies (try/catch).

Network Traffic Jams • Make provisions for 'network traffic jams'
and receiving buffers of constant size. When
the buffer is completely filled upon a read
operation, it is very likely that part of the last
packet will be 'distributed' over the buffer
boundary. That is, part of the packet will not
become available before the next 'Read' call.

The buffer size (variant array) is
allocated dynamically in this sample.

 See "Queues and Scattered Data" on
page 91 for details.

MSWinsock Control • Using the MSWinsock control is very
convenient together with VC++ (ClassWizard
etc.). A problem, however, may be its
performance (COM interface and Variant
copy). An MSWinsock based application may
not be able to carry high frequency
continuous measurements. For such high

 Metrology Division

performance applications, use of low-level
C/C++ TPI is recommended in combination
with a high performance TCP/IP
communication library.

Essential code • All essential code is concentrated in only two
files EmsyCApiClientDlg.cpp and
EmsyCApiClientDlg.h (apart from the
generated wrapper classes for the OCX,
which reside in mswinsockcontrol.cpp/h).

Build Sample 1 To build Sample 1 from the files in the SDK, open
EmsyCApiClient.dsw with VC++ and choose 'Build'
(or click F7).

TCP/IP address • Change the (hard coded) TCP/IP default
address ('192.168.0.1') according to the Tracker
Server's address.

Visual Basic Client Application
Sample 2-Tutorial The ES_C_API_Def.h cannot be directly included

in Visual Basic (or Pascal, Java etc.) applications.
It needs to be translated to other languages'
syntax with the risk of errors (typing errors,
different structure byte alignment, different sizes
of basic data types etc.).

 The use of languages other than C/C++ for
using the low-level TPI is not recommended or
supported.
This sample serves primarily to enable a better
understanding of the TPI principles. It has
functions limited to connecting to the tracker,
initializing and disconnecting.

TCP/IP TCP/IP communication uses MSWinsck.ocx.
Step 1: Adding a
Winsock Control and
Designing a Form

1. Launch Visual Basic 6.0.
Select File > New Project > Standard.exe. Click
OK.

46 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

2. Save the form as EmsyVBClient.frm and the
project as EmsyVBClient.vbp.

3. Select Menu Project > Components (or Ctrl+T).

4. In dialog list box, check Microsoft Winsock
Control 6. Click OK.

5. Place an instance of the Winsock control icon
in the application form (default name
Winsock1).

 Do not change the default name.

6. Right mouse click the Winsock control icon
on the form. Select Properties.

7. Enter the IP address or hostname of the
Tracker Server in the RemoteHost field and
the port number 700 to RemotePort. Leave the
other settings as they are.

8. Add three buttons to Form Winsock1
Connect, Disconnect and Init Tracker. Add a
(sunken) label named AnswerStatus.

9. The form reads as follows:

Step 2: Connect to
the Tracker Server

1. Double click the Connect button. This adds a
handler and switches the focus directly to the
appropriate source location.

2. Insert one line of code, Winsock1:
Private Sub Connect_Click()
 Winsock1.Connect
End Sub

IP Address 3. If IP address and port number have not been
passed through the properties.

User Manual • emScon TPI Chapter 2 • C Interface • 47

 Metrology Division

 See Point 7 "Step 1: Adding a Winsock
Control and Designing a Form" on page 46.
Use the Connect call to insert address and
port number of the Tracker Server:
Winsock1.Connect “193.8.34.133”, 700.

4. Double click the Disconnect button on the
form and complete the handler as follows:

Private Sub Command1_Click()
 Winsock1.Close
 AnswerStatus.Caption = “” 'Just for cosmetics
End Sub

Winsock1 5. Entering Winsock1: As soon as '.' (dot) is
entered a dropdown list offers all available
methods and properties for the respective
object. Typing a blank (or opening bracket)
behind a method name gives IntelliSense
support for all the method's parameters.
Similar support is available in VC++.

Step 3: Translate the
C- enums and Structs
to VB

In order to create a command packet, the
structures defined in the ES_C_API_Def.h file
need to be translated to Visual Basic. Visual Basic
uses four (4) Byte alignments by default and a VB
'long' is necessary for a C 'init'. A VB integer is
only two (2) Bytes and therefore relates to a C
'short'. Doubles are eight (8) Bytes in both C and
VB.

To implement the Init Tracker command, the
following subset of 'enum' translations is
provided. 'Enum' members VC start with zero (0)
as default. Explicit values need to be assigned,
since only subsets of the original C- enum types
are translated (only as far as needed):

48 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

Enum ES_DataType
 ES_DT_Command
 ES_DT_Error
End Enum

Enum ES_Command
 ES_C_Initialize = 7
End Enum

Enum ES_ResultStatus
 ES_ES_AllOK
 ES_RS_NotImplemented = 2
End Enum

Further we need the following 'struct' translations:

Private Type PacketHeaderT
 lPacketLength As Long
 type As ES_DataType
End Type

Private Type BasicCommandCT
 packetHeader As PacketHeaderT
 command As ES_Command
End Type

Private Type BasicCommandRT
 packetHeader As PacketHeaderT
 command As ES_Command
 status As ES_ResultStatus
End Type

Private Type InitializeCT
 packetInfo As BasicCommandCT
End Type

Private Type InitializeRT
 packetInfo As BasicCommandRT
End Type

 See also detailed comments in the VB source
code (File EmsyVBClient.frm)

Step 4: Implementing
the Init Tracker
Command

1. Create the function body for the command
handler with a double click to the InitTracker
button.

2. Declare a variable of InitializeCT and the
ES_C_Initialize and ES_DT_Command tags
filled in.

3. Send the data packet over the TCP/IP
network.

4. The InitializeCT variable has to be copied to a
Variant.
The SendData function of the Winsock
control takes a Variant parameter.

User Manual • emScon TPI Chapter 2 • C Interface • 49

 Metrology Division

5. 'Borrow' the function CopyMemory from the
Win32 API.
Declare this function in the declaration part
of the form:

Private Declare Sub CopyMemory Lib “kernel32” Alias _
 “RtlMoveMemory” (pDest As Any, pSource As Any, _
 ByVal ByteLen As Long)

6. If InitializeCT variable is named mt. The
sequence to copy mt into a variant reads as
follows:

Dim bt() As Byte
ReDim bt(LenB(mt)) As Byte
Dim vtdata As Variant
CopyMemory bt(0), mt, LenB(mt)
vtdata = bt

Private Sub Init_Click() Init (Tracker) handler AnswerStatus.Caption = “” ' Just for cosmetics

 Dim mt As InitializeCT
 mt.packetInfo.command = ES_C_Initialize
 mt.packetInfo.packetHeader.type = ES_DT_Command

 ' This code-block should be rather put into a subroutine
 Dim bt() As Byte
 ReDim bt(LenB(mt)) As Byte
 Dim vtdata As Variant
 CopyMemory bt(0), mt, LenB(mt)
 vtdata = bt

 Winsock1.SendData vtdata ' Finally send the data
End Sub

7. An Initialize Tracker can now be invoked,
however, no answers can be received.

Step 5: Implementing
Answer Data
Receiving

1. Select the Winsock1 object in the code editor
for Form1, top left drop down list.

2. Select DataArrival and Error , to create the
bodies of these two handlers out of the
Winsock control, top right drop down box.

3. Call GetData, which delivers the result in a
Variant. Copy the variant into a variable of
type InitializeRT.

50 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long)
 Dim vta
 Dim mt As InitializeRT
 Dim bt() As Byte
 Winsock1.GetData vta, vbArray + vbByte, LenB(mt)
 bt = vta
 CopyMemory mt, bt(0), LenB(mt)

 Beep 'Beep on Answer received

 If mt.packetInfo.status = ES_ES_AllOK Then
 AnswerStatus.Caption = " AllOK"
 Else
 AnswerStatus.Caption = " Unknown Error"
 End If
End Sub

4. Implement the error handler:

 Refer to comments in the source file.
Private Sub Winsock1_Error(ByVal Number As Integer, _
 Description As String, ByVal _
 Scode As Long, ByVal Source As _
 String, ByVal HelpFile As _
 String, ByVal HelpContext As _
 Long, CancelDisplay As Boolean)
 Beep 'Beep on error received
 MsgBox "Winsock Error: " & Number
End Sub

Running the
application

5. Set the IP Address before compiling and
running the application.

 See Sample 2 folder in SDK for complete
source code.

Remarks This application can be extended to a full-
featured Tracker Server 'controller' . It shows that
the TPI is both language and platform
independent (pure TCP/IP). Languages such as
Pascal or Java can be used to build clients based
on the C TPI directly.

 The use of languages other than C/C++ for
using the low-level TPI is not recommended or
supported.

 The Winsock control may not be efficient
enough when dealing with 1000 points/second
from a continuous measurement stream.

Structures Structures are convenient for this purpose, and,
in principle, pure Byte-arrays would also do,

User Manual • emScon TPI Chapter 2 • C Interface • 51

 Metrology Division

which would lead to more complex initialization
and interpretation.
A COM interface can be used with virtually any
programming language, without the hassle of
translating the packet structures and Enums.

COM interface

 See "COM Interface" on page 69.
Sample 13 LT BUI
Launch

This sample is a BUI launcher, which is to be
used in the application, to launch the emScon
BUI.

 Refer to the documentation with the SDK for
details.

Winsock 2.0 Client Applications
Sample 3 Implements a 'lightweight' C-TPI client

application, with no graphical interface, variant
overhead or MFC or ATL. This sample fits into a
single file with 350 lines of code (including
comments and empty lines), and compiles into a
48KB executable file.

 This sample implements only Initialize
Tracker and Start Measurement for single points,
and requires events, threads and Winsock API
functions.

Console application This EmsyCApiConsoleClient is not presented as a
tutorial. The VC++ AppWizard or a text editor
can be used to create a 'Console Application'
skeleton, and to implement the C standard entry
function:
int main(int argc, char* argv[])
{
}

Add all the source code, save the file (.c or .cpp
extension) and invoke the C compiler from the
command line.

52 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 2 • C Interface • 53

These comments refer to the file
EmsyCApiConsoleClient.cpp.

Comments

The following include- files are required:

 Windows.h need not be included
#include <stdio.h> // standard C input/output
#include <Winsock2.h> // win32 socket stuff

1. The main() function first does a TCP/IP
connection by calling the function
TcpIpConnect(), starts the Data Receiver thread
and enters an endless 'User Interface loop'.

2. This loop looks for user input of one of the
two TPI commands 'i' for Initialize Tracker
and 'm' for Start Measure.

3. If the user enters x, the loop is stopped, the
TCP/IP connection is closed and the
application terminates.

 The TcpIpConnect() function is
straightforward up to the call of connect().

4. Call WSAStartup. After connecting, call
WSAEventSelect(), which takes the following
parameters:

• A socket handle (that has been created
before) as a global variable.

• An event of type WSAEVENT as a global
variable. This variable must be
initialized with the return value of a
WSACreateEvent() call.

• A flags parameter. FD_READ is passed,
indicating an interest in data-arrival
events (a realistic application would
have to also trap FD_CLOSE events).

 Metrology Division

5. Calling this function will cause the TCP/IP
framework to signal the passed event,
whenever data has arrived at the socket.

6. The DataRecvThread() has an infinite loop
with the following statement:

WaitForSingleObject(g_hSocketEvent, INFINITE);

7. This is a blocking call and causes the loop to
stop, until the event is signalled to be read.
The blocking by the WaitForSingleObject is
released and the loop passes on.

8. Reset the event before available data is read
into a buffer.

9. Call a function ProcessData() that does the
interpretation of the buffer.

Queuing (Traffic
Jams)

There are no provisions to handle 'traffic jams' on
the network. A real application needs to make
provisions to handle such situations with a
packet size transmitted in the header of each
packet. The Winsock function setsockopt() may be
used to 'tune' TCP/IP transmission rate by
increasing buffer sizes.

 See Win32 documentation for more
information about Winsock API (especially the
WSA… function), threads and events.

 See "Receiving Data Sample 9" on page 66 for
a more sophisticated data receiving thread.

 See also "Queues and Scattered Data" on
page 91 and comments in source code.

Remarks This sample can easily be ported to non-Win32
platforms (Unix, Linux, and Mac).

54 • Chapter 2 • C Interface User Manual • emScon TPI

Metrology Division

 Creating a 'console' application requires the
use of the WSAEventSelect() function with events
and threads.

Windows application For Windows applications, the WSAAsyncSelect()
function is more appropriate. It issues Window
messages instead of events and is simpler to
handle. No separate thread is required (the
window message loop takes this part).

 See Win32 documentation on
WSAAsyncSelect().

Winsock API The Winsock API functions are more efficient
than the Winsock OCX control. The use of a MFC
library permits a very convenient class wrapper
around the Winsock API.

 Refer to the CAsyncSocket and CSocket classes
in “C++ Windows-MFC Application” on page 84
for details.

User Manual • emScon TPI Chapter 2 • C Interface • 55

 Metrology Division

3.C++ Interface

Class Interface
Class design The C++ interface does not provide any

additional functions for the Tracker Server. It
builds upon the C interface and is made up of one
include file, ES_CPP_API_Def.h with the
ES_C_API_Def.h as its basis. The C++ interface
implements two classes CESAPICommand and
CESAPIReceive, apart from wrapper classes for
each data structure (from C-TPI).
CESAPICommand handles sending commands
from the client application to the TS and
CESAPIReceive allows easy receiving and parsing
of data sent by the TS to the client application.

 The advantage of a class design is the
availability of constructors to perform (struct)
initialization. A Tracker Server C++ interface is
preferable to a C low-level interface, if a C++
compiler is available.

 See the Reference Manual for more
information.

Platform Independent Tracker Server client programming remains
platform independent since C++ compilers are
available for virtually every platform.

TCP/IP This chapter does not touch TCP/IP issues. This
sample uses the MSWinsock OCX for
communication, as in Sample 1 & 2.

56 • Chapter 3 • C++ Interface User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 3 • C++ Interface • 57

The class CESAPICommand contains a pure-
virtual function SendPacket(), which must be
overwritten. This approach allows convenient
'Send…' command functions.

SendPacket()

 Dealing with C data structures for sending
commands is no longer required, as they are
completely 'hidden'.

ReceiveData In order to select the data the application is
interested in, CESAPIReceive offers a method
ReceiveData, which is called on data arrival
events, as well as numerous virtual member
functions.

All class member functions are defined 'inline'.
Neither a library nor a .cpp file is required. One
single include file suffices. The C++ interface is
fully transparent with complete source code
provided.

Sample 4 This sample is not a tutorial as the
implementation process is essentially the same as
Sample1. Sample 4 specific differences will be
highlighted.

Sample 4 specifics
Application Framework

1. Creating an application framework and user-
interface

1. Name the project EmsyCPPApiClient.

2. Do not add explicit Connect /Disconnect
buttons.

3. Implement the TCP/IP connection code
to the InitDialog() function and use the
WM_DESTROY handler to close the
connection.

 Not a key difference. It performs the
connection/disconnection
'automatically'.

