
Course 78076 Computer Design, Project Work
Project autumn 1998

DACS
Distributed Acoustic Control System

Copyright  1998
Fourth year students of Computer Architecture and Design 1998

Preface
This document is the report for the autumn project carried out by the students at the Computer Architec-
ture and Design Group at the Department of Computer and Information Science at Norwegian Univer-
sity of Science and Technology, NTNU, in Trondheim.

The assignment was to make a sound processing system and a terminal card to control it using an exter-
nal bus, and was given by our instructors.

We wish to thank our instructors Pauline Haddow, Gunnar Tufte and Jarl Thore Larsen for valuable
help and support.

Trondheim, 28. January 1999

DSP Card Terminal Card
Alexander Beuscher Morten Hartman
Thomas Jøndal Geir Martin Hynne
Mathis Landsverk Stein Kjølstad
Steinar Line Fernanda Torres Pizzorno
Rune B. Nakim Dag Kristian Rognlien
Tor Arne Olaussen Ketil Skjerve
Morten Skoglund Svenn-Ivar Svendsen
Kyrre Sletsjøe Knut-Helge Vindheim
Espen Tislevol

Abstract
In this assignment a multi-instance sound processing system was designed and implemented. The
assignment was divided into two main problems, the Digital Signal Processing (DSP) card which does
the actual sound acquisition, processing and transmission, and the terminal card which is the end-user
interface.

Since this system is a multi card system, the different units in the system have to communicate with
each other over a common information path. A bus, which is physically almost identical to the
Compact PCI bus, but with different protocol, was given in the assignment. The introduction of a fast
back-plane bus to transfer data from one card to another raises many problems and vastly increases the
complexity of the system.

The two main assignments were divided into further sub tasks; circuit layout of both the DSP card and
the terminal card, implementation of the bus master unit in an Xilinx FPGA on both the cards, imple-
mentation of the user interface via display and keypad in the terminal card, and finally the implementa-
tion of the sound processing software on the DSP card.

During the construction phase all project members were introduced to development tools which to a
large majority were new to them. This made the construction, in many respects, suffer from many types
of childhood diseases. A lack of experience in system design and unfamiliarity with the tools used did
effect our ability to put theory into practice.

It was soon evident that some limitations had to be set on the design, although it was not specifically
stated in the original specifications. Some special cases were considered too time-consuming and com-
plex to implement, and was decided never to be introduced to the system. These limitations were
mainly invoked to ease the design process and reduce the complexity of the specific solution.

Many design choices were already made in the assignment, the use of a Motorola 56007 DSP, the use of
Crystal CS4227 as Codec, the use of a Xilinx FPGA as a bus interface and the use of AVR AT90S8515
microcontroller as interface to the end-user. The assignment was then to make choices on how to con-
nect these components and write the necessary software to provide the given functionality.

The concurrent work of four main groups; hardware and software on both the DSP card and the termi-
nal card, ended with card of both types working on their own, but failed to communicate on the back
plane bus.

The development process was delayed by the unavailability of certain components. A choice was made
to commence with the finalization process on both cards, thus leaving out the formal testing. This has
proven to be a wise choice since now two cards, one terminal card and one DSP card are in working
condition.

At the end of this project there are still many features on both cards that have not been thoroughly tested
due to lack of time. Whether these features will work or not are unclear at the present time, but it is
likely that most features could be put in working condition after some minor modification.

Although the resulting hardware and software from this project do not meet all the specifications set
forth in the assignment, the working functions on both cards are a proof that the substantial part of the
assignment was solved according to the specifications.

Contents

1 Introduction 1

2 Assignment Interpretation 3

2.1 Bus Interface ...3
2.2 User Interface ..3
2.3 Functions ...3
2.4 Components to Use ...3

3 Bus Protocol 5

4 Protocol for Communication with the Terminal Card 7

4.1 Transfer of Identification Information ..7
4.2 Transfer of the Menu Hierarchy ..7
4.3 Transfer of Values and Actions ..9
4.4 Transfer of LED Status ...9
4.5 Transfer of Error Information ...10
4.6 Summary of Address Usage ..11

5 Terminal Card Hardware 13

5.1 Introduction ...13
5.2 Component Description ..13
5.3 Securing Quality Design ...18
5.4 Testing ...19
5.5 Known Errors ..20
5.6 Changes ...21

6 Terminal Card AVR Software 23

6.1 Introduction ...23
6.2 Background ...23
6.3 Menu System ...24
6.4 Memory System ..25
6.5 Bus Communication ..32
6.6 UART Interface ...32
6.7 The Code Modules ..33
6.8 Problems ..38
6.9 Testing ...39
6.10 Changes ...42
6.11 Known Errors ..42

7 Terminal Card FPGA Design 43

7.1 Introduction ...43
7.2 Address Decoder ...43
7.3 LED Controller ...47
7.4 Interrupt Register ..48
7.5 Bus Controller ...48
7.6 Bus Master ..60
7.7 Simulation ...61
7.8 Known errors ...63

8 Terminal Card Hardware and Software Integration 65

8.1 Introduction ...65
8.2 Integration ...65

9 DSP Card Hardware 67

9.1 Introduction ...68
9.2 The Printed Circuit Board ...69
9.3 DSP Part ..70
9.4 FPGA Part ...73
9.5 XChecker and SPROM ...74
9.6 Other Components ..75
9.7 Configuration ..75
9.8 Problems ..79
9.9 Testing ...80
9.10 Changes ...80

10 DSP Card FPGA Design 83

10.1 Introduction ...83
10.2 Basis for Design ..83
10.3 Description of the Top Level Design ..85
10.4 Description of the Blocks of the FPGA Design ..88
10.5 Problems ..107
10.6 Testing ...107
10.7 Changes ...116
10.8 Known Errors ..117

11 DSP Software 119

11.1 Introduction ...119
11.2 Overview ...119
11.3 Program Organization ...120
11.4 The DSP Sound Modules. ...121
11.5 The SHI Handling Routine ...124
11.6 Interrupt Routines ...125

11.7 Communication Between DSP and FPGA ..126
11.8 Problems ..126
11.9 Testing ...127
11.10Known Errors ...129

12 DSP Card Hardware and Software Integration 131

13 Tools 133

13.1 Xilinx Foundation Series 1.4, Xilinx ..133
13.2 VeriBest 98, VeriBest Inc. ..133
13.3 AVR Studio 1.42, Atmel Corp. ...134
13.4 Wavrasm 1.21, Atmel Corp. ...134
13.5 AVR Macro Assembler 1.21, Atmel Corp. ...134
13.6 AvrProg 1.25, Atmel Corp. ...134
13.7 BitCalc 3.0e, Cypress/IC Designs ...134
13.8 EVM56k ver. 1.06.00, Domain Technologies Inc. ...134
13.9 ASM56000 Assembler ver.6.1.0, Motorola Inc. ...135

14 Final Notes 137

14.1 Time Schedule for the Last Period ..137
14.2 Status ...137

15 Conclusion 139

15.1 Problems ..139
15.2 Guidance ...139
15.3 Experiences ...140

16 Bibliography 141

1 Introduction
The assignment was to design two cards named DSP card and terminal card. These cards should be
designed to communicate using an external bus defined by the Computer Architecture and Design
group.

The system was meant to act as a general sound processing system, with the ability to implement a vast
number of special filters and sound effects. The system have, with the right software, the ability to
decode surround data such as Dolby AC-3 from Dolby Laboratories and DTS (with some quality lim-
itations) from Digital Theater Systems.

The purpose of the DSP card is to process sound by adding one or more effects or filters to the digital
sound signal, and produce three output stereo sound channels. Inputs and Outputs can either be analog
or digital. The digital signal processing is done using a DSP from Motorola connected to an external
SRAM. The internal control on the card is done using an FPGA form XILINX.

The purpose of the terminal card is to act as a controlling unit for cards connected to the external bus.
This includes being the bus controller and the user interface for the other cards. The user interface con-
sists of a menu hierarchy obtained from the controlled card. Communication with the menu system is
done using a display, a 16 button keypad and five extra buttons. In addition to the menu hierarchy, the
card under control is asked to show information on 12 colored LEDs. The processing on the terminal
card is done using an AVR microcontroller from Atmel, and an FPGA from XILINX is used as the bus
master, bus interface, LED controller and address decoder for an internal bus.

The project has been carried out as four concurrent sub-projects; DSP card hardware design, DSP card
FPGA/software design, Terminal card hardware design and Terminal card FPGA/software design. This
has been a new experience for the students and has required a high degree of co-operation. Agreements
had to be made about the fundaments of the design, such as protocols and the relationship between the
hardware and the software.
1

DM Project 1998
2

2 Assignment Interpretation
Two card is to be constructed which together will form a system capable of processing digital and ana-
log sound information using a digital signal processor. The two cards is called Terminal card and DSP
card. The terminal card acting as the user interface and bus master and the DSP card doing the sound
processing.

2.1 Bus Interface

The two cards will be attached to an external bus of type Compact PCI and has to follow the protocol
specified by the Computer Architecture and Design group. This protocol is summarized in Section 3
Bus Protocol.

2.2 User Interface

The terminal card provides the interface for the user to control the system. Therefore it is equipped with
a display, two times six LEDs, a keypad with sixteen keys and five independent buttons not including a
reset button.

2.3 Functions

2.3.1 Terminal Card

Provide the user interface for all cards connected to the external bus regardless of their function. This is
done using a flexible menu system which the terminal card requests from the other cards. All cards will
be asked by the terminal card to identify themselves.

The card will function as the bus master on the external bus, implemented in the FPGA.

Components on the card will be connected using an internal bus. The address decoder will be imple-
mented in the FPGA in addition to a LED controller.

2.3.2 DSP Card

The card will control the level of two input channels and six output channels and it will be possible to
add sound effects implemented in the DSP.

2.4 Components to Use

2.4.1 Terminal Card

• AVR microcontroller from Atmel
• FPGA from Xilinx (4044)
• XChecker and SPROM for configuration of the FPGA
• LCD display
• Keypad decoder
• Keypad with sixteen keys
3

DM Project 1998
• Five buttons
• LEDs
• RS232 serial port
• HP pods for hardware debugging

2.4.2 DSP Card

• DSP 56007 (Digital Signal Processor) from Motorola
• OnCE interface for programming and debugging of the DSP
• RAM for use with the DSP (16 bit address, 8 bit data)
• Codec (AD/DA plus filters)
• FPGA from Xilinx (4044)
• XChecker and SPROM for configuration of the FPGA
• AES/EBU used for receiving and transmission of digital sound
• RS232 serial port
• HP pods for hardware debugging
4

ure 3–1

ode. In
r of data

a lines are
ket. The
 line is
ta lines
rbitra-
ration in

e bus. If
uest line
e bus is
itration.
ll cards
 address
The stop
writing
3 Bus Protocol
The bus protocol defines how the exchange of data is done on the external bus. A data packet consists
of one address word and a free number of data words. The first word of a packet is the address word.
The four least significant bits of the address are used for card addressing. When all four bits are set, the
packet is a broadcast message. This implies that only 15 cards can be addressed.

Bit four, the mode bit, is used to indicate if there are one or more words sent to the same address. Three
bits are reserved for future use. The remaining 24 bits are used for internal addressing. See Fig
how the format looks.

A cleared mode bit indicates single mode transmission, while a set mode bit indicates burst m
single mode one address word and one data word are transferred, while in burst mode a numbe
words are transmitted.

32 data lines are used to exchange data between cards connected to the external bus. The dat
tri-stated to avoid more than one card to drive the lines. The start line indicates the start of a pac
line is set when the first word is put on the bus. The stop line indicates the end of a packet. This
set on rising clock edge when the last word is put on the bus. All cards are tri-stated to the da
during arbitration. Both start and stop line is tri-stated and driven by the terminal card during a
tion. The card granted the bus drives these lines during data transfer. See more about the arbit
section 7.6 . See Figure 3–2 for an illustration of the timing of the signals.

All cards can request the bus. Each card has its own request line except the card mastering th
this card is to request the bus, it must implement an internal request line. The card uses this req
to indicate that it wants to put data on the bus. The bus has a total of seven request lines. Th
granted the card with the lowest address, having a request signal set one clock cycle prior to arb
Four grant lines are controlled by the terminal card and indicate which card is granted the bus. A
not granted the bus have to wait for the start line set. When it is set, all cards have to read the
word. This word has to match the cards address to make it read consecutive words on the bus.
line is set when the last word is on the bus and the card stops reading on falling clock edge. All
is done on rising clock edge, while reading is done on falling clock edge.

Address word

24 bit internal card addressing
Not
used

31 0

Card
address

8 bit 8 bit 8 bit 3 bit 4 bit

Data word

31 0

8 bit 8 bit 8 bit 8 bit

1st byte2nd byte3rd byte4th byte

Mode bit

Figure 3–1: The format of the address word and data word exchanged
between the cards connected to the external bus
5

DM Project 1998
DATA DATA DATA ADDR DATA DATA DATA ADDR DATA DATA DATA

CLK

Data

START

STOP

REQ4

REQ6

GRT3

GRT2

GRT1

GRT0

Figure 3–2: An example showing the timing of the bus protocol.
6

al card
 which
byte has

s when
 is used

n from
l or [0,
 a given

alled a
e bits

vel and

s X, Y,
l codes

 them-
elf, W1
4 Protocol for Communication with
the Terminal Card

A protocol for communication between the terminal card and other cards has been specified. This pro-
tocol limits how the terminal card can control cards on the bus, and therefore it is made flexible.

Information to be transmitted is devided into four categoris. This information is transmitted betveen the
terminal card and other cards in the system; identification, the menu hierarchy, LED status and error
information. The addresses FFFF00h to FFFFFFh have been reserved for this communication.

4.1 Transfer of Identification Information

1. The terminal card asks all card to identify itself by sending a packet to address FFFFFFh.
2. The cards answers by sending a packet to address FFFFFFh on the terminal card containing a name

of12 bytes (three data words) using 8-bit ASCII format, see Figure 4–1.

The ID request must not be ignored if the card is to be identified by the terminal card. The termin
sends a broadcast asking for information packets, and uses the returned information to identify
cards are installed in the system. A name of at least one character has to be supplied. The first
to be different from 00h.

4.2 Transfer of the Menu Hierarchy

A menu consists of a hierarchy in three levels. Every menu item can have one of three action
chosen; go down to the next level, execute a command or change a value. When the menu item
for changing a value, it is also possible to show the current value by requesting this informatio
the card in question. This value can be a 16-bit number that is in the range [0, 65536] decima
FFFF] hexadesimal. When setting a new value, the value must always be a number from zero to
maximum value.

The menu item has a unique position in the menu hierarchy of a specific card. This position is c
menu level. A menu level is described by two bytes. Of these two bytes the most significant fiv
describe the position at the highest level, the next five bits describe the position at the middle le
the least significant six bits describe the position at the lowest level.

Table 4–1 shows an example menu with menu level codes. At the highest level three menu item
Z and W is shown. X and Y have no items below themselves, therefore the middle and low leve
are set to 1. Z has two menu items below itself, Z1 and Z2. Z1 and Z2 have no menu items below
selves and the code for the lowest menu level are set to 1. W also has two menu items below its
and W2. Each of W1 and W2 also have two menu levels below themselves.

FFFFFFh XXX1b 0h

Name (4 bytes)

Name (continued) (4 bytes)

Name (continued) (4 bytes)

Figure 4–1: Format of the identification packet
7

DM Project 1998

dle

 address

 hier-
o it and
4.2.1 Three Types of Actions

When the low level code is zero:
• The menu item leads down to the next level. If the menu item is at the top level, then the mid

level codes is zero as well.

When the low level code is not zero:
• When the maximum value is set to zero the menu item executes a command when chosen.
• When the maximum value is not set to zero, the menu item sets a value.

See Table 4–1.

4.2.2 The Menu Hierarchy Transfer Process

1. The terminal card asks a card to send the menu hierarchy of the card, by sending a packet to
FFFFFDh.

2. The card in question answers by sending the first menu item with information on where in the
archy that menu item has its place, a maximum value if the menu item has a value attached t
a name, to address FFFFFDh on the terminal card, as Figure 4–2 shows.

Table 4–1: Example menu

Description Menu level codes

High
level

Middle
level

Low
level

High
5 bits
(dec)

Middle
5 bits
(dec)

Low
6 bits
(dec)

X 0 1 1

Y 1 1 1

Z 2 0 0

Z1 2 1 1

Z2 2 2 1

W 3 0 0

W1 3 1 0

W1-1 3 1 1

W1-2 3 1 2

W2 3 2 0

W2-1 3 2 1

W2-2 3 2 2
8

Protocol for Communication with the Terminal Card

1.

ent to

eter set-

h on a

ss
3. After receiving the first menu item, the terminal card continues requesting more menu items by
sending packets to address FFFFFDh.

4. The last menu item is sent to address FFFFFCh on the terminal card. In this way, the card in question
signals that the whole menu is transferred.

5. The menu hierarchy has to be transferred in this order: the first item of the highest level, the items on
the levels below this item and then the second item on the high level and so on, see Table 4–

The menu request should not be ignored. To signal that the card does not have a menu a packet is s
address FFFFFBh on the terminal card as an answer to a menu request.

4.3 Transfer of Values and Actions

This transfer uses the format in Figure 4–3. Because these packets requests or contains param
tings, they should not be ignored.

1. To request a value, the terminal card sends a packet to FFFFFAh on a card.
2. The reply is sent to the address FFFFF9h on the terminal card.

1. To tell a card that a new value has been set it sends a packet to FFFFF9h on the card.
2. A reply is not sent to the terminal card.

1. To tell a card that an action has been executed, the terminal card sends a packet to FFFFFA
card, not using the value part of the format in Figure 4–3.

2. A reply is not sent to the terminal card.

4.4 Transfer of LED Status

1. The terminal card requests LED status information from a card by sending a packet to addre
FFFFFEh.

FFFFFDh / FFFFFCh XXX1b 0h

Menu codes (5+5+6 bits) Maximum value (16 bits)

Name (4 bytes)

Name (continued) (4 bytes)

Figure 4–2: Format of the menu item packet

FFFFFAh / FFFFF9h XXX0b Cardn
o

Menu codes (5+5+6 bits) Value (16 bits)

Figure 4–3: Format of the value transmission packet
9

DM Project 1998

o the
FAh on
2. The card in question answers by sending a packet to FFFFFEh on the terminal card. This packet
contains a bit pattern describing which LEDs are to be turned on, using one bit for each LED, shown
by Table 4–2 and Figure 4–4.

The LED request can be ignored.

4.5 Transfer of Error Information

It is possible to transfer error information to the terminal card. This information will be shown t
user. The message is transferred using 12 bytes of data in 8-bit ASCII-format, to address FFFF
the terminal card, see Figure 4–5 for illustration.

FFFFFEh XXX0b 0h

Unuse
d (2
bits)

L
red

L
yel

L
gre1

L
gre2

L
gre3

L
gre4

Unuse
d (2
bits)

R
red

R
yel

R
gre1

R
gre2

R
gre3

R
gre4

Unused
(16 bits)

Figure 4–4: Format of LED status package

FFFFFAh XXX1b 0h

Message (4 bytes)

Message (continued) (4 bytes)

Message (continued) (4 bytes)

Figure 4–5: Format of the error information packet

Table 4–2: The LEDs on the terminal card

L (left) R (right)

red red

yel(low) yel(low)

gre(en)1 gre(en)1

gre(en)2 gre(en)2

gre(en)3 gre(en)3

gre(en)4 gre(en)4
10

Protocol for Communication with the Terminal Card

–3 and
4.6 Summary of Address Usage

Addresses for communication between the terminal card and other cards is shown in Table 4
Table 4–4.

Table 4–3: Messages to the terminal card

Address
(hex) Description

Data words (most significant part described first)

1st 2nd 3rd 4rd

FFFFFF Identification Name of card [not used]

FFFFFE LED value LED level [not used] [not used] [not used]

FFFFFD Menu hirearchy
(one menu item)

Menu level code,
max value

Menu item description [not used]

FFFFFC Menu hierarchy
(last menu item)

Menu level code,
max value

Menu item description [not used]

FFFFFB No menu [empty] [not used] [not used] [not used]

FFFFFA An error Error message

FFFFF9 A current value Menu level code,
current value

[not used] [not used] [not used]

Table 4–4: Messages from the terminal card

Address
(hex) Description

Data words (most significant part described first)

1st 2nd 3rd 4rd

FFFFFF Identification
request

[empty] [not used] [not used] [not used]

FFFFFE LED value request [empty] [not used] [not used] [not used]

FFFFFD Menu item request [empty] [not used] [not used] [not used]

FFFFFC
Reserved

FFFFFB

FFFFFA Current value
request

Menu level [not used] [not used] [not used]

FFFFF9 Set a new value Menu level code,
new value

[not used] [not used] [not used]
11

DM Project 1998
12

ill be

ed in
nd an
l ele-

etween
5 Terminal Card Hardware

5.1 Introduction

The terminal card is the users interface to the system. By using the keypad and five additional buttons,
the user can set and modify parameters on the cards connected to the external bus. Information about
the other cards on the bus is displayed on an LCD display as a set of menus. The card is equipped with
LEDs arranged in two columns which can be used to indicate various parameters, such as volume or
balance on an audio card.

The terminal card is also the bus master. Every bus request is handled by the master, and grant signals
are given to the card with highest priority of those cards having requested the bus. The bus clock is gen-
erated by the terminal card. The frequency can be set in the range 1 MHz to 33 MHz.

The bus master is implemented in an FPGA. A microcontroller is managing the display and keypad. An
overview of the system is shown in Figure 5–1. In the following sections, all major components w
described in more depth. See also circuit schematics in Appendix A.

5.2 Component Description

5.2.1 Xilinx FPGA

An FPGA, or a ”Field Programmable Gate Array” is an integrated circuit which can be configur
various ways. Shortly described, it consists of internal logic blocks, input and output blocks, a
interconnection grid connecting the blocks and buffers. The logic blocks provide the functiona
ments for constructing the user’s logic, and the input and output blocks provide the interface b
the package pins and internal signal lines.

SRAM LCD Keypad

Internal bus

LEDs

Serial
port Clock

generator

E
xt

er
na

l
bu

s

Micro-
controller

buttons

FPGA

controll clk

Figure 5–1: Terminal card system overview
13

DM Project 1998

l over-

ther the
CB. On
cted

f the
e
.

e, how-
 high,

wer is
ign, but
oard

s low.
r in the
igh,
The FPGA used in the design is an XC4044XL from Xilinx. It contains 1600 logic blocks with 44000
gates, and is complex and fast enough to provide a base for the tasks needed in the project.

The FPGA has the following tasks:

• External bus master
• Interface between microcontroller and external bus, with receive and transmit buffers
• Data bus address decoding and signaling
• LED Driver

All these functions are described in the Xilinx software section. See Figure 5–2 for a functiona
view.

When the system is powered up, the FPGA must be configured. The configuration source is ei
on-card serial EEPROM or the Xchecker interface. The source is selected by a switch on the P
power-up the FPGA checks its MODE pins to determine its operating mode. These pins are conne
through resistors to ground or Vcc, depending of the switch position. If the switch is set to SPROM, the
FPGA is in Master Serial mode, and the FPGA reads the configuration from a serial EEPROM. I
switch is set to XChk, the FPGA is in Slave Serial mode, and the configuration is loaded from th
XChecker interface. Using the XChecker interface, configuration can be downloaded from a PC

The XChecker can be used for debugging if the FPGA design and hardware supports it. We ar
ever, not using this feature. After the FPGA has been properly configured, it will set its DONE pin
and a green LED marked DONE will be lit.

5.2.2 FPGA Configuration Serial EEPROM

Because the configuration of the FPGA is volatile, it must be downloaded every time the po
turned on. It may be acceptable to use the XChecker interface during the development of a des
eventually, it is preferable that the FPGA automatically will load the configuration from the onb
serial EEPROM. As mentioned, this is the case if the download mode switch is in the SPROM position.

When power is applied, the FPGA is initialized. During this phase, the INIT pin on the FPGA goe
This pin is connected to the EEPROM pin RESET/OE, thereby reseting the address counte
EEPROM (see schematics in Appendix A). When initialization is complete, the INIT pin will go h
and the FPGA can start clocking in data from the EEPROM.

Figure 5–2: Functional overview of the FPGA

FPGA

SPROM XChecker

Internal bus External bus

Buttons LEDs
14

Terminal Card Hardware

xternal
The DONE pin is low during initialization and configuration. When configuration is complete, this pin
will go high and disable the EEPROM, and the DONE LED will be lit.

5.2.3 Atmel AVR Microcontroller

A microcontroller handles the access to the keypad and the display. In this project it is a AT90S8515
microcontroller from the AVR series produced by Atmel. Other cards must access the keypad and dis-
play via the controller.

The AT90S8515 microcontroller provides 8KB of reprogrammable FLASH program memory, and 512
bytes of data EEPROM, which both can be programmed in-system by a serial interface. A program can
be loaded into the AVR by plugging an AVR ISP programmer to the ISP plug. The controller has 512
bytes of internal SRAM, and an external bus interface which can address 64KB external SRAM. The
external memory bus interface uses multiplexed data and address pins. The address low byte is
extracted from the bus by using an address latch.

In this design, an extra 32KB SRAM chip is connected to the external bus for greater software flexibil-
ity. This allows the AVR software to store large data structures. The SRAM used is a 70 ns version with
a three-line control scheme. All bus timing requirements are satisfied without additional logic.

Asynchronous serial communication with the card is possible through a connector located at the card.
The communication is handled by the controllers on-chip UART. By using this feature, the card can be
connected to a PC for testing purposes or as an extra interface. The AVR is clocked by a 3.6864 MHz
external crystal (This is not the external bus clock generator!). With this frequency, all common baud
rates up to 115 200 baud can be generated accurately.

Two external interrupts provide a way for the keypad and the FPGA to notify the controller of incoming
data. A functional description of the microcontroller is shown in Figure 5–3.

5.2.4 Liquid Crystal Display

A 2×16 character LCD module is used to display the menus provided by other cards on the e
bus. It is also used to display settings and menus which are local to the terminal card.

AVR

ISP

Serial
port

Internal bus

Crystal
Clock

generator

clock control

Figure 5–3: Functional description of the AVR microcontroller
15

DM Project 1998

r

xternal

tus
eceive
before

 hold
an-
write
he latch

e
an
The LCD module has an integrated controller compatible with the industry standard Hitachi HD44780.
This controller is however not well suited for interfacing to the AVR external memory bus. It utilizes a
Motorola bus interface with an E clock and combined R/W control signal (see Figure 5–4). In ou
design, these signals are generated by the FPGA based on the RD and WR signals from the AVR micro-
controller (see Figure 5–5). This way, the controller can access the display directly using the e
bus interface.

For simplisity, the LCD R/W signal is put low. This implies that the AVR will not be able to read sta
information from the LCD. One of the reasons for reading the display is to check if it is ready to r
new data. This however, can be solved by making the AVR wait the required amount of time
issuing a new write.

Another problem is that the LCD controller is to slow to keep up with the AVR timing. The data
time for writing required by the LCD (th in Figure 5–4) is minimum 20 ns. The data hold time guar
teed by the AVR (tH in Figure 5–5) is 0 ns. One way to solve this is to latch the data when the
pulse goes high. This is handled by a latch on the board (see latch U6 on the schematics). T
enable signal is generated by the FPGA. See also FPGA software description.

