
SoundMexPro documentation, Software Version 2.2.0.3, October 6, 2015 1

SoundMexPro
for sound applications in MATLAB®

and GNU Octave

Version 2.2.0.3

ASIO Sound-Toolkit for MATLAB® and GNU Octave

http://www.soundmexpro.de

User Manual

Copyright HörTech gGmbH, Marie-Curie-Str. 2, D-26129 Oldenburg, Germany

http://www.hoertech.de

No warranty, subject to alteration

SoundMexPro documentation 2

License agreement
IMPORTANT- PLEASE READ CAREFULLY:

BY INSTALLING THE SOFTWARE (AS DEFINED BELOW), COPYING THE SOFTWARE AND/OR CLICKING
ON THE "ACCEPT" BUTTON BELOW, YOU (EITHER ON BEHALF OF YOURSELF AS AN INDIVIDUAL OR
ON BEHALF OF AN ENTITY AS ITS AUTHORIZED REPRESENTATIVE) AGREE TO ALL OF THE TERMS OF
THIS END USER LICENSE AGREEMENT ("AGREEMENT") REGARDING YOUR USE OF THE SOFTWARE. IF
YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS AGREEMENT, DO NOT INSTALL AND/OR USE
THE SOFTWARE.

DEFINITIONS

The term "Software" includes all software distributed with this License including all
documentation. The "Software" is licensed to you under the terms specified in the License Grant
below.

HIGH RISK ACTIVITIES

The Software is not fault-tolerant and is not designed, manufactured or intended for use as on-
line control equipment in hazardous environments requiring fail-safe performance, such as in the
operation of nuclear facilities, aircraft navigation or communication systems, air traffic control,
direct life support machines or other medical devices, or weapons systems, in which the failure
of the Software could lead directly to death, personal injury, or severe physical or environmental
damage ("High Risk Activities"). HörTech gGmbH and its suppliers specifically disclaim any
express or implied warranty of fitness for High Risk Activities.

OWNERSHIP AND COPYRIGHT

This Software is owned by HörTech gGmbH or its suppliers and is protected by copyright law and
international copyright treaty. Therefore you must treat this Software like any other copyrighted
material. You acknowledge that no title to the intellectual property in the Software is transferred
to you. Title, ownership, rights, and intellectual property rights in and to the Software shall
remain in HörTech gGmbH.

LICENSE GRANT

Subject to the license terms, HörTech gGmbH hereby grants you a non-exclusive, non-
transferable (except under the terms below) license to install and to use the Software under the
terms of this license. Except as provided in this license agreement, you may not transfer, rent,
lease, lend, copy, modify, translate, sublicense, time-share or electronically transmit the
Software. You may only either make one copy of the Software solely for backup or archival
purposes or transfer the Software to a single hard disk provided you keep the original solely for
backup or archival purposes. You agree not to modify the Software or attempt to decipher, de-
compile, disassemble or reverse engineer the Software, except to the extent applicable laws
specifically prohibit such restriction.

LICENSE TRANSFER

You may transfer your license and the rights granted in the license to a third party only if a) the
third party agrees to this license agreement, b) you completely uninstall and delete all copies of
this Software, c) all parts of the Software and its distribution are transferred to the third party and
d) the transfer includes the current version and all prior versions of the Software.

SoundMexPro documentation 3

DISCLAIMER OF WARRANTY

THIS SOFTWARE IS SOLD "AS IS" AND WITHOUT WARRANTIES AS TO PERFORMANCE OF
MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EXPRESSED, IMPLIED, OR STATUTORY,
INCLUDING, BUT WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF NONINFRINGEMENT OF
THIRD PARTY RIGHTS, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. GOOD DATA
PROCESSING PROCEDURE DICTATES THAT ANY PROGRAM BE THOROUGHLY TESTED WITH NON-
CRITICAL DATA BEFORE RELYING ON IT. THE USER MUST ASSUME THE ENTIRE RISK OF USING THE
PROGRAM. ANY LIABILITY OF THE SELLER WILL BE LIMITED EXCLUSIVELY TO PRODUCT
REPLACEMENT OR REFUND OF PURCHASE PRICE. Under and restricted by the above terms,
HörTech gGmbH warrants that the Software, as updated and when properly used, will perform
substantially in accordance with its accompanying documentation, and the Software media will
be free from defects in materials and workmanship. The limited warranty is void if the Software
fails as a result of accident, abuse, misapplication or modification. LIMITATION OF LIABILITY You
must assume the entire risk of using the Software. IN NO EVENT SHALL HörTech gGmbH BE LIABLE
TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER
INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING OUT OF THE USE OF
THE HörTech gGmbH's SOFTWARE, EVEN IF HörTech gGmbH HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT WILL HörTech gGmbH's LIABILITY FOR ANY CLAIM,
WHETHER IN CONTRACT, TORT, OR ANY OTHER THEORY OF LIABILITY, EXCEED THE LICENSE FEE
PAID BY YOU. THIS LIMITATION SHALL APPLY TO CLAIMS OF PERSONAL INJURY TO THE EXTENT
PERMITTED BY LAW.

LIBSNDFILE LICENSE

SoundMexPro uses the libsndfile library written by Erik de Castro Lopo and others
(http://www.mega-nerd.com/libsndfile/). It is published under the GNU Lesser General Public
License (LGPL) either version 2.1 or optionally version 3 (see files libsndfile_lgpl_v2_1.txt and
libsndfile_lgpl_v3.txt shipped with SoundMexPro).

SoundMexPro documentation 4

Contents

License agreement ... 2

1 Introduction .. 6

1.1 What’s new in version 2.0? ... 7

2 Installation .. 7

2.1 System Requirements ... 7

2.2 Installing SoundMexPro .. 8

2.2.1 Accessing SoundMexPro help from MATLAB® ... 9

2.3 Uninstalling SoundMexPro ... 9

3 The SoundMexPro Interface ..10

3.1 General Command Description ..10

3.2 Architecture: Output Channels and Virtual Tracks .. 12

3.3 Audio data in SoundMexPro: files and vectors ... 16

3.3.1 Loops, ramps and crossfades ... 16

3.3.2 Channel ‘alignment’ .. 18

3.4 Buffer configuration ... 19

3.4.1 Sound card constraints: minimum delay .. 20

3.5 Supported audio file formats .. 20

4 Error Handling in SoundMexPro .. 21

4.1 Synchronous errors in SoundMexPro ... 21

4.2 Asynchronous errors in SoundMexPro ... 21

4.2.1 Clipping .. 21

4.2.2 Xruns .. 21

4.2.3 Data underrun .. 22

4.2.4 Setting changed ... 22

4.2.5 Fatal errors ... 22

5 Tutorial, Examples and Scenarios .. 22

5.1 The SoundMexPro Tutorial .. 22

5.2 The SoundMexPro Examples ... 24

5.3 Using SoundMexPro without MATLAB® .. 25

5.3.1 Using the SoundDllProLoader .. 25

5.3.2 Programming Interface (API)... 25

6 SoundMexPro GUI interfaces ... 25

6.1 The SoundMexPro ‘Mixer’ ... 25

6.2 The SoundMexPro ‘TrackView’ .. 26

7 SoundMexPro Realtime DSP-Plugins ... 27

7.1 Realtime processing with MATLAB® scripts .. 27

7.1.1 Using compiled script plugins .. 30

7.2 Realtime processing with VST-plugins .. 30

7.2.1 I/O-configuration of VST-plugins .. 30

7.2.2 VST-plugin configuration files .. 35

SoundMexPro documentation 5

7.2.3 VST-plugin editor ... 36

8 ASIO Direct Monitoring (ADM) ... 36

8.1 Extensions/hints for particular sound cards ... 36

8.1.1 Mapping inputs to multiple outputs ... 36

8.1.2 Output gain/pan control .. 37

8.1.3 ADM mixer feedback .. 37

9 File-to-file operation with SoundMexPro .. 37

10 SoundMexPro Versions .. 37

10.1 SoundMexPro.. 37

10.2 SoundMexPro DSP .. 38

10.3 SoundMexPro VST ... 38

10.4 SoundMexPro VST+ ... 38

11 SoundMexPro Command Reference ... 39

11.1 General Commands .. 39

11.2 Device Commands .. 43

11.3 Playback Commands ... 44

11.4 Recording Commands ... 53

11.5 MATLAB® script DSP commands .. 56

11.5.1 VST Commands ... 57

11.6 Other Commands .. 60

11.7 Error Handling ... 61

12 FAQ .. 62

13 Version History .. 62

SoundMexPro documentation 6

1 Introduction

SoundMexPro is a powerful tool for sound applications in MATLAB® and GNU Octave.
SoundMexPro is especially designed for acoustic measurement tasks (Psychoacoustics, Physical
Acoustics, Neuro Physiology).

SoundMexPro uses the ASIO technology.

ASIO is a trademark and software of Steinberg Media Technologies GmbH.

SoundMexPro uses the VST technology.

VST is a trademark and software of Steinberg Media Technologies GmbH.

SoundMexPro uses libsndfile 1.0.19 for reading sound files (see also license
section above). See http://www.mega-nerd.com/libsndfile/ for more
information.

The software SoundMexPro is not a medical device or an accessory of a medical
device, respectively, and not intended to drive a medical device.

The main features of SoundMexPro are:

- Multichannel sound output and recording using the ASIO sound interface (sample-
accurate synchronization of multiple playback and recording devices).

- Reading multiple audio file formats

- Unlimited number of virtual audio tracks (virtual recording/mixing studio).

- Real-time mixdown of virtual tracks to output channels with separate level control for
tracks and channels.

- Record from multiple devices synchronously to disk (hard disk recording).

- Continuous sound ‘adding’ mode: new audio data can be added at any time while device
is already playing (e.g. for online stimulus generation).

- Retrieve recorded data directly to MATLAB® while device is recording (e.g. for online
evaluation).

- Threshold driven recording.

- DSP-Plugins for real-time signal processing

o Script based plugins: user defined MATLAB® commands are called for every
sound buffer on the fly. Processed data are sent to the soundcard.

o VST-Host for loading Steinberg “Virtual Studio Technology“ (VST) effect plugins.

- Direct low latency I/O: recorded data can be directly (or after processing the data with
DSP-Plugins) mapped to multiple tracks.

- file-to-file processing

- Xrun (dropout) detection.

- Special command for ‘highlighting’ buttons on a MATLAB® window: buffer accurate
highlighting at desired playback ‘positions’ (for signal-synchronous user feedback)

Important note: For understanding the basic concept of SoundMexPro it is very important to get
familiar with (and distinguish between) ‘Virtual Tracks’ and ‘Device Channels’. Please read
chapter 3.2 very carefully where these terms are introduced.

SoundMexPro documentation 7

A demo version of SoundMexPro is available for free. The demo version has the following
restrictions:

- a demo message is shown on ‘init’ and after every few minutes

- sound input and output is stopped every few minutes

- additional sound (the spoken words ‘SoundMex demo’) is added to all playbacks and
recordings at random times

1.1 What’s new in version 2.0?
With version 2.0 SoundMexPro introduced many new features and a few changes. You can find
the complete version history of SoundMexPro on the SoundMexPro homepage at

http://www.soundmexpro.de/download/history.txt

New commands:

- channelname, trackname, recname: symbolic names can be set for tracks, output and
input channels and these names can be used in all commands for the parameters ‘track’,
‘output‘ and ‘input respectively besides their indices

- recvolume: sets recording gain
- tracklen: returns total length of loaded data in tracks
- cleartrack: clears data in particular tracks

New features for loading sound data (file or vector):

- object gains: each loaded object can get it’s own gain
- crossfading between loaded sound objects
- object ramps: each loaded object can have own volume ramps
- loop ramps: each loaded object can have own volume ramps for each loop
- loop-crossfade: each loaded object can do a crossfade when looping

Other new features:

- VST plugins for recording channels
- Support for compiled MATLAB® script DSP plugins
- Most commands now allowed while sound output is already running

New GUI features:

- Update of wavedata in trackview while running allowed
- Ctrl + left mouse button sets playback position in trackview
- Mixer now has a variable width

Changes in default behaviour:

- Default value for parameter ‘autocleanup’ in command ‘init’ is now 0
- Default value for parameter ‘wavedata in commands ‘showtracks’ and ‘updatetracks’ is

now 1
- Default GUI (command ‘show’) was removed. Command ‘show’ now is identical to

‘showmixer’

2 Installation

2.1 System Requirements
SoundMexPro runs on MATLAB® 5.3 (R11.1) and above or GNU Octave 3.8 and above on Microsoft
Windows® 95 and above (32-bit and 64-bit).

There are no special requirements on the computer. However, the more power your computer
has, the more tracks, devices and DSP-plugins can be handled simultaneously without dropouts.

SoundMexPro runs with every sound card that is shipped with an ASIO driver. However, HörTech
cannot guarantee the support of all features with all sound cards.

SoundMexPro documentation 8

If you want to use a soundcard that is not shipped with an ASIO driver you may use a universal
ASIO driver for WDM (e.g. ASIO4ALL, see http://www.asio4all.com/ or Jack with JackRouter, see
http://jackaudio.org/).

If you cannot use one of these universal drivers for any reason you may use the ‘wdm’ mode of
SoundMexPro supporting two output channels only (no inputs supported, see commands
‘setdrivermodel’ and ‘getdrivermodel’).

For recommendations on sound cards please contact HörTech by email, fax or phone.

2.2 Installing SoundMexPro
Run SOUNDMEXPRO.EXE and follow the installation instructions. The following files will be
installed on your computer:

Directory File(s) Description
bin libsndfile-1.dll,

mpluginmex.old.dll,
mpluginmex.mexw32,
mpluginmex.mexw64,
mpluginmex.mex

SMPIPC.EXE,
SoundDllPro.dll,
soundmexpro.old.dll,
SoundDllProLoader.exe,
soundmexpro.mexw32,
soundmexpro.mexw64
soundmexpro.mex

smp_stft.m,
smp_stftinit.m

SMPPlugin.m

soundmexpro_showdevs.m

soundmexpro_showcfg.m

soundmexpro_trackmap.m

smp_disp.m

Main program files and libraries + license
file. Add this path to the search path of
MATLAB® or GNU Octave.

Tools used for spectral script based
plugins

Tool script to be used for compiling script
plugins

Tool scripts for examination of available
hardware and configuration, see tutorial
t_02b_config_tools.m and commented
scripts themselves.

Helper script used in tutorials and
examples.

bin\Octave_3.8 mpluginmex.mex
soundmexpro.mex

binaries needed for Octave 3.x. Copy these
files to the BIN directory if you are using
Octave 3.x

tutorial various tutorial MATLAB® script files
examples various advanced MATLAB® examples and

examples using the VST plugins shipped
with SoundMexPro

manual SoundMexPro.pdf

SoundDllProLoader.pdf

HtVst-Plugins.pdf

lgpl.txt

PDF Help, LGPL license information

manual/html SoundMexPro.html HTML help. Copy HTML and subfolder

SoundMexPro documentation 9

+ related files ‘SoundMexPro-Files’ to your MATLAB® ref
path (see below)

plugins *.dll VST plugins shipped with SoundMexPro
waves various wave files used by the tutorial and the

examples

After installing you should add the BIN directory of your SoundMexPro installation (e.g.
C:\SoundMexPro\bin) to your MATLAB® path.

NOTE: if you want to use SoundMexPro on MATLAB® 7.1 or below you have to rename the files
bin/soundmexpro.old.dll to bin/soundmexpro.dll and bin/mpluginmex.old.dll to
bin/mpluginmex.dll

NOTE: Do not play files from or record files to network drives!

2.2.1 Accessing SoundMexPro help from MATLAB®
If the BIN directory is part of the MATLAB® search path you can access the HTML-help of
SoundMexPro from the MATLAB® help browser (MATLAB® version >= 7.0). Call the ‘doc’
command and select ‘SoundMexPro’ from the content pane. Note that you need to restart
MATLAB® after adding the BIN directory to the search path before SoundMexPro will be listed on
the content pane!

To call the HTML-help of SoundMexPro directly from MATLAB® please use the ‘web’ command
rather than ‘doc SoundMexPro’ (this not supported by all MATLAB® versions):

 web('c:\soundmexpro\manual\html\soundmexpro.html');

 or

 web('soundmexpro.html', '-helpbrowser');

NOTE: the second syntax only works, if you have added the Manual\HTML path of SoundMexPro
to the MATLAB® search path.

If you want to access the HTML-help through the MATLAB® command 'doc SoundMexPro' on
MATLAB® versions older than 7.0 please copy the content of the subfolder 'Manual\HTML' from
your SoundMexPro-Installation to the directory

<MATLAB path>\help\techdoc\ref (e.g C:\MATLAB6p5\help\techdoc\ref)

2.3 Uninstalling SoundMexPro
An uninstaller is shipped with SoundMexPro. Run the uninstaller from the control panel.

SoundMexPro documentation 10

3 The SoundMexPro Interface
This chapter describes the general command interface and architecture of SoundMexPro. All
SoundMexPro commands are listed and described in the command reference in chapter 11.