 Metrology Division

 See EmsyCPPApiClientDlg.cpp/.h
files for details.

4. More buttons and appropriate handlers
are added with the Class Wizard. The
dialog template reads as follows:

Class for Commands 2. Deriving a class for sending commands.

 Key difference to Sample 1.

1. Create a new class named, for example,
CESCppClientApiCommand, which is
derived from the base class
CESAPICommand, and add to project.
This gives a new file pair:
EsCppClientApiCommand.h /.cpp

2. The core of this class declaration reads as
follows:

58 • Chapter 3 • C++ Interface User Manual • emScon TPI

Metrology Division

#define ES_USE_EMSCON_NAMESPACE
#include "ES_CPP_API_Def.h"

class CMSWinsockControl;

class CESCppClientApiCommand : public EmScon::CESAPICommand
{
public:
 CESCppClientApiCommand();
 virtual ~CESCppClientApiCommand();

 void SetSocketPtr(CMSWinsockControl *pWinSockCtrl) {
 m_pWinSockCtrl = pWinSockCtrl;}

protected:
 CMSWinsockControl* m_pWinSockCtrl;

 COleVariant PackIntoVariant(void *pData, UINT sizeOfData);

 // virtual override
 bool SendPacket(void* pPacketStart, long lPacketSize);
};

3. For programming convenience, the class
has a member variable pointing to the
Winsock control, including an
initialization function. The Variant
packing helper has been designed as a
(protected) member function of this
class.

 See "Sample 1-Tutorial" on page 30
for more information.

Winsock Control 3. Based on the Winsock control, the
implementation of SendPacket reads as
follows:

 This function is dependent on
MSWinSockCtrl, SendPacket() function and
connect/disconnect code changes, if some
other TCP/IP communication (Winsock API,
CAsyncSocket or a third party library) is used.

User Manual • emScon TPI Chapter 3 • C++ Interface • 59

 Metrology Division

bool CESCppClientApiCommand::SendPacket(void* pPacketStart,
 long lPacketSize)
{
 try
 {
 COleVariant variantData =
 PackIntoVariant(pPacketStart, lPacketSize);

 if (m_pWinSockCtrl)
 m_pWinSockCtrl->SendData(variantData);
 else
 ASSERT_VALID(m_pWinSockCtrl); // pointer valid?
 }
 catch(...)
 {
 TRACE(_T("MSWinSockCtrl Exception (SendData)\n"));
 return false;
 }

 return true;
}

1. In the dialog class
CEmsyCPPApiClientDlg, declare an
instance of type
CESCppClientApiCommand :

private:
 CESCppClientApiCommand m_EsApiCommand;

2. The implementation of the command
handlers (dialog buttons) reads as
follows:

void CEmsyCPPApiClientDlg::OnButtonStartmeas()
{
 if (!m_EsApiCommand.StartMeasurement())
 TRACE(_T("StartMeasurement failed\n"));
}

3. OR

void CEmsyCPPApiClientDlg::OnButtonPointlaser()
{
 if (!m_EsApiCommand.PointLaser(1.342, 2.09, 0.5))
 TRACE(_T("PointLaser failed\n"));
}

 Textual Error messages, directed to debug
window using TRACE statements, are not
sufficient for an end-user application.

C TPI Source code 4. The same function designed with C, with a
code reduction of about 80%, instead of C++
reads as follows:

 See "Sample 1-Tutorial" on page 30.

60 • Chapter 3 • C++ Interface User Manual • emScon TPI

Metrology Division

void CEmsyCApiClientDlg::OnButtonLaserpointer ()
{
 try
 {
 PointLaserCT data;

 data.packetInfo.packetHeader.type = ES_DT_Command;
 data.packetInfo.packetHeader.lPacketSize =
 sizeof(data);
 data.packetInfo.command = ES_C_PointLaser;

 data.dVal1 = 1.342;
 data.dVal2 = 2.09;
 data.dVal3 = 0.5;

 COleVariant vrtData =
 PackIntoVariant(&data, sizeof(data));

 m_winSockCtrl.SendData(vrtData);
 }
 catch(...)
 {
 TRACE(_T("MSWinSockCtrl Error (PointLaser)\n"));
 }
}

Receiving Data
Sample 4

This Sample requires a client implemented
CDataReceive class, which implements a limited
reception of command-answers, as needed by the
Sample. The CESAPIReceive class, which is
provided in Sample 9, can be used to replace the
CdataReceive, and thereby discard two application
files.

 This replacement is to be treated only as an
exercise for users. It is not recommended to
implement your own receiver class (as part of the
client application).

 See file ES_CPP_API_Def.h, for an example
of CESAPIReceive class.

 See file DataReceive.h/.cpp, for an example
of CDataReceive class.

CESAPIReceive
class Sample 9

This Sample, EmsyCPPApiConsoleClient, with a
CESAPIReceive class demonstrates Sending and
Receiving features of the C++ TPI (among other
features). This Sample is a simple console
application and has no GUI or Winsock Control
(Variants) overhead.

User Manual • emScon TPI Chapter 3 • C++ Interface • 61

 Metrology Division

 Functions OnDataArrivalWinsock1() and
ProcessData() can be copied from Sample 1, with
minor extensions to the 'switch' statement of
ProcessData().

 See also "Receiving Data Sample 9" on page
66 for more information.

CESAPIReceive Class
Description

The following describes the class CESAPIReceive.

 See file ES_CPP_API_Def.h .

This class is represented by the file pair
DataReceive.cpp/.h. CDataReceive is a native class,
i.e. it is not derived from some other base class.

ProcessData() is designed as a member function of
the class. It takes the data as it comes from the
TCP/IP network, and is the 'switch' statement for
arrival data interpretation. Results are not written
directly from the switch statement to the user
interface. A virtual function is called for each type
of arriving data. These virtual functions pass the
data through their command type dependent
parameter to the calling function.

 The interpretation of incoming data in this
switch statement is implemented only as far as
needed for this sample, which is not the case for
CESAPIReceive.

Procedure 1. Derive a class from CdataReceive.

2. Call the ProcessData() function of the class
derived, where the data comes in from the
network, only at one location in the
OnDataArival notification handler.
The derived class must implement only
virtual functions for answer packet types the
client application is expecting. Unrequired

62 • Chapter 3 • C++ Interface User Manual • emScon TPI

Metrology Division

data will just be ignored and the virtual
function of CDataReceive will be called – with
no effect. These functions are 'empty', apart
from a Trace statement for developing
purposes.

3. Using a CDataReceive class (CESAPIReceive
class) allows hiding the awkward data
arrival 'switch' statement from the main
code. In other words: The arrival data
parsing-function becomes a member function
of CESAPIReceive, and is, therefore,
completely hidden from the client
applications.

4. This sample does not exclusively derive a
class from CDataReceive. The dialog class
inherits from CDialog and CDataReceive
(multiple inheritance). This is appropriate
because the dialog class comprises the
OnDataArrivalWinsock1() arrival data
notification handler, which has to call
ProcessData().

 See "Class for Commands" on page 58
for the appropriate declaration.

 See "

class CEmsyCPPApiClientDlg: public CDialog,
 public CDataReceive

5. The dialog class must, therefore, implement
the CDataReceive virtual function overrides.

User Manual • emScon TPI Chapter 3 • C++ Interface • 63

 Metrology Division

64 • Chapter 3 • C++ Interface User Manual • emScon TPI

void CEmsyCPPApiClientDlg::OnSingleMeasurementAnswer(Single Point Measure
Data Sample

 SingleMeasResultT *pSingleMeas)
{
 CString s, sStatus;

 // Do something with the data (format it)
 s.Format(_T("X=%.6lf, Y=%.6lf, Z=%.6lf\n"),
 pSingleMeas->dVal1,
 pSingleMeas->dVal2,
 pSingleMeas->dVal3);

 m_staticResult.SetWindowText(s); // then display it

 // also display return status
 sStatus.Format(_T("%d"),
 pSingleMeas->packetInfo.status);

 m_staticStatus.SetWindowText(sStatus);

 if (pSingleMeas->packetInfo.status != ES_RS_AllOK)
 Beep(100, 100); // command failed
}

6. The data is delivered through a pointer to a
SingleMeasResultT struct function parameter.
This function neither needs to perform any
DataRead, nor any ProcessData
(interpretation).

 It solely uses the data (just display it).

7. This function uses a pointer argument while
the OnCommandAnswer() function has been
designed to take a 'reference' argument (see
comment in code). This constellation is used
to demonstrate the two possibilities. The
actual class should consistently use one or
the other method.

 References should be preferred to pointers
whenever possible in C++ programming.

 See the many comments in the sample source
code.

Remarks • Change the IP address and hard-coded
numbers (coordinates for PointLaser
command) in the sample code as required.

• Replace the Winsock control by some other
TCP/IP communication API, as an exercise.

Metrology Division

• If the Winsock 2.0 API is used, it is
recommended to use the WSAAsyncSelect()
function rather than the WSAEventSelect() for
data receiving.

 In a Windows framework, using
messages is simpler than using events and
threads. Use of MFC CAsyncSocket on the
other hand requires no such consideration –
CAsyncSocket provides a message handler for
data receiving by default.

• The function Laser Pointer toggles the
location of the laser beam between two
(hard-coded) positions. This is not of real
practical use.

• The 'Toggle Speed', toggles the continuous
measurement speed from 1/second to
100/second. To change speed during a
continuous measurement, the measurement
must be stopped before the speed is reset.

 The Stop Meas command is not valid in
single measurement mode.

GUI Design • Inactive buttons are not grayed out. The user
must wait for arrival of the answer from the
previous command, before sending a new
command.

• Radio buttons or list boxes are
recommended, to implement Multi Meas
Mode (continuous) and Single Meas mode
(stationary) mode, rather than simple push
buttons.

• The parameters for Pointer Laser need to be
entered in fields, in a dialog. The present
design has not considered this aspect.

User Manual • emScon TPI Chapter 3 • C++ Interface • 65

 Metrology Division

• Before leaving the application, make sure
that the TS is set to Stationary Measurements
(Single point measurement). Failure to do so
may have unexpected effects, upon starting
another client.

 Reboot the Tracker Server in such cases.
Receiving Data
Sample 9

This Sample, an EmsyCPPApiConsole client with
the CESAPIReceive class in the C++ TPI,
implements a 'safe' data-reading thread (in order
to handle 'clustered' and/or 'scattered' answer
packets correctly, in case of a data 'traffic jam').

 See explanations in "Sample 3" on page 52,
on the multithreaded console application based
on WinSocket API.

 See also explanations in "Sample 4" on page
57 on using a Receiver class similar to
CESAPIReceive.

 This Sample is a minimal, 'single-source' file
and easy to understand, in spite of being a
multithreaded application.

 Set the IP address to the actual TS address,
before building the application.

ActiveX
Component
Sample 12

This ReflectorCtl sample provides an ActiveX
component comprising the most common
reflector commands.

This control skips building up a lookup table for
ID/Name mapping, querying all the defined
reflectors from the system and providing the
appropriate user interface controls.

66 • Chapter 3 • C++ Interface User Manual • emScon TPI

Metrology Division

The Sample contains full source code (Visual C++)
and has a compiled component Reflector.ocx,
which allows use without a Visual C++ compiler.

 No support for this ActiveX component is
provided.

Remarks • The Reflector.ocx control must be registered
before it can be used.

• Only one instance of such a control can be
instantiated per Form/Dialog box.

• The properties 'ServerAddress' and
'PortNumber' can be specified at
(Form/Dialog) design time. However, this
only makes sense if these parameters are
constant. The more common way is to set
these properties programmatically.

• Call the method Initialize after having set
the properties and not before the client
application has successfully connected to
the same address/port. This lets the client
application, instead of the Reflector.ocx,
handle any connecting problems.

• The client application must ignore answers
from commands triggered by the
Reflector.ocx (Get Reflectors, GetReflector and
SetReflector).

• Do not implement an Error Event handler
for Reflector.ocx. The control has a built- in
handler. Visual Basic does not allow it– it
causes a compiler error. If correctly applied,
the component should never fire an error
event.

User Manual • emScon TPI Chapter 3 • C++ Interface • 67

 Metrology Division

• Here is a code sequence for a VB
application. Typically executed in Form
Load:

 Reflector1.ServerAddress = "193.8.34.213"
 Reflector1.PortNumber = 700
Reflector1.Initialize

• It is assumed that the client application has
already successfully connected to the same
address/port before these calls.

Keyboard Interface
Limitation

• This component is primarily designed for
mouse control and does not work properly
with a keyboard interface (E.g. use of arrow
keys in VB).

 See VC/VBA/VB documentation for general
information on ActiveX controls, and how to
include them in applications.

Sample 10 This Sample ('keasytracker') is an EmScon client
application developed on SUSE 7.2 Linux (KDE)
by a third- party provider. It has been published
according to GNU General Public License (GPL).

 For further details see ‘README’ file in the
Sample 10 project folder.

68 • Chapter 3 • C++ Interface User Manual • emScon TPI

Metrology Division

4.COM Interface

High-level Interface
Introduction Unlike the C and C++ TPI, the COM TPI is a DLL

library and not an include file. This DLL provides
an easy to use programming interface for the
Tracker Server. This makes it suitable for
programmers with minimal programming
expertise to design simple tracker applications.

The interface consists of a COM object. It is
designed as an ATL DLL COM server and a
LTControl.dll, as part of the tracker server SDK,
with a built-in TCP/IP communication. The
LTControl COM-object DLL is based on the
tracker server C++ TPI, the Win32 Sockets 2.0 API
and VC++ ATL. The LTControl.dll is, in a sense, a
tracker server C++ client, allowing design of such
a control.

 The programmer is not required to deal with
TCP/IP communication libraries or system
programming interfaces.

The high-level TPI supports both synchronous
and asynchronous methods.

COM objects expose 'interfaces', described by a
Type-Library, which is implicitly included in the
DLL. A pure Type Library LTControl.tlb is also
available, although not really needed. This High-
level interface does not provide any additional
functions (in terms of Tracker Server controlling

User Manual • emScon TPI Chapter 4 • COM Interface • 69

 Metrology Division

functions). LTControl is strictly based on the C++-
TPI, with a high-level, convenient programming
interface.

 See chapter 'COM Interface' in the Reference
Manual TPI, for more information on the
interfaces provided.

 COM interfaces work well together with
Visual Basic and other programming languages
on the Win32 platform, unlike the low-level
interface.

 See "Sample 2-Tutorial" on page 46.

70 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 4 • COM Interface • 71

Advantages Disadvantages

No include-file to deal
with, therefore no
translation required of C-
structs and enums to VB
syntax.

A DLL (ATL COM
component). Its source
code is not public

No TCP/IP library or
function needs to be
provided. All these
functions are built-in.
Only the IP address of
the tracker server needs
to be provided.

Is limited to Win32
platforms.

The high-level interface
offers both synchronous
and asynchronous
communication support.

Due to the COM
interface, the
performance may be
affected.

There are wide varieties
of notification methods
for arrival data when
using asynchronous
communication.

Since TCP/IP
communication is built-
in, there are no 'tuning'
possibilities.

