
Charles University in Prague

Faculty of Mathematics and Physics

ODCleanStore
Linked Data management tool

User Manual

Release 1.0
March 16, 2013

Authors: Jan Michelfeit
Dušan Rychnovský
Jakub Daniel
Petr Jerman
Tomáš Soukup

Supervisor: RNDr. Tomáš Knap

Contents

1 Introduction 3
1.1 What is ODCleanStore . 3
1.2 How to Read This Document . 4
1.3 Linked Data Framework . 4
1.4 Examples of Deployment . 5

2 How It Works 6
2.1 Data Lifecycle . 6
2.2 Administration Frontend Features . 6
2.3 Summary of Features . 7

3 User Roles 8
3.1 Administrator . 8
3.2 Ontology Creator . 9
3.3 Pipeline Creator . 9
3.4 Data Producer . 9
3.5 Data Consumer . 9

4 Administration Frontend 10
4.1 Administration Frontend Overview . 10
4.2 Pipeline Management . 11

4.2.1 Predefined Transformers . 12
4.3 Transformer Rules . 13

4.3.1 Quality Assessment . 14
4.3.2 Data Normalization . 14
4.3.3 Linker . 15

4.4 Engine & Inserted Graphs Monitoring . 16
4.5 Output Webservice . 17
4.6 Ontology Management . 18
4.7 Accounts . 19
4.8 Transformer Management . 20
4.9 Prefixes . 20
4.10 Configuration Example . 21

5 Web Services 31
5.1 Web Services Overview . 31
5.2 Data Producer . 31

5.2.1 Request parameters . 31
5.2.2 Exceptions . 32
5.2.3 Java API . 33

5.3 Data Consumer . 34
5.3.1 Types of queries . 34

1

CONTENTS 2

5.3.2 Request format . 34
5.3.3 Query Format . 37
5.3.4 Results Format for URI & Keyword Queries 37
5.3.5 Results Format for Named Graph Query 40
5.3.6 Results Format for Metadata Query . 40
5.3.7 Quality Calculation . 42

6 Stored Data 44
6.1 Input Processing . 44
6.2 Stored Data Structure . 45
6.3 Executing Pipelines on the Clean Database . 46

A Glossary 47

B List of Used XML Namespaces 50

1. Introduction
The advent of Open Data1 and Linked Data2 accelerates the evolution of the Web into an
exponentially growing information space3 where the unprecedented volume of data will offer
information consumers a level of information integration and aggregation agility that has up to
now not been possible. Data consumers can now “mashup” and readily integrate information
in myriads of applications.

Indiscriminate addition of information, however, comes with inherent problems, such as the
provision of poor quality, inaccurate, irrelevant or fraudulent information. All will come with
an associate cost of the data integration which will ultimately affect data consumer’s benefit
and Linked Data applications usage and uptake.

To overcome these issues, we present a framework enabling management of Linked Data
– data cleaning, linking, transformation and quality assessment – and providing applications
with a possibility to consume the stored cleaned and integrated data, which reduces the costs
of application development.

1.1 What is ODCleanStore

In short, ODCleanStore is a server application for management of Linked Data – it stores data
in RDF, processes them and provides integrated views on the data.

ODCleanStore accepts arbitrary RDF data through a webservice (together with provenance
and other metadata). The data is processed by transformers in one of a set of customizable
pipelines and stored to a persistent store. The stored data can be accessed again through
a webservice. Linked Data consumers can send queries and custom query policies to this
webservice and receive (aggregated/integrated) RDF data relevant for their query, together
with information about provenance and data quality. Overview of ODCleanStore is depicted
on Figure 1.1.

ODCleanStore is developed at the Charles University in Prague, Faculty of Mathematics
and Physics as part of the OpenData.cz initiative and the LOD2.eu project and published as
a free software under Apache License 2.0. The project is hosted at SourceForge at

http://sourceforge.net/p/odcleanstore/.

1http://opendatahandbook.org/
2http://www.w3.org/standards/semanticweb/data; http://linkeddata.org/
3See the Linked Open Data Cloud at http://richard.cyganiak.de/2007/10/lod/

3

http://opendata.cz
http://lod2.eu
http://sourceforge.net/p/odcleanstore/
http://opendatahandbook.org/
http://www.w3.org/standards/semanticweb/data
http://linkeddata.org/
http://richard.cyganiak.de/2007/10/lod/

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Overview of ODCleanStore architecture

1.2 How to Read This Document

This document is a user manual with basic description od ODCleanStore and detailed
instructions on how to access and work with the application from the perspective of a user.
Chapters 1 and 2 give a basic description of what ODCleanStore is and how it works, while
Chapter 3 describes user roles and will guide you to other parts of this manual relevant for
your user role.

If more detailed information is needed, please refer to related documents “Administrator’s
& Installation Manual” and “Programmer’s Guide”.

1.3 Linked Data Framework

The goal of the OpenData.cz initiative is to build an open data infrastructure in The Czech
Republic. It would provide public data in a form that allows access to anyone at any time and
allows to combine it freely. This would allow the creation of applications that the public really
needs.

ODCleanStore is a part of the Linked Data Framework developed under the OpenData.cz
initiative. The main three parts of the framework are Data Acquisition module, Data
Aggregation and Cleaning module and Data Visualization and Analysis module.

The Data Acquisition module4 will be able to crawl webpages and scrape structured data
from webpages and other sources (such as XLS spreadsheets). This data is converted to
RDF and sent to the Data Aggregation and Cleaning module represented by ODCleanStore.
ODCleanStore processes the data, stores it and provides access to it. The Visualization and
Analysis module will query ODCleanStore and provide a human-friendly interface to end users.

4http://strigil.sourceforge.net/

http://opendata.cz
http://strigil.sourceforge.net/

CHAPTER 1. INTRODUCTION 5

1.4 Examples of Deployment

ODCleanStore is planned to be deployed together with the Data Acquisition module represented
by project Strigil4 which would feed up-to-date data to ODCleanStore. However, thanks to the
use of standard formats for communication with the input/output webservices, ODCleanStore
can be deployed with any other third-party application for data feeding or consuming.

In general, ODCleanStore is intendend to be used whenever there are multiple sources of
(semi-)structured data convertible to RDF that need to be integrated. ODCleanStore can
be used for academic purposes, “mashup” applications, or even deployed in an enterprise
environment.

A real-world deployment is planned for storing public contracts data published by the
public administration of the Czech Republic as part of the OpenData.cz initiative. Another
deployment will be for internal use in students’ projects at the Charles University in Prague.

2. How It Works
ODCleanStore consists of Engine, Input Webservice and Output Webservice (both run as part
of the Engine), and administration webfrontend. The Engine processes incoming and stored
data using transformers. A transformer is a pluggable Java class implementing a defined
interface; several transformers ship with ODCleanStore, such as Quality Assessment, Linker or
Data Normalization.

2.1 Data Lifecycle

The lifecycle of data inside ODCleanStore is as follows:

1. RDF data (and additional metadata) are accepted by Input Webservice and stored as
a named graph to the dirty database. Data can be uploaded by any third-party application
registered in ODCleanStore.

2. Engine successively processes named graphs in the dirty database by applying a pipeline
of transformers to it; the applied pipeline is selected according to the input metadata.

3. Each transformer in the pipeline may modify the named graph or attach new related
named graphs (such as a named graph with mappings to other resources or results of
quality assessment).

4. When the pipeline finishes, the augmented RDF data are populated to the clean database
together with any auxiliary data and metadata created during the pipeline execution.

5. Data consumers can use Output Webservice to query data in the clean database. Output
Webservice provides several basic types of queries – URI query, keyword and named graph
query; in addition, metadata about a given named graph can be requested. The response
to a query consists of relevant RDF triples together with their provenance information and
quality estimate. The query can be further customized by user-defined conflict resolution
policies.
Data in the clean database can be also queried using the SPARQL query language. While
SPARQL queries are more expressive, there is no direct support for provenance tracking
and quality estimation.