3.1 General Command Description

All SoundMexPro commands have a similar syntax:

[errocode, outarg1,…] = soundmexpro('command', par1, val1, par2, val2,…);

All command arguments (except for command ‘help’) have to be specified in pairs of ‘parameter
name’ and ‘value’, e.g.

soundmexpro('loadfile', ... % command name

 'filename', 'noise_16bit.wav', ... % name of wavefile

 'track', [0 1], ... % tracks, where to play file

 'loopcount', 1 ... % play it 1 time

);

Most of the parameters have default values and thus can be omitted, some are mandatory (see
help on commands below).

Note: all indices in SoundMexPro are zero-based, i.e. the first output, track or input respectively
has index 0, second has index 1 and so on.

However, you can assign symbolic names to all outputs, tracks and inputs using the commands
‘channelname’, ‘trackname’ and ‘recname’. Afterwards you can use these names in all
commands optionally instead of their indices.

All commands return one output argument at least. This return value is an error code and
indicates success or failure of the command itself, where 1 is returned on success and 0 on any
error. Evaluate this first return value to react on any error before calling further SoundMexPro
commands, e.g.:

success = soundmexpro('init');
if (~success)

 error('Cannot initialize SoundMexPro!');
end

Commands with additional return values write these to outarg[1] … outarg[n], e.g.:

[success, lasterror] = soundmexpro('getlasterror');

SoundMexPro documentation 11

if success ~= 1

 error('error calling getlasterror');

end

disp(['the last error was ' lasterror]);

Important notes:

- If any error occurs within a command, the additional output arguments may contain only
a scalar value (zero) and must not be used. In this case only the error code is valid!!

- All string values are returned as cell arrays!

- The standard error code return argument is omitted in the list of outargs in the ‘help’
command and in the command tables below. All commands return the error code as first
outarg!

The next paragraph contains a description of the internal SoundMexPro architecture using
‘output channels’ and ‘virtual tracks’. Read this carefully, because it is very important to get the
idea of this concept to be able to tap the full potential of SoundMexPro.

SoundMexPro is shipped with a tutorial and some advanced examples. It is highly recommended
to examine the tutorial thoroughly. It is located in the ‘tutorial’ subdirectory of the SoundMexPro
installation. The files named ‘t_???’ are part of the tutorial (the others are helper scripts). The file
names are chosen (if sorted alphabetical) to give the tutorial a logical order with an ascending
level of complexity using more and more commands of SoundMexPro starting with
‘t_01_basics.m’.

In the ‘examples’ subdirectory you may find some advanced examples that might be useful such
as a pair comparison script with cross fade, SNR adjustment ‘on-the-fly’ and some VST examples.

The tutorial and the examples are described in detail in chapter 5.

SoundMexPro documentation 12

3.2 Architecture: Output Channels and Virtual Tracks
The descriptions in this chapter reference to some SoundMexPro commands, that will be
described later, but they should give you an idea here, which commands are important for
understanding the basic concept of SoundMexPro.

The basic idea of SoundMexPro is based on the discrimination between output channels
(hardware, called ‘output channels’ below) and virtual audio data tracks (software, called
‘tracks’), where audio data can be loaded to. Each track can be connected (‘wired’) to an output
channel and - like in a mixing desk - multiple tracks can be connected to the same output
channel: these tracks (i.e. the audio data of these tracks) are mixed on the fly to the output
channels. Each output channel of SoundMexPro (containing a ‘mixdown’ of multiple tracks) can
be connected to one channel of the sound card (called ‘device channel’ below).

The figure below shows an example using three output channels connected to three
corresponding device channels, and six virtual tracks are used.

Figure 1: Output channels and virtual tracks

The command sequence for setting up SoundMexPro for the configuration shown above is
described here in detail (in anticipation of the command list below, most arguments omitted to
use default values):

% initialize SoundMexPro with three output channels and six track
soundmexpro('init', ... % command name

 'output', [0 5 6], ... % use three output channels, connected to

 ... % device channels 0, 5 and 6 of the sound card

 'track', 6 ... % use 6 tracks

);

virtual playback

cursor Track

Volume

Track 0 file 1 file 2

vector 1

Track 1 vector 2

file 3

Track 2 file 4

vector 3

Track 3 file 5

file 6

vector 4

Track 5 vector 5

Track 4 file 7

Channel 0

0

1

2

3

4

5

6

7

Channel 1

Channel 2

Sound card

Master

Volume

SoundMexPro documentation 13

Note: after initialization the three ‘allocated’ output channels are enumerated in SoundMexPro
starting with 0, i.e. first sound card device channel (0) will have output channel index 0 in
SoundMexPro, sixth sound card device channel will have output channel index 1 and seventh
sound card device channel will have output channel index 2 .

The default track mapping (wiring of tracks to output channels) after command ‘init’ (if ‘track’
parameter is omitted) is “one track per output channel”, where the first track is connected to the
first output channel, second track to second output channel, and so on. In this example six tracks
and three output channels were specified: the tracks are mapped ‘circular’ to the available
output channels. ‘Circular’ here means that a track with number TrackIndex is mapped to output
channel number ChannelIndex calculated by

ChannelIndex = mod(TrackIndex, TotalNumberOfOutputChannels);

In this example the tracks 0 and 3 are connected to output channel 0, tracks 1 and 4 are
connected to output channel 1 and tracks 2 and 5 are connected to output channel 2 (default
mapping after ‘init’). Note: this mapping does not yet fit our ‘requirements’ for the example!

This default mapping can be changed with the command ‘trackmap’ to match the example from
the requirements:

% map (route) first two tracks to channel 0, next three tracks to channel 1 and
% sixth track to channel 2

soundmexpro('trackmap', ... % command name

 'track', [0 0 1 1 1 2] ... % track map to set

);

Now the ‘wiring’ is complete and matches exactly the configuration shown in Figure 1. The volume
(linear gain) of each track can be adjusted with the command ‘trackvolume’, the final ‘master
volume’ of an output channel additionally can be adjusted using the command ‘volume’.

The next step is to load audio data (files or MATLAB® vectors) to the tracks (green boxes in Figure
1) using the ‘loadfile’ or ‘loadmem’ command respectively. The different number of ‘data boxes’
in the tracks indicate that all tracks may be filled with different data independently, files and
vectors may be mixed.

The command ‘start’ starts the signal output. In the example the output will start with a sum of
‘file 1’, and ‘vector 2’ on sound card channel 0, a sum of and ‘file 4’, ‘file 5 ‘ and ‘file 7’ on sound
card channel 5 and with ‘vector 5’ on sound card channel 6. The output proceeds as if a ‘virtual
playback cursor’ shown as dotted line in Figure 1 would run parallel through all tracks. However,
this picture does not fit exactly, if loops are used for particular audio data. But the picture is
correct again, if you imaginary ‘copy’ the audio data to be looped n times into the corresponding
track.

The example above shows the general ‘strategy’ to find the appropriate configuration of
SoundMexPro for a particular task:

- Determine how many independent channels (i.e. soundcard outputs/speakers) you need.
Specify this number of channels in argument ‘output’ (with respect to the ‘real’ hardware
channels of your sound card you want to use),

- Determine the total number of independent tracks (i.e. sound data you need at the same
time - in parallel). Specify this number of tracks in the ‘track’ argument of command ‘init’.
If you don’t need any mixing, then omit the ‘track’ argument: one track for each channel

SoundMexPro documentation 14

will be created (with a ‘straight’ connection from track 0 to channel 0, track 1 to channel 1
and so on).

- Determine the required ‘wiring’ of tracks to output channels, i.e. which track(s) are
connected to which output channels and set this ‘mapping’ using the ‘trackmap’
command.

For simplicity reasons the example above describing the difference between ‘tracks’ and ‘output
channels’ only used simple signal output without any DSP plugins and/or signal input
(recording). The complete ‘processing scheme’ for each output channel, i.e. how samples are
generated and processed before they are sent to the sound card driver consists of the following
steps (see Figure 2, the numbers at the bottom correspond to the enumeration below):

Figure 2: Output processing scheme for one soundcard output channel

Track

Volume

Track 0 data x

Track 1 data y

Track 2 data z

Channel 1

Master

Volume

VST

VST

VST

VST

MATLAB

Master

VST-

Plugin

Master

Script-

Plugin

 1 2 3 4 5 6 7 8

soundcard recording channels soundcard output channels

VST VST VST VST Recording VST-Plugins

Track

VST-

Plugins

Recording Volume

 Harddisk Recording debugsave

SoundMexPro documentation 15

1. Track data are retrieved (from file or MATLAB® vector)

2. Data from input channels (recording channels) that are ‘mapped’ to one or more tracks
with command ‘iostatus’ are added to the corresponding track(s) after the recording
volume (command ‘recvolume’) and the recording VST plugins were applied. Multiple
input channels may be mapped to the same track (dashed line) or one input channel may
be mapped to multiple tracks as well (dotted line).

3. Track volumes are applied.

4. The completely calculated track data are passed to the track VST plugins for processing.
NOTE: depending on your VST plugin configuration data across tracks may be mixed (see
chapter 7.2).

5. Generate output data from track data: iteration through all virtual tracks (containing the
data processed so far) with ascending indices. The track data are ‘applied’ to ‘their’
output channel, where ‘applied’ means

a. they are added to the output (default)

b. the current output is multiplied sample by sample with the data, if the track is in
multiplying mode (see command ‘trackmode’). In this case the ‘order’ of the
tracks is important: if you have e.g. initialized 4 tracks for an output channel and
have set the third track to multiplying mode, then the sum of the first two tracks is
multiplied with the third track, and the fourth track is added to the result of that
operation!

6. The completely calculated output channel data are passed to the master VST plugins of
the output channel for processing. NOTE: depending on your VST plugin configuration
data across output channels may be mixed (see chapter 7.2).

7. The completely calculated input and output channels are passed to the MATLAB® script
DSP interface of SoundMexPro. Important note: the input channels passed to the
MATLAB® script DSP interface are the recorded data received from the driver and
processed by the optional recording VST plugins (dash-dotted line). Within the interface
you can mix/add/copy data between the inputs and outputs. This means that there are
two ways of mixing inputs to the outputs: either using command ‘iostatus’ (see step 2
above) or within the MATLAB® script DSP interface of SoundMexPro.

8. Finally the channel volume (see command ‘volume’) is applied.

NOTE: after all these calculations the data are passed to the driver. If the data contain values
above 1 or below -1 clipping will occur. So you have to take care (especially when using multiple
tracks), that the sum of your data does not exceed these limits!

The light blue boxes labelled ‘Harddisk Recording’ and ‘debugsave’ show how data are saved to
disk in SoundMexPro:

- Recording data (command ‘recfilename’) are written WITHOUT applying signal processing
(except for ‘recvolume’.

- Data saved with command ‘debugsave’ store the completely processed data of an output
channel.

It is always recommended to record unprocessed data to disk and apply any signal processing
later. In this way you can always fall back to the original data later again, otherwise you only will
have the processed data available. However, if you want to record processed audio data directly
to disk you may use the following procedure:

- disable recording to file (command ‘recpause’)

- use command ‘isostatus’ to map inputs to tracks

- plug your plugin into the recording channel or track or output

SoundMexPro documentation 16

SoundMexPro documentation 17

SoundMexPro documentation 18

3.3.2 Channel ‘alignment’
When using multichannel audio objects to SoundMexPro they are loaded with keeping their
channels ‘aligned’. This means, that the channels are not shifted against each other, even if the
tracks, where the channels are loaded to, already contain data with different lengths. This is
illustrated with an example in Figure 6.

Figure 6: Channel alignment

The tracks 0 and 1 already contained data of different length (green boxes) when loading the
stereo ‘file 4’ (blue boxes) with the command:

soundmexpro('loadfile', ... % command name

 'filename', 'file4', ... % name of wavefile

 'track', [0 1], ... % tracks, where to play file

 'loopcount', 1 ... % play it 1 time

);

In this case SoundMexPro automatically inserts zeros into track 1 (pink box) to keep the channels
of ‘file 4’ aligned.

If you want to load the two channels of ‘file 4’ in such a scenario ‘unaligned’ you have to do two
subsequent calls to command ‘loadfile’ to load the two channels separately:

% load first file channel to track 0 (second file channel neglected by specifying

% a negative value)

soundmexpro('loadfile', ... % command name

 'filename', 'file4', ... % name of wavefile

 'track', [0 -1], ... % tracks, where to play file.

 'loopcount', 1 ... % play it 1 time

);

% load second file channel to track 1 (first file channel neglected by specifying

% a negative value)

soundmexpro('loadfile', ... % command name

 'filename', 'file4', ... % name of wavefile

 'track', [-1 1], ... % tracks, where to play file.

 'loopcount', 1 ... % play it 1 time

);

virtual playback

cursor

Track 0 file 1 file 2

vector 1

Track 1 vector 2

file 3

file 4, channel 0

zeros file 4, channel 1

SoundMexPro documentation 19

This leads to the following data status in the two tracks:

Figure 7: Channel alignment (not aligned)

3.4 Buffer configuration
When playing sound through a soundcard using the ASIO interface audio data are streamed to
the soundcard driver, i.e. buffers with audio data are passed to the driver on request: the driver
calls the sound application when it needs new audio data. If this call happens, the data are
needed ‘immediately’ and if the operating system (or your MATLAB ® task) is very busy at the
moment, then audible dropouts, so called xruns may occur.

First of all an application must be capable to provide audio data for the driver at a sufficient
speed, i.e. on average the processing/generation of one audio data block must not take longer
than the output of a block of same size. If the processing is too slow, then xruns are unavoidable
(see example in tutorial t_07a_realtime_plugin), the processing scheme has to be optimized, or
offline processing has to be done.

But xruns may occur sometimes even if the processing is fast enough: it may happen that the
operating system (or your MATLAB ® script) produces heavy load temporarily exactly at the
moment when audio data are requested by the driver. Then xruns will occur if no so called
software buffering is done. Software buffering stores a particular number of processed (!) audio
data blocks for passing them to the driver immediately. In this way some buffers are filled (pre-
processed) when the processor load is not extremely high and on temporary heavy load there are
always a few processed buffers available that only have to be passed to the driver.

SoundMexPro supports software buffering. The number of buffers to be used is specified in the
parameter ‘numbufs’ in command ‘init’ (default is 10 buffers).

Software buffering will cause additional delay for the signal output. For applications, where only
sound output or recording is done, this usually can be neglected, it does not interfere with
standard playback/recording tasks (you may find a few additional buffers of zeros in recorded
files).

But in applications where SoundMexPro is used as DSP-Engine, i.e. data from the inputs are
processed and played back directly (command 'iostatus’), then a minimum delay may be
desirable. The minimum theoretical delay a ASIO driver will be able to provide is

Dmin = 2 * ASIOBufferSize + HardwareSpecific + DriverSpecific

where

virtual playback

cursor

Track 0 file 1 file 2

vector 1

Track 1 vector 2

file 3

file 4, channel 0

file 4, channel 1

SoundMexPro documentation 20

ASIOBufferSize: buffer size that can be selected in the driver manufacturers soundcard dialog
(see command ‘controlpanel’).

HardwareSpecific: additional delay form hardware (e.g. anti-aliasing filters of D/A converter)

DriverSpecific: any delay caused by the particular implementation of the driver itself

The total delay in SoundMexPro will be

Dtot = Dmin + numbufs*ASIOBufferSize

Thus you can minimize the delay by decreasing the ASIO buffer size and/or decreasing the
number of used software buffers. In both cases the risk for the occurrence of xruns will increase.

3.4.1 Sound card constraints: minimum delay
Theoretically the minimum I/O delay can be achieved by disabling software buffering (i.e. setting
‘numbufs’ to zero in command ‘init’). However, some sound card drivers are introducing two
buffers with zeros in the beginning by mistake when no software buffering, but a separate
processing thread is used (for ASIO insiders: the driver starts the output of its buffers
immediately after the buffer switch returns instead of waiting for the ASIOOutputReady
command). For these soundcards the minimum delay is

D = Dmin + ASIOBufferSize

This can be achieved by setting ‘numbufs’ to 1 in command ‘init’.

To check, if your sound card is concerned by this problem you have to measure the delay and
compare the delay when setting ‘numbufs’ to 1 and setting ‘numbufs’ to zero.

Most drivers of the sound cards from RME are affected by this problem.

3.5 Supported audio file formats
SoundMexPro uses the library libsndfile for reading audio files. It supports a huge number of
audio formats (except for MP3). Amongst others the following formats are supported

- Microsoft WAV

- Ogg Vorbis

- Sun/DEC/NeXT AU/SND

- Commodore/Amiga IFF

- Creative VOC

- SoundForge W64

- GNU Octave 2.0/2.1 MAT4/MAT5

- FLAC

For a complete list of supported formats please refer to the libsndfile homepage
(http://www.mega-nerd.com/libsndfile/).

Recorded data are always stored as normalized single channel 32bit PCM wave files (one file per
channel).

SoundMexPro documentation 21

4 Error Handling in SoundMexPro
When trying to generate clean and stable programming code with any programming or scripting
language it is essential to take care of accurate error handling. SoundMexPro provides a variety
of commands/tools to implement error handling for two types of errors that might occur.

4.1 Synchronous errors in SoundMexPro
Every SoundMexPro command returns an error code as first return value to MATLAB® to indicate
the success or failure of a particular command. This may include simple syntax errors as well as
failures accessing the soundcard. Evaluating these return values carefully allows the user to
detect problems immediately when they occur and avoid unpredictable script crashes, if one
SoundMexPro command ‘on-the-way’ fails.

