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FREQUENCY ANALYSIS 

 

Basic Theory of FFT Frequency Analysis 

Introduction 

DSA, often referred to Dynamic Signal Analysis or Dynamic Signal Analyzer depending on the 
context, is an application area of digital signal processing technology. Compared to general data 
acquisition and time domain analysis, DSA instruments and math tools focus more on the dynamic 
aspect of the signals such as frequency response, dynamic range, total harmonic distortion, phase 
match, amplitude flatness etc.. In recent years, time domain data acquisition devices and DSA 
instruments have gradually converged together. More and more time domain instruments, such as 
oscilloscopes, can do frequency analysis while more and more dynamic signal analyzers can do 
long time data recording. 
 
DSA uses various different technology of digital signal processing. Among them, the most 
fundamental and popular technology is based on the so called the Fast Fourier Transform (FFT). 
The FFT transforms the time domain signals into the frequency domain. To perform FFT-based 
measurements, however, you need to understand the fundamental issues and computations 
involved. This Chapter describes some of the basic signal analysis computations, discusses 
antialiasing and acquisition front end for FFT-based signal analysis, explains how to use windowing 
functions correctly, explains some spectrum computations, and shows you how to use FFT-based 
functions for some typical measurements. 
 
In this Chapter we will use standard notations for different signals. Each type of signal will be 
represented by one specific letter. For example, “G” stands for a one-side power spectrum, while 
“H” stands for a transfer function. 
 
The following table defines the symbols used in this Chapter: 
 
Cyx  Coherence function between input signal x and output signal y 
Gxx  Auto-spectral function (one-sided) of signal x 
Gyx  Cross-spectral function (one-sided) between input signal x and output signal y 
Hyx  Transfer function between input signal x and output signal y 
k  Index of a discrete sample 
Rxx  Auto-correlation function of signal x 
Ryx  Cross-correlation function between input signal x and output signal y 
Sx  Linear spectral function of signal x 
Sxx  Instantaneous auto-spectral function (one-sided) of signal x 
Syx Instantaneous cross-spectral function (one-sided) between input signal x and output 

signal y 
t  Time variable 
x(t)  Time history record 
X(f)  Fourier Transform of time history record 
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Fourier Transform 

Digital signal processing technology includes FFT based frequency analysis, digital filters and 
many other topics. This chapter introduces the FFT based frequency analysis methods that are 
widely used in all dynamic signal analyzers. CoCo has fully utilized the FFT frequency analysis 
methods and various real time digital filters to analyze the measurement signals. 
 
The Fourier Transform is a transform used to convert quantities from the time domain to the 
frequency domain and vice versa, usually derived from the Fourier integral of a periodic function 
when the period grows without limit, often expressed as a Fourier transform pair. In the classical 
sense, a Fourier transform takes the form of 

𝑋 𝑓 =   𝑥 𝑡 𝑒−𝑗2𝜋𝑓𝑡  𝑑𝑡
∞

−∞

 

 
where  
 x(t)  continuous time waveform 
 f frequency variable 

j complex number 
 X(f) Fourier transform of x(t) 
 
Mathematically the Fourier Transform is defined for all frequencies from negative to positive infinity.  
However, the spectrum is usually symmetric and it is common to only consider the single-sided 
spectrum which is the spectrum from zero to positive infinity.  For discrete sampled signals, this 
can be expressed as 
 
  

𝑋 𝑘 =   𝑥 𝑘 𝑒−𝑗2𝜋𝑘𝑛 /𝑁

𝑁−1

𝑛=0

 

 
where 
 x(k) samples of time waveform 
 n running sample index 
 N  total number of samples or “frame size”  
 k finite analysis frequency, corresponding to “FFT bin centers” 
 X(k) discrete Fourier transform of x(k) 
   
In most DSA products, a Radix-2 DIF FFT algorithm is used, which requires that the total number 
of samples must be a power of 2 (total number of samples in FFT = 2

m
 , where m is an integer). 