6. When transformer rules change, the administrator may choose to re-run a pipeline on data
already stored in the clean database. Copy of this data is created in the dirty database
where it is processed by the pipeline. After that, the processed version of data replaces
the original in the clean database.

2.2 Administration Frontend Features

The administration webfrontend enables

• management of user accounts,
• management of pipelines, transformers and transformer rules,
• management of ontologies,
• monitoring of inserted data and the state of Engine,

6

CHAPTER 2. HOW IT WORKS 7

• management of other settings, such as default conflict resolution policies for queries.

2.3 Summary of Features

• Administration in a simple web interface.
• Input and Output Webservices communicate in standard formats - Input Webservice

accepts RDF/XML or TTL, Output Webservice provides results in HTML, TriG and
RDF/XML formats.
• Highly customizable pipelines for incoming data processing. Different pipelines can be

used for different data sources.
• Data can be processed before they are stored to a persistent store but also when they are

already stored if neccessary.
• Ships with several predefined transformers for use in data-processing pipelines: Data

Normalization (transformations of data), Quality Assesment (estimates quality of data
based on a set of rules), Linker (links RDF resources representing the same entity or
otherwise related). All these transformers can be managed in the web administration
interface.
• Support for ontology management. Mappings between ontologies can be defined in

order to integrate heterogeneous data. Also, rules for transformers can be automatically
generated from ontologies.
• Data consumers can query for all data about a given resource or use the keyword search.
• Response to a query includes provenance information and quality estimate of each RDF

triple in the result. More provenance metadata can be requested. Conflicts that arise
when integrating data are solved at query time according to user-defined policies.

3. User Roles
Data consumers accessing Output Webservice (see Section 5.3) do not need to have an account
in ODCleanStore; these users have a special role User (USR). Other users working with
ODCleanStore need to have an account and their permissions are based on the roles they
are assigned. This chapter describes all the roles recognized by ODCleanStore.

Figure 3.1: Overview of roles in ODCleanStore

3.1 Administrator (ADM)

Administrator has privileges to manage user accounts, assign roles and manage system-wide
settings such as

• transformers that can be used in pipelines created by pipeline creators,
• settings of Output Webservice (default aggregation policies, etc.),
• URI prefixes that can be used in settings and queries.

In addition, the administrator is authorized to edit pipelines and rules created by pipeline
creators.

More information, e.g. about adding transformers, can be found in the related document
Administrator’s & Installation Manual.

Most relevant sections of this document: Chapter 4 Administration Frontend.

8

CHAPTER 3. USER ROLES 9

3.2 Ontology Creator (ONC)

The ontology creator can import and edit ontologies registered in the system. The ontology
creator is also responsible for inserting mappings (owl:sameAs links) between ontologies.

Most relevant sections of this document: Section 4.6 Ontology Management.

3.3 Pipeline Creator (PIC)

The pipeline creator can create input data processing pipelines. This includes creating
new pipelines, assigning transformers to them (Section 4.2) and also creating rules for the
transformers (Section 4.3). In addition, pipeline creator can monitor state of graphs sent to
ODCleanStore and errors that occur during pipeline processing (Section 4.4).

Every pipeline creator is allowed to create custom pipelines and rule groups for predefined
transformers. The pipeline creator has a read-only access to other creators’ pipelines and rules
(and can use such rules in custom pipelines), however rules and pipelines can only be edited
by their author. The only exception is the administrator, who can edit arbitrary pipelines and
rule groups.

The same principle applies for inserted graphs management – pipeline creator can delete or
re-run pipeline for graphs that were processed by a pipeline created by this pipeline creator,
while administrators are authorized for manipulation with all graphs.

Most relevant sections of this document: Sections 4.2 Pipeline Management,
4.3 Transformer Rules, 4.4 Engine & Inserted Graphs Monitoring and
6.3 Executing Pipelines on the Clean Database.

3.4 Data Producer (SCR)

The data producer can use Input Webservice (Section 5.2) to insert new data to ODCleanStore.
The system keeps track of which data were inserted by which data producer.

Most relevant sections of this document: Sections 5.2 Data Producer and
6.1 Input Processing.

3.5 Data Consumer (USR)

The data consumer can use Output Webservice (Section 5.3) to ask queries over the data in
the clean database. This role is special in that users in this role do not need to have an account
(any user using the Output Webservice is automatically assigned the USR role).

Most relevant sections of this document: Sections 5.3 Data Consumer and
6.2 Stored Data Structure.

4. Administration Frontend

4.1 Administration Frontend Overview

Administration Frontend is the tool for managing ODCleanStore. It covers configuration of all
standard components. It is restricted to authorized users only.

The administration frontend controls various entities, allows the user to set different
attributes and perform actions on those entities. Several terms and designations are used
repeatedly in the frontend, however, their meanings do not change, therefore make sure to be
familiar with them as they might not be described hereafter.

Common attributes

Label A unique human readable identifier of the related entity.

Description A description for user’s purposes and better comprehension of semantics of
the related entity.

Author The username of a the originator / creator of the related entity.

Common actions

Delete Remove the related entity irrevertably from the system.

Detail View details and form for editing the related entity. For some
entitis shows also entities related to the edited entity.

Rerun affected graphs Queues all graphs affected by the entity for pipeline processing,
i.e. the graphs will be processed again by their respective
pipeline.

The frontend is divided into several separate sections of logicaly related controls. The main
menu bar at the top of the page can be used to switch between those sections.

Figure 4.1: Main menu

10

CHAPTER 4. ADMINISTRATION FRONTEND 11

Figure 4.2: Administration Frontend after login

4.2 Pipeline Management

New incoming data (in form of a named graph) accepted by Input Webservice are passed
through a pipeline consisting of transformers. In this section of the administration frontend
it is possible for the user to specify different pipelines. Individual pipelines can incorporate
different already existing transformers. To edit the structure of a pipeline, view its detail.

Individual Transformer Instances

In a detail page of any particular pipeline there is a list of transformers assigned to it. Each
assignment composes of these fields:

Required Field Description

required transformer/label an existing transformer label
required configuration configuration passed to an instance of the above selected

transformer
implied allow to be run

on clean DB
As the importance of data modification that the pipelines can
cause differs based on what database it is running upon, it
is left for the user to decide whether a concrete transformer
should be allowed to run on clean database (in addition to
running on dirty database). Some transformations do not
even make sense when working with clean database.

required place in pipeline
before

Determines when the transformer will be run in respect to
other transformers in the pipeline

The detail page of the assigned Quality Assessment, Data Normalization, Linker
transformers allows user to specify what rule groups are assigned to the transformer in the
related pipeline.

CHAPTER 4. ADMINISTRATION FRONTEND 12

Figure 4.3: Pipeline editing

4.2.1 Predefined Transformers

Several transformers are included in ODCleanStore by default. This section provides their
overview.

4.2.1.1 Quality Assessment

This transformer assigns a quality indicator to the processed named graph based on data
properties contained in it. It will be further described in section 4.3.1.

4.2.1.2 Quality Aggregator

This transformer assigns a quality indicator to the publisher of the processed named graph
based on quality of all graphs stored in the database and sharing this publisher. It will be
further described in section 4.3.1.

4.2.1.3 Data Normalization

This transformer can be used to modify data contained in the processed graph. The main
reason to allow modifications is to be able to cope with situations when data from different

CHAPTER 4. ADMINISTRATION FRONTEND 13

sources have different forms. It is also useful to preprocess data to better suit the rest of the
transformation process and future queries of other users. For more information, see section
4.3.2.

4.2.1.4 Linker

Purpose of this transformer is to identify related information and create links that represent
the relation. To find out how to control this transformer see section 4.3.3.

4.2.1.5 Blank Node Remover

This transformer replaces all blank nodes in payload named graph with unique URI resources.
The transformer guarantees that occurrences of the same blank node withing the transformed
graph (and only this graph) will be assigned the same URI.

The URIs generated in place of blank nodes have form <prefix><randomUUID>-<node
number>. The prefix may be given in Configuration field of the transformer instance as
“uriPrefix=<URI prefix>” on a single line. If the prefix is not specified, the concatenation of
input ws.named graphs prefix configuration option value and “getResource” is used as the
default value.

