
XAPP964 (v1.1) January 9, 2007 www.xilinx.com 1

© 2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. PowerPC is
a trademark of IBM Inc. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

fin

Summary This application note describes how to build a reference system for the On Chip Peripheral Bus
Peripheral Component Interconnect (OPB PCI) core using the IBM PowerPC™ 405 (PPC405)
Processor-based embedded system in the ML410 Embedded Development Platform. The
reference system is Base System Builder (BSB) based and uses eight pcores. This reference
system is similar to the reference system in XAPP911, except with the principal exception that
the ML410 and ML455 boards are used.

A set of files containing Xilinx Microprocessor Debugger (XMD) commands is provided for
writing to the Configuration Space Header and for verifying that the OPB PCI core is operating
correctly. Several software projects illustrate how to configure the OPB PCI core, set up
interrupts, scan the configuration registers, and set up and use DMA operations. The procedure
for using ChipScope™ to analyze OPB PCI functionality is provided. The steps used to build a
Linux kernel using MontaVista are listed. Simulation output files for analyzing basic PCI
transactions are provided.

Included
Systems

This application note includes one reference system:

• www.xilinx.com/bvdocs/appnotes/xapp964.zip

ml410_ppc_opb_pci is the project name used in xapp964.zip.

Required
Hardware and
Tools

Users must have the following tools, cables, peripherals, and licenses available and installed:

• Xilinx EDK 8.2.02

• Xilinx ISE 8.2.02

• Xilinx Download Cable (Platform Cable USB or Parallel Cable IV)

• Monta Vista Linux v2.4 Development Kit

• Modeltech ModelSim v6.1d

• ChipScope v8.2

Application Note: Embedded Processing

XAPP964 (v1.1) January 9, 2007

Reference System: OPB PCI Using the
ML410 Embedded Development Platform
Author: John Ayer, Jr., Kris Chaplin, Beth Farwell, Ed Meinelt,
Matt Nielson, Lester Sanders

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Introduction

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 2

R

Introduction This application note accompanies a reference system built on the ML410 development board.
Figure 1 is a block diagram of the reference system.

The system uses the embedded PowerPC as the microprocessor and the OPB PCI core. On
the ML410 board, the Virtex-4 XC4VFX60 accesses two 33 MHz 32-bit PCI buses: a primary
3.3V PCI bus and a secondary 5.0V PCI bus. The FPGA is directly connected to the primary
3.3V bus. The 5.0V PCI bus is connected to the Primary PCI bus with a PCI-to-PCI bridge, the
TI2250. The PCI devices and four PCI add-in card slots on the ML410 are listed in Table 2. All
PCI bus signals driven by the XC4VFX60 comply with the I/O requirements in the PCI Local
Bus Specification, Revision 2.2.

Many of the ML410 functions are accessed over the 33 MHz 32-bit PCI bus. The Virtex-4
Platform FPGA contains PPC405 processors which access the primary PCI bus through the
OPB PCI Bridge. PCI configuration in this reference design uses the OPB PCI Bridge as a host
bridge.

Figure 1: OPB PCI Reference System Block Diagram

OPB
IIC

OPB
PCI

OPB
SYSACE

OPB
SPI

PPC405

OPB
INTC

OPB
SPI

OPB
INTC

OPB
UART 16550

PLB

OPB

X964_01_111406

http://www.xilinx.com

Introduction

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 3

R

Figure 2 shows PCI Bus Devices on the ML410. The TI2250 device is a PCI-to-PCI bridge to
the two 5V PCI slots. The ALi M1535D+ South Bridge interfaces to the legacy devices,
including the audio, modem, USB, and IDE ports. The Xilinx Virtex-4 ML455 PCI/PCI-X Board
is inserted into slot 3.

Figure 2: PCI Bus Devices on the ML410

PCI-to-PCI
Bridge (U32)

5.0V PCI Slot 6

5.0V PCI Slot 4

ALi South Bridge (U15)

IDSELIDSEL

0xAC23 104C

0x5451 10B9
Dev ID Vend IDIDSEL

0x1533 10B9

0x5457 10B9

0x5237 10B9

0x5229 10B9

0x5237 10B9

PCI_BUS

IDSEL
PCI_BUS

IDSEL
PCI_BUS

IDSEL
PCI_BUS

IDSEL
PCI_BUS

USB#1

PCI Bus

PCI Bus

PCI_S_AD18

PCI_S_CLK0

PCI_S_AD19PCI_P_AD25PCI_P_AD24

3.3V

PCI_P_CLK5
PCI_P_CLK4
PCI_P_CLK0

PCI_P_CLK1

PCI_P_CLK3

PCI_S_CLK1

3.3V PCI Slot 5

3.3V PCI Slot 3

PCI_P_AD21

PCI_P_AD22

PCI_P_AD31
IDE Bus

PCI_P_AD27
USB#2

PCI_P_AD26
Modem

PCI_P_AD19
S. Bridge

PCI_P_AD18
Audio

PCI_P_AD17

5.0V

FPGA (U37)

X964_02_11106

TI2250

http://www.xilinx.com

Introduction

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 4

R

Figure 3 shows the connections of the South Bridge to the legacy devices.