Supports various
programming languages.
Easy to use due to
support of 'IntelliSense'
for Microsoft Visual and
Office programming
tools.

The component needs to
be registered on the client
PC.

COM vs. Low-
Level
Programming

Interfaces and
Notification Methods

All interfaces of the LTControl, including their
methods and properties, are listed in the
Reference Manual.

 See chapter 'COM Interface' in the Reference
Manual, for more information on the interfaces
provided.

 Metrology Division

72 • Chapter 4 • COM Interface User Manual • emScon TPI

In order to get detailed information about the
Interfaces (including data types, properties,
methods and events) exposed by a COM object, a
COM viewer may be used. Visual Studio offers
such a viewer: The OLE/COM Object Viewer can
be launched from the Tools menu of VC++.

LTControl COM Viewer:

File > View Type Lib > LTControl.dll or LTControl.tlb.
Registering COM
Objects

COM objects must be registered on the
application PC before they can be used.

LTControl.dll
Installation

1. Register LTControl.dll on the client PC (both
developer and customer PCs).

2. If LTControl.dll is located in the
C:\WINNT\system32 directory, call
Regsvr32 C:\WINNT\system32\LTControl.dll
from the Start/Run menu of the explorer task-
bar.

 The LTControl.dll does not depend on
any other custom DLL, it can be registered
anywhere. The Windows system directory is
the common location.

3. A message box appears confirming
registration – 'Registering of LTControl.dll
succeeded'.

4. A message such as: Error 'Load Library
failed, error 0x0000007e' most likely indicates
that the PC lacks a correct ATL.dll
installation (missing, wrong version or not
registered).
In this case, first install ATL.dll as described
below. After that, repeat registering of
LTControl.dll.

ATL.dll Installation 1. Copy Atl.dll from ES SDK 'Lib' directory to
Windows system/system32 directory OR to
LTControl.dll directory.

Metrology Division

Unicode version for WinNT/Win2000. ANSI
version for Win9x/Win ME.

 See properties of ATL.dll for operating
systems supported.

2. Register Atl.dll – Regsvr32.exe
<path>\Atl.dll.

3. Repeat registration of LTControl.dll.

Visual Basic client
Sample 5 Tutorial The use of the LT Control provides the right tool

to build a VB Tracker Server client, LtcVBClient.
In contrast to the VB application in Sample 2 with
the Tracker Server low-level interface, which was
not recommended.

 For the application framework and for
initializing COM objects: The LTControl.dll must
be correctly registered before proceeding.

 See "LTControl.dll Installation" on page 72
for details.

1. Launch Visual Basic 6.0, choose from menu
File > New Project > Standard exe. Click OK.

2. Save the form as LtcVBClient.frm and the
project as LtcVBClient.vbp.

3. Choose menu Project > References.

4. In the dialog list box, check the entry
LTControl 1.2 Type Library. Click OK.

 Ensure file path at the bottom of the
dialog matches the control's registration
location, browse for the correct location,
using the 'References' dialog.

ATL Type COM object The LTControl.dll is not an ActiveX (OCX) control.
It is a general ATL type COM object, which can

User Manual • emScon TPI Chapter 4 • COM Interface • 73

 Metrology Division

be used in non-window based applications. It will
also support, for example, pure C-clients (console
applications).

 It is not possible to place an LTControl
instance to the VB Form (as MSWinsck.ocx
requires it).

Differences between
LTConnect &
ILTConnect

Differences between object LTConnect and the
related interface ILTConnect.

• In VB clients, interfaces are not dealt with
directly as objects are.

• The keyword New in the declaration of
LTConnect creates this object within the client
application.

• Local or remote object creation, in the COM
server, depends on the design of a particular
COM object.

• The LTConnect object needs to be created
with New.

 Refer to a COM book for further details.
Accessing Interfaces 1. To access its interfaces, an object variable of

type LTConnect is needed in the declaration
part of the VB application:

Dim ObjConnect As New LTConnect

2. Declare an object for each one of the
remaining types:

Dim WithEvents ObjAsync As LTCommandAsync
Dim WithEvents ObjSync As LTCommandSync

3. Provide either a synchronous or an
asynchronous interface.

 Declaring both, as done here for
demonstration purposes, will result in some
duplicate data arrivals.

74 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

4. The two objects ObjSync and ObjAsync
cannot be created with New (the VB compiler
does not even allow this).

 This is also by design of the COM
component, where these two objects have
been designed as Noncreatable - the object
instances are created in the LT Control's
control scope and not locally in the
application.

5. The keyword WithEvents makes the
application recognize event notifications.

LTCommand Objects An LTConnect object is always required, whereas
only one of the LTCommandSync or
LTCommandAsync objects is required. Depending
on the selected notification mechanism,
LTCommandAsync or LTCommandSync is to be
declared with/without event support (WithEvents
keyword).

1. The non-createable LTCommandSync and
LTCommandAsync act like 'pointers'. The
'pointers' are initialized with the properties
of LTConnect .

2. In the Form_Load function, connect to Tracker
Server and select the desired notification
method.

3. If ConnectEmbeddedSystem has succeeded (no
exception thrown), an LTCommand object has
been created.

4. Initialize the pointers by calling:
Set ObjSync = ObjConnect.ILTCommandSync
Set ObjAsync = ObjConnect.ILTCommandAsync

5. Do not reference
ObjConnect.ILTCommandSync OR
ObjConnect.ILTCommandAsync before the
ObjConnectConnectEmbeddedSystem call.

User Manual • emScon TPI Chapter 4 • COM Interface • 75

 Metrology Division

6. The COM methods throw exceptions in case
of failure. The Form_Load() subroutine
shown below also shows how to handle
them (try/catch for Visual Basic).

7. Add an error handler as shown below in
every handler function that deals with the
COM objects.

 Do not use a global error handler.
Unhandled exceptions will lead to program
abort.

8. The initial code for every Tracker Server
Visual Basic client has to be as shown below,
except the SelectNotificationMethod.

9. Use the Form_Load subroutine as 'template
code' for other VB TPI clients.

10. Set the IP address of the Tracker Server.
Private Sub Form_Load()
 On Error GoTo ErrorHandler

 ObjConnect.ConnectEmbeddedSystem "127.34.8.161", 700

 ' This call may have different parameters in another project
 ObjConnect.SelectNotificationMethod LTC_NM_Event, 0, 0

 ' NEVER FORGET THIS! Note: In real applications there is
 ' usually only one of these:
 Set ObjSync = ObjConnect.ILTCommandSync
 Set ObjAsync = ObjConnect.ILTCommandAsync

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)

 End ' Exit application when connection fails
End Sub

 The End statement in the error case exits the
application, when connection to the tracker server
has failed.

11. Disconnect the Tracker Server in
Form_Unload(). Implement the following
handler:

76 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

Private Sub Form_Unload(Cancel As Integer)
 ObjConnect.DisconnectEmbeddedSystem
End Sub

 See chapter 'COM Interface' in the Reference
Manual for an explanation of the function
ObjConnect.SelectNotificationMethod
LTC_NM_Event, 0, 0.

Synchronous/Asynchro
nous Interface

Differences between the synchronous and
asynchronous interface.

• The functions of the synchronous interface
do not return before the task is completed,
while the asynchronous functions do so (see
C/C++-TPI).

• In general, programming with synchronous
functions is much easier. Handling Data-
Arrival Events or Notifications is not required
(except in some special cases).

• Use of either synchronous or asynchronous
objects depends on the application.

 Use of both is not recommended.

• Running the application in the current state
implicitly connects and initializes the tracker
server upon Form Load and disconnects upon
Form Unload.

Implementing
Synchronous
Commands

It is presumed that how to add buttons and their
related command handler 'skeletons' are known.

 See "Sample 2-Tutorial" on page 46.

1. Add a button named InitSync (caption Init
Tracker (sync)). The command handler should
be completed with the following code:

User Manual • emScon TPI Chapter 4 • COM Interface • 77

 Metrology Division

Private Sub InitSync_Click()
 On Error GoTo ErrorHandler

 ObjSync.Initialize

 Exit Sub
 ErrorHandler:
 MsgBox (Err.Description)
End Sub

2. Since this is a synchronous call:

• ObjSync.Initialize will not return before
the tracker has finished initializing.

• The Exit Sub statement will not be
reached until initialization is finished. A
real application would at least display an
hourglass cursor while the program
resides in the InitSync function.

• The error handler is implemented in
every single handler, otherwise the
application will terminate in case of an
error (unhanded exception).

3. Saving the pointer variables ObjSync and
ObjAsync, and making direct calls such as
ObjConnect.ILTCommandSync initialize will
not work with the VB compiler because
ObjSync/ObjAsync are not real pointers.

 The Set ObjSync =
ObjConnect.ILTCommandSync statement is a
QueryInterface.

4. Add another Button/Handler Measure Single
Point and implement the handler as shown
below. It is presumed the tracker server is set
to 'stationary' when triggering this
command, and the laser beam is attached to
a reflector. The result – as a synchronous
answer – can be shown directly in a message
box (only x, y and z are shown).

78 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

Private Sub StartMeas_Click()
 Dim x As Double
 Dim y As Double
 Dim z As Double
 Dim d As Double 'd is a dummy variable
 Dim b As Boolean

 On Error GoTo ErrorHandler

 ObjSync.MeasureStationaryPoint x, y, z, d, d, _
 d, d, d, d, d, d, _
 d, d, d, d, d, d, b

 MsgBox (x & CStr(" , ") & y & CStr(" , ") & z)

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

 If this command was an asynchronous call, it
would not be possible to display the result within
this function. A result display is performed in the
appropriate asynchronous answer handler.

 For other calls, refer to Sample 5 source code.
Implementing
Asynchronous
Commands

Visual Basic with 'IntelliSense' provides support
for the available functions of an interface with the
function parameters.

1. Add a button named InitAsync (caption Init
Tracker (async)). The command handler
should be completed with the following
code:

Private Sub InitAsync_Click()
 On Error GoTo ErrorHandler

 ObjAsync.Initialize

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

In contrast to the synchronous initialize function,
this one does not stop at the Initialize() function,
Exit Sub is reached immediately. When tracker
initialization is done, a notification or event is
sent.

Catching Events and
Messages

2. For asynchronous commands, the answers
must be handled by some event mechanism.
This could be Events, Windows Messages

User Manual • emScon TPI Chapter 4 • COM Interface • 79

 Metrology Division

(custom window-bound, registered,
WM_COPYDATA).
For Visual Basic, Events are the right choice.
The event mechanism is provided by the
_ILTCommandAsyncEvents interface, which is
a subsidiary of ILTCommandAsync. To
activate this mechanism for a Visual Basic
application, provide the keyword WithEvents
upon the declaration:
When no requirements for catching events
exists, omit the WithEvents keywords in
order to save overhead.

Dim WithEvents ObjAsync As LTCommandAsync

3. When no requirement for catching events
exists, omit the WithEvents keywords in
order to save overhead.

4. When no requirement for catching events
exists, omit the WithEvents keywords in
order to save overhead.

 The synchronous interface has an event
interface, _ILTCommandSyncEvents. It is used for
continuous measurements and (unsolicited) error
messages, which cannot be handled synchronous
by their nature.

 Events are one of the notification methods of
the LT Control. When using Windows messages
for asynchronous notifications the keyword
WithEvents is invalid. Windows messages are
appropriate for VC++ clients and will be
discussed later.

5. The application must declare what
notification mechanism to use. Do this with
the statement shown below. Without calling
this function in the initialization part of the

80 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

application, no notification mechanism will
be activated (when dealing with
synchronous commands exclusively)

 See remarks on continuous
measurement in “Handling Data Arrival –
Continuous Measurements” on page 86.

ObjConnect.SelectNotificationMethod LTC_NM_Event, 0, 0

6. As soon as the WithEvents keyword is
declared, the ObjAsync object (or whatever
the variable is called) is listed in the top left
list box of the Form's source code window.

 Remove WithEvents and save the code –
the list entry will vanish.

7. If ObjAsync is selected in the list box, a list of
all available event handlers is shown in the
right drop-down list.

8. Select to generate the handler framework.
Selecting ErrorEvent will generate a function
named ObjAsync_ErrorEvent.

9. Complete this function with a message box
to read as follows:

Private Sub ObjSync_ErrorEvent(_
 ByVal command As LTCONTROLLib.ES_Command, _
 ByVal status As LTCONTROLLib.ES_ResultStatus)
 MsgBox (command & CStr(" , ") & status)
End Sub

1. This event handler will now be called, for
example on a Beam Broken Event.

Extended
Synchronous
Functions

ObjSync.MeasurStationaryPoint has 18 (basic data
type) parameters. Basic data type parameters are
a requirement in order to use these functions
from VBA (Excel, Access…).

For programming languages supporting
user-defined data types (VC++, Visual Basic),
having a function with only one struct parameter

User Manual • emScon TPI Chapter 4 • COM Interface • 81

 Metrology Division

would be more convenient. LTControl offers a
collection of such 'extended' functions.

 See Reference Manual for details.

One of these functions is implemented in the
sample, MeasureStationaryPointEx:
Private Sub StartMeasEx_Click()
 Dim result As SingleMeasResultT

 On Error GoTo ErrorHandler

 ObjSync. MeasureStationaryPointEx result

 ' display the result
 MsgBox(result.packetInfo.status & CStr(" , ") & _
 result.packetInfo.packetHeader.Type & _
 CStr(" , ") & result.dVal1 & CStr(" , ") & _
 result.dVal2 & CStr(" , ") & result.dVal3)

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

The data type SingleMeasResultT from the C-TPI
is transparent through the COM interface. The VB
application knows this type, through its reference
to the LTControl.

Remark Do not test explicitly against the VB keyword
'True', if using the Get<FunctionName>Ex methods
of the LTControl, for those commands returning
Boolean data within their result structure. This is
because the Boolean member in these structures –
if true – are (1). However, the VB keyword 'True'
evaluates to (-1).

Always test the variable directly, or against 'Not
False'.

82 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 4 • COM Interface • 83

ObjSync.GetContinuousDistanceModeParamsEx dataout Example
If (dataout.bUseRegion) Then
 MsgBox "bUseRegion is True"
End If

or

If Not (dataout.bUseRegion = False) Then
 MsgBox "bUseRegion is True"
End If

are both correct. However, the following would evaluate to a
wrong result:

If (dataout.bUseRegion = True) Then
 MsgBox "bUseRegion is True" ‘ No message even flag true!
End If

C++ Console Application
Sample 6 This is only a test/demo application, made up of

'one source file/function', it should be easy to
understand without further comments.

• The LtcConsoleClient provides a minimal
Tracker Server application based on the
LTControl COM component.

• It is designed as a so-called Console
Application and consists of only about 15
lines of code, to direct the tracker to a certain
point and measure it.

• Set the hard-coded values (IP address,
coordinates) for the Tracker Server.

Synchronous Calls This type of application only handles pure
synchronous calls. Receiving Windows messages
is not possible for a console application.
Implementing an event sink is possible , but
requires some advanced programming
knowledge.

 Include files from the C or C++ TPI are not
required. TPI information is provided by
importing LTControl.tlb.