4.3 Transformer Rules

There are a few types of transformers predefined for most common data handling in pipelines.
Namely:

• Quality Assessessment transformer (Section 4.3.1)
• Data Normalization transformer (Section 4.3.2)
• Linker transformer (Section 4.3.3)

These transformers are configured through groups of rules. Each instance of any of these
predefined transformers can accept multiple groups of rules. That way it is possible to simply
assign all interrelated rules to a certain instance of a transformer while it is still possible to
avoid duplication of rules in different groups.

Figure 4.4: Example of a transformer rule group overview page

CHAPTER 4. ADMINISTRATION FRONTEND 14

4.3.1 Quality Assessment

Quality Assessor

Quality Assessor is a special transformer that assigns a score to each graph based on coefficients
of different patterns present in the graph to reflect to what degree the data contained in it
comply to a certain policy. The resulting Quality Assessment score is used at query time to
calculate quality of results – see Section 5.3.7.

To be able to configure individual instances of Quality Assessor a group of rules needs to
exist. To create one enter the Quality Assessment section reachable from Rules submenu.

Here the user can prepare groups of rules to be assigned to instances of Quality Assessor.
Each group is identified by its label and can (and should) come with a description of its
semantical significance.

On the detail page, one can specify individual rules contained in the related group. Each
rule consists of a GroupGraphPattern1 filter, quality decrease coefficient and description, as
described in Table 4.1.

Filter Coefficient Description
GroupGraphPattern [GROUP BY ... [HAVING ...]] x ∈ [0, 1] description

e.g.: {{?s anatomy:limbs ?o} FILTER (?o > 4)} 0.4 Too many limbs

Table 4.1: Quality Assessment rule fields

Any snippet of SPARQL2 to which “SELECT * FROM ... WHERE” can be prepended is a
valid filter and describes a property of a named graph that the author of the rule finds defective.

Quality Aggregator

Quality Aggregator is a special transformer that accumulates quality score values of all the
graphs corresponding to one publisher. It then calculates an average value and assesses this
aggregated quality to the publisher.

4.3.2 Data Normalization

Data Normalizer is a special type of transformer aimed to be applied early in the whole
data evaluation process to simplify work of other transformers. Its main goal is to remove
inconsistencies in forms the data is provided in.

In the Data Normalization section reachable from Rules submenu, one can prepare groups
of rules to be assigned to instances of Data Normalizer. Each group is identified by its label
and can (and should) come with a description of its semantical significance.

The detail page of a group serves the user as means of specification of individual rules
contained in the selected group. Each rule is essentially a sequence of SPARUL3 modifications

1http://www.w3.org/TR/rdf-sparql-query/#rGroupGraphPattern
2http://www.w3.org/TR/rdf-sparql-query/#grammar
3http://www.w3.org/Submission/SPARQL-Update

http://www.w3.org/TR/rdf-sparql-query/#rGroupGraphPattern
http://www.w3.org/TR/rdf-sparql-query/#grammar
http://www.w3.org/Submission/SPARQL-Update

CHAPTER 4. ADMINISTRATION FRONTEND 15

put by MODIFY, INSERT and/or DELETE. New rule represents an empty sequence upon its
creation.

Similarly as with the rules themselves the detail page of a rule allows the user to construct
any arbitrary sequence of modifications. Components of the rule (members of the sequence) can
be added by specifying their type (either MODIFY, INSERT or DELETE), modification (SPARUL
snippet stripped off of initial MODIFY / INSERT INTO / DELETE FROM clauses); e.g.,

{?s ?p1 ?o2} WHERE {?s ?p1 ?o1. ?o1 ?p2 ?o2.}.

Expectedly triples (?s ?p1 ?o2 in the example) are inserted into (deleted from) the current
graph when the type of the component is INSERT (DELETE). Effects are immediate in respect
to consecutive applications of other components of the same rule or other rules to the graph.
Another example would be:

{?s ?p ?o} WHERE {GRAPH $$graph$$ {SELECT ?s ?p ’Y’ AS ?o WHERE {?s ?p 1}}},

where $$graph$$ in GRAPH $$graph$$ is a place holder for name of the graph
being currently processed and can be used for subqueries that need to be enclosed in
GraphGraphPattern4.

Note that when there is no subquery, the $$graph$$ placeholder is optional and it is not
necessary to use the placeholder at all.

4.3.3 Linker

Linker is a special trasformer. Its main purpose is to interlink URIs which represent the same
real-world entity by generating owl:sameAs links. It can be also used for creating other types
of links between differently related URIs.

To be able to configure individual instances of Linker a group of rules needs to exist. To
create one enter the Linker subsection of the Rules management page.

Here the user can prepare groups of rules to be assigned to instances of Linker. Each
group is identified by its label and can (and should) come with a description of its semantical
significance.

On the detail page, one can specify individual rules contained in the related group. Fields
to be filled in for each rule are described in the table at the end of this section. For further
details of their meaning see Silk-LSL specification5.

Linkage rule an be created in Silk Workbench6 and its LinkageRule element copy-pasted
into corresponding field. More convenient way is to import the whole rule from XML file using
the ”Choose file” and ”Import” buttons. For further editation in Silk Workbench the rule can
be exported to XML file again using the ”Export” button.

Created rule will not produce any links, until it has its outputs assigned. This can be done
on the rule detail page after submitting a new rule or when editing an existing one. Two types
of outputs can be assigned to a linkage rule, database outputs and file outputs.

4http://www.w3.org/TR/rdf-sparql-query/#rGraphGraphPattern
5http://www.assembla.com/wiki/show/silk/Link_Specification_Language
6https://www.assembla.com/spaces/silk/wiki/Silk_Workbench

http://www.w3.org/TR/rdf-sparql-query/#rGraphGraphPattern
http://www.assembla.com/wiki/show/silk/Link_Specification_Language
https://www.assembla.com/spaces/silk/wiki/Silk_Workbench

CHAPTER 4. ADMINISTRATION FRONTEND 16

Required Field Description

required label
optional description
required Link type Type of the link to create (typically owl:sameAs)
optional Source SPARQL

restriction
Restriction on URIs from the transformed data, written in
SPARQL.

optional Target SPARQL
restriction

Restriction on URIs from the clean database, written in
SPARQL.

required Linkage rule Linkage rule itself, written in Silk-LSL. XML fragment
<LinkageRule>...</LinkageRule> is expected.

optional Filter threshold Real number, serves as a global threshold, links with lesser
confidence will not be sent to any output.

optional Link limit Defines the number of links originating from a single data
item. Only the n highest-rated links per source data item
will remain after the filtering. If no limit is provided, all links
will be returned.

Database output serves for storing generated links into the clean database. Minimal and
maximal confidence of links to be stored can be specified as real numbers.

File output serves for storing generated links into a file. Minimal and maximal confidence of
links to be stored can be specified as real numbers. Filling in filename is required, files will be
stored into the transformer directory on the server, their names will be prefixed by identifiers
of graphs beeing processed. Two file formats are supported, NTRIPLES7 and ALIGNMENT8.

4.4 Engine & Inserted Graphs Monitoring

There is a section dedicated to monitoring an overall state of the engine and graphs stored in
the database. It can be found by selecting Engine from the main menu and then choosing one
of the subsections.

The State subsection displays all errors reported by the engine. Be it any failure of the engine
itself or a data processing error related to only some of the graphs. The view on this page shows
a simplified and well-arranged information about number of erroneous graphs. More exhaustive
information will be displayed on the detail pages corresponding to individual pipelines. Each
graph processed by the selected pipeline can then be processed by the pipeline once again with
the rerun button (this transformation will reflect current state of the pipeline configuration) or
it can be deleted. Graphs that are in clean database can in addition be accepted as they are
despite the errors if the user considers them irrelevant. There are also shortcut buttons that
allow to perform all of these actions on all graphs in one step. The clean database restriction
for the accept action still applies so some graphs may not be affected. All of the actions can
be invoked by administrator and the author of corresponding pipeline.