The last problem is the length of the enable pulse to the LCD (PWEH in Figure 5–4). The enable puls
is generated by the FPGA, and is based on the WR signal from the AVR. This pulse must be longer th

RS valid

Data valid

RS

R/W

E

Data

PWen

t
htDSW

Figure 5–4: LCD Bus Interface Timing

Address valid

Data valid

Address

WR

Data

tH

PWWR

Figure 5–5: AVR Microcontroller Bus Interface Timing
16

Terminal Card Hardware

.

ge

nerator
ency in
ck sig-

k fre-
System
e fre-

capaci-
r is not
ffer is
 able to
ecified

n the
c levels
S-232

als are
are gen-

 D-SUB
ard as a

coder.

ata bus

nerates
280 ns. The WR pulse is however not long enough under normal operation (PWWR in Figure 5–5). By
introducing one wait-state for the AVR when accessing external memory, the WR pulse will be
stretched one cycle. With a 3.6864 MHz crystal frequency, the WR pulse will now be minimum 386 ns

The display contrast is set by a voltage at the VO pin of the display. This voltage has to be in the ran
0–1.2 V. The contrast can be adjusted by turning a potentiometer (se R109 on the schematics).

5.2.5 System Clock Generator and Clock Buffer

A clock generator is used to generate the clock for the FPGA and the external bus. The clock ge
used in this design is a IDC2053B from Cypress. It is capable of generating a clock output frequ
the range 391 kHz to 90 MHz, with a rise and fall time of 1 ns/V. A steep edge on the system clo
nal is important for correct operation of other cards in the system on high bus frequencies.

The generator is programmed by shifting in a bit stream, containing information about the cloc
quency. This is done by the AVR. The user can select between preset frequencies from the
Menu. The generator is capable of changing output frequency without glitches. This allows th
quency to be changed while the system is running.

If the the maximum of eight cards are connected to the external bus, terminal card included, a
tive load of up to 80 pF will be added to the system clock path. The output driver of the generato
able to drive the clock at 33 MHz under such conditions. To solve this problem, a clock bu
inserted between the generator and the external bus. This buffer satisfies our requirements: It is
drive 8 cards, each card having an input impedance of 10 pF. The rise/fall times at this load is sp
to be 1.0 ns/V or better, keeping the clock signal sufficiently squared.

5.2.6 Serial Interface

As mentioned, serial communication with the AVR microcontroller is possible using the UART o
chip. To be able to connect the card to a PC or other RS-232 compatible equipment, the 5V logi
from the AVR have to be converted to standard RS-232 signal levels. This is handled by a R
driver MAX202 from Maxim.

The AVR UART transmit and receive lines are connected to the driver, and the RS-232 level sign
available at the serial connector on the board. The voltage needed for the RS-232 signal levels
erated by the chip itself, eliminating the need of extra voltage sources.

An RJ-11 modular plug is used for the serial interface. This plug is chosen instead of a standard
plug because it is smaller and is easier to mount. Also, it does not put so much stress on the c
D-SUB would, when plugging and un-plugging the connector.

5.2.7 Keypad

The keypad used is a 16-button keypad arranged in a 4×4 matrix. It is connected to a keypad de

The keypad decoder is the interface between the keypad and the AVR. It is connected to the d
and is addressed like any other memory location. The decoder features a Data Available signal which is
connected to the AVR interrupt line INT0. When a key is pressed, this signal goes high, and ge
an interrupt in the AVR. This indicates that data can be read from the bus.
17

DM Project 1998

(un-end-

ng the
nd, pull-

ing pur-
ttons” for

enough
I bus as

d at the
is plug.
d.

e avail-
ics). They
 The sig-
d 2 con-

ces are:

base)
The keypad select signal, indicating that the decoder is to put data on the bus, is generated by the FPGA
when the proper combination of the bus address and the RD signal from the AVR exists.

As for the LCD, the timing requirements for the keypad decoder is not satisfied under normal opera-
tion. By introducing one wait-state in the AVR when accessing the keypad, the RD pulse will be
stretched one cycle, and the timing requirements are held.

5.2.8 Buttons

The AVR can be reset by pressing the button marked AVR Reset. Pressing this button, the reset signal is
pulled low, activating the reset. The FPGA and the other cards connected to the external bus are reset by
pressing the button marked Bus Reset. This provides a mechansim to reset cards on the external bus
when a card seems to have ”chrashed”, or the operation on the external bus is jammed by long
ing) data packets. (See the switches SW1 and SW9 on the schematics, respectively).

The five big blue buttons are connected to both the AVR and FPGA. Pull-up resistors are pulli
signal level high when the buttons are not pressed. Pushing a button connects the signal to grou
ing it low.

The buttons have at the moment no function in the FPGA design, but can be used for debugg
poses or in new designs using the same hardware. They are considered used as “navigation bu
the user interface, but so far the keypad seems to make these buttons redundant.

5.2.9 The External Bus Interface

The external bus is compatible with the Compact PCI standard. The bus provides more than
signal lines for our design. All cards on the system is mounted in a rack, using the Compact PC
a the backplane bus.

A Compact PCI plug is mounted on one edge of the terminal card. The terminal card is mounte
front of the rack and connects to the bus with a cable. The power for the card is supplied via th
As mentioned, the clock signal on the bus is provided by the clock generator on the terminal car

5.2.10 Debugging Interface

The AVR memory data bus and the enable signals for the devices which are connected to it, ar
able at two connectors (Pod Connectors 1 and 2) on the board (See J6 and J7 on the schemat
are intended to be connected to a logic analyzer, and are useful during debugging of the design.
nals on pod connector 1 are the bus address signals A[8-15], and the RD and WR signals. Po
tains the data signals AD[0-7], and signals for the various devices on the internal bus.

5.3 Securing Quality Design

Errors or bad functionality on the final board can have several reasons. The most probable sour

• Logical errors in the circuit construction
• Connecting erroneously when drawing the circuit in Design Capture
• Wrong or incomplete routing in the PCB editor (due to not updated netlist or component data
• Misunderstandings or errors when delivering board description to the manufacturer
• Defective components, bad soldering or board defects
18

Terminal Card Hardware

discov-
sible to

ality”
med on
acks that

mpatc

 anf
Securing quality is important during the entire process when constructing the board. Logical errors in
the circuit construction can be avoided by achieving complete knowledge about every part of the cir-
cuit, by studying data sheets and having a good general knowledge to electronics. The final circuit con-
struction must be examined and verified several times, and by several members of the group. The final
circuit drawing must be examined in the same way.

When the card is about to be routed, it is important that all netlists, component databases etc. are
updated to the last version of the circuit drawing. If this is not the case, incorrect routing or other errors
may not be discovered by the PCB software. When the placement of components and routing are fin-
ished, tests concerning netlist, component placement, track clearance etc. must be performed. When the
board description is sent to the manufacturer, all dimensions on tracks, pads, drill holes and silk print
must be verified.

5.4 Testing

5.4.1 The Schematics

The finished circuit schematics was examined by several members of the group. The issues of concern
were:

• Power to all components
• Signal levels
• Bus timing
• Noice (de-coupling capacitors at all integrated circuits)

All these issues were verified before the circuit was routed in the PCB editor. Some errors were
ered after the routing had begun, but were corrected and forward-annoteted. This made it pos
continue routing without re-routing the whole board.

5.4.2 The PCB Layout

The PCB layout was mainly verified by running the tests mentioned in the “Securing design qu
chapter, assuming that the schematics were correct at this point. A visual test was also perfor
issues like track clearance, clearance between pads and tracks, and signal tracks (re-routing tr
were unneccessary long or othervise strangely routed by the auto-router).

5.4.3 The Circuit Board

When the finished board was returned from the manufacturer, certain issues were tested:

• Connection between power pads at all integrated circuits and the power supply lines at the Co
PCI connector.

• Certain critical signals like external bus clock, AVR clock and signals used to program the AVR
the FPGA

• Conductivity of traces near the board edge
19

DM Project 1998

rly

hod of

ape the
ten

e lines
 good

than the
he man-
cted the
rrected.
o extra
5.4.4 The Final Board with Components

The most critical components were monted first, one at a time. This gave us the option to test connec-
tions at a specific component. The following issues were tested:

• Component orientation
• Soldiering. On the most critical components all pins were probed, verifying that all were prope

soldiered, and that no pins were short-circuted to the closest pins

5.4.5 Testing the board with software

Testing the board with test software loaded into the AVR and the FPGA proved an effective met
testing the final design. Test software was written to test these issues:

• AVR programmability from the ISP connector
• SRAM access from the AVR
• LCD access from the AVR
• Keyboard decoder access from the AVR
• Clock generator access and programmability from the AVR
• LEDS access from the FPGA
• FPGA access and programmability from the XChecker cable

5.5 Known Errors

Even though the final circuit drawings are closely examined, errors sometimes unfortunately esc
verification process. This chapter lists the errors that were known at the time the report was writ

5.5.1 Wrong Silk Print Dimensions

On the final cards, the silk print is hardly visible. The reason for this is that the dimensions of th
of the silk print were wrongly specified. The manufacturer could not print the silk screen with a
result at these dimensions.

5.5.2 Incorrect Hole Dimensions

By a mistake, the dimensions on the holes of the Compact PCI connector were set to be larger
size of the corresponding pads. The error occured when the description of the card was sent to t
ufacturer, and was detected when the holes were about be drilled. The manufacturer conta
project group, which acknowledged that the diameter of the hole was wrong, and should be co
Unforunately, all other holes with the same dimensions were modified as well. This has lead t
work, but has not affected the functionality of the card.

Patch: Adjust components so that they fit in the holes.

Correction: Correct the hole dimensions for the CPCI connector and generate new drill-list.
20

Terminal Card Hardware

nnec-
 86 on

e more

his pin

 to bit

s once

d have
 in the

lace the
del. To
s been

reduced.
us.
5.5.3 Address Bus Contention

When the circuit was drawn in Veribest Design Capture, the pin AD4 from the AVR was, by a mistake,
connected to line AD[3] on the internal bus. Because of this, the AVR pins AD3 and AD4 was con-
nected at the final board, and line AD[4] on the internal bus was not connected to the microcontroller.
The error was discovered when the address lines were probed with an oscilloscope.

Patch: Cut the connection between the pads of pin AD3 and AD4 on the AVR, and pin AD4’s co
tion to the internal bus. Strap AD3 and AD4 to their respective lines on the bus, e.g. AD3 to pin
the FPGA, and AD4 to pin 87.

Correction: Re-route the lines of interest in Design Capture, re-annotate, and route the pins onc
in the PCB editor.

5.5.4 Wrong Data Line Connected to the Keyboard

By a mistake, the line AD[7] on the internal bus is connected to the keyboard decoder pin 16. T
should, however, have been connected to AD[3].

Patch: Strap the line AD[3] to pin 16 on the decoder or patch the error in software, copying bit 7
3 in the read byte before processing the incoming keystroke.

Correction: Re-route data line 3 on the board in Design Capure, re-annotate and route the line
more in PCB editor.

5.6 Changes

When the final board was tested, the FPGA configuration could not be downloaded. This coul
two causes; the FPGA itself was not working correctly or there was an error on the board or
design that prevented the configuration download.

Further testing uncovered that the FPGA was causing the problem, and it was decided to rep
chip. A new problem emerged because it was impossible to get hold of an FPGA of the same mo
get a working, but somewhat reduced design, a smaller FPGA from the same Xilinx series ha
used on the final boards.

Using a smaller FPGA causes that some planned features in the FPGA has to be removed or
E.g, this concerns some internal buffers used to receive and transmit data from/to the external b
21

DM Project 1998
22

key on
6 Terminal Card AVR Software

6.1 Introduction

The task was to design the software for the AVR AT90S8515 microcontroller of the terminal card. On
this card, the AVR controls the internal bus, reads the keypad, writes to the LCD, LEDs and clock gen-
erator, and write to or read from the external bus via the FPGA-logic.

The AVR is responsible for displaying a menu system to the user. This menu system will enable the user
to see the names of all detected cards on the Compact PCI bus. When a card has been selected, a menu
system will be downloaded from that card and displayed on the LCD. The user will then be able to nav-
igate through the menu of the chosen card, and the AVR will give feedback to that card from the choices
made by the user at the terminal.

6.2 Background

The AT90S8515 is an 8-bit microcontroller designed by ATMEL. This section will list some of the fea-
tures of the AVR and a short text describing the use of these features on the terminal card and by the
AVR software.

6.2.1 Program Flash

The 8 KB Flash of the AVR is used for storing the program running on the chip. The length of one
instruction is 16 bits, limiting the number of instructions in the Flash to 4 K. This is sufficient, our pro-
gram is estimated to be about 3 KB.

6.2.2 Internal SRAM

512 bytes of SRAM is available on the chip. This RAM is used when memory requirements exceed the
capability of the 32 registers. The use of the internal SRAM is described in section 6.4.2 .

6.2.3 External SRAM

The AVR supports up to 64 KB external SRAM. On the terminal card there is 32 KB external SRAM.
This RAM is used for storing the menu data of the card currently being controlled.

6.2.4 Internal Interrupts

• Timer Interrupt, triggered by the internal timer at specified intervals.
• UART Interrupt, triggered by incoming data in the UART interface.

6.2.5 External Interrupts

• Reset, triggered by the reset button on the terminal card.
• External interrupt pin 0, reserved as a keypad interrupt. Triggered when someone presses a

the keypad.
23

DM Project 1998

ressed

ddress
ing the
ruction.
external

is fea-

ader of
e of the

key rep-
rieving a

 of the
t level.
t can be

 right
sing the
 of the
spec-

e, the
 menu is
Next,
re is an
 when

olution
 been
 space
emand

rder to
• External interrupt pin 1, reserved as an FPGA interrupt. Triggered by the FPGA, signalling a p
button or incoming bus transmission.

6.2.6 Multiplexed Address and Data Pins

The AVR is able to read and write 16-bit address and 8-bit data on two ports by multiplexing a
and data. Reading from and writing to external units is therefore quite simple and is done by stor
address in two registers. Writing to or reading from this address is then done using a single inst
The ports are connected to the internal bus of the terminal card, making it possible to access
SRAM and units.

6.2.7 UART Interface

The AVR UART interface will be used for an RS-232 interface on the terminal card. The use of th
ture is described in section 6.6 .

6.3 Menu System

The menu on the AVR is designed in such a manner that the upper line of the LCD shows the he
the menu the user is navigating at any given point. When a variable is being adjusted the nam
variable will be displayed as a header.

The keys of the keypad are used in various ways for navigation of the menu system. The green
resents a positive input. The red key represents a negative input. One use of these keys is ret
yes or no answer from the user. Another use is entering or exiting a menu. The ‘+’ and ‘-’ keys are used
as variable increment and decrement respectively. The ‘<-’- and ‘->’-keys are used for navigation
current level. Navigation of items at a spesific level is wrapped around at the end points of tha
The number keys are used for entering spesific values when adjusting a variable. Such an inpu
confirmed by pressing the green key or be undone by pressing the red key.

The lower line of the LCD shows the current choice, which is changed by using the left and
arrows. Making a choice is done by pressing the green key and stepping back is done by pres
red key. When the user is adjusting a variable, the lower line will display the value and range
variable or simply “yes/no” or “execute?” if the maximum value of the variable is one or zero re
tively. The standard for the structure of the menu system is explained in Section 4.

Handling navigation of the menu system is somewhat complex given the low level of the cod
required freedom of use and the simple datastructure used for storing the menu. In memory, the
simply stored in blocks, each block starting with the two byte level code of a particular item.
there is an eight byte chunk storing the ASCII values representing the name of the item. Last, the
optional two byte chunk used for storing the maximum value of the item. This chunk is only used
the item is a leaf node. This results in each item block being 10 or 12 bytes long.

We considered solutions like binary trees, linked lists etc. There are two reasons why a simpler s
was selected. First, a lot of pointers would have used a lot of memory. If double linked list had
used, each item would have four bytes used for pointers, resulting in the fact that 30% of the
occupied by a nonleaf node was reserved for pointers. Secondly, more complex code would d
more codespace, of which we have only 8 KB available. The complex code would also be ha
handle in low level language.
24

Terminal Card AVR Software

–2 to
epresents

00h to
sing the

e AVR
xternal

trolled.
s of all

sed for
to store
A graphical representation of the menu memory system used is given in Figure 6–1.

.A simplified overview of menu system navigation and program main flow is shown in Figure 6
Figure 6–5. In these figures, the symbols used represents keys on the keypad.The happy face r
the green key while the sad face represents the red key.

6.4 Memory System

This subchapter explains the use of the memory space of the AVR. Memory is ranged from 00
FFFFh, addressing a specific byte requires the use of two address bytes. This is usually done u
upper register words X, Y and Z.

6.4.1 Memory Space

The memory space of the AVR has been divided into three categories. The internal memory of th
is ranged from 0000h to 025Fh. I/O units are addressed 0260h to 7FFFh, and finally the 32 KB e
SRAM is addressed 8000h to FFFFh. The categories are listed in Table 6–1.

6.4.2 Internal Memory

The internal memory is used for storing data other than the menu system of the card being con
The most important parts of data in the internal memory are the card memory, storing the name
connected cards, the display mirror, mirroring the contents of the LCD, the temporary memory, u
storing procedure call data and other short-term usage and finally the data buffer which is used
up to 32 bytes of incoming data from the external bus.

Figure 6–1: Menu Memory Organization

Item Level Item Text Max Value

LowMidHigh

08C1h Delay FFFFh

000001b00011b00001b

Echo LevelDelayOn/Off Channel 1Gain In

2 bytes 8 bytes 2 bytes

5 bits 5 bits 6 bits

5 bits 5 bits 6 bits

2 bytes 8 bytes 2 bytes

Block format:

Block example:

Example of sequence of blocks:

Optional

Optional

The sequence of blocks is a depth first scan of the menu tree
25

DM Project 1998

–4. The
 regis-
6.4.3 Memory Mapped I/O

As mentioned earlier, addresses 0260h to 7FFFh are reserved for I/O unit addressing. This limits the
maximum addressable external SRAM to 32 KB. This is not considered a problem given the expecta-
tions on reasonable menu size. The specific addresses of the units connected to the internal bus of the
terminal card is presented in Table 6–3.

6.4.4 Registers

The 32 registers of the AVR have been assigned to spesific purposes and are listed in Table 6
menu pointers store the current navigation position in the menu memory. The low, mid and high

Figure 6–2: Main Navigation of Menu System, Part I

Start

Initializing the AVR, testing the
Internal bus / Display
Memory
Internal bus / LED
External bus

Load the AVR
menu into the

memory.
Card=0

Choose high level menu.
high=high±1 or
high={0,1Fh}

Mid level
navigation

Get
value

Choose Card

×Ø

High level
navigation

×Ø
Node?

J

No

Yes

Type of menu:
AVR or external

card
AVR menu

External card

Load the chosen
card's menu into the

memory

J

Navigate the
Card

card=card±1 or
card={1,8}

Menu
decoder

L

Choose type of
menu (AVR,

externald card)

Choose type
of menu

J

L

×Ø
26

Terminal Card AVR Software
Figure 6–3: Main Navigation of Menu System, Part II

High level
menu

Mid level
navigation

Choose mid level menu
mid=mid±1 or
mid={0,1Fh}

×Ø

Mid level
node?

J

Low level
navigation

No
Get

value

Yes

Choose low level menu
low=low±1 or
low={0,3Fh}

×Ø
Get

value

J
Change value

Menu
decoder

Menu
decoder

High level
navigation

L

L

27

DM Project 1998
ters store the level code of the current item. In the card number register, the number of the card cur-
rently being navigated is stored. The last valid key press resides in the Key_Buf register.

Figure 6–4: Menu Decoder

An input request
from the high, mid

or low menu
handling for a menu

item.

Test if the correct menu
item has been found. If not,

readjust the input and send a new
request.

Test if the high, mid and low
values of the last read menu item

are less than or equal to the
requested values.

Get the next high, mid and low
values and decode them.

Values too small, try next menu item

Return to high,
mid or low
navigation.

New request

Correct menu item

Values equal or greater
28

Terminal Card AVR Software
Figure 6–5: Getting the Value

Table 6–1: Memory Overview

Address Usage

0000h-025Fh Internal AVR memory

0260h-7FFFh Memory mapped I/O (board units and external bus)

8000h-FFFFh External SRAM of the AVR

Get
value

Type of value:
Execute?
Yes/No?
Value?

Execute

Yes/No

Toggle the
item on/off

J

Change the
value with +/-

or digit

Increment or
decrement

Next digit

write digit
digit=digit±1

± [0..9]

Value type +/- Value type digit

Send
new

value

JJ

Send new
value and

return

Send
command
and return

Yes/No

×Ø

Return to
high, mid or

low navigation

L

Return to high,
mid or low
navigation

L

Value

Return to high,
mid or low
navigation

L

29

DM Project 1998
Table 6–2: Internal Memory Addresses

Address Usage

0000h-001Fh Register File

0020h-005Fh I/O Registers

0060h-00CFh Card memory (The names of connected cards)

00D0h-00DFh Error message (Received from other cards)

00E0h-00E1h Variable memory L/H (the variable being adjusted)

00E3h-00EFh Temporary memory

00F0h-00F1h Maximum Value L/H (of the variable being adjusted)

00F2h Key Flag (used for storing key state)

00F3h Teststring_In (message received from the bus)

00F4h Card_Error_Number (number of card reporting error)

0100h-0120h Display Mirror (local memory mirror of the LCD screen)

0121h Display Mirror Pointer (cursor pointer for the mirror)

0130h-0161h Data Buffer (for buffering incoming data)

0162h-025Fh Reserved Stack memory (158 bytes)

Table 6–3: I/O Addresses

Address Usage

0x7E00 Keypad

0x7E10 LCD Control

0x7E11 LCD Data

0x7E20 LED Left

0x7E21 LED Right

0x7E22 LED Both

0x7E30 FPGA Interrupt Register

0x7F80 External Bus Out Register

0x7FC0 External Bus In Register

Table 6–4: Register Assignments

Register Usage Register Usage

R0 Free usage, lpm target. R16 Time

R1 Free usage R17 Key_Buf

R2 Menupointer Low R18 Temp (main)
30

Terminal Card AVR Software

. The
 send

the
used for
When performing procedure calls, parameters are stored in the parameter registers. The same registers
are also used for returning results to the caller. The X, Y and Z word registers are used for 16-bit
addressing. These registers have special support for word operations, and each is built up by two regis-
ters, e.g. Z consists of ZL and ZH, the low and high byte of Z. It is possible to store a byte at the loca-
tion pointed to by Z and increase the word by one in a single instruction. The registers 24 and 25
support word operations as well. These registers have been reserved as parameters three and four. This
is an advantage since incoming parameters can be handled as words without moving them into other
registers. Register zero is the destination register when loading program memory using the instruction
lpm.

The Flag register is used for storing special information about the state of the system. The format of this
register is shown in Figure 6–6.

In the Flag register, the item received bit is set when an item has been requested and has arrived
timed out bit is set if the predefined timeout period has expired during a loop waiting for a card to
information to the terminal card. Value received and Error received simply signifies if a value or error
message has arrived from a card. The menu finished is set if a menu has been requested and a Last
Menu Item pack has arrived from the external bus. No Menu is set if a menu has been requested, but
target card replies with a packet stating that the card has no menu system. The final two bits are
the UART interface routines.

R3 Menupointer High R19 Temp 1

R4 Low R20 Temp 2

R5 Mid R21 Temp 3

R6 High R22 Parameter 1

R7 Uart Low R23 Parameter 2

R8 Uart High R24 Parameter 3

R9 Flag Register R25 Parameter 4

R10 Ticks R26 X-low

R11 Digit R27 X-high

R12 Temp 4 R28 Y-low

R13 Temp 5 R29 Y-high

R14 Temp 6 R30 Z-low

R15 Card Number R31 Z-high

Figure 6–6: The Flag Register

Table 6–4: Register Assignments (continued)

Register Usage Register Usage

Item
received

uart lowuart highno menu
menu

finished
error

received
value

received
timed out

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
31

DM Project 1998

y the

 possi-
ed to
emory
y at the
of doing
6.4.5 External Memory

The external memory on the terminal card is used for storing the menu system of the card currently
being navigated. 32 KB is sufficient for menu storage, limiting the maximum number of items to about
2700. The external SRAM is addressed 8000h to FFFFh.

6.5 Bus Communication

The standard for communication between cards is described in Section 4. The external bus communica-
tion of the AVR is at the moment limited to concepts within this standard, and therefore only a simple
overview of the logical ports of the AVR is given in Table 6–5 and of the logical ports written to b
AVR is given in Table 6–6.

6.6 UART Interface

A UART interface is designed to make communication between a PC and the terminal card
ble.The interface is simple yet fairly flexible. Due to lack of time, no PC software has design
exploit the UART interface of the AVR. The concept of the interface is that the PC request a m
byte by sending two address bytes, and the AVR replies by returning the contents of the memor
given address. The PC is also allowed to send its high byte equal to 50h, indicating that instead

Table 6–5: Port Addresses of the AVR

Address Usage

FFFFFFh Card ID

FFFFFEh Set LEDs

FFFFFDh Menu Item

FFFFFCh Last Menu Item

FFFFFBh No Menu

FFFFFAh Error Message

FFFFF9h Value

Table 6–6: Ports Written to by the AVR

Address Usage

FFFFFFh Request ID

FFFFFEh Request LED

FFFFFDh Request Menu

FFFFFAh Request Variable Value

FFFFF9h Set Variable Value
32

Terminal Card AVR Software

 module
es con-

stem of
mory.
a memory read the PC wish to write a byte to the keypad buffer. The next byte sent by the terminal will
then be the byte to be written to the buffer instead of the low byte of an address.

The design makes implementation in low level code on the AVR quite simple, while more sophisticated
software is needed on the PC. The PC is able to image the memory of the AVR, do limited survey of
events, and emulating a key press, allowing remote operation of the terminal card. The simplicity of the
concept introduces a flaw, as the value 50h in the most significant byte of an address is reserved for key
emulation. This makes the PC unable to read the address area 5000h to 50FFh. This is not a serious
problem, since this address area is not currently in use.

6.7 The Code Modules

The assembly code has been organized into several modules to decrease complexity and increase mod-
ularity. The modules are presented later in this chapter. Parameters are contained in register aliases p1-
p5, and a procedure is presented in the format:

Procedurename(parameters)

Private procedures are called only from the same module, while all modules are able to call Public pro-
cedures in any of the other modules.This is only a logical categorization. There is no procedure protec-
tion. The source code is included in Appendix D.

An overview of the modules included in the main assembler file is given in Figure 6–7.

6.7.1 Main

This is the top level module that includes all modules and calls the necessary procedures. The
performs calls to components that requires initialization, does some start-up work, and then leav
trol to the eternal loops of the menu system.

6.7.2 Bus

The interface with the internal bus has been designed in a way that is compatible with the I/O sy
the AVR, thus writing to any I/O unit on the internal bus is handled the same way as writing to me

Figure 6–7: Inclusion Overview

Keyboard.Inc

Utils.IncBus.Inc

Menu_D.Inc

Menu.IncDisplay.Inc

LED.Inc Timer.Inc

Globals.IncUART.Inc

Main.Asm
33

DM Project 1998
On the other hand, the interface with the external bus needs some sort of code. This code is imple-
mented in the Bus module. The module also fills the menu system block of the memory with menu data
arriving from the card currently being controlled.