 

Data Windowing 

The Fourier Transform assumes that the time signal is periodic and infinite in duration.  When only 
a portion of a record is analyzed the record must be truncated by a data window to preserve the 
frequency characteristics. A window can be expressed in either the time domain or in the 
frequency domain, although the former is more common. To reduce the edge effects, which cause 
leakage, a window is often given a shape or weighting function. For example, a window can be 
defined as 
 
 w(t) = g(t)  -T/2 < t < T/2 
        = 0   elsewhere 
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where g(t) is the window weighting function and T is the window duration. 
 
The data analyzed, x(t) are then given by 
  
 x(t) = w(t) x(t)’ 
 
where x(t)’ is the original data and x(t) is the data used for spectral analysis. 
 
A window in the time domain is represented by a multiplication and hence, is a convolution in the 
frequency domain. A convolution can be thought of as a smoothing function. This smoothing can 
be represented by an effective filter shape of the window; i.e., energy at a frequency in the original 
data will appear at other frequencies as given by the filter shape. Since time domain windows can 
be represented as a filter in the frequency domain, the time domain windowing can be 
accomplished directly in the frequency domain.   
 
In most DSA products, rectangular, Hann, Flattop and several other data windows are used; 
 
Rectangular Window 
 

 w(k) = 1  0  k  N-1 
 
Hann Window 
 

 w(k) = 0.5 * (1 - cos (2k /(N-1) )  0  k  N-1 
 
Because creating data window attenuates a portion of the original data, a certain amount of 
correction has to be made in order to get an un-biased estimation of the spectra. In linear spectral 
analysis, an Amplitude Correction is applied; in power spectral measurements, an Energy 
Correction is applied. See the sections below for details. 

 

Linear Spectrum 

A linear spectrum is the Fourier transform of windowed time domain data. The linear spectrum is 
useful for analyzing periodic signals. You can extract the harmonic amplitude by reading the 
amplitude values at those harmonic frequencies. 
 
An averaging technique is often used in the time domain when synchronized triggering is applied. 
Or equivalently, the averaging can be applied to the complex FFT spectra.  
 
Because the averaging is taking place in the linear spectrum domain, or equivalently, in the time 
domain, based on the principles of linear transform, averaging make no sense unless a 
synchronized trigger is used. 
 
Most DSA products use the following steps to compute a linear spectrum: 
 
Step 1 
First a window is applied: 
 
 x(t) = w(t) x(t)’ 
 
where x(t)’ is the original data and x(t) is the data used for the Fourier transform. 
 
Step 2 
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The FFT is applied to x(t) to compute X(k), as described above. 
 
Step 3 
Averaging is applied to X(k). Here Averaging can be either an Exponential Average or Stable 
Average. Result is Sx’. 
 
Sx’ = Average ( X(k) ) 
 
Step 4 
To get a single-sided spectrum, double the value for symmetry about DC. 
An Amplitude Correction factor is applied to Sx’ so that the final result has an un-biased reading at 
the harmonic frequencies. 
 

 Sx = 2  Sx’ / AmpCorr 
 
where AmpCorr is the amplitude correction factor, defined as: 
 

𝐴𝑚𝑝𝐶𝑜𝑟𝑟 =   𝑤 𝑘 

𝑁−1

𝑘=0

 

 
where w(k) is the window weighting function. 
 
This correction will make the peak or RMS reading of a sine wave at specific frequency correct 
regardless of which data window is applied. For example, if a 1.0 volt amplitude 1kHz sine wave 
sampled at 6.4kHz is analyzed with a Linear Spectrum with Hann window, you will get following the 
spectral shape: 
 

 
 Figure 1.  Sine wave with Hanning window applied to the spectrum. 

The top picture is the digitized time waveform. The sine-wave is not smooth because of the low 
sampling rate relative to the frequency of the signal.  However the well known Nyquist principle 
indicates that the frequency estimate from the FFT will be accurate as long as the sampling rate is 
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more than twice of the signal frequency.  The frequency spectrum of the period signal will show the 
accurate frequency and level.  Note for a more accurate sample of the time waveform a higher 
sampling rate is required. 
 
Figure 2 illustrates a windowing function applied to a pure sine tone. 
 