The functions, devices, and buses in the OPB PCI reference design defined in Figures 2 and 3
are addressed using the Configuration Address Port format shown in Figure 4.

The Configuration Address Port and Configuration Data Port registers in the Virtex-4 OPB PCI
Bridge are used to configure multiple PCI bridges when host bridge configuration is
enabled.The bit definitions of the Configuration Address Port in the big endian format used by
the PLB is given in Table 1. The formats are different.

Figure 3: ALI Bus - PCI to Legacy Devices

Figure 4: Configuration Address Port Format

Table 1: Configuration Address Port Register Definitions

Bit Definition

0-5 Target word address in configuration space

6-7 Hardwired to 0

8-12 Device

13-15 Function

16-23 Bus Number

24 Enable

25-31 Hardwired to 0

PCI_P_AD31
PCI_P_AD27
PCI_P_AD26
PCI_P_AD19
PCI_P_AD18
PCI_P_AD17

ALi South Bridge
 (U15)

AC97

PCI_P_AD24

PCI_P_CLK3

PCI Bus

IDSEL

FPGA
 (U37)

J3 P1

PCI Bus

Device ID Vendor IDIDSEL

0x5451

0x1533

0x5457

0x5237

0x5229

0x5237

0x10B9

0x10B9

0x10B9

0x10B9

0x10B9

0x10B9USB#1

IDE Bus

USB#2

Modem

S. Bridge

Audio

X965_03_111006

X4

32.768 MHz

X2

48 MHz

X3

14.3181 MHz

X1

OSC

OSC

OSC

OSC 24.576 MHz

U1

USB
1

USB
2

Parallel
Port

P2

PS/2
Keyboard

J5

GPIO

U4

Flash

J16/J15

Primary IDE

Secondary IDE

X964_03_111006

0 1

00 Doubleword Bus No.Function No. Reserved E

Device No.

7 8 10 11 15 16 23 24 30 312

http://www.xilinx.com

Reference System Specifics

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 5

R

Reference
System
Specifics

In addition to the PowerPC405 processor and OPB_PCI, this system includes DDR and BRAM
memory on the PLB, while on the OPB, it includes a UART, interrupt controller, SYSACE, IIC,
and SPI. The relationship of the modules is shown in Figure 1. The PCI Arbiter core is included
in the FPGA.

Table 2 provides the addresses of the IDSEL lines on the ML410 Board.

ML410 XC4VFX60 Address Map

Table 3 provides the address map of the ML410 XC4VFX60. The reference design contains the
following settings for OPB PCI generics:

C_INCLUDE_PCI_CONFIG = 1

C_INCLUDE_BAROFFSET = 0

C_DMA_CHAN_TYPE = 0

C_IPIFBAR_NUM = 2

Table 2: ML410 PCI Devices – IDSEL Lines

Device Dev ID Vend ID Bus Dev IDSEL
Address

FPGA 0x0410 0x10EE 0 8 A

Ali M1535D+ South Bridge 0x1533 0x10B9 0 2 AD18

ALi Pwr Mgt 0x7101 0x10B9 0 12 AD28

ALi IDE 0x5529 0x10B9 0 11 AD27

ALi Audio 0x5451 0x10B9 0 11 AD17

ALi Modem 0x5457 0x10B9 0 3 AD19

ALi USB#1 0x5237 0x10B9 0 15 AD31

ALi USB#2 0x5237 0x10B9 0 10 AD26

TI Bridge (TI2250) 0AC23 0x104C 0 9 AD25

3.3V PCI Slot 3 AD22

3.3V PCI Slot 5 N/A N/A 0 5 AD21

5.0V PCI Slot 4 N/A N/A 1 3 AD19

5.0V PCI Slot 6 N/A N/A 1 2 AD18

Table 3: ML410 XC4VFX60 System Address Map

Peripheral Instance Base Address High Address

PLB_DDR DDR_SDRAM_32Mx64 0x00000000 0x03FFFFFF

OPB SPI SPI_EEPROM 0x40A00000 0x40A0FFFF

OPB UART16550 RS232_Uart_1 0x40400000 0x4040FFFF

OPB INTC opb_intc_0 0x41200000 0x4120FFFF

OPB_PCI PCI32_Bridge 0x42600000 0x4260FFFF

OPB PCI DMA PCI32_Bridge 0x42800000 0x4280FFFF

PLB BRAM plb_bram_if_cntlr_0 0xFFFFC000 0xFFFFFFFF

OPB SYSACE SysACE_CompactFlash 0x41800000 0x4180FFFF

OPB IIC IIC_Bus 0x40800000 0x4080FFFF

http://www.xilinx.com

Reference System Specifics

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 6

R

C_PCIBAR_NUM = 1

Figure 5 shows how to specify the values of generics in EDK.