PUBLIC PROCEDURES

Procedure Get_Cards()
Sends a broadcast with id-request

Procedure New_Card()
Gets the menu of card numbered #Card

Procedure Get_Value(item_l, item_h, value_l, value_h)
Gets a value from #Card
Waits for arrival of value (or time_out)

Procedure Set_Value(item_l, item_h, value_l, value_h)
Sets a value on #Card

Procedure LED_Request(ledcard)
Request LED info from #Card (no wait)

Procedure Bus_Interrupt:
Interrupt from the FPGA

Procedure Send_ID()
Transmits own ID to ext.bus.

PRIVATE PROCEDURES

Procedure Read_Bus()
Read current bus packet from FPGA

6.7.3 Display

The Display module handles interface with the LCD, supporting calls like writing characters and
strings at specific positions.

PUBLIC PROCEDURES

Procedure Init_LCD()
Initializes the display for 8-bit, 2 lines and auto incrementation.

Procedure Display_Char(x-pos, y-pos, Character)
Print one character to the LCD at pos (x, y).

Procedure Display_String(x-start, y-start, String_p_Low, String_p_High)
Prints character on the LCD from memory until string termination.
For writing messages to the LCD. I.g. Initializing and
error messages.

Procedure Display_String8(x-start, y-start, String_p_Low, String_p_High)
Prints 8 characters from memory to the LCD at pos (x, y),
String_pointer_low and String_pointer_high points to the place in
memory where the data is stored. String is unterminated.
34

Terminal Card AVR Software
Procedure Display_Card_label(x-start, y-start, String_p_Low,
String_p_High)

Prints 12 characters from memory to the LCD at pos (x, y). Used to
print the card label when traversering the cards.

Procedure Display_Constant(x-start, y-start, String_p_Low, String_p_High)
This procedure prints strings from program memory to the display at
position (x, y).

Procedure Clear_Display()
This procedure clears the LCD

Procedure Set_Cursor(cursor_on_?)
Turn the cursor marker on/off.

PRIVATE PROCEDURES

Procedure SET_CHAR_POS(x_pos, line)
Puts the cursor at position (x, y) on the LCD.
X = [0..15], Y = [0..1]

Procedure WR_LCD()
Write the character or command to the LCD.

6.7.4 Keypad

This module updates the key buffer each time the user presses a key. The key buffer stores only one
character. All keys pressed while the buffer is unequal to 00h are discarded.

PUBLIC PROCEDURES

Procedure Init_Keyboard()
Initilializes the keyboard

Procedure card_error_display()
Display received error message

Procedure Read_Key(key)
Read from keyboard (wait for key)

Procedure Keyboard_Int()
Keyboard interrupt handler

6.7.5 LED

Writing to the LED column is done using the procedures in the LED module. Each of the LEDs can be
set individually. These LEDs are usually set by the card being controlled.

PUBLIC PROCEDURES

Procedure Write_LED(Leftdata, Rightdata)
Writes to left and right LED column
35

DM Project 1998
Procedure Clear_LED()
Clear both LED columns

6.7.6 Menu

The Menu module introduces procedures for handling the navigation of the menu system at most levels.
And for setting new values to the menu item. The menu navigation is divided into 3 levels; High, Mid
and Low. The possibility of leaf nodes at High and Mid level complicates the menu memory navigation.

PUBLIC PROCEDURES

Procedure trav_card(card)
Choose Card

PRIVATE PROCEDURES

Procedure write_card_number(card)
Write the number of the card at the end of the line.

Procedure display_max_value(Menupointer_Low, Menupointer_High)
Display maximum value of menu item.

Procedure menu_get_value()
Gets the value from the card and test for timeout

Procedure adjust_bin2des(t1,t2,t3,t4,t5)
Adjust value from binary to decimal.

Procedure adjust_des2bin(t1,t2,t3,t4,t5)
Convert from decimal t1..t5 to binary.

Procedure display_new_value(t1,t2,t3,t4,t5)
Write the new value to the display.

Procedure adjust_value()
Change the value of the menu item.

Procedure shift_digit(t1,t2,t3,t4,t5)
Change value.

Procedure Start_trav(low, mid, high)
Start menu navigation.

Procedure Get_menu_type(Menupointer_Low, Menupointer_High)
Get the menu type.

Procedure high_lev_trav(low, mid, high)
High-level Menu
mid_lev_trav(low, mid, high)
low_lev_trav(low, mid, high)

Procedure cp_res_high(temp_low, temp_mid, temp_high, low, mid, high)
Tests the menu choosen.
cp_res_mid(temp_low, temp_mid, temp_high, low, mid, high)
36

Terminal Card AVR Software
cp_res_low(temp_low, temp_mid, temp_high, low, mid, high)

6.7.7 Menu Data

To be able to test the software before the hardware is completed, the Menu Data module fills the menu
memory block with example data to enable certain parts of the code to be tested without connected
cards.

PUBLIC PROCEDURES

Procedure Fill_Card_Fake()
Fills card memory with two fake cards (#1 & #2)

Procedure Fill_Menu_Fake()
Fills menu memory with data for fake card defined by #Card reg.

6.7.8 Globals

The Globals module is used for global definitions and values, like defining usage of the register and
addresses of I/O units on the board. In this file the usage of internal memory is defined in this module.

6.7.9 UART

To support external logging of the events on the AVR, the UART interface is supported. Currently this
interface supports only the reading of single memory bytes by supplying address and receiving data at a
PC connected to the card using an RS-232 interface.

PUBLIC PROCEDURES

Procedure uart_int()
The UART interrupt handler

Procedure init_uart()
Initialize the UART interface

6.7.10 Timer

The Timer module supplies delay procedures. These procedures are for example used when writing to
the display and reading the keypad.

PUBLIC PROCEDURES

Procedure Delay_MS()
Sends a broadcast with id-request

Procedure Delay_250MS()
Gets the menu of card numbered #Card
37

DM Project 1998
6.7.11 Utils

Certain generic procedures have been placed in the Utils module. This includes procedures for convert-
ing between ASCII and binary as well as procedures for testing the terminal card and setting the bus
clock frequency.

PUBLIC PROCEDURES

Procedure LED_Test()
 Performs a test on the LED columns

Procedure Bus_Test()
 Tries to write a packet to this card on the ext.bus.

Procedure SRAM_Test()
 Write to all SRAM bytes and read to see if the data is valid

Procedure SelfTest()
 Performs the LED, SRAM and ext.bus tests.

Procedure bin2dec()
Converts binary number in temp_mem
binary format is LOWBYTE | HIGHBYTE

Procedure dec2asc()
Converts 5 first decimals in temp_mem)

Procedure Bin2Asc()
Converts 2 hexnumbers in temp_mem to 5
ascii characters in temp_mem[0..4]

Procedure Write_ClockCtrl(data0)
Writes the control data to the clock

Procedure Set_Clock(data0, data1, data2)
Load the bits in data0..data2 to the clock

Procedure Asc2Dec()
Converts 5 first decimals in temp_mem)

Procedure Dec2Bin()
Converts 5 decimal digits in temp_mem to a binary word.
Format of returned word is LOWBYTE | HIGHBYTE

Procedure Asc2Bin()
Converts 5 ascii values in temp_mem to a binary word

6.8 Problems

One encountered problem that remains unsolved is the fact that indexing the keytable, a table that trans-
lates a key press to an ASCII value, could fail depending on the placement of its definition in the pro-
gram.
38

Terminal Card AVR Software

e listed
rd com-
Another encountered problem was the fact that the Windows compiler started to crash as the code got
larger. This was solved using a DOS compiler. Later, the Windows compiler was working fine with any
code size. In addition, the AVR programmer failed verifying the code more often as code size increased.
The reason for this is unknown, but probably a hardware problem is causing a failure programming the
AVR.

When using a timer interrupt for delays a conflict occurred. The keypad interrupt routine required a
delay. When this delay was set to use an interrupt triggered delay routine, the delay routine never
exited. The reason for this was the fact that inside the keypad routine, interrupt were disabled automati-
cally. Hence, the timer interrupt never triggered inside the keypad routine. Solutions were manually set-
ting the interrupt enable flag, using a interrupt flag register to note the different interrupt and checking
this register at key points in the code or simply using a non interrupt delay routine. Due to lack of time,
the last and simplest solution was used. A drawback of this solution is the fact that it making the con-
troller do something while in a delay routine is not very elegant.

Finally, a problem worth mentioning is the size of the code. We were supposed to be able to use a C
compiler for the AVR during this project. This would give us several advantages like easier handling of
large programs and more time efficient programming. The C compiler unfortunately never arrived,
forcing a pure assembly software design. This resulted in more work, but also more experience and
code manually tuned for the hardware. Experience was also gained on a higher level of the design, as
we had to find ways to handle the size of the program in such a low level environment. This task was
solved satisfactory, but could have been done better with the level of experience acquired at the end of
the project.

Since the success of the software depended on correct timing and other considerations when program-
ming at such a low level, there was a need for testing the code on hardware before the completion of the
terminal card. For this purpose a small test box based on the Atmel AVR development board was cre-
ated. The box featured a keypad, a keyboard decoder and a display. The use of this box made testing on
hardware to be used on the terminal card possible. This was a great advantage when debugging the
code. On the other hand, this resulted in more code since many parts had to be rewritten for usage on
the terminal card. Some parts of the code, like the external bus interface, were very hard to test, espe-
cially since the terminal card and the DSP card where never connected to the Compact PCI bus.

6.9 Testing

Most of the following test have been tested with AVR Studio, a software debugger, and the AVR test
box mentioned earlier. This made the software tests independent of the terminal card, and thus the
source of errors discovered guaranteed not to be the terminal card hardware. Two disadvantages are
obvious, one being the fact that hardware failure of the test box might be a source of errors, the second
one being the fact that certain parts of the software being tested is different than the software used on
the AVR of the terminal card. Later, the software was modified to be used on the terminal card. New
tests where performed using the terminal card.

6.9.1 Menu

The tests performed in this section have not revealed any errors. Still, there exists a huge amount of
inputs that remains untested, and some that probably never will occur. The results of the tests performed
without the terminal card are displayed in Table 6–7. Tests performed using the terminal card ar
in Table 6–8. No cards have been connected to the external bus. All tests performed requiring ca
munication is simulated by using the software capability of including fake cards in the system.
39

DM Project 1998
6.9.2 Bus

Testing bus handling without the terminal card is a complex and time demanding procedure since this
could only be done by simulation. Therefore, tests where only performed using the terminal card. An
unknown error, probably due to the design of the FPGA software, occured when accessing the external
bus. This limited the testability of the bus handling. The test is shown in Table 6–9..

Table 6–7: Test of Menu System Using Test Box

Test Performed Result

General navigation OK

Card and menu retrieval OK

Variable adjustment OK

Variable out of bounds detection OK

Toggle Variable (max=1) system OK

Execute Variable (max=0) system OK

Cancel vs. submit OK

Variable increment and decrement system OK

Variable receive and transmit OK

Correct card number upper right on display OK

Menu and variable retrieval timeout OK

Table 6–8: Test of Menu System Using Terminal Card

Test Performed Result

General navigation OK

Card and menu retrieval OK

Variable adjustment OK

Variable out of bounds detection OK

Variable transfer time out OK

Toggle Variable (max=1) system OK

Execute Variable (max=0) system OK

Cancel vs. submit OK

Variable increment and decrement system OK

Variable receive and transmit OK

Correct card number upper right on display OK

Menu and variable retrieval timeout OK
40

Terminal Card AVR Software

al card

2. Later,
6.9.3 Keypad

The keypad routines have been tested a lot with the test box and on the terminal card. The testing of the
keypad handling using the test box is recorded in Table 6–10. Tests performed using the termin
are listed in Table 6–11..

6.9.4 Display

The display handling was tested with the test box. The results of the test are shown in Table 6–1
testing was performed using the terminal card. This is shown in Table 6–13.

Table 6–9: Test of Bus Handling Using Terminal Card

Test Performed Result

Bus test procedure Failed

Table 6–10: Test of Keypad Handling Using Test Box

Test Performed Result

Pressing a key, and display the ASCII value OK

Key repeat when doing variable inc. and dec. OK

Table 6–11: Test of Keypad Handling Using Terminal Card

Test Performed Result

Pressing a key, and display the ASCII value OK

Key repeat when doing variable inc. and dec. OK

Table 6–12: Test of Display Handling Using Test Box

Test Performed Result

Display Initialization OK

Display one character at specific position OK

Display of string at specific position OK

Clearing the display OK

Table 6–13: Test of Display Handling Using Terminal Card

Test Performed Result

Display Initialization OK

Display one character at specific position OK

Display of string at specific position OK

Clearing the display OK
41

DM Project 1998

eypad
ndle the
e other
edures

 of the
e reason
6.9.5 Utils

The utilities have been tested successfully, except setting the bus frequency. The tests are recorded in
Table 6–14. These tests are considered independent of hardware.

6.10 Changes

Some code is different than the code of the original design. The first difference occurs in the k
handling. Because of a hardware error described earlier, the software had to be patched to ha
error. This was easily done by setting bit three equal to bit seven when reading a key input. Th
difference occurs in the timer module. Lack of time forced a need for using looped delay proc
instead of timer interrupts.

6.11 Known Errors

Only one error is known in the AVR software. This error occurs when setting the clock frequency
external bus. The result is a change in frequency, but this frequency is not the one desired. Th
for this error is not known.

Table 6–14: Test of Utilities

Test Performed Result

Setting the clock Failed

Asc2Dec OK

Dec2Bin OK

Asc2Bin OK

Bin2Dec OK

Dec2Asc OK

Bin2Asc OK
42

 address

ive
7 Terminal Card FPGA Design

7.1 Introduction

An FPGA handles the arbitration of the external bus and the interface between the AVR and the exter-
nal bus. In addition the less complex address decoding logic for the internal bus was implemented on
the FPGA. A controller used to drive the LED columns was also implemented. Because of the capacity
of the FPGA used, which is less than originally planned, adjustments had to be made to the FPGA
design. Some of the components used in the FPGA had do be reduced or removed, which in turn
reduced the flexibility of the tasks of the FPGA.

7.2 Address Decoder

An interrupt register, two LED columns, an SRAM, an LCD, a keypad and a bus controller must be
addressed. In addition to an enable signal some of the units need control signals. AVR_RD and AVR_WR
are used where necessary. See Figure 7–1 and Table 7–1 for the flow of data to and from the
decoder and a description of the signals.

Depending on the address given on the bus ADDR[15:0], the address decoder will enable the respect
unit. Each unit is given its own unique address. See address map in Table 7–2.

Table 7–1: Description of inputs and outputs of address decoder

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

ADDR[15:0] 16 IN x Address bus

AVR_WR 1 IN L Write enable

AVR_RD 1 IN L Read enable

SEL_LCD 1 OUT H Enables the LCD

SEL_RAM 1 OUT L Enables external RAM

ADDR[15:0]

SEL_LCD

SEL_RAM

AVR_WR

SEL_KEY

SEL_LATCH

RS_LCD

SEL_DIODEA

SEL_DIODEB

SEL_INTREG

SEL_B_R

AVR_RD

SEL_B_W

AVR_ALE

Figure 7–1: The schematic of the address decoder showing the
inputs and outputs
43

DM Project 1998
7.2.1 Keypad

The keypad generates an interrupt when a key is pressed. Then AVR issues a read instruction at address
7E00h. This makes the address decoder activate SEL_KEY.

7.2.2 LCD

The LCD is write only. The select signals SEL_LCD, SEL_LATCH and RS_LCD are based on
AVR_WR, AVR_RD, AVR_ALE and ADR0. To deal with the low speed of the LCD controller a transpar-
ent latch had to be added.

RS_LCD is generated by ADR0 and LCD_EN, and selects between the data and control register. Writing
to address 7E10h changes the control register, while writing to 7E11h changes the data register.

SEL_KEY 1 OUT L Enables keypad

SEL_LATCH 1 OUT H Enables LCD latch

RS_LCD 1 OUT x Select data or control register on LCD

SEL_DIODEA 1 OUT H Enables LEDA

SEL_DIODEB 1 OUT H Enables LEDB

SEL_INTREG 1 OUT H Enables interrupt register

SEL_B_W 1 OUT H Enables writing to the bus controller

SEL_B_R 1 OUT H Enables reading from the bus controller

Table 7–2: The internal addresses of terminal card

Address Unit

7E00h Keypad

7E10h LCD, control register

7E11h LCD, data register

7E20h LED column A

7E21h LED column B

7E22h Both LED columns

7E30h Interrupt register

7F80h External bus write

7FC0h External bus read

8000h-FFFFh SRAM

Table 7–1: Description of inputs and outputs of address decoder (continued)

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description
44

Terminal Card FPGA Design

ble 7–3
LCD_EN is based on the 12 most significant bits of the internal address bus. AVR_ALE is included to
avoid writing to LCD every time AVR_WR is cleared. See more about timing on AVR_ALE in [17].

7.2.3 LED Controller

The LEDs are write only. The address decoder will enable the LED when a write instruction is issued to
address 7E20h, 7E21h or 7E22h. Depending on the address SEL_DIODEA and SEL_DIODEB will be
set. Writing to 7E22h will set both enable signals.

7.2.4 Interrupt Register

The interrupt register is read only. Reading address 7E30h enables the interrupt register. The enable sig-
nal SEL_INT is active high. The interrupt register is not implemented due to reduced capacity of the
FPGA.

7.2.5 SRAM

Writing or reading to an address between 8000h-FFFFh enables external SRAM. The enable signal is
active low.

7.2.6 Bus Controller

The AVR can receive from and transmit to the external bus. Address 7FC0h is used for reading from the
bus and address 7F80h is used for writing to the bus. The address decoder enables either SEL_B_R or
SEL_B_W, depending on the address. A overview of the addressable registers are shown in Ta
and Table 7–4.

Table 7–3: A overview of the addressable locations of the
IN_REGISTER

Address Contains

7FC0h Number of data bytes

7FC1h Internal address, 1st byte

AVR_WR

LCD_EN
SEL_LCD

SEL_LATCH

RS_LCDD Q

G

ADR0

AVR_ALE

Figure 7–2: The decoding logic used to enable the latch
and the LCD display
45

DM Project 1998
7FC2h Internal address, 2nd
byte

7FC3h Internal address, 3rd byte

7FC4h Transmitters address

7FC5h 1st data byte

7FC6h 2nd data byte

... ...

7FE4h 35th data byte

7FE5h 36th data byte

7FE6 Not used

7FE7h Not used

... ...

7FFEh Not used

7FFFh Not used

Table 7–4: A overview of the addressable locations of OUT_REG

Address Contains

7F80h Number of data bytes

7F81h Internal address, 1st
byte

7F82h Internal address, 2nd
byte

7F83h Internal address, 3rd
byte

7F84h Transmitters address

7F85h 1st data byte

7F86h 2nd data byte

... ...

7FA4h 35th data byte

7FA5h 36th data byte

7FA6 Not used

Table 7–3: A overview of the addressable locations of the
IN_REGISTER (continued)

Address Contains
46

Terminal Card FPGA Design
7.3 LED Controller

7FA7h Not used

... ...

7FBEh Not used

7FBFh Not used

Table 7–5: Description of inputs and outputs of LED controller

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

DIO[7:0] 8 IN x Six data bits and two mode bits. The two most
significant bits determine the mode.

SEL_DIODEA 1 IN H Enables LED column A

SEL_DIODEB 1 IN H Enables LED column B

B_RESET 1 IN L Clear LED columns

LEDA[5:0] 6 OUT x Pins connected to LED column A

LEDB[5:0] 6 OUT x Pins connected to LED column B

Table 7–6: Overview of addresses in LED Controller

Address EA EB Affects

7E20h 0 1 LED column A

7E21h 1 0 LED column B

7E22h 1 1 Both LED columns

Table 7–4: A overview of the addressable locations of

Address Contains

DIO[7:0] LEDA[5:0]

LEDB[5:0]
SEL_DIODEA

SEL_DIODEB

B_RESET

Figure 7–3: Schematic of LED controller
showing inputs and outputs
47

DM Project 1998

e 7–3).

d
.

e in

 AVR.
 reset on

ified by
e the
 to the

hen no
terrupt

eeded
ed into

acity of
f data,
 were
The LEDs are arranged in two columns. The LED controller is used to drive the LEDs (see Figur
Each column of LEDs is addressable by the AVR. The select signals SEL_DIODA and SEL_DIODEB
will enable the corresponding LED column. LEDA[5:0] and LEDB[5:0] is given address 7E20h an
7E21h, respectively. It is also possible to address both LED columns with 7E22h. See Table 7–6

The six least significant bits of DIO[7:0] set or clear the LEDs. See Table 7–7. In addition to operat
normal mode, Three other modes are added. These modes are SET_ON, SET_OFF and TOGGLE. The
two most significant bits are used to determine mode. Thus, the mode will be controlled by the
When both LED columns are addressed, both columns operate in the same mode. A active bus
pin B_RESET will clear all LEDs.

7.4 Interrupt Register

An interrupted is generated when a button is pressed or a new packet arrives. The AVR is not
B_INT going high. The AVR handles the interrupt by reading the interrupt register to determin
source of interrupt. Which means the interrupt generated by the bus controller is directly routed
interrupt pin on the AVR.

See Figure 7–4 how the interrupt register looks. Default value of the interrupt register is 00h w
interrupt is generated. A bit set indicates a interrupt occurred on the corresponding input. The in
register is not implemented because of the capacity of the FPGA.

7.5 Bus Controller

To allow the terminal card to communicate with other cards temporary storage and control is n
between the bus and the AVR. These tasks are handled by Bus Controller. The controller is divid
two parts. An input controller for reading and an output controller for writing data.

The size of the input and output buffers of Bus Controller had to be reduced because of the cap
the FPGA. It was decided that the input controller should be able to store up to 64 32 bit words o
while the output controller should be able to store up to 32 32 bit words of data. Both buffers
reduced to 16 32 bit words.

Table 7–7: Mode bits determine which mode LED Controller operates in

Bit 7 Bit 6 Bit 5 - 0 Mode Description

0 0 x x x x x x NORMAL “1” sets LED, a “0” clears LED

0 1 x x x x x x SET_ON “1” sets LED, others remain

1 0 x x x x x x SET_OFF “1” clears LED, others remain

1 1 x x x x x x TOGGLE “1” toggles LED, others remain

01234567

NOT USED
BUS
INT

BTN5 BTN4 BTN3 BTN2 BTN17E30h

Figure 7–4: Interrupt Register
48

Terminal Card FPGA Design

nts are
7.5.1 Input Controller

All packets addressed to the terminal card are sampled from the bus and temporary stored in the input
controller.

The sampling is done in BUSEATER which is connected to the external bus. Because the external bus
operates at much higher speed than the AVR, packets are buffered. The BUSEATER forwards sampled
data to the IFIFO. The packet to be read by the AVR resides in IN_REGISTER.

The blocks inside the dotted lines in Figure 7–5 are implemented in the FPGA. These compone
described in detail in the following sections. The inputs and outputs are described in Table 7–8.

Table 7–8: The description of inputs and outputs of BUS_IN

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

B_ADIO[31:0] 32 IN x External bus data lines

B_GRANT[3:0] 4 IN x Lines indicating which card is granted the bus

GRANT_MASTER 1 IN H Indicates that the terminal card is granted the bus

B_STOP 1 IN H Indicates the last word of a packet

B_START 1 IN H Indicates the first word of a packet

B_RESET 1 IN L Reset signal for external bus. It resets all states in
the BUS_IN

AVR

E
xt

er
na

l b
us

ADDR[15:0]

DATA[7:0]

INT

RD

IFIFO

DATA_REG[31:0]

DATA_FIFO[31:0]

WRITE
STOP

LAST

B_CLK

DATA_READY

B_RESET

START

BUSEATER

B_ADIO[31:0]

B_GRANT[3:0]

DATA_FIFO[31:0]

STOP
WRITE

GRANT_MASTER

B_STOP

B_START
B_RESET

B_CLK

IN_REGISTER

adr.
dec

DATA_REG[31:0]
DIO[7:0]

SEL_B_R

ADDR[5:0]

B_CLK

LAST
AVR_RD

DATA_READY

B_RESETB_INT

START

Figure 7–5: The schematic diagram of the input part of the bus controller. The blocks inside the dotted rectangle are imple-
mented in the FPGA
49

DM Project 1998
7.5.2 BUS EATER

B_CLK 1 IN x Clock signal for external bus

ADDR[5:0] 6 IN x Addresses the IN_REGISTER

SEL_B_R 1 IN H Enables reading from bus controller

AVR_RD 1 IN L Read signal from the AVR

DATA_AVR[7:0] 8 OUT x Transmits data from the IN_REGISTER to the
AVR

B_INT 1 OUT H Interrupts the AVR

Table 7–9: Description of inputs and outputs of BUSEATER

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

B_ADIO[31:0] 32 IN x External bus data lines

B_GRANT[3:0] 4 IN x Lines indicating which card is granted the bus

GRANT_MASTER 1 IN H Indicates that the terminal card is granted the bus

B_STOP 1 IN H Indicates the last word of a packet

B_START 1 IN H Indicates the first word of a packet

B_RESET 1 IN L Reset signal for external bus.

B_CLK 1 IN x Clock signal for external bus

Table 7–8: The description of inputs and outputs of BUS_IN (continued)

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

BUSEATER

B_ADIO[31:0]

B_GRANT[3:0]

DATA_FIFO[31:0]

STOP
WRITE

GRANT_MASTER

B_STOP

B_START

B_RESET
B_CLK

Figure 7–6: Schematic of BUSEATER
50

Terminal Card FPGA Design

d con-
case of a
s

Data on the external bus addressed to the terminal card are sampled by BUSEATER and written to
IFIFO. The BUSEATER is implemented as a state machine as illustrated in Figure 7–8. The BUSE-
ATER remains in the idle state until a card is granted the bus. This changes the state to ready. In the
ready state it waits for B_START. Data and control is sampled at the falling edge of B_CLK, BUSE-
ATER changes state on the same edge.

The first word sampled contains the receiver’s address. The four least significant bits of this wor
tain the receiver card’s address. If the card address matches the terminal card’s address or in
broadcast the packet is accepted. Otherwise the machine changes to idle state. Card address 0h i
reserved for the terminal card. The format of the words are showed in Figure 7–7.

DATA_FIFO[31:0] 32 OUT x Transmits data to IFIFO

WRITE 1 OUT H Enables IFIFO for writing

STOP 1 OUT H Indicates the last word of a packet

Table 7–9: Description of inputs and outputs of BUSEATER (continued)

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

First word

24 bit internal card addressing
Not
used

31 0

Card
address

8 bit 8 bit 8 bit 4 bit 4 bit

The four least significant bits are replaced
by the card address of the transmitter

Data word

31 0

8 bit 8 bit 8 bit 8 bit

1st byte2nd byte3rd byte4th byte

Figure 7–7: The format of the words a packet consist of. The first word in a packet is the
receiver’s address and the rest of the words are data words.
51

DM Project 1998

ignifi-

en dur-

 and
e to

ing
Before the first word is written to IFIFO the transmitter’s address is inserted into the four least s
cant bits. These four bits are sampled from the GRANT[3:0].