 Metrology Division

C++ Windows-MFC Application
Sample 7 The LtcCPPClient provides a dialog- based MFC

C++ application. It uses the synchronous
interface, but also implements an event- sink to
catch asynchronous answers (continuous
measurements and error events).

ATL/COM Programmers need to be familiar with ATL/COM
in order to understand the event sink
implementation.

 Refer to a COM book for further details.

The LtcCPPClient covers all essential initial steps
for a successful system start and accurate results,
with some disabled code, which demonstrates all
other variants of notification methods, which
may be more familiar to programmers than event
handling.

 See comments in source code.
Message Notifications The disadvantages of message notifications are:

• The result parameters cannot be received
directly.

• There are only general messages for all types
of answers.

• Usually only the size of a data block is
passed with the message.

• The data block must be first read with
GetData() (except for WM_COPYDATA) and
then interpreted. Interpretation is done with
a 'switch' statement with the ProcessData()
sample code.

 See “Handling Data Arrival – Continuous
Measurements” on page 86.

84 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

This sample also shows one of the features not
shown so far: How to retrieve the reflectors
known to the system. It also demonstrates
continuous measurements.

 View the source code for details. Note that
this code contains a relatively big overhead
needed for user interface issues. The Tracker
Server specific part is not that dominant.

Source Code
Description

• Information that is displayed in list boxes,
such as units, CS type, is automatically read
from the Tracker Server upon startup. What
is seen has been actually selected.

• Changing the items of one list box
automatically creates a 'Set' for the newly
selected item.

• On changing units, CS type etc., some
dependent information may vanish from the
related edit fields to ensure consistency. This
is due to the paradigm 'What you see is
selected'. Do a 'Get' to recover it, which can
also be done by the application.

• On setting new values, the 'Set' command is
automatically followed by a 'Get' (two beep
sounds). The 'Get' is not required (only for
testing and demonstration purpose).

• Reflectors are read upon client startup. Can
be heard by characteristic beeps. They must
be selected in the reflectors list box.

The GetReflectors button is only required
in 'emergency' cases. If the client starts before
the Tracker Server is ready and the client
dialog shows up, but is not able to read the
reflectors yet.

User Manual • emScon TPI Chapter 4 • COM Interface • 85

 Metrology Division

• The application is based on LTC_NM_Event
notification selection. By changing the
parameter of SelectNotificationMethod in
CCPPClientDlg::OnInitDialog() (all variants
are prepared), a different notification method
can be activated. However, there is only an
incomplete implementation of ProcessData()
for these alternate methods (reflector
processing, for example, is not yet complete).

• Only the LTC_NM_Event notification method
is fully implemented in this sample.
However, data transfer works with message
methods. One or the other methods can be
activated for test reasons (a good exercise
would be to complete the missing
implementation).

Only the last call of
SelectNotificationMethod is effective (there
should be only one call to this function).

 See “Handling Data Arrival –
Continuous Measurements” on page 86 for
details on obtaining data in general and
continuous measurements in particular.

Handling Data
Arrival –
Continuous
Measurements

Continuous measurement streams are always
handled asynchronous. That is, even if only a
LTCommandSync is implemented (through which
the Start Measurement command may be
invoked), the continuous measurement packets
will arrive asynchronously.

 A continuous measurement may last very
long. It is not suitable to block execution all the
time.

Methods to Catch
Packets

• Provide a LTCommandSync object with a call
to SelectNotificationMethod, with

86 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

LTC_NM_Event as first parameter.
This setting allows catching the continuous
measurement packets through the event
mechanism. This is especially convenient for
Visual Basic.

• Use one of the Windows Messages
notification methods.

 See "Sample 7" on page 84, as shown
(disabled) in the code.
These may be methods preferred with VC++
clients, especially if the programmer is not
familiar on setting up event sinks. On the
other hand, receiving Windows messages
within VB application is permissible.

• The MultiMeasResultT structure only covers
the first item of the array. The rest of the
lNumberOfResults - 1-array elements are
padded to the packet without gaps.

Continuous measurement packets
mostly contain more than one measurement
value. Iteration through an array of
measurements is necessary.

• A code fragment, on how to process a
continuous measurement packet using the
event mechanism, is shown below. This is a
client implementation, stripped down and
altered from sample 7, of the
ContinuousPointMeasDataReady event, which
exists for both _ILTCommandSyncEvents and
_ILTCommandAsyncEvents interfaces

User Manual • emScon TPI Chapter 4 • COM Interface • 87

 Metrology Division

void __stdcall OnContinuousPointDataReady(long resultsTotal,
 long bytesTotal)
{
 CString s;
 VARIANT vt;
 VariantInit(&vt);

 if (m_pLTConnect == NULL)
 return;

 m_pLTConnect->GetData(&vt);

 MultiMeasResultT *pData =
 (MultiMeasResultT *)vt.parray->pvData;

 ASSERT(pData->lNumberOfResults == resultsTotal);

 for (int i = 0; i < pData->lNumberOfResults; i++)
 {
 s.Format(_T(" %.7lf, %.7lf, %.7lf"),
 pData->data[i].dVal1,
 pData->data[i].dVal2,
 pData->data[i].dVal3);

 // this is application dependent. May differ in your app
 m_pMainWnd->m_edit_Result.SetWindowText(s);
 } // for
} // OnContinuousPointMeasDataReady()

• On using a Windows message notification
method, LTC_NM_WM_Notify, it looks quite
similar. However, with the event method
there is a unique event function for just
receiving continuous results. With message
notify methods, all types of data packets
come in through the the same message
handler. The data must be interpreted with a
'switch' statement. This is done in the
ProcessData() function.

 Use of the CESAPIReceive class of the
C++ interface is another possibility.

• The following implementation demonstrates
receiving, not only data of continuous
measurements, but also, any kind of data.

88 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

LRESULT CCPPClientDlg::OnNotifyMsg(WPARAM wParam, LPARAM lParam)
{
 CString s;
 VARIANT vt;
 VariantInit(&vt);
 m_pLTConnect->GetData(&vt);

 // wParam = msg ID = cookie!
 ProcessData(vt.parray->pvData, wParam);

 return true; // return non-zero if msg handled
}

• Activating this function calls
SelectNotificationMethod() with the following
parameters:

// cookie must be in the valid range for a user defined message
m_pLTConnect->SelectNotificationMethod(LTC_NM_WM_Notify,
 (long)m_hWnd,
 MY_NOTIFY_MSG);

• The message ID (which also acts as a cookie
here) is defined as:

#define MY_NOTIFY_MSG (WM_USER+99)

• Entry in the message map must exist as
follows:

ON_MESSAGE(MY_NOTIFY_MSG, OnNotifyMsg)

• Provide the ProcessData() subroutine.

 Not every type of data packet is fully
implemented:

User Manual • emScon TPI Chapter 4 • COM Interface • 89

 Metrology Division

void CCPPClientDlg::ProcessData(void *ptr, int nCookie)
{
 CString s, s2;

 PacketHeaderT *pHeader = (PacketHeaderT*)ptr;

 switch (pHeader->type)
 {
 case ES_DT_MultiMeasResult: // most frequent ones on top
 {
 MultiMeasResultT *pData = (MultiMeasResultT *)ptr;

 for (int i = 0; i < pData->lNumberOfResults; i++)
 {
 s.Format(_T("%lf, %lf, %lf"),
 pData->data[i].dVal1,
 pData->data[i].dVal2,
 pData->data[i].dVal3);

 // do something with data
 // application dependent
 m_staticContMeas.SetWindowText(s);
 } // for
 }
 break;

 case ES_DT_Error:
 {
 ErrorResponseT *pCmdData = (ErrorResponseT *)ptr;

 s.Format(_T("error: command=%d, status=%d\n"),
 pCmdData->command,
 pCmdData->status);

 AfxMessageBox(s);
 }
 break;

 case ES_DT_SingleMeasResult:
 {
 SingleMeasResultT *pData = (SingleMeasResultT *)ptr;
 ASSERT(pData->measMode == ES_MM_Stationary);

 // TODO: do something with data
 }
 break;

 case ES_DT_ReflectorPosResult:
 {
 // Not implemented
 }
 break;

 case ES_DT_Command:
 break; // nothing to do

 default:
 Beep(100, 100); // all other data currently unhandled
 } // switch
} // ProcessData()

 For further details refer to the sample source
code.

 Limitations for high frequency continuous
measurements (like loss of data) may occur due
to hardware (LAN, PC performance) limitations.
Tests have shown that under good conditions

90 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

(LAN, PC, Client program design), the LT
Control is able to handle the maximum data rate
of 1000 points per second, even through the event
notification mechanism, which might have
slightly less performance than the message
methods – Low performance of IDispatch
Interfaces.

Known Bugs in ATL
Event Sink
Implementation

There are currently two known bugs confirmed
by Microsoft in VC++ 6.0 concerning event
handlers.

• (Q237771): Events Fail in ATL Containers
when Enum Used as Event Parameter.

• (Q241810) IDispEventImpl Event Handlers
May Give Strange Values.

Apply one of the workarounds provided in
MSDN and in Sample 7 (file DataArrived.h) for a
practical application of one of the workarounds
provided.

Queues and
Scattered Data

When the Tracker Server delivers more data
through the TCP/IP network than the client is
able to process, it results in 'traffic jams'.
Although, the TCP/IP network buffers such data
(up to the configured buffer size), single data
packets will be queued. That is, there are no more
'gaps' between the data packets. When the client
is notified from the TCP/IP communication
framework that data has arrived, it has to react to
this notification by a Read call (depending on
your communication tools, this can be recv,
GetData, CAsyncSocket::Receive() etc.).

These read functions are not able to recognize
packet boundaries. Read functions read all data
that is currently available (In practice, the data
will be read in one read- cycle, limited to a certain
buffer size).

User Manual • emScon TPI Chapter 4 • COM Interface • 91

 Metrology Division

 These might be several combined packets or
only a fraction of a (trailing) packet.

Problem Solution 1. Provide a sufficient read-buffer and read all
that is currently pending. The client
application parses the data block into
packets, using the header information and
size of each packet. With a fragmented last
packet, the next read- cycle is started and the
two fragments from the previous and the
current reading are assembled together. This
is probably the most efficient method, since
it minimizes the number of reading
interrupts. However, it is also the most
complex one in terms of data parsing.

• Read only the header to determine the size of
the first pending packet. The rest of the
packet is estimated by reading (packetSize –
headerSize) bytes.
Variant method: 'Peek' (instead of Read) the
header, without removing data from the
socket. With known size, read as many bytes
as indicated by packetSize. See code sample
below.

• The sample code demonstrates a method to
ensure complete packets (if data blocks
arrive scattered) and to avoid data
congestion (traffic jams). It is based on
Winsock 2.0 API functions:

92 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

LRESULT CMsgSink::OnMessageReceived(UINT uMsg, WPARAM wParam,
 LPARAM lParam,
 BOOL& bHandled)
{
 // The read-buffer is kept static for performance reasons.
 // In a real application better make it a member
 // variable of CMsgSink
 //
 static char szRecvBuf[RECV_BUFFER_SIZE];

 bool bOK = true;
 long lReady = 0;
 int nCounter = 0;
 long lMissing = 0;
 long lBytesRead = 0;
 long lBytesReadTotal = 0;
 int nHeaderSize = sizeof(PacketHeaderT);
 PacketHeaderT *pHeader = NULL;

 ATLTRACE(_T("CMsgSink::OnMessageReceived(%lu, %lu)\n"),
 wParam, lParam);

 if (WSAGETSELECTEVENT(lParam) == FD_READ)
 {
 // Just peek the header, do not remove data from queue
 lReady = recv((SOCKET)wParam, szRecvBuf,
 nHeaderSize, MSG_PEEK);

 if (lReady < nHeaderSize)
 {
 if (lReady == SOCKET_ERROR)
 {
 if (WSAGetLastError() == WSAEWOULDBLOCK)
 Sleep(50); // busy - try later
 else
 {
 Beep(1000, 100);
 // not able to get header
 } // else
 } // if

 return true; // non-fatal only a peek, try next time!
 } // if

 pHeader = (PacketHeaderT*)szRecvBuf;

 bOK = bOK && lReady == nHeaderSize &&
 pHeader->lPacketSize >= nHeaderSize &&
 pHeader->lPacketSize < RECV_BUFFER_SIZE &&
 pHeader->type >= ES_DT_Command &&
 pHeader->type <= ES_DT_ReflectorPosResult;

 if (bOK)
 {
 do
 {
 nCounter++;

 if (lBytesRead > 0)
 lBytesReadTotal += lBytesRead;

 lMissing = pHeader->lPacketSize - lBytesReadTotal;

 lBytesRead = recv((SOCKET)wParam,
 (szRecvBuf + lBytesReadTotal),
 lMissing, 0);

 if (lBytesRead == SOCKET_ERROR)
 {
 if (WSAGetLastError() == WSAEWOULDBLOCK)
 {
 Sleep(50); // busy - try later
 continue;
 }
 else
 Beep(1000, 100);

User Manual • emScon TPI Chapter 4 • COM Interface • 93

 Metrology Division

 } // if

 if (nCounter > 64) // emergency exit
 {
 if (lBytesReadTotal <= 0)
 {
 ATLTRACE(_T("not able to read data
(recv)\n"));
 return true; // nothing read, can leave safely
 } // if
 else
 {
 bOK = false;
 break;
 }
 } // if

 ATLTRACE(_T("Loop: BytesRead %ld, BytesReadTotal \
 %ld, PacketSize %ld, Missing = %ld\n"),
 lBytesRead, lBytesReadTotal+lBytesRead,
 pHeader->lPacketSize,
 lMissing - lBytesRead);

 } while (lBytesRead < lMissing);

 if (lBytesRead > 0)
 lBytesReadTotal += lBytesRead;
 } // if

 bOK = bOK && lBytesRead == lMissing &&
 lBytesReadTotal <= RECV_BUFFER_SIZE;

 if (bOK)
 {
 // ProcessReceivedData() is assumed to take one single
 // (complete) data packet. It contains a 'switch'
 // statement to evaluate the packet (we have seen this
 // method several times in this manual / samples)

 if (lBytesReadTotal == pHeader->lPacketSize)
 ProcessReceivedData(szRecvBuf, lBytesReadTotal);
 } // if
 }
 else
 bOK = false;

 if (!bOK)
 {
 // make sure socket is cleaned up on data jam
 // in order to recover ordinary data receiving

 do
 {
 nCounter++;
 lBytesRead = recv((SOCKET)wParam, szRecvBuf,
 RECV_BUFFER_SIZE, 0);

 ATLTRACE(_T("Recover in loop\n"));

 } while (lBytesRead > 0 && nCounter < 128);

 ATLTRACE(_T("Unexpected data - fatal error\n"));

 Beep(250, 10); // data lost
 } // else

 return bOK; // true when message handled
} // OnMessageReceived()

This code ensures that only complete packets are
processed. However, the client may still not be
fast enough to process all the incoming data. The

94 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

TCP/IP framework will buffer data, up to a limit.
If such limits are reached, arbitrary data may
arrive. The above function has (limited) recovery
ability in case this should happen. Data will be
lost in such situations.