4.2 Asynchronous errors in SoundMexPro
Errors that do not occur as immediate result of a call to a SoundMexPro command are called
‘asynchronous errors’. Such errors cannot be reported to MATLAB® immediately (i.e. at the time
of their occurrence) because there is no SoundMexPro command currently running, that may
‘accept’ any return value. Therefore asynchronous errors are stored and the next SoundMexPro
command will fail and show the corresponding error indicating it as an asynchronous error. Such
errors may occur during the runtime of SoundMexPro due to various reasons:

4.2.1 Clipping
The input or output of the device clips (overdrive). SoundMexPro detects and counts buffers,
where I/O clipping occurs. The current value can be retrieved at any time with the command
‘clipcount’ and the user may react on eventually detected clipping e.g. by stopping the complete
script. NOTE: clipping on the input is defined in SoundMexPro as two subsequent samples with
+1 or -1 within one buffer.

Clipping on the output is checked after applying signal processing and gains to detect clipping
directly before D/A conversion.

Clipping on the input is checked before applying any signal processing or gain to detect any
clipping after A/D conversion.

4.2.2 Xruns
Dropouts occur in the input or output (so called ‘xruns’). SoundMexPro tries to detect xruns
caused e.g. by too slow DSP processing within the plugin pipe. However, if the total processor
load is very heavy SoundMexPro may not detect xruns. They can only be detected, if there is
enough processing time left to let the soundcard itself send a request for new data! The current
value can be retrieved at any time with the command ‘xrun and the user may react on eventually
detected xruns e.g. by stopping the complete script.

Additionally SoundMexPro distinguishes two types of XRuns

‘Processing queue xruns’: these are dropouts in playback or recording due to slow DSP
processing resulting in audible dropouts (or dropouts in recorded data).

‘Visualization and hard disk recording dropouts’: these dropouts occur, if your hard disk is too
slow for writing all data to disk or your computer is too slow to do the visualization of the data (if
shown at all). These xruns result in dropouts in your recording, but not in the processing. Both
tasks are performed in different threads where the processing thread has the higher priority.

The command ‘xrun’ returns the sum of both types (for backwards compatibility), the number of
processing and the number of ‘recording’-xruns separately.

SoundMexPro documentation 22

4.2.3 Data underrun
A data underrun occurs in the output. A data underrun occurs, if the sound output is started
(command ‘start’) and a channel has played all his data before receiving new data with ‘loadfile’,
or’ loadmem’. In most applications this underrun is not of interest (usually the channels should
run out of data after playing the desired samples), but e.g. for continuous stimulus generation it
might be necessary to detect underruns (i.e. if you are too slow in generating new samples). The
command ‘underrun’ retrieves the current underrun status for all channels.

Take e look at the tutorial script ‘t_04c_play_con_stim_gen.m’

4.2.4 Setting changed
If the sample rate or buffer size of the driver is changed externally (e.g. from control panel of the
driver) during signal output the device is stopped and the error message for command
‘asyncerror’ is set correspondingly.

4.2.5 Fatal errors
Fatal (unexpected) asynchronous errors during signal I/O occurs. Usually such errors should not
occur (if no hardware error occurs) except if a plugin (script plugin or VST plugin) returns an error
during signal processing. Please refer to the tutorial script ‘t_08_async_errors.m’ that shows how
to detect such errors.

5 Tutorial, Examples and Scenarios
This chapter contains a description of the SoundMexPro tutorial, a (growing) collection of
examples, ‘special’ scenarios and extended explanations to particular commands.

This chapter uses many of the SoundMexPro commands. Please refer to the command reference
in chapter 11 for help on particular commands.

5.1 The SoundMexPro Tutorial
SoundMexPro is shipped with a tutorial. It is highly recommended to examine the tutorial
thoroughly. It is located in the ‘tutorial’ subdirectory of the SoundMexPro installation. The files
named ‘t_???’ are part of the tutorial (the others are helper scripts). The file names are chosen (if
sorted alphabetical) to give the tutorial a logical order with an ascending level of complexity
using more and more commands of SoundMexPro.

NOTE: scripts containing ‘_x_’ in their name are used by the tutorials described in the table below
and should not be called directly.

Filename Description

t_00_setup_tutorial.m Helper script to select a sound card driver and sound
card channels to be used for the tutorial and examples

t_00b_init_tutorial.m Helper script that reads settings created with
t_00_setup_tutorial in each tutorial file.

t_01_basics.m This example shows very basic commands:
initialization and track mapping, using the online help,
retrieving version information and showing/hiding the
‘standard’ GUI.

t_02_device_info.m Shows how to retrieve information about installed
devices/sound cards and their available channels and
properties. Additionally the usage of symbolic names
for tracks is introduced.

t_02b_config_tools.m Shows usage of the tool scripts
soundmexpro_showdevs.m, soundmexpro_showcfg.m

SoundMexPro documentation 23

and soundmexpro_trackmap.m located in the BIN
subdirectory of SoundMexPro. These scripts may be
usefull to check available hardware or your current
SoundMexPro configuration after 'init' and to
'generate' command parameters for 'init' or 'trackmap'
respectively.

t_03_error_handling.m Demonstrates standard and user defined error
handling.

t_04_play_loops_crossfades.m Shows special parameters to be used in commands
‘loadfile’ and ‘loadmem’ concerning looping and
crossfading of sound objects.

t_04a_playback_wait.m Playing files and vectors in different conditions:
blocking, non-blocking, play parts/snippets.

t_04b_play_mix_volume.m This example introduces the usage of multiple tracks
for mixing audio data on the fly including volume
adjustment (mixing ration). Additionally the usage of
the mixer and the trackview GUI are shown.

t_04c_play_con_stim_gen.m Demonstration of ‘online-stimulus-generation’: audio
data are added to the output while the device is
running ‘on-the-fly’ with respect to underruns.

t_04d_play_mark_buttons.m Shows usage of the ‘highly specialized’ command
‘setbutton’ for highlighting buttons on a MATLAB® GUI
synchronized with particular sample positions of the
sound output.

t_04e_play_mute_pause.m Muting, pausing and ‘soloing’ (mute all other
channels) of channels and tracks.

t_04f_play_startthreshold.m Start device threshold driven (signal on input)

t_05a_rec_standard.m Introduces recording to file.

t_05b_rec_threshold_length.m Shows how to trigger recording by a threshold value
(recording starts after threshold is exceeded in input
audio data) and recording of predefined number of
samples.

t_05c_rec_getlivedata.m Demonstrates how to get recorded data snippets ‘live’
to MATLAB® vectors e.g. for online-analysis.

t_06_direct_io.m Shows how to do direct I/O through SoundMexPro.
Maybe combined with later ‘plugin’-tutorials to do
realtime DSP.

t_07a_realtime_plugin.m Introduces the realtime MATLAB® script plugins in the
time domain. Easy example, where audio data are
processed block by block in realtime during output.

t_07b_realtime_plugin_spec.m Introduces the realtime MATLAB® script plugins in the
frequency domain. Uses the STFT scripts stftinit.m and
stft.m (BIN-directory) shipped with SoundMexPro.
Simple implementation of one function
(t_07b_x_stft_userfcn.m) to process spectra block by
block in realtime during output.

t_08_async_errors.m Example for occurrence and handling of asynchronous
errors.

t_09a_vst_simple.m Simple example using a VST plugin as described in

SoundMexPro documentation 24

chapter 7.2.1

t_09b_vst_artificial.m Sophisticated ‘artificial’ plugin example using fantasy
data and a gain plugin to demonstrate, how data are
mapped/routed through the VST-Host of
SoundMexPro.

t_09c_vst_gain.m Simple plugin example using a VST plugin to change
the output gain on the fly.

t_09d_vst_recursion.m Example for the demonstration of recurse wiring within
VST plugins.

t_10_adm.m Basic example for the usage of “ASIO direct
monitoring” (adm).

t_11a_file2file.m Tutorial for file-to-file operation

5.2 The SoundMexPro Examples
Some advanced examples implementing common ‘tasks’ are located in subdirectories in the
examples subdirectory of SoundMexPro:

Directory name / filename Description

01 Adjustable SNR This example shows how to play a tone and a
noise signal on the same hardware output
channels using multiple tracks. A slider is used
to adjust the SNR on the fly by adjusting the
volume of the tone.

02 Pair Comparison Two variants of a signal (one of them
bandpass filtered) are loaded to different
tracks. Button clicks do a cross fade between
the two variants to do a smooth transition from
one signal to the other. User may switch back
and forth and select a ‘winner’ of the
comparison.

10 SineGenerator Sine generator that plays an online-generated
sine signal. A slider is shown that allows
realtime changing of the sine frequency. This
example uses a MATLAB® script plugin in the
time domain.

11 Dynamic Bandpass Example showing how to implement an
adjustable bandpass filter using a realtime
MATLAB® script plugins in the frequency
domain. The center frequency of the bandpass
can be adjusted with a slider.

12 BekesyTracking Bekesy-Tracking example using a MATLAB®
script plugin.

20 VST Examples / vst_conv.m Shows usage of the fast convolution VST-
plugin shipped with SoundMexPro.

20 VST Examples / vst_equalizer.m Shows usage real and complex equalizer VST-
plugin shipped with SoundMexPro.

20 VST Examples / vst_hetero_dyning.m Shows usage of the hetero dyning VST-plugin
shipped with SoundMexPro.

SoundMexPro documentation 25

20 VST Examples / vst_visualize.m Shows usage of the visualization VST-plugin
shipped with SoundMexPro.

50 Compiled Script Plugin Example ‘How-to-example’ for creating and using
compiled MATLAB® script plugins in compiled
applications.

51 SoundMexProLoader Example Example script for using the
SoundDllProLoader (using SoundMexPro
without MATLAB®)

52 C++-API-Example Source code snippet in C++ demonstrating the
SoundMexPro API (usage of the
SoundDllPro.dll in your own code)

See also the separate documentation
SoundMexPro_Interface_Description.pdf

5.3 Using SoundMexPro without MATLAB®

5.3.1 Using the SoundDllProLoader
A simple loader ‘SoundDllProLoader.exe’ is shipped with SoundMexPro. It is designed to load the
DLL SoundDllPro.dll (including the main functions of SoundMexPro) for using it without
MATLAB®. In this way it is possible to implement SoundMexPro-Tasks on computers that do not
run MATLAB®.

The loader is described in detail in the separate manual SoundDllProLoader.pdf, an example can
be found in the examples subdirectory.

5.3.2 Programming Interface (API)
A simple programming interface to the main SoundMexPro-DLL ‘SoundDllPro.dll’ is available to
call SoundMexPro directly from your own code. Please refer to the separate manual
‘SoundMexPro_Interface_Description.pdf’ for details and check the corresponding example in
examples subdirectory.

6 SoundMexPro GUI interfaces

6.1 The SoundMexPro ‘Mixer’
The commands ‘show’ and ‘showmixer’ show a mixer interface with volume, mute and solo
controls for all tracks, output and input channels (Figure 8).

Clicking the vertical gray bar left of the tracks, outputs and inputs section respectively toggles
visibility of the corresponding section.

Below the track number the SoundMexPro output channel and input channel indices are shown
(if any are mapped to the track, here only track 1 has an input mapped with command ‘iostatus’).

Below the channel number the ASIO channel name of the corresponding input or output is
shown. If the name is too long keep the mouse over the name to get a hint window with the full
name.

The small red LED above the level meter indicates that clipping has occurred on the
corresponding channel. You can reset all LEDs by clicking one of them or with command
‘resetclipcount'.

You can change volume with the keyboard (keys ‘Up, ‘Down’, ‘PageUp’ and ‘PageDown’). With the
TAB key you can walk through the sliders. The slider that has the focus has a red line on its

SoundMexPro documentation 26

thumb (here: track 1). Sliders, which are currently not at position o dB have a green line on their
thumb (here: track 2). You can toggle between 0 dB and last volume by a double click on the
thumb or with the space bar.

Figure 8: The SoundMexPro Mixer

A track or channel can be muted/unmuted by clicking button ‘M’ (or keyboard shortcut ‘M’). A red
button indicates that mute is active (here: output 1).

A track or channel can be switched to solo by clicking button ‘S’ (or keyboard shortcut ‘S’). A
yellow button indicates that solo is active (here: tracks 0 and 1). NOTE: Solo supersedes mute!

You can ‘link’ a track or channel to his left neighbour by clicking the link button ‘L’ (or keyboard
shortcut ‘L’). If channels are linked, volume, solo or mute changes are applied to all linked tracks
or channels respectively.

If you hold a shift key when clicking a mute or solo button, the corresponding action is performed
‘exclusively’, e.g. the corresponding channel is muted and all others are unmuted.

Important note: the current volume in dB is shown below the sliders. The slider range is limited
from +6 dB to -90 dB (the switches to –inf). You may set e. g. higher volumes with the command
‘trackvolume’ and the correct value will be shown below the slider. But if the slider is moved
afterwards, the volume will switch into the slider range again.

The status bar contains information about the device status, number of xruns and current and
maximum used DSP time in percent (DSP: CURRENT/MAXIMUM).

6.2 The SoundMexPro ‘TrackView’
Since version 1.1.0.3 SoundMexPro supports a so called ‘TrackView’ (commands ‘showtracks’
and ‘updatetracks’). It shows a simple visualization of all tracks with their loaded files and
vectors. An example view with four tracks (from tutorial 04b) is shown in Figure 9.

The wavedata are only plotted if the optional parameter ‘wavedata’ of the commands is set to ‘1’
(default). This may take a while… Hit Esc to cancel the visualization. Use ‘View’ -> ‘Refresh’ from
the main menu to recalculate the wave data.

SoundMexPro documentation 27

A time scale is shown at the top. You can switch the scale so use a sample scale or a time scale
with the context menu (right mouse click on the scale) or with the main menu (‘View’ -> ‘Display
Format’. The current cursor position is shown at the left bottom of the screen (left of the
horizontal scrollbar).

You can zoom vertically and horizontally with the ‘+’, ‘-’ and ‘a’-buttons next to the corresponding
scrollbars (‘a’ zooms out to show all tracks or samples respectively).

The tracks are arranged horizontally. The dark blue box to the left of each track shows track
number, device output channel where the track is connected to, and a list of input channels that
are mixed (added) to this track (if any).

Figure 9: The SoundMexPro TrackView

Data that were loaded to a track are shown as green (files) and blue (vectors) boxes. Please note,
that names of vectors can only be shown if the optional argument ‘name’ is specified in
command ‘loadmem’. Vertical dotted lines indicate loops of a file/vector (e.g. the vector ‘sweep’
in the figure is played three times). Vertical dotted lines connected with a cross indicate a
crossfade (e.g. ‘eurovision.wav’ loaded to Track 3). During playback a vertical cursor shows the
current playback position. You can set the current position by clicking with the right mouse
button at the desired position while holding the Ctrl-Key pressed.

The status bar contains information about the device status, number of xruns and current and
maximum used DSP time in percent (DSP: CURRENT/MAXIMUM).

This TrackView is very useful when developing new scripts/experiments/measurement
paradigms: In this view you may check, that all data are loaded as expected to the tracks,
(especially when you are using multiple/mixing tracks) and that the final setup is as expected.

7 SoundMexPro Realtime DSP-Plugins
SoundMexPro supports realtime block by block signal processing with two types of plugins.
Processing can be implemented either with MATLAB® scripts or as high-performance VST plugins
(Steinberg “Virtual Studio Technology“) for more costly calculations and time-critical
applications.

7.1 Realtime processing with MATLAB® scripts
SoundMexPro supports the MATLAB® script based implementation of user defined signal
processing in realtime (i.e. during playback and recording). For this purpose a user defined
MATLAB® script containing a processing function is called for each data block. The samples of

SoundMexPro documentation 28

all input and output channels are passed to the script before passed to the driver or directly after
receiving them from the driver respectively. The script may manipulate those data before
returning them as output arguments of the function back to SoundMexPro. Important note:
manipulations of the input (record) data are not recorded to disk, but the input data may be used
to copy/apply them to output data (e.g. for direct i/o). For the signal processing task a separate
MATLAB® process is started to avoid interference between signal processing and other parts of
the main task.

The script MATLAB® script DSP interface of SoundMexPro is initialized and configured with
multiple options of the command ‘init’ (see also chapter 11.1). The corresponding options are
explained here in more detail:

Option Description
pluginstart Name of a MATLAB® script to be called on after startup of the separate

processing MATLAB® process. This script is intended for initial (time
consuming) setup of the user defined signal processing scheme. Here you may
as well read from the ‘main’ (calling) MATLAB® instance, e.g. by reading a
MAT-file that the main instance wrote prior to ‘init’. The called script must
implement a function taking three input arguments and returning one value
(success flag), e.g.
function retval = plugin_start(inchannels, outchannels, samples)

The passed arguments are

inchannels: The number of input channels to be expected in calls to the
 processing script

outchannels: The number of output channels to be expected in calls to
the processing script

samples: The number of samples per channel to be expected in calls
to the processing script

These values may be useful e.g. to create some ‘memory’ for a filter with the
correct size.