The BUSEATER samples from the external bus and writes it to IFIFO until B_STOP. At least one
B_CLK cycle must occur before the next packet can appear on the external bus. If no grant is giv
ing this B_CLK cycle the state changes to idle state. Otherwise it changes to ready state, prepared to
receive the next packet.

The pins are described in Figure 7–6.

7.5.3 IFIFO

The IFIFO illustrated Figure 7–9 is used for buffering data packets between BUSEATER
IN_REGISTER. It is a 32x32 bit circular first-in-first-out buffer. A dual-port RAM makes it possibl
write and read at the same time. All data is read by IN_REGISTER on the rising edge of B_CLK.
START is set for one clock when IN_REGISTER is ready to read a new packet. DATA_READY is set as
long as there is data in IFIFO. LAST is set to indicate end of packet. Writing to IFIFO is done by sett
WRITE.

init

idle

ready

data

stop

RESET

ADDRESS
 VALID

ADDRESS
NOT VALID

LAST

BUS
GRANTED

BUS NOT
GRANTED

MORE DATA

BUS NOT
GRANTED

BUS
GRANTED

Figure 7–8: The BUSEATER is implemented as a state

IFIFO

DATA_REG[31:0]

DATA_FIFO[31:0]

WRITE
STOP

LAST

B_CLK

DATA_READY

B_RESET

START

Figure 7–9: Schematic of the IFIFO
52

Terminal Card FPGA Design
In Table 7–10 inputs and outputs of the FIFO buffer are described.

Table 7–10: Description of inputs and outputs of IFIFO

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

START 1 IN H Set by IN_REGISTER to start reading from IFIFO

DATA_FIFO[31:0] 32 IN x Transmits data from BUSEATER to IFIFO

STOP 1 IN H Indicates the last word of a packet

WRITE 1 IN H Enables IFIFO for writing

B_RESET 1 IN L Reset signal for external bus

B_CLK 1 IN x Clock signal for external bus

DATA_REG[31:0] 32 OUT x Transmits data from IFIFO to IN_REGISTER

DATA_READY 1 OUT H Indicates there are data in IFIFO

LAST 1 OUT H Indicates that the last word is sent to
IN_REGISTER
53

DM Project 1998

x8 bit
 using
m the
siding

cket is

t from
or reg-
7.5.4 IN_REGISTER

The IN_REGISTER illustrated in Figure 7–10 stores data packets read from the IFIFO. It is a 37
register. Input- and output data is 32 and 8 bit, respectively. IN_REGISTER is also implemented
dual-port RAM. If IN_REGISTER is empty and data is present in IFIFO a new packet is read fro
IFIFO. The IN_REGISTER is considered empty when the AVR has read the last byte of re
packet.

START is set for one clock cycle when reading a new packet. To indicate the last word of the pa
transferred LAST is set by IFIFO.

When the AVR reads address 7FC0h-7FFFh IN_REGISTER is enabled and data is sen
IN_REGISTER to the AVR. The six least significant bits address the registers. See Table 7–11 f
ister contents. The number of data words in the packet can be read at address 7FC0h.

Table 7–11: The description of inputs and outputs of IN_REGISTER

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

DATA_REG[31:0] 32 IN x Receives data from IFIFO

DATA_READY 1 IN H Indicates there is data in IFIFO

LAST 1 IN H Indicates end of packet

B_RESET 1 IN L Reset signal for external bus

B_CLK 1 IN x Clock signal for external bus.

ADDR[5:0] 6 IN x Addresses IN_REGISTER

SEL_B_R 1 IN H Enables reading from bus controller

AVR_RD 1 IN L Read signal from the AVR

START 1 OUT H This pin is set to start reading from IFIFO

DIO[7:0] 8 OUT x Transmits data from IN_REGISTER to the AVR

B_INT 1 OUT H Interrupts the AVR

IN_REGISTER

adr.
dec

DATA_REG[31:0]

DIO[7:0]

SEL_B_R

ADDR[5:0]

B_CLK

LAST
AVR_RD

DATA_READY

B_RESETB_INT

START

Figure 7–10: The schematic of IN_REGISTER
54

Terminal Card FPGA Design

. It is
the tar-
and sets

 it clears
TRL is

xt sec-

he
until all

nchro-

ver-
7.5.5 Output Controller

The output controller OUT_CTRL illustrated in Figure 7–11 is the output part of the bus interface
responsible for allowing the AVR to send data to external cards. The AVR writes the address of
get card, and then writes the data to be sent. The OUT_CTRL buffers the address and data
REQ_MASTER and waits for access to the external bus. GRANT_MASTER is set to signal that the
OUT_CTRL has been granted access to the bus. When OUT_CTRL is granted the external bus
REQ_MASTER and puts address and data on the external bus. Inputs and outputs of OUT_C
described in Table 7–12.

Each of the components including inputs and outputs will be described in more details in the ne
tions.

The two buses ADDR[5:0] and DO_REG[7:0] and the signals SEL_B_W and AVR_WR are used for
asynchronous writing of data by the AVR. If AVR_WR is asserted while SEL_B_W is active, data on
DIO[7:0] are written to the register addressed by ADDR[5:0]. When register 0 is addressed, and t
value on the data lines is non-zero, data from the registers are written to OFIFO and buffered
earlier packets have been sent, and GRANT_MASTER is set.

The rest of the signals are from the external bus or from BUSMASTER. All these signals are sy
nized by B_CLK. They follow the bus protocol described in 3 .

The size of the buffer in OUT_CTRL is 16x32 bit. If the AVR writes to a full buffer, data will be o
written and garbage might come out on the external bus. See section 3 .

AVR

E
xt

er
na

l b
us

ADDR[15:0]

DATA[7:0]

B_FEEDER

ADO[31:0]

OFIFO

WR

OUT_REG

adr.
dec

DIO[7:0]

SEL_B_W

GRANT_MASTER

B_STOP

B_START

B_RESET
B_CLK

AVR_WR

ADDR[5:0]

B_RESET

B_CLK

DO_FIFO[31:0]

DATA_OUT
LAST

DO_FIFO[31:0]

DATA_OUT
LAST

B_CLK
B_RESET

GRANT_MASTER

DO_FEEDER[31:0]

LAST_O
DATA_READY DATA_READY

LAST_O

DO_FEEDER[31:0]

REQ_MASTER

Figure 7–11: The schematic diagram of the output part of the bus controller. The blocks inside the dotted rectangle
are implemented in the FPGA.
55

DM Project 1998

ad from
7.5.6 B_FEEDER

B_FEEDER described in Figure 7–12 is a state machine handling the external bus. Data is re
OFIFO and send out on the external bus.

Table 7–12: Description of inputs and outputs of OUT_CTRL

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

B_CLK 1 IN x Clock signal for external bus

B_RESET 1 IN L Reset signal for external bus. It resets all states in
the OUT_CTRL

GRANT_MASTER 1 IN H Indicates that OUT_CTRL is granted the bus

SEL_B_W 1 IN H Enables writing to bus controller

AVR_WR 1 IN L Write signal from the AVR

ADDR[5:0] 6 IN x Addresses the out register. The 6 least significant
bits of the internal address bus are used

DIO[7:0] 8 IN x Data received from the AVR are sent on this bus

REQ_MASTER 1 OUT H Indicates that the terminal card requests the bus

B_CTRL_O_E 1 OUT H Tristate output signals B_START, B_STOP and
B_ADIO[31:0]

ADO[31:0] 32 OUT x Data lines of the external bus

B_START 1 OUT H Indicates the address word of a packet

B_STOP 1 OUT H Indicates the last word of a packet

B_FEEDER

ADO[31:0]

GRANT_MASTER

B_STOP

B_START

B_RESET
B_CLK

DATA_READY
LAST_O

DO_FEEDER[31:0]

REQ_MASTER

Figure 7–12: The schematic diagram showing
the flow of data in and out of
56

Terminal Card FPGA Design

buff-
O are
B_FEEDER is a state machine used to read data from OFIFO to the external bus. When DATA_READY
is set, REQ_MASTER is set and the 32 bit card address is read from OFIFO. When GRANT_MASTER is
set the address is written to the bus and B_START is set. The clock period following the one with LAST
set will be the last clock period with data on the external bus. This is signaled by an active B_STOP. The
signals of B_FEEDER is described in Table 7–13.

7.5.7 OFIFO

OFIFO, illustrated in Figure 7–13 is a 16x32 bit FIFO buffer. Data is written by OUT_REG and
ered in OFIFO until BUS_CTRL is granted the external bus. The inputs and outputs of OFIF
explained in Table 7–14.

Table 7–13: Description of inputs and outputs of B_FEEDER

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

GRANT_MASTER 1 IN H Indicates that the state machine is granted the
external bus

B_RESET 1 IN L The reset for the external bus. Resets the state
machine

B_CLK 1 IN x Clock for the external bus

DO_FEEDER[31:0] 32 IN x Data read from the OFIFO

LAST_O 1 IN H Indicates that the word on DO_FEEDER[31:0]
bus is the last word of the transfer

DATA_READY 1 IN H Indicates there is data in the OFIFO

B_DATA[31:0] 32 OUT x Used to send data to the external bus

B_CTRL_O_E 1 OUT H Used to tristate B_STOP, B_START and
ADO[31:0]

B_STOP 1 OUT H Indicates the last word of a packet

B_START 1 OUT H Indicates the indicate address word of a packet
57

DM Project 1998
OFIFO is a 16 words deep 32 bit wide FIFO buffer. Data is written to the buffer at the positive edge of
the clock while DATA_OUT is set. The first rising clock edge after LAST is set, the buffer marks this
word as the last transferred. When a GRANT_MASTER occurs address and data words are clocked out
on the DO_FEEDER[31:0] bus. As the last word is transmitted LAST_O is set. After this clock period
DATA_READY and LAST_O are cleared. Data can be read from the buffer at the same clock period data
is written.

Table 7–14: Description of inputs and outputs of the OFIFO

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

GRANT_MASTER 1 IN H Indicates when OFIFO can start clocking data out
on DO_FEEDER[31:0]

B_RESET 1 IN L Reset for the external bus. Deletes the contents of
the buffer

B_CLK 1 IN x Clock for external bus

DO_FIFO[31:0] 32 IN x Data received to be written to the buffer

DATA_OUT 1 IN H Indicates that data is clocked in on the
DO_FIFO[31:0]

LAST 1 IN H Indicates the last word of data received from
OUT_REG

DO_FEEDER[31:0] 32 OUT x Words are clocked out of OFIFO after a
GRANT_MASTER

DATA_READY 1 OUT H Indicates that data is clocked out on
DO_FIFO[31:0]

LAST_O 1 OUT H Indicates when the last word is sent out on
DO_FIFO[31:0]

OFIFO

DO_FIFO[31:0]

DATA_OUT
LAST

B_CLK
B_RESET

GRANT_MASTER

DO_FEEDER[31:0]

LAST_O
DATA_READY

Figure 7–13: Schematic diagram showing
OFIFO
58

Terminal Card FPGA Design

nother

he

the AVR
ss 0h.

 these
7.5.8 OUT_REG

OUT_REG illustrated in Figure 7–14 is the register where the AVR writes the data to be sent to a
card. The writing of the data is asynchronously controlled by SEL_B_W and AVR_WR. Transmitting
data from OUT_REG is synchronized by B_CLK. See Table 7–15 for details on the behavior of t
inputs and outputs of OUT_REG.

The AVR writes the address of the card and the data to send to the card in the registers. When
is finished writing to the registers it writes the amount of data words to be transmitted at addre
The DATA_OUT signal is set for one more clock period than the value written to address 0h. In
clock periods the card address and the data words will be put on DO_FIFO[31:0]. LAST is set on the
last data word.

Table 7–15: Description of inputs and outputs of OUT_REG

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

B_RESET 1 IN L Reset signal for the external bus. It resets the state
machine responsible for clocking out data from the
registers

B_CLK 1 IN x Clock for external bus

DO_REG[7:0] 8 IN x Data lines of internal bus

ADDR[5:0] 6 IN x Addresses internal registers in OUT_REG

SEL_B_W 1 IN H Enables writing to bus controller

AVR_WR 1 IN L Write signal from the the AVR

DO_FIFO[31:0] 32 OUT x Data from OUT_REG to OFIFO is transferred on this
bus

DATA_OUT 1 OUT H Indicates that data is clocked out on DO_FIFO[31:0]

LAST 1 OUT H Indicates the last word sent to OFIFO

OUT_REG

adr.
dec

DO_REGI[7:0]

SEL_B_W

AVR_WR

A[5:0]

B_RESET

B_CLK

DO_FIFO[31:0]

DATA_OUT
LAST

Figure 7–14: The schematic diagram showing
the flow of data in and out of
59

DM Project 1998

tay in
d

7.6 Bus Master

The bus master BUSMAST is the external bus arbiter. It polls the request lines from each card con-
nected to the bus and the request line from the bus controller. As all cards connected to the external bus
can request the bus simultaneously the card with the lowest address is granted the bus.

The state machine in Figure 7–16 shows the function of BUSMAST. After a reset is made it will s
idle state until a card requests the bus on REQ[7:1] or REQ_MASTER. If there are more than one car
requesting the bus an arbitration is made in the arbit state. In the addr and data states BUSMAST waits
for B_STOP to be set. When this happens it will either change state to the arbit state provided that some

Table 7–16: Description of inputs and outputs of BUSMAST

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

REQ[7:1] 7 IN H Notifies that a card requests the bus

REQ_MASTER 1 IN H Notifies that the terminal card requests the bus

B_GRANT[3:0] 4 OUT x Indicates which card is granted the external bus

GRANT_MASTER 1 OUT H Indicates that the terminal card is granted the bus

B_MAST_O_E 1 OUT H Used to tri-state B_STOP, B_START and
ADO[31:0]

B_STOP 1 OUT H Indicates that the last word of a packet is on the
bus

B_START 1 OUT H Indicates that the first word of a packet is on the
bus

B_RESET 1 OUT L Reset signal for the external bus

B_CLK 1 OUT x Clock for the external bus

BUSMAST

B_GRANT[3:0]

GRANT_MASTER

B_STOP

B_START

B_RESET

B_CLK

REQ[7:1]

B_MAST_O_E

REQ_MASTER

Figure 7–15: Schematic diagram of BUSMAST
60

Terminal Card FPGA Design

tion of
 of the
cted.

onfused

cessing
card has requested the bus, or to the idle state. A more detailed description of each signal is given in
Table 7–16.

7.7 Simulation

The top level design was simulated and verified before implemented on the FPGA. The simula
each block is commented below. Due to the lack of time and misunderstandings the simulation
input controller is not a part of this section, but it has been simulated and gives the results expe

The number used in the description references is the simulation time in ns seconds (not to be c
with real time implementation) in the pulse diagram. See Appendix G for timing diagrams.

7.7.1 Simulation of Address Decoder

This module decodes the address on ADDR[15:0] and enables the appropriate unit. ADDR[15:0] is
given values within the address space of the AVR.

20. The addresses given enables the SRAM which is correct since it will be enabled when ac
addresses between 8000h-FFFFh. SEL_RAM is active low.

60. Setting ADDR[15:0] to 7FFFh should enable the input bus controller by setting SEL_B_R. This is
not done. Corrections need to be made.

70. ADDR[15:0] is set to 7E10h which addresses the LCDs control register. AVR_ALE is set and
AVR_WR is cleared which in turn set SEL_LCD and SEL_LATCH. RS_LCD is low and indicates writing
to the control register.

init

idle

arbit

addr

data

RESET

LAST
WORD OF
PACKET

BUS NOT
REQUESTED

BUS
REQUESTED

BUS REQUESTED AND
LAST WORD OF PACKET

MORE DATA

BUS
GRANTED

Figure 7–16: BUSMAST is based on a state machine. The
state machine will change state depending on the
current state and the condition for the transition
61

DM Project 1998
110. ADDR[15:0] is set to 7E11h which addresses the LCDs data register. SEL_LCD and SEL_LATCH
is not set before AVR_WR is cleared and AVR_ALE is set. RS_LCD is high and indicates writing to the
data register.

150. ADDR[15:0] is set to 7E00h. Enables keypad for reading when AVR_RD goes low. SEL_KEY goes
low at the same time.

180. Enables the interrupt register for reading. 7EC0h is put on ADDR[15:0]. SEL_INTERG is high this
value is on the bus.

200. ADDR[15:0] is set to 7E20h. This enables LEDA by setting SEL_DIODEA when AVR_WR goes
Low.

230. Writes to LEDB by setting ADDR[15:0] to 7E21h and clearing AVR_WR. SEL_DIODEB goes
Low.

260. Writes to both LED columns by setting ADDR[15:0] to 7E22h and clearing AVR_WR. Both
SEL_DIODEA and SEL_DIODEB is set which indicates that both LED columns are enabled.

310. Enables the output bus controller for writing. The address bus is set to 7F80h and SEL_B_W is set.

340. ADDR[15:0] is set to 7FC0h. This enables the input bus controller for reading. SEL_B_R is set as
long as the addresses are within the address space of the input controller.

The address decoder gives the results as expected, except that addressing to the upper area of both input
and output bus controller fails. Addressing 7F90h-7FBF and 7FD0h-7FFF does not enable either of the
controllers. This error is not corrected in the final design.

7.7.2 Simulation of Bus Master

The bus master was simulated and verified before the final version was implemented on the FPGA. The
card with the lowest address requesting the external bus is granted the bus.

40. The terminal card requests the external bus by setting REQ_MASTER, and is granted the bus in the
following clock period.

60. The start line is set in the next clock period. Notice that the grant lines is cleared which indicates
that terminal card is granted the bus. B_STOP is set when the last word of packet is transmitted.

130. Three cards request the bus; terminal card, card one and card three. REQ_MASTER is set and
REQ[7:1] is set to 5h. The terminal card is granted the bus because of its address (0h). The grant lines
are 0h.

170. Two cards request the bus; card one and three. REQ[7:1] is set to 5h. Card one is granted the bus.
The grant lines do not show which card is granted the bus, but it has been verified that card one is the
winner.

180. The next cards requesting the bus is card two and four, REQ[7:1] is set to 4h. The grant lines do
not show the winner this time either, but it has also been verified that card two is granted the bus.

The results is as expected.
62

Terminal Card FPGA Design
7.7.3 Simulation of Output Controller

This module is handling the writing from the AVR to the external bus, provided that the terminal card is
granted the bus. The design of the output controller is commented at top level only, even though it con-
sists of three major submodules. The simulations of the submodules are also in Appendix G.

6. B_ADIO[31:0], B_START and B_STOP are tri-stated.

50. The output bus controller is enabled for writing as SEL_B_W is set. The AVR writes data to
DIO[7:0] when AVR_WR goes low. ADDR[5:0] addresses the loactions where the data is to be written.

100. Additional bytes are written to the output controller and temporary stored in the internal registers
and FIFO buffers.

260. When the a new packet is in the FIFO buffer and is ready to be transmitted the controller issues a
request on REQ_MASTER.

400. GRANT_MASTER is set which indicates that the controller is granted the bus. B_CTRL_O_E is
cleared and B_ADIO[31:0], B_START and B_STOP can be driven by the controller. It starts to transfer
data on the bus in the next clock period.

7.8 Known errors

There are a few known errors in the design described in the previous subsections. Receiving more pack-
ets than both buffers in the bus controller can handle might happen. Which means that data already
stored in the buffer could be overwritten producing garbage on the output, either to the AVR or the
external bus. It can be solved by controlling the status of the buffers. Packets received after the buffer is
full will be discarded and maybe some crucial updates are lost. It could be avoided by implementing
buffers of increased capacity.

Simulation of the address decoder revealed that some addresses could not be accessed in the bus con-
troller. Addressing 7F90h-7FBFh and 7FD0h-7FFFh will not enable output bus controller or input bus
controller respectively. This error is not corrected in the final design. The corrections have to be made
in the address decoder block.
63

DM Project 1998
64

8 Terminal Card Hardware and Soft-
ware Integration

8.1 Introduction

The system testing could start when the board was assembled and the first versions of the AVR and
FPGA software were available. Prior to this, only limited parts of the system had been tested.

All three parts of the design have to be present before a complete test of each part can be done. The
AVR is dependent of the decoder logic in the FPGA design to be able to access the devices on the inter-
nal bus. When no other cards are available at the external bus, only the AVR can generate signals to be
handled by the FPGA. Both the AVR and the FPGA software need hardware to run on, and the PCB
card without software is useless. Well-hidden errors on the PCB may be visible only when the design is
complete.

8.2 Integration

When the card was assembled, the FPGA could not be properly configured by the XChecker interface.
After debugging both hardware and verifying FPGA design process, the conclusion was that our FPGA
did not work properly. When the replacement was mounted, the configuration downloaded.

At this time, the address decoder was finished and could be tested. By probing the lines and running test
programs on the AVR, the address decoder was found working. Some small corrections were made
though. The enable signals decoded by the address decoder had to be ANDed to either the read or write
signal from the AVR. In addition the enable signals for the LCD were corrected since writing to the
LCD happened every time the write signal was cleared.

During this test phase, some hardware errors were discovered. As mentioned ealier, they could either be
patched in software or corrected with a small hardware fix.

When the hardware was working properly, all sections of the AVR code could be tested more throughly.
Some problems with the menu handling was sorted out. The debugging was simplified when the code
could be run on hardware and not only simulated on PC.
65

DM Project 1998
66

9 DSP Card Hardware
The DSP card is planned to be used as an audio card. The card is not made for a specific purpose, so it
is designed to be reconfigurable in order to fit future needs. It will be connected to other cards through
a CompactPCI bus. A terminal card is the master and thus controls the bus arbitration.

The DSP card contains these key components:
• DSP, Digital Signal Processor, from Motorola
• OnCE interface (microcontroller to debug and download code to the DSP)
• SRAM (128k * 8 bit)
• Codec (AD/DA-converter and filter on the input and output ports)
• FPGA, Field Programmable Gate Array (reconfigurable logic)
• XChecker (interface between the FPGA and a PC), and a SPROM to configure the FPGA.
• AES/EBU for transmitting and receiving digitalized sound.
• Clock circuit for generating clock signals to the DSP and Codec.

Other components:
• Reset buttons
• LEDs
• DIP-switches
• 4 bit Hex-switch
• Probing pods
• Operational amplifiers (Op.amps)
• De-coupling capacitors
• Pull-up resistors
67

DM Project 1998
9.1 Introduction

The idea is that the DSP card is going to process audio data and communicate with other cards. Com-
munication is handled by the FPGA which is programmed to provide an interface between the DSP and
the bus. The DSP receives audio data, either from the bus or from an external source. It then processes
the data before transmitting it to another card via the bus or to an external unit. A circuit on the card,
Codec, contains AD/DA converters so that the DSP card can transmit/receive analog signals to/from an
analog external unit as well. To keep the card reusable, there have not been made any prejudgments
concerning the configurations of the different components. The operation modes of circuits can be
changed by using DIP-switches or by programming some pins on the FPGA. The DSP and the FPGA
can be programmed from a PC through the OnCE interface and the XChecker interface, respectively. A
principal drawing of the DSP card is shown in Figure 9–1.

DSP

FPGA

CompactPCI connector

SPROM

68HC705
OnCE

interface

RS232
Level

converter

SRAM
128k x 8

AES/EBU
RX

AES/EBU
TX

Codec

A
dd

r/
D

at
a

C
on

tr
ol

RS 232

Data[7-0]

Addr.[16-0]

XChecker

SHI

Bus controller

SAI

OnCE

EMI

Control

SPI

SDO2

SDI0

SDO1

SDO0

SDI1

CDout

CS

CDin
SSCCLK

Figure 9–1: DSP card
68

DSP Card Hardware

 layers
e from
 layer

nted on
Layer 2
a with
ompo-
3.
9.2 The Printed Circuit Board

The printed circuit board, PCB, has a size of EU format (160*100mm) and the bus connection is posi-
tioned to make the it fit in a CompactPCI bus rack. As shown in Figure 9–2 the PCB has four
which are divided into an analog and a digital part. This is done to prevent electromagnetic nois
the digital part to interfere with signals in the analog part. The top layer (layer 1) and the bottom
(layer 4) are dedicated to routing and mounting of components. All the key components are mou
the top layer. On the bottom layer, there are only SMD resistors and SMD capacitors mounted.
is used for ground and layer 3 is used for power. The digital power layer is divided into an are
3.3V and one with 5V, as the FPGA requires a power supply of 3.3V while the rest of the digital c
nents use 5V. The analog power layer is supplied separately with 5V. This is shown in Figure 9–

Layer 1 (routing)

Layer 2 (ground)

Layer 3 (power)

Layer 4 (routing)

Digital part Analog part

3.3V 5V 5V

Figure 9–2: Cross section of the PCB

Analog part

5V

Digital part
5V

Digital part
3.3V (FPGA)

Figure 9–3: Top view of the PCB
69

DM Project 1998

P56007
 port

 FPGA
a 24 bit
6MHz

he
 splits
 proto-
data
r data
9.3 DSP Part

This part describes the functional group of components according to the DSP part in the top level sche-
matic diagram in Appendix H.1:
• DSP
• Codec
• RS-232
• SRAM
• OnCE interface
• AES/EBU
• Clock circuit

9.3.1 DSP

A DSP is a microprocessor that is optimized for digital signal processing. The DSP used is a DS
from Motorola. It has a serial audio interface (SAI) which is used for digitalized audio. The OnCE
will be used to download code and for debugging purposes. The DSP communicates with the
through the serial host interface (SHI). To access the RAM it uses an 18 bit addressbus and
databus in the external memory interface (EMI). The chip is powered by +5V and can run on 6
clock.

The on-chip modules in Figure 9–4 are:
• GPIO, general purpose input/output. Its pins are connected for synchronization and control pur-

poses.
• SAI, serial audio interface. It is divided into two parts, the transmitter and the receiver section. T

two sections contain one serial clock and one frame sync each. Frame sync is the signal that
the left and right audio data channel. SAI contains two input and three output data ports. The
col used is the standard SPI protocol (Serial Peripheral Interface). One input port is used for
from Codec and one is used for data from the digital receiver. All three output ports are used fo
to Codec, and one of them is shared with the digital transmitter.

Figure 9–4: DSP5600 family core
70

DSP Card Hardware

nd
unica-

8kB

rfor-
fore can

serial

ds a

A

ry

ecuting
ug mode,
he DSP
med in
 DSP

eme in
lse is
en this

ntroller
2 Volt
eeded

ta bus.
sen.
ro wait
• SHI, serial host interface. The serial host interface consists of a serial clock, data in, data out a
some control lines. These lines are connected directly to the FPGA chip’s IO-pins. The comm
tion follows the SPI protocol.

• EMI, external memory interface. This is used to expand the memory available to the DSP. It can
address up to 256kB of memory without any external components (18 address lines). As a 12
RAM has been chosen, the address line 17 is not needed.

• Internal memory. The DSP chip internal RAM is divided into three to increase the execution pe
mance: The program memory and the two X and Y data memory are separate parts and there
be accessed simultaneously. A word is 24 bits wide.

• OnCE port for programming and debugging the chip. This port is connected to a Motorola
MC68705K1 microcontroller which provides an interface between the OnCE protocol and the
RS-232 interface.