Cause of Data Loss • The network is not fast enough.

• The client PC is not powerful enough.

• The application is not able to process data fast
enough.

• The application is not designed appropriately.

 The client application can still buffer
incoming data, for example, in a FIFO list (taking
the data packets as list elements). This approach
can be chosen if the performance constraint is
caused by intensive data processing. The
Winsock API offers certain 'tuning' functions.
These allow, for example, to alter internal
network buffers. Increasing the receive- buffer
with setsockopt(), for example, may increase data
throughput significantly.
#define SOCKET_READ_BUFFER_SIZE (256 * 1024) // 256 KB buffer

int nBufSize = SOCKET_READ_BUFFER_SIZE;
int nVarSize = sizeof(nBufSize); // it's 4 byte, but sizeof is
better style!

nRet = setsockopt(m_sock, SOL_SOCKET, SO_RCVBUF,
 (char *)&nBufSize, nVarSize);
ATLASSERT(nRet != SOCKET_ERROR);

 See documentation on setsockopt() for further
details.

Reading Data
Blocks with Visual
Basic

Arrival data reading with C++, as shown in
'Handling Data Arrival – Continuous
Measurements', can also be ported to VB. Events
for VB are used here, with unique events for
almost every type of arrival data (especially when
using the asynchronous interface). Most of these

User Manual • emScon TPI Chapter 4 • COM Interface • 95

 Metrology Division

pass their results through basic data type
parameters.

 See “Handling Data Arrival – Continuous
Measurements” on page 86.

 Message notification methods with VB are
not demonstrated here.
However, there are some exceptions where the
data must be retrieved explicitly upon an
incoming event. These types of events can be
identified by the DataReady term in their names.
The continuous measurement events are among
these.

The code below shows an implementation of the
ContinuousPointMeasDataReady() event handler. It
does not demonstrate the processing of the data
received. This handler does some diagnostics –
checks whether the size of read data complies
with the passed parameter. If OK, the size is
displayed, otherwise an error message is shown.

By calling the ObjConnectGetData() function, the
arrived data (that caused the event) is being read
into a local buffer. The application interprets and
processes the data. In order to get the
measurement values, loop through the array and
interpret the array elements with MeasValueT (not
shown here).

 VB may not be the right choice to process
(high rate) continuous measurements, especially
when running the interpreter. The VB project
must be compiled first.

96 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

Private Sub ObjAsync_ContinuousPointMeasDataReady(_
 ByVal resultsTotal As Long, _
 ByVal bytesTotal As Long)
 Dim data As Variant
 Dim tp As VbVarType
 Dim sz As Long

 ObjConnect.GetData data
 tp = VarType(data) ' type; we expect a Byte arryay

 If (tp = vbArray + vbByte) Then ' Byte Array
 sz = UBound(data) + 1 ' index is zero based!

 If (bytesTotal = sz) Then
 MsgBox sz 'display # of bytes received
 Else
 MsgBox CStr("Unexpected size:") & sz _
 & CStr(", expected:") & bytesTotal
 End If

 End If
End Sub

 It is not necessary to read data here (with
GetData). Answers may be filtered out and only
those data packets of interest can be read.
With TCP/IP data must be read at socket level
(see previous samples) otherwise no notification
will arrive again.

The principles shown here also apply to message
handlers, if one of the message notification
mechanisms is selected.

 See “Answers from Tracker Server” on page
25 on how to mask/evaluate incoming data
blocks.
The LTControl COM component can also be used
with VBA (Visual Basic for Applications), the
built-in Macro language of MS Excel, Word and
Access – with the exception that structs and enums
are not fully supported with VBA that comes
with Office 97. 'Ex' functions that take struct
parameters cannot be used. VBA that comes with
Office 2000 no longer has such limitations.

VBA Macro-
Language Support
(Excel, Word,
Access)

 It is highly recommended to use Office 2000
or higher for Tracker Server VBA Programming.
Office 97 (Excel 97/Word 97) - apart from a

User Manual • emScon TPI Chapter 4 • COM Interface • 97

 Metrology Division

missing UDT - contain some bugs that make
development of Tracker Server clients virtually
impossible, as soon as events are involved. This
bug leads to a completely corrupted file upon file
saving, after an event has arrived.
For this reason, Excel samples delivered with the
TPI-SDK are in Excel 2000 format. They may run
with Excel 97 , but may be destroyed as soon as
any changes are saved. Always maintain a safe
(read-only) copy.
The following remarks only apply to Office 97
programming (Office 2000 VBA behaves as
ordinary VB).

User-defined Types,
the Differences
between Visual Basic
and VBA97

• Both allow defining user-defined structs
locally. However, those structs exported by
the LTControl (such as PacketHeaderT,
SingleMeasResultT) are only recognized from
within Visual Basic. VBA claims an error
Automation type not supported if declaring, for
example, a variable like:

Dim val As SingleMeasResultT // works with VB, but not VBA97

• Enums are not supported by VBA97. The
compiler does not know the keyword Enum.
User-defined enums cannot be defined
locally, although this works with ordinary
Visual Basic. It is also not possible to use
enum- type variables that are exported by the
LTControl. Declaration as follows are not
possible in VBA97:

Dim cmd as ES_Command // works with VB, but not VBA97

• When implementing an EventHandler that
has enum-type parameters in Visual Basic will
read as follows (only function header
shown):

98 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

Private Sub CommandSync_ErrorEvent(_
 ByVal command As LTCONTROLLib.ES_Command,_
 ByVal status As LTCONTROLLib.ES_ResultStatus)

• When doing the same in VBA97 it will read
as follows:

Private Sub CommandSync_ErrorEvent(ByVal command As Long, _
 ByVal status As Long)

• Visual Basic keeps the enum type
information and recognizes the parameters
with their correct enum- types, while VBA just
passes them as long parameters.
However, the symbols of the enum values are
correctly recognized, although not checked
by the compiler for correct typing (which can
lead to errors, which are difficult to find).
This problem is not specific to VBA, it also
exists in VB. There are two different
situations where enums and their value-
symbols affect the interface:

• Method takes enum type parameters, for
example, call SetMeasurementMode the same
way for both VB and VBA:

ICommandSync::SetMeasurementMode(ES_MM_ContinuousDistance);

• ES_MM_ContinuousDistance will be correctly
recognized as having the value '2' (see enum
definition).

• Correct typing of values: VB as well as the
VBA interpreter will not recognize typing
errors in enum symbols here. However, both
VB and VBA provide 'IntelliSense', providing
for a selection from a list rather than having
to type them in.

• Event handlers, as we have seen above, pass
enums as long values in VBA. The incoming
values can be tested against enum symbols.
In an event handler, the following code

User Manual • emScon TPI Chapter 4 • COM Interface • 99

 Metrology Division

might be typical (example ErrorEvent in
VBA):

Private Sub CommandSync_ErrorEvent(ByVal command As Long, _
 ByVal status As Long)
If (command = ES_C_Initialize) Then
 ' do something
End If

If (status = ES_RS_NoTPFound) Then
 ' do something
End If
End Sub

 Use extreme caution while typing the
symbols with VBA 97. No 'IntelliSense' support is
available.

Conclusion • There is no problem with enums and VBA97.
It is just a potential error source due to
missing type checking.

• Structs (unless locally defined) are not
supported in VBA97. LTControl offers an
alternative to these functions offering no
significant restriction on using VBA97.

• None of the event functions has struct
parameters, and have, therefore, no
restriction with VBA97 (both synchronous
and asynchronous interface).

Continuous
measurements
and VBA

Events of continuous measurements do not
directly pass the data.

 See “Handling Data Arrival – Continuous
Measurements” on page 86 for details.

Handling continuous measurements within VBA
requires care. Events can be 'subscribed' with the
WithEvent keyword and pending data can be read
with GetData(), as shown in:

 See “Reading Data Blocks with ” on page 95
for details.

100 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 4 • COM Interface • 101

The unavailability of (LTControl) structures
prevents masking the data. With the byte-layout
of the data blocks the appropriate bytes can be
extracted 'manually' and assigned to basic data
types.

 This is not convenient and exceeds the
typical Excel programmer's expertise.

Masking Data

Even with VB, although structs are available,
masking data is not that easy as in C++. By
providing some helper functions, data blocks can
be copied to appropriate struct parameters
instead of pointer type-casts:
ILTConnect::ContinuousDataGetHeaderInfo()
ILTConnect::ContinuousPointGetAt()
ILTConnect::ContinuousPoint2GetAt()
ILTConnect::Continuous6DDataGetAt()

This allows extracting information of interest
from data blocks of type ES_DT_MultiMeasResult,
ES_DT_MultiMeasResult2 and
ES_DT_Multi6DMeasResult.

A VB (VBA) implementation, with comments, of
the ContinuousPointMeasDataReady event handler
that demonstrates usage of these functions reads
as follows:

 Metrology Division

Private Sub LtSync_ContinuousPointMeasDataReady (_
 ByVal resultsTotal As Long, ByVal bytesTotal As Long)

 ' a continuous point meas packet came in. Note that in
 ' case of continuous measurements (due to multiple points /
 ' variable size of packet) only # of results and packet size
 ' are passed in (which both are not really needed here)
 ' So we first must GET the data, then retrieve information
 ' out of the gotten block.

 ' since we are doing function calls to a COM object
 ' (LtConnect) that can throw exceptions, we need an error
 ' handler. Note we would not require an error handler in the
 ' other Event Handlers (LtSync_ReflectorsData,
 ' LtSync_ReflectorPositionData) because (usually) no COM
 ' functions are called there subsequently

 On Error GoTo ErrorHandler

 ' 1. Get the data

 Dim data As Variant
 LtConnect.GetData data

 ' 2. Get header info. Calling this function is optional.
 ' the only thing we need here is numResults. However,
 ' it's the same as resultsTotal passed to the functions.

 Dim numResults As Long
 Dim measMode As Long
 Dim temperture As Double
 Dim pressure As Double
 Dim humidity As Double

 LtConnect.ContinuousDataGetHeaderInfo data, numResults, _
 measMode, temperture, pressure, humidity

 ' since we have numResults twice from different paths, lets
 ' check them for compliance!

 If Not (numResults = resultsTotal) Then
 MsgBox "Fatal Error - unexpected discrepancy"
 End If

 ' since we know how many results, we can loop over the index
 ' Note that index runs form 0 to numResults - 1

 For index = 0 To numResults - 1

 ' data and index are input parameters, rest output

 LtConnect.ContinuousPointGetAt data, index, status, _
 time1, time2, dVal1, dVal2, dVal3

 ' TODO: do something with each result here

 Next

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

ContinuousPointGetAt()/Continuous6DDataGetAt()
may have an impact on performance. They have
been primarily designed for use with VB(A). For
C++ applications, more efficient ways to extract
continuous measurements exist.

102 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

VBA applications, depending on data processing,
may not have enough performance when using
continuous high data rates. Always run compiled
versions. In special cases the incoming results
need to be buffered.

Use of values instead of symbols, in Visual Basic,
avoids the problem of typing incorrect enum
symbols, which cause errors difficult to detect.

 A complete .tlh file is automatically
generated when importing LTControl.tlb into a
VC++ project.

Scripting
Language Support

Pure scripting languages VBS (Visual Basic
Script), JavaScript etc. are currently not
supported by the LTControl COM component.

This would require IDispatch interfaces rather
than custom interfaces. Combinations of IDispatch
and custom interfaces (dual interfaces) have the
same disadvantage as IDispatch – lack of
performance.

Excel Control for Tracker Server
Sample 8 This sample works only with Excel 2000, and

consists of an Excel sheet with a VBA macro
LtcExcel. Tracker server client VBA-
programming with Excel 97 (Office 97) is not
recommended. The variant
LtcExcelWithImage2.xls is an extended version of
the LtcExcel.xls application and includes ‘Still
Video Image’ support. This feature requires the
tracker being equipped with a video camera.

 See “VBA Macro-Language Support (Excel,
Word, Access)” on page 97.

The essential difference between a VB client and
an Excel client is that the Excel sheet takes the

User Manual • emScon TPI Chapter 4 • COM Interface • 103

 Metrology Division

role of a VB Form. That is, data input/output goes
through cells.

Sample 11
GetStillImage

This LtcWin32Client sample demonstrates the
GetStillImage command, which requires a camera
mounted on the tracker. The application skips the
physical disk bitmap file. The bitmap file contents
is read directly into memory buffers and shown
on screen. This also allows a simple full size
scaling option.

Before application start, the system settings flag
'Has Video Camera' must be enabled.

Asynchronous
interface

This sample implements the more complex (from
programmer's point of view) asynchronous
interface. The complexity comes from the fact that
the programmer has to perform the task of
synchronizing, because command calls are non-
blocking. This is required for data that is non-
synchronous (for example continuous
measurements – not in this application,
however.).

 See implementation of synchronous
command for GetStillImage in “Remarks” on page
105.

 This sample uses a different method than the
relatively complex connection point interface in
Sample 7. The connection point interface is a
solution, when using Visual Basic/VBA.

This is a pure Win32 application and does not use
the MFC library. This was intended in order to
make everything as transparent and 'lightweight'
as possible. The implemented bitmap (file)
reading algorithm is not intended for general
purpose other than the simple b/w camera image
format currently provided.

104 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 4 • COM Interface • 105

When designing a client application using the
LTControl COM component, either the
synchronous or the asynchronous command
interface must be used.

Remarks

• With the asynchronous interface and the
events notification (that is, calling
SelectNotificationMethod with
LTC_NM_Event), an Event- Sink must be
implemented. In VB, this is done by defining
the WithEvents keyword, but in C++ this is a
bit more complicated. In addition, the
appropriate event handlers must be
implemented .

 With any other notification mechanism,
the event sink is not required and the
WithEvents keyword must be removed.
Implement Windows message handlers and
not event handlers, in this case.

• With the synchronous interface, some
answers remain asynchronous by their
nature - continuous measurement packets,
Reflector Positions and error answers (these
may partly occur non-command related, for
example beam broken).
With synchronous commands, events or
notifications must still be caught - See former
paragraph. Any other notification
mechanism does not need an event sink, and
the WithEvents keyword must be removed.
In this case, do not implement event
handlers; appropriate Windows message
handlers must be implemented instead.

• Using both interfaces in the same LTConnect
instance – although possible – usually makes

 Metrology Division

no sense and partly leads to duplicate
answers.

• On multi tracker (multi tracker server)
systems, create a separate instance of
LTConnect for each tracker.

• Do not test explicitly against the VB keyword
'True', if using the Get<FunctionName>Ex
methods of the LTControl, for those
commands returning Boolean data within
their result structure. This is because the
Boolean member in these structures, if true,
is one (1). However, the VB keyword 'True'
evaluates to (-1). Always test the variable
directly, or against 'Not False'.