Important note: this script must be in the search path of MATLAB® to enable
the separate processing MATLAB® process to find it!

pluginproc Name of a MATLAB® script to be called for each data (audio) block. The called
script must implement a function taking four input arguments and returning
four matrices of same size, e.g.
function [proc_indata, proc_outdata, proc_inuserdata, proc_outuserdata] =
...

 plugin_proc_script(indata, outdata, inuserdata, outuserdata)

The passed arguments are

indata: Matrix with ‘inchannels’ columns and ‘samples’ rows
containing the currently recorded samples (as passed in
pluginstart)

outdata: Matrix with ‘outchannels’ columns and ‘samples’ rows
containing the current samples to be passed to the driver next

inuserdata: Matrix with ‘inchannels’ columns and 100 rows containing user
 data for inter-process-communication between ‘main’
MATLAB® and processing MATLAB® instance (see below)

outuserdata: Matrix with ‘outchannels’ columns and 100 rows containing
user data for inter-process-communication between ‘main’
MATLAB® and processing MATLAB® instance (see below)

The function must return four matrices of identical size.

SoundMexPro documentation 29

NOTE: take care that the resulting samples after processing are between -1 and
1, otherwise clipping will occur (except if channel volume was set with
command ‘volume’: this volume is applied after calling the plugin)!

NOTE: take care that your processing is not too slow (i.e. consumes more time
than samples/samplerate), otherwise xruns (dropouts) will occur! Use the
command ‘xrun’ to detect dropouts.

Important note: this script must be in the search path of MATLAB® to enable
the separate processing MATLAB® process to find it!

pluginshow Debugging flag. If set to 1 the separate processing MATLAB® instance window
is shown. This is useful to debug your startup or processing script, because all
errors occur in those scripts will be shown in that workspace! If set to 0
(default) the window stays invisible. Note: during the runtime of SoundMexPro
the processing MATLAB® instance window is blocked (you cannot access it,
move it, scroll it), you have to call ‘exit’ to unblock it. Use only for debugging
purposes.

pluginkill Debugging flag. If set to 0 the separate processing MATLAB® instance is not
terminated on ‘exit’ of SoundMexPro. This is useful for accessing the window
to check errors (see also ‘pluginshow’). If set to 1 (default) the processing
MATLAB® instance is terminated on ‘exit’. Use only for debugging purposes.

Note: if ‘pluginkill’ and ‘pluginshow’ set to 0, the process will run invisible
forever! You can only kill it with the task manager!

plugintimeout A timeout in milliseconds for startup of the plugin. This includes startup of the
processing MATLAB® instance and processing of the startup script specified
in ‘pluginstart’. Default value is 10000 (10s). Must be increased if startup
script is lengthy.

pluginforcejvm

If this parameter is set to 1 the separate processing MATLAB® instance is
started with Java Virtual Machine (JVM). It is highly recommended NOT to use
this flag, since the JVM lowers the performance of plugins significantly.
Additionally you may have to increase the value of the parameter
'plugintimeout' because the MATLAB startup might be very slow. This
parameter is ignored for Octave.

Important note: due to performance reasons the separate processing MATLAB® instance is
started without the Java Virtual Machine by default. In this case no GUI commands (e.g. figures)
are supported/allowed in plugin scripts. If GUI commands are needed please refer to the
parameter ‘pluginforcejvm’ above.

During the runtime the main MATLAB® instance that runs SoundMexPro can exchange data with
the processing MATLAB® instance using the commands ‘pluginsetdata’ and ‘plugingetdata’. The
command ‘pluginsetdata’ writes new user data that are passed to the processing script (see
above), and the command ‘plugingetdata’ retrieves the current user data, so that a bidirectional
communication can be established. NOTE: a change in the user data may not be applied
immediately, it may take a few buffers calls until they ‘reach’ the processing script!

For an example please refer to the tutorials ‘t_07_realtime_plugin.m’ and the scripts used by the
example ‘t_07a_x_plugin_start.m’ and ‘t_07a_x_plugin_proc’. This tutorial shows a running
example and an example where processing is too slow as well.

More fully functional examples are located in the examples subdirectory.

SoundMexPro is shipped with additional helper scripts for manipulations in the frequency
domain. They implement a block-by-block overlapped add FFT filter with zero padding (stft) in the
two helper scripts smp_stftinit.m and smp_stft.m located in the BIN subdirectory. The usage is
demonstrated in the tutorial script t_07b_realtime_plugin_spec.m and some helper scripts.

SoundMexPro documentation 30

Realtime processing with MATLAB® scripts is available only with the DSP and DSP-VST versions
of SoundMexPro.

7.1.1 Using compiled script plugins
If you want to use signal processing with MATLAB® scripts that were compiled with MATLAB®
into executables, you have to do some adjustments and compile the plugins separately. An
example with detailed descriptions can be found in the examples subdirectory of the installation.
Instructions and detailed descriptions how to compile and debug such applications are
contained in the scripts ‘MainScript.m’ and mainly in ‘SMPPlugin.m’ in the BIN-directory of the
SoundMexPro installation.

The script ‘SMPPlugin.m’ ist intended to be used for all you compiled script plugins, only the
compiling command line has to be adjusted (see comments in file).

7.2 Realtime processing with VST-plugins
SoundMexPro supports loading of Steinberg “Virtual Studio Technology“ (VST) plugins. VST is a
widespread audio plugin architecture worldwide and therefore thousands of plugins exist – many
of them are freeware. Thus you can either benefit from the variety of existing VST plugins or
develop your own plugins using the free VST-DSK available from Steinberg
(http://www.steinberg.com).

This chapter describes how to use VST-plugins in SoundMexPro. SoundMexPro is shipped with a
growing number of VST plugins that require the VST+ license. These plugins are described in the
separate manual HtVst-Plugins.pdf. At the moment all plugins can be loaded with the VST license
as well, but this may change at any time without notification.

Realtime processing with VST-plugins is available only with the VST and VST+ license of
SoundMexPro.

7.2.1 I/O-configuration of VST-plugins
In general a VST-plugin is a signal processing unit with a variable number of inputs and outputs.
A plugin reads data from the inputs, applies its processing scheme on the data and writes the
processed data to the outputs.

For the description of the I/O-configuration of VST-plugins – the so called ‘routing’ – it is very
important to realize the difference between the plugins’ inputs and outputs and the
SoundMexPro channels (tracks or output channels respectively) that are connected to those
inputs and outputs of the plugin.

SoundMexPro supports three different ‘types’ of VST-plugins. The type determines if a VST-plugin
is loaded as a ‘master’ plugin, as a ‘track’ plugin or as a ‘recording’ plugin. ‘Master’ plugins run
on device output channels (i.e. after mixing down tracks to device channels), whereas ‘track’
plugins apply processing to virtual output tracks. ‘Recording’ plugins (type ‘input’) are processing
the recorded data. Figure 2 in chapter 3.2 shows the different types in the SoundMexPro
processing scheme. Note: you can connect only identical types of SoundMexPro channel to a
plugin of a particular type! A track plugin for example always reads from SoundMexPro tracks and
writes the processed data to SoundMexPro tracks: cross-linking is not possible with VST plugins.
You have to use the commands ‘trackmap’ and ‘iostatus’ to change the routing within
SoundMexPro.

To avoid ambiguous names, the following definitions are used in this paragraph:

- input: input channel of the plugin

- output: output channel of the plugin

- SoundMexPro channel: a SoundMexPro output channel, input channel or track. The
descriptions below are identical all types of VST plugins in SoundMexPro, therefore we
always use “SoundMexPro channel”.

SoundMexPro documentation 31

A VST-plugin is loaded using the command ‘vstload’. The parameters of the command define the
I/O-configuration (the ‘routing’) of the plugin:

- parameter ‘type’: specifies how to use the plugin: as ‘master’, ‘track’ or ‘input’ plugin

- parameter ‘input’: specifies which SoundMexPro channels to be connected to the plugins
inputs

- parameter ‘output’: specifies which SoundMexPro channels to be connected to the
plugins outputs

- parameter ‘position’: specifies the vertical position of the plugin (see below)

Figure 10 shows a sample routing of a VST-Plugin. We assume that this (dummy) “Channel-Gain”
plugin has two inputs and two outputs. The processing scheme of this plugin simply applies a
gain to the data.

Figure 10: Sample for the I/O-configuration (routing) of one VST-Plugin

The I/O-configuration in the ‘vstload’ command for this example would be

soundmexpro('vstload', ... % command name

 'filename', 'plugin.dll', ... % filename of plugin binary

 'type', 'track', ... % plugin type, here: track plugin

 'input', [0 3], ... % tracks to read data from

 'output', [1 2] ... % tracks to write processed data to

);

The next example uses different tracks for the inputs and outputs. The example uses a total of
four tracks. The routing of the ‘vstload’ command will result in a ‘complete processing scheme’
within the SoundMexPro tracks as shown in Figure 11 (NOTE: in the following the signal flow is
always from top to bottom):

Plugin “HtVSTGain”

Plugin-

Outputs

Plugin-

Inputs

SoundMexPro channel 0

SoundMexPro channel 3 SoundMexPro channel 2

SoundMexPro channel 1

SoundMexPro documentation 32

Figure 11: Example for signal flow in SoundMexPro with VST-Plugin

This example is implemented in the tutorial script ‘t_09a_vst_simple.m’ using different sine
signals loaded to the different tracks.

SoundMexPro can load multiple VST-plugins for subsequent processing. Up to five plugins can
be loaded to each channel; the argument ‘position’ specifies the so called ‘vertical’
position/layer of a plugin denoting its position within this subsequent processing chain. The
audio data are passed first to the plugin at position 0, the output of plugin 0 is passed to plugin
at position 1 and so on as demonstrated in Figure 12. For simplicity reason the figure shows only
two SoundMexPro channels and VST-plugins with one channel each using ‘straight’ routing (i.e.
inputs and outpus of the plugins are always identical). For a more ‘sophisticated’ example please
take a look at the tutorial file ‘t_09b_vst_artificial.m’ that uses multiple plugins in multiple
vertical layers with ‘cross-routing’ from/to different tracks applying simple gains to some artificial
data for illustrating the usage of routing with plugins.

Track 0

Plugin

Track 1 Track 2 Track 3

SoundMexPro documentation 33

Figure 12: Vertical positions of VST-plugins in SoundMexPro

Additionally a VST plugin can be configured to use a copy of data from a different channel and
position within this data flow as it’s input rather than the subsequent audio data within a
channel. This may be used for a recursion e.g. to implement adaptive filters. Figure 13 shows a
simple example for recursion within one channel.

Figure 13: Recursion within VST-plugins in SoundMexPro

SoundMexPro

channel 0

Adaptive
Filter Plugin

Position 0

Position 1
Other
Plugin

SoundMexPro channel 0 SoundMexPro channel 1

Plugin 1
Position 0

Position 1

Position 2

Position 3

Position 4

Plugin 3

Plugin 5

Plugin 7

Plugin 9

Plugin 2

Plugin 4

Plugin 6

Plugin 8

Plugin 10

SoundMexPro documentation 34

The configuration for these two plugins would be

soundmexpro('vstload', ... % command name

 'filename', adaptive.dll', ... % filename of plugin binary

 'type', 'track', ... % plugin type, here: track plugin

 'input', [0 -1], ... % tracks to read data from

 'recursechannel', [0], ... % recursion source channel

 'recursepos', [1], ... % recursion source position

 'output', [0] ... % tracks to write processed data to

);

soundmexpro('vstload', ... % command name

 'filename', other.dll', ... % filename of plugin binary

 'type', 'track', ... % plugin type, here: track plugin

 'input', [0], ... % tracks to read data from

 'output', [0] ... % tracks to write processed data to

);

Two ‘inputs’ are defined: the first uses channel ‘0’ i.e. regular audio data from SoundMexPro
channel 0. The second is configured for recursion (input -1). The parameters ‘recursechannel’ and
‘recursepos’ define the ‘source for this channel: it is channel 0 (within the plugins data flow) and
position 1, i.e. SoundMexPro channel 0 AFTER processing within the second vertical plugin
position (position 1) and thus the output of the second plugin in this example. Important note:
usually such ‘recursions’ are used for recursive filters, i.e. a plugin needs data from ‘later
processing steps’ e.g. to realize an adaptive filter (as in this example). Thus, if the data source
(recursepos) of a plugin is located BEHIND the plugin itself, then the plugin will always receive
the data from the last processing block: in the first call to the processing it will contain zeroes, in
the second it will contain the output of the second plugin from the first call and so on.

NOTE: this type of recursive wiring usually needs plugins that ‘know’ or ‘need’ recursive data
respectively. Please check example 09d, where an ‘artificial’ usage of recursion is demonstrated
using the simple gain plugin shipped with SoundMexPro

After loading and configuring multiple plugins, SoundMexPro processes the data with the
following processing scheme:

- If fewer inputs are specified than available for a particular plugin, SoundMexPro passes
zeros in the unused channel(s) to the plugin.

- If fewer outputs are specified than available for a particular plugin, SoundMexPro ignores
the output from unused channel(s) of the plugin.

- All plugins within one vertical position receive the identical input data.

- If a plugin’s input(s) are configured for recursion the corresponding data are copied to the
plugin’s input(s)

- If a channel is used in any plugin of a vertical position (layer), then the original input data
are cleared, after processing all plugins of a layer this channel will contain only
processed data.

- If a channel is not used in any plugin then the original input data are preserved. If the
same channel is used as output for another plugin, then this channel will contain a sum
of the original channel data and the processed output data of the plugin

Each plugin within one ‘horizontal’ position is processed in a separate thread to benefit from the
calculating power of multiple processors. This means that input data are passed to all plugins of
one layer (e.g. position 0: plugins 1 and 2). Then the processing is performed independently in
different threads. The data are synchronized again after each layer, i.e. SoundMexPro has to wait
until all plugins of one layer have completed their processing to keep the time line consistent

SoundMexPro documentation 35

before passing the data processed by first-layer plugins to the next layer (and so on). To disable
multi-threading within the VST host, use the ‘vstmultithreading’ parameter of command ‘init’.

A VST-plugin can have different ‘programs’ and ‘parameters’ that may be changed on runtime. A
‘program’ can be selected by name, a value of a ‘parameter’ can be set by name as well, valid
values are between 0 and 1 (the plugin may convert this value internally and may show such
converted values on its editor, but setting is only allowed within this range!). These programs and
parameters are specific for each plugin: SoundMexPro simply passes the values from and to the
plugin. To retrieve all available information about a VST-plugin including parameters and
programs use the command ‘vstquery’.

7.2.2 VST-plugin configuration files
The commands ‘vstset’ and ‘vststore’ can be used to store or load settings for a VST-plugin from a
configuration file; the command ‘vstload’ optionally can use configuration files as well. The
format of configuration files is the standard Windows® ini-file file format (NOTE: no spaces
allowed!!) with the following sections, fields and values:

[Settings] This section contains fields used for the I/O-configuration (only used by ‘vstload’).
The names of the fields and their meaning are identical to the command line
arguments of command ‘vstload’. Multiple inputs and outputs must be specified
as comma separated list. NOTE: command line arguments supersede configuration
file entries

[Program] This section may contain two fields:

- ‘program’. If it is specified, the current program of the plugin is set to the
value of this field. This field internally calls the SoundMexPro command
‘vstprogram’, please refer to the command reference below for details.

- ‘programname’. If it is specified, the name of the current program of the
plugin is set to the value of this field. NOTE: this command does not select
a program, but renames it. This field internally calls the SoundMexPro
command ‘vstprogramname’, please refer to the command reference below
for details.

[Parameter] This section may contain parameter names of the plugin as fields. All values must
be between 0.0 and 1.0. All contained parameters are set to the specified values

Example file:

[Settings]

filename=..\bin\HtVSTGain.dll

type=master

input=0,1

output=2,3

position=1

[Program]

program=lin

programname=myname

[Parameter]

gain_0=0.1

gain_1=0.3

SoundMexPro documentation 36

The command ‘vststore’ stores all available values to a configuration file.

7.2.3 VST-plugin editor
The command ‘vstedit’ shows a GUI editor for changing parameter values and programs on
runtime.

Figure 14: VST GUI editor

If the plugin contains a user defined editor this will be shown, otherwise a native parameter
editor as shown in Figure 14 will appear. Click on the ‘sliders’ (blue/grey respectively) at the right
of each parameter line and move the mouse to change a value.

8 ASIO Direct Monitoring (ADM)
With version 2 of the ASIO interface Steinberg introduced the so called “ASIO Direct Monitoring”
(ADM). ADM is intended to monitor one or more inputs on one or more output channels with ultra
low latency by ‘copying’ the input data directly to the output within the soundcard buffers itself.
This guarantees minimum latency, but this mode does not pass the data to any ASIO application
(such as SoundMexPro) at all. Therefore you cannot mix or process recorded data before they are
passed to the outputs in ADM mode.

The SoundMexPro command ‘adm’ interfaces directly to ASIO ADM. Please check the help for the
command for details.

Originally ADM was intended to map multiple inputs to a pair of channels (stereo). Gain and pan
where intended to be applied to the input channels only. However, some hardware
manufacturers have ‘extended’ the functionality to set output gain/pan as well or to map single
inputs to multiple outputs. These features are not part of the ADM specification and therefore
they may not work with every soundcard.

NOTE: The parameters to be used with the ‘adm’ command of SoundMexPro are identical to the
original ASIO parameters of the ASIO-SDK from Steinberg (where ‘mode’ corresponds to the
‘state’ flag in the SDK). Thus you have full and direct access to the API of ADM. However, as
stated above: which undocumented parameters are supported by a particular soundcard, or
which features are supported at all are part of the soundcard drivers and cannot be changed or
extended by SoundMexPro.