 

 Figure 2. Hanning windowing function applied to a pure sine tone. 

The top picture is displayed in EUpk, i.e., the peak of the spectrum is scaled to the actual 0 peak 
level, which is 1.0 in this case. The bottom picture shows the same signal with the dB scale 
applied. Since we use 0dB as reference, the 1.0 Vpk is now scaled to 0.0 dB. With the dB display, 
we can see frequency points around the peak causing by the Hanning window. 
 
 
The linear spectrum is saved internally in the complex data format with real and imaginary parts. 
Therefore, you should be able to view the real and imaginary parts, or amplitude and phase of the 
spectrum. 
 

Power Spectrum 

Spectral analysis is popular in characterizing the operation of mechanical and electrical systems.  A 
type of spectral analysis, the power spectrum (and power spectral density (PSD)), is especially 
popular because a “power” measurement in the frequency domain is one that engineers readily 
accept and apply in their solutions to problems. Single channel measurements (auto-power 
spectra) and two channel measurements (cross-power spectra) both play important roles. 
 
In power spectrum measurements, window amplitude correction is used to get un-biased final 
spectrum amplitude reading at specific frequency. In PSD or energy spectral density (ESD) 
measurements, window energy correction is always used to get an un-biased spectral density or 
energy reading.  
 
To compute the spectra listed above, the instrument will follow these steps: 
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Step 1 
A window is applied: 
 
 x(k) = w(k) x(k)’ 
 
where x(k)’ is the original data and x(k) is the data used for a Fourier transform. 
 
Step 2 
The FFT is applied to x(t) to compute Sx 
 

𝑆𝑥 =   𝑥 𝑘 𝑒−𝑗2𝜋𝑘𝑛 /𝑁

𝑁−1

𝑛=0

 

  
Next the so called periodogram method is used to compute the spectra with area correction. Using 
Sx. 
 
Step 3 
 
Calculate the Power Spectrum Sxx = Sx Sx

* 
/ (AmpCorr)

2
 

 
Or calculate the Power Spectral Density  = Sx Sx

* 
T / EnergyCorr 

 
Or calculate the Energy Spectral Density  = Sx Sx

* 
T

2
 / EnergyCorr 

 
where T is the time duration of the capture. The symbol  

*  
is for complex conjugation. EnergyCorr is 

a factor for energy correction, which is defined as: 
 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑟𝑟 =  
1

𝑁
 𝑤 𝑘 2

𝑁−1

𝑘=0

 

 
N is the total number of the samples and w(k) is window function. 
 
For any power spectral measurement of the three types listed above, the EU is automatically 
chosen as EUrms because only EUrms has a physical meaning related to signal power. 
 
After the power spectra are calculated, the averaging operation will be applied. More details will be 
discussed in the next sections for averaging operation. 
 

Spectrum Types  

Several Spectrum Types are given for both Linear Spectrum and Power Spectrum measurements 
in CoCo and EDM. The concept of spectrum type is explained below in detail. 
 
First let’s consider the signals with periodic nature. These can be the signals measured from a 
rotating machine, bearing, gearing, or anything that repeats. In this case we would be interested in 
amplitude changes at fundamental frequencies, harmonics or sub-harmonics. In this case, you can 
choose a spectrum type of EUpk, EUpkpk or EUrms. 
 
A second scenario might consist of a signal with a random nature that is not necessarily periodic. It 
does not have obvious periodicity therefore the frequency analysis could not determine the 
“amplitude” at certain frequencies. However, it is possible to measure the r.m.s. level, or power 
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level, or power density level over certain frequency bands for such random signals. In this case, 
you must select one of the spectrum types of EUrms

2
/Hz, or EUrms/sqrt(Hz), which is called power 

spectral density, or root-mean squared density.  
 
A  third scenario might consist of a transient signal. It is neither periodic, nor stably random. In this 
case, must select a spectrum type as EU

2
S/Hz, which is called energy spectrum. 

 
In many applications, the nature of the data cannot be easily classified. Care must be taken to 
interpret the data when different spectrum types are used. For example, in the environmental 
vibration simulation, a typical test uses multiple sine tones on top of random profile, which is called 
Sine-on-Random. In this type application, you have to observe the random portion of the data in 
the spectrum with EUrms

2
/Hz and the sine portion of the data with EUpk. 