ObjSync.GetContinuousDistanceModeParamsEx dataout Example
If (dataout.bUseRegion) Then
 MsgBox "bUseRegion is True"
End If

or

If Not (dataout.bUseRegion = False) Then
 MsgBox "bUseRegion is True"
End If

are both correct. However, the following would evaluate to a
wrong result:

If (dataout.bUseRegion = True) Then
 MsgBox "bUseRegion is True" ‘ No message even flag true!
End If

106 • Chapter 4 • COM Interface User Manual • emScon TPI

Metrology Division

5.Command Description

Special Functions
Some of the commands/procedures, which have
been referred to in this manual are described in
detail, with some background information.

Get Reflectors
Command

The GetReflectors command is often
misinterpreted. GetReflectors is used to 'ask' the
Tracker Server, which reflectors are currently
defined, and to get the relation between reflector
names and reflector IDs.

Related Commands • SetReflector

• GetReflector
Comments GetReflectors causes as many GetReflectorsRT data

packets to arrive, as reflectors are defined in the
tracker database. Each one of these packets
contains the following information:
struct GetReflectorsRT
{
 struct BasicCommandRT packetInfo;
 int iTotalReflectors;
 int iInternalReflectorId;
 enum ES_TargetType targetType;
 double dSurfaceOffset;
 short cReflectorName[32]; // Unicode!
}; of Reflector data packets of the following

iTotalReflectors iTotalReflectors is just for programmers’
convenience.

• Names the number of reflectors known to
the system and has the same value in every
packet.

User Manual • emScon TPI Chapter 5 • Command Description • 107

 Metrology Division

• Provides information, on arrival of the first
packet, as to how many packets are still
outstanding.

• Counts the incoming packets to know when
the last one has arrived.

IInternalReflectorId/cRe
flectorName

The commands iInternalReflectorId and
cReflectorName provide important information for
the user interface/programmer

• The reflector name is a string value (in
Unicode), which is see on the user interface
of the application software.

• This reflector name is an alias for the
reflector ID and cannot be resolved by the
system.

• The system can (internally) only deal with
reflector IDs, which are integer numbers.

• The commands take/return a reflector ID as a
parameter.

• It is crucial to provide the correct reflector ID
to SetReflector.

 Passing the ID of an unintended (but
existing) reflector will cause wrong
measurement results.

• Programmers often fill all reflector names in
a list box. When the user selects one of the
reflectors shown in the list box, a SetReflector
command is carried out.

 Hence the need for a 'lookup table'.
List index • It is not correct to use the index of the list box

as a reflector ID. This is because the reflector
IDs are arbitrary in sequence and may
contain gaps.

108 • Chapter 5 • Command Description User Manual • emScon TPI

Metrology Division

• The programmer must not assume that the
reflector IDs are a sequence of 1….n without
any gaps. Although most systems may
deliver reflectors with sequential reflector
IDs starting from 0 with no gaps

 This may not be presumed. Every
system behaves differently.

• GetReflectors may deliver for example 3
reflectors with the following Names and IDs:

Name ID
CCR-75mm 7
CCR-1.5in 2
TBR-0.5in 5

Lookup Table The list box indices will range from 0 to 2, when
the three names are entered in a control list box,
in the order shown above. A lookup table is
therefore required to match the index values to
the reflector IDs. Such a lookup table is shown
below:
Index ID
0 7
1 2
2 5

 The call to SetReflector must pass the reflector
ID, not the list box index. A frequent source of a
programming error.

Reflector Name –
Unicode Format

The reflector name is always in Unicode format,
irrespective of whether the application is in
Unicode or ANSI.

 Names in C/C++ applications may have to be
converted accordingly.

User Manual • emScon TPI Chapter 5 • Command Description • 109

 Metrology Division

 See "Sample 7" on page 84, which
implements reflector handling with a list box. It
uses a MFC Map as a lookup table.

 Simpler solutions exist with just an integer
array.

 See also "Sample 7" on page 84 or "Receiving
Data Sample 9" on page 66, on how to interpret
reflector names in Unicode format correctly.

Still Image
Command

For trackers equipped with an Overview Camera,
the GetStillImage command takes an image and
delivers it as a file image data block.

Related
Commands

• GetStillImage

• SetCameraParams

• GetCameraParams

• StillImageGetFile (COM, not in C++)

• WriteDiskFile (COM only)

 These commands are available on all TPI
levels (C, C++, COM). Set/GetCameraParameters is
not explained here further.

 See Reference Manual for details.
Preconditions The following preconditions have to be fulfilled:

• Camera mounted on tracker

• System settings: “Has video” flag activated

• Tracker must be in camera view (command
ActivateCameraView)

Application of
GetStillImage – C/C++

The application of GetStillImage is explained
below using code fragments.

110 • Chapter 5 • Command Description User Manual • emScon TPI

Metrology Division

 GetStillImage must be called with the
parameter ES_SI_Bitmap. The parameter
ES_SI_Jpeg is not supported yet.

• The answer to a successfully executed
GetStillImage command results in a
GetStillImageRT data structure.

• Apart from the common header information,
this structure echoes the file type
(imageFiletype =ES_SI_Bitmap), the size of
the file (lFileSize), and the first Byte of the
file (cFileStart).

• The following code accesses the core file data
and writes it to a physical disk file:

 // assume pData contains the data- block received
 // to a GetStillImage(ES_SI_Bitmap) command

 long lFileSize = ((GetStillImageRT*)pData)->lFileSize;
 char cFileStart = ((GetStillImageRT*)pData)->cFileStart;

 FILE *pFile = NULL;

 if ((pFile = fopen("C:\\Temp\\img.bmp", "wb")) != NULL)
 {
 long lWritten =
 fwrite(&cFileStart, 1, lFileSize, pFile);

 if (lWritten != lFileSize)
 printf("File could not be written(\n");
 else
 printf("wrote %d bytes\n", lWritten);

 fclose(pFile);
 }

• The disk- file can be skipped and a memory-
mapped file can be used instead. OR

• With the file structure of the Bitmap file, the
bitmap information can be extracted from
the data block and used directly with GDI
functions.

• In the code above, it was assumed that pData
contained a complete GetStillImageRT
structure with complete file data padded.

User Manual • emScon TPI Chapter 5 • Command Description • 111

 Metrology Division

112 • Chapter 5 • Command Description User Manual • emScon TPI

• Using WinSock2 API or MFC CasyncSocket,
to read directly from the socket, must
consider the implications of large file data.

WinSock2 API/MFC
CasyncSocket

• Since the file data is relatively big (~70
KB), it is very unlikely that it will arrive
as one single data block over TCP/IP.

• Provisions must be made to repeat
reading data until the data packet is
complete.

• A technique to achieve this is shown in
the OnMessageReceived code sample

 See "Queues and Scattered Data" on
page 91.

 See also receiver thread in
"Receiving Data Sample 9" on page 66.

COM TPI within C/C++ When using the COM TPI (within a C/C++
application), the results of the LTControls
GetStillImage (synchronous) function can be
assumed to be complete. See related code extract
below. When receiving StillImage data
asynchronously (Event Handler,
MessageHandler), the difference is that the data
will not be provided directly through a
parameter. So ILTConnect::GetData() must be used
first.

 Note the Variant- type parameter of the
fileData.

 See "Application of GetStillImage – C/C++" on
page 110.

Metrology Division

User Manual • emScon TPI Chapter 5 • Command Description • 113

void CCPPClientDlg::OnButtonStillImage() GetStillImage –
Synchronous

{
 HRESULT hr = 0;
 long lFileSize;

 VARIANT vt;
 VariantInit(&vt);

 try
 {
 if ((hr = m_pLTCommandSync->GetStillImage(ES_SI_Bitmap,
 &lFileSize, &vt)) == S_OK)
 {
 ASSERT(vt.parray->rgsabound[0].cElements ==
 (unsigned long)lFileSize);

 FILE *pFile = NULL;

 // write file to current runtime location
 if ((pFile = fopen("image.bmp", "wb")) != NULL)
 {
 long lWritten = fwrite(vt.parray->pvData, 1,
 lFileSize, pFile);

 if (lWritten != lFileSize)
 AfxMessageBox(_T("File could not be written\n"));

 fclose(pFile);

 // Display the image using MSPaint,
 // but first close previous instance
 //
 HWND hWnd = ::FindWindow(_T("MSPaintApp"), NULL);

 if (hWnd) // paint is already running - close first
 ::SendMessage(hWnd, WM_SYSCOMMAND, SC_CLOSE, 0);

 WinExec("mspaint.exe image.bmp", SW_SHOWNOACTIVATE);
 } // if
 } // if
 }
 catch(_com_error &e)
 {
 Beep(4000, 100);
 AfxMessageBox((LPCTSTR)e.Description());
 }

 VariantClear(&vt); // Avoid memory leak
}

 Metrology Division

 GetStillImage –
Asynchronous

void __stdcall OnStillImageDataReady(ES_StillImageFileType
 imageFileType, long fileSize, long bytesTotal)
{
 ASSERT(m_bUseAsync);

 VARIANT vt;
 VariantInit(&vt);

 m_pLTConnect->GetData(&vt);

 ASSERT(vt.parray->rgsabound[0].cElements ==
 (unsigned long)bytesTotal);

 GetStillImageRT *pData =
 (GetStillImageRT *)vt.parray->pvData;

 ASSERT(pData->lFileSize== fileSize);

 // Do something with the file, for example write out
 // to a disk file – like shown in code above

 VariantClear(&vt); // Avoid Memory leak
}

COM/VB(A) Neither type- casts nor writing binary files are
common tasks in VisualBasic. In order to achieve
the same StillImage features from VB(A), some
convenience Functions have been added to the
COM TPI: StillImageGetFile and WriteDiskFile.

This is an extract from an Excel application. The
image is displayed in an Image dialog control
(named Image1):
Private Sub GetStillImage_Click()
 On Error GoTo ErrorHandler

 Dim fileData As Variant
 Dim size As Long

 ObjSync.GetStillImage ES_SI_Bitmap, size, fileData
 ObjConnect.WriteDiskFile fileData, "C:\Temp\img.bmp"

 ' Now load picture into sheet
 Image1.Picture = LoadPicture("C:\Temp\img.bmp")

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

Event handler Within an event handler, the file data structure
must be extracted first, since GetData delivers the
complete data packet including header
information. A similar helper function is required
in VB, since no casting to (GetStillImageRT*) is
available.

 See "Continuous measurements and VBA" on

114 • Chapter 5 • Command Description User Manual • emScon TPI

Metrology Division

page 100 for similar method using
ContinuousDataGetHeaderInfo.
Private Sub ObjAsync_StillImageDataReady(ByVal imageFileType As
LTCONTROLLib.ES_StillImageFileType, ByVal fileSize As Long,
ByVal bytesTotal As Long)

 Dim fsize as Long ‘dummy

 ObjConnect.GetData data 'Get whole packet (incl header)

 ' retrieve out size and file data
 ObjConnect.StillImageGetFile data, fsize, file

 ObjConnect.WriteDiskFile file, "img.bmp"

 ' Now load picture into sheet
 Image1.Picture = LoadPicture("img.bmp")

End Sub

 Although designed for use with VB,
StillImageGetFile and WriteDiskFile can also be
used in LTControl based C++ applications.

Image Click Position Click positions on the Image are currently written
out to Excel cells. These values can be used to
calculate relative tracker movement angles, call
MoveRelativeHV to direct the tracker there and
then request a new Image.
Private Sub Image1_MouseDown(ByVal Button As Integer, ByVal
Shift As Integer, ByVal X As Single, ByVal Y As Single)
 Beep
 ws.Cells(2, 2).Value = X
 ws.Cells(3, 2).Value = Y
 ws.Cells(5, 2).Value = Shift
End Sub

Live Image display
Live Image Control
LTVideo2.ocx

The live camera display from the Overview
Camera can be implemented into user
applications by using an ActiveX control,
LTVideo2.ocx. See SDK lib directory,
ANSI/Unicode subdirectories.

Registering
LTVideo2.ocx

LTVideo2.ocx is an ActiveX type COM object and
requires registration on the Application
Processor.

From the command line perform the following
command:

User Manual • emScon TPI Chapter 5 • Command Description • 115

 Metrology Division

Regsvr32 <Path>\LTVideo2.ocx, where <path>
depends on the location of the file – typically
C:\WINNT\System32.

ANSI/Unicode Version Use the Ansi version for Win98/ME platforms
and the Unicode version for WinNT/2000.

 See Version info of LTVideo2.ocx for details,
under File Properties > Version TAB.

Development
Platforms

For Visual Basic or Office, the ActiveX controls
must be added as a reference.

For VC++, a wrapper class is generated using:

Add to Project/Components > Controls > Controls
type library from Visual Studio.

LTVideo2.tlb LTVideo2.tlb is the related type library delivered
for convenience. LTVideo2.ocx contains all type
information required.

Server Address LTVideo2.ocx has a property server address,
which must be set according to your server
address.

The port number is 5001. Any changes to the port
number must also be done on the server side.

The size must have a width/height proportion of
4:3. The image must be started/stopped by
invoking the method Start/StopLiveImage.

 See Microsoft documentation, for further
information on how to use ActiveX controls in
general.

Events/Methods The essential methods of the camera OCX are:

• StartLiveImage()

• StopLiveImage()

To alter the default frame rate (15/sec), the
following methods are used:

116 • Chapter 5 • Command Description User Manual • emScon TPI

Metrology Division

• FrameRateStepUp()
• FrameRateStepDown()

The following event, VideoClick, is used:
void VideoClick(double deltaHz,
 double deltaVt,
 long posX,
 long posY,
 long flags);

This event occurs when clicking on the image
with the mouse. The event parameters are as
follows:

• DeltaHz, deltaVt: The angles that can be
passed to the MoveHV command, in order to
move the tracker to the clicked position.

• PosX, posY: The pixel values of the clicked
position within the image coordinate system
(top/left = 0, 0).

• The flags parameter can be used to figure out
which modifier keys are pressed during the
click. The flags parameter is the same as
provided by the OnLButtonDown standard
message.

 See Microsoft MFC documentation, for
details.

• Server address and Port number must be
passed as properties.

• An RGB triplet can be passed to alter the
color of the crosshair

Orient To Gravity
Procedure

This function is used to measure the tilt of the
tracker's primary z-axis (standing axis) with
respect to the vertical. This can be used to orient
the measurement network to gravity. The tilt is
specified by two angular components about the
tracker's internal x and y-axes.

Related Command CallOrientToGravity

User Manual • emScon TPI Chapter 5 • Command Description • 117

 Metrology Division

118 • Chapter 5 • Command Description User Manual • emScon TPI

• This command is only available in
combination with a Nivel20 Inclination Sensor.

Comments

• Executing this command drives the tracker
head to 4 different positions on the xy plane:

• Taking Nivel20 measurement samples.

• In addition, the station inclination
parameters Ix and Iy are calculated and
returned as result parameters.

• Executing this command does not 'implicitly'
apply any orientation values to the system.

• In order to 'activate' the station orientation to
gravity, the two result values, Ix and Iy, must
be explicitly set with the command
SetStationOrientationParams (Rotation angles
rot1 and rot2).

 See "Mathematics" on page 129 for
mathematical description.

