

Thank you very much for
attending the Excel VBA course. I
hope that we managed to give
you a few ideas on using VBA
with Excel. You should find
further information on all the
topics that we covered in the
course in this booklet.

Feel free to copy any of the
content of this publication.

This is an Adobe Acrobat pdf
document. To copy any content
you have to select it first. Use the
Text Select Tool as illustrated
below. Or press V on the
keyboard and then copy and
paste as usual.

You can not print this document;
ask for the printer friendly
version.

Excel
Macros

Visual Basic for
Applications

Excel Visual Basic for Applications

Page 2

Table of Contents

The Process...................................... 4
Terminology 5
The Basics of VBA 5

Data storage.................................. 5
Subroutine Calls and passing values.. 5
Control Structures 6
Decision making............................. 6
If-Then-Else 6

In-Line Form............................... 6
Block Form 6

Case Statements 7
CHOOSE and SWITCH 7

Choose function........................... 7
Switch Function 8

Looping... 9
Conditional Loops 9
Counter Loops................................ 9
Collection Loops 10

Understanding the Excel Object Model 11
Review of theory: Objects, Methods
and Properties 11
The Excel Object Model 12
Object references: Cells, Sheets and
Workbooks 12

Non-specific Object References 12
Specific Object References, various
styles....................................... 12

Square brackets 13
With…End With 13

Recording and Editing 13
Recording a macro........................ 13
Relative and Absolute recordings 14

Personal Macro Workbook 14
Macro Buttons.............................. 15
The Button Tool 15
The CommandButton Tool.............. 15
Command Bars 15
Editing and optimising recorded code
... 16
Toggles....................................... 17
Removing Selection statements 17

Common Tasks in Excel Macros 17
Printing....................................... 17
Copying 19
Measuring areas and lists 19
Locating data on a worksheet......... 20
Manipulating cells 20
Application Settings 21

Using the Visual Basic Editor 22
Code Window............................... 22
Context Help................................ 22
Complete Word 22
Commenting/ Uncommenting 22
Running and Stepping Into statements
... 22
Breakpoints and Break Mode.......... 23

Errors ... 23
Syntax Errors 23
Run-Time errors 23

Line Continuation 24
Project Explorer Window................ 24
Properties Window........................ 24
Object Browser 25
Locals Window 25
Watch Window 26
Immediate Window....................... 26
Splits and Bookmarks.................... 26

VBA Memory Variables and Constants 27
The role of Option Explicit 27
Variable Declaration...................... 27
Data Types 27

Summary of Data Types 28
How to determine the Data Type 28
Variable Scope and Lifetime 29

Public Module Scope................... 29
Private Module Scope 29
Procedure Scope........................ 29

Public and Private 29
When to use Set........................... 29
Declaring the Data Type of Object
Variables 30
Use of Constants 31
Data Type Conversion Functions 31
Naming Conventions 31
Should I declare my variables? 31

Functions 32
Calling VBA functions 32
The Format function...................... 32
Calling Excel Worksheet Functions .. 32
Creating a Function procedure........ 33
Creating a Custom Function for Excel
... 33

Creating an Add-In 34
Protecting a Project....................... 35

Events ... 35
The role of event driven procedures 35
Using the event code shells............ 35
Reserved Procedure Names............ 35
On Methods 36

OnKey Method........................... 36
OnTime Method 36

User Interaction 37
Message Box................................ 37

Statement form 37
Function Form 37
MsgBox Buttons and Return values
... 38

Input Boxes 39
VBA Input Box Function 39
Excel Input Box Method 39

Excel’s Status Bar and Caption 40
Menus and Toolbars 41

Excel Visual Basic for Applications

Page 3

Simple Method 41
Using VBA code to construct menus
... 41
Restoring the user’s Toolbars 43

Calling Excel’s built-in Dialogs 44
Review of Excel’s User Interface
features 44

User Forms 45
Designing the User Form 45
Completing the Form’s Events 46
Naming Conventions 47
User Form Example Code............... 48
List Boxes 50
Instancing a User Form 50
Using Me..................................... 51

VBA Memory Arrays......................... 52
Using Arrays to store sets of data ... 52
Dimensioned Arrays...................... 52

The Variant Array 52
Array Subscripts 53
Using Cell values in arrays 53

Dynamic Arrays............................ 54
VBA Error Handling.......................... 55
Excel Pivot Tables 57

Creating a Pivot Table report.......... 57
Data Fields 58

Excel Charts 59
Chart Objects............................... 59
Arranging Charts on a Worksheet ... 60
Embedding Chart Data Series......... 61

Application Interaction 64
Creating Object Model References... 64

Late Binding.............................. 64
Early Binding............................. 64
Interacting with MS Word 65

Interacting with MS Access.......... 66
Send Keys 67

User Defined Data Type.................... 67
Enumerations 68
By Reference, By Value 68
By Name, By Order.......................... 69
Classes .. 70

Creating an Object........................ 70
Using a Class Module 70
Lotus 1-2-3 Translation 73

The Move Object........................ 73
File Operations................................ 76

Opening All files 76
Writing text files........................... 76

Using ActiveX Controls 78
Using the Windows API 79
Case Studies................................... 80

Case Study 1. Using the Personal
Workbook.................................... 80
Case Study 2. Looping through Cells 80
Case Study 3. Processing a Text File 80
Case Study 4. Writing a Loop 81
Case Study 5. Using Control Structures
... 82

Case Study 6. Declaring and Typing
Variables 84
Case Study 7. Creating an Add-In
Function...................................... 84
Case Study 8. Creating a User Form 85
Case Study 9. Handling Workbook files
... 87

Case Study 10. Refreshing Pivot Tables
... 89

Case Study 11. Unmatched Items ... 89
Index .. 94

Excel Visual Basic for Applications

Page 4

The Process
Macros usually start with a recording but recorded macros do not give you enough
flexibility to control the whole process that you want to execute. Often you will need to
introduce decision making and repetition into your macro code. This has to be done by
typing-in control structures and assignment statements in the VBA language.

In this example there is a range of cells on the worksheet and where the cell value is
greater than 500 is has to be formatted in bold and the cell value doubled. Conditional
Formatting is of no use for this as it can not change the cell value. We must use a macro.

Sub Step1_Recording()
'
' Macro2 Macro
' Macro recorded by me
'
 Range("H4").Select
 Selection.Font.Bold = True
 ActiveCell.FormulaR1C1 = "=4.72*2"
End Sub

Here is the initial recording. It has
shown us how to make the entry
bold but has simply recorded the
doubling of a specific value in a cell.

We have to double the value of any
cell and we will have to type-in the
relevant instruction.

Sub Step2_Abstraction()

 Selection.Font.Bold = True
 ActiveCell.Value = ActiveCell.Value * 2

End Sub

The cell selections and comments
have been removed and we have
entered an assignment statement to
double the cell value.

Sub Step3_DecisionMaking()

 If ActiveCell.Value > 500 Then
 ActiveCell.Font.Bold = True
 ActiveCell.Value = ActiveCell.Value * 2
 End If

End Sub

Now we introduce the logical
decision making structure using the
If-Then-End If keywords.

Sub Step4_Looping()

 For Each cell In Range("A1").CurrentRegion
 If cell.Value > 500 Then
 cell.Font.Bold = True
 cell.Value = cell.Value * 2
 End If
 Next

End Sub

Next, we construct a collection loop
to address each cell in turn in a
specified area. The loop will visit
each cell in the continuous area of
cells associated with cell A1.

The decision structure is enclosed in
the loop.

Sub Step5_ErrorProof()

 On Error Resume Next

 For Each cell In Range("A1").CurrentRegion
 If cell.Value > 500 Then
 cell.Font.Bold = True
 cell.Value = cell.Value * 2
 End If
 Next

End Sub

The slightest error will cause a
macro to crash so we either have to
think of all the possible situations
where our macro could fail and test
for them in our code. Or we decide
that the only errors that we could
encounter would be so petty that
they are not worth considering and
enter the statement that ignores all
errors:

On Error Resume Next

Excel Visual Basic for Applications

Page 5

Terminology
You are using the Microsoft Visual Basic for Applications (VBA) language to automate the
manipulation of the Microsoft Excel application.

You need to know about how to address or access the various parts or objects of the
Excel application and how these objects are organised in the object model.

You control the flow of this process using the control structures of VBA.

In the world of Excel, you describe this type of process as a macro; short for
macroinstruction. In the world of Visual Basic you describe it as a procedure, a set of
sequential instructions to complete a single process.

Procedures are stored in Modules. Modules are stored in Workbooks. The collection
comprising of Worksheets, Modules and their containing Workbook file is called a Project.

The Basics of VBA
Data storage

There are no cells in a module, so when you are working and you need to store some
information you need to use the computer’s memory. These slices of memory are called
variables; you use an identifier in your code and assign values to it.

It might be necessary to Declare your variables before you can use them. See Variable
Declaration

Subroutine Calls and passing values

Complex processes need to be broken down into separate procedures. Then you need to
have the procedures interact with each other. Procedures can Call other procedures, the
flow of control goes to the subroutine and then returns to the caller. Data stored in
variables is shared between the procedures by passing.

Sub Main()

'Assign a value to a variable.
x = 500

'Change the variable's value.
x = x + 10

'Subroutine call, passing the x variable.
Call MyOtherSub(x)

'MsgBox function and concatenation operator.
MsgBox "The value of x is " & x

End Sub

Sub MyOtherSub(x)

'Assign a value to the variable.
x = "a text value."

'Return to calling procedure-no code required.

End Sub

Excel Visual Basic for Applications

Page 6

Control Structures

Control structures are required for decision-making and repetition or looping.

Decision making

Decision-making structures are If-Then-Else and Case Statements. If-Then-Else has two
syntax structures, a Case Statement only one.

If-Then-Else

In-Line Form
If conditional_test Then True_ statement Else False_ statement

Only one True or False statement is available. Else is optional. The structure is contained
on one logical line. A logical line can be broken into more than one physical line by using
line-continuation. See Line Continuation

Block Form
If conditional_test Then
 True_ statement
 True_ statement
ElseIf conditional_test Then
 True_ statement
ElseIf conditional_test Then
 True_ statement
Else
 False_ statement
End If

Multiple True or False statements. The ElseIf and Else clauses are optional. The structure
is contained on multiple lines. Use either the Block form or the In-line form; do not try to
combine them or you will cause a Compile error.

Examples

Sub InLineIfForm()

x = 50

If x > 100 Then MsgBox "Big" Else MsgBox "Small"

End Sub

Sub BlockIfForm()

x = 100

If x >= 250 Then

msg = "Large."
ElseIf x >= 50 And x < 250 Then

msg = "Medium."
Else

msg = "Small."
End If

MsgBox "At " & x & ", x is " & msg

End Sub

Excel Visual Basic for Applications

Page 7

Case Statements

Comparing a single test expression against multiple possible values. Each case test
consists of a test and an outcome to that test. The outcome statements may be multiple
lines and may also be omitted.

SelectCase TestExpression
 Case 5 'TestExpression is equal to 5.
 Statements
 Statements
 Case Is > 25 'TestExpression is greater than 25.
 Statements
 Case 10 To 12 'TestExpression is between 10 and 12.
 Statements
 Case 4,7,9 'TestExpression is 4,7 or 9.
 Statements
 Case Else 'TestExpression is anything else.
 Statements
End Select

Case statements are usually more concise and readable than the equivalent If-Then-Else
structure. As with any decision structure, there is only one outcome; make the tests in
the correct order i.e. is x greater than 10? Followed by is x greater than 5? Not the
reverse.

In the following example, the value of the variable x determines the value of the variable
y. If x is 250 or more then y is "Large", if x is from 50 to 249 then y is "Medium" and for
any other value y is "Small":

Sub CaseStatement()

x = 100

Select Case x

Case Is >= 250
y = "Large."

Case 50 To 249
y = "Medium."

Case Else
y = "Small."

End Select

MsgBox "At " & x & ", x is " & y

End Sub

CHOOSE and SWITCH

CHOOSE and SWITCH are VBA functions, rather than keywords and their decision-making
process is often neglected. Although they are not as flexible as If-Then-Else or Case
Statements they are invaluable when the decision making process is based on
substitution or the evaluation of numeric values.

Choose function
Selects and returns a value from a list of arguments.

Choose(index, choice1, choice2, etc.)

Where index is a numeric expression that results in a value between 1 and the number of
available choices. Choose returns a value from the list of choices based on the value of
index. If index is 1, Choose returns the first choice in the list; if index is 2, it returns the
second choice, and so on. If index is not a whole number, it is rounded to the nearest
whole number before being evaluated.

Excel Visual Basic for Applications

Page 8

Example

The message box displays the second item in the list:

Sub Main()
 x = 2
 y = Choose(x, "Tom", "Dick", "Harry")
 MsgBox y
End Sub

Switch Function
Evaluates a list of pairs of expressions and values and returns the value associated with
the first expression in the list that is True.

Switch(expr1, value1, expr2, value2, etc.)

The expressions are evaluated from left to right but can be entered in any order.

Example

The message box displays "STG", the value associated with the x="UK" expression:

Sub Main()
 x = "UK"
 y = Switch(x = "UK", "STG", x = "USA", "USD", x = "DEN", "DKK")
 MsgBox y
End Sub

Decision making code is a matter of personal taste and judgement. Generally speaking,
If-Then-Else is the most flexible, Case Statements are best where you are testing one
expression over many different conditions, the CHOOSE function is best for processing
sets of numbers and SWITCH is best for substitution.

In the following example, all four methods are demonstrated. An organisation has a
financial year that starts in April and we need to take the current calendar month value
and convert it into the current accounting month value; April is 1 etc. The x variable
stores the current month as returned by the Month and Date functions and we have to
calculate the value of the MonthNo variable:

x = Month(Date)

'If the date is 4 or more; deduct 3, otherwise add 9.
If x >= 4 Then
 MonthNo = x - 3
Else
 MonthNo = x + 9
End If

'When the date is from 4 to 12, deduct 3. When it is from 1 to 3, add 9.
Select Case x
 Case 4 To 12
 MonthNo = x - 3
 Case 1 To 3
 MonthNo = x + 9
End Select

'Pick the value from the list.
MonthNo = Choose(x, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9)

'Match the pair in the list.
MonthNo = Switch(x = 1, 10, x = 2, 11, x = 3, 12, x = 4, 1, _
 x = 5, 2, x = 6, 3, x = 7, 4, x = 8, 5, x = 9, 6, _
 x = 10, 7, x = 11, 8, x = 12, 9)

Excel Visual Basic for Applications

Page 9

Looping

When a process has to be repeated it is best to use a loop structure to make sections of
instructions repeat rather than have multiple sets of duplicated instructions.

Conditional Loops

Repetition while a certain condition is satisfied or until a certain condition is satisfied.

Check for the condition before running the loop:

Do While condition
 Statements
Loop

Execute the commands once before checking the condition:

Do
 Statements
Loop While condition

Use the keywords Until or While to define the condition, placing them either at the top or
at the end of the Do…Loop.

Sub DoLoops1()

x = 10

Do Until x > 40

x = x + 10
MsgBox x

Loop

End Sub

Sub DoLoops2()

x = 10

Do

x = x + 10
MsgBox x

Loop While x < 40

End Sub

You can conditionally break out of a Do...Loop using Exit Do.

Save your file before testing the code. It is very easy to get stuck in a conditional loop.
You must try to terminate the procedure if you are stuck. Press the ESCAPE key. If this
fails, try CTRL and BREAK together. It's bad news after this, CTRL+ALT+DELETE.

There is another Conditional Loop that is often seen, While...Wend. It is an equivalent
structure to Do While…Loop, which supersedes it.

The BASIC language was developed in the early 1960's and contains many older or
legacy structures. They are still supported but are rarely used.

Counter Loops

Iterating a loop for a specific number of repetitions:

Sub ForNextCounterLoop1()

For i = 1 To 5
MsgBox "The counter value is " & i

Next

End Sub

Excel Visual Basic for Applications

Page 10

Sub ForNextCounterLoop2()

For i = 100 To 10 Step -10
MsgBox "The counter value is " & i

Next

End Sub

Implementing the structure on Excel objects, a loop to protect every worksheet in the
workbook:

Sub ForNextCounterLoop3()

'The Count property of the Worksheets Collection Object returns the
'required stop value.

For i = 1 To Worksheets.Count
'Worksheets returned by using their index values.
Worksheets(i).Protect

Next i

End Sub

You can conditionally break out of a For...Next loop using Exit For. Loops can contain
other loops, this is called nesting. There is no need to restate the loop counter variable
after the Next keyword; usually it is only used to identify the ends of nested loops:

For i=1 To 10 'Exterior loop.
 Statements

For j=1 To 5 'Interior loop.
 Statements

Next j
Next i

Collection Loops

For iterating a collection; either a collection of objects in Excel or a collection in memory:

For Each Element In Collection
 Statements
Next

Where Element represents one of the items in Collection. Element is a variable. The
collection is either a defined Excel Collection Object or is a container reference. There is
no need to explicitly reference each element; it is implicit to the collection and the
variable is used to represent each element on each iteration of the loop.

In the first example the Collection is the Worksheets Collection; the loop goes through
each member of the Collection. In the second example the Collection is defined as a
range of cells; a range contains cells so the loop goes to each one in turn. In neither case
do you have to do make the object reference in the code, the loop does the referencing
for you. The Worksheets Collection is a defined Collection Object in Excel, whereas in the
second example the range reference is a container, a reference to a set of like objects.

Sub ForEachCollectionLoop1()

'Unprotect each Worksheet in the Workbook.
For Each Wsht In Worksheets

Wsht.Unprotect
Next

End Sub

Excel Visual Basic for Applications

Page 11

Sub ForEachCollectionLoop2()

'Double the cell value if it contains a number,
'otherwise clear the cell.
For Each cell In Range("A1:G50")

If IsNumeric(cell) Then
cell.Value = cell.Value * 2

Else
cell.Clear

End If
 Next

End Sub

Understanding the Excel Object Model
Review of theory: Objects, Methods and Properties

Excel is an Object Model, a hierarchical arrangement of references where the higher-level
object, the Parent object, contains the lower level object, the Child object.

To return the name of the current workbook file:

x = ActiveSheet.Parent.Name

Objects are either singular or Collection objects. Collections are sets of like objects.
There is a Worksheets Collection object and it has certain Properties, like its Count
property, which is the number of Worksheets in the Collection. Each Worksheet is a
member of the Worksheets Collection but it is also an individual Worksheet object and
has, in turn, its own particular Properties, like its Name property

To calculate the number of Pivot Tables on the worksheet:

x = ActiveSheet.PivotTables.Count

Objects have associated Methods and Properties. Methods are actions that they can
perform. Properties are their particular attributes. Most Properties are variable properties
and you can change them by specifying a new value. Every statement in VBA code that
manipulates a part of Excel must take the following form:

Object.Property or Object.Method

You must start with the Object reference. The object reference can either be specific or
non-specific.

Non-specific Object Reference

Assign the red Fill colour to every cell on the active worksheet:

ActiveSheet.Cells.Interior.ColorIndex = 3
 or

Cells.Interior.ColorIndex = 3

Specific Object Reference

Assign the red Fill colour to every cell on Sheet2:

Worksheets("Sheet2").Cells.Interior.ColorIndex = 3

The object reference only has to be in context, you only need a worksheet reference if
the cell is on a worksheet that is not the active worksheet. You do not need a workbook
reference unless you are manipulating a workbook other than the active workbook.

Object.Property assignment statements contain an equals sign

Worksheets(2).[A1:D20].Interior.ColorIndex = 3

Excel Visual Basic for Applications

Page 12

Object.Method statements are rather different as they can accept additional required or
optional arguments. The following statement copies A1:A50 to the Clipboard using the
Copy method.

Range("A1:A50").Copy

The Copy method has an optional argument, Destination. Using this you can specify
where you want to directly copy the cells, avoiding the Clipboard. There is a space
character required between the Method and the argument value.

Range("A1:A50").Copy Destination:= Range("A100")

You can leave out the argument descriptor and just give the value but there must always
be a space character between the Method and the value.

Range("A1:A50").Copy Range("A100")

For a fuller discussion on argument specification see By Name, By Order

The Excel Object Model

The full Excel Object Model has over 200 objects and is too detailed to show on one
page. However you tend to only use certain objects on a regular basis and the following
diagram shows the relationship between the most commonly used objects.

Search for "Microsoft Excel Objects" in VBA Help to see the full diagram.

Object references: Cells, Sheets and Workbooks

The macro recorder will show you what your object references are but it will not show
you the variety of different expressions that can be used to access common Excel
objects.

Non-specific Object References
Selection The current selection
ActiveCell The current active cell
ActiveSheet The current worksheet
ActiveWorkbook The current workbook
ThisWorkbook Workbook containing the procedure

Specific Object References, various styles
Range("A1") Cell A1
Range("A1:F50") Range A1:F50
[A1] Cell A1
[A1:F50] Range A1:F50
ActiveCell.Range("A2") The cell below the active cell
Cells(1) Cell A1

Application Object

Workbooks Collection

Workbook Object

Worksheets Collection

Worksheet Object

Range Object ChartObjects PivotTables Collection

ChartObject Object PivotTable Object

Excel Visual Basic for Applications

Page 13

Range(Cells(1,1),Cells(50,6)) Range A1:F50
Range("NamedRange").Cells(1,1) The first cell in the named range
Range("A:A") Column A
[A:A] Column A
Columns(1) Column A
Range("5:5") Row 5
[5:5] Row 5
Rows(5) Row 5
Sheets("Sheet1") The Sheet called Sheet1
Worksheets("Sheet1") The Worksheet called Sheet1
Sheets(2) The second Sheet in the Workbook
Worksheets(3) The third Worksheet in the

Workbook
Worksheets("Sheet1").Range("A1") Cell A1 on Sheet1
[Sheet1].[A1] Cell A1 on Sheet1
ActiveSheet.Next The sheet after the active sheet
Workbooks("Basic") The Workbook file, Basic.xls

Square brackets

The full object reference to the worksheet cell A1 is Range("A1"). If you are typing-in cell
references rather than recording, it is easier to use the shortcut notation using square
brackets, [A1]. You can use the same style of referencing on other objects as well, such
as worksheets but there are a number of rules and restrictions.