The C_INCLUDE_PCI_CONFIG generic configures the bridge as a host bridge. When
C_INCLUDE_BAR_OFFSET = 0, the C_IPIFBAR2PCIBAR_* generic(s) are used in address
translation instead of IPIFBAR2PCIBAR_* registers. Setting C_DMA_CHAN_TYPE = 0
specifies simple DMA. Setting C_IPIFBAR_NUM = 2 specifies that there are two address
ranges for OPB to PCI transactions. Setting C_PCIBAR_NUM = 1 specifies that one address
range is used for PCI to OPB transactions

Figure 5: Specifying the Values of Generics in EDK

X964_05_111006

http://www.xilinx.com

Reference System Specifics

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 7

R

Figure 6 provides a functional diagram of the OPB PCI Full Bridge core. The three functions of
the core are the OPB IPIF, the v3.0 PCI Core, and the IPIF/v3.0 Bridge.

Virtex-4 ML455 PCI/PCI-X Development Board

In the reference design, the OPB PCI in the XC4VFX60 on the ML410 board interfaces to the
OPB PCI in the Virtex-4 ML455 PCI/PCI-X Development board. The ML455 board uses the
Xilinx XC4VLX25 device in the 668 pin package. The ml410_ppc_opb_pci/455 directory
contains the system.mhs and other project files for the ML455.

Table 4 provides the address map for the XC4VLX25.

The ML455 includes three clock sources, a 64-bit PCI edge connector, 128 MB (16M x 64)
DDR SDRAM memory, RS232C port, LED displays, XCF32P-FSG48C Platform Flash
configuration PROM, and a JTAG port. The MicroBlaze microprocessor is used in this design.

Figure 6: Block Diagram of OPB PCI Bridge Core

Table 4: XC4VLX25 Address Map

Peripheral Instance Base Address High Address

LMB_BRAM_IF_CNT
LR

DLMB_CNTLR/ILMB_CN
TLR

0x0000000 0x70003FFF

OPB_UART16550 RS232_Uart 0x40400000 0x4040FFFF

OPB PCI PCI_Bridge 0x42600000 0x4260FFFF

OPB DDR DDR_SDRAM_64Mx32 0x24000000 0x27FFFFFF

OPB GPIO LEDs_4Bit 0x40000000 0x4000FFFF

OPB MDM debug_module 0x41400000 0x4140FFFF

OPB INTC opb_intc_0 0x41200000 0x4120FFFF

Endianess
Translation

Address
Translation

IP
Master SM

Interrupt
Module

Optional
DMA

Master
Attach

Slave
Attach

Reset
Module

PCI2IPIF
FIFO

IPIF2PCI
FIFO

Endianess
Translation

Target
SM

PCI
Initiator SM

Address
Translation

IPIF
Slave SM

IPIF/V3 Bridge OPB IPIF

C_INCLUDE_
PCI2OPB_SLV

C_INCLUDE_
OPB2PCI_TARG

O
P

B

V3
PCI
Core

P
C

I B
us

X964_05_111006

http://www.xilinx.com

Reference System Specifics

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 8

R

Figure 7 shows the ML455 PCI/PCI-X Development board.

Interfacing to the OPB PCI on the ML455 PCI/PCI-X Board

Figure 7: ML455 PCI/PCI-X Development Board

X964_07_111006

http://www.xilinx.com

Reference System Specifics

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 9

R

Figure 8 shows the principle interface blocks when transferring data between the OPB PCI
Bridge in the XC4VFX60 on the ML410 board and the OPB PCI Bridge in the XC4VLX25 on the
ML455 board.

Configuration of OPB PCI on the ML410 Board

The OPB PCI bridge uses the 32-bit Xilinx LogiCore Version 3 IP (v3.0) core. For the OPB PCI
bridge to perform transactions on the PCI bus, the v3.0 core must be configured using
configuration transactions from either the PCI-side or from the OPB side. This reference design
configures the bridge from the OPB side, therefore C_INCLUDE_PCI_CONFIG is set to 1. In
this case, IDSEL input of the v3.0 is connected to the address ports specified in Table 2, while
the IDSEL port of the bridge is unused.

To write to the configuration header, execute the following steps:

1. Configure the Command and Status Register. The minimum that must be set is the Bus
Master Enable bit in the command register. For memory transactions, the memory space bit
must be set. For I/O transactions, the I/O space bit must be set.

2. Configure the Latency Timer to a non-zero value.

3. Configure at least one BAR. Configure subsequent BARs as needed for other memory/IO
address ranges.

The v3.0 core configures itself only after the Bus Master Enable bit is set and the latency timer
is set to avoid time-outs. If the v3.0 core latency timer remains at the default 0 value,
configuration writes to remote PCI devices do not complete, and configuration reads of remote
PCI devices terminate due to the latency timer expiration. Configuration reads of remote PCI
devices with the latency timer set to 0 return 0xFFFFFFFF.