Transformation
Procedure

This procedure matches a measured set of points
to a given set of nominal points by using a least
squares, best fit method. The procedure calculates
the 7 parameters (x,y,z, omega, phi, kappa, scale),
which describe the 'transformation filter' to be
applied to the measured points in order to
represent these in the coordinate system defined
by the nominal points.

Related Commands • ClearTransformationNominalPointList

• ClearTransformationActualPointList

• AddTransformationNominalPoint

• AddTransformationActualPoint

• SetTransformationInputParams

• GetTransformationInputParams

• CallTransformation

Metrology Division

• GetTransformedPoints
Comments The command CallTransformation displays a

transformation carried out with
Set/GetTransformationParams

Before doing a CallTransformation, both point lists,
nominal and actual must be prepared. They must
contain the same number of elements.

EmScon System
Settings

The system settings of emScon (units, coordinate
type and coordinate system) must reflect the
current input data. Point input values
(nominal/actual) are interpreted by emScon based
on the current emScon system settings.

• Additional parameters can be set by using
the SetTransformationInputParams command
(For example to fix or weigh certain
parameters).

• After a successful calculation, additional
results in terms of transformed points and
residuals can be retrieved optionally by
using GetTransformedPoints.

 None of the 7 calculated transformation
parameters (received as output from
CallTransformation) are automatically applied
to the system. This must be done explicitly
by calling SetTransformationParams.

 See "Mathematics" on page 129 for
mathematical description.

Automated
Intermediate
Compensation

The Intermediate Compensation is a simple and
fast procedure to perform a fully automated
intermediate compensation, where the tracker is
in a fixed installation.

Tracker Geometry Out of a total of 15 parameters, which affect the
trueness of the tracker geometry, the most

User Manual • emScon TPI Chapter 5 • Command Description • 119

 Metrology Division

significant changes are affected by these three
parameters:

 See emScon manuals, for more information.

• Transit axis tilt, i

• Mirror tilt, c

• Vertical index error, j

Intermediate Compensation refreshes these three
parameters by taking a small number of Two-face
measurements. If the result is accepted, it updates
only these three parameters and takes over the
rest of the overall 15 parameters from the last Full
Compensation. It is a simpler and faster
procedure than a Full Compensation.

Intermediate vs. Full
Compensation

Intermediate Compensations do not replace Full
Compensations. Regular intermediate
compensations extend the interval at which full
compensations need to be carried out.

Setup A recommended setup is shown below with a
network of fixed targets. Based on a given drive
library the laser tracker measures the target
points automatically and calculates the
Intermediate Compensation results.

 The automated Intermediate Compensation
routine requires that all target locations are fitted

120 • Chapter 5 • Command Description User Manual • emScon TPI

Metrology Division

with reflectors (recommended 0.5” Tooling Ball
or Corner Cube), before the routine is started.

Area Required Make sure that no one walks around the area
during the whole Compensation procedure.
Vibration can affect the measurement and
walking through the beam causes the signal to
break. If a measurement fails, the system
automatically repeats the measurement to
achieve a successful measurement, a maximum of
three times.

Procedure
Requirements

The automated Intermediate Compensation can
only be started when the Leica Tracker system is
ready to measure.

 See "Integration in Application Software" on
page 15.

For the initial setup it is required that the
locations of the fixed targets are measured
manually. These locations provide the
information for the driver points.

• Six Two Face measurements, in two groups
of 3 each.

• Each group of 3 points is in an approximate
vertical line.

• Minimum distance from the tracker is
2m.

• The high and low measurements should
be more than 30° from the horizontal.

• The groups should have a horizontal angle
separation of about 180°, i.e. all
measurements should lie approximately in
the same vertical plane.

Minimum
Measurements

A minimum of 4 measurements is required
(mathematically). More measurements reduce the

User Manual • emScon TPI Chapter 5 • Command Description • 121

 Metrology Division

influence of errors. In addition, unstable
conditions, such as vibrations and rapid
temperature changes, make it necessary for more
measurements to be taken. The following
combinations are examples:

• Eight measurements in 4 pairs (high and
low) separated by approx. 90°.

• Twelve measurements in 4 groups of 3 each
(high, low, horizontal), separated by approx.
90°.

Related Commands • ClearDrivePointList

• AddDrivePoint

• CallIntermediateCompensation

• SetCompensation
Comments
Settings

Current emScon system settings, such as units,
coordinate system and coordinate type, are taken
over when emScon interprets point input (driver
point) values. All points in the drive library must
be known within ± 2mm (0.0787 in) tolerance,
otherwise this will cause an error in the
measurements.

The settings, such as units, coordinate system and
coordinate system type, must correspond to the
input data. Ensure that the settings describe the
environment of the driver points before they are
uploaded to the server.

One of the first actions of the automated
compensation algorithm is to check the geometry
of the used driver points. If the target setup fits
the requirements (as described above), then the
process continues with the measurements,
otherwise it will abort.

122 • Chapter 5 • Command Description User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 5 • Command Description • 123

A successful Intermediate Compensation
procedure returns the following information:

Compensation Results

• Total RMS

• Max. Deviation

• Error bit filed with the information of
warnings and errors.

Compensation Intervals An intermediate compensation is recommended
when the maximum deviation is ≤ 0.0012 deg
(13cc). With the command SetCompensation the
new calculated compensation can be activated.

Two Face Field-
Check

A field check is a control process of the
Compensation parameters. It checks the
condition of the Leica Tracker, with respect to
predefined parameters. It does not, however,
provide for compensatory corrections.

Periodicity If the tracker is used in a stationary position,
conduct the field check on a weekly basis. If the
field check results show no change, over a period
of six weeks, carry out field checks at least once a
month.

If the tracker has been moved, always carry out a
field check before taking measurements.

 Compensations and field checks must be
carried out in normal working conditions, under
which the measurements are taken.

Field check two face
Measurement

Two face measurements with 4 to 5 reflector
positions, distributed over the whole object
range, will indicate whether the Tracker
compensation is within specifications. To achieve
a 2-sigma accuracy, 95 % of the measurements
must be within the specification.

Client Routine The Tracker Server Programming Interface does
not have a specific two face measurement mode.

 Metrology Division

A client routine is required, which can use the
basic functionality provided.

 See "Procedure - Measurement" on page 126
Procedure -
Preparation

The procedure requires the following three
setups:

1. Two measurements on a straight line.

2. One measurement set on a vertical line.

3. One measurement plus or minus 90° to the
vertical line.

Measurements on a
Straight Line

1. The two measurements must be taken on a
straight line (ray) at the same level as the as
the Tilting mirror of the Tracker. Point A
<0.5 m and Point B within 5-l0 m.

Measurements on a
Vertical Line

2. All 3 measu
vertical line

1. Mid poin

2. Upper m

3. Lower m

 During meas
not point in the d

124 • Chapter 5 • Command Description
A

<0.5 m
rements sho
.

t 0° at Track

easurement

easurement

urements, th
irection of m

User
B

>5-10 m
uld be taken in a

er head height.

 at +40° deg.

 at -40° deg.

e Birdbath should
easurement.

 Manual • emScon TPI

Metrology Division

Measurement ± 90° to
the Vertical Line.

3. Setup the tripod at 90°, as shown in the
graphic below.

 The Tracker is setup such that it can turn to
the 90° position, without running into stop.

User Manual • emScon TPI Chapter 5 • Command Description • 125

 Metrology Division

126 • Chapter 5 • Command Description User Manual • emScon TPI

1. Set up the tracker.

 See "Integration in Application
Software" on page 15 for details.

Procedure -
Measurement

2. Set the coordinate system type to spherical
clock wise, SCW,
TPI command: SetCoordinateSystemType.

3. Set the Stationary Measurement Mode.
TPI command: SetMeasurementMode

4. Set the Stationary measurement parameter.
MeasTime to 10000ms
TPI command: SetStationaryModeParams

5. Attach the reflector to the target location.

6. Point the tracker to the target location.
TPI command: e.g. GoPostion. This is only
possible when the coordinates of the point
are known within ± 2mm, otherwise track
the reflector manually from the Bird bath.

7. Execute the Stationary Measurement in
Face I and save it.
TPI command: StartMeasurement

8. Execute the command Change Face, which
puts the Laser Tracker from Face I to Face
II.

 The pointing to a fixed reflector
position from a station should be the same
in both faces.
TPI command: ChangeFace

9. Execute the Stationary Measurement in
Face II and save it.
TPI command: StartMeasurement.

10. Execute the command Change face, which
puts the Laser Tracker from Face II to Face

Metrology Division

I.
TPI command: ChangeFace.

11. Repeat the steps 5 - 10 for all target
locations.

Procedure -
Calculation

Devvt = vertical angle Face I – vertical angle Face
II

Devh = horizontal angle Face I – horizontal angle
Face II

Both measurements are in Face I representation.
Face II measurements are represented in Face I.

Example Devvt = 90.7289893– 90.7287338 = 0.0003 Deg
Devh = 269.9877001– 269.9879985 = -0.0003 Deg

Tolerances The recommended tolerances of the deviations
are:

Vertical angle = ±13cc (0.0012 Deg)

Horizontal angle = ±13cc (0.0012 Deg)

 When the tolerance is exceeded, an
Intermediate Compensation is recommended.

User Manual • emScon TPI Chapter 5 • Command Description • 127

Metrology Division

6.Mathematics

Transformation
Introduction It is a mapping of a set of points called actuals or

measurements to an equal number of points
called nominals or reference. The transformation
parameters consists of the following:

• scaling

• rotation

• translation

Computation of a point to point transformation
should not be confused with applying a given
transformation.

In mathematical terms, the computation of a
transformation is a nonlinear, weighted, least
squares problem. It is solved through a Newton
iteration (linearization) consisting of the
following steps.

1. An initial approximation is calculated,
ignoring the accuracy (statistics) of the
input.

2. The initial approximation is improved
iteratively, until a certain accuracy goal is
achieved.

Transformation
Parameters

A transformation is described numerically by
three (3) translation, three (3) rotation and one (1)
scale parameter. The scale is typically close to 1,
e.g. when describing a temperature dependent

User Manual • emScon TPI Chapter 6 • Mathematics • 129

 Metrology Division

dilation. The accuracy of the nominal and actual
points is propagated to the transformation
parameters and the transformed points.

The transformation is a similarity map either
given in its forward form

() sRxtxT +=

or as an inverse

() ()txsRxT −= −1

with

• t = 3D translation vector

• R = 3*3 rotation matrix

• s = scale

These seven parameters are determined such that

()T actual nominal residual= +

for all points with small residuals in the weighted
least squares sense. The transformation can be
interpreted as a coordinate system with its origin
at t and the axes given by the columns of R. In
terms of the Euler angles.

In terms of the Euler angles the rotation
matrix assumes the form

ΚΦΩ ,,

() () () () ()
() () () () () () () () () () () ()
() () () () () () () () () () () ()
















ΩΦΩΦΚ+ΩΚΩΦΚ−ΩΚ
ΩΦ−ΩΦΚ−ΩΚΩΦΚ+ΩΚ

ΦΦΚ−ΦΚ

coscoscossinsinsincoscossincossinsin
sincossinsinsincoscossinsincoscossin

sincossincoscos

The current implementation fails if 2π±=Φ . As a
workaround, an arbitrary pre-rotation can be
applied to one of the point sets.

Transformation
Types

Usually transformations are calculated for two
purposes:

• Orientation – (Fig. 1 & Fig. 2)Alignment of
a tracker with respect to a world coordinate
system (WCS). The world coordinate
system is either defined at a principal

130 • Chapter 6 • Mathematics User Manual • emScon TPI

Metrology Division

station or at an object, as a (CAD)
coordinate system. In Orientation, the
reference points are given in a world
coordinate system, while the actual point
coordinates refer to the tracker's coordinate
system.

• Transformation – (Fig. 3) Creation of an
object coordinate system (also called UCS –
user coordinate system) to view the actual
point coordinates with respect to an object
coordinate system. The reference points are
given in the object coordinate system and
the measurements in the world coordinate
system (WCS).

Fig. 1

Fig. 2

User Manual • emScon TPI Chapter 6 • Mathematics • 131

 Metrology Division

Fig 3

Transformation vs.
Orientation

Transformation and orientation are inverse to
each other as mappings. For
orientation/alignment, the world coordinate
system (WCS) is the reference, for the creation of
an object coordinate system the object is the
reference. The transformation, which is
downloaded to emScon, will be a transformation
from/to a world coordinate system to/from an
object coordinate system.

Orientation To orient a station use
SetTransformationInputParams(ES_TR_AsOrientation, …);

The transformation has the form

* /nominal t R actual s residual= + +

Setting the calculated transformation parameters
as orientation parameters and remeasurement of
the reference points yields actual coordinates
approximately equal to the nominal coordinates.

Transformation To calculate transformation parameters use
SetTransformationInputParams(ES_TR_AsTransformation, …);

In this case the transformation has the form
1()nominal sR actual t residual−= − +

132 • Chapter 6 • Mathematics User Manual • emScon TPI

Metrology Division

which is inverse to the one in the orientation case.
Setting the calculated transformation parameters
and remeasurement also yields actual coordinates
approximately equal to the nominal coordinates.

Point Accuracy Each nominal point, measured point, transformed
point or residual vector has accuracy information
stored in a symmetric 3 by 3 covariance matrix.

2
1 12

2
12 2 23

2
13 23 3

stdDev covar covar
covarianceMatrix covar stdDev covar

covar covar stdDev

 
 =  
 
 

13

Its eigenvectors and eigenvalues define the error
ellipsoid. If the covariance matrix is diagonal, the
axes of the error ellipsoid are parallel to the
coordinate axes. In correlations

*
ij

ij
i j

covar
stdDev stdDev

ρ = satisfy

11 ≤≤− ijρ

All statistical points and 3D vectors can be
represented in the following non-redundant form
consisting of 9 values:

Covar23 Covar13, Covar12,
 StdDev3, StdDev2, StdDev1, Coord3, Coord2, Coord1,

This format is used throughout the emScon TPI.
For continuous measurements the a priori
covariance matrix of a point measurement is
calculated according to the tracker accuracy. For
single point measurements (stationary, sphere
center and circle center) the a posteriori or
repeatability covariance is calculated from the
actual statistical variation of the many
measurements.

In the (spherical) tracker coordinate system the a
priori covariance matrix is diagonal. Conversion
to Cartesian coordinates results in a full matrix.

User Manual • emScon TPI Chapter 6 • Mathematics • 133

 Metrology Division

Transformation to other coordinate systems again
transforms the covariance matrix. Maximal
consistency is achieved by using the full matrix.
However, at any stage the standard deviations,
i.e. the square roots of the diagonal entries
provide sufficient condensed information on the
accuracy of the respective triple.

The covariance matrix of nominal points is
diagonal. However, if measured points are used
as reference, a full matrix may apply to nominal
points as well.

Input of
Transformation
Computation
Nominal Points

Nominal points are added as shown in the
following example:
AddNominalPoint(1, 2, 3, ES_FixedStdDev, ES_UnknownStdDev,
ES_ApproxStdDev, 0, 0, 0);

The parameters listed are the three coordinates
together with their standard deviations and
covariances.