8.1 Extensions/hints for particular sound cards

8.1.1 Mapping inputs to multiple outputs
Most soundcard drivers are using ADM switches as ‘radio buttons’, i.e. if an input channel is
mapped to (‘monitored by’) a particular output channel, and in a subsequent call the same input
is mapped to another output channel, then the mapping to the first channel is disabled (e.g.
MOTU soundcards). Some soundcards keep the mappings between calls to allow mapping one
input to multiple outputs. Most RME soundcards support this behaviour, at least the RME
FireFace and the RME HDSP-Series.

SoundMexPro documentation 37

8.1.2 Output gain/pan control
The RME FireFace and the RME HDSP-Series support setting of output gain and pan instead of
input gain/pan. To set gain/pan for an output channel the ‘mode’ of the ‘adm’ command of
SoundMexPro has to be set to the undocumented values ‘2’ or ‘3’ respectively. In this case the
value of ‘input’ is ignored. When setting ‘mode’ to 2, ‘pan’ is set, but channel is muted (‘gain’ set
to ‘0’). When setting ‘mode’ to 3, ‘pan’ and ‘gain’ of the output channel are set to the requested
values.

8.1.3 ADM mixer feedback
When using ADM commands RME FireFace and the RME HDSP-Series, the changes are reflected
directly on the FireFace mixer or Hammerfall mixer respectively, e.g. the slider positions will
change.

When using MOTU soundcards the changes are done ‘under the hood’ i.e. CueMix does not show
the changed values.

9 File-to-file operation with SoundMexPro
SoundMexPro can be initialized in a so called ‘file-to-file-mode’ (see command ‘init’). In this
mode no soundcard (or driver respectively) is used, all data are processed as fast as possible
and the output data that are usually passed to the soundcard driver are written to audio files
(one 32-bit float WAV-file per output channel).

Using file-to-file operation is useful (only), if you want to run (own) plugins (VST or MATLAB-script-
plugins) that are too slow for real-time operation. If such 'slow' plugins are used with regular
soundcard operation, xruns (dropouts) would occur, because regular operation is hardware
driven (i.e. the soundcard driver calls SoundMexPro when it needs data). If you (only) want to
store the output data (i.e. the audio data passed to the output channels) in regular mode then
you should use the command 'debugsave' rather than using file-to-file operation!

In ‘file-to-file-mode’ you can use all SoundMexPro commands (except ‘debugsave’) to set up you
desired scenario (configure multilple virtual tracks, load files and MATLAB® vectors, load VST
plugins or use the MATLAB® script plugin). You can set the output filenames with command
‘f2ffilename’.

Afterwards simply call the ‘start’ command (note: the parameters of ‘start’ are ignored in file-to-
file-mode). Here the main difference between regular operation and ‘file-to-file-mode’ applies:

- in regular operation the ‘start’ command returns immediately and you can do
asynchronous work in MATLAB® (check many of the tutorials)

- in ‘file-to-file-mode’ SoundMexPro will process all data and the ‘start’ command will
return after processing is complete. Depending on your 'loadfile' and 'loadmem' calls this
may take a while! Afterwards the command 'cleardata' is called automatically

See tutorial ‘t_11a_file2file.m’ for an example.

10 SoundMexPro Versions
SoundMexPro is shipped with different licenses with different registration fees. The current price
list is available from the SoundMexPro homepage http://www.soundmexpro.de.

10.1 SoundMexPro
The standard version of SoundMexPro supports all commands described in chapter 0 except the
commands ‘recbufsize’ and ‘recgetdata’. Furthermore no DSP-plugins are supported (no script
based plugin and no VST plugins).

SoundMexPro documentation 38

10.2 SoundMexPro DSP
The DSP version of SoundMexPro supports all commands of the standard version and adds the
following DSP-features:

- recorded data can be queried from MATLAB® while recording is running (see commands
‘recbufsize’ and ‘recgetdata’)

- the SoundMexPro realtime DSP-Plugin-Pipe can be used for script based audio
processing (see commands corresponding options of command ‘init’, and commands
‘plugingetdata’ and ‘pluginsetdata’)

10.3 SoundMexPro VST
The VST version of SoundMexPro supports all commands of the DSP version and adds the
following features:

- loading of plugins using the Steinberg “Virtual Studio Technology“ (VST) interface into
track and/or master signal data flow.

10.4 SoundMexPro VST+
The VST+ version of SoundMexPro supports all commands of the VST version. SoundMexPro is
shipped with a growing number of VST plugins that require the VST+ license. At the moment all
plugins can be loaded with the VST license as well, but this may be changed at any time without
notification.

SoundMexPro documentation 39

11 SoundMexPro Command Reference
The tables below show a list of all available commands sorted by functionality. The following
abbreviations are used in the column ‘Description’:

 Name> Name of the command
 Help> Help text

 Par.> Parameter list

 Def.> Default values of Par.>

 Ret.> Return values. The return values are described on separate lines,
 where each value is returned as separated outarg!

In column ‘Tut.’ (Tutorial) you can find the tutorial number, where the corresponding command or
special features/parameters of the command are introduced. The number in that column is part
of the filename. For example the number ‘04a’ corresponds to the file ‘t_04a_play_wait.m’ in the
‘tutorial’ subdirectory.

11.1 General Commands
This table contains general commands (e.g. online help, initialization)

Command Description Tut.
help Name> help

Help> prints help on command or command list

Ret.> command help. Without argument a command list is printed in logical

 order.

01

helpa Name> helpa

Help> prints help on command or command list

Ret.> command help. Without argument a command list is printed in alpha-

 betical order.

-

about Name> about

Help> Shows an about box with information about SoundMexPro

-

setdrivermodel Name> setdrivermodel

Help> sets driver model. Command 'init' must not called before!

 Driver model 'wdm' is only available for Windows Vista or later.

 NOTE: it is STRONGLY recommended NOT to use the 'wdm'-mode!!!

 Try to use tools like ASIO4All or Jack instead!

 NOTE: in 'wdm'-mode only 2 output channels and no inputs are

 supported. 'xrun' and 'controlpanel' are not supported with 'wdm'.

 NOTE: calling 'exit' clears the driver model, thus you have

 to call 'setdrivermodel' again after calling 'exit'!

Par.> value: 'asio' or 'wdm'

Def.> value: 'asio'

-

getdrivermodel Name> getdrivermodel

Help> returns current driver model

Ret.> current driver model

-

Init

see also chapters 3.2 and

 3.3.2

Name> init

Help> initializes module

Par.> force: if set to 1, 'exit' is called internally before init.

 driver: name or index of ASIO driver to use

 NOTE: ignored for file2file-operation.

 file2file: if set to '1' all final output channel data are written

 to files, no soundcard used at all. For default output file

 see command 'debugsave'. To change filename see command

 'f2fnames', to set buffersuze to be used see 'f2fbufsize'.

 f2fbufsize: buffersize to be used for file2file-operation.

 samplerate: samplerate to use. NOTE: after intialization only this

01

07

11

SoundMexPro documentation 40

 samplerate can be used, only files with this samplerate

 can be played!

 output: output channels to allocate (row vector), or number of

 channels to use for file2file-operation (scalar value).

 NOTE: after initialization the allocated channels are

 enumerated starting with 0. If [1 2 4] is specified as

 output channels, you can access them in later commands

 only with indices 0, 1 or 2 respectively

 If -1 is specified, no output channels are used, if 'all'

 is specified all available output channels are used.

 input: input channels to allocate (row vector)

 NOTE: after initialization the allocated channels are

 enumerated starting with 0. If [1 2 4] is specified as

 input channels, you can access them in later commands

 only with indices 0, 1 or 2 respectively

 If -1 is specified, no input channels are used, if 'all'

 is specified all available input channels are used

 NOTE: recorded data are always stored in normalized

 32-bit float PCM wave files.

 NOTE: never store record files directly on network drives

 or other slow drives! This may cause dropouts (xruns)!

 NOTE: ignored for file2file-operation.

 track: number of virtual output tracks to be used. Each output

 track is connected (mapped) to one output channels. This

 mapping can be changed with the command 'trackmap' (see

 also command 'trackmap' for a description how (multiple)

 track data are played on output channels). On 'init'

 the mapping is done 'circular', i.e. track 0 is mapped

 to channel 0, track 1 is mapped to channel 1 and so on.

 If more tracks than channels are specified, 'circular'

 means that mapping starts at channel 0 again. E.g.

 specifying [0, 1, 2] in output and 8 tracks leads to

 the following mapping:

 track0 -> channel0

 track1 -> channel1

 track2 -> channel2

 track3 -> channel0

 track4 -> channel1

 track5 -> channel2

 track6 -> channel0

 track7 -> channel1

 The current mapping can be retrieved with the command

 'trackmap'. On startup all tracks are in standard mode

 0 ('adding'), i.e. data samples are added up on the

 corresponding output channel .The mode of tracks can be

 changed with command 'trackmode'.

 ramplen: ramp length in samples applied when starting, stopping

 muting, unmuting, pausing, unpausing and setting master

 volumes (command 'volume').

 numbufs: number of buffers (each size of current ASIO buffer size)

 used for software buffering. Increases I/O delay and

 delay for commands like 'volume' or 'pause' to be

 applied, but lowers risk of xruns to occur.

 NOTE: read the special section 'Buffer configuration in

 manual if you need low latencies!

 NOTE: ignored for file2file-operation.

 autocleardata: flag, if audio data (vectors or files), that are already

 played completely should be cleared from memory auto-

 matically on next data loading command. Set this to 0, if

 you want to use the 'playposition' command to "rewind"

 to a certain playback position with parameter 'position':

 audio data segements are kept loaded until 'stop' command

 If parameter is set to 1 (default is 0), all audio data

 segments that were already played completely are freed

 from memory on every 'loadfile' or 'loadmem' command.

 This is especially useful for online stimulus generation,

SoundMexPro documentation 41

 where hundreds of new data segments are loaded during

 runtime!

 starttimeout: timeout in milliseconds that is allowed between command

 'start' and the start of the driver. This is a debugging

 option for sound cards that respond very slow.

 stoptimeout: timeout in milliseconds that is allowed between command

 'stop' and real stop of the driver. This is a debugging

 option for sound cards that do not really stop

 immediately after they are told to do so.

 pluginexe: executable for plugin. Leave this empty if running MATLAB

 or OCTAVE. Only to be set if using compiled plugins, see

 corresponding example

 pluginstart: MATLAB script to be executed on startup of MATLAB script

 plugin

 pluginproc: MATLAB script to be executed for each audio buffer

 within MATLAB plugin. If this value is empty the MATLAB

 plugin interface stays disabled

 pluginshow: flag, if MATLAB process created for MATLAB plugin should

 be shown (0 or 1). NOTE: use only for debugging purposes!

 NOTE: for OCTAVE the workspace is only shown properly, if

 pluginkill is set to 0 as well!

 pluginkill: flag, if MATLAB process created for MATLAB plugin should

 be killed on 'exit' (0 or 1). While SoundMexPro is

 initialized you cannot access the MATLAB window that

 runs the plugin, so this parameter may be useful to keep

 the window alive after quitting SoundMexPro to check

 variables in plugin's workspace. NOTE: use only for

 debugging purposes! NOTE: if 'pluginshow' is set to 0 and

 'pluginkill' to 0, then you only can kill the processing

 MATLAB/OCTAVE instance with the task manager!

 plugintimeout: timout in milliseconds for startup of the plugin. Set

 this value to higher values, if your startup script for

 the plugin takes some time.

 pluginforcejvm: flag if the MATLAB instance running the plugin should be

 started with Java Virtual Machine (JVM). It is highly

 recommended NOT to use this flag, since the JVM lowers

 the performance of plugins significantly. Additionally

 you may have to increase the value of the parameter

 'plugintimeout' because the MATLAB startup might be very

 slow. This parameter is ignored for Octave.

 logfile: name of a file for command and return value logging. If

 it is set non-empty all commands and return values are

 written to this file (not in MATLAB but SoundDllMaster

 syntax). NOTE: if write access to file fails (read only

 of invalid filename) 'init' command will fail!

 vstmultithreading: flag if each parallel VST plugin should run in a

 separate thread.

 vstthreadpriority: thread priority for VST threads. Must be between 0 and

 3 (0: normal, 1: higher, 2: highest, 3: time critical).

 Setting value to 3 (time critical) will give highest

 priority to processing, but may block other processes.

 This value is ignored, if 'vstmultithreading' is 0.

 quiet: if set to 1, then no version info is printed to workspace.

Def.> force: empty

 driver: 0

 file2file: 0

 f2fbufsize: 1024

 samplerate: 44100

 output: [0 1] (first two channels) for regular operation,

 2 for file2file-operation.

 input: -1 (no recording at all!)

 track: one track for each allocated output channel

 ramplen: samplerate / 100

 numbufs: 10 for ASIO driver model, 20 for WDM

 autocleardata: 0

 starttimeout: 6000

SoundMexPro documentation 42

 stoptimeout: 1000

 pluginstart: empty

 pluginproc: empty (no plugin started)

 pluginshow: 0

 pluginkill: 1

 plugintimeout: 10000 (10 seconds)

 pluginforcejvm: 0

 logfile: empty (no logging)

 vstmultithreading: 1

 vstthreadpriority: 2

 quiet: 0

Ret.> LicenceType

initialized Name> initialized

Help> determines if module is initialized

Ret.> 1 if initialized, 0 else

01

version Name> version

Help> returns version string

Ret.> version string

01

show Name> show

Help> shows mixer (identical to 'showmixer').

Par.> outputs: if set to '0' output mixers are hidden on startup

 tracks: if set to '0' track mixers are hidden on startup

 inputs: if set to '0' input mixers are hidden on startup

 topmost: if set to '1' mixer window stays on top

 foreground: if set to 1 window is forced to the foreground

Def.> outputs: 1

 tracks: 1

 inputs: 1

 topmost: 0

 foreground: 1

01

hide Name> hide

Help> hides visualization of allocated channels

01

showtracks Name> showtracks

Help> shows visualization of files/vectors in tracks. This 'view' is

 especially intended to check the setup of your experiment/pardigm,

 i.e. if everything is loaded/located as expected. During playback

 a cursor shows the current position.

 NOTE: command does call 'updatetracks' internally, so there is no

 need to call 'updatetracks' directly after 'showtracks'.

Par.> topmost: if set to '1' track window stays on top

 foreground: if set to 1 window is forced to the foreground

 wavedata: if set to '1' waveforms are painted as well.

 NOTE: this might take quite a while...

Def.> topmost: 0

 foreground: 1

 wavedata: 1

04b

hidetracks Name> hidetracks

Help> hides visualization of files/vectors in tracks.

04b

updatetracks Name> updatetracks

Help> updates visualization of files/vectors in tracks. NOTE: this

 command must be called to have the loaded files and vectors 'up

 to date'. It is recommended to call it directly before 'play'.

Par.> wavedata: if set to '1' waveforms are painted as well.

 NOTE: this might take quite a while...

Def.> wavedata: 1

04b

showmixer Name> showmixer

Help> shows mixer (identical to 'show').

Par.> outputs: if set to '0' output mixers are hidden on startup

 tracks: if set to '0' track mixers are hidden on startup

 inputs: if set to '0' input mixers are hidden on startup

 topmost: if set to '1' mixer window stays on top

 foreground: if set to 1 window is forced to the foreground

Def.> outputs: 1

 tracks: 1

 inputs: 1

04b

SoundMexPro documentation 43

 topmost: 0

 foreground: 1

hidemixer Name> hidemixer

Help> hides mixer.

04b

channelname Name> channelname

Help> sets symbolic name of one or more output channels and returns current

 names. These names can be used in all commands using outputs instead

 of their indices.

Par.> output: vector with output channels (indices or cell array with

 names, no duplicates allowed)

 name: vector (cell array) with names to be set. Number of names

 must be identical to number of channels or must be empty.

 No duplicate names allowed. If empty, only current names

 are returned.

Def.> output: vector with all output channels

 name: empty

Ret.> vector (cell array) with symbolic names of output channels

none

trackname Name> trackname

Help> sets symbolic name of one or more output tracks and returns current

 names. These names can be used in all commands using tracks instead

 of their indices.

Par.> track: vector with output tracks (indices or cell array with

 names, no duplicates allowed)

 name: vector (cell array) with names to be set. Number of names

 must be identical to number of tracks or must be empty.

 No duplicate names allowed. If empty, only current names

 are returned.

Def.> track: vector with all tracks

 name: empty

Ret.> vector (cell array) with symbolic names of output tracks

02

recname Name> recname

Help> sets symbolic name of one or more input channels and returns current

 names. These names can be used in all commands using inputs instead

 of their indices.

Par.> input: vector with input channels (indices or cell array with

 names, no duplicates allowed)

 name: vector (cell array) with names to be set. Number of names

 must be identical to number of channels or must be empty.

 No duplicate names allowed. If empty, only current names

 are returned.