It is usually best to restrict the square bracket notation to cell references only, where it is
entirely definitive and reliable.

With…End With

The With statement is used so the object reference can be made and then retained so
that multiple actions may be carried out without having to repeat the same object
reference in each statement.

You can keep the With reference open for as long as you like in the same procedure, just
pointing to it using the dot operator. Every With requires an End With. You can have
multiple With pointers. When you are reading code that uses multiple With pointers, the
rule is simple; the dot points to the nearest With.

With Object
 .Property
 With .Child Object
 .Method
 .Method
 End With
End With

Recording and Editing
Recording a macro

Turn on the macro recorder by choosing,
Tools, Macro, Record New Macro in Excel’s
worksheet environment. Choose where you
want to store the module, fill in the Name
and Shortcut key boxes. Turn off the
recorder using the Stop Recorder Toolbar
when you have finished.

If you want to set the shortcut key after
the recording, choose Tools, Macro, Macros
then select your macro from the list and
click the Options button. The shortcut key

Excel Visual Basic for Applications

Page 14

assignment has to be an alphabetical character. Your shortcut key overrides any Excel
shortcut keys. If you want to rename the recorded macro, go to the module and change
the Sub name. To see the recording in the VB Editor, choose Tools, Macro, Macros then
select your macro from the list and click the Edit button.

Do not try to turn off the Macro Recorder by clicking the Close Box on the Stop Recording
Toolbar. This hides the Toolbar and leaves the Macro Recorder still turned on. On your
next recording, the Toolbar will not be visible. Display the Toolbar whilst you are
recording with View, Toolbars to cure this problem.

Relative and Absolute recordings

The Relative Reference tool on the Stop Recording Toolbar governs the style of
recording made when you select worksheet cells in your recording; an
Absolute or a Relative recording. It is rather difficult to see what type of

recording you are doing as the ToolTip always reads "Relative Reference" regardless of
the state of the Control.

You get an Absolute reference recorded when the toolface is not pressed-in, so when you
click on cell B5 the recording returned is:

Range("B5").Select

When the tool is pressed-in the recording is Relative, so when you click the cell below the
active cell the recording returned is:

ActiveCell.Offset(1, 0).Range("A1").Select

So, you record specific cell selection using the Select method of the Range object and the
Range property to specify the cell. Or you can record relative cell movement and
selection using the Offset property and the Range property of the Range object.

For cell movement the Range("A1") expression is redundant and can be removed. For
relative cell selection this Range property is more useful, the following recording means,
starting one cell down from the active cell, select an area three columns wide by four
rows deep. In other words, treat the offset from the active cell as position A1.

ActiveCell.Offset(1, 0).Range("A1:C4").Select

Move the active cell two cells to the right:

ActiveCell.Offset(0,2).Select

Extend the current selection two cells over to the right starting from the active cell:

ActiveCell.Range("A1:C1").Select

Excel takes Row Major order when using numeric references. Cell reference B20 is cell
20,2 in numeric Row-Column order. These are called R1C1 references.

Offset values are either positive or negative numbers. Positive values are Down and to
the Right. Negative values are Up and to the Left. Always in Row-Column order.

Personal Macro Workbook
When you elect to record into your Personal macro workbook you create or use a hidden
workbook file, Personal.xls that is stored in the XLSTART folder, the start up folder for
Excel. Thus, macros in this workbook are available as soon as you start up Excel. You can
always Copy and Paste VBA code from other modules to Personal.

Personal.xls is a standard workbook but with a hidden interface. Sometimes you need to
Unhide it. Use the Window, Unhide command in Excel’s worksheet environment. You
need to save the macros stored in Personal.xls. You can not select a hidden workbook
and therefore can not use File, Save. If you Unhide it and save it then it is saved as a
visible workbook.

To save Personal.xls, either save it from the VB Editor or close down the Excel application
and respond to the save files prompt. As an alternative to using Personal, see Creating
an Add-In

Excel Visual Basic for Applications

Page 15

Macro Buttons

You need an easy way of triggering your procedures from an Excel worksheet and Macro
buttons are one of the most popular choices. You can either use the Button tool on the
Forms Toolbar or the CommandButton tool on the Control Toolbox Toolbar.

The Button Tool is the old method inherited from earlier versions of Excel. The
CommandButton Tool is the more modern method but takes longer to do.

The Button Tool

This is the good old-fashioned way of creating macro buttons
and is usually the easiest.

1. View the Forms Toolbar.

2. Click the Button tool and draw a Button shape on the
worksheet cells.

3. Choose the relevant macro from the list from the
Assign Macro dialog.

4. Deselect the Macro Button

Right-click the Button to adjust its properties. This Button is
a non-printing object by default.

The CommandButton Tool

The effect is the same but there is more to do.

1. View the Control Toolbox Toolbar.

2. Click the CommandButton tool and draw a Button
shape on the worksheet cells.

3. Click the Properties button to adjust the Button’s
properties.

4. Click the View Code tool and fill-in the code for the
button’s Click event.

5. Click the Exit Design Mode tool to activate the Button
object.

This Button is a printing object by default.

When you fill-in the click event code for the Command Button it is quite in order to enter
a subroutine call to an existing procedure:

Private Sub CommandButton1_Click()
Call MyMacro

End Sub

Command Bars

The alternative to the macro button is to assign your macro to a Command Object in
Excel’s menu structure or Toolbars. You can place a shortcut to run a macro or design a
tool for a toolbar or even create your own command structure of menus and shortcuts.
You have open access to the Excel command bar collection when you open the Customize
dialog box. Choose Tools, Customize or right-click a visible toolbar.

Go to the Commands tab of the dialog and locate Macros in the Categories list.

Select one of the shortcuts and drag it onto a visible toolbar or menubar. Keep the
Customize dialog open and then point to the shortcut that you have just dropped onto
the toolbar and right-click.

Excel Visual Basic for Applications

Page 16

Choose Assign Macro and having assigned your macro, right-click again to set any of the
other properties; Change Button Image or Edit Button Image and indulge your creative
urges. In a menu the ampersand character (&) before a letter nominates it as the
accelerator key. Make sure you choose a unique letter for the menu.

If you want to have a toolbar
that is stored with the
workbook file, go to the
Toolbars section of Customize
and click New to make a new
toolbar.

Populate the toolbar with
shortcuts from the Commands
section and then return to
Toolbars and click Attach and
attach the toolbar to the
workbook.

Now you can send a copy of
the workbook file and the
toolbar is available to the
recipient.

Editing and optimising recorded code

Recorded code is written by a program and can be rather unwieldy and difficult to read.
Feel free to simplify your recordings and reduce them to the essentials.

Here is the original relative recording of entering XYZ down a column:

Sub RecordedXYZ()
ActiveCell.FormulaR1C1 = "X"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "Y"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "Z"

End Sub

The recorder always uses the FormulaR1C1 property for data entry; here the Value
property, the entry in the cell, is probably more appropriate. But you can leave out the
property entirely as Value is the default property for a cell. The offsets have been
simplified and the selections entirely removed.

Sub OptimisedXYZ()
ActiveCell.Offset(0, 0) = "X"

 ActiveCell.Offset(1, 0) = "Y"
 ActiveCell.Offset(2, 0) = "Z"
End Sub

And here is the final version with meaningful comments and indentation:

'Enter XYZ down the column.
With ActiveCell
 .Offset(0, 0) = "X"
 .Offset(1, 0) = "Y"
 .Offset(2, 0) = "Z"
End With

Excel Visual Basic for Applications

Page 17

There is no right way of writing code so allow your solution to follow your own thought
process. There are two distinct styles: Concrete where the process follows the physical
world, selecting cells and moving around, and Abstract which is a simpler style using
numbers and indices. The recorded example is in the concrete style; type-in an entry,
move down one cell, type-in another entry etc. The optimised version more abstract;
write X into the current cell, Y in the cell below and Z into the cell below that.

Toggles

A Toggle is a statement that switches from one state to another and the standard
construction can be applied to any Property that accepts a True / False value.

The following recorded statement turns off the display of Headings.

ActiveWindow.DisplayHeadings = False

After editing the statement now toggles the display of Headings.

ActiveWindow.DisplayHeadings = Not ActiveWindow.DisplayHeadings

Removing Selection statements

The most common and effective optimisation process is to remove the Selection
statements from recorded macros. They are entirely unnecessary.

Recorded:

Columns("E:E").Select
Selection.Columns.AutoFit
Selection.Style = "Comma"

Optimised:

With Columns("E:E")
.Columns.AutoFit
.Style = "Comma"

End With

Common Tasks in Excel Macros
Printing

Here is an extract from a recorded macro to print a single range of cells in landscape.
Unbelievable! Don’t let this sort of recording put you off using the Macro Recorder, it is
an invaluable tool. The Macro Recorder is not selective; it has recorded the state of every
control in the Page Setup dialog. You just need to delete the unnecessary statements.

Sub Macro1()

Range("C3:E8").Select
ActiveSheet.PageSetup.PrintArea = "C3:E8"
With ActiveSheet.PageSetup

.PrintTitleRows = ""

.PrintTitleColumns = ""
End With
ActiveSheet.PageSetup.PrintArea = "C3:E8"
With ActiveSheet.PageSetup

.PrintHeadings = False

.PrintGridlines = False

.PrintComments = xlPrintNoComments

.PrintQuality = 600

.CenterHorizontally = False

.CenterVertically = False

.Orientation = xlLandscape

.Draft = False

.PaperSize = xlPaperLetter

.FirstPageNumber = xlAutomatic

.Order = xlDownThenOver

Excel Visual Basic for Applications

Page 18

.BlackAndWhite = False

.Zoom = 100
End With
ActiveWindow.SelectedSheets.PrintOut Copies:=1, Collate:=True

End Sub

The code for printing macros can be quite dramatically reduced.

This is all you need for printing:

Sub ConcisePrintMacro()

'Print a range of cells.
Range("A1:G250").PrintOut

'Print the used range of the active worksheet.
ActiveSheet.PrintOut

End Sub

Printing and Page Setup settings are like this:

Sub PageSetupSettings()

'The PageSetUp object is a child of the worksheet,
'not the range.

With ActiveSheet.PageSetup

.CenterFooter = "My Report"

.RightFooter = "by Anon E. Mouse"

.Orientation = xlLandscape

.FitToPagesWide = 1

.FitToPagesTall = 1
End With

Range("A1:G250").PrintOut

End Sub

You sometimes need to print out a named range of cells. To make Page Setup settings
you need to identify the worksheet that owns the range. Use the Parent property of the
range rather than making an explicit reference to the worksheet. The Parent property of
an object points back up the containment hierarchy to identify the object above.

Sub IdentifyParentSheetOfNamedRange()

Dim MyRange As Range
Dim MySheet As Worksheet

Set MyRange = Range("DataArea")
Set MySheet = Worksheets(MyRange.Parent.Name)

With MySheet.PageSetup

.CenterFooter = "My Report"

.RightFooter = "by Anon E. Mouse"

.Orientation = xlLandscape

.FitToPagesWide = 1

.FitToPagesTall = 1
End With

MyRange.PrintOut

End Sub

Excel Visual Basic for Applications

Page 19

Copying

This again, is a reduction of recorded code.

Sub RecordedCopyAndPaste()

Range("C4:E11").Select
Selection.Copy
Sheets("Sheet2").Select
Range("D7").Select
ActiveSheet.Paste
Application.CutCopyMode = False

End Sub

Try these instead:

Range("C4:E11").Copy 'No Selections required.
Range("C4:E11").Cut

Range("C4:E11").Paste 'This will fail, Paste is not supported.

Range("C4:E11").PasteSpecial 'But Paste Special is.

Range("C4:E11").Copy Destination:= Range("G10") 'One line of code.

[C4:E11].Copy [G10] 'Same as above, easier typing.

[Sheet1].[C4:E11].Copy [Sheet2].[G10] 'From Sheet to Sheet.

[B1] = [A1] 'An assignment statement; this copies the cell display…

[A1].Copy [B1] 'whereas this copies the formula.

Measuring areas and lists

Measure the dimensions of the current block of consecutive data:

a = ActiveCell.CurrentRegion.Rows.Count
b = ActiveCell.CurrentRegion.Columns.Count

Identify the coordinates of this range:

c = ActiveCell.CurrentRegion.Address

Measure the dimensions of the area containing data on a worksheet:

d = ActiveSheet.UsedRange.Rows.Count
e = ActiveSheet.UsedRange.Columns.Count

Identify the first used row of the worksheet:

f = ActiveSheet.UsedRange.Row

Identify the last used row of the worksheet:

g = Cells.SpecialCells(xlCellTypeLastCell).Row

Identify the next free row starting from A1:

h = Range("A1").End(xlDown).Row + 1

To select the block of cells containing the active cell:

ActiveCell.CurrentRegion.Select

Excel Visual Basic for Applications

Page 20

Identify the first row and column in the block containing the active cell:

i = ActiveCell.CurrentRegion.Row
j = ActiveCell.CurrentRegion.Column

Select from cell C3 to the top of the current region:

Range("C3").End(xlUp).Select

Select from cell C3 to the last cell on the right in the current region:

Range("C3").End(xlToRight).Select

If your macros incorporate extensive moving and selecting you might consider creating a
Move object to make your macros easier to create. See Creating a Move object

Locating data on a worksheet

Use the Special Cells Method to locate cells on a worksheet that have particular
characteristics. Record this using Edit, Goto, Special.

The following procedure clears every cell in the workbook that contains a constant
numeric value, leaving the text and the formulas intact.

Sub DeleteNumbers()
 Dim wksSheet As Worksheet
 Dim rngNumbers As Range

 On Error Resume Next

 For Each wksSheet In Worksheets

 'Identify numeric cells.

Set rngNumbers = _
wksSheet.Cells.SpecialCells(xlCellTypeConstants, 1)

 'Delete cell values.

rngNumbers.Clear

 Next

End Sub

Without using the SpecialCells Method the procedure would have been far harder to write
requiring a loop to examine each worksheet cell and a conditional test to see whether the
cell contained a number that was not a formula, as follows:

For Each Cell In ActiveSheet.UsedRange
 If Cell.HasFormula = False And IsNumeric(Cell) = True Then
 Cell.Clear
 End If
Next

Note that SpecialCells is a Method of the Range Object therefore the following line of
code would fail:

ActiveSheet.SpecialCells(xlCellTypeConstants, 1).Select

You must return the Range Object:

ActiveSheet.Cells.SpecialCells(xlCellTypeConstants, 1).Select
or

ActiveSheet.UsedRange.SpecialCells(xlCellTypeConstants, 1).Select

Manipulating cells

The Cells property can replace A1 references or offsets to manipulate cells.

Excel Visual Basic for Applications

Page 21

The Cells property returns the Range Object, every cell on the entire worksheet:

Cells.NumberFormat = "General"

Manipulating cells with R1C1 coordinates, using a loop counter to make cell references:

Sub CopyValues()
For r = 2 To 100

Select Case Cells(r, 1)
Case 1

Cells(r, 2).Copy Cells(r, 3)
Case 2

Cells(r, 2).Copy Cells(r, 4)
Case 3

Cells(r, 2).Copy Cells(r, 5)
Case 4

Cells(r, 2).Copy Cells(r, 6)
Case Else

Cells(r, 2).Copy Cells(r, 7)
End Select

Next
End Sub

This style of code is entirely abstract but very concise and direct. Notice how easy it is to
get the idea of going down to the next row on a worksheet by using the incrementing
counter variable of a For…Next loop rather than the clumsy Offset, Select statements.

You can display R1C1 references on an Excel worksheet by choosing Tools, Options,
General Tab, Settings, R1C1 Reference Style.

Application Settings

Here are some useful Application Property settings that can speed up execution time. As
the Application Object (Excel itself) is the top-level object you could enter these without
using the Application object reference.

Switching between automatic and manual recalculation:

Application.Calculation = xlCalculationAutomatic
Application.Calculation = xlCalculationManual

Turning on/off the screen display:

Application.ScreenUpdating = True

or without the object reference:

ScreenUpdating = True

Suppress the display of confirmation messages:

Application.DisplayAlerts = False

Disable the ESC key:

Application.EnableCancelKey = xlDisabled

Block all input from the keyboard and mouse except for interactive elements displayed by
the procedure:

Application.Interactive = False

Most of the above will need to be reset to their normal states at the end of the
procedure. Be particularly careful with the Interactive property. Make absolutely sure
that you set its value to True before the end of the procedure otherwise Excel will not
accept any user input after the macro has been executed.

Excel Visual Basic for Applications

Page 22

Using the Visual Basic Editor
The editor has several different user windows, if the one you need is not visible then
open it using the VBE View menu. Rearrange and resize the windows as you wish.

Code Window

Press F7. This is where you view the code, the actual instructions contained in the
Module. The Code Window has two views, Procedure View and Full Module View.
Procedure View shows only one procedure at a time, Full Module View lists all the
procedures in the module, separated by ruler lines. To change the view, use the buttons
situated at the lower left-hand corner of the window.

At the top of the window are two drop-down lists, the one on the right-hand side is the
Procedure List. Use this to navigate from one procedure to another. Or use the keyboard
shortcuts Ctrl+PgUp/Ctrl+PgDn. The left-hand list is the Object list.

You will also notice the standard code colours: Blue for Keywords, Green for Comments
and Black for everything else. Try not to change the colours unless the Blue is indistinct
from the Black on your monitor or if you suffer from Red/Green colour vision problems.
Change the colours using Tools, Options, Editor Format Tab.

Context Help

To look up the relevant page in the documentation, click an expression in the Code
Window and press the F1 key.

Complete Word

One of the most useful features of the
Code Window is Complete Word. These
are drop-down Autolists that enable
statement completion showing those
Objects, Methods, Properties and Events
that are available in context. The lists
appear as soon as you start typing. To
accept an item from the list and stay on
the same line to continue your statement,
press TAB.

The lists significantly reduce the number of typing errors. To start up the lists without
typing an initial expression, press Ctrl+Space. Or right-click the relevant line and choose
Complete Word.

Commenting/ Uncommenting

The apostrophe is the Remark character, remarks or comments are entirely ignored when
the code is run. Comments are used for explanation and annotation of the process code.
Comments can be entered at any position in the Module. There is no end comment
character; everything following the apostrophe is a comment.

Every procedure should have at least one comment. Code is updated and revised
periodically during its lifetime. It is very difficult trying to interpret uncommented code.

You can add a comment at the end of the code line; you do not need to start a new line.

Selection.NumberFormat = "0.00" 'Set number format

Commenting out is a technique where sections of code are temporarily disabled for
testing purposes only to be reinstated once the testing is completed. It is extremely
tedious to comment out each separate line. You will find the Comment Block and
Uncomment Block Tools on the Edit Toolbar.

Running and Stepping Into statements

You either Run your code at normal speed or you Step Into it one statement at a time in
Break Mode. There are many variations on the theme of Stepping, look at the Debug

Excel Visual Basic for Applications

Page 23

menu. The fundamental shortcuts are F5 for Run and F8 for Step Into, click the body of
the procedure first to set the context. The Run Tool is on the Standard Toolbar. The Step
Into Tool is on the Debug Toolbar.

Breakpoints and Break Mode

A Breakpoint is a line of code
that you set as being the
point at which Excel switches
from Run Time to Break
Mode.

It is helpful to set
Breakpoints when you do not
want to Step through the
entire Procedure, just trace a
few commands.

Press F9 to set the
Breakpoint, press F5 to run to
the Breakpoint and then
press F8 to Step through the
code.

The easiest way to set or remove Breakpoints is to click on the left-hand grey margin of
the code window. Break Mode is when you can see the Yellow indicators, Reset to return
to Design Mode. The Reset Tool is on the Standard Toolbar.

Errors

Unless you can record all your macros you will always get some kind of error as you
develop your code. There are three types of error, Logical errors, Syntax errors and
Run-Time errors. Choose Debug, Compile the Project to check for errors.

A Logical error is where the code does not fail but does not do what you wanted. You will
always get an error message for the other types of errors. Syntax errors are coloured
red. Run-Time errors do not arise as you type-in your code, only when you run the
procedure. Always Debug a Run-Time error. The Debug Button switches the Module to
Break Mode and identifies the statement that caused the error. It does not correct the
statement. The entire Module is compiled when you run a procedure, the Run-Time error
is not necessarily in the current procedure. Reset when you have fixed the error.

Syntax Errors
Syntax error, clearly there is something wrong:

Selection.SpecialCells(xlCellTypeVisible select

A syntax error is usually a minor error in
typing or construction; comma missing,
brackets not closed etc. Syntax errors
rarely cause serious problems.

Syntax errors are coloured red.

Run-Time errors
Run-Time error, there is something wrong but it is not obvious:

Selection.SpecialCells(x1CellTypeVisible).Select

Excel Visual Basic for Applications

Page 24

Did you spot the error? It
should read xlCellTypeVisible,
not x1CellTypeVisible, a lower
case alphabetical el, not a
number 1. The Courier font is
notoriously indistinct for these
two characters and this is a
classic Excel Run-Time error. So
many Run-Time errors are just
typos; try to avoid them by
using the Complete Word lists
as much as possible.

Line Continuation

Some statements are rather lengthy and difficult to read on one line. Do not press enter
to wrap the text; this just produces a syntax error. To continue the same logical line onto
the next physical line, introduce a line continuation character into your code.