Configuration of OPB PCI on the ML455 PCI/PCI-X Board

When the ML455 is inserted into a ML410 PCI slot, the OPB PCI Bridge in the Xilinx
XC4VFX60 FPGA interfaces to an OPB PCI Bridge in the XC4VLX25 FPGA on the ML455 PCI
Board. To configure the XC4VLX25, connect the Xilinx Download (USB or Parallel IV) cable to
the ML455 JTAG port, and use Impact to download the
ml410_pci/455/implementation/download.bit file. After configuring the XC4VLX25
FPGA using the bit file, the PCI functionality OPB PCI in the XC4VLX25 is configured using
Configuration write transactions from the OPB PCI in the XC4VFX60 of the ML410.

Figure 8: Interfacing ML410 Board OPB PCI with the ML455 Board OPB PCI

DDR

ML410 - Virtex-4 ML455 - Slot 3

PPC
OPB
PCI

BRAM

DDR

MB
OPB
PCI

BRAM

PCI

X964_08_101406

http://www.xilinx.com

Reference System Specifics

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 10

R

Executing the Reference System using the Pre-Built Bitstream and the
Compiled Software Applications

To execute the system using files inside the ml410_ppc_opb_pci/ready_for_download
directory, follow these steps:

1. Change to the ml410_ppc_opb_pci/ready_for_download directory.

2. Use iMPACT to download the bitstream by using the following:
impact -batch xapp964.cmd

3. Invoke XMD and connect to the MicroBlaze processor by the following command:
xmd -opt xapp964.opt

4. Download the executable by the following command
dow <path>/executable.elf

Executing the Reference System from EDK

To execute the system using EDK, follow these steps:

1. Open system.xmp inside EDK.

2. Use Hardware → Generate Bitstream to generate a bitstream

3. Download the bitstream to the board using Device Configuration → Download
Bitstream.

4. Invoke XMD with Debug Launch XMD.

5. Download the executable by the following command.
dow <path>/executable.elf

Verifying the Reference Design with the Xilinx Microprocessor
Debugger

After downloading the bitstream file and writing to the configuration header, execute the
following steps to verify that the ML410 reference design is set up correctly.

1. Configure the v3.0 Command Register, Latency Timer, and BAR(s).

2. Read the configuration header.

3. Configure the Command Register, Latency Timer, and BAR(s) of the other devices in the
system.

4. Read the configuration headers of the other devices in the system.

5. Perform a memory read of one of the IPIF BARs.

6. Perform a memory write of one of the IPIF BARs.

Verification is done using either Xilinx Microprocessor Debugger (XMD), the software projects,
or both discussed later in this document. Text files of the XMD commands are provided in the
xmd_command directory in the design files. The configure*.xmd files contain XMD
commands which configure the bridge. The test_interrupt_regs.xmd file contains
commands which set up and verify the interrupt registers. The write_read_bram.xmd and
write_read_ddr.xmd files contain XMD commands which test PLB BRAM and PLB DDR
respectively. Table 5 lists the files containing XMD commands which verify that the initial setup
of the reference system is correct. In the nomenclature below, the board name (ML410, ML455)
is used rather than the device name (4fx60, 4vlx25)

http://www.xilinx.com

Reference System Specifics

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 11

R

The following steps use the XMD commands in the files in the directory,
ml410_ppc_opb_pci/xmd_command

1. Invoke XMD.

2. Open the XMD command file (e.g. configure.xmd) using a text editor such as WordPad.

3. Select and copy the XMD commands in the text editor.

4. Right click the mouse in the XMD window to paste the commands.

Table 5: XMD Configuration Commands

XMD command Function

configure_ml410.xmd Configures the ML410 CSR, Latency Timer, BARs.

configure_ml455.xmd Configures the ML455 CSR, Latency Timer, BARs.

ml410_bram.xmd Tests the PLB BRAM connected to the ML410.

ml410_plbddr.xmd Tests PLB DDR connected to the ML410.

ml410_455bram.xmd Tests ML410 writing to ML455 Board BRAM.

ml410_455ddr.xmd Tests ML410 writing to ML455 DDR SDRAM.

ml455_bram.xmd Tests the BRAM connected to the ML455.

ml455_410ddr.xmd Tests the ML455 writing to ML410 PLB DDR.

dma_410_455ddr.xmd Tests DMA from the ML410 to ML455 DDR

dma_410ddr_455ddr.xmd DMA from ML410 PLB DDR to ML455DDR SDRAM.

dma_455ddr_410ddr.xmd Tests DMA from M455 DDR to ML410 DDR.

dma_410bram_455bram.xmd Tests DMA from PLB BRAM to PCI Bridge.

http://www.xilinx.com

Reference System Specifics

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 12

R

The XMD commands in the configure_ml410.xmd file, listed in Figure 9, write to the
Configuration Address Port and to the Configuration Data Port to program the Configuration
Space Header. The Command/Status Register, Latency Timer, and Base Address Registers
are written and read.