 
Figure 3 shows a general flow-chart to choose one of the measurement techniques and spectrum 
types for linear or auto spectrum: 
 

Classify the nature of data

Periodic (narrowband) Random (broadband) Transient (broadband)

Linear 

Spectrum 

Sx

Power 

Spectrum 

SxSx
*

Power 

Spectrum 

Density

SxSx
*
T

RMS Power 

Spectrum 

Density

Sqrt(PSD)

Energy 

Spectrum 

SxSx
*
TT

Window amplitude correction Window energy correction

Select one of the spectrum 

type: EUpk, EUpkpk, EUrms, 

(EUrms)
2 EUrms

2
/Hz EUrms/sqrt(Hz) EUrms

2
S/Hz

Averaging

 
 Figure 3. Flow chart to determine measurement technique for various signal types. 

The following figures illustrate the results of different measurement techniques on a 1 volt pure sine 
tone.  The figures include RMS, Peak or Peak-Peak value for the amplitude, or power value 
corresponding to its amplitude. Notice these readings can only be applied to a periodic signal. If 
you applied these measurement techniques to a signal with random nature, the spectrum would 
not be a meaningful representation of the signal.  
 
EUpk or EUpkpk 
 
The EUpk and EUpkpk displays the peak value or peak-peak value of a periodic frequency 
component at a discrete frequency. These two spectrum types are suitable for narrowband signals. 
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 Figure 4. A sine wave is measured with EUpk spectrum unit.  The sine waveform has a 1V amplitude. 

EUrms 
 
The EUrms displays the RMS value of a periodic frequency component at a discrete frequency. This 
spectrum type is suitable for narrowband signals. 

 

 
 Figure 5. A sine wave is measured with EUrms spectrum unit.  The peak reading is 0.707V. The sine waveform has a 1V 

amplitude. 

(EUrms)
2  

Power spectrum
 

 
The (EUrms)

2 
displays the power reading of a periodic frequency component at a discrete frequency. 

This spectrum type is suitable for narrowband signals. 
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 Figure 6. A sine wave is measured with (EUrms)2 spectrum unit.  The peak reading is 0.5V2. The sine waveform has a 1V 

amplitude. 

EU
2
/Hz, Power Spectrum Density 
 
The EU

2
/Hz is the spectrum unit used in power spectrum density (PSD) calculations. The unit is in 

engineering units squared divided by the equivalent filter bandwidth. This provides power 
normalized to a 1Hz bandwidth. This is useful for wideband, continuous signals. EU

2
/Hz really 

should be written as (EUrms)
2
/Hz. But probably due to the limitation of space, people put it as 

EU
2
/Hz.  
 

 

 Figure 7. White noise with 1 volt RMS amplitude displays as 100 u Vrms
2/Hz. 

 
Figure 7 shows a white noise signal with 1Vrms amplitude or 1V

2
 in power level. The bandwidth of 

the signal is approximately 10000 Hz and the V
2
/Hz reading of the signal is around 0.0001 V

2
/Hz.  

The 1 V RMS can be calculated as follows: 
 

1 Vrms  = sqrt (10000Hz * 0.0001 V
2
/Hz) 

 
EU

2
S/Hz, Energy Spectrum Density  

The EU
2
S/Hz displays the signal in engineering units squared divided by the equivalent filter 

bandwidth, multiplied by the time duration of signal. This spectrum type provides energy 
normalized to a 1Hz bandwidth, or energy spectral density (ESD). It is useful for any signals when 
the purpose is to measure the total energy in the data frame. Figure 8 shows a random signal with 
a 1 volt RMS level in the ESD format. 
 



  DYNAMIC SIGNAL ANALYSIS BASICS 

 

COPYRIGHT © 2009 CRYSTAL INSTRUMENTS. ALL RIGHTS RESERVED. PAGE 13 

 

 
 Figure 8. Random signal with 1 volt RMS amplitude and Energy Spectrum Density format. 