Use the following sequence of keystrokes for a line continuation character; Spacebar,
Underscore, Enter. It is a sequence, not a key combination. You can have as many line-
continuations as you require. Second and subsequent lines can be tabbed.

Statements like this can be rather difficult to read:

ActiveWorksheet.Cells.SpecialCells(xlCellTypeVisible).Select

Statements are much easier to read with line continuation characters:

ActiveWorksheet.Cells. _
SpecialCells(xlCellTypeVisible). _
Select

Project Explorer Window

Press Ctrl+R. This window exposes the objects of each open
Project. If you want to change the name of an object, select
it in this window and enter a new name in the Properties
window. To delete an object, using the delete key has no
effect, right click the object and Remove it. You can Drag
and Drop a Module from one Project to another.

To insert a module into the project without using the
recorder, either use the Insert menu or right click the
relevant project. Do not double-click one of the worksheet
objects, this gives you entirely the wrong type of module,
an Object Module! You will have nothing but trouble if you
use one of these to contain General code. You want a

General module in the Modules collection.

Object Modules look identical to General Modules but their inadvertent use can cause
errors that are hard to detect. For example, a simple statement like, Range("A1").Select
entered in the Sheet1 Object Module would only work on Sheet1. It would cause a Run-
Time error if the code were run on any other sheet in the workbook.

Properties Window

Press F4. The Properties Window is where you set the variable properties of objects. Not
of much use for developing code in General modules. It is extensively used when
designing graphical User Forms.

Excel Visual Basic for Applications

Page 25

The Properties Window can be irritating for the first few
occasions when you use it. It always displays the variable
properties of the active selection and you may find
yourself looking down the listings in the property pages
and being unable to find the property that you are looking
for. Check the active selection, it is so easy to change the
selection and not realise it.

Most of the property page values can be selected from
drop down lists but sometimes they have to be typed-in.
To register a typed value, either press ENTER or click
another cell on the property page. Do not click outside
the window as this usually just changes the selection.

Note that there are two tab sections which classify all the
properties; Alphabetic and Categorised.

Object Browser

Press F2. If the macro recorder is the
phrasebook for VBA then the Object
Browser is the dictionary.

All references are listed here. Choose
the top drop-down list to reference
the relevant library, Excel or VBA?

If you have an idea of the name of
something that you are trying to look
up, enter an expression into the
Search box below to perform a
freeform search of the database.

If you just want to see a full listing of
what is available then choose an item
from the Classes list on the left hand
side and examine the Members list on
the right hand side.

It can take some time to find what
you are looking for in the Object
Browser but there is no alternative if
you do not know its name.

Locals Window

This window is used for viewing
the current values of all the
variables currently in Scope.

Step Into your code and see the
exact state of any variable at any
point in the procedure.

Excel Visual Basic for Applications

Page 26

Watch Window

The Watch Window is
similar to the Locals
Window but is used
to view the current
values of only
certain, nominated
variables.

You need to specify the Watch expressions using Add Watch on the Debug menu.

Immediate Window

Press CTRL+G. The Immediate
Window is used for immediate
execution of a single
expression. Type the
expression into the Window
and press enter to execute it.

If the expression returns a
value then it needs to print
the result to the Window. In
this case you should precede
the expression with a question
mark.

Use this Window to experiment with statements. You can write a log to the Immediate
Window by including Debug.Print statements in your procedure.

Splits and Bookmarks

It can be rather difficult to navigate your way through all the lines of code in a long and
complicated set of procedures. Use the window split bar to display your declarations
section as you write the code, you are far more likely to remember to declare your
variables if you can see them. Bookmarks are blue indicators that can be used to mark
positions in the code; this makes the process of returning to a specific point in a
procedure far easier than having to scroll through multiple lines.

Set a bookmark by choosing Edit, Bookmarks, Toggle Bookmark. Then choose Next
Bookmark and Previous Bookmark to navigate. Bookmark shortcuts are on the Edit
Toolbar.

Excel Visual Basic for Applications

Page 27

VBA Memory Variables and Constants
The role of Option Explicit

You can use implicit variables in VBA by just typing-in an identifier and assigning a value
to it. However you will not be able to do this if the Option Explicit statement is present.

Option Explicit forces you to declare your variables before you can use them. It is used to
improve the execution speed and precision of the code. You can delete Option Explicit if
you wish and continue with implicit variables. Otherwise you must declare.

To include the Option Explicit statement on all future modules:

1. Choose Tools, Options, Editor Tab.

2. Check the Require Variable Declaration checkbox.

Variable Declaration

The Dim statement is used to declare variables either in a single line or listing form.
Explicitly declared variables are available in the Complete Word lists. Dim is short for
Dimension (which makes no particular sense unless the variable is an array, a variable
that can have more than one dimension). You can place the Dim statement anywhere in
the procedure, so long as you declare the variable before you use it. It is a convention to
list declaration statements at the start of the procedure.

Dim x, y, z

or

Dim x
Dim y
Dim z

Option Explicit

Sub Main()

Dim x, y, z

x = 50
y = 100
z = Application.Average(x, y)

MsgBox z
'View variable values in the Locals Window.

End Sub

Data Types

You can also declare the Type of data you intend to store within a Variable or Constant.
This will ensure you use only the memory required to hold the data and validate the
data. It will also cause problems if you do it incorrectly.

If you do not specify a data type, the Variant data type is assigned by default.

The Data Type is declared in the same statement as the variable or constant itself.

Dim MyVar As String
Const MyNum As Integer = 5

You can also use one declaration statement for several variables:

Dim MyVar As String, MyNum As Integer

However, when using a single declaration statement, you must declare the Data Type for
each variable. In the following example, only one variable has a defined Data Type, the
other is Variant.

Dim MyVar, MyNum As Integer

Excel Visual Basic for Applications

Page 28

Summary of Data Types
Type Size Stores
Boolean 2 bytes True or False values.
Byte 1 Byte per

character
Unsigned whole numbers 0 to 25

Integer 2 bytes Whole numbers ± 32,768
Long (Integer) 4 bytes Whole numbers ± 2,147,483,648
Single 4 bytes Numbers ± 1.401298E-45 to 3.402823E38
Double 8 bytes Numbers ± 1.79769313486232E308 to

4.94065645841247E-324
Currency 8 bytes Numbers ± 922,337,203,685,477.5808
Decimal 14 bytes ± 79,228,162,514,264,337,593,543,950,335

with no decimal point.
± 7.9228162514264337593543950335
 with up to 28 decimal places.

Date 8 bytes Date values ranging from January 1, 100 to
December 31, 9999.

Object 4 bytes Any Object Reference.
String 1 byte per

character
Text data.

Variant Varies Anything, Variant is a chameleon data type
where any value is stored. Variant is the
default data type.

If you do declare the Data Type, make sure that you do so correctly. It is quite easy to
determine what your Data Type should be so long as you allow the VB compiler to do it
for you. See How to determine the Data Type below.

In the following example you can see the sort of problems caused when the Data Type is
declared incorrectly. Three variables are declared, all as Integers. The variable x causes
an Overflow error; the value is too large to be stored. The variable y does not fail but is
stored as 2, not 1.5; integers are whole numbers. The variable z causes a Type mismatch
error; the value to be stored is a String, a text value.

'Declaration:
Dim x As Integer, y As Integer, z As Integer

'Initialisation:
x = 50000
y = 1.5

MsgBox y

z = "Fred"

How to determine the Data Type

1. Write your code and initialise your variables to the sort of values that you will
be storing in them.

2. Open the Locals Window. View, Locals.

3. Press F8 and Step Into the code to execute your initialisation statements.

4. Look at the third column in the Locals Window, headed Type.

5. You will see that your variables were declared as Variants and then internally
coerced to a specific Data Type.

6. Declare the Data Type using these coercion data types.

Excel Visual Basic for Applications

Page 29

Variable Scope and Lifetime

The Scope and Lifetime of a Variable or Constant is its visibility to other procedures and
how long its value lasts. There are three levels of Scope: Public Module, Private Module
and Procedure.

The Scope is set by the nature and position of the Declaration statement. The Module’s
Declarations section is at the top of the Module before the first procedure. It is very bad
practice to declare two variables with the same identifier at different levels of scope.

Public Module Scope
A variable / constant with a Public Scope can be utilised by any procedure in any of the
modules within that Project. Use a Public statement in the Declarations section.

Public MyVariable

Private Module Scope
A variable / constant with Module level scope can be used by all procedures within that
particular Module. Use a Dim statement in the Declarations section.

Procedure Scope
A variable / constant with Procedure level scope is not available to any other procedure
within the Module unless it is passed in a subroutine call. Use a Dim statement in the
Sub.

'Dim before the Sub. Module level.
Dim MyVariable

Sub Main()

 'Dim after the Sub. Procedure level.
 Dim MyOtherVariable

MyVariable = 50
MyOtherVariable = 100

End Sub

Sub Main2()

 'Only MyVariable is in Scope.

ActiveCell.Value = MyVariable

End Sub

Public and Private

Procedures can also be declared as Public or Private, they are Public by default. A Public
procedure is accessible to all other procedures in all modules in the Project, whereas a
Private procedure is accessible only to other procedures in the module where it is
declared.

It is good practice to declare subroutine procedures as Private. This will clean up the
clutter of macro names in the Macros box and provide only a single entry point into a set
of related procedures.

Private Sub MyMacro()

When to use Set

Storing the reference to an Excel object in a variable is quite a different concept to
storing values. Here you are creating an alias or a shortcut or a pointer. Various terms

Excel Visual Basic for Applications

Page 30

are used for this process. VBA calls this an Object Variable. You must use the Set
keyword to initialise an Object Variable. Do not use Set for any other purpose.

Sub ObjectVariables()

Dim x As Integer
Dim c As Range

'Here you could use the Let keyword,
Let x = 250
'But it makes no difference either way.
x = 250

'Here you must initialise with the Set
'keyword. The variable, c now can be used
'in the code as a substitute for ActiveCell.

Set c = ActiveCell

'Without the use of Set this line of code would fail.
c.Offset(1,0).Select

End Sub

The use of the Let keyword in assignment statements is a matter of personal style. Some
authors like to use it as it explicitly shows that the statement is a variable assignment
statement. However, there is a fundamental difference between Let and Set.

Set x = Range("A1:D25")

This statement creates the Object Variable, x that can then be used as an alias for the
cell range. Any actions carried out on x are immediately reflected back to the cells.

Let x = Range("A1:D25")

This statement creates the Array Variable, x which stores the current values of the cells
in memory. Any actions carried out on x do not affect the cells. The cell values and the
variable values are entirely separate entities.

Declaring the Data Type of Object Variables

There is no specific requirement that you do explicitly declare the Data Type of an object
variable, you can just leave it out. However, if you do then you have a choice, either use
the generic type, Object or be more precise and identify the Class of the Object. (You do
not need to know about Classes when using Excel VBA but you often see the term being
used. For further information see Classes)

Sub ObjectDataTypes()
 Dim PrimoSheet As Worksheet
 Dim SecundoSheet As Object
 Dim MyRange As Range

'Here we can be specific, this must be a Worksheet.
Set PrimoSheet = Worksheets(1)

'Sheets(2) might not be a worksheet, use generic.

 Set SecundoSheet = Sheets(2)

'This could only ever be a Range.
 Set MyRange = [A1:Z500]

End Sub

Excel Visual Basic for Applications

Page 31

When you have finished using the Object Variable in your code but the procedure is going
to continue to execute statements you can release the memory allocated to the variable
and destroy the object variable by setting its value to Nothing.

Set MyObjVar = Nothing

Use of Constants

A Constant is a value in a procedure that does not change. Constants are similar to
Variables; the key difference is that the values of variables can change during execution,
whereas the values of constants are fixed.

Unlike variables, constants are both declared and initialised in one statement.

Sub ConstantsVsVariables()

'Declaration.
Dim USD As Currency
'Initialisation.
USD = 1.80

Const USD As Currency = 1.80
Const PAYMENT_TERMS = 30

End Sub

Data Type Conversion Functions

Sometimes it is not possible to explicitly set the data type of a
variable as the value and data type of the variable is unknown
at the point of declaration.

Declare the variable as type variant and when the value has
been acquired and validated then you can convert the variable
to the correct data type using a conversion function.

For example:

Dim USD As Variant

USD = CCur(USD)

Naming Conventions

A one or three character lower case prefix is commonly added to variables as a document
convention. Variable identifiers are then readily recognised in the code and are easier to
enter; explicitly declared variables are available in the Complete Word drop-down lists.

Sub NamingConventions()

Dim strProductName As String
Dim intCounter As Integer
Dim rngRange As Range

End Sub

Should I declare my variables?

All the pundits scream, "Yes!" But be realistic, if your procedure is short and uses only
one or two variables then you have little to gain, what are the chances of mistyping x
and y? But what if the procedure contains a counter loop that iterates hundreds of times?
In the long run code with explicitly declared variables of the correct data type will
execute faster than code with implicit variables and it will be much easier to debug and
maintain. But it takes longer to write and there are pitfalls for the unwary.

As a general rule of thumb, it is usually best to keep Option Explicit in the declarations
section. Use it when appropriate and delete it when it is not. Always properly declare and

CBool Boolean
CByte Byte
CCur Currency
CDate Date
CDbl Double
CDec Decimal
CInt Integer
CLng Long
CSng Single
CStr String
CVar Variant

Excel Visual Basic for Applications

Page 32

type your variables for long and difficult procedures, you will end up doing so in any case
once you run into a few problems! For short macros though, it is barely worth the effort.

See also Using Arrays to store sets of data
See also User Defined Data Type
See also Enumerations

Functions
Function procedures accept, manipulate and then return values. They can be used in
conjunction with Sub procedures to perform utility tasks in your code and perform in a
similar manner to subroutine calls.

More commonly in Excel, Function procedures are used to bundle complex calculations
into a central procedure or to design user-defined functions. You do not run Function
procedures; they are called. In VBA code a function is called in the same way as a VBA
function. In worksheet cells a function is called in the same way as an Excel function

In your code you can call existing functions from VBA, see Calling VBA Functions and also
Excel Worksheet Functions, see Calling Excel Functions

You can also write Function Procedures in VBA to interact with your Sub procedures, see,
Creating Function Procedures or as User Defined Functions for use in Worksheet formula
expressions, see Creating a custom function for Excel

Calling VBA functions

Use the Object Browser to see a list of all of the VBA functions. VBA functions have a
simple syntax structure as follows:

FunctionName(Arguments)

Unlike Excel worksheet functions, the parentheses are only required if there is an
argument value, for example to return the current date and time:

In Excel, =NOW() In VBA, Now

The Format function

This is the Function
that has a thousand
uses, "if only I had
known about it six
months ago…" Use the
Format Function to
transform any numeric
value. Although they
differ in detail the

fundamental number format codes for Excel and VBA are identical. To find the relevant
code values look up Custom Number Formats in Excel Help or the Format function in VBA
Help.

Format(Expression,"Format Code")

Calling Excel Worksheet Functions

Excel functions are members of the WorksheetFunction Collection. You can call any
Worksheet function in the module but you must identify it as being exclusively an Excel
function by including the Application object reference otherwise the call will fail.

The shortcut is to just access the Application object.

x = Application.Average(y, z)

The full reference is more efficient and shows all the functions in the Complete Word list.

x = Application.WorksheetFunction.Average(y, z)

Expression Format Code Transformation
-5000 "#,##0.00_);(#,##0.00)" (5,000.00)
5000000 "0,,.0 million" 5.0 million
Month(Date) "00" 12
Month(Date) "MMMM" December
Date "DDDD" Thursday
34 / 5000 "0%" 0.7%

Excel Visual Basic for Applications

Page 33

Creating a Function procedure

Write a Function procedure in a module using exactly the same methods as a Sub
procedure. For example, the FileExists function illustrated is a utility procedure to
validate file names; which can be called by any other procedure.

Sub FileOpeningRoutine()
Dim sFileName As String

sFileName = "Basic.xls"

'Open the file if the file exists.
If FileExists(sFileName) Then

Workbooks.Open FileName:=sFileName
End If

End Sub

Function FileExists(sFileName As String) As Boolean

'Accepts : File Name as String.
'Returns : TRUE if the file name is good.

If Dir(sFileName) = "" Then

FileExists = False
Else

FileExists = True
End If

End Function

The two-line Accepts and Returns comments are the standard document convention for
all Function procedures.

Creating a Custom Function for Excel

A user-defined function is an excellent method of centralising a specialised or complex
calculation so that it can easily be entered into worksheet cells. You use the functions in
formula expressions as you do with normal Excel functions, filling-in the arguments with
cell references. The function returns the manipulated values to the cell.

Function VAT(Number)
'Accepts : Value from a worksheet cell.
'Returns : VAT @ 17.5%.

Const RATE = 0.175
VAT = Number * RATE

End Function

Excel formulas have to use awkward linear conditional statements whereas VBA has
superior structures. It is far more efficient to use a simple expression in your worksheet
cells to call a complex calculation than it is to have multiple copies of a complex formula.

Function RATIO(First_Number, Second_Number)
'Accepts : Values from two worksheet cells.
'Returns : Simple ratio to 0 decimal places.

x = First_Number
y = Second_Number

If x = y Then

 RATIO = "Parity"
ElseIf x > y Then

 RATIO = Round(x/y, 0) & ":1"
Else

 RATIO = "1:" & Round(y/x, 0)
End If

End Function

Excel Visual Basic for Applications

Page 34

To call the RATIO function you would enter the following expression into a worksheet cell,
replacing the argument names with cell references:

=RATIO(First_Number, Second_Number)

However, to call the function from a cell in another workbook you would need an external
reference to the workbook containing the function procedure:

=BookName!RATIO(First_Number, Second_Number)

Creating an Add-In

To make a Function or a Sub procedure global and visible to all workbooks make an Excel
Add-In. This is a compiled version of the code in the file that is loaded automatically as
the Excel application is opened. To make an Add-In:

Step 1 (Optional)

Document the Add-In. Should you skip this step when you create an Add-In only the
Name of the Add-In file is shown in the Add-In Manager list and there is no Help
documentation in the Paste Function dialog box.

Documenting the Add-In in the Add-In Manager listing:

Worksheet Menu: Attach Summary properties to the file. File, Properties, Summary
Tab, fill-in Title and Comments (these are used for the Caption and Description text in
the Add-In Manager list)

Documenting the function procedure in the Paste Function dialog:

Visual Basic Editor: Open the Object Browser window and choose VBAProject from the
All Libraries drop-down list.

Examine either the listing held
under the Globals object or the
Module and you will see the
function procedure listed as a
method.

Select the method, right-click
and choose Properties from the
short-cut menu. Fill-in the
Description box in the Member
Options dialog.

Step 2

Create the Add-In file.

Worksheet Menu: File, Save As, Save As
Type = Excel Add-In *.xla (at end of the list)

Step 3

Set the Add-In Manager to load the Add-In
file as Excel starts up.

Worksheet Menu: Tools, Add-Ins, Browse.
Select the .xla file from the file listings. Make
sure that the check box is checked.

All the procedures in the current project are
included in the Add-In. Add-Ins can contain
Subs or Functions or both.

Excel Visual Basic for Applications

Page 35

Protecting a Project

Even the code for an Add-In is available in the VB Editor so to prevent tampering, lock
the Project with a password. Choose Tools, VBA Project Properties, Protection Tab.

Events
The role of event driven procedures

Worksheet and Workbook events trigger your code automatically when a specific event
occurs, such as opening a file or recalculating a worksheet. The Event procedures already
exist as code shells. All you need to do is find them and fill in the shell.

Using the event code shells

To use a Workbook Event:

1. Open the Module for ThisWorkbook in the Microsoft Excel Objects section of the
Project Explorer Window. Click View Code or press F7 or double-click.

2. Select Workbook from the Object drop down list. (left-hand side)

3. Select the Event from the Procedure drop down list. (right-hand side)

To use a Worksheet Event:

1. Open the Module for the required worksheet in the Microsoft Excel Objects
section of the Project Explorer.

2. Select Worksheet from the Object drop down list. (left-hand side)

3. Select the Event from the Procedure drop down list. (right-hand side)

Or right-click the worksheet tab in the normal Excel workspace and choose, View Code.

To disable the automatic execution of the Workbook_Open event, hold down the SHIFT
key as you open the file.

Reserved Procedure Names

You can use the reserved procedure names, Auto_Open and Auto_Close as an alternative
to using object events for automatic execution. The spelling of the reserved name must
be precise and include the underscore. These names are used for procedures in General
Modules. The object’s Open event is precedent to an Auto_Open procedure. The following
procedure displays the message box automatically when the file opens.

Excel Visual Basic for Applications

Page 36

Sub Auto_Open

 MsgBox "Hello"

End Sub

On Methods

These are Methods of the Application object and have the same effect as events but are
implemented in a different way. You need two procedures: one to schedule the event in
the memory, the other is the procedure that is called when that event occurs.

OnKey Method
Runs a specified procedure when a particular key or key combination is pressed.

This example assigns My_Procedure to the key sequence CTRL+PLUS SIGN and assigns
Other_Procedure to the key sequence SHIFT+CTRL+RIGHT ARROW.

Application.OnKey "^{+}", "My_Procedure"
Application.OnKey "+^{RIGHT}", "Other_Procedure"

This example returns SHIFT+CTRL+RIGHT ARROW to its normal meaning.

Application.OnKey "+^{RIGHT}"

This example disables the SHIFT+CTRL+RIGHT ARROW key sequence.

Application.OnKey "+^{RIGHT}", ""

OnTime Method
Schedules a procedure to be run at a specified time in the future (either at a specific time
of day or after a specific amount of time has passed).