Software Projects

The reference system contain the following software projects. In each software project
directory, there are src sub-directories for the source code.

TestApp_Memory. This project tests the memory on the ML410 board.

TestApp_Peripheral. This project verifies that the OPB Sysace is used correctly.

hello_pci. This project enables master transactions, sets the latency timer, defines the bus
number/subordinate bus number, and scans the ML410 configuration registers.

xpci_tapp_example. This project contains two major functions which use level 0 drivers:
PciInitLevel_0() and ShowPCI(). PciInitLevel reads and writes the bus and subordinate bus
number, initializes the bridge device number if present, and performs configuration writes to the
PCI header to set up the bridge. The latency timer is set to the maximum. The BAR registers
are set, and interrupts are enabled.

xpci_example_level_0. This project uses level 0 drivers to initialize the PCI bridge. It then
initializes a remote device on the PCI bus, and prints messages describing the bridge and
memory mappings.

Figure 9: XMD Commands for Configuring OPB PCI

Xilinx Microprocessor Debug (XMD) Engine

Xilinx EDK 8.2.02Build EDK_Im_Sp2.3

Copyright (c) 1995-2005 Xilinx, Inc. All rights reserved.

XMD% mrd 0x4260010C 1

4260010C: 00000000

XMD% mwr 0x4260010C 0x04400080

XMD% mrd 0x4260010C 1

4260010C: 04400080

XMD% mrd 0x42600110 1

42600110: 46050022

XMD% mwr 0x42600110 0x86002002

XMD% mrd 0x42600110 1

42600110: 46050002

XMD% mwr 0x4260010C 0x08400080

XMD% mrd 0x42600110 1

42600110: 1A452301

XMD% mwr 0x4260010C 0x0C400080

XMD% mwr 0x42600110 0x00FF0000

XMD% mrd 0x42600110 1

42600110: 00FF0000

XMD% mwr 0x4270010C 0x10400080

XMD% mwr 0x42700110 0x00000000

XMD% mrd 0x42700110 1

42600110: 08000000

XMD% mwr 0x4260010C 0x14400080

X964_09_111406

http://www.xilinx.com

Reference System Specifics

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 13

R

xpci_example_level_1. This project initializes the OPB PCI bridge and a remote device on the
PCI bus. It then initializes Direct Memory Access (DMA) and runs local to DMA and DMA to
local transfers. The PciIsr() function handles interrupts. The OPB PCI Bridge supports simple
but not scatter gather DMA. Simple DMA is enabled by setting C_DMA_CHAN_TYPE = 0. The
DS416 Direct Memory Access and Scatter Gather product specification provides information
on the use of the DMA function in the IPIF. The base address for DMA in the ML410 reference
system is C_DMA_BASEADDR = 0x42800000. The registers used in DMA setup are given
below.

Table 6: DMA Registers

DMA Register Address

Control Register C_DMA_BASEADDR + 0x04

Source Address Register C_DMA_BASEADDR + 0x08

Destination Address Register C_DMA_BASEADDR + 0x0C

Length Address Register C_DMA_BASEADDR + 0x10

http://www.xilinx.com

Running the Applications

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 14

R

The code which transfers DMA data is given in Figure 10.

Running the
Applications

In XPS, select the Applications tab, Software Projects, and Add SW Applications Projects.
Name the software project (e.g. hello_pci), and add the files from the software project src
directory to Sources (see the cursor in the Project Information Area pane in Figure 11).

Figure 10: C Code for DMA Operation

/***
* PciDmaTransfer - interrupt driven DMA to/from a device on the PCI bus
 *
 * Parameters:
 * LocalAddress - address of a local memory device such as SRAM, DDR, etc.
 * RemoteAddress - address local to the processor that maps to the PCI bus
 * Bytes - bytes to transfer
 * Direction - direction to transfer, 0 = local to remote, 1 = remote to local
 ***/
void PciDmaTransfer(Xuint32 LocalAddress, Xuint32 RemoteAddress, Xuint32 Bytes,
 int Direction)
{
 Xuint32 DmaSrc;
 Xuint32 DmaDest;

 /* setup transfer direction */
 if (Direction == 0)
 {
 /* local to PCI */
 XDmaChannel_SetControl(&Bridge.Dma,
 XDC_DMACR_SOURCE_INCR_MASK |
 XDC_DMACR_DEST_INCR_MASK |
 XDC_DMACR_DEST_LOCAL_MASK);
 DmaSrc = LocalAddress;
 DmaDest = RemoteAddress;
 }
 else if (Direction == 1)
 {
 /* PCI to local */
 XDmaChannel_SetControl(&Bridge.Dma,
 XDC_DMACR_SOURCE_INCR_MASK |
 XDC_DMACR_DEST_INCR_MASK |
 XDC_DMACR_SOURCE_LOCAL_MASK);
 DmaSrc = RemoteAddress;
 DmaDest = LocalAddress;
 }
 else
 {
 printf("Invalid direction argument. Must be 0 or 1\n");
 return;
 }

 /* begin transfer */
 XDmaChannel_Transfer(&Bridge.Dma, (Xuint32*)DmaSrc,
 (Xuint32*)DmaDest, Bytes);

 /* wait for completion */
 SemaphoreTake(&Bridge.DmaSemaphore);
 printf("Dma Transfer complete\n");
} X964_10_111406

http://www.xilinx.com

Running the Applications

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 15

R

The structure of the hello_pci is shown in Figure 11. Make the hello_pci project active and the
remaining software projects inactive.