The ESD is calculated as follows: 
 
Values for ESD = values of PSD * Time Factor 
 
were the Time Factor = (Block size)/∆f and ∆f is the sampling rate / block size. 
 
Notice that in 

 
EU

2
/Hz, or EU

2
S/Hz, EU really means the RMS unit of the EU, i.e., EUrms.  

 
It should also be noted that since a window is applied in time domain, which corresponds a 
convolution in the linear spectrum, we cannot have both a valid amplitude and correct energy 
correction at the same time. Use Figure 3 to select appropriate spectrum types. 
 
In a Linear Spectrum measurement, a signal is saved in its complex data format which includes 
both real and imaginary data. Then is averaging operation applied to the linear spectrum. In a 
Power Spectrum measurement, the averaging operation is applied to the squared spectrum, which 
has only real part. Because of different averaging techniques, the final results of Linear Spectrum 
and Power Spectrum will be different even though the same spectrum type is used. 
 
Spectrum Types selection only applies to Power Spectrum and Linear Spectrum signals.  
Spectrum Types do not apply to transfer functions, phase functions or coherence functions. 
 

Cross Spectrum 

Cross spectrum or cross power spectrum density is a frequency spectrum quantity computed using 
two signals, usually the excitation and response of a dynamic system. Cross spectrum is not 
commonly used by its own. Most often it is used to compute the frequency response function 
(FRF), transmissibility or cross correlation function. 
 
To compute the cross-power spectral density Gyx between channel x and channel y: 
 
Step 1, compute the Fourier transform of input signal x(k) and response signal y(k): 
 

𝑆𝑥 =   𝑥 𝑘  𝑤 𝑘 𝑒−𝑗2𝜋𝑘𝑛 /𝑁

𝑁−1

𝑛=0

 

 
 

𝑆𝑦 =   𝑦 𝑘  𝑤 𝑘 𝑒−𝑗2𝜋𝑘𝑛 /𝑁

𝑁−1

𝑛=0
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Step 2,   compute the instantaneous cross power spectral density 
 
 Syx = Sx

*    
Sy

 
T 

 
Step 2,   average the M frames of Sxx to get averaged PSD Gxx 
 
 Gyx’ = Average (Syx) 
 
Step 3,   Compute the energy correction and double the value for the single-sided spectra 
 
 Gyx = 2 Gyx’ / EnergyCorr 

 

Frequency Response and Coherence Function 

The cross power spectrum method is often used for estimating the frequency response function 
(FRF) between channel x and channel y. The equation is: 
 

𝐻𝑦𝑥 =  𝐺𝑦𝑥  / 𝐺𝑥𝑥  

 
where Gyx is the averaged cross-spectrum between the input channel x and output channel y. Gxx 
is the averaged auto-spectrum of the input. Either power spectrum, power spectral density or 
energy spectral density can be used to compute the FRF because of the linear relationship 
between input and output. 
 
Using the cross-power spectrum method instead of simply dividing the linear spectra between input 
and output to calculate the FRF will reduce the effect of the noise at the output measurement end, 
as shown below. 
 

 

 Figure 9. Frequency response function computation. 

The frequency response function has a complex data format. You can view it in real and imaginary 
or magnitude and phase display format. 
 
The coherence function is defined as: 
 

 

yyxx

yx

yx
GG

G
C

2

2 ||
  

 
where Gyx is the averaged cross-spectrum between the input channel x and output channel y. Gxx 
and Gyy are the averaged auto-spectrum of the input and output. Either power spectrum, power 
spectral density or energy spectral density can be used here because of the linear relationship 
between input and output so that any multiplier factors will be cancelled out. 
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Coherence is a statistical measure of the how much of the output is caused by the input.  The 
maximum coherence is 1.0 when the output is perfectly correlated with the input and zero when 
there is no correlation between input and output. Coherence is calculated by an average of multiple 
frames.  When it is computed for only one frame, then the coherence function has a meaningless 
result of 1.0 due to the estimation error of the coherence function. 
 