7http://www.w3.org/2001/sw/RDFCore/ntriples/
8http://alignapi.gforge.inria.fr/format.html

http://www.w3.org/2001/sw/RDFCore/ntriples/
http://alignapi.gforge.inria.fr/format.html

CHAPTER 4. ADMINISTRATION FRONTEND 17

Figure 4.5: Engine state overview page

The Graphs subsection captures the content of the graph database. The table of all graphs
contains their identifiers in form of URI, states, pipelines that processed them, information
about residence in clean or dirty database, and timestamp of the last update. Each of the
graphs can be deleted or rerun in which case it is processed by the pipeline in its current state.
The URI is a link to output webservice and serves as detailed source of information about the
graph.

Figure 4.6: Engine graphs overview page

4.5 Output Webservice

The output webservice configuration covers default policies for data aggregation. See section
5.3.

The configuration specifies one global behaviour and then it offers the user to override that
behaviour for specific properties.

The properties specified in the Label properties section are treated by query execution
component as human readable labels of different entities. Simply add new label property by
using ”add a new property” button and remove any by use of corresponding delete button.

CHAPTER 4. ADMINISTRATION FRONTEND 18

Figure 4.7: Output WS aggregation properties page

4.6 Ontology Management

Ontologies can be used to produce common rules for Quality Assessment, Data Normalization
transformers. To load one into the storage one can provide an explicit definition through a
text field or by uploading a file containing a valid RDF/XML or TTL ontology definition. The
process of rules generation will automatically take place upon ontology submission.

Figure 4.8: Ontologies page

Another benefit of storing ontologies in the database is gain of ability to map properties
from one ontology to properties from another with owl:sameAs, owl:equivalentProperty,
rdfs:subPropertyOf, rdfs:subClassOf or a custom URI of any other property. This can be
further used by Conflict Resolution component to produce more precise results. Such mapping
can be added in the section Ontology mappings reachable from Ontologies submenu. In that
section a pair of ontologies needs to be selected to restrain to a specific set of properties. After
submitting the pair of ontologies a new form is presented where individual properties can be
mapped. After filling in URI’s of source and target properties, selecting a relation type and
submitting a mapping is created. From that point on it will be considered during conflict
resolution.

CHAPTER 4. ADMINISTRATION FRONTEND 19

Figure 4.9: Ontologies page

4.7 Accounts

As it has been already mentioned in chapter 3 the frontend verifies user privileges before
providing access to different configurations and content. To be able to maintain user roles
and permissions that are implied for individual users the frontend administration provides this
section. All registered accounts will be displayed in a table with all the information (username,
e-mail address, first and second name, roles assigned to the account). The administrator can
assign roles and reset password from this overview and related editable pages. For editing the
roles simply use Roles button and for reseting the password use New password button which
will prompt you for confimation and then generate a new password and send it via the e-mail
address to the user in question if the confirmation is given.

Figure 4.10: Accounts page

CHAPTER 4. ADMINISTRATION FRONTEND 20

My Account

This section is reachable with My Account button below the main menu after a succesful login.
It displays current user’s name, first and second real name, and e-mail address. It is also
possible to change the current password through a page to which Edit my password redirects.

4.8 Transformer Management

Transformer is a component responsible for data refinement, cleaning, aggregation and other
transformations applied to incoming or stored data.

The transformer management screen allows registered users to add, edit or remove
transformers. These can be then added to pipelines (Section 4.2).

Each transformer definition consists of:

Required Field Description

required Working direc-
tory

An (arbitrary) directory dedicated to instances of this
transformer. Files may be stored in it.

required JAR path Path to a Java Archive containing the transformer declara-
tion.

required Full classname Name of the class implementing the transformer. Note that
it isn’t possible to edit this value at a later time.

If JAR path is set to “.” then it is handled as a special case and Full classname is treated
as a built-in transformer.

Figure 4.11: Transformers page

4.9 Prefixes

To avoid obligation of full manual URI expansion in transformer rules or queries it is possible
to maintain set of global RDF prefixes that storage recognizes. These can be added with add
a new prefix button and removed by delete button next to the desired target of removal.

CHAPTER 4. ADMINISTRATION FRONTEND 21

Figure 4.12: Prefixes page

4.10 Configuration Example

In this section a basic concept of ODCleanStore configuration will be illustrated.
It is necessary to log into the frontend with credentials given during the installation. All of

the following operations will be possible to be done with the initial user account.
There need to be transformers for the storage to be able to handle incoming data.

ODCleanStore comes with its built in transformers that are accessible from the frontend right
after the installation. Custom transformers need to be added at this point.

Add the ODCSPropertyFilterTransformer by following steps:

CHAPTER 4. ADMINISTRATION FRONTEND 22

Prepare Transformer

1. Choose Transformers from the frontend menu

Figure 4.13: Navigating to transformers page using the main menu

2. Click “Add a new transformer”

Figure 4.14: Accessing the new transformer definition page

CHAPTER 4. ADMINISTRATION FRONTEND 23

3. Fill in label of your choice
4. Describe its purpose
5. Select the path to the backend JAR
6. Fill in the classname

Figure 4.15: Transformer definition after filling in all necessary information

CHAPTER 4. ADMINISTRATION FRONTEND 24

Prepare Rules for Standard Transformer

7. Choose Rules/Data Normalization from the frontend menu

Figure 4.16: Navigating to the rule group management section

8. Click “Add a new rules group”

Figure 4.17: Proceeding to define a new group

CHAPTER 4. ADMINISTRATION FRONTEND 25

9. Fill in necessary information and submit it

Figure 4.18: Definition of a new rule group

10. Click “Add a new raw rule”

Figure 4.19: Adding a rule to the new group

CHAPTER 4. ADMINISTRATION FRONTEND 26

11. Fill in its description and submit

Figure 4.20: Filling in the necessary information

12. Click “Add a new rule component”

Figure 4.21: Proceeding to definition of individual components

CHAPTER 4. ADMINISTRATION FRONTEND 27

13. Choose the type of the data transformation (MODIFY/INSERT/DELETE)
14. Specify the triples that will modify the graph
15. Describe the meaning of this transformation and submit it

Figure 4.22: Definition of a new Data Normalization component

16. Repeat until the rule is complete

CHAPTER 4. ADMINISTRATION FRONTEND 28

Prepare Pipeline

17. Choose Pipelines from the main menu

Figure 4.23: Navigating to the pipelines management section

18. Click “Add a new pipeline”, fill in the label and description and submit it
19. Click “Assign a transformer”

Figure 4.24: Proceed to assignment of transformers to the pipeline

CHAPTER 4. ADMINISTRATION FRONTEND 29

20. Select one of the transformers
If there is no option then go back to the Prepare Transformer section
To be able to assign rule groups select one of the standard transformers (QualityAssessor,
DataNormalizer, Linker)

21. Fill in the configuration needed by the transformer
22. Allow or disallow running on clean DB
23. Select place in the pipeline

Figure 4.25: Assigning a new instance of previously defined transformer

CHAPTER 4. ADMINISTRATION FRONTEND 30

24. Click “Assign a group” to assign a group of Data Normalization rules

Figure 4.26: Continuing by assigning rule groups to the transformer instance

25. Select the group created earlier

Figure 4.27: Selecting the desired group to be assigned

5. Web Services

5.1 Web Services Overview

ODCleanStore communicates with third-party applications via webservices. Data producers
can store data to ODCleanStore through Input Webservice, while data consumers may use
Output Webservice to query the stored & processed data. In addition, stored data can be
accessed through a public SPARQL endpoint. Input Webservice requires authorization, Output
Webservice and the SPARQL endpoint do not.

5.2 Data Producer

New data can be stored to ODCleanStore through Input Webservice, a SOAP multithreaded
webservice that accepts RDF data serialized as RDF/XML1 or TTL2 and additional metadata.
The webservice requires authorization with a valid user name and password.