Select hello_pci and right click to build the project. If more than one software project is used,
make the unused software projects inactive.

Figure 11: Selecting the hello_pci Software Project

X964_11_111406

http://www.xilinx.com

Running the Applications

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 16

R

Connect a serial cable to the RS232C port on the ML410 board. Start up a HyperTerminal. Set
the baud rate to 9600, number of data bits to 8, no parity, and no flow control, as shown in
Figure 12.

Figure 12: HyperTerminal Parameters

X964_12_111406

http://www.xilinx.com

Using ChipScope with OPB PCI

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 17

R

From XPS, start XMD and enter rst. Invoke GDB and select Run to start the application as
shown in Figure 13. The hello_pci.c code written for the ML310 shown in the figure runs without
any modifications on this reference system.

Using
ChipScope with
OPB PCI

To facilitate the use of ChipScope to analyze OPB PCI hardware, the opb_pci.cdc file is
included in the ml410_ppc_opb_pci /chipscope directory. The opb_pci.cdc is used to
insert a ChipScope ILA core into the pci32_bridge_wrapper core. To insert a core and analyze
OPB PCI problems with ChipScope, execute the following steps:

1. Invoke XPS. Run Hardware → Generate Netlist.

2. In the opb_pci.cdc file, change the path <design_directory> name to the directory in
which the design files are installed. Three paths need to be changed.

3. Run Start → Programs → ChipScope Pro → ChipScope Inserter

4. From ChipScope Inserter, run File → Open Project opb_pci.cdc.

Figure 13: Running hello_pci in gdb

X964_13_111406

http://www.xilinx.com

Using ChipScope with OPB PCI

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 18

R

Figure 14 shows the ChipScope Inserter setup GUI.

The PCI_Monitor signals are the PCI bus signals. The PCI_Monitor signals are used in
ChipScope to monitor signals AD, CBE, and the remaining PCI Bus signals. Table 7 defines the
functionality of the PCI_Monitor signals which are generally useful to add to ChipScope. The
Filter Pattern *PCI_Monitor* is used to locate the signals.

Figure 14: ChipScope Inserter Setup

Table 7: PCI Monitor Signals

Bit Position PCI Signal

0 FRAME_N

1 DEVSEL_N

2 TRDY_N

3 IRDY_N

4 STOP_N

5 IDSEL_int

6 INTA

7 PERR_N

8 SERR_N

9 Req_N_toArb

10 PAR

11:42 AD

43:47 CBE

X964_14_111406

http://www.xilinx.com

Using ChipScope with OPB PCI

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 19

R

5. Figure 15 shows the GUI for making net connections. Click Next to move to the Modify
Connections window. If there are any red data or trigger signals, correct them. The Filter
Pattern can be used to find net(s). As an example of using the Filter Pattern, enter *AD* in the
dialog box to locate AD signals. In the Net Selections area, select either Clock, Trigger, or Data
Signals. Select the net and click Make Connections.

6. Click Insert Core to insert the core into pci32_bridge_wrapper.ngo. In the
ml410_pci/implementation directory, copy pci32_bridge_wrapper.ngo to
pci32_bridge_wrapper.ngc.

8. In XPS, run Hardware → Generate Bitstream and Device Configuration → Download
Bitstream. Do not rerun Hardware → Generate Netlist, as this overwrites the
implementation/pci32_bridge_wrapper.ngc produced by the step above. Verify that
the file size of the pci32_bridge_wrapper.ngc with the inserted core is significantly larger than
the original version.

9. Invoke ChipScope Pro Core Analyzer by selecting

Start → Programs → ChipScope Pro → ChipScope Pro Analyzer

Click on the Chain icon located at the top left of Analyzer GUI. Verify that the message in the
transcript window indicates that an ICON is found.

10. The ChipScope Analyzer waveform viewer displays signals named DATA*. To replace the
DATA* signal names with the signal names specified in ChipScope Inserter, select File →
Import and enter opb_pci.cdc in the dialog box.

Figure 15: Making net connections in ChipScope Inserter

X964_15_111406

http://www.xilinx.com

Using ChipScope with OPB PCI

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 20

R

The waveform viewer is more readable when buses rather than discrete signals are displayed.
As shown in Figure 16, select the 32 OPB_ABus<*> signals, click the right mouse button, and
select Add to Bus → New Bus. With OPB_ABus<0:31> in the waveform viewer, select and
remove the 32 discrete OPB_ABus<*> signals. Do this for the OPB_DBus. Make PCI Bus
signals by creating a new bus for PCI_Monitor(43:47) and renaming it PCI_Monitor_CBE, and
for PCI_Monitor(11:42) and renaming it PCI_Monitor_AD.