The coherence function is a non-dimensional real function in the frequency domain. You can only 
view it in the real format. 

 

Data Window Selection 

Leakage Effect 

Windowing of a simple signal, like a sine wave may cause its Fourier transform to have non-zero 
values (commonly called leakage) at frequencies other than the frequency of this sine. This 
leakage effect tends to be worst (highest) near sine frequency and least at frequencies farthest 
from sine frequency. The effect of leakage can easily be depicted in the time domain when a signal 
is truncated.  As shown in the picture, after data windowing, truncation distorted the time signal 
significantly, hence causing a distortion in its frequency domain. 
 

 
 Figure 10. Illustration of a non-periodic signal resulting from sampling. 

 
If there are two sinusoids, with different frequencies, leakage can interfere with the ability to 
distinguish them spectrally. If their frequencies are dissimilar, then the leakage interferes when one 
sinusoid is much smaller in amplitude than the other. That is, its spectral component can be hidden 
or masked by the leakage from the larger component. But when the frequencies are near each 
other, the leakage can be sufficient to interfere even when the sinusoids are equal strength; that is, 
they become undetectable. 
 



  DYNAMIC SIGNAL ANALYSIS BASICS 

 

COPYRIGHT © 2009 CRYSTAL INSTRUMENTS. ALL RIGHTS RESERVED. PAGE 16 

 

There are two possible scenarios that leakage does not occur. The first is that when the whole time 
capture is long enough to cover the complete duration of the signals. This can occur with short 
transient signals.  For example in a hammer test, if the time capture is long enough it may extend 
to the point where the signal decays to zero. In this case, data window is not needed. 
 
The second case is when a periodic signal is sampled at such a sampling rate that is perfectly 
synchronized with the signal period, so that with a block of capture, an integer number of cycles of 
the signal are always acquired. For example, if a sine wave has a frequency of 1000Hz and the 
sampling rate is set to 8000Hz. Each sine cycle would have 8 integer points. If 1024 data points 
are acquired then 128 complete cycles of the signal are captured. In this case, with no window 
applied you still can get a leakage-free spectrum. 
 
Figure 11 shows a sine signal at 1000 Hz with no leakage resulting in a sharp spike.  Figure 12 
shows the spectrum of a 1010 Hz signal with significant leakage resulting in a wide peak.  The 
spectrum has significant energy outside the narrow 1010 Hz frequency.  It is said that the energy 
leaks out into the surrounding frequencies.   
 

 
 Figure 11. Sine spectrum with no leakage. 

 

 

 Figure 12. Sine spectrum with significant leakage. 

 
 
Several windowing functions have been developed to reduce the leakage effect.   The picture 
below shows a Flattop window applied to the same sine signal with frequency 1010Hz: 
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 Figure 13. Sine spectrum with Flattop windowing function. 

 
When Flattop window is used, the leakage effect is reduced. Both the sine peak and noise floor 
can be seen now. However, such data windowing operation also makes the spectrum peak “fatter” 
and less accurate. In the rest of the sections we will discuss how to choose different data windows. 
 

Data Window Formula 

In this section, we will describe the math formula that we used for each data window.  

Uniform window (rectangular) 
 

𝒘 𝒌 =  𝟏. 𝟎 
 
Uniform is the same as no window function. 
 
 
Hamming window 
 

𝒘 𝒌 =  𝟎. 𝟓𝟑𝟖𝟑𝟔 − 𝟎. 𝟒𝟔𝟏𝟔𝟒 𝐜𝐨𝐬(
𝟐𝝅𝒌

𝑵 − 𝟏
) 

 
Hann window 
 

𝒘 𝒌 =  𝟎. 𝟓 − 𝟎. 𝟓 𝐜𝐨𝐬(
𝟐𝝅𝒌

𝑵 − 𝟏
) 

 
 
The Hann and Hamming windows are in the family known as "raised cosine" windows, are 
respectively named after Julius von Hann and Richard Hamming. The term "Hanning window" is 
sometimes used to refer to the Hann window, but is ambiguous as it is easily confused with 
Hamming window. 
 