This example runs My_Procedure 45 seconds from now:

Application.OnTime Now + TimeValue("00:00:45"), "My_Procedure"

This example runs my_Procedure at 5 P.M:

Application.OnTime TimeValue("17:00:00"), "My_Procedure"

This example cancels the OnTime setting from the previous example:

Application.OnTime EarliestTime:=TimeValue("17:00:00"), _
 Procedure:="My_Procedure", Schedule:=False

The following procedures are stored in Personal.xls and guarantee that you will not forget
to go home on time:

Sub Auto_Open()

Application.OnTime TimeValue("17:30:00"), "HomeTime"

End Sub

Sub HomeTime()

 MsgBox "Get your coat! It's Home Time."

End Sub

Excel Visual Basic for Applications

Page 37

User Interaction
Message Box

The MsgBox function can used in either its Statement or Function forms.

Statement form
This is the simplest form, used for non-interactive messaging. You do not need
parentheses around the arguments:

MsgBox "Hello Charlie"

The prompt text in the message does not wrap onto a new line
in the box until the character count reaches 160; meanwhile
the box just gets wider with the text on one line. Use any one
of the following constant values to force a new line:

Chr(10),Chr(13), vbCrLf, vbCr, vbLf

(This is quite a different idea to code line continuation using Spacebar, Underscore,
Enter. This is for forcing new lines of text in Message Boxes and Input Boxes)

Forcing new lines in the prompt:

MsgBox "Hello Charlie," & vbCrLf & "have a nice day."

See overleaf for a discussion of the arguments accepted by the MsgBox function. See By
Name, By Order for instructions on how to specify them.

Function Form

You must use the Function form when you are interacting
with the user. You need to store their response. The
Function form requires the arguments in parentheses; you
are entering an assignment statement.

The message box returns a result based on which button
as clicked then this returned result is evaluated.

Sub Main()

Dim iAns As Integer

iAns = MsgBox ("Are you sure.", _

vbYesNo + vbQuestion, Title:="Delete Data")

If iAns = vbYes Then
MsgBox "Data will now be deleted.", _

Buttons:=vbInformation, _
Title:="Delete Data"

Else

MsgBox "Data will not be deleted.", _
Buttons:=vbExclamation, _
Title:="Data Retained"

End If

End Sub

Excel Visual Basic for Applications

Page 38

MsgBox Buttons and Return values
The Buttons argument is optional and is a numeric expression that is the sum of the
values specifying the number and type of buttons to display, the icon style to use, the
identity of the default button, and the modality of the message box. The default value for
the buttons argument is 0.

Buttons

The values from 0
to 5 describe the
number and type of
buttons displayed.

The second group;
16, 32, 48 and 64
describe the icon
style.

The third group; 0,
256, 512 and 768
determine which
button is the
default.

The fourth group; 0
and 4096 determine
the modality of the
message box.

Application modal; the user must respond to the message box before continuing work in
the current application or System modal; all applications are suspended until the user
responds to the message box.

When you are adding numbers to create a final value for the buttons argument you
should use only one number from each group. You can use either the numbers or the
constants. For example, to specify the display of a Yes and a No command button and a
question mark icon the expression is either 4+32, or 36 or vbYesNo+vbQuestion.

Return Values

The return value is only generated when the
MsgBox function is used in its function form and
depends upon which command button was clicked
when the message box was dismissed.

You can use either the value or the constant in
your code to determine which button was clicked.

Constant Value Description
vbOKOnly 0 OK button only
vbOKCancel 1 OK and Cancel buttons
vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons
vbYesNoCancel 3 Yes, No, and Cancel buttons
vbYesNo 4 Yes and No buttons
vbRetryCancel 5 Retry and Cancel buttons
vbCritical 16 Critical Message icon
vbQuestion 32 Warning Query icon
vbExclamation 48 Warning Message icon
vbInformation 64 Information Message icon
vbDefaultButton1 0 First button is default
vbDefaultButton2 256 Second button is default
vbDefaultButton3 512 Third button is default
vbDefaultButton4 768 Fourth button is default
vbApplicationModal 0 Application modal
vbSystemModal 4096 System modal

Constant Value Description
vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore
vbYes 6 Yes
vbNo 7 No

Excel Visual Basic for Applications

Page 39

Input Boxes

You can use either the generic VBA Input Box function or the Excel Application object's
Input Box Method. The InputBox Method allows for some entry validation using its
optional Type argument and is the only one where you can point out of the box to select
a range of cells on a worksheet. Invalid data entry into Excel’s Input Box is handled by
the Excel application.

VBA Input Box Function

The generic VBA function does
not have any facility for
validating the user's input, this
has to be done in the code. The
result of the function can be
directly assigned to a cell but it
is usually better assigned to a
variable so that it can be
effectively evaluated.

Range("A1") = InputBox("Please enter the date.", _
 Title:="Current Period", _
 Default:=Date)

Excel Input Box Method

You will notice the difference between the
two when you enter an invalid input. So
long as you have completed the Type
argument, Excel will handle any invalid
input but you must test for the Cancel
button in your code. The Cancel button for
the Input Box function returns a zero-
length string, test for "" in your code. The
Cancel button for the Input Box method
returns FALSE.

Range("A1") = Application.InputBox("Please enter the date.", _
Title:="Current Period", _
Default:=Date, _
Type:=1)

The Type argument specifies the return data type. It can
be one or a sum of the values shown in the table.

Only the Excel InputBox Method allows you to point out of
the box to return a range reference, in the example
return data type 8 is specified and the input box will
accept a range reference either by typing or dragging
through the cells:

Sub ExcelInputBoxMethod()

Set MyRange = Application.InputBox(_
Prompt:="Please select a range.", _
Title:="Colour me Red", _
Type:=8)

MyRange.Interior.ColorIndex = 3

End Sub

0 Formula
1 Number
2 Text
4 True or False
8 Cell reference
16 Error value
64 An array of values

Excel Visual Basic for Applications

Page 40

When you assign a variable value using an Input Box never set the data type before the
input has been received and validated. To avoid Type Mismatch errors, declare the
variable as Type Variant and then use Type conversion functions after the input has been
captured and validated.

In the following example the USD variable has to be of Type Currency. Had the initial
declaration been As Currency then the code would produce a Type Mismatch error when
the Input Box received invalid data and before the input could be evaluated in the loop.

Sub MisMatchErrors()
Dim USD As Variant

Do

USD = InputBox("Enter the USD rate:")
Loop Until IsNumeric(USD) = True

USD = CCur(USD)

MsgBox USD

End Sub

Most of the work involved in coding Input Boxes is in the validation of the received input.
In the following example, we must specify the current month as a two-digit string.

Sub DataValidation()
Dim vMonthNo As Variant

vMonthNo = InputBox("Enter current month number.", _

Title:="Month Number", _
Default:=Month(Date))

Select Case vMonthNo

Case 1 To 12
vMonthNo = Round(vMonthNo, 0)
vMonthNo = Format(vMonthNo, "00")
MsgBox "Current month is " & vMonthNo

Case Else
MsgBox "Action cancelled"
Exit Sub

End Select

End Sub

If your Input Box is prompting for an entry into a worksheet cell then consider an easier
alternative to writing a macro. See Review of Excel’s User Interface features

Excel’s Status Bar and Caption

Changing the value of the Application’s StatusBar (bottom of the Window) or Caption
(top of the Window) properties is ideal for non-modal messaging. The StatusBar is often
used for progress messages.

This example forces the status bar to be visible as it sets the status bar text to "Updating
data, please wait" while the File Links are updated, then it restores the original state.

With Application
x = .DisplayStatusBar
.DisplayStatusBar = True
.StatusBar = "Updating data, please wait..."
ThisWorkbook.UpdateLink Name:="C:\MyData.xls", _

 Type:=xlExcelLinks
.StatusBar = False
.DisplayStatusBar = x

End With

Excel Visual Basic for Applications

Page 41

The Caption property is the text that appears in the title bar of the main Microsoft Excel
window. If you do not set a name, or if you set the property to Empty, this property
returns "Microsoft Excel".

Application.Caption = "The date today is " & Date

Menus and Toolbars

Simple Method
Consider an easier alternative to constructing a Menu or Toolbar by using code. It is
simpler to open the Excel Customize dialog, go to the Toolbars section and click the New
button. Now you have created a new Toolbar you can add Command Bar objects, see
Command Bars and then Attach the Toolbar to the workbook. Finally, you use a suitable
Event, such as the Worksheet Activate or Workbook Open events, to show the Toolbar as
required. See Events

The following examples are event procedures that display the MyBar Toolbar docked at
the top of the workspace window when the worksheet is activated and then hide it when
a different worksheet is activated.

Private Sub Worksheet_Activate()
 With CommandBars("MyBar")
 .Visible = True
 .Position = msoBarTop
 End With
End Sub

Private Sub Worksheet_Deactivate()
 CommandBars("MyBar").Visible = False
End Sub

Using VBA code to construct menus
Menu bars and Toolbars are CommandBar objects. Menus are CommandBar Popup
objects and items on the menus are CommandBar Button objects. The code for creating
menu structures is rather dense but the process is straightforward, you are adding
Controls to Command Bars and assigning macros to them.

Menu construction code is best implemented using Event procedures. The following
example uses the Activate and Deactivate events of the ThisWorkbook object. The
custom menu is displayed at the top of the worksheet window when the workbook is
activated and all the current toolbars are hidden. When another workbook has the focus,
the normal menu bar is reinstated and the Standard and Formatting toolbars are
displayed.

The custom menu retains the Excel File and Window menus but substitutes a new
structure into the body of the menu so that the main Excel menu looks like this:

Here are the event procedures. For the sake of convenience, the procedure for creating
the new menu structure is stored in the separate module, 'mdlUserMenus'.

Private Sub Workbook_WindowActivate(ByVal Wn As Excel.Window)
Dim cbMenuBar As CommandBar

On Error Resume Next

'Turn off display of visible Command Bars except for
'the Worksheet Menu Bar.

Excel Visual Basic for Applications

Page 42

For Each cbMenuBar In Application.CommandBars
If cbMenuBar.Visible And Not cbMenuBar.Index = 1 Then

 cbMenuBar.Visible = False
End If

Next

'Create local application menu bar.
Call mdlUserMenus.SetUpMenu

End Sub

Private Sub Workbook_WindowDeactivate(ByVal Wn As Excel.Window)

On Error Resume Next

With Application
.CommandBars.Item(1).Reset 'Worksheet Menu Bar.
.CommandBars.Item(3).Visible = True 'Standard Toolbar.
.CommandBars.Item(4).Visible = True 'Formatting Toolbar.

End With

End Sub

Here is the procedure that creates the new menu structure. The Caption property sets
the text that is displayed in the menu, an ampersand character (&) before a letter
underlines it in the menu and sets it as the accelerator key. The OnAction property is
where you nominate the procedure that the menu item calls when it is selected. The
FaceID property is optional and is used when you require an icon displayed in the menu.

Public Sub SetUpMenu()
Dim cbMenuBar As CommandBar
Dim cbElement As CommandBarControl
Dim cbChangeDate As CommandBarControl
Dim cbRecords As CommandBarControl
Dim cbCheckRecords As CommandBarControl
Dim cbGetRecords As CommandBarControl
Dim cbRunReport As CommandBarControl

'Clear elements of Worksheet Menu Bar.
Set cbMenuBar = Application.CommandBars.Item(1)
With cbMenuBar

'Force the menu to standard configuration.
 .Reset

For Each cbElement In .Controls
Select Case cbElement.Caption

Case "&File", "&Window"'Do nothing.
 Case Else

cbElement.Delete
End Select

Next
.Position = msoBarTop

End With

'Construct new menu items.
 Set cbChangeDate = _
 cbMenuBar.Controls. _
 Add(Type:=msoControlButton,Before:=2, Temporary:=True)

With cbChangeDate
.Style = msoButtonIconAndCaption
.Caption = "Change &Date..."
.FaceId = 125
.OnAction = "DBOps01ChangeDate"

End With

Excel Visual Basic for Applications

Page 43

Set cbRecords = _
cbMenuBar.Controls. _
Add(Type:=msoControlPopup, Before:=3, Temporary:=True)

With cbRecords
.Caption = "&Records"

End With

Set cbGetRecords = _
 cbRecords.Controls.Add(Type:=msoControlButton, Temporary:=True)
With cbGetRecords

.Caption = "&Get Records..."

.FaceId = 2151

.OnAction = "DBOps02GetRecords"
End With

Set cbCheckRecords = _
 cbRecords.Controls.Add(Type:=msoControlButton, Temporary:=True)
With cbCheckRecords

.Caption = "&Check Records"

.FaceId = 141

.OnAction = "DBOps07DefineData"
End With

Set cbRunReport = _
 cbMenuBar.Controls.Add(Type:=msoControlButton, _
 Before:=4, Temporary:=True)
With cbRunReport

.Style = msoButtonIconAndCaption

.Caption = "Run Re&port..."

.FaceId = 3271

.OnAction = "DBOps04RunReport"
End With

End Sub

Restoring the user’s Toolbars
In the previous example we turned off all the toolbars and then reinstated just the
Standard and Formatting toolbars. A better approach would have been to store the
identity of the currently visible toolbars and then reinstate the original state of the user’s
toolbars. In the following example, we loop through the Command Bars Collection and
store the Index value of each visible bar in the module level variable, 'm_iVisibleBars'.

The variable contains a dynamic array as clearly, it would not be possible to size the
array until the number and identity of the visible toolbars had been retrieved.

'Store identity of visible command bars to enable reset.
ReDim m_iVisibleBars(0)
For Each cbMenuBar In Application.CommandBars

If cbMenuBar.Visible And Not cbMenuBar.Index = 1 Then
m_iVisibleBars(UBound(m_iVisibleBars)) = cbMenuBar.Index
ReDim Preserve m_iVisibleBars(UBound(m_iVisibleBars) + 1)

End If
Next

'Size the array to the data stored.
If Not UBound(m_iVisibleBars) = 0 Then

ReDim Preserve m_iVisibleBars(UBound(m_iVisibleBars) - 1)
End If

At the appropriate time, it is then a simple matter to restore the original state of the
user’s toolbars by looping through the elements of the array.

See overleaf:

Excel Visual Basic for Applications

Page 44

'Reinstate original Command Bars.
If Not UBound(m_iVisibleBars) = 0 Then

For i = LBound(m_iVisibleBars) To UBound(m_iVisibleBars)
Application.CommandBars(m_iVisibleBars(i)).Visible = True

Next
End If

Calling Excel’s built-in Dialogs

You can show any of the Excel application’s intrinsic dialogs using the Dialogs property of
the application object. The following statement displays the Excel File, Open dialog box.

Application.Dialogs(xlDialogOpen).Show

The Show Method returns False if the dialog was cancelled. The Show Method does have
optional arguments to control some of the options in the dialog, they are documented in
VBA Help; look for the Help topic "Built-In Dialog Box Argument Lists". All these
arguments are positional, not named so you will have to use commas to denote the
specific argument value.

The following procedure points to a specific directory, shows the File, Open dialog listing
All Files and evaluates whether or not the dialog was cancelled.

Sub ShowExcelFileOpen()
Dim ReturnValue As Boolean
ChDir "C:\My Documents"
ReturnValue = Application.Dialogs(xlDialogOpen).Show("*.*")
If Not ReturnValue Then
 MsgBox "Cancelled"
End If

End Sub

Review of Excel’s User Interface features

Before deciding to use the user interaction resources of VBA make sure that you are not
ignoring the application itself. It is, of course, much quicker and easier to use features in
the application that you have paid for than it is to recreate them.

Task Feature Excel Menu
Changing the appearance of
cells based on the data stored
in them.

Conditional Formatting.
User Defined Number
Formats.

Format

Pop-up messages in cells. Comments. Insert
Prompting for and governing
the input of data into cells.
Showing a drop down list of
choices in a worksheet cell.

Validation. Data

Interactive graphical controls
such as drop-down lists, check
boxes etc. linked to cells.

Form Controls.
ActiveX Controls.

Forms Toolbar.
Control Toolbox.

Excel Visual Basic for Applications

Page 45

User Forms
Display interactive dialogs in the Excel interface by including a User Form in your project.
The programming of User Forms can be time-consuming as every action that the User
Form performs has to be coded, the OK button does not do anything until you write the
code contained in its click event.

You need to be familiar with User Form objects, there is no macro recorder here. The
User Form object model is zero-based, the first item in a list is item 0. Excel is one-
based. There are potential mismatch problems.

Designing the User Form

The general methodology for designing User Forms is as follows:

1. Insert a User Form into your Project.

2. Create the visual image by adding Controls to the Form.

3. Name the Controls and set their static properties.

4. Write the code in your General Module to show the User Form.

5. Fill in the event code shells in the User Form’s object module.

Step by Step

If any of the interface elements mentioned below are not visible then choose them from
the View Menu.

1. Select your project in the Project Explorer Window and use the Insert menu to
insert a User Form.

2. Use the Toolbox to draw the required Controls on the User Form. Drag to resize
the Form or its contained Controls as necessary. Use the usual Drag and Drop
techniques to copy or move the Controls—drag to move, CTRL drag to copy.

3. Set the Name properties of your controls as soon as you have drawn them. It is
important that you do this early on as it can prove impossible to register them
later on and you are stuck with the default Names. Use the Properties Window to
set any other properties that are static, such as Captions.

Some Form properties are static and are done at Design Time, others are dynamic
and will be changed as the user manipulates the Form. These are done in code at
Run Time.

4. In your General Module (use the Insert menu to insert a Module if necessary)
enter the code to show the User Form at the relevant point in your procedure.

 UserFormName.Show

Use the Close box on the Form to close it; you will notice that clicking the OK
button at this stage has no effect.

5. Now expose the User Form’s Object Module and complete the Events for each
Form element. Click the View Code tool or press F7 or double-click any one of the
Controls.

You will find that during this design process that you will have numerous windows open
in the VB Editor and you may find yourself getting confused and loosing track of what
you were trying to do. Persevere, you do get used to it. But there is no magic wand, you
have to get used to all the different views and windows. There is the window containing
the User Form object which has two views; the code view and the object view, there is
the Properties window and there is the Controls Toolbox.

Excel Visual Basic for Applications

Page 46

Designing a User Form; a riot of windows and objects.

Draw the controls on the User Form and set their
properties in the Properties window. Try to remember
to name each control as you create it; discipline at this
stage pays dividends when you come to write the code.

Completing the Form’s Events

You will see two drop-down lists at the top of the Code Window for the User Form object
module. The left-hand list is the Object list, the right-hand list is the Procedure list.
Choose an object from the Object list and its associated Events are displayed in the
Procedure list.

Before starting work on the code, consider what you want to do and how the Form should
be interacting with its user. For example, use the Form’s Initialize event to set default
values or build lists before the Form is visible, use the Click event of a command button
to close the form etc.

To place the User Form in memory, without displaying it:
Load UserFormName

To remove the User Form from memory:
Unload UserFormName

To display the User Form:
UserFormName.Show

To remove the User Form from the display, but not from memory:
UserFormName.Hide

Hide the Form when you intend users to switch in and out of the same Form repeatedly.
Unload the User Forms as soon as you can, to release the memory. Once the User Form
has been unloaded the values of its controls are no longer in scope.

When you access the User Form Object from your General module use the name of the
object. In the User Form Object Module code you can use the keyword, Me.

It is important that the User Form is unloaded at the right time so that key decisions and
selections made in the User Form are available for evaluation when your code needs to
continue.

For example, you might want to return to the main process code in your General module
and write the code that would be the outcome of choosing either the OK or Cancel

Excel Visual Basic for Applications

Page 47

buttons in the User Form. None of the controls would be visible to the General module at
this point if the Form had already been unloaded.

In the first example, the Click Events of the OK and Cancel buttons change the value of a
Public variable and then unload the Form. The Public variable is still in scope after the
Form has been destroyed and is therefore available for evaluation in the General module.

General Module Code User Form Object Module Code
Public GlobalVar As Integer

Sub Main()
 GlobalVar = 1
 frmDemo.Show
 Select Case GlobalVar
 Case 1
 'OK button
 Case 0
 'Cancel button
 End Select
End Sub

Private Sub cmdOK_Click()
 GlobalVar = 1
 Unload Me
End Sub

Private Sub cmdCancel_Click()
 GlobalVar = 0
 Unload Me
End Sub

In the second example the User Form is only hidden, not unloaded by the OK and Cancel
button Click Events. The Form remains in scope with its control values visible to the main
process code in the General module. The relevant decisions based on its control values
are made and then finally the Form is unloaded. Form Controls have a non-specific
property, Tag which can be used to store a control value.

General Module Code User Form Object Module Code

Sub Main()
 frmDemo.Show
 Select Case frmDemo.cmdOK.Tag
 Case True
 'OK button
 Case False
 'Cancel button
 End Select
 Unload frmDemo
End Sub

Private Sub cmdOK_Click()
 With Me
 .cmdOK.Tag = True
 .cmdCancel.Tag = False
 .Hide
 End With
End Sub

Private Sub cmdCancel_Click()
 With Me
 .cmdOK.Tag = False
 .cmdCancel.Tag = True
 .Hide
 End With
End Sub

But the code is still not completed, as we have not yet handled the situation where the
user has closed the User Form by clicking the Form’s Close Box instead of using the
Cancel button. In this case, the form is unloaded but none of the code associated with
the Cancel button is executed; as the Click event has not occurred. Here, we must use
the Form’s QueryClose event to specify the precise meaning of the Close Box.

Having to consider all the nuances of the User Form’s events makes coding User Forms a
chore but it is the only way to achieve a robust application.

A User Form in your Project means that you have more than one code module to deal
with. It is good practice to follow the convention of organising your code so that the main
process of execution is in the General Module and the code in the User Form Module is
restricted to the manipulation of the Form.