• PLL, phase locked loop for clock generation. The DSP chip can multiply the external clock up to
4096 times. The chip receives a 768kHz clock, which is multiplied to 66MHz. This circuit nee
filter and therefor is connected to a 560pF capacitor.

• PCU, program control unit handles interrupt lines. These lines are connected directly to the FPG
chip.

• ALU, there are two 56-bit accumulators in this chip. They have access to both X and Y memo
simultaneously.

9.3.2 OnCE Interface

The OnCE interface operates by recieving the serial data from the RS-232 transceiver and ex
commands sent by the host computer. These commands can reset the DSP, put the DSP in deb
release the DSP from debug mode, read and write to the OnCE port, and read and write to t
itself. The serial bit rate is 19,200 bits/second. The RS-232 serial communications are perfor
software on the MC68705K1 microcontroller. Port A of the MC68705K1 communicates with the
and port B communicates with the host computer.

The acknowledge signal from the OnCE- port is a low going pulse on DS0 (see OnCE sch
Appendix H.7). Since the MC68705K1 is too slow to reliably catch this very narrow pulse, the pu
latched in the FPGA and the output of the latch can be accessed by the microcontroller. Wh
occurs, the MC68705K1 illuminates a red LED to indicate that the DSP is in debug mode.

9.3.3 RS-232

In this system the RS-232 port (RJ11 6/4 modular plug) is used to send data to the OnCE co
which in turn communicates with the Motorola DSP. Since the DSP board does not supply +/- 1
required for standard RS-232 communication, a Maxim MAX232 chip is used to generate the n
voltages.

9.3.4 SRAM

In addition to the internal RAM on the DSP, external RAM is connected to the address and da
The MCM6726D from Motorola which is a 128k x 8 bit SRAM (Static RAM, 12ns) has been cho
SRAM has been selected to gain fast memory access. This particular SRAM operates with ze
states at 66MHz DSP clock speed, as shown below.

T= 1/f = 1/66MHz = 15.16ns, T > 12ns
71

DM Project 1998

 over
al data

GA

e

33078
he chip

 system
a a dig-
9.3.5 Codec

A Codec is a circuit which contains an AD-converter for each input channel and a DA-converter for
each output channel. The Codec used is a CS4227 from Crystal. It provides three analog-to-digital and
six digital-to-analog converters and has a filter on each input and output channel to remove undesirable
frequencies outside the audible frequency range. In addition, the D/A channels have independent vol-
ume control. The Codec is connected to the serial audio interface (SAI port) of the DSP.

Description of some blocks in Figure 9–4:
• Serial Audio Data Interface: digital audio data for the DACs and from the ADCs is transferred

separate serial ports, this allows concurrent reading and writing to the device. This is the seri
interface between Codec and the DSP.

• Control Port: the control port is used to load all the internal settings. It is connected to the FP
thus the internal signal flow can be changed while the DSP is processing data.

• Auxiliary Input: the auxiliary port provides an alternate way to read digital audio signals into th
CS4227. The Auxiliary Input Interface is deactivated.

All the analog signals are passing external filters, based on operational amplifiers of the type MC
from Motorola, as suggested in the datasheet. This is to adapt the line level of analog input to t
requirements and to filter output signals separately (2-pose Butterworth filter).
The Connector for the analog signals is the 25pol sub D.

9.3.6 AES/EBU

When digital audio is present, either from a sampled analog source or transferred from an other
board via the CompactPCI bus, one might want to send this digital data to other external units vi

Figure 9–4: Block diagram of the CS4227 from Crystal
72

DSP Card Hardware

on it has

ty in a
ital link. It may also be desirable to reverse the process and receive digital audio from external units.
This functionality is maintained in the digital audio serial transmitter and receiver from Crystal -
CS8402A and CS8412. These are in turn connected to an RJ11 6/4 modular plug which are the interface
to the outside world. The digital input/output ports are connected to the SAI-port on the DSP and the
status pins on both circuits (C, U and V) are connected to the FPGA. The circuits support the AES/EBU
format and S/PDIF format.

9.3.7 Clock Circuit

The Codec and DSP chips need a clock signal in order to operate. A common clock signal is used for
these circuits.

The DSP chip has an internal PLL circuit, as explained above, for multiplying the clock. For this reason
the clock frequency for this chip is not taken into consideration when selecting the common clock fre-
quency. Since the DSP can use the same clock frequency as Codec the clock frequency most adequate
for Codec is selected.

The Codec chip needs the clock signal to drive its internal logic. There are several options for the fre-
quency of this clock. The external clock frequency needs to be 256, 384 or 512 times the sampling fre-
quency which can be 32, 44.1 or 48 kHz.

It is impossible to generate all three optional sampling frequencies with only one clock generator. So
the choice that provides most options is to supply 32 and 48 kHz only. A frequency of 44.1 kHz can not
be an option together with 32 and 48kHz, as the internal logic of the Codec does not provide appropri-
ate divisors.

The calculation below shows why a main clock of 12,288MHz has been chosen:

12,288 Mhz (external clock) / 256 (option of internal logic) = 48 kHz (sampling freq.)

12,288 Mhz (external clock) / 384 (option of internal logic) = 32 kHz (sampling freq.)

The clock generating chip called EXO-3 has a clock of 12,288MHz and an internal divider, which
divides the clock signal to the DSP chip to avoid unnecessary electromagnetic noise due to a high fre-
quency. See configuration section for further information on dividing.

9.4 FPGA Part

This part describes the functional group of components according to the FPGA part in the top level
schematic diagram:
• FPGA
• CompactPCI connector

9.4.1 FPGA

Programmable logic serves in our case as an interface between the DSP and the bus. In additi
some configuration tasks.

Using FPGA as a bus controller is much easier than trying to implement the same functionali
software/microcontroller based solution, mainly because of the rigid time schedule on the bus.
73

DM Project 1998

ructed
nt both

ed cir-
s. The
sources

flops

mmuni-
ompact-

 + 5V

p level

serially
 from
 since it
ge pro-
 much

n inter-
The FPGA used is the 3,3V 4044XL. It is a 160-pin PLCC. 127 of the pins are freely programmable
I/O-pins, 8 pins are clock-type I/O-pins. This means they are dedicated to generate or detect clock
pulses and therefore have very fast internal buses on the chip. The FPGA is connected to a 5V powered
DSP. This is no problem as the 4044XL may receive up to 5V input voltage.

The FPGA is an integrated circuit consisting of three main components. These are:
• CLB's
• Routing resources
• I/O-blocks

CLBs or Configurable Logic Blocks are units that can implement logic functions. They are const
among others of D-flip-flops and function generators. Together these can be used to impleme
sequential and combinatory circuits.

The routing resources are used to interconnect the different CLBs and I/O-blocks to the intend
cuit. The routing resources are actually horizontal and vertical lines connected by switch array
routing resources consists of both fast and slower lines so it is quite a challenge to place right re
at right locations on the chip.

I/O-blocks offer an interface between the CLBs and external logic. An I/O-block contains D-flip-
and some programmable pull-up and pull-down resistors.

9.4.2 CompactPCI Connector

The card is connected to the external bus using a CompactPCI-plug. This bus is used as the co
cation bus for all the cards that are connected. The pin assignment deviates from the standard C
PCI connector definition, since the CompactPCI bus protocol is not implemented:
• 32 address/data lines
• 7 request lines
• 4 grant lines
• Start and stop lines
• Master reset
• Clock line
• GND, +/- 5V, +/- 3,3V, and +/- 12V

All the signal lines are connected to the Xilinx FPGA, GND connects to plane 2 of the card and
and + 3,3V to plane 3.

9.5 XChecker and SPROM

This part describes the functional group according to the XChecker and SPROM part in the to
schematic diagram:

When the FPGA is powered up, the chip needs to be configured. This can either be done by
transferring the information from an SPROM (Serial Programmable ROM) or by programming it
a PC via an XChecker cable.The first instance is preferred on systems in everyday operation,
does not require an external cable and information source. However, during the development sta
gramming an SPROM each time an error in the FPGA “software” is discovered consumes too
time. In these cases the XChecker interface is a much more convenient solution.
The XChecker is in general a programming interface from an external unit. In most cases it is a
74

DSP Card Hardware

 debug-

 single

llows
 called
PROM

 that the
-pods
s serve

ow this

 is cho-
hecker.
nd the
 testing
 U11 in
ls can
ppendix

PGA.
 the ter-
face of RS-232 serial transfer protocol, in other words a system to program a FPGA directly form the
FPGA development tool on an computer system. In addition the XChecker can be used to debug the
FPGA during operation.

9.5.1 XChecker

When configuring the FPGA it can be done through a special cable which fits in the serial port of a PC
at one end and the XChecker on the board at the other end. When the configuration is completed a
green LED illuminates.

 By using the Xilinx Foundation software it is possible to:
• Download a configuration to the FPGA. This is useful to test a new design.
• It is also possible to check the states inside of the FPGA via the cable. This can be used when

ging the chip design.
• The global clock can be controlled via the cable making it possible to debug the design using

step and slow stepping with the clock.

9.5.2 SPROM

At power-up the FPGA can read the information out of the SPROM and configure itself. This a
the FPGA to operate on its circuitboard independently, without a PC. This mode of the FPGA is
master serial mode. The SPROM can be programmed off-board with new FPGA designs. The S
used is a XC 1701L from Xilinx.

9.6 Other Components

The card also contains three reset buttons to reset DSP, Codec and FPGA, an LED to indicate
configuration of the FPGA has finished, DIP-switches to configure various circuits, some probing
and a 4 bit HEX switch to set the system address of the card. Finally some operational amplifier
as input and output buffers in the analog interface.

9.7 Configuration

Both hardware and software configurations are used on the card. In this section it is explained h
is done.

9.7.1 FPGA

The FPGA chip can be configured with a SPROM or with a XChecker cable.The desired source
sen by a switch which in one position chooses the SPROM and in the other position the XC
When the switch is pushed forward in the direction of the FPGA, the XChecker is selected, a
opposite direction the SPROM is selected. In addition, there are three pins for configuration and
purposes, connected to a DIP-switch array on the board (DIP-switch 3, 4 and 5 on switch array
Appendix H.4, see silk layer in Appendix I.2 for the physical location on the board).These signa
be programmed for any purpose the FPGA programmer desires. See the FPGA scheme in A
H.5. The signals are labeled Dip[0:2].

To set the identification (ID) of the card on the external bus a HEX-switch is connected to the F
Four pins are used for this, which gives 16 possible addresses from 0 to F hexadecimal (ID 0 is
75

DM Project 1998

 see the
litted

. The
different
owever
put, so
am.
minal card). The FPGAs internal pull-up capabilities are used, so no additional external pull-ups are
needed.

There are several ways to reset the circuit. The bus has a reset line that is controlled by the bus master,
which is the terminal card. On the board there are two buttons connected to the FPGA for reset pur-
poses, see DSP and XChecker schematic diagrams in Appendix H.4 and Appendix H.2. The buttons are
also shown on the top silk layer, see S3, S4 in Appendix I.2. The button nearest to the FPGA (S3) is for
resetting the internal logic implemented in the FPGA. The button next to this (S4), the one in middle, is
for resetting the DSP circuit. The reset pin on the DSP is bypassed through the FPGA to this button.

9.7.2 DSP

To configure the DSP the OnCE interface is used. This interface provides the opportunity to download
programs to the chip which in turn configures the DSP. There is a reset button for the OnCE controller.
This is the nearest button to the OnCE controller, see S2 on top silk layer. The FPGA is connected to the
DSP chip via the serial host interface (SHI).
The DSP has one dedicated section for transmitting and one for receiving serial audio data. This causes
problems for other parts of the card. The Codec chip has the same signals for receive and transmit with
respect to the clock and wordsync signal. In addition the AES/EBU circuits use these signals too, as
shown in Figure 9–5. To overcome this problem a DIP-switch array is used to split these signals,
DSP schematic diagram in Appendix H.4 (DIP-switch array, U13, on silk layer). The signals sp
are wordsync receive/transmit (WSR/WST) and serial clock receive/transmit (SCKR/SCKT)
switches must be set according to which audio source and output that is selected. In Table 9–1
configurations are listed. Only one audio source type can be used at a time, digital or analog. H
it is possible to output digital and analog signals at the same time. These signals are digital in
they are pulled up with a 100k resistor to prevent floating, as shown in the DSP schematic diagr

receive
section

transmit
section

DSP

CODEC

AES/EBU
RX

AES/EBU
TX

(slave)

WSR

SCKR

WST

SCKT

LRCK

SCLK

FSYNC

SCK

FSYNC

SCK

Figure 9–5: Signal conflicts between the DSP, Codec and the AES/EBU circuits
76

DSP Card Hardware

 up by
and B

e (SPI

on
odec

CCLK,

 reset-
 or the
The reset pin is connected directly to the FPGA chip for software reset. In addition there are three inter-
rupt pins, two of them maskable (IRQA/IRQB) and one nonmaskable (NMI), connected to the FPGA as
well.

9.7.3 Clock Circuit

The clock circuit can provide various frequencies. For selection there are three pins on the chip (A, B,
C). They have been connected to a DIP-switch array, see U11 in the DSP schematic diagram. The clock
circuit has a basic frequency of 12,288 MHz, which is connected to an internal divider network for
reduction of frequency. The result frequencies are shown in Table 9–2 (the switch array is pulled
resistors in off position and to ground in on position). The DSP is clocked by 768kHz, so input A
should be high and C low.

9.7.4 Codec

The Codec is partly configured via software and partly via hardware. To choose the protocol mod

or I2C) for the control port the SPI/I2C pin is connected to a DIP-switch array (DIP-switch 2, U11
silk layer). The DEM signal is connected to a DIP-switch array for enabling internal filters in the C
(DIP-switch 1, U11 on silk layer). This is the hardware part.

The FPGA is used to set all the registers in the chip. To do this the four serial interface pins (
CDOUT, CS, CDIN) are connected to the FPGA. The Powerdown pin (PDN) and Overload Indicator
(OVL) are connected to the FPGA as well.This is shown in Figure 9–6 The Powerdown pin is for
ting all internal states and the Overload Indicator indicates if either of the stereo audio ADCs
mono ADC is clipping.

Table 9–1: Configuration of audio source and destination

Operation Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8

analog in - analog out ON OFF ON OFF ON OFF ON OFF

analog in - digital out ON OFF ON OFF OFF ON OFF ON

digital in- digital out OFF ON OFF ON OFF ON OFF ON

digital in- analog out OFF ON OFF ON ON OFF ON OFF

Table 9–2: Configuration of frequency to the DSP

Freq.out (kHz) 6144 3072 1536 768 384 192 96 48

A (Sw8) 0 (on) 1 (off) 0 (on) 1 (off) 0 (on) 1 (off) 0 (on) 1 (off)

B (Sw7) 0 (on) 0 (on) 1 (off) 1 (off) 0 (on) 0 (on) 1 (off) 1 (off)

C (Sw6) 0 (on) 0 (on) 0 (on) 0 (on) 1 (off) 1 (off) 1 (off) 1 (off)
77

DM Project 1998

e con-
own in

 Addi-
9.7.5 AES/EBU

Hardware is used to configure these chips. The reason for this is the physical placement of the compo-
nents. The FPGA chip is placed on the opposite side of the card seen from the digital chips. In order to
avoid stretching cables all along the board, DIP-switches are used.

Digital Receiver

This chip provides several serial port interface protocols. The mode pins (M0, M1, M2) are connected
to a DIP-switch for selecting the desired protocol (DIP-switches 1, 2 and 3, U12 on silk layer). M3 is
strapped to ground. The modes determine whether the receiver serves as clock slave or master. See
Table 9–3(the switch array is pulled up by resistors in off position and to ground in on position).

Digital Transmitter

Again mode pins (M0, M1 and M2) are used to configure the CS8402A chip. All these pins ar
nected to a DIP-switch array (DIP-switches 4, 5 and 6, U12 on the silk layer), the modes are sh
Table 9–5 (the switch array is pulled up by resistors in off position and to ground in on position).

Table 9–3: Audio Port Modes (CS8412).

M2(SW1) M1(SW2) M0(SW3) Format

0(on) 0(on) 0(on) 0-Master, L/R, 16-24 Bits

0(on) 0(on) 1(off) 1-Slave, L/R, 16-24 Bits

0(on) 1(off) 0(on) 2-Master, L/R, I2S Compatible

0(on) 1(off) 1(off) 3-Slave, L/R, I2S Compatible

1(off) 0(on) 0(on) 4-Master, WSYNC, 16-24 Bits

1(off) 0(on) 1(off) 5-Master, L/R, 16 Bits LSBJ

1(off) 1(off) 0(on) 6-Master, L/R, 18 Bits LSBJ

1(off) 1(off) 1(off) 7-Master, L/R, MSB Last

FPGA Codec

CCLK

CS

CDIN

CDOUT

OVL

PDN

Figure 9–6: Interface between FPGA to Codec
78

DSP Card Hardware

e the
concur-

puter.
 due to
t data

t of ques-

symbols
tionally there are two pins for selecting the sample frequency from the options 32, 44.1 or 48 kHz.
These pins are FC0 and FC1. See Table 9–4.

9.8 Problems

9.8.1 Design Phase

It was difficult to divide the workload of designing the card into smaller tasks in order to mak
workload even for the persons in the group. Instead of designing the different parts of the card
rently by different members of the group, it was more convenient to do all the design on one com
A lot of time was spent in learning how to operate the programs involved in the design phase,
their size and complexity. There was no simple structured documentation or overview abou
dependencies and necessary steps for reaching subgoals in the development. This lead to a lo
tions to the lab assistants.
As the libraries did not contain all the components that were needed, it was necessary to create
and footprints before doing the design of the card itself.

Table 9–4: DIP-switch configuration

FC1 (SW 7) FC0(SW 8) S. Freq. [kHz]

0(on) 0(on) 44.1

0(on) 1(off) 48

1(off) 0(on) 32

1(off) 1(off) 44.1 cdmode

Table 9–5: Audio Port Modes (CS8402A

M2(SW 4) M1(SW 5) M0(SW 6) Format

0(on) 0(on) 0(on) 0-Master, FSYNC & SCK

0(on) 0(on) 1(off) 1-Slave, L/R, 16-24 Bits

0(on) 1(off) 0(on) 2-Slave, WSYNC, 16-24 Bits

0(on) 1(off) 1(off) 3-Reserved

1(off) 0(on) 0(on) 4-Slave, L/R, I2S Compatible

1(off) 0(on) 1(off) 5-Slave, LSB Justified 16 Bits

1(off) 1(off) 0(on) 6-Slave, LSB Justified 18 Bits

1(off) 1(off) 1(off) 7-Slave, Last, 16-24 Bits
79

DM Project 1998

SP, so
 it had
h was
e DSP

which
e foot-
 signals
s were
9.8.2 Construction Phase

The silk print on the produced cards was unreadable, so it was quite difficult and time consuming to
locate the components on the PCB. Another problem was the availability of the components. Both the
Codec and MAX232 were missing. This caused another delay and testing of some functional groups
had to be postponed, especially the on- board testing of the DSP and FPGA software.

9.9 Testing

The testing of the DSP card was carried out in two stages. First it was tested without programming the
FPGA and the DSP. Afterwards it was tested when trying to process sound.

The schematic diagrams was thoroughly checked for errors before the card went to production. When it
returned from production there was conducted some testing on the PCB. All power and ground connec-
tions, clock signals and other critical signals were verified to be correct according to the schematic dia-
grams.

When the components were placed on the card, it was checked if they were placed in the right location
and orientated in the right direction. There was also checked for short-circuits between adjacent pins.
Finally it was tested if the pins were properly connected to the pads on the PCB.

No errors were detected throughout the testing on this stage.

When the software was going to be downloaded on the FPGA and the DSP, two errors were detected.
These errors were detected by using a logic analyzer to probe signals between circuits. Beginning at the
source and tracking the signals to see if they arrived at the right pins on the right circuit.

The two errors which were detected:
• The OnCE controller was not programmed.
• The signals connected to a footprint did not correspond to the schematic diagram

9.10 Changes

9.10.1 OnCE Controller

The MC68705K1 controller was thought to be programmed when downloading software to the D
its function as OnCE controller could be performed directly. After some testing it turned out that
to be programmed first. Fortunately there was an MC68705K1 on the Evaluation Board whic
already programmed and was identical to the OnCE controller needed. This circuit was put on th
card to save time and testing could be continued.

9.10.2 DIP-switch

During testing a defect on the PCB was detected. A DIP-switch, see U13 in Appendix H.4,
appeared perfectly correct in the schematic diagram had turned out wrong in the final PCB. Th
print on one side did not correspond to the schematic diagram, it was turned upside down so the
passing the DIP-switch did not arrive at the intended locations. To overcome this problem wire
80

DSP Card Hardware
strapped across it to the right signals on the other side, being a temporary substitution for the DIP-
switch.
81

DM Project 1998
82

 system
consists
m has
ctions,
 menu
10 DSP Card FPGA Design

10.1 Introduction

The DSP card communicates through an external bus. Therefore an interface between the external bus
and the audio processing part of the DSP card is needed. To this purpose an FPGA is used. So the main
task to the FPGA in this design is to pass audio parameter settings to and from the DSP.

10.2 Basis for Design

This section describes the fundamentals and standards for the design.

10.2.1 Sharing of Workload Between the DSP and the FPGA

It is chosen to limit the workload on the DSP to processing only sound signals and let the FPGA do all
other processing. This means that the Codec is controlled by the FPGA, which is a change in respect to
the introductory description of the assignment [1] .

10.2.2 Sound Variables, Sound Effects and Menu

Supported functions are control of the input and the output level.

The input level is controlled as a stereo signal. In this version the possibility for controlling left and
right input channels independently are not implemented. There is no need for it, as the balance can be
adjusted on the output.

The output level of each of the three stereo channels is also controlled as one signal, but here it is possi-
ble to control the balance for each of the three stereo channels in addition to the level.

Sound effects are controlled independently for each of the three stereo output channels. The effects cho-
sen for implementation in this version are bass, treble, differential and delay.

The menu that is implemented is shown in Table 10–1. The menu items make up a hierarchical
in three levels. Each menu item is uniquely defined by a menu level code. The menu level code
of two bytes divided into three parts, high (5 bits), middle (5 bits) and low (6 bits). Each menu ite
a maximum value attached to it. The maximum value must be set to zero for card spesific instru
i.e. for instructions without values. The last column in Table 10–1 shows addresses for which the
level codes are translated into for internal use in the FPGA.
83

DM Project 1998
For further information on the different menu items and their usage, see Appendix O.

Table 10–1: The menu

Description Menu level codes

Max
value
(dec)

Address
for
internal
use
(hex)

High
level

Middle
level

Low
level

High
5 bits
(bin)

Middle
5 bits
(bin)

Low
6 bits
(bin)

Hex
code
(hex)

Gain In 00000 00001 000001 0041 3 8C

Volume 00001 00000 000000 0800

Channel 1 00001 00001 000001 0841 127 84

Channel 2 00001 00010 000001 0881 127 86

Channel 3 00001 00011 000001 08C1 127 88

Balance 00010 00000 000000 1000

Channel 1 00010 00001 000001 1041 8 00

Channel 2 00010 00010 000001 1081 8 01

Channel 3 00010 00011 000001 10C1 8 02

Bass 00011 00000 000000 1800

Channel 1 00011 00001 000001 1841 10 10

Channel 2 00011 00010 000001 1881 10 11

Channel 3 00011 00011 000001 18C1 10 12

Treble 00100 00000 000000 2000

Channel 1 00100 00001 000001 2041 10 20

Channel 2 00100 00010 000001 2081 10 21

Channel 3 00100 00011 000001 20C1 10 22

Delay 00101 00000 000000 2800

Channel 1 00101 00001 000000 2840

On/Off 00101 00001 000001 2841 1 30

Delay 00101 00001 000010 2842 255 31

Level 00101 00001 000011 2843 127 32

Mix 00101 00001 000100 2844 127 33

Feedback 00101 00001 000101 2845 127 34

Channel 2 00110 00010 000000 2880

On/Off 00110 00010 000001 2881 1 40

Delay 00110 00010 000010 2882 255 41

Level 00110 00010 000011 2883 127 42

Mix 00110 00001 000100 2884 127 43
84

DSP Card FPGA Design
10.2.3 Communication with Codec and DSP

Communication between the FPGA and the Codec and between the FPGA and the DSP can be imple-
mented in two different ways. The first one is to send all the information to the DSP and let the DSP
interpret the information received. Then the DSP will send the required information to the Codec. The
second method is to send the information for the DSP to the DSP and the information for the Codec
only to the Codec. The latter solution is chosen. The advantage by the second solution is that there will
be less implementation in the DSP. This also leads to a second interface in the FGPA (the first is to the
DSP), but this is just a copy of the same interface to the DSP.

10.2.4 SPI versus I2C

Two different protocols can be used for the communication between the FPGA and the DSP and
between the FPGA and the Codec: I2C or SPI. The I2C protocol defines a clock line and a bidirectional
data line. The SPI protocol defines one clock line and two data lines, one for sending and one for
receiving.

On the Codec the protocol is chosen by an external input pin, while a bit in a register is used on the

DSP. The SPI protocol is chosen because of its simplicity compared to the I2C protocol. In the SPI pro-
tocol, there will be no redefining of the data direction in the FPGA design.

10.3 Description of the Top Level Design

10.3.1 Simplifications and Choices

Only the First Data Word is Read From the Bus

Since none of the packets supported by the DSP card has more than one data word, the design has not
been build for receiving more than one data word per packet. When a packet containing more than one
data word (erroneously) is sent to the DSP card, the first one is saved in the FIFO_BUFFER and the rest
is ignored.

Feedback 00110 00001 000101 2885 127 44

Differential 00111 00000 000000 3800

Channel 1 00111 00001 000001 3841 1 50

Channel 2 00111 00010 000001 3881 1 51

Channel 3 00111 00011 000001 38C1 1 52

Table 10–1: The menu (continued)

Description Menu level codes

Max
value
(dec)

Address
for
internal
use
(hex)

High
level

Middle
level

Low
level

High
5 bits
(bin)

Middle
5 bits
(bin)

Low
6 bits
(bin)

Hex
code
(hex)
85

DM Project 1998

 to

ation

st.

.

d-

uc-

t
10.3.2 The Design

The design is divided into two main parts. The first part reads the packets from the bus which are
addressed for the DSP card (including broadcast) and puts them in a FIFO buffer, while the second part
reads the packets from the buffer and processes them.

Furthermore the design is decomposed into several parts/blocks using the functionality of Foundation
which makes it possible to mix schematics and VHDL code. The top level schematic consists of the
design’s main blocks and their interconnection, including some extra registers and multiplexers.

The main blocks of the design are (schematics, see Appendix L.13):

• IO_UNIT which contains the connection to the physical pins on the FPGA circuit.

• FOR_US_LOGIC which checks if an address on the bus indicates that a packet is sent
the DSP card.

• FIFO_BUFFER which buffers the packets addressed to the DSP card.

• CONTROL_UNIT which has the main responsibility for the data flow through the
design, from reading the FIFO_BUFFER to sending data to the bus.

• INSTRUCTION_TRANSLATOR which interprets the incoming packet to determine what
is to be done and at the same time translates the combined data and address inform
to a format suitable for further processing.

• ID which produces the identification information to be sent to the terminal card upon
request.