Def.> input: vector with all input channels

 name: empty

Ret.> vector (cell array) with symbolic names of input channels

none

exit Name> exit

Help> de-initializes SoundMexPro

01

11.2 Device Commands
This table contains commands related to ASIO devices (e.g. query for existing drivers and channels)

Command Description Tut.
getdrivers Name> getdrivers

Help> returns names of all installed ASIO drivers

Ret.> vector with ASIO driver names

02

getdriverstatus Name> getdriverstatus

Help> returns status of all installed ASIO drivers

Ret.> vector with ASIO driver status (1: ok, 0: error)

02

getchannels Name> getchannels

Help> returns names of all channels of an ASIO driver

 NOTE: if SoundMexPro is already initialized, the parameters are

 ignored and the current driver is queried!

Par.> driver: name or index of ASIO driver to query

02

SoundMexPro documentation 44

Ret.> vector with names of ouptut channels

 vector with names of input channels

getactivedriver Name> getactivedriver

Help> returns the name of the active ASIO driver

Ret.> name of the ASIO driver used in command 'init'

02

getactivechannels Name> getactivechannels

Help> returns the names of all channels of current driver that were

 allocated in 'init'

Ret.> vector with names of allocated ouptut channels

 vector with names of allocated input channels

02

getproperties Name> getproperties

Help> returns current samplerate and buffer size (samples) of current

 driverm a list of supported samplerates and uses sound format.

 NOTE: before the device is running (i.e. 'start' was called) the

 samplerate may differ from the sample rate that was specified in

 command 'init': some drivers switch it not before device start.

 If switching to specified sample rate is not successful in command

 'start', it will fail with a corresponding error message.

 NOTE: the list of supported samplerates may not be complete, it is

 generated by 'asking' the driver if a particular samplerate is

 supported. Some drivers return 'true' even if starting that

 samplerate will fail (e.g. due to a samplerate lock by driver

 settings dialog or external hardware). Some drivers may return

 only one samplerate (the current one) even if others are

 supported. The following samplerates are checked: 8000, 11025,

 16000, 22050, 32000, 44100, 48000, 88200, 96000, 176400, 192000,

 352800, 384000.

Ret.> samplerate

 bufsize

 supported samplerates

 description of currently used sound format of device

02

controlpanel Name> controlpanel

Help> shows 'own' control panel of an ASIO driver.

 NOTE: if SoundMexPro is already initialized, no driver must be

 specified, the current driver is called!

 NOTE: command may raise an error for some drivers, if SoundMexPro

 is already initialized!

 NOTE: for some drivers this command may not return before the

 control is closed again!

Par.> driver: name or index of ASIO driver

Def.> driver: 0

02

11.3 Playback Commands
This table contains commands related to audio output.

Command Description Tut.
trackmap

see also chapters 3.2

Name> trackmap

Help> sets track mapping and returns current mapping

Par.> track: vector with track mapping. The vector must have an entry

 for every initialized track (see parameter 'track' of

 command 'init') specifying the output channel (indices

 or cell array with names), on which to playback the track

 data. Data are loaded to tracks with commands 'loadmem'

 and 'loadfile'. The data of all tracks are 'applied' to

 the data of the corresponding output channel, i.e. if

 more than one track is mapped to the same output the

 signals are added or multiplied and you may have to take

 care for clipping!

Ret.> vector with current track mapping

01

trackmode Name> trackmode

Help> sets mode and returns current mode of tracks

04b

SoundMexPro documentation 45

Par.> mode: vector with mode values. If no value is specified, no

 volume is changed, current modes are returned. Either one

 mode must be specified (applied to all tracks) or lengths

 of mode vector and track vector must be identical (modes

 applied in corresponding order to specified tracks).

 Valid modes are:

 0 sample values of tracks are added to the output

 channel where they are mapped to,

 1 output channel data are multiplied with the track

 data. NOTE: the multiplication is _not_ done with

 the final, total data, but with the data processed

 (added) from tracks with a lower index. So if you

 want to apply a multiplication on the final channel

 output be sure, that you set the last track mapped

 to the corresponding channel to mode '1'!

 track: vector with tracks (indices or cell array with names) to

 apply mode to (no duplicates allowed)

Def.> mode: current modes (no changes)

 track: vector with all tracks

Ret.> vector with current modes for all tracks

start Name> start

Help> starts input and output

 IMPORTANT NOTE: record files are always overwritten! Use the

 'recfilename' command to change the filenames if necessary.

 NOTE: recorded data are always stored in normalized 32-bit float

 PCM wave files.

 NOTE: if you get an error 'setting samplerate of device to XY not

 successful', check if the sample rate is locked by the driver (check

 control panel and/or documentation of driver for more information).

 IMPORTANT NOTE: if you are running in file2file-mode (see command

 'init'), then the command 'start' will return after the file2file-

 operation is complete. Depending on your 'loadfile' and 'loadmem'

 calls this may take a while! Afterwards the command 'cleardata' is

 called automatically.

Par.> length: 'running' length. Values for 'length' may be:

 < 0: device is stopped (playback and record) after all tracks

 played their data. NOTE: After each ASIO buffer it is

 checked, if no track has more buffered data to play. If

 this is true the device is stopped.

 0: device is never stopped, zeros are played endlessly. In

 this case you may load new data to track(s) at any time.

 NOTE: if you record data to a file this runs forever as

 well and files may become quite huge!

 > 0: length in samples to play/record before device is stopped.

 NOTE: this length will not be sample accurate due to

 block processing.

 This parameter is ignored in file2file-mode.

 pause: if set to 1 device is paused rather than stopped

 This parameter is ignored in file2file-mode.

Def.> length: -1. If NO output channels are specified on init (i.e. -1)

 for 'output'), then default is 0.

 pause: 0

04a

startthreshold Name> startthreshold

Help> starts input and output after threshold value is exceeded in one or

 more input channels

 IMPORTANT NOTE: the command returns immediately to MATLAB, real start

 of input and output waits for the threshold to be exceeced. If you

 want to check, if threshold was exceeded meanwhile after calling

 'startthreshold', use the command 'started': while waiting for

 threshold it will return 0 in second return value, afterwards it will

 return 1. This way you implement a waiting loop with timeout. After

 the threshold is exceeded the playback starts immediately, but it will

 start with

 numbufs * ASIO buffersize

 zero samples (see parameter 'numbufs' of command 'init').

 IMPORTANT NOTE: record files are always overwritten! Use the

04f

SoundMexPro documentation 46

 'recfilename' command to change the filenames if necessary.

 NOTE: recorded data are always stored in normalized 32-bit float

 PCM wave files.

 NOTE: if you get an error 'setting samplerate of device to XY not

 successful', check if the sample rate is locked by the driver (check

 control panel and/or documentation of driver for more information).

 NOTE: this command is not available in file2file-mode.

Par.> value: Threshold between 0 and 1, current value is returned.

 If no value is specified the current value is not changed.

 A value of 0 disables the threshold. Otherwise playback

 and recording starts with the next buffer after the

 threshold was exceeded (with respect to the specified

 value, mode and channels).

 NOTE: threshold is resetted after exceeding it (set to 0)!

 mode: Flag, if the threshold must be exceeded in one (1) or

 all (0) of the channels specified in 'channel'. Must

 be 0 or 1.

 channel: vector with input channels (indices or cell array with names)

 to check for the threshold (no duplicates allowed)

 length: 'running' length. Values for 'length' may be:

 < 0: device is stopped (playback and record) after all tracks

 played their data. NOTE: After each ASIO buffer it is

 checked, if no track has more buffered data to play. If

 this is true the device is stopped.

 0: device is never stopped, zeros are played endlessly. In

 this case you may load new data to track(s) at any time.

 NOTE: if you record data to a file this runs forever as

 well and files may become quite huge!

 > 0: length in samples to play/record before device is stopped.

 NOTE: this length will not be sample accurate due to

 block processing.

 This parameter is ignored in file2file-mode.

 pause: if set to 1 device is paused rather than stopped.

Def.> value: current thresholds (no changes, 0 on startup)

 mode: 1

 channel: vector with all allocated input channels

 length: -1. If NO output channels are specified on init (i.e. -1)

 for 'output'), then default is 0.

 pause: 0

Ret.> current threshold value

 current threshold mode

started Name> started

Help> checks, if device was started (is still running) NOTE: this command

 only checks if the ASIO device runs, it does not check, if data are

 playing on any channel (see ‘playing’)

Ret.> 1 if device is started, 0 else

04a

stop Name> stop

Help> stops device and clears loaded data

04a

pause Name> pause

Help> sets pause status of device (playback and record) and returns
 current status.

Par.> value : 1 (pauses device) or 0 (unpauses device)

Def.> value: current value (no change)

Ret.> 1 if device is paused, 0 else

04e

mute Name> mute

Help> sets mute status and returns current status. NOTE: this command

 mutes all output channels globally using a ramp of length ‘ramplen’

 (argument of command ‘init’). See also commands ‘channelmute’ and

 ‘trackmute’ and ‘recmute’.

Par.> value: 1 (mutes output) or 0 (unmutes output)

Def.> value: current value (no change)

Ret.> 1 if device is muted, 0 else.

04e

trackmute Name> trackmute

Help> sets mute status of one or more tracks and returns current status.

 NOTE: muting/unmuting is not ramped!

 NOTE: 'solo' status supersedes 'mute' status: if solo status of any

04e

SoundMexPro documentation 47

 track is '1', then mute status of all tracks is ignored!

Par.> value: vector with mute values (0 for unmute or 1 for mute).

 If no value is specified, no mute values are changed,

 current values are returned. Either one value must be

 specified (applied to all tracks) or lengths of mute

 and track vector must be identical (values applied in

 corresponding order to specified tracks).

 track: vector with tracks (indices or cell array with names) to

 apply values (no duplicates allowed)

Def.> value: current mute values (no changes)

 track: vector with all tracks

Ret.> vector with current mute values for all tracks

channelmute Name> channelmute

Help> sets mute status of one or more output channels and returns current

 status. NOTE: muting/unmuting is not ramped!

 NOTE: 'solo' status supersedes 'mute' status: if solo status of any

 output is '1', then mute status of all outputs is ignored!

Par.> value: vector with mute values (0 for unmute or 1 for mute).

 If no value is specified, no mute values are changed,

 current values are returned. Either one value must be

 specified (applied to all channels) or lengths of mute

 and output vector must be identical (values applied in

 corresponding order to specified channels).

 output: vector with output channels (indices or cell array with

 names) to apply values (no duplicates allowed)

Def.> value: current mute values (no changes)

 output: vector with all output channels

Ret.> vector with current mute values for all output channels

none

tracksolo Name> tracksolo

Help> sets solo status of one or more tracks and returns current status.

 NOTE: muting/unmuting is not ramped!

 NOTE: 'solo' status supersedes 'mute' status: if solo status of any

 track is '1', then mute status of all tracks is ignored!

Par.> value: vector with solo values (0 for unsolo or 1 for solo).

 If no value is specified, no solo values are changed,

 current values are returned. Either one value must be

 specified (applied to all tracks) or lengths of solo

 and track vector must be identical (values applied in

 corresponding order to specified tracks).

 track: vector with tracks (indices or cell array with names) to

 apply values (no duplicates allowed)

Def.> value: current solo values (no changes)

 track: vector with all tracks

Ret.> vector with current solo values for all tracks

04e

channelsolo Name> channelsolo

Help> sets solo status of one or more output channels and returns current

 status. NOTE: muting/unmuting is not ramped!

 NOTE: 'solo' status supersedes 'mute' status: if solo status of any

 output is '1', then mute status of all outputs is ignored!

Par.> value: vector with solo values (0 for unsolo or 1 for solo).

 If no value is specified, no solo values are changed,

 current values are returned. Either one value must be

 specified (applied to all channels) or lengths of solo

 and output vector must be identical (values applied in

 corresponding order to specified channels).

 output: vector with output channels (indices or cell array with

 names) to apply values (no duplicates allowed)

Def.> value: current solo values (no changes)

 output: vector with all output channels

Ret.> vector with current solo values for all output channels

none

loadmem

see also chapter 0

Name> loadmem

Help> loads audio data to one or more channels

 NOTE: while the device is running you may load more data to any track

 at every time. However, if you load too many data segments (file or mem)

 you may produce heavy memory load that may result in dropouts or even

 crashes. Use the command 'trackload' to check, how many data segments

04b

SoundMexPro documentation 48

 are currently pre-loaded to the tracks and adjust the 'speed' of loading

 new data on-the-fly if necessary. On loading new data segments all data

 that are played (not in use any more) are removed automatically.

Par.> data: matrix with one or more columns of data (mandatory).

 IMPORTANT NOTE: matrices with more than one channel are

 loaded 'aligned' to the specified tracks to keep the columns

 synchronous for playback, i.e. there may be zeros prepended

 to one or more columns if necessary!

 track: vector with tracks (indices or cell array with names), were

 data to be played (no duplicates allowed). The number of

 tracks must be a multiple of the number of data channels

 (columns of 'data'). If tracks devided by channels is > 1,

 the data are loaded circular to the specified tracks, e.g.

 loading a data matrix with two columns and specifying

 [0 1 4 7] in 'track', then the data columns are loaded as

 follows:

 column 0 -> track 0

 column 1 -> track 1

 column 0 -> track 4

 column 1 -> track 7,

 or loading a mono matrix with an empty 'track' argument

 will load that data to all tracks.

 loopcount: number of times the data are to be played. NOTE: 0 is an

 endless loop!

 offset: number of zero samples to be played in the beginning

 startoffset: number of samples to be skipped from data when playing the

 first loop. A value of -1 selects a random startoffset.

 gain: linear gain to be applied to each file sample.

 crossfadelen: length in samples for a crossfade done with the object

 (vector or file) that was loaded BEFORE this object. If

 this object is set for the first vector in a track, it is

 ignored.

 ramplen: number of samples for fade in and fade out (hanning ramp)

 of 'complete' object, i.e. the first ramplen samples of

 playback are ramped up and the last ramplen samples

 (including all loops) are ramped down.

 NOTE: ramplen must not exceed half of total play length:

 ramplen <= loopcount*length - startoffset

 loopramplen: number of samples for fade in and fade out (hanning ramp)

 looping of an object, i.e. the first ramplen samples of

 each loop are ramped up, and the last ramplen samples are

 ramped down.

 NOTE: the first samples of first loop are NOT ramped up

 and the last samples of last loop are NOT ramped down. Use

 parameter 'ramplen' additionally for an overall ramp!

 loopcrossfade: if this value is set to 1 then a crossfade with a length of

 'loopramplen' samples is done on looping

 NOTE: this parameter is ignored if loopcount is 1 or

 loopramplen is 0

 IMPORTANT NOTE: this 'overlap' in crossfade mode changes the

 total playback length of your buffer to:

 (loopcount-1)*(length-loopramplen) + length

 name: optional name for the data object. Is used track view GUI

 to show names of used vectors.

Def.> track: vector with all tracks

 loopcount: 1

 offset: 0

 startoffset: 0

 gain: 1

 crossfadelen: 0

 ramplen: 0

 loopramplen: 0

 loopcrossfade: 0

loadfile

see also chapter 0

Name> loadfile

Help> loads an audio file to one or more tracks, supported formats see PDF

 documentation. NOTE: while the device is running you may load more

04a

SoundMexPro documentation 49

 data to any track at every time. However, if you load too many data

 segments (file or memory) you may produce heavy memory load that may

 result in dropouts or even crashes. Use the command 'trackload' to

 check, how many datasegments are currently pre-loaded to the tracks

 and adjust the 'speed' of loading new data on-the-fly if necessary.

 On loading new data segments all data that are played (not in use

 any more) are removed automatically.

Par.> filename: filename of the audio file to load (mandatory).

 NOTE: this command does not load the complete file to

 memory, therefore it should be used rather than 'loadmem'

 on huge files. But if files are small and to be played in

 loop it is recommended to use 'wavread' and 'loadmem' to

 play data, because it is much more efficient to read from

 memory than to read from file on the fly.

 IMPORTANT NOTE: the channels of multichannel audio files

 are loaded 'aligned' to the specified tracks, i.e. there

 may be zeros prepended to one or more channels if

 necessary!

 track: vector with tracks, (indices or cell array with names), were

 data to be played (no duplicates >= 0 allowed). The number

 of tracks must be a multiple of the number of channels of

 the wave file. If tracks devided by channels is > 1, the

 data are loaded circular to the specified tracks, e.g.

 loading a wave file with two channels and specifying

 [0 1 4 7] in 'track', then the file channels are loaded as

 follows:

 channel 0 -> track 0

 channel 1 -> track 1

 channel 0 -> track 4

 channel 1 -> track 7,

 or loading a mono file with an empty 'track' argument

 will load that data to all tracks. For a wave file

 channel, that should _not_ be played on any track specify

 a negative value.

 This value is ignored if 'output' in command 'init' was -1.

 loopcount: number of times the data are to be played. NOTE: 0 is an

 endless loop

 offset: number of zero samples to be played in the beginning

 startoffset: number of samples to be skipped from data when playing the

 first loop. A value of -1 selects a random startoffset.

 NOTE: the samples of the file to be used are determined

 by the parameters 'fileoffset' and 'filelength':

 'fileoffset' sets the number of samples to be skipped from

 the start of the file. This applies for all played loops,

 i.e. the first 'fileoffset' samples of the file are never

 played.

 'length' sets the total length in samples to be used for

 each loop (see also description below).