The location of Input Webservice can be configured by the input ws.endpoint url
configuration option (see Administrator’s & Installation Manual); by default, it is:

<host>:8080/inputws

See Section 6.1 for more information about how the inserted data are processed and stored.

5.2.1 Request parameters

Table 5.1 enumerates parameters of Input Webservice. All the parameters are required.

Name Description Type

user user login name string
password user password string
payload data to insert serialized as RDF/XML or TTL string
metadata metadata about payload see Table 5.2

Table 5.1: Input Webservice parameters

5.2.1.1 Metadata

Table 5.2 lists fields that the metadata parameter consists of.
Each request is identified by a unique UUID generated on the client side and sent in the

uuid field. The client side is responsible for generating different UUIDs for new requests. UUID
doesn’t change during the whole message transfer nor in case of a repeated request after an
exception.

The dataBaseUrl field is the base URI for payload.

1http://www.w3.org/TR/rdf-syntax-grammar/
2TTL or Turtle – Terse RDF Triple Language; http://www.w3.org/TeamSubmission/turtle/

31

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/

CHAPTER 5. WEB SERVICES 32

Name Description Type Cardinality

uuid UUID string unique for the current request UUID 1
dataBaseUrl base URI for resolution of relative URIs in

payload
URI 1

source location of where the data were retrieved from URI 1. .*
publishedBy identifier(s) of the publisher(s) of the data URI 1. .*
license license(s) under which the data are published URI 0. .*
provenance additional provenance metadata serialized as

RDF/XML or TTL
RDF/XML
or TTL

0. .1

pipelineName identifier of the pipeline that should process the
inserted data

string 0. .1

updateTag distinguisher of set of graphs that update each
other

string 0. .1

Table 5.2: Input Webservice metadata fields

The source field is a list or URIs the data were retrieved from. Typically, this would be
URI(s) of webpage(s) the data were scraped from but in general it can be any URI.

The publishedBy field is a list of URIs representing the publisher of the data. It
can be a well known URI, or, for example, the host part of the source URI (e.g.
http://en.wikipedia.org/ for data scraped from the English Wikipedia).

The license field may specify URI(s) representing the license(s) under which payload
contents and any additional metadata being inserted are published.

The optional provenance field can contain additional RDF provenance metadata about
contents of payload.3 Base URI for the provenance metadata is the URI of the named graph
where payload is stored in ODCleanStore.

The optional pipelineName field can contain a string identifier of an existing pipeline in
ODCleanStore that should be used to process the inserted data. If omitted, the default pipeline
is used.

The optional updateTag field serves as a distinguisher of data that update an already
inserted version of data. If one named graph is to be considered an update of another named
graph, both of them must have the same value of updateTag. For more information about how
updates are detected, see Section 6.1, step 6.

5.2.2 Exceptions

Error during a request to Input Webservice is indicated by throwing an exception. Table 5.3
summarizes exceptions that can occur. In case of such exception, no data or uuid value for the
interrupted request are stored.

3The suggested vocabulary for these purposes is W3P (http://code.google.com/p/od-w3p/).

http://code.google.com/p/od-w3p/

CHAPTER 5. WEB SERVICES 33

Exception Code Description

SERVICE BUSY 1 Service busy – occurs when maximum limit of
concurrent connections is exceeded

BAD CREDENTIALS 2 Bad credentials (invalid user or password)
NOT AUTHORIZED 3 Not authorized – user doesn’t have SCR role

assigned
DUPLICATED UUID 4 Duplicate uuid – another request with the same

uuid value has already successfully finished
UUID BAD FORMAT 5 Wrong format of the uuid field
UNKNOWN PIPELINENAME 6 No pipeline with name as given in pipelineName

exists
OTHER ERROR 7 Other error; when a new transmission with the

same uuid as the current uuid is started before the
current transmission finishes, OTHER ERROR is
thrown; only the new transmission will continue

FATAL ERROR 8 Fatal error
METADATA ERROR 9 Invalid metadata – a field has a wrong format or

a required field is missing

Table 5.3: Input Webservice exceptions

5.2.3 Java API

Third-party applications can access Input Webservice directly, or use the Java client library
provided in ODCleanStore distribution. Add odcs-inputclient-version.jar library to your
project and use class OdcsService to access Input Webservice programmatically.

Listing 5.1 gives an example of how the client library can be used.

try {

File payloadFile = new File("data.rdf");

final int BUFFER_SIZE = 1024 * 4;

char[] buffer = new char[BUFFER_SIZE];

int count = 0;

StringBuilder provenancePayload = new StringBuilder();

InputStreamReader provenanceReader = new InputStreamReader(

new FileInputStream("provenance-metadata.rdf"), "UTF-8");

while (-1 != (count = provenanceReader.read(buffer, 0, BUFFER_SIZE))) {

provenancePayload.append(buffer, 0, count);

}

provenancePayload.close();

Metadata metadata = new Metadata(UUID.randomUUID());

metadata.setDataBaseUrl(new URI("http://en.wikipedia.org/wiki/Berlin"));

metadata.getSource().add(new URI("http://en.wikipedia.org/wiki/Berlin"));

metadata.getPublishedBy().add(new URI("http://en.wikipedia.org"));

metadata.getLicense().add(new URI("http://creativecommons.org/licenses/by-sa/3.0/"));

metadata.setPipelineName("examplePipeline");

metadata.setUpdateTag("example");

metadata.setProvenance(provenancePayload.toString());

CHAPTER 5. WEB SERVICES 34

OdcsService service = new OdcsService("http://localhost:8088/inputws");

service.insert("username", "password", metadata, payloadFile, "UTF-8");

} catch (Exception e) {

e.printStackTrace();

}

Listing 5.1: Example usage of Input Webservice client library

5.3 Data Consumer

A consumer of data stored in ODCleanStore can query the database through Output
Webservice. The Output Webservice can be queried for data about a given URI resource,
queried by keywords, queried for contents of a given named graphs or queried for metadata of
a named graph. Conflicts in data returned in response to a query are resolved and the data are
fused using policies provided by the user or by the administrator.

Additionally, the user can access the data in the clean database directly using the SPARQL
endpoint powered by Virtuoso.4 This way the data consumer can use the full power of the
SPARQL query language, however conflict resolution and provenance tracking is not supported
for this type of queries.

Output Webservice

The Output Webservice is a REST webservice which can be accessed using both GET and
POST HTTP methods equivalently. The port where the webservice resides can be configured
by the output ws.port configuration option (see Administrator’s & Installation Manual); by
default, it is on port 8087.

5.3.1 Types of queries

The Output Webservice can be queried for:

1. a resource URI – URI query
2. keyword(s) – keyword query
3. named graph contents – named graph query
4. named graph metadata – metadata query

Table 5.4 lists where each type of query can be accessed by default. The exact address can
be configured.

More information is available in the Query Execution specification.

5.3.2 Request format

Table 5.5 lists (either GET or POST) parameters than can be used with the URI, keyword and
named graph queries. The uri parameter is required for URI query, kw parameter for keyword

4http://virtuoso.openlinksw.com/

http://virtuoso.openlinksw.com/

CHAPTER 5. WEB SERVICES 35

Query URI Example of a query

URI <host>/uri http://localhost:8087/uri
?uri=http%3A%2F%2Fexample.com

Keyword <host>/keyword http://localhost:8087/keyword?kw=keyword
Named graph <host>/namedGraph http://localhost:8087/namedGraph

?uri=http%3A%2F%2Fexample.com
Metadata <host>/metadata http://localhost:8087/metadata

?uri=http%3A%2F%2Fexample.com

Table 5.4: Types of queries

query. Other parameters are optional.