• MENU which produces the menu hierarchy to be sent to the terminal card upon reque

• RESET_DELAY which extends the reset pulse so it is slow enough for the Codec.

• EXTERNAL which processes commands and requests concerning the DSP and the
Codec.

• REGISTER_BLOCK which contains a copy of the values that the terminal card may
request. This ‘block of copies’ is used to cut down on the communication between the
FPGA and the DSP and the FPGA and the Codec.

• OUT_REGISTERS which buffers the data to be sent to the bus.

• BUS_CONTROLLER which asks for access to the bus and controls the sending of data

• BUS_INTERFACE which is used to set correct the request and grant signals correspon
ing to the address of the DSP card.

Additional logic:

• OUT_MUX which channels the address, data and some control signals from the prod
ing unit to the output registers.

• One data register which buffer the number of data words which are to be send, until tha
information is needed by the BUS_CONTROLLER block needs them.
86

DSP Card FPGA Design
10.3.3 Data and Control Flow

The main flow in the design is as shown below, using the following notation: (SUB_BLOCKS,
SIGNALS). The description references the main schematic shown in Appendix L.1.

Reset

1) Reset starts initialization of the design. The EXTERNAL block has to do some time con-
suming initialization procedures and sends a signal when finished (EXTERNAL,
INIT_DONE, CONTROL_UNIT).

2) GOTO Input1

Input

1) Addresses present on the bus are continuously checked to determine if any of the packets
is addressed for the DSP card (including broadcasts) (START_R, FOR_US_LOGIC,
FOR_US).

2) Every packet addressed for the DSP card is written into a buffer (FOR_US,
FIFO_BUFFER).

3) GOTO Input1

Processing

1) The saved address and data words are used to determine what (if anything) to do and if
an answer is to be sent (INSTRUCTION_TRANSLATOR, ERROR, SHALL_SEND,
CONTROL_UNIT).

2) At the same time the address and the data words are used to produce address and data in
a format suitable for internal use (INSTRUCTION_TRANSLATOR).

3) The way is opened from the block which is to be activated, to the output registers
(OUT_MUX).

4) A signal is sent to indicate that processing can begin (CONTROL_UNIT, PERFORM).

5) Then a start signal is sent to one of the blocks of the design to tell it to perform an action
(INSTRUCTION_TRANSLATOR, SEND_ID, SEND_MENU, SEND_LED, SET_CODEC,
SET_DSP, SEND_REG, SET_REG).

6) An action is performed (SEND_ID, SEND_MENU, SEND_LED, SET_CODEC, SET_DSP,
SEND_REG, SET_REG, ID, MENU, EXTERNAL, REGISTER_BLOCK).

7) Data is then possibly loaded into the output registers together with address information
and information on how many data words are to be sent (ID, MENU, EXTERNAL,
REGISTER_BLOCK, LOAD_OUT_REGS, OUT_REGISTERS).

8) When the action is finished and data is valid in the out registers (when applicable), a
done signal is sent to the CONTROL_UNIT (ID, MENU, EXTERNAL,
REGISTER_BLOCK, DONE, CONTROL_UNIT).
87

DM Project 1998
1) A signal is sent to invoke the sending of data (if SHALL_SEND=1, else GOTO
Processing1) (CONTROL_UNIT, INIT_SEND, BUS_CONTROLLER).

2) The bus is requested (BUS_REQ, BUS_INTERFACE, BUS_REQ_LINES[7:1]).

3) When the bus is granted to the DSP card, a message of this is sent
(GRANT_LINES[3:0], BUS_INTERFACE, BUS_GRANTED, BUS_CONTROLLER).

4) Sending can start and the data is sent to the bus (BUS_GRANTED, BUS_CONTROLLER,
SEND, OUT_REGISTERS, START_W, BUS_ENABLE).

5) When data is sent, a message is sent (BUS_CONTROLLER, SEND_DONE,
CONTROL_UNIT). This signal (SEND_DONE) is also used as the bus stop pulse (STOP).

6) GOTO Processing1

10.4 Description of the Blocks of the FPGA Design

10.4.1 CONTROL_UNIT

This block controls the flow of data through the design, from the FIFO_BUFFER to the sending of data
to the bus.

Table 10–2: Description of inputs and outputs of CONTROL_UNIT

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

CLK 1 IN x Clock input

RESET 1 IN H Resets the state machine to the initial
state (sINIT)

SHALL_SEND 1 IN H Indicates that the action being per-
formed is supposed to send an answer
on the bus
88

DSP Card FPGA Design
Description

The control unit is implemented as a Moore state machine. The input signals are read on negative edges
and output signals are set on positive edges. The state diagram is shown in Appendix L.13.

10.4.2 FOR_US_LOGIC

This block checks if the packet present on the bus is addressed for the DSP card.

INIT_DONE 1 IN H Indicates that the initialization per-
formed by the EXTERNAL block is fin-
ished. This includes the initialization
process of the design

DONE 1 IN H Indicates that the processing is done
and that valid data is located in the out-
put registers

SEND_DONE 1 IN H Indicates that data has been sent to the
bus

ERROR 1 IN H Indicates that the packet being pro-
cessed has incorrect address or data.
Such a packet will be ignored

PERFORM 1 OUT H Set high to open for the SEND_XX and
SET_XX signals to start the processing
of the action specified by the
INSTRUCTION_TRANSLATOR block.
A pulse of one clock period

INIT_SEND 1 OUT H Set high to start the sending of data to
the bus. A pulse of one clock period

READ_NEXT 1 OUT H Set high to tell the FIFO_BUFFER to
get the next packet from the buffer. A
pulse of one clock period

Table 10–2: Description of inputs and outputs of CONTROL_UNIT (continued)

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description
89

DM Project 1998

cates if
ata or

hat it is

d or for
Description

This block compares the card address part of the bus address word, with the card address set by the hex
switch and the broadcast address which is Fh. When one of these comparisons matches the signal,
FOR_US is set high.

This is done by continuously comparing the four least significant bits of the address/data bus with the
address set by the hex switch, and at the same time comparing the same four bits with Fh using an and-
port. The result of these comparisons is used as inputs of an ‘or’ port. The output of this port indi
one or both of the comparisons resulted in a match. It is not known if data is compared with d
address, so by running this signal through an and-port with the bus START signal, it is assured t
compared with an address.

The output pin FOR_US of this block indicates whether the data on the bus is meant for this car
someone else.

Table 10–3: Description of inputs and outputs of FOR_US_LOGIC

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

ADR_DATA_IN[3:0] 4 IN x The four least significant bits of the
address/data bus, which holds the card
address

CARD_ADR[3:0] 4 IN x The card address from the hex switch
on the DSP card

START_R 1 IN H The bus ‘start’ signal

FOR_US 1 OUT H Set high to indicate the start of a packet
addressed for the DSP card. Can be
used in the same way as the bus ‘start’
signal by the other blocks
90

DSP Card FPGA Design
10.4.3 INSTRUCTION_TRANSLATOR

Table 10–4: Description of inputs and outputs of INSTRUCTION_TRANSLATOR

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

PERFORM 1 IN H The signal which indicates whether one
of the set/send signals is to be set high
or blocked

ADR_IN[23:0] 24 IN x The packets address word

DATA_IN[31:0] 32 IN x The packets data word

SHALL_SEND 1 OUT H Indicates whether data is to be sent to
the bus as a reply to a request

SEND_ID 1 OUT H Start signal for the send id process

SEND_MENU 1 OUT H Start signal for the menu send process

SEND_LED 1 OUT H Start signal for the LED send process

SET_CODEC 1 OUT H Start signal for the set new value in
Codec process

SET_DSP 1 OUT H Start signal for the set new value in
DSP process

SEND_REG 1 OUT H Start signal for the send value from reg-
ister process
91

DM Project 1998
Description

This block interprets the address and data words coming from the FIFO buffer, to produce the signals
shown above.

This block is decomposed into two other blocks, INTERPRETER and TRANSLATE and some addi-
tional logic.

INTERPRETER

The INTERPRETER block uses the internal address part of the bus address to determine what actions
to be performed.

Depending on the address the block determines which of the output signals is to be set high. It is worth
noting that only one of the SET_XX/SEND_XX/ERROR signals can be set high at one time.

If an incorrect address is detected, the ERROR signal is set high.

TRANSLATE

The TRANSLATE block translates the internal address part of the bus address and the bus data to a for-
mat suitable for further processing.

The address and data words and error signal produced by this block is only used when a menu item
read-value or set-value is being processed.

This block takes bit 16 to 23 of the data word and sends this part out to the rest of the design for further
processing, because this is where the data of the menu item chosen is located.

This block also uses the lower 16 bits of the data word to determine the menu item in question, and pro-
duces an output address of 8 bits corresponding to this menu item in a format suitable for further pro-
cessing by other blocks in the design.

If some erroneous address or data values are detected the ERROR signal is set high.

SET_REG 1 OUT H Start the set new value in register pro-
cess

ERROR 1 OUT H Indicates an erroneous address or data
word

SEL[3:0] 4 OUT x Selects a route through the multiplexer

ADR[7:0] 8 OUT x The address for internal use

DATA[7:0] 8 OUT x The data for internal use

Table 10–4: Description of inputs and outputs of INSTRUCTION_TRANSLATOR (continued)

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description
92

DSP Card FPGA Design

out on
m the
Logic of the Instruction Translator

The PERFORM signal issued from the CONTROL_UNIT is used to open for the set/send signals. To
do this all the signals coming from the INTERPRETER block, has to be and-ed with the PERFORM
signal to produce the signals issuing actions elsewhere in the design, SEND_ID, SEND_MENU,
SEND_LED, SET_CODEC, SET_DSP, SEND_REG, SET_REG.

This block also decides from which block elsewhere in the design the address and data information are
routed to the OUT_REGISTERS, producing the OUT_SEL[3:0] signals. This depends on which of the
four blocks, ID, MENU, EXTERNAL, REGISTER_BLOCK, will be processing the command coming
from the INTERPRETER block. In the case of writing a value, nothing is to be sent to the bus as a
reply, but anyway the done signal has to be routed through the multiplexer. Because the EXTERNAL
block is slower than the REGISTER_BLOCK, the EXTERNAL block’s DONE signal is used.

This block also sends a signal telling the CONTROL_UNIT when something is going to be send
the bus, by setting the SHALL_SEND signal high. This is determined from the signals coming fro
INTERPRETER block.

The error signals are combined to produce an ERROR signal to the CONTROL_UNIT.

10.4.4 FIFO_BUFFER

This FIFO buffer can hold up to 8 commands (address and data word) sent to the DSP-card.

Table 10–5: Description of inputs and outputs of FIFO_BUFFER

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

CLK 1 IN x Clock input

RESET 1 IN H Sets the block in a proper start state

READ_NEXT 1 IN H Sends the next data in the buffer out on
the two out buses simultaneously when
the signal is set high (for one clock
period). Triggers Empty if the last data
in the buffer is sent out
93

DM Project 1998
Description

This unit is a two port FIFO circular buffer that stores 8 commands of 48 bit. 24 bit is used for the
address word and 24-bit is used for the data word. The unit reads input on falling clock edge and writes
on rising clock edge. It takes two clock periods to read data in and one to send data out.

When the buffer is empty and something is written in, this is written out on the next rising clock edge
and Empty goes low. When something more is written, this is placed in the buffer and sent out when
Read_Next goes high. When Empty is low and the control unit is ready for new commands, Read_Next
high.

10.4.5 ID

This block sends out an identification item when Send_Menu goes high. A total of one address word
and 3 data words are sent.

WRITE 1 IN H Places data on Adr_Data_In into buffer.
When write is high (one clock period)
an address word is read in. In the next
period a data word is read in. If buffer is
full nothing is done

ADR_DATA_IN[31:0] 32 IN x The input bus for the whole circuit con-
nected to the external bus

EMPTY 1 OUT H Set high when the buffer is empty.
When empty is set high, no ADR_IN
and DATA_IN is invalid

ADR_IN[23:0] 24 OUT x Out bus for the address word without
the least significant byte

DATA_IN[31:0] 32 OUT x Out bus for the data word. Bit 8 to 15 is
always zero

Table 10–5: Description of inputs and outputs of FIFO_BUFFER (continued)

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description
94

DSP Card FPGA Design
Description

The block is activated when Send_Id goes high. All signals are read on the falling clock edge, and the
output is written on the rising clock edge. The sending starts in the next clock period after Start_Id has
gone high. The Id block sends the address word FFFFFE10h. The 3 data words sent are a description of
the identification of the card, sent in ASCII format. The description sent is “DSP”.

Table 10–6: Description of inputs and outputs of ID

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

CLK 1 IN x Clock input

SEND_ID 1 IN H When this signal is set high, an address
word and a data word are sent out in
the next clock period and in the two
next clock periods two additional data
words are sent out

RESET 1 IN H Sets the block in a proper start state

ID_DONE 1 OUT H Goes high one clock period when the
last data word is sent to indicate that
the sending is finished. The control unit
uses this signal as an input

ID_SIZE[1:0] 1 OUT H Indicates the number of data words to
be sent (encoded). For this block the
number of data words sent are always
3, so the output form both lines are high

ID_ENABLE 1 OUT H Goes high as long as the addressword
and data word are sent, i.e. for 3 clock
periods. The signal is used to enable
the OUT_REGISTERS so that it reads
and stores the data

ID_ADR[31:0] 32 OUT x The output bus for the address word.
The code for the identification when
sent to the terminalcard is FFFFFF10h

ID_DATA[31:0] 32 OUT x The output bus for the data words
95

DM Project 1998
10.4.6 MENU

This block sends out a menu item each time Send_Menu goes high. A total of 1 address and 3 data
words are sent each time.

Table 10–7: Description of inputs and outputs of MENU

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

CLK 1 IN x Clock input

RESET 1 IN H Sets the block in a proper start state

SEND_MENU 1 IN H When this signal is set high an address
word and a data word are sent out in
the next clock period, and in the two
next clock periods two additional data
words are sent out

MENU_DONE 1 OUT H Goes high for one clock period at the
same time as the last data word is sent
to indicate that the sending is finished.
The CONTROL_UNIT uses this signal
as an input

MENU_SIZE[1:0] 2 OUT x Indicates the number of data words to
be sent (encoded). For this block the
number of data words sent are always
3, so the output form both lines are high

MENU_ENABLE 1 OUT H Goes high as long as the address word
and data word are sent, which are for 3
clock periods. The signal is used to
enable the OUT_REGISTERS, so that
it reads and stores the data

MENU_ADR[31:0] 32 OUT x The output bus for the address word.
The data for the menu item to be sent to
the terminal card is FFFFFD10h
(FFFFFC10h for the last)

MENU_DATA[31:0] 32 OUT x The output bus for the data words
96

DSP Card FPGA Design
Description

The block is activated when Send_Menu goes high. All signals are read on the falling clock edge, and
the output is written on the rising clock edge. Sending starts in the next clock period after Start_Send
has gone high. The menu block is a state machine that changes state every time a word is written on the
bus. The next time Send_Menu goes high, the next menu item is sent. If Send_Menu goes high in the
last state, the block is ready to send the first menu item again.

10.4.7 DELAY_RESET

Description

This block is used to extend the reset pulse, so the initialization of the Codec performed by the EXTER-
NAL block delays for a small amout of time after the Codec power up. The input signals are CLK and
Reset, and the output signal is Reset_Delayed.

Table 10–8: Description of inputs and outputs of RESET_DELAY

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

CLK 1 IN x Clock input

RESET 1 IN H Reset signal to be delayed

RESET_DELAYED 1 OUT H The delayed reset signal
97

DM Project 1998
10.4.8 EXTERNAL

The EXTERNAL block does the transformations and the adjustment of the FPGA internal parallel
address and data signals to the serial format used to communicate with the Codec and the DSP. Sending
is done to both the Codec and the DSP, reading is done only from the Codec.

Table 10–9: Description of inputs and outputs of EXTERNAL

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

CLK 1 IN x Clock input

RESET 1 IN H Is used to initiate the block and to set
the block in proper start state. The reset
also starts the initialization of the Codec

SET_DSP 1 IN H When this input is set high for one clock
period, the address and data is read in,
and the transmission to the DSP starts

SET_CODEC 1 IN H Same as for Set_DSP, but for the
Codec

SEND_LED 1 IN H This input is set high for one clock
period to start reading the level of the
input signal, and sends it out on
EXT_ADR and EXT_DATA

SDI 1 IN H Serial data in from the Codec

ADR[7:0] 8 IN x Address input. Used to address the reg-
isters in the Codec or the DSP

DATA[7:0] 8 IN x The value that is designated to the
Codec or the DSP
98

DSP Card FPGA Design

 r/w bit,

t signifi-
an one
Description

All external communication done by the EXTERNAL block is serial.

The activation of the register starts when one of the Set_DSP, Set_Codec or Send_LED are set high. If
the block is going to send information, the first thing that happens is reading of the address and data
input. These values are stored in two registers. Then the CSO or the SS goes low. Those are the chip
select signals for the Codec and the DSP respectively. Data is clocked out by the SCLK and SDO out-
puts. The transmission to the DSP will happen in the following way: When the EXTERNAL block
reads a signal on the Set_DSP input, the SS goes low, SCLK goes low and the first bit is put out on the
SDO output. When the SCLK goes high the first bit is read into the DSP. When SCLK goes low the
next bit is put out. This is repeated 16 times. 8 times for the address, that is what function (bass, treble,
etc.) we want, and 8 times for the new value.

The transfer of information to the Codec the protocol is the same, but first 8 bits more are transferred.
The first seven are a fixed circuit address, which has the pattern ’001000’, and the 8th bit are a
which is low when writing.

The Codec has a memory address pointer auto increment. This is obtained by setting the mos
cant bit in the register address. When using this function it is possible to send values to more th

EXT_DONE 1 OUT H This output goes high for one clock
period to indicate that the transmission
to the Codec or the DSP, or the reading
of the level of the input signals (LED
information) are finished

EXT_ENABLE 1 OUT H This output is high for one clock period
after the level of the input signals have
been read out
of the Codec, to load the result into the
output register. At the same time LED
information on the out buses are written
out

EXT_SIZE[1:0] The number of data words to be sent is
1, so line 0 is set high and line 1 is low

EXT_ADR[31:0] The address where the level informa-
tion is going to be sent

EXT_DATA[31:0] The level of the input signal from the
Codec circuit

SCLK 1 OUT x Serial clock used to transfer data
between the FPGA and the Codec and
the FPGA and the DSP

SDO 1 OUT x Serial data out to the Codec or the DSP

CSO 1 OUT H Chip select for the Codec

SS 1 OUT H Chip select (slave select) for the DSP

Table 10–9: Description of inputs and outputs of EXTERNAL (continued)

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description
99

DM Project 1998
register without sending the circuit and register address more than once. If the EXTERNAL block are
writing to register 4,6 or 8, the block knows that this is the volume adjustment and will therefore auto-
matically send the same value the register with one address higher. This is done to obtain stereo adjust-
ment, using the mentioned function. When the block is writing to register 12, bit 0 is copied to bit 2, and
bit 1 is copied to bit 3. This is to adjust the input gain on both channels.

The EXTERNAL block also reads the level of the input signal from two registers in the Codec. This
reading starts when the Send_LED input is set high for one clock period. The EXTERNAL block starts
by writing the usual way to the Codec circuit. After the register address has been written the EXTER-
NAL block toggles the CSO output. First high, then low, and then it starts over again. After the first
seven bit have been transmitted, the 8th bit, the r/w bit is now high indicating reading. The Codec will
on the first falling edge of the SCLK write the most significant bit of the register out on the SDIN input.
The EXTERNAL block will read this bit on the next rising edge.

The value of register 13 indicates the level on the input analog signal. The level is described by using 3
bits for each channel. Bit 2-0 is the left channel, and bit 5-3 is the right channel. This is translated into a
16 bits word, which is going to be send to the terminal card. The translation is done by the following
table:

When reading is done, the Ext_Done and Ext_Enable are set high for one clock period. This is to indi-
cate that reading of the level of the input signals are done, and to load the result into the
OUT_REGISTERS, respectively.

The SPI protocol reads the signal on positive going clock edge and writes on falling clock edge. This is
defined in the SPI protocol. The clock frequency of the serial transmission is systemclock divided by 8,
because the clock frequency of the Codec is maximim 6 MHz. This results in 4.125 MHz that is below
the maximum serial clock frequency of the Codec.

Table 10–10: Conversion of Codec LED info to terminal card LED info

Bit 2-0/5-3 Bit 15-8/7-0

000 00000000

001 00000000

010 00000001

011 00000011

100 00000111

101 00001111

110 00011111

111 00111111
100

DSP Card FPGA Design
10.4.9 REGISTER_BLOCK

Codec and DSP variables set (by the terminal card) are copied into this block, and requesting values are
read from this block. When using this solution there is no need to ask the Codec or the DSP for values,
and thereby providing faster response to such requests.

Table 10–11: Description of inputs and outputs of REGISTER_BLOCK

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

CLK 1 IN x Clock input

SEND_REG 1 IN H Set to indicate sending of the stored
data. It is assumed to be set for only
one clock period only

SET_REG 1 IN H If set a data word is copied into the
selected register. Is assumed to be set
for one clock period only

RESET 1 IN H Sets the block in a proper start state

ADR[7:0] 8 IN x The instruction part of the address
word. Selects which data value to
read/store

DATA[7:0] 8 IN x The selected value to be stored
(Set_Reg is high). If a value is to be
read (Send_Reg is high), the input of
DATA is ignored

RB_DATA[31:0] 32 OUT x The output bus for the data word read

RB_ADR[31:0] 32 OUT x The output bus for the address word.
The output will always be the code for
the current value reply FFFFF9h for the
most significant bytes. The last byte is
00h

RB_ENABLE 1 OUT H Used to enable the OUT_REGISTERS
block
101

DM Project 1998
Description

A register is needed for each variable stored. When Send_Reg is set, data from the internal registers are
sent as output on the RB_Data bus. This happens in the next clock period. When Set_Reg is set, data is
read into the internal registers, in the same clock period. Only one value is stored/sent at a time.

10.4.10 OUT_REGISTERS

This block is used to buffer data before they are sent to the external bus. The circuit can be loaded with
1 address word and up to a maximum of 3 data words. 1 data word is the common case.

RB_DONE 1 OUT H A signal to the CONTROL_UNIT. Done
is set high for one clock period to indi-
cate that the sending is complete

RB_SIZE[1:0] 2 OUT x Indicates the number of data words to
be sent (encoded), for this block 1 data
word is sent, so the output form line 0 is
high, and line 1 is low

Table 10–12: Description of inputs and outputs of OUT_REGISTERS

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

CLK 1 IN x Clock input

RESET 1 IN H Sets the block in a proper state. Sets
the internal counters to 0, so existing
data in registers will be overwritten

ENABLE_REGS 1 IN H Used to enable the block. The registers
are loaded every clock period as long
as this signal is high

Table 10–11: Description of inputs and outputs of REGISTER_BLOCK (continued)

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description
102

DSP Card FPGA Design
Description

The data words are stored in a LIFO queue. This is because of simplicity. If more than 1 data word is
sent as input, they must be sent in reverse order to be sent out in the correct order. The words stored in
the buffer cannot be read until all the words are stored. If only one data word is sent, no extra shifting is
needed.

10.4.11 BUS_CONTROLLER

The BUS_CONTROLLER block sends the data in the output register to the external bus when the DSP
card receives a grant signal.

Description

The block is activated when Send_Init is set high for one clock period. During this period the block
reads the SIZE bus. The BUS_CONTROLLER sends a high signal on the Bus_Req line. When the bus
is granted, the Bus_Granted input goes high, and the block sets the signal Send high to so the

SEND 1 IN H Similar to Enable. When set high, the
address and the data word(s) buffered
are clocked out to the external bus.
Send is set by the BUS_CONTROLLER
block, and is set one clock period
before and during sending of the data
on the bus

BUFFER_ADR[31:0] 32 IN x The input bus for the address word

BUFFER_DATA[31:0] 32 IN x The input bus for the data words

ADR_DATA_OUT[31:0] 32 OUT x The output bus for both the address
and the data word(s) connected to the
external bus. The address word is sent
first and then the data word(s) are sent.
Sending n words takes n clock periods,
where n is either 2 or 4

Table 10–12: Description of inputs and outputs of OUT_REGISTERS (continued)

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description
103

DM Project 1998
OUT_REGISTERS sends its contents. The OUT_REGISTERS block does not start sending until the
next clock period, so the Bus_Granted signal is directly connected to the OUT_REGISTERS block to
provide that this block starts sending on the next clock period when the start pulse is sent.

The BUS_CONTROLLER block opens the tri-state unit to the external bus by setting Bus_Enable
high.. The BUS_CONTROLLER also send a start pulse on the external bus. When the
OUT_REGISTERS is empty, this depends on the size bits. The tri-state units disconnect the
OUT_REGISTERS from the external bus. When the last word is sent the BUS_CONTROLLER also
sends a stop pulse on the stop line of the external bus.

To send signals on the start and stop lines, two different tri-state units are opened when the Bus_Enable
is high.These tri-state registers have the start and stop signals on their inputs.

Table 10–13: Description of inputs and outputs of BUS_CONTROLLER

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

CLK 1 IN x Clock input

RESET 1 IN H Set the block in a proper start state

SIZE[1:0] 2 IN x Number of words to be sent (1, 2 or 3)

INIT_SEND 1 IN H When this signal goes high for one
clock period, the data in the
OUT_REGISTERS is is ready to be
sent

BUS_GRANTED 1 IN H This input is set high when the DSP
card has granted the bus

BUS_REQ 1 OUT H This line is set high to request the bus

SEND 1 OUT H This signal is set high so that the data in
the OUT_REGISTER block is sent

BUS_ENABLE 1 OUT H This signal opens the tristate buffer so
the card physical connects to the bus

START_W 1 OUT H This signal is high for one clock period
to indicate the start of a transmission

SEND_DONE 1 OUT H This line is used to indicate to the
CONTROL_UNIT that the data in the
OUT_REGISTERS block has been
sent. This signal is also used to send
the stop pulse on the external bus
104

DSP Card FPGA Design
10.4.12 BUS_INTERFACE

The BUS_INTERFACE monitors the grant lines and sends a signal whenever the grant signal is equal
to the card address. It also makes sure to set high the correct request signal.

Description.

When the Bus_Req signal goes high, the controller circuit checks the address of this card. Then the cor-
responding request line is set high. All the others request lines are in high impedance-state due to the
Bus_Req_Enabled lines. These signals controls tri-state registers in the IO-block. When the Bus_Req is
low the request lines are low, the others are still in a high impedance-state.

When the card address equals the grant value the Bus_Granted output goes high, otherwise it stays low.

10.4.13 IO_UNIT

This block contains all the IO-pads for the FPGA. All input signals are output signals to the external
bus, the Codec and the DSP. All output signals are input signals to the DSP-card.