Note: In Figure Figure 16, the Reverse Bus Order operation option shown in below the Add Bus option
is useful for analyzing ChipScope results.

11. Set the trigger in the Trigger Setup window. The trigger used depends on the problem being
debugged. For example, if debugging a configuration transaction from the OPB, trigger on an
OPB address of C_BASEADDR + 0x10C. If debugging a problem configuring from the PCI
side, trigger on the PCI_Monitor(43:47) for a configuration write on CBE. Change the Windows
to N samples to a setting of 500. Arm the trigger by selecting Trigger Setup → Arm, or clicking
on the Arm icon.

12. Run XMD or GDB to activate the trigger patterns which cause ChipScope to display
meaningful output. For example, invoke XMD, enter rst, and paste the contents of
configure*.xmd into the XMD window.

13. ChipScope results are analyzed in the waveform window, as shown in Figure 17. This figure
shows the original PCI_monitor<*> signals and the PCI_monitor_ad signal generated in Step
10. The waveforms may be easier to read if the discrete PCI_monitor<*> signals are removed
after they are renamed. To share the results with remote colleagues, save the results in the
waveform window as a Value Change Dump (vcd) file. The vcd files can be translated and
viewed in most simulators. The vcd2wlf translator in Modeltech reads a vcd file and
generates a wlf file for viewing in the Modeltech waveform viewer. The vcd file can be opened
in the Cadence Design System, Inc. Simvision design tool by selecting File → Open Database.

Figure 16: Creating Buses from Discrete Signals
X964_16_111406

http://www.xilinx.com

Using ChipScope with OPB PCI

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 21

R

After running ChipScope, it is sometimes necessary to revise the trigger or data nets, or both,
used in a debug operation. To revise nets used by ChipScope Analyzer enter the command:

fpga_editor <system>.ncd

From the FPGA Editor GUI, select Tools → ILA.

Select an existing net which is not needed in debugging, and click Change Net. The pattern
filter box shown in Figure 18 facilitates the selection of a new net(s). Click Write CDC to
generate an new opb_pci.cdc file. Click Bitgen to generate a new .bit file.

The FPGA Editor ILA flow is more efficient than regenerating the Chip Inserter flow listed above
because the MAP and PAR implementation phases are not required.

Figure 17: ChipScope Analyzer Results

X964_17_111506

http://www.xilinx.com

Linux Kernel

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 22

R

Linux Kernel New users of Monta Vista Linux should read XAPP 765. The steps to build and boot a Linux
kernel are given below. Steps 1-3, 7, 8 are run on a Linux machine with MontaVista
Professional Edition installed.

1. Add /opt/montavista/pro/host/bin and
/opt/montavista/pro/devkit/ppc/405/bin
to $PATH.

2. Change to the ml410_pci/linux directory.

3. Run

tar cf - -C /opt/montavista/pro/devkit/lsp/xilinx-ml300-
ppc_405/linux-2.4.20_mvl31/ . tar xf -

4. To generate the Linux LSP in XPS, enter Software → Software Platform Settings. Select
Kernel and Operating Systems, then select linux_mvl31 v1.00.c.

5. Under OS and Libraries, set the entries as shown in Figure 19.

Figure 18: Using FPGA Editor to Revise Nets used in ChipScope Analyzer

X964_18_111506

http://www.xilinx.com

Linux Kernel

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 23

R

Verify that the target directory is the same as the directory containing the Linux source.

6. Click Connect_Periphs and add the OPB_INTC, OPB_SYSACE, OPB_PCI, OPB_SPI,
OPB_IIC, and OPB 16550 peripherals, using the instance names shown in Figure 20.

Figure 19: BSP Settings

Figure 20: Connected Peripherals

X964_19_111506

X964_20_111506

http://www.xilinx.com

Linux Kernel

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 24

R

Click OK.

7. Select Software → Generate Libraries and BSPs to generate the LSP in
ml410_ppc_opb_pci/linux.

8. From ml410_ppc_opb_pci/linux, run patch_nobspgen.

9. The ml410_ppc_opb_pci/linux/.config is used to define the contents of the Linux
kernel. Run make oldconfig.

An alternative is to enter make menuconfig and generate a new .config using the following
options.

Select General Setup

Enable PCI. Disable PS/2 keyboard. Change to /dev/ram for booting from ramdisk.

Select ATA/IDE/MFM/RLL support.

Enable Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support.

Enable CMD640 chipset bugfix/support and CMD640 enhanced support.

Enable Include IDE/ATAPI CDROM support. Enable Generic PCI IDE chipset support.

Enable Include IDE/ATA-2 DISK support.

Enable ALI M15x3 chipset support.

Enable PROMISE PDC202 {46|62|65|68|69|70} support.