Name Description Possible
values

Default
value

uri searched URI;
used only with URI and named graph
query

string N/A

kw searched keyword(s);
used only with keyword query

string N/A

format format of the response html,
trig,
rdfxml

html

aggr default aggregation method string ALL

es error strategy – handling of values
for which aggregation fails

IGNORE,
RETURN ALL

RETURN ALL

multivalue default multivalue setting 0, 1 0
paggr[property] aggregation method for the given

property; example:
paggr[rdfs%3Alabel]=ANY

string N/A

pmultivalue[property] multivalue setting for the given
property; example:
pmultivalue[rdf%3Atype]=1

0, 1 N/A

Table 5.5: URI, keyword and named graph query parameters

Table 5.6 lists parameters that can be used with the metadata query.
For all queries, parameters and values are case-sensitive. Property names may be either

full URIs, or prefixed names (e.g. rdfs:label). Available prefixes are managed in the
administration frontend (see section 4.9).

For more information about aggregation settings, see the corresponding section of Conflict
Resolution specification.

CHAPTER 5. WEB SERVICES 36

Name Description Possible values Default value Required

uri URI of the requested named graph string N/A yes
format format of the result html, trig, rdfxml html no

Table 5.6: Metadata query parameters

General aggregation methods

ALL returns all conflicting values
BEST value with the highest aggregated quality; in case of equality, the newest

timestamp is preferred
LATEST value with the newest timestamp; in case of equality, the highest aggregate

quality is preferred
ANY returns a single arbitrary value
CONCAT concatenation of conflicting values separated by “; ”
NONE returns all conflicting values including duplicities

Numeric aggregation methods

MIN minimum of conflicting values
MAX maximum of conflicting values
AVG average of conflicting values
MEDIAN median of conflicting values

Date aggregation methods

MIN the earliest date
MAX the latest date

String aggregation methods

SHORTEST the shortest string
LONGEST the longest string

Error strategy

The error strategy determines how to handle values that cannot be aggregated by the given
aggregation method, e.g. when applying MEDIAN aggregation to a mix of numeric and date
values.

Note that for some aggregations, an untyped literal may be converted to a numeric literal
(xsd:double) if possible.

CHAPTER 5. WEB SERVICES 37

Multivalue parameter

The multivalue parameter determines whether differences with other conflicting values decrease
quality (multivalue=0), or not (multivalue=1). Setting multivalue to false (0) is appropriate
for properties with a single value (e.g. dbprop:population), setting it to true (1) is appropriate
for propertiees with multiple possible values (e.g. rdf:type).

5.3.3 Query Format

5.3.3.1 URI Query

The value of the uri parameter must be either a full valid URI, or a prefixed name (e.g.
dbpedia:Berlin). Available prefixes are managed in the administration frontend (see section
4.9).

5.3.3.2 Keyword Query

The kw parameter can contain one or more keywords separated by whitespace. If a keyword
itself contains spaces, it may be enclosed in double quotes. Query Execution looks for literals
that contain all of the keywords. Keywords can also contain the * wildcard, but they must
begin with at least four non-wildcard characters if a wildcard is to be used.

Query Execution also looks for an exact match of the entire kw value (i.e. without any
division to keywords). If the kw value is a number, then numeric typed literals will also match;
if the kw value is formatted as xsd:dateTime5, then xsd:dateTime typed literals will also
match.

Special characters, such as quotes and backslashes may be filterd out from searched
keyword(s).

5.3.3.3 Named Graph Query

The value of the uri parameter must be either a valid URI, or a prefixed name, of an existing
named graph.

5.3.3.4 Metadata Query

The value of the uri parameter must be a valid URI of an existing named graph.

5.3.4 Results Format for URI & Keyword Queries

The result contains triples returned in response to the query, including relevant labels of URI
resources in the result, and metadata for the triples.

5.3.4.1 HTML

The result in HTML format contains results in a human-readable form (Figure 5.1). It contains

5http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

CHAPTER 5. WEB SERVICES 38

• a table with all triples in the result together with their aggregated quality and named
graphs from which the triple was selected or calculated,
• a table with metadata of named graphs occuring in the first table.

Figure 5.1: Example of HTML output for URI query for dbpedia:Berlin

5.3.4.2 TriG

If the format parameter is set to trig, the result contains triples (quads) serialized in the
TriG6 format. The result includes:

• triples returned in response to the query, each one placed in a unique named graph
• aggregated quality (odcs:quality) and source named graphs (odcs:sourceGraph) of

the above triples; subjects of these statements are the unique named graphs where the
respective triples are placed
• metadata of source named graphs; they may include where the data were extracted

from (w3p:source), Quality Assesment score of the named graph (odcs:score) and
of its publisher (odcs:publisherScore), the publisher of the data (w3p:publishedBy),
timestamp (w3p:insertedAt), license (dc:license), update tag (odcs:updateTag)

6http://www4.wiwiss.fu-berlin.de/bizer/trig/

http://www4.wiwiss.fu-berlin.de/bizer/trig/

CHAPTER 5. WEB SERVICES 39

• metadata about the query response itself – a title (dc:title), date (dc:date), number
of result triples (odcs:totalResults), the query (odcs:query) and link to each result
item (odcs:result)

An example:

@prefix : <#> .

@prefix odcs: <http://opendata.cz/infrastructure/odcleanstore/> .

@prefix w3p: <http://purl.org/provenance#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix dbpedia: <http://dbpedia.org/ontology/> .

<http://opendata.cz/infrastructure/odcleanstore/query/results/1> {

<http://dbpedia.org/resource/Berlin> rdfs:label "Berlin"@en .

}

<http://opendata.cz/infrastructure/odcleanstore/query/results/2> {

<http://dbpedia.org/resource/Berlin> dbpedia:populationTotal

"3420768"^^<http://www.w3.org/2001/XMLSchema#int> .

}

<http://opendata.cz/infrastructure/odcleanstore/query/metadata/> {

<http://opendata.cz/infrastructure/odcleanstore/query/results/1>

odcs:quality 0.92 ;

w3p:source <http://opendata.cz/infrastructure/odcleanstore/data/e0cdc9d7-e2d8-4bde> ;

w3p:source <http://opendata.cz/infrastructure/odcleanstore/data/b68e21f7-363f-4bfd> .

<http://opendata.cz/infrastructure/odcleanstore/query/results/2>

odcs:quality 0.8966325468133597 ;

w3p:source <http://opendata.cz/infrastructure/odcleanstore/data/b68e21f7-363f-4bfd> .

<http://opendata.cz/infrastructure/odcleanstore/data/e0cdc9d7-e2d8-4bde>

odcs:score 0.9 ;

w3p:insertedAt "2012-04-01 12:34:56.0"^^<http://www.w3.org/2001/XMLSchema#dateTime> ;

w3p:source <http://dbpedia.org/page/Berlin> ;

w3p:publishedBy <http://dbpedia.org/> ;

dcterms:license <http://creativecommons.org/licenses/by-sa/3.0/> ;

odcs:publisherScore 0.9 ;

odcs:updateTag "dataset123".

<http://opendata.cz/infrastructure/odcleanstore/data/b68e21f7-363f-4bfd>

odcs:score 0.8 ;

w3p:insertedAt "2012-04-04 12:34:56.0"^^<http://www.w3.org/2001/XMLSchema#dateTime> ;

w3p:source <http://linkedgeodata.org/page/node240109189> .

<http://localhost:8087/uri?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FBerlin>

a odcs:QueryResponse ;

dc:title "URI search: http://dbpedia.org/resource/Berlin" ;

dc:date "2012-08-01T10:20:30+01:00" ;

odcs:totalResults 2 ;

CHAPTER 5. WEB SERVICES 40

odcs:query "http://dbpedia.org/resource/Berlin" ;

odcs:result <http://opendata.cz/infrastructure/odcleanstore/query/results/1> ;

odcs:result <http://opendata.cz/infrastructure/odcleanstore/query/results/2> .

}

Listing 5.2: Example of URI or keyword query response in TriG

5.3.4.3 RDF/XML

If the format parameter is set to rdfxml, then the result will be formatted in RDF/XML.7

The returned triples contain

• triples returned in response to the query,
• metadata about the query response itself

as in case of TriG output, however no metadata about quality of triples or about source
named graphs are included.

5.3.4.4 Paging of results

As of now, all results are returned on a single page. The approximate maximum number of
triples in the result is 500 by default (and can be set in the configuration file, see Administrator’s
& Installation Manual).