Table 10–14: Description of inputs and outputs of BUS_INTERFACE

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

Card_Adr[3:0] 4 IN x The physical address of this card

Grant_Lines[3:0] 4 IN x This lines sends the request signals to
the master card

Bus_Req 1 IN H A signal from the bus controller circuits
asking to use the bus

Bus_Req_Lines[7:1] 7 OUT This is the lines used to request the
bus. Each card address has it’s own
line

Bus_Req_Enable[7:1] 7 OUT x The line corresponding to the DSP-
card’s address is set high when signals
is written on external bus

Bus_Granted 1 OUT x This line goes high when the grant lines
are equal to the card address
105

DM Project 1998
REQ_OPAD

Contains the opads for Bus_Req_Lines and Bus_Req_Enable

AD_BUS_IOPAD

Contains all the opads for Bus_Enable, and iopads for Adr_Data_In/Adr_Data_Out.

GRANT_IPAD

Contains all the ipads for grant and card address.

Table 10–15: Description of inputs and outputs of IO_UNIT

Pin
Number
of bits

INPUT/
OUTPUT

Active
state Description

START_W 1 IN H Connected to the start line of the exter-
nal bus

STOP 1 IN H Connected to the stop line of the exter-
nal bus

BUS_ENABLE 1 IN H Used to enable the Adr_Data_Out,
Start_W and Stop signals

BUS_REQ_LINES[7:1] 1 IN H See description of the
BUS_INTERFACE

BUS_REQ_ENABLE 1 IN H See description of the
BUS_INTERFACE

ADR_DATA_OUT[31:0] 1 IN H Connected to the external bus

CSO 1 IN H See description of the EXTERNAL
block

SCLK 1 IN x See description of the EXTERNAL
block

SS 1 IN H See description of the EXTERNAL
block

SDO 1 IN x See description of the EXTERNAL
block

CLK 1 OUT x Input clock from the external bus

RESET 1 OUT H Reset signal form the external bus or
the reset button on the DSP-card

CARD_ADR[3:0] 4 OUT x Card address form the hex switch

GRANT_LINES[3:0] 4 OUT x Grant lines from the external bus

START_R 1 OUT H Connected to start on the external bus

ADR_DATA_IN[31:0] 32 OUT x Connected to the external bus

SDI 1 OUT x See description on the external unit
106

DSP Card FPGA Design

s, shows
scribed
e state

ad from
.

CONTR_IOPAD

Contains opad for Stop, ipads for CLK and Reset and iopads for Start_R/Start_W.

COM_IOPAD

Contains opads for SS, SCLK, CSO and SDO, and a ipad for SDI.

MISC_IOPAD

Contains miscellaneous ipads and opads for configuration signals. The ACK OnCe pulse from the DSP
is latched in I31:DELAY, so the Codec is able to notice the pulse.

DELAY

A SR filp-flop with an additional reset. If both S and R are set, Q is set high.

10.5 Problems

Foundation gave us some error messages like Application Error, and sometimes it terminated without
any warning. When simulating the nettlist, the program often reversed the bus signals, so an 1100
became 0011.

10.6 Testing

In addition to simulation the design on the top level, some important blocks are simulated isolated from
the others. These are the CONTROL_UNIT and the INTERPRETER blocks.

Some of the simulations shown are not from the current version. This extends on the following units:

• TRANSLATE: The Menu block is extended.
• EXTERNAL: This unit initializes additional registers in the Codec.
• FIFO_BUFFER: The buffer size is increased to 8 commands.
• The DELAY_RESET block is added on the main schematic.

10.6.1 CONTROL_UNIT Simulation

Because of the importance of the control unit, all possible paths in the state diagram is tested.

A comparison between the state diagram and the pulse diagrams, with state and output signal
that the control unit is working according to the state diagram, and the pulse diagrams are not de
in more detail. Included in the description of each simulation is a diagram showing the path in th
diagram. The complete state diagram is shown in Appendix L.13.

Error

The pulse diagram is shown in Appendix N.5. Figure 10–1 shows the case when the packet re
the buffer is something the DSP card does not process, and another packet is read from the bus
107

DM Project 1998

be sent

is to be
No Sending to Bus

The pulse diagram is shown in Appendix N.6. Figure 10–2 shows the case where nothing is to
as a reply.

Sending to Bus

The pulse diagram is shown in Appendix N.7. Figure 10–3 shows the case where something
sent as a reply.

Figure 10–1: State diagram path for the Error case.

Figure 10–2: State diagram path for the no sending to the bus.

Figure 10–3: State diagram path for the sending to the bus.
108

DSP Card FPGA Design

hat the
ation is

his is
EC or

u level.
e least
) to
ch is
10.6.2 INSTRUCTION_TRANSLATOR Simulation

Like the control unit this block is of vital importance for the DSP card to function correctly. First the
interpretation of the commands is tested and then how the menu level codes are translated into internal
addresses.

Interpreting the Commands

The pulse diagram of this simulation is shown in Appendix N.8.

The simulation tests that the five commands which can be sent to the DSP card results in the correct
send/set signals to be set high, that they are not set high until PERFORM goes high, that the correct
path through the multiplexer is chosen and that the data output is correct with respect to the data input.

By comparing the result of the pulse diagram with table 10–16 on page 109 and observing t
set/send signals is not set high until the PERFORM signal goes high, it is clear that the interpret
functioning correctly.

‘Set a new value’ results in SET_CODEC or SET_DSP, in addition to SET_REG going high. T
because the value is to be stored in the REGISTER_BLOCK in addition to be sent to the COD
DSP. The CODEC is chosen if the menu item in question has 0 or 1 in the high part of the men
ADR (out) is set to the address to be used internally for this menu item. DATA (out) is set to th
significant 8 bits of DATA_IN. The EXTERNAL block is selected by the MUX (SEL = 0100b = 4h
allow the DONE signal from the slowest of the DSP/CODEC and the REGISTER_BLOCK, whi
the DSP/CODEC to be used.

Translating the Menu Item

The pulse diagram of this simulation is shown in Appendix N.9.

Table 10–16: The commands

Command Address Set/send signals
Mulitplexer
select

SHALL_-
SEND

Indetification request FFFFFFh SEND_ID 0001b (1h) 1

LED request FFFFFEh SEND_LED 0100b (4h) 1

Menu request FFFFFDh SEND_MENU 0010b (2h) 1

Current value request FFFFFAh SEND_REG 1000b (8h) 1

Set a new value FFFFF9h SET_DSP/SET_CODEC
and SET_REG

0100b (4h) 0
109

DM Project 1998
The simulation tests that the translation from menu level codes to internal address is correct. Compar-
ing the pulse diagram with table 10–1 on page 84 shows that it is.

Table 10–17: The menu

Description Menu level codes Address
for
internal
use
(hex)

High
level

Middle
level

Low
level

High
5 bits
(bin)

Middle
5 bits
(bin)

Low
6 bits
(bin)

Hex
code
(hex)

Gain In 00000 00001 000001 0041 8C

Volume 00001 00000 000000 0800

Channel 1 00001 00001 000001 0841 84

Channel 2 00001 00010 000001 0881 86

Channel 3 00001 00011 000001 08C1 88

Balance 00010 00000 000000 1000

Channel 1 00010 00001 000001 1041 00

Channel 2 00010 00010 000001 1081 01

Channel 3 00010 00011 000001 10C1 02

Bass 00011 00000 000000 1800

Channel 1 00011 00001 000001 1841 10

Channel 2 00011 00010 000001 1881 11

Channel 3 00011 00011 000001 18C1 12

Treble 00100 00000 000000 2000

Channel 1 00100 00001 000001 2041 20

Channel 2 00100 00010 000001 2081 21

Channel 3 00100 00011 000001 20C1 22

Delay 00101 00000 000000 2800

Channel 1 00101 00001 000000 2840

On/Off 00101 00001 000001 2841 30

Delay 00101 00001 000010 2842 31

Level 00101 00001 000011 2843 32

Channel 2 00110 00010 000000 2880

On/Off 00110 00010 000001 2881 40

Delay 00110 00010 000010 2882 41

Level 00110 00010 000011 2883 42

Channel 2 00110 00010 000000 2880

On/Off 00110 00010 000001 28C1 50
110

DSP Card FPGA Design
10.6.3 FOR_US_LOGIC Simulation

Simulation results for this block is not included because of its low complexity.

It has been tested as part of the whole design and there has been a design review of the block inside the
group. As no errors has been found the block is considered to be correct.

10.6.4 FIFO_BUFFER Simulation

The following is a description of the pulse diagram shown in Appendix N.4. This pulse diagram is the
result of a test to show that the FIFO_BUFFER is functioning correctly, holding a maximum of 4 com-
mands. The numbers used in the description references the simulation time in nano seconds (not to be
confused with real time in implementation) in the pulse diagram.

Part 1 of the test writes 5 commands (an address word and a data word) into the buffer for each Write
pulse. The simulation shows that the correct data is written out of the buffer for each Read_Next pulse,
and that the buffer ignores the 5th word. This is correct behavior.

Part 2: Reads and then writes a command, and then sets Read_Next and Write simultaneously. The
word written appears on the bus when expected (see below).

Part 1

5)On the first rising clock edge when reset is high, empty is initialized to high.

25-35)Write is set high for one clock period, and Adr_Data_In is AAA1001.

30)AAA1001 is read into the buffer on the falling clock edge.

40)When Write is low the corresponding data word DDD10000 is written into the buffer.

45)Empty is set to low, and AAA100 and DDD10000 is sent on respectively Adr_In and Data_In.
These bus signals last until next Read_Next.

60)AAA2001 is written into the buffer.

70)DDD2000 is written into the buffer.

Delay 00110 00010 000010 28C2 51

Level 00110 00010 000011 28C3 52

Table 10–17: The menu

Description Menu level codes Address
for
internal
use
(hex)

High
level

Middle
level

Low
level

High
5 bits
(bin)

Middle
5 bits
(bin)

Low
6 bits
(bin)

Hex
code
(hex)
111

DM Project 1998
80)AAA3001 is written into the buffer.

90)DDD3000 is written into the buffer.

100)AAA4001 is written into the buffer.

110)DDD4000 is written into the buffer. Now the buffer is full.

120)AAA5001 is tried written into the buffer, but nothing is done because the buffer is full.

130)AAA5001 is tried written into the buffer, but nothing is done because the buffer is full.

145)Read_Next goes high.

155)Read_Next goes low, and AAA200 and DDD20000 is sent out on respectively Adr_In and
Data_In, i.e. the word written in the events 5 and 6.

165)Read_Next goes high.

175)Read_Next goes low, and AAA300 and DDD30000 is sent out on respectively Adr_In and
Data_In, i.e. the word written in the events 7 and 8.

185)Read_Next goes high.

195)Read_Next goes low, and AAA400 and DDD40000 is sent out on respectively Adr_In and
Data_In, i.e. the word written in the events 9 and 10.

205)Read_Next goes high.

215)Read_Next goes low, no valid data is sent out on the buses because the buffer now is empty. Empty
is set high.

Part 2

230)AAA6001 is written into the buffer.

240)DDD6000 is written into the buffer.

245)Empty goes low, and AAA600 and DDD60000 is sent out on respectively Adr_In and Data_In.

255-265)Read_Next and Write are set high for one clock period to show correct behavior when writin-
gand reading at the same time. Adr_Data_In is AAA70001.

260)AAA7001 from the Adr_Data_In bus is written into buffer.

265)Adr_Data_In changes to DDD70000. Empty goes high because there are no words left to send out
yet, because only the address word is written into the buffer.

270)DDD70000 from the Adr_Data_In bus is written into the buffer.
112

DSP Card FPGA Design
275)The words written into buffer at 260 and 270 appears on the buses Adr_In and Data_In. Empty is
set low (the buffer is no longer empty) since the data word DDD7000 were written into the buffer at
270.

295)After the Read_Next pulse, Empty is set to high because there is no more data in the buffer.

10.6.5 Top Level Simulation

Simulation 1

Shows the initialization of the Codec and a simple queue. The pulse diagram is shown in Appendix N.1.

Simulation 2

This simulating first sets a new value. Next it asks for the new value and last it asks for LED informa-
tion. The pulse diagram is shown in Appendix N.2.

Simulation 3

This simulation sends an ID packet, receives data to another address, sends the first menu level, sends
current data from the register block. The pulse diagram is shown in Appendix N.3.

Simulation 1

When the system is turned on or when the reset button is pushed the FPGA design receives a reset.
When the reset pulse goes out of its active state the design starts the initialization of the Codec. Before
the initialization is finished, the design receives a burst request about the ID of the card. This instruction
is put into the FIFO_BUFFER and handled when the initialization is over.

When the reset goes inactive (15ns) the initialization starts on the next rising edge (25 ns). On the next
clock period the design receives a new ID request that is put into the FIFO_BUFFER. When the initial-
ization is over, the design starts to handle the ID request. (1315 ns). When the handling is over the
design requests the bus by setting a bus request line according to the card address (1385ns). The design
receives bus grant when the bus is free (1405ns). On the next clock period (1415 ns) the design starts
sending one start pulse at the same time as the first data. The design sends the rest of the data and sends
a stop pulse at the same time(1445 ns) as the last data is sent.

Table 10–18: The data that is sent on the external bus (to the DSP card)

ID request is FFFFFF0Fh (Broadcast)

XX...XX (Don’t care)

The datastream to the Codec is 00100000h (Circuit address)

10000100h (Register 4, autoincrement)

00001111h (Volume channel 1)

00001111h (Volume channel 2)

00001111h (Volume channel 3)

00001111h (Volume channel 4)
113

DM Project 1998
Simulation 2.

The terminal card sets a new value by sending the new value to the FPGA (1405 ns). Next it requests
the same value (1425 ns) and finally it requests the LED information (1445 ns). Before the last request
is received (1445 ns) the first request is interpreted. When the new value is set (in this case balance) the
new value is written both to the REGISTER_BLOCK and to the part that adjusts the new value (for this
case the DSP). The new value AAh is a value too large. The range of balance is 8 so the register can
only save 4 bits. This is seen when the level is asked for. When this transmission is over and the new
value is ready to be sent the design asks for the bus, when the bus is granted the design sends the
requested value. Finally the design requests the Codec for the LED information (1915 ns). During this
simulation the data read from the Codec is all high which means that all LEDs light. When this is fin-
ished, the information is sent to the terminal card as described above.

00001111h (Volume channel 5)

00001111h (Volume channel 6)

Table 10–19: The data that is sent as output to the external bus (from the DSP card)

ID sent is FFFFF10h (ID receives address)

44595620h (‘DSP ‘)

20202020h (‘ ‘)

20202020h (‘ ‘)

Table 10–20: The data that is sent on the external bus (to the DSP card)

New value setting is FFFFF902h

104000AAh (1040h=Balance, 00AAh=new
value)

New value request is FFFFFA02h

10400000h (1040h=Balance)

Send Led FFFFFE02h

XX...XX (Don’t care)

Table 10–21: The data that is sent as output to the external bus (from the DSP card)

Current value is FFFFF900h

1041000Ah (1040h=Balance, 000Ah=current
value)

Led information FFFFFE00h

3F3F0000h (All LEDs lit)

Table 10–18: The data that is sent on the external bus (to the DSP card) (continued)
114

DSP Card FPGA Design
Simulation 3

The terminal asks for an ID (1405 ns). Then data to another card is sent on the bus(1425 ns), this data is
not read into the FIFO_BUFFER. Next (1445 ns) the terminal card send a request for a menu packet.
The menu sender sends the first menu packet. Finally the DSP answer a current value request (1465 ns).
In this case nothing has been written into the REGISTER_BLOCK so the block answers by sending the
default value.

Summary

These functions are tested:

• Reset with initialization of the Codec.
• Short and longer queue.
• Writing to the Codec.
• Reading from the Codec (LED information).

Table 10–22: The data that is sent on the external bus (to the DSP card)

ID request FFFFFF0Fh (Broadcast)

XX...XX (Don’t care)

Data to another card FFFFF905h (Another cards address)

XX...XX (Don’t care)

First menulevel FFFFFD03h

XX...XX (Don’t care)

Current value request FFFFFA03h

08410000h (0841h=Volume)

Table 10–23: The data that is sent as output to the external bus (from the DSP card)

ID FFFFFF10h

44595620h (‘DSP ‘)

20202020h (‘‘)

20202020h (‘‘)

20202020h (‘‘)

First menu level FFFFFE00h

00410003h (0041h=Menu Level,
0003h=Range)

4761696Eh (‘Gain‘)

20496E20h (‘ In ‘)

FFFFFD10h

Current value 0841000Fh (0841h=Volume, 000F=Value)
115

DM Project 1998

 was not
al card
lem.

OnCE

 the cor-

e deac-

m seg-

 clock
• Writing to the DSP.
• Writing to the REGISTER_BLOCK.
• Reading from the REGISTER_BLOCK (default level).
• Reading form the REGISTER_BLOCK (chanced level).
• Each block on the main schematic are also tested separately.

These tests also indirectly tests the following units:

• FIFO_BUFFER
• INSTRUCTION_TRANSLATOR
• FOR_US
• CONTROL_UNIT
• ID
• MENU
• EXTERNAL
• REGISTER_BLOCK
• OUT_MUX
• OUT_REGISTERS
• BUS_CONTROLLER
• BUS_INTERFACE

10.7 Changes

10.7.1 FIFO_BUFFER Added

The possibility that packets could be sent to the DSP card faster than the card is able to process
taken into consideration. This is possible when the bus is granted for a long time, and termin
buffers commands to be sent to the DSP card. The FIFO_BUFFER was added to solve this prob

10.7.2 Additional Ipads and Opads

The DELAY block was added to hold the ACK pulse from the DSP in order to be detected by the
Controller.

The card address lines connected to the hex-switches had to be pulled up and inverted to obtain
rect low and high signals.

The interrupt lines to the DSP are not used in this version. As they are active low signals, they ar
tivated by pulling them up.

10.7.3 Serial Communication Clock Frequency

When designing the serial communication interface of the FPGA to the Codec a divide progra

ment was implemented. The clock frequency was first set to systemclock/2 which is 16,2 MHz. It was dis-
covered later that the maximum serial communication clock frequency was 6 MHz. The system
was therefore divided by 8 which gives a clock frequency of 4.125 MHz.
116

DSP Card FPGA Design
10.7.4 Initialization of Codec

The old initialization of the Codec only configures the 6 volume registers. At power up the Codec sets a
reset bit and a clock enable bit. Both of them need to be toggled. The Codec also provides a mute func-
tion which must be turned off. The new initialization will therefore initalize register 1 to 9 and 14.

10.7.5 Tri-state of Control Lines

The first idea was to let the terminal card pull down the start and stop lines on the external bus. The dif-
ferent cards then only had to send out a high signal on these lines to send the start and stop signal.

The implementation was changed so the card also send a logic low level out on the bus to bring the lines
to either logic high or low during its send period. This is achieved by connecting the start and stop sig-
nal to the input of the two tri-state drivers and let the bus enable signal open the tri-state drivers.

10.7.6 FIFO_BUFFER Size Changed from 16 to 8 Commands.

When compiling the whole FPGA the number of CLBs used was 103%. The FIFO_BUFFER size was
set as large as possible, but not exceeding the maximum of CLBs used in the FPGA. Therefore the
FIFO_BUFFER size was reduced from 16 to 8 commands.

10.8 Known Errors

If more than 8 packets are sent continously to the DSP card the last packets will be ignored. This is
because of the FIFO_BUFFER size is set to 8.
117

DM Project 1998
118

effect”,
’s.

 receive
his flag
cts the
11 DSP Software

11.1 Introduction

To read input audio signals and process audio output a DSP is used. Executable code is downloaded
through an OnCE controller. This code is used to process the audio data input, so that it is possible to
add effects to the audio.

11.2 Overview

The DSP program is based on the idea that the main loop waits for data either from SHI (Serial Host
Interface) or from SAI (Serial Audio Interface). From SHI the DSP receives information about which
module to run, and the values of the parameters in each module (module = subroutine for an “
parameter = a setting in the module i.e. volume). The data from SAI is audio-data from the DAC

When data from SHI is detected, an interrupt is generated, and the data is read from the SHI
FIFO buffer. The interrupt routine also sets a flag to indicate that SHI data has been received. T
is polled in the main loop, and the program jumps to the SHI subroutine. This subroutine dete
module that the parameter belongs to, and updates the parameters and flags.

Figure 11–1: Flow Chart for Main Loop

Initialization

Default settings

SHI
Data

Subr. SHIYes

No

Subr. Module 1

Subr. Module n

Write Audio
Data Out

Start

SAI
Data

Yes

No
119

DM Project 1998

rogram
ful vari-

.

e want

input
eceive
When data is detected on the SAI, an interrupt routine moves the data to a temporary register. Then the
flags are checked to determine which module to apply to these registers. At the end the temporary reg-
ister is written to the output register (TX).

11.3 Program Organization

The DSP program is divided into five smaller parts to simplify the programming. These parts are:

Definitions that translates hex addresses into “simple to understand” names. This makes the p
more readable. The definitions concern mainly register addresses, interrupt addresses and use
ables and flags.

Interrupt vectors are used to direct the program to the interrupt routines when an interrupt occurs

The Initialization routine sets up the registers that control the DSP so that it runs in the modes w
it to.

The Main Program Loop is where the program is usually running. Here the program waits for data
either from the SHI or the SAI. If the data comes from the SHI, the program jumps to the SHI r
subroutine. If the data comes from the SAI, the following things will happen:

• The input data is stored in a temp register.

• Flags will be checked to determine which modules to run.

• Audio-data will be written to the output register.

Subroutines also simplify the program code. Several subroutines are used in this program:

• The SHI receive routine that determines the module, and updates the parameters and flags.

• The other subroutines are the modules that modify the audio-data.

The subroutines are also written in separate files to make the program more readable.

Interrupt Routines are used for sending of data to the SAI, and recieving of data form the SHI.
120

DSP Software

c and are

ne shift
 iterate

he chan-
11.4 The DSP Sound Modules.

11.4.1 Balance

When designing the DSP card the question whether the system should have the possibility to adjust out-
put level in stereo or in mono was raised. It was decided to look upon the 6 audio channels as 3 stereo
channels. This means that an adjustment in level will affect the audio channels in pairs instead of
adjusting the 6 channels separately. By doing this the following problem is avoided:

If the user wants to adjust one channel louder than the other, all that has to be done is to increase the
level on that channel. The problem arises when the user now wants to reduce the level on both channels.
If the level on the loudest channel is 22 (on an unspecified scale) and 17 on the other, and the user
reduces the level on the loudest channel, calculation has to be made to calculate the new level on the
other channel.

The decision was to implement a balance routine in the DSP program to move the sound picture within
the stereo channels, see Figure 11–2 for pseudo code. The main volume is adjusted in the Code
always adjusted equally on the two and two channels.

To change the balance the DSP program adjust the signal by shifting the left or right channel. O
to the right is the same as dividing by 2, which is approximately the a gain of -6 dB. The program
the shift-right instruction until the proper gain is set.

The balance can be adjusted in eight different steps. Each step decreasing the level on one of t
nels by 6 dB. See Table 11–1 for a complete translation of the parameter values.

Table 11–1: Balance Settings

Input byte
(value)

Left Gain Right Gain

0 -24 dB 0 dB

1 -18 dB 0 dB

2 -12 dB 0 dB

3 - 6 dB 0 dB

4 0 dB 0 dB

5 0 dB -6 dB

6 0 dB -12 dB

7 0 dB -18 dB

8 0 dB -24 dB
121

DM Project 1998
If BALANCE_LEVEL = 4 Then Jump to FINISH

IF BALANCE_LEVEL > 4 Then Jump to LEFT

RIGHT

Copy BALANCE_LEVEL => TEMP

R_SHIFT

Divide Input by 2 (Input / 2) => Input

Dec TEMP

IF TEMP = 0 Then Jump to R_SHIFT

JUMP to FINISH

LEFT

Copy BALANCE_LEVEL => TEMP

Clear bit #2

L_SHIFT

Divide Input by 2 (Input / 2) => Input

Dec TEMP

IF TEMP = 0 Then Jump to L_SHIFT

FINISH

Move Input => OUT

Figure 11–2: Psudocode for Balance
122

DSP Software

t is cop-
at each
in Figure
11.4.2 Bass and Treble

The bass and treble module is based on three (or more) digital filters, see Figure 11–3. The inpu
ied to all the filters, and the output of the filters go through a gain unit that set the desired level
frequency band. The signals are then added at the output of the effect. Pseudo code is shown
11–4.

Figure 11–3: Bloc kdiagram for Bass and Treble

execute LP-Filter. (Inn => (LP) => LP)

execute BP-Filter. (Inn => (BP) => BP)

execute HP-Filter. (Inn => (HP) => HP)

Set LP-Gain (LP * LPGain) / 127 => LP

Set HP-Gain (HP * HPGain) / 127 => HP

Add LP + HP => OUT

Divide OUT (OUT / 2) => OUT

Figure 11–4: Pseudo code for Bass and Treble

∑
Gain

0-200%
LP

BP

HP
0-200%
123

DM Project 1998

e 11–5.
 from
d within
me as the
ir-
ming

ed. The
ght 7
 over-

 of the
 time

e 11–6

e used
an be

re 11–8

nnel it
is shown
11.4.3 Delay

One of the main DSP features is the delay module. This module is used to make the different echo
effects. The line consist of a circular buffer, three level adjustments and two adders, see Figur
One adder(A2) is used to add the direct signal with the signal coming from the buffer. The output
this adder is the signal out of the delay line. The direct signal on the adders input can be adjuste
a range of 0 and 100 where 100 is approximately the same as the input. (127 is the exact the sa
input.) This adjustment is called Mix-level. The other adder(A1) is used to add a signal going into the c
cular buffer with the signal coming out. The input signal to the buffer (level) and the signal co
from the buffers output (feed-back-level) can be adjusted in the same way as earlier describ
adjusting routines multiplies the input signal with the level and divides signal by 128 (shifting ri
times). The multiplying is accomplished in a 48 bit wide accumulator, so there is no risk for an
flow before it is divided.

The delay time can also be adjusted. The maximum length of the delay is decided by the size
available RAM. If the sampling frequency is 48kHz and the size of the RAM. The maximum delay

is 1/48000 · Xwords seconds. If stereo delay is desired, twice as much memory is required. Se Figur
for pseudo code.

11.4.4 Differential

The differential effect takes the difference between the left and the right audio signal. This can b
as a simple surround effect. If the voice is equal in both left and right channel, the differential c
used to voice removal for karaoke performances. See Figure 11–7 for block diagram, and Figu
for pseudo code.

11.5 The SHI Handling Routine

The SHI handling routine checks the incoming instruction to determine which module and cha
concerns. Then it updates all the parameters and flags concerning this instruction, pseudo code
in Figure 11–9.

Figure 11–5: Block diagram for Delay

∑

∑

Level

FeedBack

Mix

0-127

0-127

0-127

Circular Buffer

A1

A2
124

DSP Software

buffer
 trans-
11.6 Interrupt Routines

There are four interrupt routines handling the data coming from the SAI. Pseudo code for these routines
are shown in figure 11–10. Their function is basically to copy audio information from the receive
to a temporary variable, and then after applying modules to the temporary variable, copy it to the
mit register.

Set the LEVEL (Input * LEVEL) / 127 => LEVEL

Add LEVEL with PREW

Insert the added value in the circular buffer

Update Pointers

Reef the out value from the circular buffer => TEMP

Set the FEEDBACK level (FEEDBACK * TEMP) / 127 => TEMP

Set the MIX level (Input * MIX) / 127 => MIX

Add MIX and TEMP (MIX + TEMP) => OUT

Divide OUT (OUT / 2) => OUT

Figure 11–6: Psudocode for DELAY

Figure 11–7: Blockdiagram for Differential

Subtract RIGHT SIGNAL from LEFT SIGNAL => OUT

Figure 11–8: Psudocode for Differential

−
Left

Right

Out
125

DM Project 1998

d “Data
g is set
HI inter-

GA is
 module

meter to
re 11–12.