We recommend use of the following predefined
standard deviations:
Coordinate
accuracy

Symbol Value

Fixed (exactly
known)

ES_FixedStdDev 0

Unknown (free) ES_UnknownSt
dDev

1E35

Approx.
(reasonable)

ES_ApproxStdD
ev

1E15

Weighted > 0, < 1E10

Approximately known coordinates are used to
calculate an initial approximation. In a minimum
configuration, the solution would be ambiguous
without this additional information.

 See "Examples" on page 137.

134 • Chapter 6 • Mathematics User Manual • emScon TPI

Metrology Division

User Manual • emScon TPI Chapter 6 • Mathematics • 135

Actual points are added in the following form Actual Points
AddActualPoint(-12.487, -5.79687, 5.49683, 0.0001, 0.0001,
0.0001, 0, 0, 0);

The number and order of actuals must agree with
that of the nominals. The parameters are typically
obtained from a single point measurement. The
unit settings and transformation parameters must
be the same for the measurement and for adding
the actuals.

Parameter
Constraints

If any of the seven (7) transformation parameters
is known, a priori, its value can be fixed, in the
same way as for the nominal coordinates.
Frequently the scale is fixed to be 1 and the other
parameters are free as in the following example:
SetInputParams(0, 0, 0, 0, 0, 0, 1, ES_UnknownStdDev,
ES_UnknownStdDev, ES_UnknownStdDev, ES_UnknownStdDev,
ES_UnknownStdDev, ES_UnknownStdDev, ES_FixedStdDev);

The values of unknown parameters can be set
arbitrarily. In the current implementation
constraints are not used to reduce the required
number of known nominal coordinates.
Constraints are not taken into account for the
initial approximation. Erroneous constraints
usually result in large point residuals, RMS,
Maxdev. and variance factor. To fix some or all
components of the translation vector the
coordinate type must be Cartesian.

Output of
Transformation
Computation
Transformation
Parameters

The command CallTransformation() returns a
structure CallTransformationRT containing the
seven parameters of the transformation
(translation, Euler angles and scale) together with
their standard deviations. The standard deviation
of a fixed parameter is zero (0).

Transformed Points
and Residuals

The command GetTransformedPoints() returns a
list of structures, each containing a transformed
point together with its covariance matrix and the
three coordinates of the residual vector

 Metrology Division

residual nominal transformed= −

The covariance matrix of the residual is obtained
by adding those of the nominal and the
transformed point.

Statistics The command CallTransformation() also returns
the

• RMS of residuals

• Maximal deviation

• Variance factor
RMS of Residuals The RMS of residuals is defined as

2

1

n

i
i

residual
RMS

noEquations
==
∑

where the number of equations is the number of
fixed or weighted nominal coordinates.

Only those components of the residual vector
corresponding to a fixed or weighted nominal
coordinate are taken into account.

Maximum Deviation The maximum deviation is defined as

1..i n i
maxDev max residual==

Only fixed and weighted nominals are taken into
account.

Weighted Residual
Square Sum

The transformation algorithm determines the
values of the transformation parameters, to
minimize the target function, weighted residual
square sum.

1

n
T
i i

i
iRSS residual weightMatrix residual

=

=∑

The weight matrix is the inverse of the covariance
matrix of the residual. Both matrices are scalars
for constraints. The term, in the weighted least

136 • Chapter 6 • Mathematics User Manual • emScon TPI

Metrology Division

squares sense, refers to the fact that RSS is the
target function of the minimization algorithm.

Variance factor The variance factor (mean error) takes the
accuracy of the input into account:

RSSvarianceFactor
redundancy

=

The variance factor is dimensionless, i.e. it does
not depend on the length or angle units. The
value of the variance factor may vary
considerably depending on the accuracy of the
input and the model error, i.e. the size of the
residuals. If the residuals are systematically
bigger than the standard deviations of the
actuals, the variance factor exceeds 1. Otherwise
it is less than 1.

 See "Examples" on page 137.
Redundancy The redundancy is an integer defined as

redundancy noEquations noParameters= − .

In a minimum configuration, the redundancy is
zero (0) and the variance factor is set to one (1).

If the redundancy is negative, the solution is non-
unique. The error message multiple solutions is
returned. In this case more fixed nominals or
parameter constraints are needed to pick a
unique solution.
AddNominalPoint(1, 2, 3, Fixed, Fixed, Fixed, 0, 0, 0);

Examples
Standard Case with 3
Points

AddNominalPoint(2, 3, 4, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(0, -4, 2, Fixed, Fixed, Fixed, 0, 0, 0);

SetInputParams(0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Unknown);

In this example . 3* 7 2redundancy noPoints= − =

User Manual • emScon TPI Chapter 6 • Mathematics • 137

 Metrology Division

138 • Chapter 6 • Mathematics User Manual • emScon TPI

AddNominalPoint(1, 1, 0, Fixed, Fixed, Fixed, 0, 0, 0); Pure Dilation AddNominalPoint(-1, 1, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1, -1, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(-1, -1, 0, Fixed, Fixed, Fixed, 0, 0, 0);

AddActualPoint(1.1, 1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);
AddActualPoint(-1.1, 1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);
AddActualPoint(1.1, -1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);
AddActualPoint(-1.1, -1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);

SetInputParams(0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Fixed);

In this example the desired transformation is the
identity with parameters 0, 0, 0, 0, 0, 0, 1. The
length of all residuals is 0.1 2 . Their covariance
matrix is

6

6

6

10 0 0
0 10 0
0 0 10

covar

−

−

−

 
 =  
 
 

 The weight matrix is
6

6

6

10 0 0
0 10 0
0 0 10

weight
 
 =  
 
 

Thus

()264 * 10 * 0.1 2 80000

12 6 6
80000 13333.

6

RSS

redundancy

varianceFactor

= =

= − =

= =

AddNominalPoint(1, 2, 3, Fixed, Fixed, Approx, 0, 0, 0); 3-2-1 Alignment AddNominalPoint(2, 3, 4, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(0, -4, 2, Approx, Fixed, Approx, 0, 0, 0);

SetInputParams(0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Fixed);

This is a minimum configuration since

6 6 0redundancy = − =

The approximate coordinates are necessary to
select a unique solution from the 8 possible
solutions. This fact can be easily observed in the
following example:

Metrology Division

AddNominalPoint(0, 0, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1, 0, 0, Unknown, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1, 1, 0, Unknown, Unknown, Fixed, 0, 0, 0);

Here each of the Euler angles can be 0 or π. The scale
must be fixed in 3-2-1 situations. Otherwise the
solution is undetermined.

Box Corner The corner of a box is defined by three mutually
perpendicular planes. Each plane contains two
measured points. Only the nominal coordinate
defining the plane is exactly known.
AddNominalPoint(0, 1, 1, Fixed, Approx, Approx, 0, 0, 0);
AddNominalPoint(0, 2, 2, Fixed, Approx, Approx, 0, 0, 0);
AddNominalPoint(1, 0, 1, Approx, Fixed, Approx, 0, 0, 0);
AddNominalPoint(1, 0, 2, Approx, Fixed, Approx, 0, 0, 0);
AddNominalPoint(1, 1, 0, Approx, Approx, Fixed, 0, 0, 0);
AddNominalPoint(2, 2, 0, Approx, Approx, Fixed, 0, 0, 0);

This is also a minimum configuration with

6 6 0redundancy = − =

provided the scale is fixed.
Orientation Using
Nivel20
measurements

Suppose the horizontal angles and ω ϕ have been
obtained from a Nivel20 measurement. To
complete the orientation of the station, use a
number of reference points with:
SetInputParams(0, 0, 0, omega, phi, 0, 1, Unknown, Unknown,
Unknown, Fixed, Fixed, Unknown, Fixed);

User Manual • emScon TPI Chapter 6 • Mathematics • 139

 Industrial Measurement Systems

7.Appendix

TPI File Listing
The files ES_C_API_Def.h, ES_CPP_API_Def.h,
LTControl.dll /tlb as well as all the sample projects
are an integral part of the SDK.

Programming
Interface Defining
Files

• ES_C_API_Def.h

• ES_CPP_API_Def.h

• Enum.h

• LTControl.dll (Unicode version for
WinNT/2000/XP)

• LTControl.dll (ANSI version for Win98/ME)

• LTControl.tlb

 The ES_C_API_Def.h file may currently be
distributed in two parts, that is, with a sub-
include file named enum.h.
If only one file is being distributed and no
#include enum.h statement is included in
ES_C_API_Def.h, it can be assumed that enum.h
has been directly merged with the API include
file.

 Sample files are no longer listed here. See
'Samples' folder on the SDK distribution medium.

140 • Chapter 7 • Appendix User Manual • emScon TPI

	User Manual TPI
	Preface
	Contents
	Introduction
	Prerequisites
	Hardware
	Programming Environment
	TCP/IP Communication
	Version Compatibility
	Future Compatibility
	Backward Compatibility
	Example
	Solution
	Backward Compatibility v1.0/1.1
	Solution

	Sample Code
	Error Handling
	Interface Design
	Hard Coded Information

	Integration in Application Software
	Initial steps
	Essential Steps
	Command Sequence

	General information
	Initialize Laser Tracker
	Current Temperature and Pressure
	Set Reflector
	Set Temperature Range
	Station Parameters
	Transformation Parameters
	Coordinate System Type

	C Interface
	Low-level programming
	Introduction
	TCP/IP Connection
	Sending Commands
	Code Sequence
	Initialization Macros
	C++ Initialization
	Answers from Tracker Server
	Asynchronous Communication
	DataArrived Notification
	DataArrived Notification Queue

	PacketHeader Code
	Command Subtype Switch

	C Client Applications
	Sample 1-Tutorial
	Step 1: Creating an Application Framework using AppWizard
	Step 2: Import the Winsock Control
	Step 3: Create a Winsock Controls Instance
	Step 4: User Controls on the Dialog
	InitDialog() Handler
	Connect/Disconnect Handlers
	Step 5: Connect/Disconnect TCP/IP Handlers
	Step 6: Implementing Command Handlers
	Tracker Initialization
	Hard Coded data
	Step 7: Receiving Data
	Function Body
	GetData Function
	ProcessData()
	Asynchronous Communication

	Remarks
	Interface Design
	Error Handling
	Network Traffic Jams
	MSWinsock Control
	Essential code
	Build Sample 1
	TCP/IP address

	Visual Basic Client Application
	Sample 2-Tutorial
	TCP/IP
	Step 1: Adding a Winsock Control and Designing a Form
	Step 2: Connect to the Tracker Server
	IP Address
	Winsock1
	Step 3: Translate the C- enums and Structs to VB
	Step 4: Implementing the Init Tracker Command
	Init (Tracker) handler

	Step 5: Implementing Answer Data Receiving
	Running the application
	Remarks
	Structures
	COM interface

	Sample 13 LT BUI Launch

	Winsock 2.0 Client Applications
	Sample 3
	Console application
	Comments
	Queuing (Traffic Jams)
	Remarks
	Windows application
	Winsock API

	C++ Interface
	Class Interface
	Class design
	Platform Independent
	TCP/IP
	SendPacket()
	ReceiveData

	Sample 4
	Sample 4 specifics
	Application Framework

	Class for Commands
	Winsock Control
	C TPI Source code

	Receiving Data Sample 4
	CESAPIReceive class Sample 9
	CESAPIReceive Class Description
	Procedure
	Single Point Measure Data Sample
	Remarks
	GUI Design

	Receiving Data Sample 9
	ActiveX Component Sample 12
	Remarks
	Keyboard Interface Limitation

	Sample 10

	COM Interface
	High-level Interface
	Introduction
	COM vs. Low-Level Programming
	Interfaces and Notification Methods
	LTControl COM Viewer:

	Registering COM Objects
	LTControl.dll Installation
	ATL.dll Installation

	Visual Basic client
	Sample 5 Tutorial
	ATL Type COM object
	Differences between LTConnect & ILTConnect
	Accessing Interfaces
	LTCommand Objects
	Synchronous/Asynchronous Interface
	Implementing Synchronous Commands
	Implementing Asynchronous Commands
	Catching Events and Messages
	Extended Synchronous Functions
	Remark
	Example

	C++ Console Application
	Sample 6
	
	Synchronous Calls

	C++ Windows-MFC Application
	Sample 7
	ATL/COM
	Message Notifications
	Source Code Description

	Handling Data Arrival – Continuous Measurements
	Methods to Catch Packets
	Known Bugs in ATL Event Sink Implementation

	Queues and Scattered Data
	Problem Solution
	Cause of Data Loss

	Reading Data Blocks with Visual Basic
	VBA Macro-Language Support (Excel, Word, Access)
	User-defined Types, the Differences between Visual Basic and VBA97
	Conclusion

	Continuous measurements and VBA
	Masking Data

	Scripting Language Support

	Excel Control for Tracker Server
	Sample 8
	Sample 11 GetStillImage
	Asynchronous interface

	Remarks
	Example

	Command Description
	Special Functions
	Get Reflectors Command
	Related Commands
	Comments
	iTotalReflectors
	IInternalReflectorId/cReflectorName
	List index
	Lookup Table
	Reflector Name – Unicode Format

	Still Image Command
	Related Commands
	Preconditions
	Application of GetStillImage – C/C++
	WinSock2 API/MFC CasyncSocket
	COM TPI within C/C++
	GetStillImage – Synchronous
	GetStillImage – Asynchronous

	COM/VB(A)
	Event handler
	Image Click Position

	Live Image display
	Live Image Control LTVideo2.ocx
	Registering LTVideo2.ocx
	ANSI/Unicode Version

	Development Platforms
	LTVideo2.tlb

	Server Address
	Events/Methods

	Orient To Gravity Procedure
	Related Command
	Comments
	Transformation Procedure
	Related Commands
	Comments
	EmScon System Settings

	Automated Intermediate Compensation
	Tracker Geometry
	Intermediate vs. Full Compensation
	Setup
	Area Required
	Procedure
	Requirements
	Minimum Measurements

	Related Commands
	Comments
	Settings
	Compensation Results
	Compensation Intervals

	Two Face Field-Check
	Periodicity
	Field check two face Measurement
	Client Routine
	Procedure - Preparation
	Measurements on a Straight Line
	Measurements on a Vertical Line
	Measurement ± 90\(to the Vertical Line.

	Procedure - Measurement
	Procedure - Calculation
	Example
	Tolerances

	Mathematics
	Transformation
	Introduction
	Transformation Parameters
	Transformation Types
	Transformation vs. Orientation
	Orientation
	Transformation

	Point Accuracy
	Input of Transformation Computation
	Nominal Points
	Actual Points
	Parameter Constraints

	Output of Transformation Computation
	Transformation Parameters
	Transformed Points and Residuals
	Statistics
	RMS of Residuals
	Maximum Deviation
	Weighted Residual Square Sum
	Variance factor
	Redundancy

	Examples
	Standard Case with 3 Points
	Pure Dilation
	3-2-1 Alignment
	Box Corner
	Orientation Using Nivel20 measurements

	Appendix
	TPI File Listing
	Programming Interface Defining Files