 The 'range' of the file to be used is generated from these

 parameters and the file is looped if necessary (i.e. if

 'fileoffset' + 'length' > (filesize in samples)).

 You can set the start playback sample for the first

 loop within this range (!) with the parameter 'startoffset'.

 Must be between -1 (random) and 'length'.

 fileoffset: number of samples to skip in the beginning. An offset of

 -1 starts at a random position within the file. NOTE: this

 applies for all loops, first 'fileoffset' samples of the

 file will never be used, see description of 'startoffset'!

 length: length in samples to play per loop. Must be between 0 and

 length of the used 'range' of the file in samples (see also

 description of 'startoffset'). 0 uses all samples starting

 at 'fileoffset' to the end of the file.

 gain: linear gain to be applied to each file sample.

 crossfadelen: length in samples for a crossfade done with the object

 (vector or file) that was loaded BEFORE this object. If

 this object is set for the first vector in a track, it is

SoundMexPro documentation 50

 ignored.

 ramplen: number of samples for fade in and fade out (hanning ramp)

 of 'complete' object, i.e. the first ramplen samples of

 playback are ramped up and the last ramplen samples

 (including all loops) are ramped down.

 NOTE: ramplen must not exceed half of total play length:

 ramplen <= loopcount*length - startoffset

 loopramplen: number of samples for fade in and fade out (hanning ramp)

 for each loop of object, i.e. the first ramplen samples of

 each loop are ramped up, and the last ramplen samples are

 ramped down. If a startoffset > 0 is specified then the very

 first played ramplen samples are ramped up as well.

 NOTE: if fileoffset and length are specified, then the ramps

 apply for the 'snippet' defined by these parameters!

 loopcrossfade: if this value is set to 1 then a crossfade with a length of

 'loopramplen' samples is done on looping

 NOTE: this parameter is ignored if loopcount is 1 or

 loopramplen is 0

 IMPORTANT NOTE: this means that the length of each loop will

 be shorter by 'loopramplen' samples than total sizes file.

Def.> track: vector with all tracks

 loopcount: 1

 offset: 0

 startoffset: 0

 fileoffset: 0

 length: 0

 gain: 1

 crossfadelen: 0

 ramplen: 0

 loopramplen: 0

 loopcrossfade: 0

cleardata Name> cleardata

Help> clears all loaded audio data and resets positions to zero.

 If device is running, command is only allowed, if 'start' was called

 with 'length' set to 0.

04e

cleartrack Name> cleartrack

Help> clears all loaded audio data on one or more tracks.

 If device is running, command is only allowed, if 'start' was called

 with 'length' set to 0.

Par.> track: vector with tracks (indices or cell array with names) to

 to be cleared

Def.> track: empty

None

trackload Name> trackload

Help> retrieves the number of pending audio data ‘buffers’ (mem or file) for

 all tracks. This command is intended for monitoring the current ‘load’

 of a track, especially if data are loaded ‘on-the-fly’ while the device

 is running. If you load too many data segments (file or mem) you may

 produce heavy memory load that may result in dropouts or even crashes.

 So, this command can be used to adjust the ‘speed’ of loading new data

 on-the-fly if necessary.

Ret.> vector with number of data segments that are currently pending for

 output on all tracks.

04c

tracklen Name> tracklen

Help> returns vector with total length of all tracks, i.e. position of last

 sample in each track. A value of -1 indicates, that an endless loop is

 running on the particular track.

Ret.> vector with lengths of all tracks

04

wait Name> wait

Help> waits for output on one or more track to be finished. NOTE: if a

 track is specified, where an endless loop is running, an error is

 returned!

Par.> track: vector with tracks (indices or cell array with names) to

 wait for (no duplicates allowed)

 timeout: timeout value. If a value > 0 is specified, the function

 returns with an error, if output was not finished within

 'value' milliseconds

04a

SoundMexPro documentation 51

 mode: 'output' or 'stop'. If 'output' is set, the command waits

 until no more output data are pending for the corresponding

 track(s), i.e. it may return slightly before all data were

 really processed through soundcard. If 'stop' is set, then

 the command waits until the device is stopped automatically

 after playback is done (see parameters of command 'start')

 or if it is stopped by command 'stop' (e.g. from GUI). If

 'stop' is specified, then 'track' is neglected.

Def.> track: vector with all tracks

 timeout: 0 (no timeout, i.e. endless waiting)

 mode: 'output'

playing Name> playing

Help> returns play status of all tracks

Ret.> vector with zeros and ones denoting corresponding play status, i.e.

 1 if a track currently is playing data, or 0 if not. NOTE: the

 return value does _not_ show, if the device is running. If a

 channel is running but playing zeroes because no data were loaded

 the return value for the track will be ‘0’. To check if the device

 is (still) running use the command ‘started’.

 NOTE: this command will return ‘0’ immediately after the data are

 to the driver completely. If you want to wait for the playback to

 be finished in ‘autostop-mode’ (see parameter ‘length’ for command

 ‘start’ when setting values other than 0), then you should used the

 command ‘started’ to wait for device to be stopped.

04a

playposition Name> playposition

Help> Sets and returns current play position of device in samples (audible

 samples). Setting the play position is only allowed, if parameter

 ‘autocleardata’ was set to 0 in command ‘init’, and if device is

 paused with command ‘pause’.

 NOTE: since ASIO does blockwise audio processing, the returned

 value always is a multiple of the current buffer size (not sample

 accurate)!

 IMPORTANT NOTE: if you use the playposition command to reset current

 position in pause mode to position X, then the command will not (!)

 return the position you have set, but a position Y that is smaller!!

 When unpausing the device it will play (X-Y) samples of zeros before

 the first requested sample at position X is audible. Use loadposition

 to retrieve next audible sample in pause mode instead.

 See also command ‘loadposition’.

Par.> position: position in samples to set playback position to,

Def.> position: -1 (position not changed),

Ret.> current sample position of device

04a

loadposition Name> loadposition

Help> returns current loading position of device in samples. This is the

 number of samples loaded up to now (therefore higher than the value

 of ‘playposition’). It’s value is

 ‘playposition’ + ASIO buffersize * numbufs (‘numbufs’ see ‘init’).

 NOTE: since ASIO does blockwise audio processing, the returned

 value always is a multiple of the current buffer size (not sample

 accurate)!

Ret.> current loading position of device

04d

volume Name> volume

Help> sets volume and returns current volume of output channels

Par.> value: vector with volumes (linear gains). If no value is

 specified, no volume is changed, current volumes are

 returned. Either one volume must be specified (applied

 to all channels) or lengths of volume and channel vector

 must be identical (gains applied in corresponding order

 to specified channels). NOTE: this volume is the 'master'

 volume, i.e. it is applied after all signal processing

 and mixing as a linear factor to each sample

 channel: vector with output channels (indices or cell array with

 names) to apply volume to (no duplicates allowed)

Def.> value: current volumes (no changes)

 channel: vector with all allocated channels

Ret.> vector with current volumes for all allocated channels

04b

SoundMexPro documentation 52

trackvolume Name> trackvolume

Help> sets volume and returns current volume of tracks

Par.> value: vector with volumes (linear gains). If no value is

 specified, no volume is changed, current volumes are

 returned. Either one volume must be specified (applied

 to all tracks) or lengths of volume and track vector

 must be identical (gains applied in corresponding order

 to specified tracks).

 track: vector with tracks (indices or cell array with names) to

 apply volume (no duplicates allowed)

 ramplen: ramplength in samples to use for fading from current

 volume to new volume.

Def.> value: current track volumes (no changes)

 track: vector with all tracks

 ramplen: 0

Ret.> vector with current volumes for all tracks

04b

debugsave Name> debugsave

Help> sets debugsave mode and returns current mode

Par.> value: vector with ones and zeroes. If no value is specified,

 no mode is changed, current modes are returned. Either

 one mode must be specified (applied to all channels) or

 lengths of mode vector and channel vector must be

 identical (modes applied in corresponding order to

 specified channels). 1 sets enables debug saving: a file

 named 'out_?.wav' is created where '?' is the channel

 number. The output data are saved to that file before

 sending them to soundcard. NOTE: 'volume' and any ramps

 or applied after saving!. 0 disables debug saving.

 NOTE: this command is not available in file2file-operation!

 channel: vector with channels (indices or cell array with names) to

 apply mode (no duplicates allowed)

Def.> value: current modes (no changes)

 channel: vector with all allocated channels

Ret.> vector with current debug modes for all allocated channels

04c

debugfilename Name> debugfilename

Help> sets one or more debug filenames for one or more channels and

 returns current name(s). NOTE: value can only be set if device is

 stopped! If an invalid filename is passed, or a filename that is

 already used by another channel you may get errors on 'start'!

 Default names are 'out_?.wav' where ? is the channel number.

 NOTE: debug files are always overwritten!

 NOTE: debug files are always stored as normalized 32-bit float

 PCM wave files.

 NOTE: never write files directly to network drives or other slow

 drives! This may cause dropouts (xruns)!

Par.> filename: cell array with one or more filenames for debug-data.

 The number of filenames must be identical to the number

 of channels specified in 'channel'

 channel: vector with channels (indices or cell array with names),

 were filenames to be set

Def.> channel: vector with all allocated output channels

Ret.> cell array with current record file names for all allocated output

 channels

f2ffilename Help> sets one or more file2file-filenames for one or more channels and

 returns current name(s). NOTE: value can only be set if device is

 stopped! If an invalid filename is passed, or a filename that is

 already used by another channel you may get errors on 'start'!

 Default names are 'f2f_?.wav' where ? is the channel number.

 NOTE: file2file-files are always overwritten!

 NOTE: file2file-files are always stored as normalized 32-bit float

 PCM wave files.

Par.> filename: cell array with one or more filenames for file2file-data.

 The number of filenames must be identical to the number

 of channels specified in 'channel'

 channel: vector with channels (indices or cell array with names),

 were filenames to be set

11

SoundMexPro documentation 53

Def.> channel: vector with all allocated output channels

Ret.> cell array with current record file names for all allocated output

 channels

11.4 Recording Commands
This table contains commands related to audio recording

IMPORTANT NOTE: record files are always overwritten! Use the 'recfilename' command to change the
filenames if necessary.

NOTE: recorded data are always stored in normalized 32-bit float PCM wave files.

Command Description Tut.
start applies to playback and recording, help see Playback commands

started applies to playback and recording, help see Playback commands

stop applies to playback and recording, help see Playback commands

pause applies to playback and recording, help see Playback commands

recording Name> recording

Help> returns record status of all allocated input channels

Ret.> vector with zeros and ones denoting corresponding record status,

 i.e. 1 if channel is currently recording data, or 0 if not.

 NOTE: all allocated channels do always record data from the

 soundcard, but 'recording' determines, if the data are currently

 saved to disk

05a

recfilename Name> recfilename

Help> sets one or more record filenames for one or more channels and

 returns current name(s). NOTE: value can only be set if device is

 stopped!

 NOTE: you cannot use the same filename for different channels, only

 one mono file per channel can be written!

 If an invalid filename is passed, or a filename that is

 already used by another channel you may get errors on 'start'!

 You can set/change the filename of a channel either if device is

 stopped, or if the corresponding input channel(s) are paused with

 command 'recpause'. If you set a record filename for a paused input

 channel, the current record file (filename before setting the new

 one) is closed and the new one created. If a record length was set

 with command 'reclength' the new file again will only record the

 specified number of samples.

 NOTE: record files are always overwritten, i.e. if the same name

 is specified 'again' in pause mode the file is overwritten directly!

 NOTE: recorded data are always stored in normalized 32-bit float

 PCM wave files.

 NOTE: never store record files directly on network drives or other

 slow drives! This may cause dropouts (xruns)!

 To disable recording to file for one or more channels use the command

 'recpause'.

Par.> filename: cell array with one or more filenames for recording data.

 The number of filenames must be identical to the number

 of channels specified in 'channel'

 channel: vector with channels (indices or cell array with names),

 were filenames to be set

Def.> channel: vector with all allocated input channels

Ret.> cell array with current record file names for all allocated input

 channels

05a

recpause Name> recpause

Help> sets recording pause status of one or more channels and returns

 current recording pause status. NOTE: this only pauses recording to

 file, recording to buffer (for retrieving record data with command

 'recgetdata') is always enabled. So this command may be used also to

 disable recording to file completely.

 NOTE: setting recpause to 1 does not close the recording file, it only

05a

SoundMexPro documentation 54

 disables writing to it (temporarily). If you want to read the file in

 pause mode you have to change the current recfilename in recpause mode

 with command 'recfilename': this will close the file(s)!

Par.> value: vector with 1 (pauses record of channel) or 0 (resumes

 recording)

 channel: vector with channels (indices or cell array with names),

 were values to apply to

Def.> value: current values (no change)

 channel: vector with all allocated input channels

Ret.> vector with current recording pause status for all allocated input

 channels

recposition Name> recposition

Help> returns record position of all allocated output channels

Ret.> vector with number of samples recorded on each allocated input

 channel. NOTE: all allocated channels do always record data from

 the soundcard, so the absolute recording position is determined by

 'position'. This command returns how many samples are saved to disk

 for each channel. During recording saving might be enabled and

 disabled multiple times, 'recposition' returns the total number of

 saved samples

05a

recthreshold Name> recthreshold

Help> sets record threshold and returns current value

Par.> value: Thresholds between 0 and 1, current value is returned.

 If no value is specified the current value is not changed.

 A value of 0 disables the threshold. Otherwise recording

 to file (!) starts with the first recorded buffer (not

 sample!) that contains data that exceed the threshold

 value with respect to the specified mode and channels.

 NOTE: threshold is resetted after exceeding it (set to 0)!

 mode: Flag, if the threshold must be exceeded in one (1) or

 all (0) of the channels specified in 'channel'. Must

 be 0 or 1.

 channel: vector with channels (indices or cell array with names) to

 check for the threshold (no duplicates allowed)

Def.> value: current thresholds (no changes, 0 on startup)

 mode: 1

 channel: vector with all allocated channels

Ret.> current threshold value

 current threshold mode

05b

recstarted Name> recstarted

Help> returns, if recording to file (!) channels was ever started. This

 command is especially useful when recording with threshold to check,

 if the threshold value was ever exceeded (e.g. for implementing

 timeouts).

Ret.> vector with ones (started) and zeros (not started) for all allocated

 input channels

05b

reclength Name> reclength

Help> sets file record length and returns current values

Par.> value: vector with record lengths. If no value is specified, no

 value is changed, current values are returned. Either one

 value must be specified (applied to all channels) or

 lengths of value vector and channel vector must be

 identical (record length applied in corresponding order

 to specified channels). Recording to file on the

 corresponding channel is stopped after recording the

 specified number of samples (0 does endless recording).

 NOTE: this record length sets the length of the file (!)

 to be reorded only! If the recorded file exceeds this

 length only recording to file is deisabled, the device

 itself is _not_ stopped: playback and recording (to

 memory) is still ongoing!

 channel: vector with channels (indices or cell array with names) to

 apply record lengths to (no duplicates allowed)

Def.> value: current record lengths (no changes, 0 on startup)

 channel: vector with all allocated channels

Ret.> vector with current file record lengths for all allocated channels

05b

SoundMexPro documentation 55

recbufsize Name> recbufsize

Help> sets record buffer sizes and returns current values

Par.> value: vector with buffer sizes. If no value is specified, no

 value is changed, current values are returned. This value

 specifies, how many recorded samples of a channel are

 buffered in memory and can be retrieved with command

 'recgetdata'. NOTE: values smaller than the current

 buffersize of the device are adjusted to that buffersize

 (except 0 which disables buffering). Either one value

 must be specified (applied to all channels) or lengths

 of value vector and channel vector must be identical

 (buffer size applied in corresponding order to specified

 channels).

 NOTE: the requested buffer size has to be allocated from

 memory for each recording channel. So take care that not

 more memory is requested than available. In general more

 than a few minutes should not be set as buffer size!

 channel: vector with channels (indices or cell array with names) to

 apply buffer sizes to (no duplicates allowed)

Def.> value: current record buffer sizes (no changes, 0 on startup)

 channel: vector with all allocated channels

Ret.> vector with record buffer size for all allocated input channels

05c

recgetdata Name> recgetdata

Help> returns record data

Par.> channel: vector with channels (indices or cell array with names) to

 retrieve data from (no duplicates allowed) NOTE: data from

 multiple channels with different recbufsizes (set with

 'recbufsize') cannot be retrieved with a single command and

 must be retrieved subsequently

Def.> channel: vector with all allocated channels

Ret.> matrix with columns containing record data from channels (length is

 set by 'recbufsize' command),

 absolute record sample position of first sample in returned matrix

 IMPORTANT NOTE: this returned record sample position is the absolute

 position in time (i.e. recorded samples since the device is running).

 It will be identical to the position if recording to file. On each

 call the number of samples is returned that was specified in command

 'recbufsize'. Therefore if 'recgetdata' is called before this number

 of samples is recorded at all, zeroes are prepended and the returned

 position will be negative.

 In subsequent calls to 'recgetdata' you may retrieve overlapping data

 (if you are calling fast!), and thus the number of 'new' samples n

 (i.e. samples, that were not already retrieved in last call) can be

 calculated by the difference of the two retrieved positions p1 and p2:

 n = (p2 - p1).