HI data
o that it

odule
fer to an
ly.

 evalua-
ng of
g the

cessor
sed with
P in the
ept for

ction set,
e 56002
When the DSP receives data on the SHI, it has to read two data packets (see Communication Between
DSP and FPGA on side 126). To keep track on how many data packets have arrived, a flag calle
Received” is used. If the flag is cleared the SHI data is the instruction to execute, and if the fla
the SHI data is the new value to the parameter. Figure 11–11 shows the pseudo code for the S
rupt routine. .

11.7 Communication Between DSP and FPGA

To be able to control the DSP from the terminal card, the information read from the bus by the FP
forwarded to the DSP. Then the program set the new values that belong to the corresponding
parameters.

The parameter transmission uses two data packets. The first packet determines which para
update, and the second packet determines the new value the parameter is to be set to, see Figu

This means that the SHI receive routine must receive two data packets before it sets the S
received flag. All the parameters have a unique 8 bit code that the DSP program recognize s
knows exactly which parameter to update, see Table 10–1 for detailed information on the menu.

11.8 Problems

An evaluation module from Motorola was used to test the program written for the DSP. This m
has several jumpers and strappings that need to be placed correctly. To do this we had to re
incomplete user’s guide from Motorola, so there was some problems to get them placed correct

When the strappings had been placed, and the pass-through routines that was delivered with the
tion module still did not work. It was decided to write our own pass-through program. The writi
this program went relatively smoothly, but still no sound came out of the circuit. After examinin
module with oscilloscope and logic analyser we found that the signal stopped at the DAC.

At this point it was decided to use a smaller version of the evaluation module with a 56002 pro
instead of the original 56007. We also changed to an other operating system on the computer u
the evaluation module, because there were some problems to download the program to the DS
Windows NT environment. The change of processor did not create any additional problems exc
the conversion from the 56002 and back to the 56007. The two processors have the same instru
but the registers are placed on different locations. The program was runned successfully on th
prosessor.

Clear Flag SHI Data Complete

Compare INSTRUCTION to instruction list

Update the actuarial parameters and Flags

Figure 11–9: Psudocode for SHI Handling Routine
126

DSP Software

ssumed
op, the
11.9 Testing

There is no theoretical vectors to test the functionality of the DSP program. The testing is therefore lim-
ited to “audio visualization”. When a module’s parameter is changed, the DSP program can be a
to run correctly if the desired effect is detected in the audio signal. This is done to test the main lo
balance module and the delay module on the DSP56002.

SAI_LFT_TX_IRQ

move LEFT_AUDIO_OUT,TX0

move LEFT_AUDIO_OUT,TX1

move LEFT_AUDIO_OUT,TX2

RTI

SAI_RGT_TX_IRQ

move RIGHT_AUDIO_OUT,TX0

move RIGHT_AUDIO_OUT,TX1

move RIGHT_AUDIO_OUT,TX2

RTI

SAI_LFT_RX_IRQ

move RX0,LEFT_AUDIO_IN

RTI

SAI_RGT_RX_IRQ

move RX1,RIGHT_AUDIO_IN

RTI

Figure 11–10: Psudocode for all interrupt routines for SAI
127

DM Project 1998
The program is not tested on the DSP56007, because the evaluation module from Motorola does not
work correctly. This means that testing can not be done before the DSP card is finished. The result of
this is that the parts of the DSP program that needs to run on the DSP56007 has not been tested at all.
The major part that has not been tested is the routine that handles the communication through the SHI.

Another problem that appears when the testing can be done only on the DSP56002, is that upgrades has
to be made to the program. This is to make the applications that work on the DSP56002 processor run
correctly on the DSP56007 processor.

The routine reading data from the SHI has been compiled and there are no known errors, but it has not
been tested. This is because it is impossible to test without data from the teminal card.

If (Flag Data received) = ‘Set’ Then Jump to DATA

Read the data on SHI => INSTRUCTION

Set Flag Data received

Jump OUT

DATA

Read the data on SHI => VALUE

Clear Flag Data received

Set Flag SHI Data Complete (cleared in SHI handle routine)

UT

Figure 11–11: Psudocode for interrupt routine SHI

Figure 11–12: SHI datap ackages

Which parameter to change.

The new value.
07

07
128

DSP Software
11.10 Known Errors

The code segment for receiving data on the serial host interface is not implementation in the DSP.The
code segment for adjusting bass and treble is not implementation in the DSP. The code segment for
delay on channel 2 is not implemented in the DSP.
129

DM Project 1998
130

12 DSP Card Hardware and Software
Integration

First, the code for the FPGA was downloaded through the XChecker cable. The green LED illuminated
indicating that the download was completed. It was discovered that the initialization of Codec done by
the FPGA was inadequate. The FPGA software was changed and the initialization process was
observed with a logical analyzer. The initialization then seemed to be performed correctly.

When the DSP-software was tried to be downloaded on the DSP, nothing happened. It turned out that
the OnCE controller needed to be programmed. By changing the controller with the one on the Evalua-
tion Board the DSP could be programmed. A program was downloaded on the DSP which was only
passing the sound data from the Codec back to the Codec and out on the loudspeakers. Again no sound
was generated in the loudspeakers. By tracking the signals from the source to the DSP, it was observed
that the signals arrived at the input port of the DSP, but nothing appeared on the output port. More thor-
ough investigation showed that the wordsync signals and clock signals between the DSP and Codec
were wrongly connected. The footprint of the DIP-switch these signals were passing, did not corre-
spond to the schematic diagram. By wiring the appropriate signals at the DIP-switch the problem was
solved. After this, the DSP could pass signals to its output port and sound on the loudspeakers was gen-
erated. By trying different DSP programs it has been verified that all the output channels work well. In
addition.

Apart from these detected errors, the DSP card seems to work perfectly. Though the bus is not properly
tested.

131

DM Project 1998
132

to sim-

ated and

ppened
esising
y time.

 cover-

oard is
. Many

ts on the
 be done
escrib-
or pro-

rs, and
aries
13 Tools

13.1 Xilinx Foundation Series 1.4, Xilinx

The FPGA designs are implemented using Xilinx Foundation 1.4.

Foundation supports functions like design capture, simulation and routing of designs. It is possible to to
implement each module or function directly in VHDL. It is also possible to implement the design using
primitive components or making state machines. If some special components are needed they can be
built using the function LogiBlox, which only adjusts parameters on standard components. All of these
methods of implementations will generate a netlist, which is the basis for the bit file transferred to the
FPGA.

As the design on the FPGA increased in complexity it was divided into different modules. Foundation
supported buliding the functions in a hierarchic structure which made it easy to maintain, as each func-
tion had it’s own module.

The simulation tool is used to simulate the design before transferred to the FPGA. It is possible
ulate at any level in the FPGA design watching inputs and outputs.

As the simulation passed the design can be synthesised. The netlist for the design is gener
transferred to the FPGA via an XChecker cable.

The application did not work as wanted at all times, as it often chrashed without reason. This ha
often in the simulation tool. Another problem was the feedback report generated when synth
failed. It was insufficient since the user could not know what exactly made the synthesis fail ever
It would not hurt to make the report more informative.

13.2 VeriBest 98, VeriBest Inc.

The printed circuit boards were designed using VeriBest. This is an integrated software package
ing all steps in this process.

The schematics is drawn in VeriBest Design Capture and exported to VeriBest PCB where the b
compiled. The schematics can be divided into modules that are connected in a hierarchical way
component libraries are available. A netlist is generated from the schematics and the componen
PCB are connected using it. After the components are placed, all traces can be routed. This can
both manually and automatically. When the card is finished, files are generated for each layer, d
ing the traces, drill holes, vias and the silk print. These files are sent to the PCB manufacturer f
duction.

VeriBest runs under Windows NT. This program is designed for use by proffesional PCB designe
is quite complex. It offers great flexibility if you know how to use it and have custom made libr
that suit your needs. For
133

DM Project 1998
13.3 AVR Studio 1.42, Atmel Corp.

AVR Studio is a debugging application for the AVR family microcontrollers. Studio is an easy program
to use, yet it presents the user with an environment where control of the simulated AVR is more or less
complete. The processor, registers, memory, ports and a lot of other parts of the controller can be easily
surveyed. Code can be run or single stepped, and the effects are visible instantly.

Studio was a great advantage when developing software for the AT90S8515. Sometimes Studio could
crash when the code being debugged was recompiled.

13.4 Wavrasm 1.21, Atmel Corp.

Wavrasm is an AVR assembler for Windows. This program compiles the AVR assembly source code,
and generates a list file and a hex file. The hex file can further be downloaded to the controller using
AvrProg.

Wavrasm is a basic compiler and an editor for AVR assembly files. It is quite simple and easy to use.
Every basic editing and compilation features are supported. During a period of time, Wavrasm started
to crash during compilation. Therefore, the developers started using the DOS compiler instead. Later,
Wavrasm proved to be working correctly again.

13.5 AVR Macro Assembler 1.21, Atmel Corp.

The AVR Macro Assembler is a straight forward and very stable command line DOS application for
compiling AVR assembly files and generating hex files. This application was mostly used when Wavr-
asm started to crash.

13.6 AvrProg 1.25, Atmel Corp.

AvrProg is a Windows application for downloading a hex file to the microcontroller. The application is
able to program, verify and read both Flash and EEPROM on the AVR family controllers. Other
advanced features are also supported. AvrProg is a stable and easy to use utility, suited perfectly for the
needs of the developers of the AVR software.

13.7 BitCalc 3.0e, Cypress/IC Designs

BitCalc is a utility for handling Cypress products. Our use of the utility is calculating bit streams for
controlling and programming the Cypress clock generator used on the terminal card. The utility is sta-
ble and fairly easy to use.

13.8 EVM56k ver. 1.06.00, Domain Technologies Inc.

The evm56k is a DOS based debugger. It also downloads the program to the DSP, and the debugging is
run directly on the processor. This means that the program has to be connected to the DSP to be able to
run. The program displays all the processors registers and memoryloations in a way that makes it easy
to monitor them. It is also possible to trace through the program to find possible errors.
134

Tools

ing of
t, but we
sed.

 used to
sed pro-
The evm56k program did not function well in the NT operating system, because of NT’s handl
the com ports. There were also some problems with the program near the deadline of the projec
managed to use it. In future projects a higher level programming language should be consider u

13.9 ASM56000 Assembler ver.6.1.0, Motorola Inc.

The assembly code for the DSP was first written in a windows notpad, then the asm56000 was
compile the code to a *.cld file read by the debugger program. The asm56000 is a stable dos ba
gram, and it is simple to use.
135

DM Project 1998
136

14 Final Notes

14.1 Time Schedule for the Last Period

To make effective use the final time of the project, a time schedule was made for the two last weeks.
Because of the complexity of the project and because of miscellaneous problems that turned up, the for-
mal testing phase has been omitted. This means that the hardware and software teams internally in the
two groups did not exchange designs for testing.

14.2 Status

The terminal card hardware seems to work as intended. There is some noise at the external bus clock
signal, which probably could have been avoided by balancing the clock signal line with resistors during
the design phase.

The buss controller implemented in the terminal card FPGA design was not working properly when the
project deadline was reached. This has made it difficult to connect and test the bus operation of the two
cards properly.

On the DSP card, the bus protocol between the FPGA and the DSP has not been tested properly. This is
because the card has not been connected to the terminal card over the external bus. Some other func-
tions in the DSP and FPGA software has also not been tested because of incomplete hardware.

Table 14–1: Time Schedule

Date Task finished

98.11.10 Technical documentation

Start making presentation

Each of the cards work

98.11.13 Total card documentation

Hand out of presentation plan

98.11.16 Correction of each card documentation

Feedback for presentation

System test

98.11.17 Complete documentation

98.11.18 Corrections on total documentation

System documentation finished and added
137

DM Project 1998
138

Conclusion
15 Conclusion
As the project comes to an end, some thoughts about the accomplishment of the project are made. They
concern problems, experiences the groups have made, how the groups have worked and how the whole
project has been organized by the mentors. The conclusion presents some of these thoughts.

15.1 Problems

In this project, most of the students have been presented to a set of tasks of which they have little or no
prior experience. In such situations, it is not only the solving of the task itself that is the problem, but
also adapting to the neccessary tools and technics neccessary to acheive this.

Lack of resources have been a distinct problem during periods of the project. Licence problems have
complicated the work on the AVR software and the FPGA design. In the case of the AVR, a C compiler
was not available. Because of this, a huge programming task has been accomplished using assembly,
complicating the problem. Licence problems for Xilinx Foundation used to develop the FPGA design
has also lead to delays in some parts of the project.

A problem also turned up concerning the limited number of workstations dedicated to the students in
the DM group. This was particularly a problem as the project came to an end and all members of the
group had to work simultanously to complete the documentation. In the lab, some basic and vital tools
were missing.

Some components arrived very late even though the components were ordered in resonable time. Some
have not arrived even at the time of project deadline. The last matter concerns the keyboard decoder for
the AVR Terminal card and the Maxim serial interfece for both cards. When the FPGA turned out not to
work at the AVR terminal card, several weeks went along before a new FPGA was found. The AD/DA
converter for the DSP card was not received before the last week of the project. These problems are not
of the kind that can be forseen, and no one are to be blamed when they occure, but they still cause delay
and frustration within the groups.

Timing and planning the different stages of the project has a been a challenge. The group members have
different backgrounds, skills and experiences. Some have little experience with these kind of projects,
and in most cases no experience with the hardware design and tools involved. In the start, it was hard to
get an overview of the complexity of the assignment, and to realize what had to be accomplished in the
different areas. Lack of insight in the early stage of the project has in some cases led to an inconvenient
design.

The groups feel that the project assignment has not been very clear and that the original schedule,
although helpful, has not been sufficent to keep the project deadlines. Near the final deadline, it was
neccessary to make a revised and more spesific schedule to complete the project in time.

15.2 Guidance

Some of the special subject lectures were held a bit late. When the course on VHDL was held, the
VHDL design work was well on its way, though in accordance with the schedule. The course on the
DSP was not comprehensive enough to be of real help in the design. Throughout the project the stu-
dents asked for lectures in certain subjects themes, and the mentors attended on request. This was con-
venient and helpfull during the middle and last phases of the project.
139

DM Project 1998
At some requests for help or guidance, the groups have been reffered to solutions in the project of last
year. All though the experiences of these projects have been useful, it would have been more helpful
with spesific help on the subject. Many solutions have been made in these reports that are non obvious,
and with all due respect for prior students, they do not neccessarily have the best solutions.

All through the project the mentors have been very helpful and supportive. A request for guidance has
never been denied. Help and experienced advises have been given on immediate issues. We are great-
full for their hours spent helping on the project, and the countless number of times they have answered
our questions.

15.3 Experiences

Projects of this size and complexity leads to thorougly knowledge of the different tools and technices
used. Some of the project members have learned VHDL code and use of the programing tool Xilinx
Foundation. Some have learned to program the DSP, using its dedicated tools. Some have learned to
program the AVR, and again, some have learned to design print-card layout and routing with the
VeriBest design tools.

These are valuable experiences, but because of the size and complexity of the project it has been impos-
sible for everybody to become skilled in all the tools, or to get a thorugh understanding of all parts of
the design. Even the "experts" of individual tools feel that they still do not master all their functions.
This is especially the case with the VeriBest tools. The users of this program feel it is a very complex
and advanced tool. Even though it became a useful aid, a less complex tool with less features could
have been used.

The task of testing the system has proved to be very extensive. If the complexity of this issue had been
known at an earlier time, it would have been taken more into consideration in the design phase. Design
for testabillity could have been stressed harder.

One of the most important experiences is probably gained as a cause of the size of the project. Few of
the project members have ever worked on a project this complex. With seventeen members working in
several groups, with many small temporary groups working on the side, distributing responibility and
reorganizing the groups has been a constant process.

As mentioned, it was considered a problem that the assignment of the project was not clear. Of cource,
this has also demanded independent and creative work. In some cases, the simplest solution of a prob-
lem has not been chosen. Instead, the opportunity to make a good design, or add "cool" features has-
been seized. While this opens for design pittfalls, it has also been the source of most of the enthusiasm
during the project. It is very satisfactory to take a challenge, and then see a personal design be turned
into a usefull part of the final product.
140

93

l)

tml)
16 Bibliography
[1] The assignment specification. Computer Architecture and Design Group.1998

[2] The Programmable Logic Data Book, Xilinx, 1998.

[3] Implementing IIR/FIR filters with Motorola’s DSP56000/DSP6001.J. Lane and G. Hillman. 19

[4] DSP 56007 User’s Manual. MOTOROLA INC, 1996

[5] DSP56000 Digital Signal Processor Family Manual. MOTOROLA INC. 1992

[6] DSP56000 Digital Signal Processor Family Manual. MOTOROLA INC. 1986

[7] Debug-56k, Motorola 16/24 Bit DSP Debugger. DOMAIN TECHNOLOGIED, INC. 1995

[8] http://www.mot.com/SPS/DSP/products/DSP56000.html

[9] Crystal CS4227 data sheet (http://www.cirrus.com/products/overviews/cs4227.html)

[10] Crystal CS8402A data sheet (http://www.cirrus.com/products/overviews/cs8401.html)

[11] Crystal CS8412 data sheet (http://www.cirrus.com/products/overviews/cs8411.html)

[12] MAXIM RS-232 drivers. MAX232 data sheet (http://www.maxim-ic.com)

[13] Memory Motorola MCM6726D data sheet (http://mot-sps.com)

[14] OnCE controller, MC68HC705K1 data sheet (http://mot-sps.com/sps/General/chips-nav.htm

[15] Op-Amps, Motorola MC33078 data sheet (http://mot-sps.com/sps/General/chips-nav.html)

[16] ELFA-katalogen 1998

[17] AVR Enhanced RISC Microcontroller Data Book, May Atmel Corporation. 1997

[18] ATMEL CD-ROM Data Books, October 1998

[19] http://www.atmel.com

[20] AT17LV010. FPGA Configuration E2PROM MEMORY data sheet
(http://www.atmel.com/atmel/cgi/locator5.cgi/atmel/products/locator5.tab)

[21] MM74C922. 16 Key Encoder data sheet (http://www.national.com/pf/MM/MM54C922.html)

[22] ICD2053B. Programmable Clock Generator data sheet
(http://www.cypress.com/cypress/prodgate/timi/icd2053b.html)

[23] IS62C256. 32k x 8 LOW POWER STATIC RAM data sheet (http://www.issiusa.com/selgde.h

[24] NAN YA LIQUID CRYSTAL DISPLAY, data sheet
141

DM Project 1998
142

	Preface
	Abstract
	Contents
	1� Introduction
	2� Assignment Interpretation
	2.1� Bus Interface
	2.2� User Interface
	2.3� Functions
	2.3.1� Terminal Card
	2.3.2� DSP Card

	2.4� Components to Use
	2.4.1� Terminal Card
	2.4.2� DSP Card

	3� Bus Protocol
	4� Protocol for Communication with the Terminal Card
	4.1� Transfer of Identification Information
	4.2� Transfer of the Menu Hierarchy
	4.2.1� Three Types of Actions
	4.2.2� The Menu Hierarchy Transfer Process

	4.3� Transfer of Values and Actions
	4.4� Transfer of LED Status
	4.5� Transfer of Error Information
	4.6� Summary of Address Usage

	5� Terminal Card Hardware
	5.1� Introduction
	5.2� Component Description
	5.2.1� Xilinx FPGA
	5.2.2� FPGA Configuration Serial EEPROM
	5.2.3� Atmel AVR Microcontroller
	5.2.4� Liquid Crystal Display
	5.2.5� System Clock Generator and Clock Buffer
	5.2.6� Serial Interface
	5.2.7� Keypad
	5.2.8� Buttons
	5.2.9� The External Bus Interface
	5.2.10� Debugging Interface

	5.3� Securing Quality Design
	5.4� Testing
	5.4.1� The Schematics
	5.4.2� The PCB Layout
	5.4.3� The Circuit Board
	5.4.4� The Final Board with Components
	5.4.5� Testing the board with software

	5.5� Known Errors
	5.5.1� Wrong Silk Print Dimensions
	5.5.2� Incorrect Hole Dimensions
	5.5.3� Address Bus Contention
	5.5.4� Wrong Data Line Connected to the Keyboard

	5.6� Changes

	6� Terminal Card AVR Software
	6.1� Introduction
	6.2� Background
	6.2.1� Program Flash
	6.2.2� Internal SRAM
	6.2.3� External SRAM
	6.2.4� Internal Interrupts
	6.2.5� External Interrupts
	6.2.6� Multiplexed Address and Data Pins
	6.2.7� UART Interface

	6.3� Menu System
	6.4� Memory System
	6.4.1� Memory Space
	6.4.2� Internal Memory
	6.4.3� Memory Mapped I/O
	6.4.4� Registers
	6.4.5� External Memory

	6.5� Bus Communication
	6.6� UART Interface
	6.7� The Code Modules
	6.7.1� Main
	6.7.2� Bus
	6.7.3� Display
	6.7.4� Keypad
	6.7.5� LED
	6.7.6� Menu
	6.7.7� Menu Data
	6.7.8� Globals
	6.7.9� UART
	6.7.10� Timer
	6.7.11� Utils

	6.8� Problems
	6.9� Testing
	6.9.1� Menu
	6.9.2� Bus
	6.9.3� Keypad
	6.9.4� Display
	6.9.5� Utils

	6.10� Changes
	6.11� Known Errors

	7� Terminal Card FPGA Design
	7.1� Introduction
	7.2� Address Decoder
	7.2.1� Keypad
	7.2.2� LCD
	7.2.3� LED Controller
	7.2.4� Interrupt Register
	7.2.5� SRAM
	7.2.6� Bus Controller

	7.3� LED Controller
	7.4� Interrupt Register
	7.5� Bus Controller
	7.5.1� Input Controller
	7.5.2� BUS EATER
	7.5.3� IFIFO
	7.5.4� IN_REGISTER
	7.5.5� Output Controller
	7.5.6� B_FEEDER
	7.5.7� OFIFO
	7.5.8� OUT_REG

	7.6� Bus Master
	7.7� Simulation
	7.7.1� Simulation of Address Decoder
	7.7.2� Simulation of Bus Master
	7.7.3� Simulation of Output Controller

	7.8� Known errors

	8� Terminal Card Hardware and Software Integration
	8.1� Introduction
	8.2� Integration

	9� DSP Card Hardware
	9.1� Introduction
	9.2� The Printed Circuit Board
	9.3� DSP Part
	9.3.1� DSP
	9.3.2� OnCE Interface
	9.3.3� RS-232
	9.3.4� SRAM
	9.3.5� Codec
	9.3.6� AES/EBU
	9.3.7� Clock Circuit

	9.4� FPGA Part
	9.4.1� FPGA
	9.4.2� CompactPCI Connector

	9.5� XChecker and SPROM
	9.5.1� XChecker
	9.5.2� SPROM

	9.6� Other Components
	9.7� Configuration
	9.7.1� FPGA
	9.7.2� DSP
	9.7.3� Clock Circuit
	9.7.4� Codec
	9.7.5� AES/EBU
	Digital Receiver
	Digital Transmitter

	9.8� Problems
	9.8.1� Design Phase
	9.8.2� Construction Phase

	9.9� Testing
	9.10� Changes
	9.10.1� OnCE Controller
	9.10.2� DIP-switch

	10� DSP Card FPGA Design
	10.1� Introduction
	10.2� Basis for Design
	10.2.1� Sharing of Workload Between the DSP and the FPGA
	10.2.2� Sound Variables, Sound Effects and Menu
	10.2.3� Communication with Codec and DSP
	10.2.4� SPI versus I2C

	10.3� Description of the Top Level Design
	10.3.1� Simplifications and Choices
	Only the First Data Word is Read From the Bus

	10.3.2� The Design
	10.3.3� Data and Control Flow
	Reset
	Input
	Processing

	10.4� Description of the Blocks of the FPGA Design
	10.4.1� CONTROL_UNIT
	Description

	10.4.2� FOR_US_LOGIC
	Description

	10.4.3� INSTRUCTION_TRANSLATOR
	Description
	INTERPRETER
	TRANSLATE
	Logic of the Instruction Translator

	10.4.4� FIFO_BUFFER
	Description

	10.4.5� ID
	Description

	10.4.6� MENU
	Description

	10.4.7� DELAY_RESET
	Description

	10.4.8� EXTERNAL
	Description

	10.4.9� REGISTER_BLOCK
	Description

	10.4.10� �OUT_REGISTERS
	Description

	10.4.11� �BUS_CONTROLLER
	Description

	10.4.12� �BUS_INTERFACE
	Description.

	10.4.13� �IO_UNIT
	REQ_OPAD
	AD_BUS_IOPAD
	GRANT_IPAD
	CONTR_IOPAD
	COM_IOPAD
	MISC_IOPAD
	DELAY

	10.5� Problems
	10.6� Testing
	10.6.1� CONTROL_UNIT Simulation
	Error
	No Sending to Bus
	Sending to Bus

	10.6.2� INSTRUCTION_TRANSLATOR Simulation
	Interpreting the Commands
	Translating the Menu Item

	10.6.3� FOR_US_LOGIC Simulation
	10.6.4� FIFO_BUFFER Simulation
	10.6.5� Top Level Simulation
	Simulation 1
	Simulation 2.
	Simulation 3
	Summary

	10.7� Changes
	10.7.1� FIFO_BUFFER Added
	10.7.2� Additional Ipads and Opads
	10.7.3� Serial Communication Clock Frequency
	10.7.4� Initialization of Codec
	10.7.5� Tri-state of Control Lines
	10.7.6� FIFO_BUFFER Size Changed from 16 to 8 Commands.

	10.8� Known Errors

	11� DSP Software
	11.1� Introduction
	11.2� Overview
	11.3� Program Organization
	11.4� The DSP Sound Modules.
	11.4.1� Balance
	11.4.2� Bass and Treble
	11.4.3� Delay
	11.4.4� Differential

	11.5� The SHI Handling Routine
	11.6� Interrupt Routines
	11.7� Communication Between DSP and FPGA
	11.8� Problems
	11.9� Testing
	11.10� Known Errors

	12� DSP Card Hardware and Software Integration
	13� Tools
	13.1� Xilinx Foundation Series 1.4, Xilinx
	13.2� VeriBest 98, VeriBest Inc.
	13.3� AVR Studio 1.42, Atmel Corp.
	13.4� Wavrasm 1.21, Atmel Corp.
	13.5� AVR Macro Assembler 1.21, Atmel Corp.
	13.6� AvrProg 1.25, Atmel Corp.
	13.7� BitCalc 3.0e, Cypress/IC Designs
	13.8� EVM56k ver. 1.06.00, Domain Technologies Inc.
	13.9� ASM56000 Assembler ver.6.1.0, Motorola Inc.

	14� Final Notes
	14.1� Time Schedule for the Last Period
	14.2� Status

	15� Conclusion
	15.1� Problems
	15.2� Guidance
	15.3� Experiences

	16� Bibliography