Naming Conventions

It is awkward having to use the default object names when you are completing the event
procedures for each control; is the OK button CommandButton1 or is it
CommandButton2? Follow the published standard conventions for Control names, add
the three-character lower case prefix to your names and you will never have any
problems identifying your control objects in code.

Excel Visual Basic for Applications

Page 48

Remember to name your controls as they are created and before you run the Form, you
may not be able to rename then retrospectively.

Give the controls obvious names;
remember that when you are writing
the code for the controls you will not
be able to see the User Form. For
example, good names for the OK and
Cancel buttons are 'cmdOK' and
'cmdCancel'. All the control names will
be available in the Complete Word
listings so the more organised and
consistent the naming convention is
the easier the code will be to write.

User Form Example Code

In the following example we show the User
Form illustrated to the right. The items in the
list correspond to Range Names in the
workbook that store data. When you click an
item in the list, the label in the Form has to
change. When you click the OK button, the
data is cleared from the target range and is
replaced by data copied from the selected
range. The same happens when you double
click one of the items in the list. Nothing
happens if you click the Cancel button or
close the User Form.

You are informed if you clicked the OK button but did not choose an item in the list.

Code in the General Module

Option Explicit

'Global control variable visible to the User Form.
Public g_strRegionSelected As String

Public Sub ExtractRegionalData()

Dim rngSource As Range
Dim rngDestination As Range
Dim rngOldData As Range

'Initialise regional choice variable.
g_strRegionSelected = ""

'Show user form to determine region choice.
frmRegion.Show

Select Case g_strRegionSelected

Case " " 'Action cancelled.
GoTo ExtractRegionalDataCLOSE

Case "" 'No selection made.

MsgBox "You did not choose a Region.", _
Buttons:=vbExclamation, _
Title:="Data not extracted"

GoTo ExtractRegionalDataCLOSE

Case Else 'Extract selected regional data.

Object Prefix
Check Box chk
Combo Box cbo
Command Button cmd
Frame fra
Label lbl
List Box lst
Option Button opt
Text Box txt
Toggle Button tog
User Form frm

Excel Visual Basic for Applications

Page 49

'Transform Region text into Name definition.
g_strRegionSelected = Application. _

WorksheetFunction.Substitute _
(g_strRegionSelected," ", "_")

'Clear destination range.
Set rngDestination = Range("Destination")
With rngDestination

If .CurrentRegion.Rows.Count > 2 Then
Set rngOldData = _

Range(rngDestination, _
Cells(.End(xlDown).Row, 7))

rngOldData.Clear
End If

End With

'Initialise source range.
Set rngSource = Range(g_strRegionSelected)

'Copy source to destination.
rngSource.Copy rngDestination

End Select

ExtractRegionalDataCLOSE:
Exit Sub

End Sub

Code in the User Form Object Module

Private Sub UserForm_Initialize()

With Me
'Initialise instructions text.
.lblRegion.Caption = "Choose a Region:"
'Initialise list items.
With .lstRegion

.AddItem "Western Europe"

.AddItem "North America"

.AddItem "Eastern Europe"

.AddItem "Asia Pacific"

.AddItem "Latin America"

.AddItem "Africa"

.AddItem "Middle East"
End With

End With
End Sub

Private Sub cmdOK_Click()

Unload Me
End Sub

Private Sub cmdCancel_Click()

g_strRegionSelected = " "
Unload Me

End Sub

Private Sub lstRegion_Click()

With Me
'Which Region is selected.
g_strRegionSelected = _

.lstRegion.List(.lstRegion.ListIndex)
'Change list caption.

Excel Visual Basic for Applications

Page 50

.lblRegion.Caption = _
"Extract data for " & g_strRegionSelected

End With
End Sub

Private Sub lstRegion_DblClick(ByVal Cancel As _ MSForms.ReturnBoolean)

With Me.lstRegion
'Which Region is selected.
g_strRegionSelected = _

.List(.ListIndex)
End With
Unload Me

End Sub

Private Sub UserForm_QueryClose(Cancel As Integer, _

 CloseMode As Integer)

'The Form's Close Box mimics the Cancel Button.
If CloseMode <> vbFormCode Then

g_strRegionSelected = " "
End If

End Sub

List Boxes

In the previous example the list in the List Box was populated from static values in the
code using the AddItem method. This is not always appropriate and you may need to fill
the list with values from worksheet cells. Use the RowSource property of the List Box to
specify the cell values required but do not try to use an object reference; only an
external formula reference is accepted.

If you are setting the property value in the Properties Window then the following style of
reference should be used:

=Sheet1!A1:A12

If you are setting the property value in your code then the statement should be like this:

Me.NameOfListBox.RowSource = "=Sheet1!A1:A12"

The following example we are unable to specify the cell range for a list box definitively as
the list is dynamic and constantly changing. Use the CurrentRegion property to find the
list and then the Address property to reveal the cell references of the list.

Private Sub UserForm_Initialize()
Dim SheetName As String
Dim SourceRange As String

SheetName = ActiveSheet.Name
SourceRange = Range("A1").CurrentRegion.Address

Me.lstDynamic.RowSource = _

"=" & SheetName & "!" & SourceRange

End Sub

Instancing a User Form

The size of your workbook file will increase dramatically if you include multiple User
Forms. In this case, consider having just one base User Form and changing the Form and
its controls using the Form’s Initialize event. You show the same Form in various different
guises by creating an instance (a copy) of the Form object using the New keyword.

Excel Visual Basic for Applications

Page 51

Design the Form by drawing all the control objects required and then hide or reveal them
or change their positions as necessary. The following example shows a succession of two
User Forms, both are completely different but are the same base Form object, frmDemo.

Public g_sTypeOfForm As String

Public Sub InstancingUserForm()

Dim MyForm As frmDemo

'Create an instance of the base Form.
g_sTypeOfForm = "Step 1"
Set MyForm = New frmDemo
MyForm.Show

'Create another instance of the base Form.
g_sTypeOfForm = "Step 2"
Set MyForm = New frmDemo
MyForm.Show

End Sub

Code in the User Form Object Module

Private Sub UserForm_Initialize()

With Me
'Hide all form controls.
For Each Control In .Controls

Control.Visible = False
Next
'Initialise User Form controls.
Select Case g_sTypeOfForm

Case "Step 1"
.Caption = "Step 1 of 2"
.Height = 180
.Width = 240
With .cmdButton1

.Caption = "Next"

.Left = 156

.Top = 24

.Visible = True
End With
With .cmdButton2

.Caption = "Cancel"

.Left = 156

.Top = 72

.Visible = True
End With

 'Etc. Specify the controls for the Form.
Case "Step 2"
'Etc. Etc. Specify the controls for the other Form.

End Select
End With

End Sub

The code is quite long and repetitive but is easily generated by copying. Execution of the
code is rapid; it is certainly no slower to build Form controls through code than it is to
have them preset. The memory overhead of extra lines of code in a module is
significantly less than that of multiple User Forms.

Using Me

You will have noticed from the examples the use of the keyword, Me to return the
reference to the User Form object itself. This should only be used in the code contained

Excel Visual Basic for Applications

Page 52

in the User Form module, it is out of scope in the General module. It can be omitted as
the top level object in the User Form is, of course, the User Form itself.

For example, to return the reference to the User Form, frmDataEntry. In the General
module, the reference would have to be explicit:

frmDataEntry.Show

However, in the Object module, the reference would either be explicit:

frmDataEntry.Caption = "Step 1 of 2"

Or use Me:

Me.Caption = "Step 1 of 2"

Or be entirely implicit:

Caption = "Step 1 of 2"

VBA Memory Arrays
Using Arrays to store sets of data

Variables that store more than one element of data are described as arrays. Arrays are
usually lists or tables of related data. See also User Defined Data Type

Arrays have Dimensions that contain Elements. They are tables of data held in memory.
Information stored in arrays is faster and easier to manipulate than information stored in
worksheet cells.

Arrays can store any type of data and arrays can contain other arrays. Arrays are either
of fixed dimension, see Dimensioned Arrays, or can be sized and resized at run time, see
Dynamic Arrays. Arrays are a convenient and efficient alternative to storing data in
worksheet cells. Arrays can easily be created and populated from data stored in a range
of worksheet cells, see Using cell values in arrays

By default, VBA arrays are zero-based (the first item is 0). Excel is one-based (the first
item is 1). This can cause problems but they are not serious so long as you are aware
that potential mismatches can occur.

You can re-base the entire module (using Option Base 1) but be careful, different
versions of Excel behave to base changes in different ways. If the base value is a
problem, then it is usually best to one-base the arrays that you create.

Use the functions LBound and UBound to return the lower and upper boundaries of an
array in preference to using constants.

Dimensioned Arrays

The Variant Array
The simplest array form is a variant array using the array function. The data type must
always be of type Variant irrespective of the data stored in the array. In some versions of
Excel variant arrays are always zero-based and do not comply with the module base.

Sub VariantArray()

Dim vRanges As Variant
Dim vRange As Variant

'Store a list of range names.
vRanges = Array ("Jan", "Feb", "Mar", _

"Apl", "May", "Jun")

'Loop to print the ranges.
For i = LBound(vRanges) To UBound(vRanges)

Range(vRanges(i)).PrintOut
Next

Excel Visual Basic for Applications

Page 53

'or

For Each vRange In vRanges

Range(vRange).PrintOut
Next

End Sub

Array Subscripts
Arrays are created when a variable is declared with a dimensional subscript value and
can be single dimensioned or multi-dimensional. Arrays can have up to 60 dimensions.
The data type is common to the entire array, although type Variant is acceptable. Arrays
only need to be declared to the dimensions of the data that they will hold, beware of
eating up memory by over-sizing your arrays.

This statement declares an array of ten elements:

Dim MyList(1 To 10)

This statement declares an array of one hundred elements, not twenty:

Dim MyList(1 To 10, 1 To 10)

Declaring and populating arrays:

Sub DimensionedArray()

Dim sList(4) As String
Dim sTable(1 To 5, 1 To 2) As String

'A zero based one-dimensional array of strings.
sList(0) = "Jan"
sList(1) = "Feb"
sList(2) = "Mar"
sList(3) = "Apr"
sList(4) = "May"

'A one based two-dimensional array of strings.
sTable(1, 1) = "Jan"
sTable(2, 1) = "Feb"
sTable(3, 1) = "Mar"
sTable(4, 1) = "Apr"
sTable(5, 1) = "May"
sTable(1, 2) = "January"
sTable(2, 2) = "February"
sTable(3, 2) = "March"
sTable(4, 2) = "April"
sTable(5, 2) = "May"

'Return the 4th element of the 2nd dimension.
MsgBox sTable(4, 2)

End Sub

Using Cell values in arrays
Arrays are easily created from cell values by direct assignment to a variable and are
always one-based. The array is two-dimensional if the range is two-dimensional. The
values from the cells are read into memory where they can be easily manipulated and
written back when required. Of course, the array subscripts correspond precisely to the
R1C1 coordinates of the range.

The following example creates and populates a one based, two-dimensional array from
the range of cells; view the array elements in the Locals window.

Excel Visual Basic for Applications

Page 54

Dim MyArray As Variant

MyArray = Sheets(1).Range("A1:B6")

Dynamic Arrays

A dimensioned array has to be declared using a constant value, however this constant
value maybe unknown at the point of declaration. Use ReDim instead of Dim to create a
dynamic array; one that can be re-sized at run time.

Sub DynamicArray()

'Create an array of sheet names.
Dim iNumShts As Integer
Dim i As Integer

'Calculate the number of sheets.
iNumShts = Sheets.Count

'Size the array.
ReDim sSheetNames(1 To iNumShts) As String

'Populate the array.
For i = LBound(sSheetNames) To UBound(sSheetNames)

sSheetNames(i) = Sheets(i).Name
Next

'Add another sheet.
Sheets.Add

'Resize the array.
ReDim sSheetNames(1 To Sheets.Count) As String

'Repopulate the array.
For i = LBound(sSheetNames) To UBound(sSheetNames)

sSheetNames(i) = Sheets(i).Name
Next

End Sub

In the previous example you will have noticed that we had to repopulate the array after
having resized it. ReDim resizes the array but clears the data already stored. Use ReDim
Preserve when you want to resize an array but retain the data previously stored.

ReDim Preserve is particularly useful when you want to gather some information and
store it in an array but do not know the extent of the data. In the following example a
range of cells is being searched, we want to store the cell references of the cells
containing a certain value.

As the data is found, it is stored in the array and then an extra element is added to the
array ready for the next item of data. When the search is completed the array has one
element too many; this is then removed.

Note the use of ReDim at the start of the procedure to initialise the array variable, this
has to be done so that the UBound function can calculate the size of the array when the
first element of data is stored.

Sub DynamicArrayOnTheFly()

Dim vList As Variant
Dim oCell As Range

'Initialise the variable so that we can
'use UBound later on.
ReDim vList(0)

Excel Visual Basic for Applications

Page 55

'Loop through the cells.
For Each oCell In Range("A1:D50")

'Test for a value of 5.
If oCell.Value = 5 Then

'Store cell reference in array.
vList(UBound(vList)) = oCell.Address

'Add element to array ready for next item.
ReDim Preserve vList(UBound(vList) + 1)

End If

Next

'Remove empty element from array.
ReDim Preserve vList(UBound(vList) - 1)

End Sub

VBA Error Handling
It is not always possible to test and debug a procedure to the extent that every possible
error is allowed for. Some errors are impossible to test for; they have to be allowed to
occur so that they can then be handled.

Use the On Error Statement to allow and plan for errors, building in commands that
enable the procedure to continue in run time. Without an On Error statement, any run-
time error that occurs is fatal and the procedure is terminated.

You will probably need to redirect the flow of control using the GoTo statement, this
sends execution to a specific point, a line label, in the procedure. A line label is a text
identifier and a colon. In the following example, notice how the procedure flows directly
to the line label and ignores the intervening code.

Sub GoToLineLabels()

GoTo MyLineLabel

MsgBox "Hello Charlie"

MyLineLabel:

MsgBox "Goodbye Charlie"

End Sub

On Error GoTo linelabel

This statement redirects flow to a line label in the event of an error occurring:

On Error GoTo Error_Handler
 …

Error_Handler:

Select Case Err.Number
Case 55 '"File already open" error.

Close #1
Case Else
 GoTo Procedure_Exit

 End Select

Excel Visual Basic for Applications

Page 56

This statement moves to the next statement in the procedure and ignores the error:

On Error Resume Next

This statement disables the current error handler in the procedure. If the procedure is a
subroutine then the error is handled by the calling procedure:

On Error GoTo 0

You can set as many error statements as you require but only one is current.

Sub IgnoringAllErrors()

'Code will break on all errors.

On Error Resume Next

'All errors are ignored.

On Error GoTo 0

'Code will break on all errors.

End Sub

To return to the statement at which the error occurred:

Resume

To return to the command after the one that caused the error:

Resume Next

To resume execution at a specific line label:

Resume LineLabel

There is a range of trappable errors with
defined values that you can use to
evaluate the error. Here are a few
examples, for the full listing see "Trappable
Errors" in VBA Help.

Use the values of the trappable errors to
test for and allow for their occurrence.

If Err.Number = 53 Then MsgBox "Bad
File Name"

The Err Object can be used to give you specific details on the current error, using the
following properties:

Err.Number
Err.Source
Err.Description

You will find that the Err object's Number property will reset under certain conditions,
assign its current value to a variable in order to produce reliable validation code.

Here is a standard template for arranging error-handling code. Notice how the error
handler is isolated from the main process by terminating the procedure prematurely
using the Exit Sub statement. You only want the error handler code to execute if an error
actually occurs.

7 Out of memory
11 Division by zero
18 User interrupt occurred
53 File not found

482 Printer error
521 Can't open Clipboard
735 Can't save file to TEMP directory
744 Search text not found

31036 Error saving to file

Excel Visual Basic for Applications

Page 57

Sub ErrorHandlerTemplate()
Dim x As Integer

On Error GoTo ErrorHandler

'Cause an error.
x = 50000

'Isolate the error handler from main process.
Exit Sub

ErrorHandler:

MsgBox "An unexpected error occurred, " & Err.Description

Resume Next

End Sub

It is quite in order to have the error handler call another procedure passing the current
error values for evaluation. Many different procedures can then all use the same central
error handler procedure.

ErrorHandler:
Call CentralErrorHandler(Err.Description, Err.Number, Err.Source)

Excel Pivot Tables
Excel Pivot Tables are members of the PivotTables Collection which is contained by the
worksheet object. Each Pivot Table contains a collection of PivotFields which are identified
by the text in the header row of the source data. The Excel VBA documentation advises
you to use the macro recorder for the manipulation of Pivot Tables as the object model is
quite complicated and there are so many different elements to each table. It is very good
advice. The following example is a simplification of a recorded macro where the pivot
fields were rearranged. These macro recordings are fairly easy to interpret.

Sub ChangeSummaryReport()
 With Sheets("Analysis").PivotTables("TradeSummary")
 With .PivotFields("Product")
 .Orientation = xlColumnField
 End With
 With .PivotFields("Country")
 .Orientation = xlPageField
 End With
 End With
End Sub

Creating a Pivot Table report

It is in the creation of a PivotTable where the macro recordings can be difficult to
interpret and control. This is a recording of creating a PivotTable:

ActiveWorkbook.PivotCaches.Add(SourceType:=xlDatabase, SourceData:= _
 "Sheet1!R1C1:R87C6").CreatePivotTable TableDestination:="", _

 TableName:="PivotTable1", DefaultVersion:=xlPivotTableVersion10
ActiveSheet.PivotTableWizard TableDestination:=ActiveSheet.Cells(3, 1)
ActiveSheet.Cells(3, 1).Select
ActiveSheet.PivotTables("PivotTable1").AddFields RowFields:="Country", _
 ColumnFields:="Month"
ActiveSheet.PivotTables("PivotTable1").PivotFields("Units").Orientation = _
 xlDataField

Ouch! We need to make some sense out of this if we are to control the creation of our
reports. The source data contains columns containing Product, Country and Month
information with Sales Units data that we want to analyse.

Excel Visual Basic for Applications

Page 58

To create a new PivotTable we can use the Add and CreatePivotTable methods of the
PivotCaches object:

ActiveWorkbook.PivotCaches.Add(SourceType:=xlDatabase, SourceData:= _
 "Sheet1!R1C1:R87C6").CreatePivotTable TableDestination:="", _

 TableName:="PivotTable1", DefaultVersion:=xlPivotTableVersion10
The SourceData is a range object containing the data for the report, the TableDestination
is where the report is returned. The TableName and other arguments are optional.

For example, define the source data as being all the data from A1 on the active
worksheet:

Set rngSource = ActiveSheet.Range("A1").CurrentRegion

The table destination is a new worksheet in the workbook, inserted after the active
sheet:

Set wksSales = Worksheets.Add(After:=ActiveSheet)

And create the PivotTable, naming it as 'Sales Report':

ActiveWorkbook.PivotCaches.Add _
 (SourceType:=xlDatabase,SourceData:=rngSource) _
 .CreatePivotTable TableDestination:= wksSales.Range("A1"), _

 TableName:="Sales Report"

Create an object variable to refer to the pivot table report:

Set ptSales = wksSales.PivotTables("Sales Report")

Now, add the fields required. Every column in the source data range creates a member of
the PivotFields collection as the Pivot cache contains all the source data. But to show a
field in the report you have to use the AddFields method:

ptSales.AddFields RowFields:="Country", ColumnFields:="Month"

Specifing them as:

PageFields:= "Product"
RowFields:= "Country"
ColumnFields:= "Month"

To specify two or more fields with the same orientation it is like this:

ColumnFields:= Array("Month","Country")

Data Fields

To add a data field to the report you do not use the AddFields method, rather you set the
Orientation property of an existing pivot table field to xlDataField (this field does not
have to be one of those already added, it can be any of the pivot fields):

ptSales.PivotFields("Units").Orientation = xlDataField

However, it is not possible to predict the name of the new pivot field as Excel names it
automatically depending on the default Summary function. If the default Summary
function is Sum then it is called "Sum of Units", if the default function is Count then it is
called "Count of Units". And, at this stage there is no way of finding out what the default
Summary function is! Once you have named the field Excel will not change it again
automatically but you need to make sure that you can specify the summary function
correctly.

Either, refer to the field not as a member of the PivotFields collection (where it is
contained but you do not know what it is called) but as a member of the DataFields
collection. As you create a data field it becomes the first member of this collection, the
next data field is the second member etc.

ptSales.PivotFields("Units").Orientation = xlDataField
ptSales.DataFields(1).Function = xlSum
ptSales.DataFields(1).Name = "Total Sales"

Excel Visual Basic for Applications

Page 59

Or, set all the relevant properties as you create each data field, like this:

With ptSales.PivotFields("Units")
 .Orientation = xlDataField
 .Caption = "Total Sales"
 .Function = xlSum
 .NumberFormat = "#,##0_-"
End With

With ptSales.PivotFields("Units")
 .Orientation = xlDataField
 .Caption = "Units %"
 .Calculation = xlPercentOfTotal
End With

Excel Charts
Excel Charts are one of the most complicated sections in the Object Model. The hierarchy
of an individual Chart object is fairly obvious, the principal issue is to access the Chart
object itself. You can use the ActiveChart property for the current chart but identifying a
specific chart can be a problem.

Chart Objects

Excel has two types of chart, a chart on a chart sheet or an embedded chart in a
worksheet. There is no ChartSheet object, the Charts property of the Application object
returns a Sheets collection containing one Chart object for each chart sheet. It does not
contain the Chart objects for the embedded charts.