Blackman window 
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𝒘 𝒌 = 𝟎. 𝟖𝟒 −  𝟎. 𝟓 𝐜𝐨𝐬
𝟐𝝅𝒌

𝑵 − 𝟏
  + 𝟎. 𝟎𝟖 𝐜𝐨𝐬

𝟒𝝅𝒌

𝑵 − 𝟏
                     𝒇𝒐𝒓 𝒌 = 𝟎~𝑵 − 𝟏 

 
Flattop window 
 

𝒘 𝒌 = 𝟏 −  𝟏. 𝟗𝟑 𝐜𝐨𝐬
𝟐𝝅𝒌

𝑵 − 𝟏
  + 𝟏. 𝟐𝟗𝐜𝐨𝐬

𝟒𝝅𝒌

𝑵 − 𝟏
− 𝟎. 𝟑𝟖𝟖𝐜𝐨𝐬

𝟔𝝅𝒌

𝑵 − 𝟏
    

+ 𝟎. 𝟎𝟑𝟐𝐜𝐨𝐬
𝟖𝝅𝒌

𝑵 − 𝟏
                        𝒇𝒐𝒓 𝒌 = 𝟎~𝑵 − 𝟏 

 
 
Kaiser Bessel window 
 

𝒘 𝒌 = 𝟏. 𝟎 −  𝟏. 𝟐𝟒𝐜𝐨𝐬
𝟐𝝅𝒌

𝑵 − 𝟏
  + 𝟎. 𝟐𝟒𝟒𝐜𝐨𝐬

𝟒𝝅𝒌

𝑵 − 𝟏
  

+ 𝟎. 𝟎𝟎𝟑𝟎𝟓𝐜𝐨𝐬
𝟔𝝅𝒌

𝑵 − 𝟏
                                             𝒇𝒐𝒓 𝒌 = 𝟎~𝑵 − 𝟏 

 
 
Exponential Window 
 
The shape of the exponential window is that of a decaying exponential. The following equation 
defines the exponential window. 

 

𝒘 𝒌 =  𝒆
 
𝒌 𝐥𝐧⁡(𝒇𝒊𝒏𝒂𝒍)

𝑵−𝟏
 
 

 
     𝒇𝒐𝒓 𝒌 = 𝟎~𝑵 − 𝟏 

 
where N is the length of the window, w(k)is the window value, and final is the final value of the 
whole sequence. The initial value of the window is one and gradually decays toward zero.  

 

How to Choose the Right Data Window 

In this section we will discuss how to choose the data window. Figure 14 shows the spectral shape 
of four typical windows corresponding to their time waveform.  
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 Figure 14. Spectral shape of common windowing functions. 

It can be seen that the spectral shape of the data window is always symmetric. The spectral shape 
can be described as a main lobe and several side lobes. 
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-6dB

Main lobe width

Peak side 

lobe level

Frequency

 
 Figure 15.  Window frequency response showing main lobe and side lobes. 

 
The following table lists the characteristics of several data windows. 
 
Frequency Characteristics of Data Windows 
 

Window –3 dB Main Lobe 

Width (bins) 

–6 dB Main 

Lobe Width 

(bins) 

Maximum 

Side Lobe 

Level (dB) 

Uniform (none) 0.9 1.2 –13 

Hanning 1.4 2.0 –32 

Hamming 1.3 1.8 –43 

Blackman 1.6 2.3 –58 

Flattop 2.9 3.6 –44 

 
Main Lobe 
 
The center of the main lobe of a window occurs at each frequency component of the time-domain 
signal. By convention, to characterize the shape of the main lobe, the widths of the main lobe at –3 
dB and –6 dB below the main lobe peak describe the width of the main lobe. The unit of measure 
for the main lobe width is FFT bins or frequency lines. 
 
The width of the main lobe of the window spectrum limits the frequency resolution of the windowed 
signal. Therefore, the ability to distinguish two closely spaced frequency components increases as 
the main lobe of the smoothing window narrows. As the main lobe narrows and spectral resolution 
improves, the window energy spreads into its side lobes, increasing spectral leakage and 
decreasing amplitude accuracy. A trade-off occurs between amplitude accuracy and spectral 
resolution. 
 