 If this number is larger than your recbufsize, than you have missed

 data! Otherwise you can copy the new data with respect to the overlap:

 the last (recbufsize - n) samples in the first buffer are identical

 to the first (recbufsize - n) samples in the second buffer and you may

 skip them.

05c

recmute Name> recmute

Help> sets mute status of one or more input channels and returns current

 status. NOTE: mute/unmute is not ramped!

 NOTE: 'solo' status supersedes 'mute' status: if solo status of any

 input is '1', then mute status of all inputs is ignored!

Par.> value: vector with mute values (0 for unmute or 1 for mute).

 If no value is specified, no mute values are changed,

 current values are returned. Either one value must be

 specified (applied to all channels) or lengths of mute

 and input vector must be identical (values applied in

 corresponding order to specified channels).

 input: vector with input channels (indices or cell array with

 names) to apply values (no duplicates allowed)

Def.> value: current mute values (no changes)

 track: vector with all input channels

Ret.> vector with current mute values for all input channels

none

SoundMexPro documentation 56

recsolo Name> recsolo

Help> sets solo status of one or more input channels and returns current

 status. NOTE: muting/unmuting is not ramped!

 NOTE: 'solo' status supersedes 'mute' status: if solo status of any

 input is '1', then mute status of all inputs is ignored!

Par.> value: vector with solo values (0 for unsolo or 1 for solo).

 If no value is specified, no solo values are changed,

 current values are returned. Either one value must be

 specified (applied to all channels) or lengths of solo

 and input vector must be identical (values applied in

 corresponding order to specified channels).

 input: vector with input channels (indices or cell array with

 names) to apply values (no duplicates allowed)

Def.> value: current solo values (no changes)

 input: vector with all input channels

Ret.> vector with current solo values for all input channels

none

recvolume Name> recvolume

Help> sets recording volume and returns current recording volume of input

 channels.

Par.> value: vector with volumes (linear gains). If no value is

 specified, no volume is changed, current volumes are

 returned. Either one volume must be specified (applied

 to all channels) or lengths of volume and channel vector

 must be identical (gains applied in corresponding order

 to specified channels). NOTE: this volume is the 'master'

 volume, i.e. it is applied before all signal processing

 and mixing as a linear factor to each sample

 IMPORTANT NOTES: this volume is applied to each recorded

 sample BEFORE any signal processing, mixing aor threshold

 determination is done (see also command 'recthreshold').

 Clipping is checked BEFORE applying the volume. This gain

 is NOT ramped.

 channel: vector with input channels (indices or cell array with names)

 to apply volume to (no duplicates allowed)

Def.> value: current volumes (no changes)

 channel: vector with all allocated channels

Ret.> vector with current volumes for all allocated channels

none

11.5 MATLAB® script DSP commands
This table contains commands related to communication with MATLAB® DSP plugins. NOTE: these
commands are only available with a DPS or VST license!

Command Description Tut.
pluginsetdata Name> pluginsetdata

Help> sets current plugin user data

Par.> data: matrix with user data (mandatory). A matrix with the n

 columns and 100 rows must be specified, where n is the

 number of allocated input or output channels respectively.

 mode: 'input' or 'output' to set input or output user data

Def.> mode: 'output'

07a

plugingetdata Name> plugingetdata

Help> retrieves current plugin user data

Par.> mode: 'input' or 'output' to retrieve input or output user data

Def.> mode: 'output'

Ret.> matrix with current plugin user data for all allocated channels

07a

SoundMexPro documentation 57

11.5.1 VST Commands
This table contains commands related to VST plugins. NOTE: all these commands are only available
with a VST license!

Command Description Tut.
vstquery Name> vstquery

Help> returns information on a VST plugin by filenname or by type,

 input and position

Par.> filename: filename of plugin to query. NOTE: if filename is

 specified, all other parameters are ignored!

 type: type of plugin to query. Allowed types are:

 master: plugin loaded as master plugin,

 track: plugin loaded as track plugin,

 input: plugin loaded as input/recording plugin,

 input: one of the plugins input channels specified when

 loading it with 'vstload',

 position: 'vertical' position of plugin to unload.

Def.> type: 'master'

 position: 0

Ret.> effect name, product string and vendor as returned from plugin,

 number of available inputs,

 number of available outputs,

 cell array with available program names,

 current program,

 cell array with available parameter names,

 vector with corresponding parameter values

09b

vstload Name> vstload

Help> loads a VST plugin (optionally with config file).

Par.> filename: filename of plugin to load

 type: type of plugin to load. Allowed types are:

 master: plugin is loaded as 'master plugin': it is

 plugged into 'hardware output channels', i.e.

 applied on track sums (after mixing),

 track: plugin is loaded as 'track plugin': it is

 plugged into virtual tracks,

 input: plugin is loaded as 'recording plugin': it is

 plugged into input channels,

 input: row vector with input channels: hardware channels or tracks

 (plugin must support number of inputs). A value of -1

 configures a plugin input to be used as recurse input (see

 parameters 'recursechannel' and 'recursepos' below)

 output: row vector with output channels: hardware channels or

 tracks (plugin must support number of outputs).

 If empty 'input' vector is used (input = output),

 position: 'vertical' position. Each channel may contain five

 'vertical' plugins that are called subsequently.

 recursechannel: An input of a plugin can be configured to receive so

 called 'recurse data' data rather than 'regular' input

 audio data from a channel or a track. This feature is

 intended for recursion e.g. for adaptive filter plugins

 that need 'a plugin output as an input'. To configure a

 plugins input for this purpose a value of '-1' must be

 specified for that plugin input in the parameter vector

 'input' (see above). The parameter vectors 'recursechannel'

 and 'recursepos' configure the 'source' for this plugin

 input by specifying the 'channel' (track or output channel,

 depending on plugin type) and the vertical position (see

 parameter 'position'), where the data are copied from. For

 a detailed example see the manual of SoundMexPro.

 NOTE: if the position of the source ('recursepos') is the

 same or higher than this plugin's position, then the source

 is 'behind' the input. Thus the data that will be received

 on this plugin's input will be the last block, i.e. the

09a

09d

SoundMexPro documentation 58

 data are prom the past (one ASIO buffersize from the past)!

 NOTE: the number of values must be identical to the number

 of '-1' values passed to 'input'!

 recursepos: vector specifying one or more 'positions' for recurse input

 configuration (see 'recursechannel'). If a value of '-1' is

 specified, this plugin's position is used (i.e. a direct

 recursion from the output of the plugin to one of it's

 inputs)

 NOTE: the number of values must be identical to the number

 of '-1' values passed to 'input'!

 program: program name to set.

 programname: new name to set for current program. This name is set

 after 'program' was selected.

 configfile: optional filename of config file to use (description of

 format see manual). NOTE: other parameters passed to

 command supersede corresponding entries in config file!

Def.> type: 'master'

 output: input

 position: 0

 recursechannel: empty vector

 recursepos: empty vector

Ret.> type of plugin (master or track),

 row vector with input channels,

 row vector with output channels,

 'vertical' position

vstunload Name> vstunload

Help> unloads VST plugin.

Par.> type: type of plugin to unload. Allowed types are:

 master: plugin is unloaded from master plugins,

 track: plugin is unloaded from track plugins,

 input: plugin is unloaded from input plugins,

 input: one of the plugins input channels specified when

 loading it with 'vstload',

 NOTE: plugin is unloaded 'completely', it's removed

 from all channels, where it was loaded to!

 position: 'vertical' position of plugin to unload.

Def.> type: 'master'

 position: 0

09b

vstprogram Name> vstprogram

Help> sets and retrieves a program of a VST plugin.

Par.> type: type of plugin to query. Allowed types are:

 master: master plugin is queried,

 track: track plugin is queried,

 input: input plugin is queried,

 input: one of the plugins input channels specified when

 loading it with 'vstload'.

 position: 'vertical' position of plugin to query.

 program: name of program to select. If empty, value is not changed.

Def.> type: 'master'

 position: 0

Ret.> current program name.

09b

vstprogramname Name> vstprogramname

Help> sets and retrieves the name of the current program of a VST plugin.

 NOTE: this command does not select a new program by name, it renames

 the current program!

 NOTE: the plugin itself has to support this renaming, otherwise the

 command will fail.

Par.> type: type of plugin to query. Allowed types are:

 master: master plugin is queried,

 track: track plugin is queried,

 input: input plugin is queried,

 input: one of the plugins input channels specified when

 loading it with 'vstload'.

 position: 'vertical' position of plugin to query.

 programname: new name to set for current program. If empty, value is

 is not changed.

09b

SoundMexPro documentation 59

Def.> type: 'master'

 position: 0

Ret.> name of current program.

vstparam Name> vstparam

Help> sets and retrieves one or more parameter values of a VST plugin

Par.> type: type of plugin to query. Allowed types are:

 master: master plugin is queried,

 track: track plugin is queried,

 input: input plugin is queried,

 input: one of the plugins input channels specified when

 loading it with 'vstload',

 position: 'vertical' position of plugin to query.

 parameter: parameter name(s) to set (cell array). If empty all

 parameters are queried/set.

 value: vector with values for parameters. All values must be

 between 0.0 and 1.0. If empty, values are not changed

 otherwise length must be identical to length of parameter

 cell array.

Def.> type: 'master'

 position: 0

Ret.> cell array with queried parameter names,

 current values of queried parameters

09a

vstset Name> vstset

Help> sets and retrieves program and/or parameters of VST plugin by

 values in a config file

Par.> type: type of plugin to query. Allowed types are:

 master: master plugin is queried,

 track: track plugin is queried,

 input: input plugin is queried,

 input: one of the plugins input channels specified when

 loading it with 'vstload',

 position: 'vertical' position of plugin to query.

 configfile: filename of config file to use (description of format

 see manual). NOTE: other parameters passed to command

 supersede corresponding entries in config file!

Def.> type: 'master'

 position: 0

Ret.> current program

 cell array with all (!) available parameter names

 vector with corresponding parameter values

09b

vststore Name> vststore

Help> stores current configuration of a VST plugin in a config file

 (description of format see manual)

Par.> type: type of plugin to query. Allowed types are:

 master: master plugin is queried,

 track: track plugin is queried,

 input: input plugin is queried,

 input: one of the plugins input channels specified when

 loading it with 'vstload',

 position: 'vertical' position of plugin to query.

 configfile: filename of config file to write to. NOTE: and existing

 file will be overwritten!

Def.> type: 'master'

 position: 0

09b

vstedit Name> vstedit

Help> shows a GUI parameter editor of a VST plugin.

Par.> type: type of plugin to query. Allowed types are:

 master: master plugin is queried,

 track: track plugin is queried,

 input: input plugin is queried,

 input: one of the plugins input channels specified when

 loading it with 'vstload',

 position: 'vertical' position of plugin to query.

Def.> type: 'master'

 position: 0

09b

SoundMexPro documentation 60

11.6 Other Commands
This table contains commands related to direct I/O and other special commands

Command Description Tut.
iostatus Name> iostatus

Help> sets I/O status of an input channel and returns current status

Par.> input: vector with input channels (indices or cell array with

 names) to map. This value is mandatory. If one channel is

 specified, then this input is mapped to all specified

 tracks. If more than one channel is specified then the

 number of tracks must be identical and the input channels

 are mapped to one track each in the specified order.

 track: vector with tracks (indices or cell array with names) for

 mapping (no duplicates allowed). The samples of the

 specified input channel are added to all specified tracks.

 Passing '-1' clears mapping for specified input channel.

Ret.> vector containing tracks, where the samples from the input channel

 are added to. NOTE: this value is only returned, if one input channel

 is specified!

06

setbutton Name> setbutton

Help> enables button marking synchronized with playback. NOTE: after

 marking and unmarking a particular button, the marking information

 is resetted. To use the same marking information again you have to

 call 'setbutton' again!!

Par.> handle: (window) handle of the button

 startpos: starting point in samples

 length: marking length in samples

 channel: output channel with mix data to calculate samples

04d

dspload Name> dspload

Help> returns current and maximum dsp load that occurred. The dsp load is

 the time consumed within a block for signal processing compared to

 total available computing time for a block in percent.

Ret.> current dsp load,

 maximum dsp load since startup or last call to 'dsploadreset'

07a

dsploadreset Name> dsploadreset

Help> resets the dsp load maximum value (see command 'dspload').

07a

adm Name> adm

Help> interface to 'ASIO Direct Monitoring' for direct I/O wiring.

 NOTE: successful call to command does not guarantee that command was

 successfully done in driver. Drivers may ignore commands and/or

 parameters that are not supported and return 'success' anyway!

 Please see also the extra ADM chapter in the SoundMexPro manual!

Par.> input: input channel to monitor. -1 monitors all inputs (not

 supported by all drivers)

 output: output channel fpr monitoring the input. 'Snippet' from

 original ASIO help: 'Output is the base channel of a stereo

 channel pair, i.e. output is always an even channel (0,2...).

 If an odd input channel should be monitored and no panning

 or output routing can be applied, the driver has to use the

 next higher output (imply a hard right pan).'

 gain: gain to set ranging from 0 (-inf) to 2147483647 (12 dB, hex

 0x7fffffff), where 536870912 (hex 0x20000000) is 0 dB.

 NOTE: the 'gain' values may not be distibuted linearly

 neither on a dB nor on alinear loudness scale (depends on

 soundcard/driver)

 pan: pan to set, where 0 is 'left' and 2147483647 (hex 0x7fffffff)

 is right. NOTE: panning may be implemented different and

 may depend on 'output' (if odd or even channel used, see

 see above). Please check out behaviuor of your device!

 mode: flag, what to set. 0 switches monitoring off, 1 switches

 monitoring on. NOTE: no other modes are part of the original

 ASIO interface. But some soundcard manufacturers support

10

SoundMexPro documentation 61

 more undocumented modes (you may simply try it). The RME

 FireFace for example supports modes 2 and 3. Using these

 values, 'input' is ignored and the gain and pan of output

 channel 'output' are set instead of input channel 'input',

 where mode 2 switches 'off' (muted, i.e. gain 0), and

 mode 3 switches 'on', i.e. gain 'gain' is really set.

Def.> input: 0

 output: 0

 gain: 536870912 (hex 0x20000000, i.e. 0 dB)

 pan: 1073741823 (hex 0x7fffffff/2, i.e. middle position)

 mode: 1

11.7 Error Handling
This table contains commands related to error detecting and handling. Please read the separate chapter
on error handling carefully!

Command Description Tut.
asyncerror Name> asyncerror

Help> returns asynchroneous error status and error text

Ret.> 1 if an asynchroneous error ocurred or 0 else,

 error text (if any)

08

resetasyncerror Name> resetasyncerror

Help> resets asynchroneous error

08

clipthreshold Name> clipthreshold

Help> sets clipping threshold and returns current threshold values. The

 clipping threshold is the normalized value (between 0 and 1) that

 will be interpreted as clipping and thus will increase the clipcount

 if exceeded. Default on startup is 1 for all channels (real digital

 overdrive).

Par.> type: 'input' or 'output' to set input (recording) threshold

 value(s) or output (playback) threshold value(s)

 value: vector with thresholds between 0 and 1. If no value is

 specified, no threshold is changed, current thresholds are

 returned. Either one threshold must be specified (applied

 to all channels) or lengths of threshold and channel vector

 must be identical (thresholds applied in corresponding order

 to specified channels).

 channel: vector with output channels (indices or cell array with

 names) to apply threshold to (no duplicates allowed)

Def.> type: 'output'

 value: current threshold values (no changes)

 channel: vector with all allocated channels

Ret.> vector with current thresholds for all input or output channels

-

clipcount Name> clipcount

Help> returns number of buffers (not samples!) where clipping occurred.

 NOTE: for recording 'clipping' is defined as two consecutive full

 scale samples. For the input channels clipping is checked before

 any gain and signal processing (plugins) is applied to detect clipping

 that occurred on D/A-conversion. If you use any plugins that amplify

 the input, such clipping is _not_ detected by 'clipcount' command!

Ret.> vector with number of buffers where clipping occurred for each

 allocated ouptut channel,

 vector with number of buffers where clipping occurred for each

 allocated input channel,

 vector with number of buffers where clipping occurred for each

 allocated track

04b

05a

resetclipcount Name> resetclipcount

Help> resets all clip counters to zero

04b

SoundMexPro documentation 62

underrun Name> underrun

Help> returns underrun status of all tracks. 1 means that during playback

 the corresponding track ran out of data.

Ret.> vector with zeros and ones denoting corresponding underrun status,

 i.e. 1 if an underrun occurred on the track, or 0 if not

04c

xrun Name> xrun

Help> returns number of xruns occurred since last start

Ret.> total number of xruns occurred since last start,

 number of processing xruns occurred since last start,

 number of xruns in visualization and recording to disk since last

 start.

07

showerror Name> showerror

Help> sets error printing behavior of SoundMexPro and returns current

 value

Par.> mode: 1: all errors are printed to MATLAB workspace

 0: no errors are printed to MATLAB workspace

Ret.> current value

03

getlasterror Name> getlasterror

Help> returns last error

Ret.> last error as string

03

12 FAQ
Please refer to the file FAQ.TXT in the installation directory of SoundMexPro or to the
SoundMexPro homepage (http://www.soundmexpro.de).

13 Version History
Please refer to the file HISTORY.TXT in the installation directory of SoundMexPro or to the
SoundMexPro homepage (http://www.soundmexpro.de).