In the case of the embedded charts, the Chart object is not contained directly in the
worksheet. Rather, the worksheet contains a ChartObject object that is a container for
the Chart object. Confused? In practice it means that you have to include .Chart in the
object reference for the Chart elements, like the axes but not for the Chart area.

Thus, the object reference for the chart sheet, "Chart1" is as follows:

ThisWorkbook.Charts("Chart1")

Whereas, the reference for "Chart 1" on "Sheet1" is:

Worksheets("Sheet1").ChartObjects("Chart 1").Chart

It is advisable to examine your recordings carefully and experiment using the Immediate
Window before starting your code. Embedded charts in particular.

An object reference like this for the first chart on the worksheet will fail:

ChartObjects(1).Name

You must return the Sheet object and the Chart object:

ActiveSheet.ChartObjects(1).Chart.Name

The following procedure creates an embedded chart.

Sub CreateEmbeddedChart()
Dim MyChart As ChartObject
Dim c As Long
Dim r As Long

'Get worksheet data for positioning chart.
c = Columns(1).Width
r = Rows(1).Height

'Position chart using worksheet units.
Set MyChart = ActiveSheet.ChartObjects.Add(_

Left:= c * 3, Top:= r * 0.5, _
Width:= c * 8, Height:= r * 20)

Excel Visual Basic for Applications

Page 60

With MyChart

'Define the Chart type.
.Chart.ChartType = xlLine

'Add a data series.
.Chart.SeriesCollection.Add _

Source:=ActiveSheet.Range("A1:B6"), _
 Rowcol:=xlColumns, _
 Serieslabels:=True, _
 Categorylabels:=True

'Plot area fill colour to blue.
.Chart.PlotArea.Interior.ColorIndex = 5

'Add a Chart title.
.Chart.ChartTitle.Caption = "Plot for " & Date

End With
End Sub

Arranging Charts on a Worksheet

In the following example all the ChartObjects on a worksheet are sized to uniform
dimensions and then lined up to worksheet row and column locations. The resulting
arrangement is sets of four charts across the worksheet, aligning to columns A,E,I and M,
starting a new set of four every 16 rows.

Sub LineUpCharts()
Dim oWSht As Worksheet
Dim rSize As Long
Dim cSize As Long
Dim rAlign As Long
Dim cAlign As Long
Dim i As Integer

Set oWSht = Worksheets("Sheet1")

'Get worksheet dimension data.
rSize = oWSht.Rows(1).Height
cSize = oWSht.Columns(1).Width

'Initialise row and column alignment variables.
rAlign = 2
cAlign = 1

'Loop through the charts.
For i = 1 To oWSht.ChartObjects.Count

With oWSht.ChartObjects(i)

'Size the chart.
.Height = rSize * 16
.Width = cSize * 4

'Align chart to worksheet rows and columns.
.Top = oWSht.Rows(rAlign).Top
.Left = oWSht.Columns(cAlign).Left

End With

'Increment column alignment values.
cAlign = cAlign + 4

Excel Visual Basic for Applications

Page 61

'Start a new set of four charts.

 If i Mod 4 = 0 Then
rAlign = rAlign + 16
cAlign = 1

 End If

Next

End Sub

Embedding Chart Data Series

The following example converts all chart source data from cell references to arrays of
constants to make the charts portable and independent of their data (i.e. to mimic
pressing F9 in a SERIES formula)

The procedure assumes all charts are embedded charts on worksheets. Note how the
loop goes through the worksheets, through each chart on each worksheet and finally
through each data series in each chart. The code listing for the function procedure
DerivedValues follows the listing for the Sub.

Public Sub ChartConstants()

Dim sPrompt As String
Dim iAns As Integer
Dim oWSht As Worksheet
Dim oChrt As ChartObject
Dim oSeries As Series
Dim sOldFormulaString As String
Dim sFormulaString As String
Dim sNewFormulaString As String
Dim sArg1 As String
Dim sArg2 As String
Dim sArg3 As String
Dim sArg4 As String
Dim iComma1 As Integer
Dim iComma2 As Integer
Dim iComma3 As Integer
Dim iBracket1 As Integer
Dim iBracket2 As Integer

On Error GoTo ErrChartConstants

'User prompt.
sPrompt = "This macro breaks the link between your charts" & _

" and the data on which they depend." & vbCr & _
"Do you want to continue?"

iAns = MsgBox(sPrompt, vbYesNo + vbQuestion, "Unlink Charts")

 'Action cancelled.

If iAns = vbNo Then GoTo ExitChartConstants

'Loop for worksheets.
For Each oWSht In Worksheets

'Loop for chart objects.
For Each oChrt In oWSht.ChartObjects

'Loop for chart data series.
For Each oSeries In oChrt.Chart.SeriesCollection

'Manipulate formula string.
sOldFormulaString = CStr(oSeries.Formula)

Excel Visual Basic for Applications

Page 62

With Application.WorksheetFunction

'Reduce the value of the first argument.
iBracket1 = .Find("(", sOldFormulaString)
iComma1 = .Find(",", sOldFormulaString)
sFormulaString = Mid(sOldFormulaString, _

iBracket1 + 1, iComma1 - iBracket1 - 1)
sArg1 = DerivedValues(sFormulaString)

'Reduce the value of the second argument.
iComma2 = .Find(",", sOldFormulaString, _

iComma1 + 1)
sFormulaString = Mid(sOldFormulaString, _

iComma1 + 1, iComma2 - iComma1 - 1)
sArg2 = DerivedValues(sFormulaString)

'Reduce the value of the third argument.
iComma3 = .Find(",", sOldFormulaString, _

iComma2 + 1)
sFormulaString = Mid(sOldFormulaString, _

iComma2 + 1, iComma3 - iComma2 - 1)
sArg3 = DerivedValues(sFormulaString)

'Reduce the value of the forth argument.
iBracket2 = .Find(")", sOldFormulaString)
sFormulaString = Mid(sOldFormulaString, _

iComma3 + 1, iBracket2 - iComma3 - 1)
sArg4 = CStr(sFormulaString)

End With

'Construct formula string from derived 'values.
sNewFormulaString = "=SERIES(" & sArg1 & "," _

& sArg2 & "," _
& sArg3 & "," _
& sArg4 & ")"

'Substitute new formula string for old.
oSeries.Formula = sNewFormulaString

Next oSeries

Next oChrt
Next oWSht

'Confirm completion.
MsgBox "Chart formulas are converted.", vbInformation

ExitChartConstants:
Exit Sub

ErrChartConstants:

sPrompt = "The following unexpected error occurred: " _
& vbCrLf & _
Err.Description & _
"." & " Error Number: " _
& Err.Number & vbCrLf & _
"Chart not converted." & vbCrLf & _
"Click OK to continue."

MsgBox sPrompt, vbCritical, "Non Fatal Error"

Resume Next

End Sub

Excel Visual Basic for Applications

Page 63

Private Function DerivedValues(sFormulaString As String) As String

'Accepts : Sheet and Cell references in formula language.
'Returns : Values of those references as valid string 'expressions in
formula language.

Dim iExternal As Integer
Dim sSheetRef As String
Dim sRangeRef As String
Dim vCellValues As Variant
Dim vElement As Variant
Dim vFormulaArray As Variant

On Error GoTo 0

'Force a zero-length string to Empty.
If sFormulaString = "" Then

DerivedValues = Empty
Exit Function

End If

'Identify objects and return cell values.
iExternal = Application.WorksheetFunction.Find("!", _

sFormulaString)
sSheetRef = Left(sFormulaString, iExternal - 1)
sRangeRef = Mid(sFormulaString, iExternal + 1)
vCellValues = Sheets(sSheetRef).Range(sRangeRef).Value

'Test for an array.
If Not IsArray(vCellValues) Then

'Return the single value.
DerivedValues = """" & CStr(vCellValues) & """"

Else
'Construct a string from the array elements.
For Each vElement In vCellValues

'Force empty values to zero.
If IsEmpty(vElement) Then vElement = 0

'Force strings to literal strings.
If Not IsNumeric(vElement) Then

vElement = """" & vElement & """"
 End If

vFormulaArray = vFormulaArray & vElement & ","
Next

'Remove trailing comma.
vFormulaArray = Left(vFormulaArray, _

Len(vFormulaArray) - 1)

'Enclose the expression in braces.
DerivedValues = CStr("{" & vFormulaArray & "}")

End If

End Function

Excel Visual Basic for Applications

Page 64

Application Interaction
All MS Office applications are automation clients and servers so that you can use VBA as
a bridge language to interact with the services provided by other applications.

Creating Object Model References

Before you can use another object model you must create a reference to the Class
containing the Type Library that you wish to use. Declare an object variable to hold the
reference to the object and then assign a reference to the object to the variable.

There are two methods, Early Binding and Late Binding. Early Binding is the preference
as it is more efficient and allows better use the resources of the VB editor to develop and
test your code.

Late Binding
Use the CreateObject or GetObject functions to return an object reference. This gives you
a late bound interface meaning that as you write your code in Excel you will not be able
to look up Help for the other object model or use statement completion. Here is a late
bound instance of MS Word:

Sub UsingWordLateBinding()

'Declare a generic variable to hold the reference.
Dim wdApp As Object

Set wdApp = CreateObject("Word.Application")

 'To see the application's interface.
wdApp.Visible = True

 'Manipulate Word objects.

wdApp.Documents.Add

End Sub

Early Binding

Add a reference to your
project using the References
dialog. In the VB editor menu
choose Tools, References.

Check the relevant box and
move it up the priority list
nearer to the top.

Next, you declare an object
variable of the specific type
and then you use the New
keyword to create an instance
of the application:

Dim wdApp As Word.Application
Set wdApp = New Word.Application

Excel Visual Basic for Applications

Page 65

Finally, write the code required to manipulate Word. You will see all of the relevant
documentation in the Object Browser and the Word Object Library references are
available in the Complete Word drop down lists. Again, you have to make the other
application visible if you want to see it on your screen. Your code is far more efficient if
you do not display the visual interface. However, it is a good idea to have the other
application visible while testing your code.

Interacting with MS Word
Sub WordAutomationEarlyBinding()

Dim wdWord As Word.Application
Dim wdWordDoc As Word.Document
Dim wdWordSel As Word.Selection
Dim PrintTime As Integer
Dim StartTime As Single

On Error GoTo ErrorHandler

Set wdWord = New Word.Application
Set wdWordDoc = wdWord.Documents.Add
Set wdWordSel = wdWord.Selection

With wdWordSel

.TypeText "Have a nice day"

.WholeStory

.Font.Name = "Arial"

.Font.Size = 12

.Font.Bold = wdToggle
End With

wdWordDoc.PrintOut

'Timer to allow for print spooling.
PrintTime = 20
StartTime = Timer
Do While Timer < StartTime + PrintTime
 'Yield to system.

DoEvents
Loop

wdWord.Quit

'Destroy objects.
Set wdWordSel = Nothing
Set wdWordDoc = Nothing
Set wdWord = Nothing

Exit Sub

ErrorHandler:
MsgBox "Unexpected error. " & Err.Number

End Sub

Excel Visual Basic for Applications

Page 66

This is the type of code required to automate Excel from another application:

Sub ExcelAutomationEarlyBinding()

Dim oXLApp As Excel.Application
Dim oXLWBook As Excel.Workbook
Dim oXLWSht As Excel.Worksheet

Set oXLApp = New Excel.Application
Set oXLWBook = oXLApp.Workbooks.Add
Set oXLWSht = oXLWBook.Worksheets.Add

With oXLWSht

.Cells(1, 1) = "Tom"

.Cells(1, 2) = "Dick"

.Cells(1, 3) = "Arry"
End With

oXLApp.Visible = True

oXLApp.Quit

 Set oXLApp = Nothing
 Set oXLWBook = Nothing
 Set oXLWSht = Nothing

End Sub

Interacting with MS Access
When you write code to work with an MS Access database you need to use the DAO
object model to manipulate data stored in Tables and the Access object model to display
Forms or print Reports etc. The Access application does not contain its own data.

To copy the contents of a DAO Recordset to an Excel worksheet, set a reference to MS
DAO using the References dialog and then use the CopyFromRecordSet Method of the
Range object. The following example opens the database 'DB1' and copies the first 10
columns and 10 rows from the 'ClosingPrices' table to the current worksheet, starting
with cell reference A1.

Sub ReturningDAORecordset()

Dim rs As Recordset
Dim ReturnVal As Integer

Set rs = _

DBEngine.OpenDatabase("c:\db1.mdb"). _
OpenRecordset("ClosingPrices")

ReturnVal = Range("A1").CopyFromRecordSet(rs, 10, 10)

End Sub

You can omit the column and row values to return the entire Recordset. In the example,
the value of the ReturnVal variable is not being used for any specific purpose, you would
usually use the variable for validation purposes. Copying begins at the current row of the
Recordset object. After copying is completed, the EOF property of the Recordset object is
set to TRUE.

Excel Visual Basic for Applications

Page 67

Send Keys
If the application that you want to use in your code does not have a programmable
interface then use a combination of Shell and SendKeys to interact with it.

Sub RunCalculator()

Dim ReturnValue As Double
Dim i As Integer

'Run Calculator program.
ReturnValue = Shell ("CALC.EXE", 1)

'Activate the Calculator.
AppActivate ReturnValue

'Set up counting loop.
For i = 1 To 20

 SendKeys i & "{+}", True
Next i

'Copy result to Clipboard.
SendKeys "^C", True

'Send ALT+F4 to close Calculator.
SendKeys "%{F4}", True

'Return data to Excel.
ActiveSheet.Paste

End Sub

User Defined Data Type
Sets of related data can be stored in user defined data types. Rather than have three
separate variables to contain name, address and birth date data a single data type
containing all three can be defined.

Type MyData
 Name As String
 Address As String
 Birthday As Date
End Type

The Type statement is used at the module level to define a user-defined data type
containing one or more elements. User-defined data types can contain elements of any
data type, an array, or a previously defined user-defined type.

User Defined Data Types are typically used for the storage of data records. The following
example shows the use of the data type, Music.

Type Music

 Composer As String
 Title As String
 Opus As Integer

End Type

Sub Report()

Dim MusicTitle As Music
Dim msg As String

MusicTitle.Composer = "Hector Berlioz"
MusicTitle.Title = "Le Carnaval Romain"

Excel Visual Basic for Applications

Page 68

MusicTitle.Opus = 9

 msg = "You are listening to " & _

MusicTitle.Title _
& ". Opus " & _
MusicTitle.Opus _
& " by " & _
MusicTitle.Composer

 MsgBox msg

End Sub

Enumerations
You will notice from recorded macros that VBA uses a number of internal constants to
identify key values. This makes the code much easier to read. Constant identifiers such
as vbYes or xlLandscape are easier to implement and interpret than their actual values.

You can declare your own enumeration variables where you would otherwise have to use
numeric constants. For example, fill colours have to be specified as index values in your
current colour palette. It is difficult to remember the corresponding number for each
colour.

Enumeration variables are declared at the module level with an Enum statement. The
elements of the Enum type are initialised to constant values using either positive or
negative numbers.

Enum MyFillColours

Red = 3
Green = 43
Yellow = 6
Blue = 49

End Enum

Sub Main()

'Colour the cells.
With ActiveCell
 .Offset(0, 0).ColorIndex = Red
 .Offset(1, 0).ColorIndex = Green
 .Offset(2, 0).ColorIndex = Yellow
 .Offset(3, 0).ColorIndex = Blue
End With

End Sub

By Reference, By Value
Variables may be passed from one procedure to another By Reference or By Value using
the statements ByRef or ByVal. All arguments are passed to procedures by reference,
unless you specify otherwise.

Passing By Value sends a copy of the original variable. Changes to the argument within
the procedure are not reflected back to the original variable. Passing By Reference gives
direct access to the variable. The statement is made by the calling procedure. Data types
must be consistent.

Passing variables to a subroutine. In the following example the variables x and y are
passed to the subroutine Sub2 when it is called by Main. x is passed By Reference and y
is passed By Value. The subroutine manipulates the two variables locally but when the
flow of control returns to Main the value of the y variable is unchanged.

Excel Visual Basic for Applications

Page 69

The same rules apply for passing argument values to a function procedure.

Sub Main()

 Dim x As Integer
 Dim y As Integer

 x = 50
y = 100
Call Sub2(ByRef x, ByVal y)
MsgBox x & y

End Sub

Sub Sub2(x As Integer,y As Integer)

x = x + 10
y = y * 2

End Sub
Declare the relevant Data Type for the received values in the subroutine otherwise they
are stored locally as Variants. The Data Type received must match the Data Type passed.

By Name, By Order
Understanding named and optional argument values. When you call a Sub or Function
procedure, you can supply arguments by order, in the order they appear in the
procedure's definition, or you can supply the arguments by name without regard to
position. Arguments are either optional or required.

The methods of Excel’s objects are internal procedures and the same rules apply. For
example, the Worksheets object has an Add method that has four optional parameters.
(You can see these as you type; press the spacebar after Add and the syntax diagram
appears, optional parameters are contained in square brackets)

Worksheets.Add([Before],[After],[Count],[Type])

To add three sheets after the first sheet using the By Name convention:

Worksheets.Add After:= Worksheets(1), Count:= 3
or

Worksheets.Add Count:= 3, After:= Worksheets(1)

To add three sheets after the first sheet using the By Order convention:

Worksheets.Add ,Worksheets(1), 3

To add three sheets after the first sheet using a combination of both conventions:

Worksheets.Add ,Worksheets(1), Count:= 3

A named argument consists of the argument name followed by a colon and an equals
sign (:=), then followed by the argument value. Never use just the equals sign.

Named arguments are especially useful when you are calling a procedure that has
optional arguments. If you use named arguments, you do not have to include commas to
denote missing positional arguments. Using named arguments makes it easier to read
your code.

The parenthesis are only required when you are using the function form to return a value
to a variable. In the following example, omitting the parenthesis around the "After"
argument would produce a syntax error:

Dim MyNewSheet As Worksheet

Set MyNewSheet = Worksheets.Add(After:= Worksheets(1))

Excel Visual Basic for Applications

Page 70

Classes
Classes define objects. Every Excel object is an instance (a copy) of a particular Excel
Class. A worksheet object is an instance of the Worksheet Class. Classes are object
templates containing their collection of methods and properties. In our VBA procedures
we use the Excel objects created for us and rarely need to create our own.

However, for complicated and difficult code structures it is sometimes useful to take an
object-orientated approach by creating our own code objects, which are supersets of the
existing Excel objects. This will promote simplicity and easier maintenance of the code
contained in general modules by allowing us to re-use rather than repeat fragments of
code that are frequently required.

Creating an Object

To create your own object you need a Class Module to contain the property and method
definitions. Then an instance of the Class creates the object.

For example, we want to create a MyWbk object to use in our procedures in a general
module. The object will have a Save method that does not actually save the workbook
but instead sets the Saved property of the workbook to TRUE. The object will also have a
set of read-only properties listed in the table below:

Property Name Data Returned
PathName The full file name and path.
BookName The workbook name with the .xls extension removed.
NonBlanks Count of the workbook’s cells containing formulas or constants.

The file name and path is directly available as an existing Excel property but the other
two are rather more specialised requiring the manipulation of existing properties and we
want to be able to retrieve the data without repeating the code every time it is required.

Using a Class Module

Insert a Class module into the Project using the Insert menu and then use the Properties
window to set the Name property as clsMyWbk. Enter the code into the Class module,
using Insert, Procedure to reduce the amount of hand typing required.

The Save method is a Public function in the Class module and the three Properties are
defined by pairs of Public Property procedures and associated Private procedures which
calculate the values for these public properties. The role of a Property procedure is to
expose a property value to the outside world.

Code in the Class Module

Private m_PathName As String
Private m_BookName As String

Public Function Save()

ThisWorkbook.Saved = True
End Function

Public Property Get PathName() As String
 Call GetPathName
 PathName = m_PathName
End Property

Private Sub GetPathName()
 m_PathName = ThisWorkbook.FullName
End Sub

Excel Visual Basic for Applications

Page 71

Public Property Get BookName() As String
 Call GetBookName
 BookName = m_BookName
End Property

Private Sub GetBookName()

m_BookName = ThisWorkbook.Name
'Remove the file extension if workbook already saved.
If Not ThisWorkbook.Path = "" Then

m_BookName = Left(m_BookName, Len(m_BookName) - 4)
End if

End Sub

Public Property Get NonBlanks() As Long
 NonBlanks = CountNonBlanks()
End Property

Private Function CountNonBlanks() As Long

Dim wSht As Worksheet
Dim x As Long, y As Long, z As Long
On Error Resume Next
'Loop through the worksheets.
For Each wSht In Worksheets
 'Count the cells containing constants.

x = wSht.Cells.SpecialCells(xlCellTypeConstants).Count
'Count the cells containing formulas.
y = wSht.Cells.SpecialCells(xlCellTypeFormulas).Count
'Aggregate the x and y values in z.
z = z + x + y
x = 0
y = 0

Next
CountNonBlanks = z

End Function

Then you return to your general module to create an instance of the class, clsMyWbk by
declaring a Public variable of the specific Class Type and using the New keyword.

The object, MyWbk is of Type clsMyWbk (as defined by the clsMyWbk Class) and we can
access its associated methods and properties using the usual Object.Method or
Object.Property syntax in our code. Object references are available in Complete Word.

Code in the General Module

Public MyWbk As New clsMyWbk

Sub Main()
 MsgBox MyWbk.NonBlanks
 MsgBox MyWbk.BookName
 MsgBox MyWbk.PathName

 MyWbk.Save
End Sub

The object only exposes its Public properties and procedures and the internal workings of
the Class, how these property values were calculated, are hidden. The object is a
container for a collection of properties and procedures. This is the theory of
encapsulation where complex Private procedures are available through a simpler
interface of Public methods and properties.