5.3.5 Results Format for Named Graph Query

Named graph query selects all triples stored in the given named graph and is intended mainly
for debugging purposes. The format of results for the named graph query is exactly the same
as for URI or keyword queries (see Section 5.3.4). The only difference is that labels for URI
resources in the result are not retrieved (unless they are contained in the named graph). Also,
conflict resolution considers only the named graph and not any other conflicting (or same)
values that may be stored in other graphs.

5.3.6 Results Format for Metadata Query

The result contains metadata and Quality Assessment results for a given named graph. The
metadata include metadata maintained by ODCleanStore (e.g. odcs:insertedAt) and data
from the provenance metadata graph. Quality Assessment is executed on the named graph at
query time, with rules that would be applied to it in its respective pipeline.

5.3.6.1 HTML

The result in HTML format contains results in a human-readable form (Figure 5.2). It contains

• a table with ODCleanStore metadata,

7http://www.w3.org/TR/REC-rdf-syntax/

http://www.w3.org/TR/REC-rdf-syntax/

CHAPTER 5. WEB SERVICES 41

• the results of Quality Assessment, i.e. the resulting score and all Quality Assessment rules
the named graph violated and thus its score was decreased by the respective coefficient
(only if there is at least one Quality Assessment rule group applicable to the named
graph),
• provenance metadata, if available.

Figure 5.2: Example of HTML output for metadata query

5.3.6.2 TriG

The result contains triples (quads) serialized in the TriG format. Again, the result contains
ODCleanStore metadata, additional provenance metadata, results of Quality Assessment and
also metadata about the query response itself. The meaning of used predicates is as described
in Section 5.3.4.2.

The provenancemetadata are contained in one named graph and a triple <payload-graph>-
odcs:provenanceMetadataGraph-<provenance-graph> points to it; all other data are placed
in another named graph.

An example:

@prefix : <#> .

@prefix odcs: <http://opendata.cz/infrastructure/odcleanstore/> .

@prefix w3p: <http://purl.org/provenance#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dc: <http://purl.org/dc/terms/> .

<http://opendata.cz/infrastructure/odcleanstore/query/metadata/> {

<http://opendata.cz/infrastructure/odcleanstore/data/e0cdc9d7-e2d8-4bde>

w3p:insertedAt "2012-04-01 12:34:56.0"^^<http://www.w3.org/2001/XMLSchema#dateTime> ;

w3p:source <http://dbpedia.org/page/Berlin> ;

dc:license <http://creativecommons.org/licenses/by-sa/3.0/> ;

odcs:updateTag "dataset123" ;

w3p:publishedBy <http://dbpedia.org/> ;

odcs:provenanceMetadataGraph

<http://opendata.cz/infrastructure/odcleanstore/provenanceMetadata/e0cdc9d7-e2d8-4bde>;

CHAPTER 5. WEB SERVICES 42

odcs:score 0.72 ;

odcs:violatedQARule <http://opendata.cz/infrastructure/odcleanstore/QARule/10> ;

odcs:violatedQARule <http://opendata.cz/infrastructure/odcleanstore/QARule/20> .

<http://opendata.cz/infrastructure/odcleanstore/QARule/10>

a odcs:QARule ;

odcs:coefficient 0.8 ;

dc:description "Procedure type ambiguous" .

<http://opendata.cz/infrastructure/odcleanstore/QARule/20>

a odcs:QARule ;

odcs:coefficient 0.9 ;

dc:description "Procurement contact person missing" .

<http://localhost:8087/namedGraph?uri=http%3A%2F%2Fopendata.cz

%2Finfrastructure%2Fodcleanstore%2Fdata%2Fe0cdc9d7-e2d8-4bde>

a odcs:QueryResponse ;

dc:title "Metadata for named graph:

http://opendata.cz/infrastructure/odcleanstore/data/e0cdc9d7-e2d8-4bde" ;

dc:date "2012-08-01T10:20:30+01:00" ;

odcs:query "http://opendata.cz/infrastructure/odcleanstore/data/e0cdc9d7-e2d8-4bde";

}

<http://opendata.cz/infrastructure/odcleanstore/provenanceMetadata/e0cdc9d7-e2d8-4bde> {

<http://opendata.cz/infrastructure/odcleanstore/data/e0cdc9d7-e2d8-4bde>

w3p:provenanceMetadataProperty1 "provenanceMetadataValue1".

<http://opendata.cz/infrastructure/odcleanstore/data/e0cdc9d7-e2d8-4bde>

w3p:provenanceMetadataProperty2 "provenanceMetadataValue2".

}

Listing 5.3: Example of metadata query response in TriG

5.3.6.3 RDF/XML

The result for a metadata query serialized in RDF/XML contains the same triples as in case
of TriG (Section 5.3.6.2) except that triples are not divided into named graphs.

5.3.6.4 Paging of results

See Section 5.3.4.4.

5.3.7 Quality Calculation

As stated in the previous sections, an aggregate quality estimate for each triple in the result
is part of the query results. The quality is expressed as a number from interval [0,1] where 0
means lowest quality and 1 highest quality.

The aggregate quality estimate is done for each result quad and is based on several factors
based on real-world scenarios. The factors include quality scores of the source named graphs

CHAPTER 5. WEB SERVICES 43

(as calculated by the Quality Assessor transformer, Section 4.3.1), number of graphs that agree
on a value, and the difference between a value and other (conflicting) values.

Since conflicts in data are resolved by aggregating values in place of objects of resolved
triples, the quality also depends on object values (and not the subject or predicate of a triple).
The exact calculation depends on the aggregation method used and other aggregation settings
given to Output Webservice. In short, the calculation for a value in place of an object can be
outlined as:

• Quality Assessment scores of graphs that the value was selected or calculated from are
taken. Depending on the aggregation method, their average or maximum is used as the
initial score.
• Differences with other conflicting values are taken into consideration. The more

conflicting values differ, the more the quality is decreased. This step can be turned
off by setting the multivalue parameter to false (0).
• If there are multiple sources that agree on exactly the same value, the quality is increased.

This is a very crude description of the algorithm. You can find it explained in detail in
section “Quality and Provenance Calculation” of Programmer’s Guide.

6. Stored Data

6.1 Input Processing

When a new request is sent to Input Webservice, the stored data & metadata go through several
phases.

1. First, data & metadata are validated. Payload data and optional provenance metadata
(see Section 5.2.1 Request parameters) should be valid RDF/XML or TTL, all required
metadata fields must have the proper cardinality and valid format. An exception is
thrown and the request interrupted if validation fails.

2. If all data are valid, the request is queued, Input Webservice indicates success and the
transmission successfully finishes.

3. Engine, independently on Input Webservice, successively takes requests from the input
queue and processes them. RDF data from payload are stored to a single named graph,
provenance metadata to a separate named graph and other metadata to another separate
named graph called metadata graph, all in the dirty (staging) database. The format of
RDF triples in the metadata graph is described in Section 6.2.

4. Because some predicates are reserved for purposes of internal metadata representation in
ODCleanStore, RDF triples that contain these predicates are removed from payload and
provenance named graphs. Table 6.1 lists all reserved predicates.

odcs:score

odcs:publisherScore

odcs:scoreTrace

odcs:metadataGraph

odcs:provenanceMetadataGraph

odcs:sourceGraph

odcs:insertedAt

odcs:insertedBy

odcs:source

odcs:publishedBy

odcs:license

odcs:updateTag

odcs:isLatestUpdate

Table 6.1: Reserved RDF predicates

5. Next, the processing pipeline is selected – if pipelineName was present, pipeline with the
given name is used, the default pipeline is used otherwise. Engine runs each transformer
in the pipeline on the stored data. Transformers can modify the inserted named graphs
or attach new named graphs (attached named graph). See Administrator’s & Installation
Manual for more information about transformers.