Enable SCSI support. Enable SCSI disk support.

Enable SCSI CD-ROM support.

Enable SCSI generic support.

Enable SCSI low-level drivers.

Enable Adaptec AHA152X/2825, Adaptec AHA1542, and Adaptec AHA1740 support.

Select Network Device Support → Ethernet (10 or 100), enable 3Com devices.

Enable Vortex if using the 3Com PCI card.

Enable EISA, VLB, PCI and on board controllers.

Enable DECchip Tulip (dc2lx4x) PCI, support, EtherExpressPro/100 support, National
Semiconductor DB8381x..., and SMC EtherPowerII

Select Console Drivers. Disable Frame Buffer Support.

Select Input Core Support. Disable all.

Select Character Devices. Disable Virtual. Leave Serial enabled. Disable Xilinx GPIO and
Touchscreen.

Enable USB support.

10. Run make clean dep zImage.initrd. Verify that the zImage.initrd.elf file is in
the ml410_ppc_opb_pci/linux/arch/ppc/boot/images directory.

11. Invoke Impact and download implementation/download.bit to XC4VFX60. Either
select Device Configuration → Download Bitstream from XPS or run the following
command from the command prompt:

impact -batch etc/download.cmd

12. Invoke XMD. From the ml410_pci/linux_pci directory, enter the following commands
in the XMD window:
rst

http://www.xilinx.com

Simulation

XAPP964 (v1.1) January 9, 2007 www.xilinx.com 25

R

dow arch/ppc/boot/images/zImage.initrd.elf
con

13. View the output in the HyperTerminal window. Login as root. Enter cd / and ls -l to
view the contents of the mounted Linux partition.

14. Enter ./lspci -vv to view the PCI devices. For each line of output, the first 2 digits
represent the PCI bus number, followed by the device number and function number.

15. An alternative to downloading the Linux kernel executable is to load it into CompactFlash.
The file used uses an ace file extension. To generate an ace file, run the command below
from the ml410_ppc_opb_pci directory.
xmd -tcl ../genace.tcl -jprog -hw ../implementation/system.bit -ace
../implementation/ace_system_hw.ace -board ML410

Copy the ace file to a 64-512 MB CompactFlash (CF) card in a CompactFlash reader/writer.
Remove the CF card from the CF reader/writer and insert it into the CompactFlash slot (J22) on
the ML410 board. Power up the board.

Simulation The bus transactions done by the OPB PCI Bridge are described the UG241 OPB PCI User
Guide. The ml410_ppc_opb_pci/simulation directory contains waveform log files (files
with .wlf extension) for the following types of transactions:

• Configuration from the OPB side

• Configuration from the PCI side

• OPB to PCI Write

• OPB to PCI Read

• PCI to OPB Write

• PCI to OPB Read

Load the *.wlf files into the Modeltech simulator by typing the File → Open command, then
specifying the *.wlf file type.

See the UG241 OPB PCI User Guide for a detailed definition of each transaction.

References DS437 OPB IPIF/LogiCore v3.0 PCI Core Bridge (v1.02a)

Xilinx LogiCore PCI Interface v3.0 Product Specification

Xilinx The Real PCI Design Guide v3.0

DS416 Direct Memory Access and Scatter Gather

Virtex-4 ML455 PCI/PCI-X Development Kit User Guide UG084 (v1.0) May 17, 2005

XAPP765 Getting Started with EDK and MontaVista Linux

ML41x Embedded Development Platform User Guide UG085 (v1.2) May 26, 2006

ChipScope ILA Tools Tutorial

UG241 OPB PCI User Manual

Revision
History

The following table shows the revision history for this document.

Date Version Revision

12/5/06 1.0 Initial Xilinx release.

1/9/07 1.1 Corrected spelling of author’s name.

www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_pci.pdf
http://ww.xilinx.com/products/logicore/pci/docs/design_guide_30.pdf
http://www.xilinx.com/partinfo/pci/xcvpci64_32ds.pdf
http://www.xilinx.com/products/logicore/pci/docs/design_guid_30.pdf
http://www.xilinx.com
http://www.xilinx.com/products/software/chipscope/chipscope_ila_tut.pdf

	Reference System: OPB PCI Using the ML410 Embedded Development Platform
	Summary
	Included Systems
	Required Hardware and Tools
	Introduction
	Reference System Specifics
	ML410 XC4VFX60 Address Map
	Virtex-4 ML455 PCI/PCI-X Development Board
	Interfacing to the OPB PCI on the ML455 PCI/PCI-X Board
	Configuration of OPB PCI on the ML410 Board
	Configuration of OPB PCI on the ML455 PCI/PCI-X Board
	Executing the Reference System using the Pre-Built Bitstream and the Compiled Software Applications
	Executing the Reference System from EDK
	Verifying the Reference Design with the Xilinx Microprocessor Debugger
	Software Projects

	Running the Applications
	Using ChipScope with OPB PCI
	Linux Kernel
	Simulation
	References
	Revision History