In the following example we need to set and reset various Excel application and
document settings in our procedures. Instead of using a series of subroutine calls, we
create a Class, 'clsAppSet' to contain all of our settings, create the object, 'AppSet' and
then simply apply them by using the Methods of the object.

Excel Visual Basic for Applications

Page 72

Code in the Class Module

Private m_StatusBar As Boolean

Public Function LockOn()

Dim wks As Worksheet

With Application
.DisplayStatusBar = m_StatusBar
.StatusBar = False
.ScreenUpdating = True
.DisplayAlerts = True
.Interactive = True

End With
With ThisWorkbook

For Each wks In .Worksheets
wks.Protect Password:="TopSecret"

Next
.Protect Password:="TopSecret", Structure:=True

End With
End Function

Public Function LockOff()

Dim wks As Worksheet

With ThisWorkbook
For Each wks In .Worksheets

wks.Unprotect Password:="TopSecret"
Next
.Unprotect Password:= "TopSecret"

End With
With Application

Let m_StatusBar = .DisplayStatusBar
.DisplayStatusBar = True
.ScreenUpdating = False
.DisplayAlerts = False
.EnableCancelKey = xlDisabled
.Interactive = False

End With
End Function

Code in the General Module

In any module where these procedures are required, declare the variable 'AppSet' as
Class 'clsAppSet' to create the object:

Dim AppSet As New clsAppSet

Apply the Methods wherever required in the procedure:

AppSet.LockOff

To save memory, destroy the object when it is no longer required:

Set AppSet = Nothing

When you need the same procedures again for another Project, just insert a copy of the
entire Class module.

Excel Visual Basic for Applications

Page 73

Lotus 1-2-3 Translation

The use of Classes often seems to be more in the realm of the "programmer" than the
casual macro developer but a basic understanding of the process reveals that it is an
excellent method of making macros much simpler and easier to produce by allowing you
to readily recall expressions that you regularly use and avoid having to go back to
macros that you have already done to copy and paste lines of code.

A good example of this are the statements required for cell selection and movement on a
worksheet. Many macro writers find that one of their principle tasks is to translate legacy
macros that were written in the Lotus 1-2-3 Classic macro language. In these macros,
positioning the cell pointer is crucial and much of the code in the macro consists of cell
movement and selection.

It is distressing to discover that simple Lotus instructions like {D 2} have to be
translated into clumsy constructions such as ActiveCell.Offset(2,0).Select and it is quite
difficult to determine exactly how common Lotus command sequences such as
{ANCHOR}{END}{DOWN}~ should be translated at all.

The Move Object
This section describes how to produce a user-defined 'Move' Object which is a Class that
can be copied into any Excel workbook and provides an easy and direct translation for
Lotus 1-2-3 moving and selecting commands into their Excel VBA equivalents.

The 'Move' object contains the following methods:

Down Move down by one or by a defined number of cells
Right Move right by one or by a defined number of cells
Up Move up by one or by a defined number of cells
Left Move left by one or by a defined number of cells
Home Move to cell A1
EndDown Move down to the end of the current region
EndRight Move right to the end of the current region
EndUp Move up to the end of the current region
EndLeft Move left to the end of the current region
SelectEndDown Extend the selection down to the end
SelectEndRight Extend the selection right to the end
SelectEndUp Extend the selection up to the end
SelectEndLeft Extend the selection left to the end
SelectEndDownAndRight Extend the selection down and to the right
SelectEndUpAndLeft Extend the selection up and to the left

Code in the Class Module

Firstly, insert a Class module into the current project by choosing Insert, Class Module
and then enter the following procedures into the module:

Public Function Down(Optional Number As Integer)
 If Number = 0 Then Number = 1
 ActiveCell.Offset(Number, 0).Select
End Function

Public Function Up(Optional Number As Integer)
 If Number = 0 Then Number = 1
 ActiveCell.Offset(-Number, 0).Select
End Function

Public Function Left(Optional Number As Integer)
 If Number = 0 Then Number = 1
 ActiveCell.Offset(0, -Number).Select
End Function

Excel Visual Basic for Applications

Page 74

Public Function Right(Optional Number As Integer)
 If Number = 0 Then Number = 1
 ActiveCell.Offset(0, Number).Select
End Function

Public Function Home()
 Range("A1").Select
End Function

Public Function EndDown()
 ActiveCell.End(xlDown).Select
End Function

Public Function EndUp()
 ActiveCell.End(xlUp).Select
End Function

Public Function EndRight()
 ActiveCell.End(xlToRight).Select
End Function

Public Function EndLeft()
 ActiveCell.End(xlToLeft).Select
End Function

Public Function SelectEndDown()
 Dim x As Long, y As Long
 x = ActiveCell.Row
 y = ActiveCell.End(xlDown).Row + 1
 ActiveCell.Resize(y - x).Select
End Function

Public Function SelectEndUp()
 Dim x As Long, y As Long, z As Long
 x = ActiveCell.Row
 y = ActiveCell.Column
 z = ActiveCell.End(xlUp).Row
 Range(Cells(x, y), Cells(z, y)).Select
End Function

Public Function SelectEndRight()
 Dim x As Long, y As Long
 x = ActiveCell.Column
 y = ActiveCell.End(xlToRight).Column + 1
 ActiveCell.Resize(, y - x).Select
End Function

Public Function SelectEndLeft()
 Dim x As Long, y As Long, z As Long
 x = ActiveCell.Row
 y = ActiveCell.Column
 z = ActiveCell.End(xlToLeft).Column
 Range(Cells(x, y), Cells(x, z)).Select
End Function

Public Function SelectEndDownAndRight()
 Dim x As Long, y As Long
 x = ActiveCell.End(xlDown).Row
 y = ActiveCell.End(xlToRight).Column
 Range(ActiveCell, Cells(x, y)).Select
End Function

Excel Visual Basic for Applications

Page 75

Public Function SelectEndUpAndLeft()
 Dim x As Long, y As Long
 x = ActiveCell.End(xlUp).Row
 y = ActiveCell.End(xlToLeft).Column
 Range(ActiveCell, Cells(x, y)).Select
End Function

Next, set the Name property of the Class module to 'clsMove'.
Choose View, Properties Window and enter the relevant text into
the property page (you can give the Class any name you prefer)
Insert a general module into the project; choose Insert, Module
and then create an instance of the class and, finally, use the
methods of the 'Move' object as you normally do by entering the
usual Object.Method statements into the code.

Code in the General Module

Create an instance of the class by entering the following statement into the declarations
section (the top of the module) of the general module:

Dim Move As New clsMove

The 'Move' object and all its associated
methods are now available in the
Complete Word listings. To move the
active cell down by one cell in your
macro, instead of entering the usual
long-winded:

ActiveCell.Offset(1, 0).Select

You can enter the simple statement:

Move.Down

The directional move methods accept
an optional number argument where
you can specify how many cells you
wish to move. To move right by 5
cells, enter the following statement:

Move.Right(5)

When you want to use the 'Move' object again in
another workbook just copy the Class module to the
other project; the easiest way to do this is to Drag and
Drop the module in the Project Explorer Window.

If you were undertaking extensive translation of Lotus
Classic macros it would be worthwhile considering the
creation of a Lotus Class module where all the
commands could be stored with their relevant
equivalents in the Excel VBA language. Then you could
enter all your new Excel macros like this:

Lotus.GetLabel
Lotus.WindowsOff

Whatever purpose you put them to, Class modules are
an ideal method of storing all those favourite Excel VBA
expressions and constructions that you tend to use
time and time again.

Excel Visual Basic for Applications

Page 76

File Operations
File operations can be incorporated into your macros by using the statements of the VBA
File System Class.

For example

Create a new directory on the current drive.

MkDir "Data"

Delete a file on disk.

Kill "C:\TestData\Test.txt"

Delete all *.xls files in the current directory.

Kill "*.xls"

Remove an existing empty directory.

RmDir "C:\TestData"

Change the default directory.

ChDir "C:\TestData"

Return the current path.

Dim strPath As String
strPath = CurDir

Opening All files

The following procedure opens all the files in a specific directory, retrieving each file
name using the Dir function. Specify the path the first time that you call the Dir function
and to retrieve the subsequent file names, call Dir again but with no argument. When no
more file names are available, the function returns a zero-length string, "".

Sub OpenAllFiles()
 Dim strPath As String
 Dim strFileName As String

 'Set the path.
 strPath = "C:\Excel_Files\"
 ChDir strPath

 'Retrieve the first entry.
 strFileName = Dir(strPath)

 'File opening loop.
 Do Until strFileName = ""
 'Open the file.
 Workbooks.Open Filename:=strFileName
 'Retrieve the next entry.
 strFileName = Dir
 Loop

End Sub

Writing text files

You can save Excel files as text files in a variety of different formats but to really control
and manipulate the data to satisfy specialised requirements you have to create a loop to
read the cell values and then write the text file directly to disk using the Open, Write and
Close statements.

In the following procedure, the cell data in a worksheet has to be written as a continuous
string of comma separated values with each entry padded out with space characters to a
constant length of 25 characters. Firstly, the cell data is manipulated and stored in the
variable 'Data' and then the contents of the variable is written to disk.

Sub GenerateTextFile()
 Dim FirstRecord As Boolean
 Dim Data As String
 Dim CellEntry As Variant
 Dim Cell As Range

Excel Visual Basic for Applications

Page 77

 Dim iLen As Integer
 Dim iNumSpaces As Integer
 Dim i As Integer
 Dim FileNumber As Integer
 Const ENTRYLEN As Integer = 25

 'Initialise.
 Let Data = ""
 Let FirstRecord = True

 'Loop to create text string.
 For Each Cell In Range("A1").CurrentRegion

 'Store the cell value.
 Let CellEntry = Cell.Value

 'Coerce numbers to text.
 If IsNumeric(CellEntry) Then
 CellEntry = Application.WorksheetFunction.Text(CellEntry, "0")
 End If

 'Pad the entry with spaces.
 Let iLen = Len(CellEntry)
 If iLen < ENTRYLEN Then
 iNumSpaces = ENTRYLEN - iLen
 For i = 1 To iNumSpaces
 CellEntry = CStr(CellEntry) & " "
 Next
 ElseIf iLen > ENTRYLEN Then
 'Reduce to 25 characters if over.
 CellEntry = Left(CellEntry, ENTRYLEN)
 End If

 'Write the text string.
 If FirstRecord Then
 Data = CellEntry
 Else
 Data = Data & "," & CellEntry
 End If
 Let FirstRecord = False

 Next

 'Write the text file data to disk.
 FileNumber = FreeFile
 Open "C:\Dump\TEST.TXT" For Output As #FileNumber
 Write #FileNumber, Data
 Close #FileNumber

End Sub

Make sure the text file exists before you attempt to write data to it. It is quite in order to
use an application like Windows Notepad to create a text file containing no data. The text
output into the file would appear like this:

"UK ,North ,Soap ,1789 ,81460
,Jan ,PR960001 , " etc.

Excel Visual Basic for Applications

Page 78

Using ActiveX Controls
You can place ActiveX controls directly on the worksheet and control their position,
appearance and behaviour using the worksheet's Event procedures. Right-click any
visible toolbar and choose Control Toolbox.

In this example, column D on
the worksheet has to have
dates entered into the cells.
When you select a cell in the
column a Calendar control
appears, you specify the date
and it is entered into the active
cell.

Draw the control on the
worksheet and then right-click
the sheet tab and choose View
Code. Enter the following event
procedures:

Private Sub Calendar1_Click()
 ActiveCell.Value = ActiveSheet.OLEObjects("Calendar1").Object.Value
End Sub

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
 'If ActiveCell is in column D align control to cell and show.
 If ActiveCell.Column = 4 Then
 With ActiveSheet.OLEObjects("Calendar1")
 .Top = ActiveCell.Top
 .Left = ActiveCell.Offset(0, 1).Left
 .Visible = True
 End With
 Else
 'Otherwise hide the control.
 ActiveSheet.OLEObjects("Calendar1").Visible = False
 End If
End Sub

This example is exactly the same as the previous but
uses a Check Box control. The object names are all
shown in the Object list (top right hand side) of the
sheet module.

This example shows a list box when the cell is selected,
the list box contains a list of currencies. As you select a
currency the corresponding exchange rate is entered into
the active cell. The ListFillRange property of the control
refers to a range of cells on the worksheet containing
foreign exchange data.

The BoundColumn property of the list box control is set to the
value of 2 so that the control returns the value in the second
column of the range of cells, the actual exchange rate rather than
the name of the currency. The click event procedure for the list
box is not necessary as the Worksheet_SelectionChange event
contains the following statement which links the active cell to the list box control to
return the relevant value into the cell.

ActiveSheet.OLEObjects("ListBox1").LinkedCell = ActiveCell.Address

When you have finished setting all the control object properties, click the Exit Design
Mode control (Set square, ruler and pencil) to activate the controls. Please note that it is

Excel Visual Basic for Applications

Page 79

also possible to achieve similar interactive effects in worksheet cells by using Data,
Validation in the main Excel menu. Less sophisticated but much easier.

Using the Windows API
You have access to the Windows Application Programming Interface through VBA and
you can use the WIN API to control your system: manage the display of windows,
communicate with other devices, return information about the operating system,
available memory etc. There are hundreds of functions that you can call but you will not
find any documentation on these in Excel, you must search elsewhere.

When you have discovered the documentation then you must correctly implement the
function call in your VBA procedure. The VBA compiler does not recognise WIN API
functions so you must include a Declare statement in your module declarations section
(top of the module) directing the compiler where to find the function. Then you call the
function in your procedure taking particular care that you match the required data types.

In the following example we are using the WIN API function, GetUserName to retrieve
the registered user name from the system:

Private Declare Function GetUserName Lib "advapi32.dll" Alias _
 "GetUserNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Sub MyGetUserName()
 Dim Buffer As String * 25
 Dim ReturnValue As Long, UserName As String

 ReturnValue = GetUserName(Buffer, 25)
 UserName = Left(Buffer, InStr(Buffer, Chr(0)) - 1)
 MsgBox UserName

End Sub

The user name is retrieved into the variable 'Buffer', which is a 25 character length
string. Any unnecessary characters are then stripped out. All the WIN API functions have
to be used in the function form, so you need to assign the function to a variable, in this
case the variable 'ReturnValue'. The value of the variable has no particular use other
than to test whether the function has failed or not.

There are a number of books available on the WIN API and you can also search in the
Microsoft Knowledge Base. The information that you need to find is the name of the
function required, how to properly declare the function and (hopefully) an example that
you can copy.

Excel Visual Basic for Applications

Page 80

Case Studies
Case Study 1. Using the Personal Workbook

Recording a macro in the Personal Macro Workbook to hide error values in worksheet
cells. A Custom Menu Item in Excel’s Format menu triggers the macro.

Sub HideErrorValues()
Selection.Font.ColorIndex = 2
Selection.NumberFormat = "[Black] General"

End Sub

Intended to hide divide by zero errors (#DIV/0!) the macro will hide all cell error values
by changing the Font colour to white and forcing numbers to Black in the General
Number Format. To be really effective the macro should be more sophisticated and take
into account the existing cell number format and font colour.

Case Study 2. Looping through Cells

Inserting blank rows into an Excel list.

Sub InsertIntoList()

[A2].Select

Do Until ActiveCell = ""

If ActiveCell = ActiveCell.Offset(1, 0) Then
ActiveCell.Offset(1, 0).Select

Else
ActiveCell.Offset(1, 0).EntireRow.Insert
ActiveCell.Offset(2, 0).Select

End If
Loop

End Sub

Case Study 3. Processing a Text File

Breaking down the process into subroutines.

Public Sub Main()

'Loop to examine all rows.
With Application

.ScreenUpdating = False

.EnableCancelKey = xlDisabled

[D1].Select

x = ActiveSheet.UsedRange.Rows.Count

For i = 1 To x

Call Finder
.StatusBar = Format(i / x, "0%") & " Complete."

Next

.ScreenUpdating = True
.StatusBar = False

End With

End Sub

Procedures continue overleaf.

Excel Visual Basic for Applications

Page 81

Private Sub Finder()
'Len returns the length in characters of an expression. Trim removes
'leading and trailing space characters.

'Locate 4 character codes.
If Len(Trim((ActiveCell.Offset(0, -3))) = 4 Then

Call Copier
Else

ActiveCell.EntireRow.Delete
End If

End Sub

Private Sub Copier()

'Copy cell values.
With ActiveCell

.Offset(0, 0) = .Offset(1, -2)

.Offset(0, 1) = .Offset(1, -1)

.Offset(1, 0).Select
End With

End Sub

Case Study 4. Writing a Loop

Adjusting the width of alternate columns on a worksheet.

Sub AlternateColumnsConcrete()

x = ActiveSheet.UsedRange.Columns.Count
[A1].Select
For i = 1 To x Step 2

With ActiveCell
.ColumnWidth = 10
.Offset(0, 1).ColumnWidth = 5
.Offset(0, 2).Select

End With
Next

End Sub

Sub AlternateColumnsAbstract()

x = ActiveSheet.UsedRange.Columns.Count

For i = 1 To x Step 2

Columns(i).ColumnWidth = 10
Columns(i + 1).ColumnWidth = 5

Next

End Sub

See overleaf for the next model answer.

Excel Visual Basic for Applications

Page 82

Sub AlternateColumnsOddEven()

x = ActiveSheet.UsedRange.Columns.Count

For i = 1 To x

If i Mod 2 = 0 Then
'Column number is even.
Columns(i).ColumnWidth = 5

Else
'Column number is odd.
Columns(i).ColumnWidth = 10

End If
Next

End Sub

In the last procedure we needed to determine if a column number was an even number.
We tested for modulo 2, is the number divisible by 2, leaving a remainder of zero? The
modulus, or remainder operator, Mod is invaluable for any type of interval calculation.
For example, performing a certain action every fifth iteration of a For...Next loop.

Case Study 5. Using Control Structures

The workbook must have exactly 12 worksheets. You may have any number of
worksheets when you start but you end up with 12. No specific order is required.

Sub ExactlyTwelveSheetsCaseStatement()
Dim iNumShts As Integer
Dim i As Integer
Const TARGET_SHTS As Integer = 12

'Count the sheets.
iNumShts = Worksheets.Count
Select Case iNumShts

Case TARGET_SHTS
Exit Sub

 'Add if too few.
Case Is < TARGET_SHTS

Worksheets.Add Count:=TARGET_SHTS – iNumShts
 'Delete if too many.

Case Is > TARGET_SHTS
With Application

.DisplayAlerts = False
For i = 1 To iNumShts - TARGET_SHTS

Worksheets(1).Delete
Next
.DisplayAlerts = True

End With
End Select

End Sub

See overleaf for the next model answer.

Excel Visual Basic for Applications

Page 83

Sub ExactlyTwelveSheetsIfThenElse()
Dim iNumShts As Integer
Dim i As Integer
Const TARGET_SHTS As Integer = 12

'Count the sheets.
iNumShts = Worksheets.Count
'Add sheets if too few.
If iNumShts < 12 Then

Worksheets.Add Count:=TARGET_SHTS - iNumShts
'Delete sheets if too many.
ElseIf iNumShts > 12 Then

With Application
 .DisplayAlerts = False

For i = 1 To iNumShts - TARGET_SHTS
Worksheets(1).Delete

Next
.DisplayAlerts = True

End With
End If

End Sub

Sub ExactlyTwelveSheetsDoLoop()

Dim iNumShts As Integer
Dim i As Integer
Const TARGET_SHTS As Integer = 12

'Count the sheets.
iNumShts = Worksheets.Count
Application.DisplayAlerts = False
Do Until iNumShts = TARGET_SHTS

'Add a sheet if too few.
If iNumShts < 12 Then

Worksheets.Add
iNumShts = Worksheets.Count

'Delete a sheet if too many.
ElseIf iNumShts < 12 Then

Worksheets(1).Delete
iNumShts = Worksheets.Count

End If
Loop
Application.DisplayAlerts = True

End Sub

Sub DeleteThenInsert()

Dim i As Integer

Application.DisplayAlerts = False
'Delete all sheets except for one.
For i=1 To Worksheets.Count-1
 Worksheets(1).Delete
Next
'Then add 11 to make 12.
Worksheets.Add Count:= 11

End Sub

Excel Visual Basic for Applications

Page 84

Case Study 6. Declaring and Typing Variables

Option Explicit is entered in the Declarations Section, you must declare your variables.

Option Explicit

Faulty Code:

Sub Main()

x = 1.54
y = 5000
NewSht = Worksheets.Add(After:=Worksheets(1))
MyArea = Worksheets(1).UsedRange

End Sub

Corrected:

Sub Main()
Dim x As Double
Dim y As Integer
Dim NewSht As Worksheet
Dim MyArea As Range

x = 1.54
y = 5000
Set NewSht = Worksheets.Add(After:=Worksheets(1))
Set MyArea = Worksheets(1).UsedRange

End Sub

Case Study 7. Creating an Add-In Function

Creating an Add-In function for Excel to validate table calculations. Create the procedure
and then generate an Add-In from the module.

Function CheckSum(Row_Totals,Column_Totals)

 x = Application.Sum(Row_Totals)
 y = Application.Sum(Column_Totals)

 If x <> y Then
 CheckSum = "BADSUM!"
 Else
 CheckSum = x
 End If

End Function

Excel Visual Basic for Applications

Page 85

Case Study 8. Creating a User Form

Design and Code the following User Form.

The list has to show all the Worksheets in the
Workbook. You select a sheet from the list,
click the OK button and that sheet is printed in
the orientation of your choice.

Double clicking an item in the list should have
same effect as selecting and clicking the OK
button.

Closing the dialog or clicking the Cancel button
should cancel the entire process.

Landscape should be the default orientation
setting when the Form is initially displayed.