6. Engine runs a special (automatically added) transformer, that checks if the currently
processed data are an update of data already stored in the clean database. More

44

CHAPTER 6. STORED DATA 45

specifically, an inserted named graph A is considered an update of named graph B if
and only if the following conditions hold:

(i) Named graphs A and B have the same update tag, or both have an unspecified
(null) update tag.

(ii) Named graphs A and B were inserted by the same (SCR) user.
(iii) Named graphs A and B have the same set of sources in metadata.
(iv) Named graph A was inserted later than named graph B.

The payload named graph is marked as the latest version by adding a triple with predicate
odcs:isLatestUpdate to the metadata graph. If the currently processed data update
a named graph already stored in the clean database, this triple is removed for the older
graph.

7. If all transformers in the pipeline finish successfully, the payload graph, provenance
graph, metadata graph and any new attached graphs are moved from the dirty database
to the clean database, while the respective request is removed from the queue.

6.2 Stored Data Structure

Data originating from a single request to Input Webservice can be stored in several named
graphs. RDF data given in the payload parameter are stored in one named graph (payload
graph). If provenance RDF metadata are given, they are stored in another named graph
(provenance graph). Other metadata (such as the source of data, timestamp, etc.) are stored
in yet another named graph (metadata graph). In addition, transformers in the respective
pipeline may add more related RDF data to one or more named graphs (attached graphs), e.g.
results of quality assessment, or mappings for resources in payload.

While contents of the payload, provenance and attached graphs may be arbitrary, the
metadata graph has a set structure. Table 6.2 describes the structure of a metadata graph. In
the table, <payload-graph> stands for the name of the respective payload graph, <provenance-
graph> and <metadata-graph> analogously.

Note that transformers may add triples to the metadata graph too. For example, Quality
Assessment adds these two triples:

• <payload-graph> – odcs:score – <QA-score>
• <payload-graph> – odcs:scoreTrace – <QA-score-explanation>

CHAPTER 6. STORED DATA 46

Subject Predicate Object Cardinality

<payload-graph> odcs:metadataGraph <metadata-graph> 1
<payload-graph> odcs:

provenanceMetadataGraph
<provenance-graph> 0. .1

<payload-graph> odcs:attachedGraph URIs of attached graphs 0. .*
<payload-graph> odcs:insertedAt insertion time 1
<payload-graph> odcs:insertedBy name of the user who in-

serted the data
1

<payload-graph> odcs:source source of the data (values
from the source field)

1. .*

<payload-graph> odcs:publishedBy identifier of the publisher of
the data (values from the
publishedBy field)

1. .*

<payload-graph> odcs:license license of the data (values
from the license field)

0. .*

<payload-graph> odcs:updateTag distinguisher of graph
updates (value from the
updateTag field)

0. .1

<payload-graph> odcs:isLatestUpdate 1
Present only for the latest version

of data (see Section 6.1, step 6)

0. .1

Table 6.2: RDF triples in a metadata graph

6.3 Executing Pipelines on the Clean Database

The pipeline creator or administrator can decide to re-run a transformer pipeline on one or more
named graphs that are already in the clean database, e.g. when the respective transformer rules
changed. In that case, such named graphs are queued for processing and Engine successively
runs the pipeline on each queued graph:

1. First, a copy of the payload, provenance, metadata and any attached graphs is created
in the dirty database.

2. The same processing pipeline that was used when the data came through Input
Webservice is run on this copy. Transformers can modify any of the graphs and attach
new graphs.

3. In a transaction, the old version in the clean database is deleted and the processed copy
(together with any new attached graphs) is moved from the dirty database to the clean
database.

A. Glossary

RDF-related

RDF
Resource Description Framework, a language for representing information about resources
in the World Wide Web1

RDF triple
Statement about a resource expressed in the form of subject-predicate-object expression

URI
Uniform Resource Identifier, identifies RDF resources

Named graph
A set of related RDF triples (RDF graph) named with a URI2

RDF quad
An RDF triple plus named graph URI (subject, predicate, object, named graph)

Ontology
Representation of the meaning of terms in a vocabulary and of their interrelationships

OWL
The Web Ontology Language3

SPARQL
RDF query language4

RDF/XML
An XML-based serialization format for RDF graphs5

TTL
Turtle – Terse RDF Triple Language6; a human-friendly alternative to RDF/XML

Data & Data Quality

Dirty (staging) database
Database where incoming data are stored until they are processed by a processing pipeline
(e.g. clean, linked to other data, etc.)

1http://www.w3.org/RDF/
2http://www.w3.org/2004/03/trix/
3http://www.w3.org/TR/owl-features/
4http://www.w3.org/TR/rdf-sparql-query/
5http://www.w3.org/TR/rdf-syntax-grammar/
6http://www.w3.org/TeamSubmission/turtle/

47

http://www.w3.org/RDF/
http://www.w3.org/2004/03/trix/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/

APPENDIX A. GLOSSARY 48

Clean database
Database where incoming data are stored after they are successfully processed by the
respective processing pipeline; this database can be accessed using the Output Webservice

Payload graph
Named graph where the actual inserted data, given in the payload parameter of Input
Webservice, are stored

Provenance graph
Named graph where additional provenance metadata, given in the provenance field of
Input Web Service, are stored

Metadata graph
Named graph where other metadata about a payload graph (such as source, timestamp,
license, etc.) are stored

Attached graph
Named graph attached to a payload graph by a transformer

Named graph score
Quality of a single (payload) named graph estimated by the Quality Assesment
component and stored in the database, expressed as a number from interval [0,1]

Publisher score
Average score of named graphs from a publisher

Aggregate quality
Quality of a triple in the results calculated by the Conflict Resolution component during
query time, expressed as a number from interval [0,1]

Data Processing

Pipeline
A configurable sequence of transformers that is used to process a named graph. The
pipeline to process data sent to Input Webservice can be selected explicitly, or the default
pipeline is used.

Transformer
A Java class which implements the Transformer interface that and is registered in
ODCleanStore Administration Frontend by an administrator.

Transformer instance (or transformer assignment)
Assignment of a transformer to a pipeline. A single transformer can be assigned to
multiple pipelines (or even to a single pipeline multiple times), thus creating multiple
transformer instances.

APPENDIX A. GLOSSARY 49

Rule
Some transformers included in ODCleanStore can be configured in Administration
Frontend by rules. Rules are grouped together to rule groups.

Rule group
A group of transformer rules. Rule groups can be assigned to transformer instances.

User Roles

ADM
Administrator

ONC
Ontology creator

PIC
Pipeline creator

SCR
Data producer (scraper)

USR
Data consumer

B. List of Used XML Namespaces

Prefix URI
odcs http://opendata.cz/infrastructure/odcleanstore/
w3p http://purl.org/provenance#
dc http://purl.org/dc/terms/
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
owl http://www.w3.org/2002/07/owl#
xsd http://www.w3.org/2001/XMLSchema#
dbpedia http://dbpedia.org/resource/
dbprop http://dbpedia.org/property/
skos http://www.w3.org/2004/02/skos/core#

Table B.1: List of used XML namespaces

50

	Introduction
	What is ODCleanStore
	How to Read This Document
	Linked Data Framework
	Examples of Deployment

	How It Works
	Data Lifecycle
	Administration Frontend Features
	Summary of Features

	User Roles
	Administrator
	Ontology Creator
	Pipeline Creator
	Data Producer
	Data Consumer

	Administration Frontend
	Administration Frontend Overview
	Pipeline Management
	Predefined Transformers

	Transformer Rules
	Quality Assessment
	Data Normalization
	Linker

	Engine & Inserted Graphs Monitoring
	Output Webservice
	Ontology Management
	Accounts
	Transformer Management
	Prefixes
	Configuration Example

	Web Services
	Web Services Overview
	Data Producer
	Request parameters
	Exceptions
	Java API

	Data Consumer
	Types of queries
	Request format
	Query Format
	Results Format for URI & Keyword Queries
	Results Format for Named Graph Query
	Results Format for Metadata Query
	Quality Calculation

	Stored Data
	Input Processing
	Stored Data Structure
	Executing Pipelines on the Clean Database

	Glossary
	List of Used XML Namespaces