Code in the General Module

Public g_intSheetIndex As Integer
Public g_bolLandscape As Boolean
Public g_bolPrintReport As Boolean

Public Sub PrintSelectedWorksheet()

g_intSheetIndex = 1
g_bolLandscape = True
g_bolPrintReport = False

frmPrintReport.Show

If Not g_bolPrintReport Then

Exit Sub
End If

With Worksheets(g_intSheetIndex)

With .PageSetup
If g_bolLandscape Then

.Orientation = xlLandscape
Else

.Orientation = xlPortrait
End If

End With

.PrintOut

End With

End Sub

See overleaf for the code in the User Form object.

Excel Visual Basic for Applications

Page 86

Code in the Form Object Module

Private Sub UserForm_Initialize()
 Dim WSht As Worksheet

 For Each WSht In Worksheets

 lstWorksheets.AddItem WSht.Name
 Next
 optLandscape.Value = True
 optPortrait.Value = False

End Sub

Private Sub cmdOKButton_Click()

g_bolPrintReport = True
Unload Me

End Sub

Private Sub cmdCancelButton_Click()

g_bolPrintReport = False
Unload Me

End Sub

Private Sub lstWorksheets_Click()
 'Note the adjustment required for zero base.

g_intSheetIndex = lstWorksheets.ListIndex + 1
End Sub

Private Sub lstWorksheets_DblClick(ByVal Cancel As

MSForms.ReturnBoolean)

g_intSheetIndex = lstWorksheets.ListIndex + 1
g_bolPrintReport = True
Unload Me

End Sub

Private Sub optLandscape_Click()

g_bolLandscape = True
End Sub

Private Sub optPortrait_Click()

g_bolLandscape = False
End Sub

Private Sub UserForm_QueryClose(Cancel As Integer, _

 CloseMode As Integer)

If CloseMode <> vbFormCode Then
 g_bolPrintReport = False
End If

End Sub

Excel Visual Basic for Applications

Page 87

Case Study 9. Handling Workbook files

When the file opens, update the history data file from external documents. Match the
country data from each file to the country summary in the target file and copy the data
into the correct column based on the current calendar date. Assume that the file name is
always good and that the data is up to date.

This Case Study practices manipulating arrays and writing a complex loop.

Option Explicit

Public Sub ConsolidateDataFromFiles()

Dim vRegions As Variant
Dim vRegion As Variant
Dim oTargetBook As Workbook
Dim oTargetSheet As Worksheet
Dim oMatchRange As Range
Dim oTargetRange As Range
Dim oSourceBook As Workbook
Dim oSourceSheet As Worksheet
Dim oSourceRange As Range
Dim sFileName As String
Dim iSourceRowLen As Integer
Dim iRowIndex As Integer
Dim iColIndex As Integer
Dim i As Integer

Const PATH_NAME As String = "C:\My Documents"

With Application

.ScreenUpdating = False

.EnableCancelKey = xlDisabled
End With

'Identify target column as today's date.
iColIndex = Day(Date)

'List of file names.
vRegions = Array ("Africa", _
 "Asia Pacific", _
 "Middle East", _
 "Western Europe", _
 "Eastern Europe", _
 "North America", _
 "Latin America")

'Initialise objects.
Set oTargetBook = ThisWorkbook
Set oTargetSheet = oTargetBook.Worksheets(1)
Set oMatchRange = oTargetSheet.Range("CountryNames")
Set oTargetRange = oTargetSheet.Range("DataTable")

'Point to the directory where files are stored.
ChDrive Left(PATH_NAME, 3)
ChDir PATH_NAME

Procedure continues overleaf…

Excel Visual Basic for Applications

Page 88

 'Loop through each file.
For Each vRegion In vRegions

'Identify the file name.
sFileName = vRegion & ".xls"
'Progress message.
Application.StatusBar = _

"Loading data from " & vRegion & " , please wait."

'Open the file.
Set oSourceBook = Workbooks.Open(_

FileName:=PATH_NAME & sFileName)
Set oSourceSheet = oSourceBook.Worksheets(1)

'Measure the data set, less the header row.
iSourceRowLen = _

oSourceSheet.Cells(1, 1). _
CurrentRegion.Rows.Count - 1

Set oSourceRange = _
oSourceSheet.Range(Cells(2, 1),_
 Cells(iSourceRowLen, 2))

'Loop through the cells.
For i = 1 To iSourceRowLen

'Locate the row in target document.
iRowIndex = Application.WorksheetFunction.Match _

(oSourceRange.Cells(i, 1), oMatchRange, 0)
'Copy the data.
oSourceRange.Cells(i, 2).Copy _

oTargetRange.Cells(iRowIndex, iColIndex)
Next i

'Close the Source file.
With oSourceBook

.Saved = True

.Close
End With

'Destroy Objects.
Set oSourceRange = Nothing
Set oSourceSheet = Nothing
Set oSourceBook = Nothing

Next vRegion

'Save the Target file.
oTargetBook.Save

'Destroy Objects.
Set oTargetRange = Nothing
Set oMatchRange = Nothing
Set oTargetSheet = Nothing
Set oTargetBook = Nothing

'Confirmation message.
MsgBox "Updates for " & Format(Date, "dddd d MMMM yyyy") _

& vbCr & "were sucessfully completed.", _
Buttons:=vbInformation, Title:="Data Updated"

With Application

.ScreenUpdating = True

.StatusBar = False
End With

End Sub

Excel Visual Basic for Applications

Page 89

Case Study 10. Refreshing Pivot Tables

Automatically Refresh all Pivot Tables every 30 seconds.

Sub Auto_Open()
Application.OnTime Now + TimeValue("00:00:30"), "RefreshData"

End Sub

Sub RefreshData()

Dim wSheet As Worksheet
Dim pTable As PivotTable

With Application

.DisplayStatusBar = True

.StatusBar = "Refreshing Pivot Tables..."
For Each wSheet In Worksheets

For Each pTable In wSheet.PivotTables
pTable.RefreshTable

Next
Next
.StatusBar = False

End With

Call Auto_Open

End Sub

Case Study 11. Unmatched Items

Design and code the following User Form:

The macro is designed to compare two
worksheets containing lists in the same
workbook and detect items in a common
column that are not matched on the other
worksheet.

The top two list boxes should show all the
worksheets in the workbook but when you
select a worksheet in the "Match:" list box
then that worksheet should not be displayed in
the "To:" list box.

The "Using the Column:" box is populated by
the values in the header row of the "Match"
worksheet.

The macro produces an exception report on a
new worksheet which is inserted at the end of
the workbook.

Each item on the exception report should give the record details and the row reference of
the unmatched item.

The case study has two sections: the first section is the graphical design of the User
Form and the corresponding procedures to populate the list boxes and validate the user's
choices.

The second section is the main process in the general module; to show the User Form, to
terminate the procedure if the Cancel button is clicked and to carry out the matching
process and report generation if the OK button is clicked.

The matching process is carried out using Excel's MATCH function. The two ranges to
match are defined and when an unmatched item is found its details are recorded in the
exception report.

Excel Visual Basic for Applications

Page 90

Code in the General Module

Option Explicit

Public g_BaseSheet As String
Public g_CompareSheet As String
Public g_MatchColumnNumber As Integer
Public g_CompareColumnNumber As Integer

Public Sub UnMatchedItems()
 Dim wksMatch As Worksheet
 Dim wksTo As Worksheet
 Dim wksReport As Worksheet
 Dim rngMatch As Range
 Dim rngTo As Range
 Dim rngCell As Range
 Dim rngRecordID As Range
 Dim rngCopy As Range
 Dim rngDestination As Range
 Dim dblThisRow As Double
 Dim dblNextRow As Double
 Dim MatchItem As Variant

 'Show User Form.
 frmMatcher.Show

 'Process User Form selections.
 Select Case frmMatcher.cmdOK.Tag
 Case False

 'Form cancelled.
 Unload frmMatcher
 'Terminate macro.
 GoTo UnMatchedItems_Exit

 Case True

 'Initialise Objects.
 Set wksMatch = Worksheets(g_BaseSheet)
 Set wksTo = Worksheets(g_CompareSheet)
 Set wksReport= _
 Worksheets.Add(After:=Worksheets(Worksheets.Count))

 'Enter title on exception report sheet.
 wksReport.Cells(1) = "Exception report; items on " _
 & g_BaseSheet & _
 " with no matching item on " & g_CompareSheet

 'The base range to match.
 With wksMatch
 Set rngMatch = .Range(.Cells(2, g_MatchColumnNumber), _
 .Cells(.Cells(1).CurrentRegion.Rows.Count, _
 g_MatchColumnNumber))
 End With

 'The range to match the base range to.
 With wksTo
 Set rngTo = .Range(.Cells(2, g_CompareColumnNumber), _
 .Cells(.Cells(1).CurrentRegion.Rows.Count, _
 g_CompareColumnNumber))
 End With

Procedure continues overleaf…

Excel Visual Basic for Applications

Page 91

 'Loop to find unmatched, the MATCH function returns an error
 'when a match is not found. Record the details of each error.
 On Error GoTo UnMatchedItem
 For Each rngCell In rngMatch
 Let MatchItem = _
 Application.WorksheetFunction.Match(rngCell, rngTo, 0)
 Next

 'Destroy objects.
 Set rngCell = Nothing
 Set rngRecordID = Nothing
 Set rngCopy = Nothing
 Set rngDestination = Nothing
 Set rngMatch = Nothing
 Set rngTo = Nothing
 Set wksMatch = Nothing
 Set wksTo = Nothing
 Set wksReport = Nothing

 'Unload the User Form, it is hidden but still loaded.
 Unload frmMatcher

 End Select

 Exit Sub

UnMatchedItem:

 'Store the row reference number.
 Let dblThisRow = rngCell.Row

 'Find the next free row on the exception report.
 Let dblNextRow = wksReport.Cells(1).CurrentRegion.Rows.Count + 1

 'Enter the row reference data into the exception report.
 Set rngRecordID = wksReport.Cells(dblNextRow, 1)
 rngRecordID.Value = "Row " & dblThisRow

 'The range to copy.
 With wksMatch
 Set rngCopy = .Range(.Cells(dblThisRow, 1), _
 .Cells(dblThisRow, .Cells(1).CurrentRegion.Columns.Count))
 End With

 'The range to copy it to.
 Set rngDestination = wksReport.Cells(dblNextRow, 2)

 'Copy the record data.
 rngCopy.Copy Destination:=rngDestination

 'Go back into the matching loop.
 Resume Next

UnMatchedItems_Exit:

 'This is the main exit point from the procedure.

End Sub

Excel Visual Basic for Applications

Page 92

Code in the Form Object Module

Option Explicit

Dim m_MatchDescription As String
Dim Sheet As Worksheet

Private Sub UserForm_Initialize()
 'Initialise controls.
 cmdOK.Tag = False

 For Each Sheet In Worksheets
 lstBase.AddItem Sheet.Name
 lstCompare.AddItem Sheet.Name
 Next
End Sub

Private Sub cmdOK_Click()
 Dim strErrorMessage As String
 Dim bHeaderFound As Boolean
 Dim iColCount As Integer
 Dim i As Integer
 Const ZLS As String = ""

 'Validation test #1. That both sheets were specified.
 If g_BaseSheet = ZLS Then
 Let strErrorMessage = "You did not specify the Match worksheet."
 GoTo cmdOK_Click_Exit
 ElseIf g_CompareSheet = ZLS Then
 Let strErrorMessage = "You did not specify the To worksheet."
 GoTo cmdOK_Click_Exit
 End If

 'Validation test #2. That the sheets are different.
 If g_BaseSheet = g_CompareSheet Then
 Let strErrorMessage = "You must specify different worksheets."
 GoTo cmdOK_Click_Exit
 End If

 'Validation test #3. That the row header was specified.
 If g_MatchColumnNumber = 0 Then
 Let strErrorMessage = "You did not specify the Column to Match"
 GoTo cmdOK_Click_Exit
 End If

 'Validation test #4. That the row header is found in the compare sheet.
 Let bHeaderFound = False
 Let iColCount = _
 Worksheets(g_CompareSheet).Cells(1).CurrentRegion.Columns.Count

 For i = 1 To iColCount
 If m_MatchDescription = Worksheets(g_CompareSheet).Cells(1, i) Then
 Let bHeaderFound = True
 Let g_CompareColumnNumber = i
 Exit For
 End If
 Next

 If Not bHeaderFound Then
 Let strErrorMessage = _
 "Could not find a matching column in the To worksheet."
 GoTo cmdOK_Click_Exit
 End If

Procedure continues overleaf:

Excel Visual Basic for Applications

Page 93

 'Input validated; proceed to main process.
 cmdOK.Tag = True
 Me.Hide

 Exit Sub

cmdOK_Click_Exit:
 MsgBox strErrorMessage, vbCritical + vbOKOnly, "Invalid Input"

End Sub

Private Sub cmdCancel_Click()
 cmdOK.Tag = False
 Me.Hide
End Sub

Private Sub lstBase_Click()
 Dim iColCount As Integer
 Dim i As Integer

 Let g_BaseSheet = lstBase.Text

 'Repopulate compare list box to exclude selected item.
 lstCompare.Clear

 For Each Sheet In Worksheets
 If Not Sheet.Name = g_BaseSheet Then
 lstCompare.AddItem Sheet.Name
 End If
 Next

 'Populate header row list box with row headers.
 Let iColCount = _
 Worksheets(g_BaseSheet).Cells(1).CurrentRegion.Columns.Count

 lstHeaderRow.Clear

 For i = 1 To iColCount
 lstHeaderRow.AddItem Worksheets(g_BaseSheet).Cells(1, i)
 Next

End Sub

Private Sub lstCompare_Click()
 Let g_CompareSheet = lstCompare.Text
End Sub

Private Sub lstHeaderRow_Click()
 Let g_MatchColumnNumber = lstHeaderRow.ListIndex + 1
 Let m_MatchDescription = lstHeaderRow.Text
End Sub

The Object names used in the procedures are:

User Form frmMatcher
OK Button cmdOK
Cancel Button cmdCancel
Left hand worksheets list box lstBase
Right hand worksheets list box lstCompare
Lower list box lstHeaderRow

Excel Visual Basic for Applications

Page 94

Index

Absolute, 14
Abstract, 17
ActiveX, 78
Add-In, 34
Alias, 29
Application Object, 21
Array Subscript, 53
Arrays, 52
Auto Open, 35
Automatic Execution, 35
Break Mode, 23
Breakpoint, 23
Built-in Dialogs, 44
Button, 15
By Name, 12, 69
By Order, 12, 69
By Reference, 68
By Value, 68
Caption, 40
Case Statement, 7
Case Study, 80, 81, 82, 84, 85, 87, 89
Cell values in arrays, 53
Cells, 20
Charts, 59
Child, 11
Class, 30, 70
Close box, 45, 50
Code Window, 22
Collection Object, 10
Command Bar, 15, 41
Command Button, 15
Comments, 22, 44
Complete Word, 22
Concrete, 17
Constant, 27, 29, 31
Copying, 19
Custom Function, 33
DAO, 66
Data Type, 27, 28, 67
Declarations Section, 29
Declare, 5, 79
Design Time, 45
Dim, 27
Dynamic Array, 54
Early Binding, 64
Enum, 68
Enumeration, 68
Error, 20
Error Handling, 55
Event, 35
Explicit Variable, 27
Format Codes, 32
Format Function, 32
Function Form, 37
Function Procedure, 32

General Module, 24, 35, 45
If-Then-Else, 6
Immediate, 26
Implicit Variable, 27
Input Box, 39
Instance, 50, 70, 71
Integer, 27
Late Binding, 64
LBound, 52
Let, 30
Lifetime, 29
Line Continuation, 24, 37
Line label, 55
List box, 47
Locals, 25, 27, 28, 53
Loop, 9, 10, 80, 81
Lotus 1-2-3, 73
Macro, 13
Measuring areas, 19
Menus and Toolbars, 41
Message Box, 5
Method, 11, 12
Mod, 61, 82
Module, 22, 29
MS Access, 66
MS Word, 64, 65
MsgBox, 37, 53
Naming Convention, 31, 47
Nothing, 31
Object, 11, 12, 25, 28, 30, 35, 46
Object Module, 24, 35, 45
Object Variable, 30
On Error, 55
On Method, 36
One-base, 45, 52
Option Base, 52
Option Explicit, 27, 84
Overflow, 28
Parent, 11
Passing, 5
Personal, 14, 36, 80
Pivot Table, 11, 89
Pointer, 30
Printing, 17
Private, 29
Procedure, 22, 29, 35, 36, 46
Project Explorer Window, 24
Properties Window, 24
Property, 11
Public, 29, 47
R1C1, 14, 21, 53
Range Object, 20
Recording, 13
ReDim, 54
ReDim Preserve, 54

Excel Visual Basic for Applications

Page 95

Relative, 14
Run, 22
Run Time, 45
Runtime Error, 23
Scope, 25, 29
Send Keys, 67
Set, 30, 84
Shell, 67
Shortcut, 13, 22, 29, 30
Special Cells, 20
Square Brackets, 13, 69
Status Bar, 40
Step Into, 23, 25, 28
String, 27, 28
Subroutine, 5
Syntax Error, 23
Toggle, 17
Type Conversion Functions, 40

Type Mismatch, 28
UBound, 52
Until, 9
User Defined Data Type, 67
User Form, 24, 45, 48, 85
Variable, 5, 27, 29, 31, 52, 84
Variable Declaration, 27, 31
Variant, 27
Variant Array, 52
VBA, 5, 25, 27, 52
VBA Functions, 32
Watch, 26
While, 9
Windows API, 79
With, 13
Worksheet Function, 32
XLA, 34
Zero-base, 45, 52

	Table of Contents
	Index
	The Process
	Terminology
	The Basics of VBA
	Data storage
	Subroutine Calls and passing values
	Control Structures
	Decision making
	If-Then-Else
	In-Line Form
	Block Form

	Case Statements
	CHOOSE and SWITCH
	Choose function
	Switch Function

	Looping
	Conditional Loops
	Counter Loops
	Collection Loops

	Understanding the Excel Object Model
	Review of theory: Objects, Methods and Properties
	The Excel Object Model
	Object references: Cells, Sheets and Workbooks
	Non-specific Object References
	Specific Object References, various styles

	Square brackets
	With…End With

	Recording and Editing
	Recording a macro
	Relative and Absolute recordings
	Personal Macro Workbook
	Macro Buttons
	The Button Tool
	The CommandButton Tool
	Command Bars
	Editing and optimising recorded code
	Toggles
	Removing Selection statements

	Common Tasks in Excel Macros
	Printing
	Copying
	Measuring areas and lists
	Locating data on a worksheet
	Manipulating cells
	Application Settings

	Using the Visual Basic Editor
	Code Window
	Context Help
	Complete Word
	Commenting/ Uncommenting
	Running and Stepping Into statements
	Breakpoints and Break Mode
	Errors
	Syntax Errors
	Run-Time errors

	Line Continuation
	Project Explorer Window
	Properties Window
	Object Browser
	Locals Window
	Watch Window
	Immediate Window
	Splits and Bookmarks

	VBA Memory Variables and Constants
	The role of Option Explicit
	Variable Declaration
	Data Types
	Summary of Data Types

	How to determine the Data Type
	Variable Scope and Lifetime
	Public Module Scope
	Private Module Scope
	Procedure Scope

	Public and Private
	When to use Set
	Declaring the Data Type of Object Variables
	Use of Constants
	Data Type Conversion Functions
	Naming Conventions
	Should I declare my variables?

	Functions
	Calling VBA functions
	The Format function
	Calling Excel Worksheet Functions
	Creating a Function procedure
	Creating a Custom Function for Excel
	Creating an Add-In
	Protecting a Project

	Events
	The role of event driven procedures
	Using the event code shells
	Reserved Procedure Names
	On Methods
	OnKey Method
	OnTime Method

	User Interaction
	Message Box
	Statement form
	Function Form
	MsgBox Buttons and Return values

	Input Boxes
	VBA Input Box Function
	Excel Input Box Method

	Excel’s Status Bar and Caption
	Menus and Toolbars
	Simple Method
	Using VBA code to construct menus
	Restoring the user’s Toolbars

	Calling Excel’s built-in Dialogs
	Review of Excel’s User Interface features

	User Forms
	Designing the User Form
	Completing the Form’s Events
	Naming Conventions
	User Form Example Code
	List Boxes
	Instancing a User Form
	Using Me

	VBA Memory Arrays
	Using Arrays to store sets of data
	Dimensioned Arrays
	The Variant Array
	Array Subscripts
	Using Cell values in arrays

	Dynamic Arrays

	VBA Error Handling
	Excel Pivot Tables
	Creating a Pivot Table report
	Data Fields

	Excel Charts
	Chart Objects
	Arranging Charts on a Worksheet
	Embedding Chart Data Series

	Application Interaction
	Creating Object Model References
	Late Binding
	Early Binding
	Interacting with MS Word
	Interacting with MS Access
	Send Keys

	User Defined Data Type
	Enumerations
	By Reference, By Value
	By Name, By Order
	Classes
	Creating an Object
	Using a Class Module
	Lotus 1-2-3 Translation
	The Move Object

	File Operations
	Opening All files
	Writing text files

	Using ActiveX Controls
	Using the Windows API
	Case Studies
	Case Study 1. Using the Personal Workbook
	Case Study 2. Looping through Cells
	Case Study 3. Processing a Text File
	Case Study 4. Writing a Loop
	Case Study 5. Using Control Structures
	Case Study 6. Declaring and Typing Variables
	Case Study 7. Creating an Add-In Function
	Case Study 8. Creating a User Form
	Case Study 9. Handling Workbook files
	Case Study 10. Refreshing Pivot Tables
	Case Study 11. Unmatched Items