Side Lobes 
 
Side lobes occur on each side of the main lobe and approach zero at multiples of fs/N from the 
main lobe. The side lobe characteristics of the smoothing window directly affect the extent to which 
adjacent frequency components leak into adjacent frequency bins. The side lobe response of a 
strong sinusoidal signal can overpower the main lobe response of a nearby weak sinusoidal signal. 
Maximum side lobe level and side lobe roll-off rate characterize the side lobes of a smoothing 
window. The maximum side lobe level is the largest side lobe level in decibels relative to the main 
lobe peak gain.  
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Guidelines of Choosing Data Windows 

If a measurement can be made so that no leakage effect will occur, then do not apply any window 
(in the software, select Uniform.). As discussed before, this only occurs when the time capture is 
long enough to cover the whole transient range, or when the signal is exactly periodic in the time 
frame. 
 
If the goal of the analysis is to discriminate two or multiple sine waves in the frequency domain, 
spectral resolution is very critical. For such application, choose a data window with very narrow 
main slope. Hanning is a good choice. 
 
If the goal of the analysis is to determine the amplitude reading of a periodic signal, i.e., to read 
EUpk, EUpkpk, EUrms or EUrms

2
,  the amplitude accuracy of a single frequency component is more 

important than the exact location of the component in a given frequency bin, choose a window with 
a wide main lobe. Flattop window is often used. 
 
If you are analyzing transient signals such as impact and response signals, it is better not to use 
the spectral windows because these windows attenuate important information at the beginning of 
the sample block. Instead, use the Force and Exponential windows. A Force window is useful in 
analyzing shock stimuli because it removes stray signals at the end of the signal. The Exponential 
window is useful for analyzing transient response signals because it damps the end of the signal, 
ensuring that the signal fully decays by the end of the sample block. 
 
If the nature of the data is has a random nature or unknown, choose Hanning window.  
 

Averaging Techniques 

Averaging is widely used in spectral measurements. It improves the measurement and analysis of 
signals that are purely random or mixed random and periodic. Averaged measurements can yield 
either higher signal-to-noise ratios or improved statistical accuracy. 
 
Typically, three types of averaging methods are available in DSA products. They are:  
 
Linear Averaging, Exponential Averaging, and Peak-Hold 
 

Linear Averaging 

In linear averaging, each set of data (a record) contributes equally to the average. The value at any 
point in the linear average in given by the equation: 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 =  
𝑆𝑢𝑚 𝑜𝑓 𝑅𝑒𝑐𝑜𝑟𝑑𝑠

𝑁
 

 
N is the total number of the records. The advantage of this averaging method is that it is faster to 
compute and the result is un-biased. However, this method is suitable only for analyzing short 
signal records or stationary signals, since the average tends to stabilize. The contribution of new 
records eventually will cease to change the value of the average.  
 
Usually, a target average number is defined. The algorithm is made so that before the target 
average number reaches, the process can be stopped and the averaged result can still be used. 
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When the specified target averaging number is reached, the instrument usually will stop the 
acquisition and wait for the instruction for another collection of data acquisition. 
 

Moving Linear Averaging 

In a regular Linear Average, the data rate of the output of the averaging operator is only 1/N of that 
of the original signal. Therefore more averages takes longer to compute.  Thus averaging will 
increase the time of the measurement. To reduce the time a Moving Linear Averaging can be 
used. Moving Linear Averaging uses overlapped input data points to generate more than 1/N 
results within a period of time. Moving linear average has the advantage that the resulted trace 
update time can be much shorter than the linear averaging period.  
 
Moving Linear Average is computed by 

𝑦 𝑛 =
1

𝑁
  𝑥[𝑛 − 𝑗]

𝑁−1

𝑗 =0

 

Where x[k] is the input data, with sampling rate of T, y[n] is the output data, with Trace Update rate 
deltaT, AverageT is the period of Linear Average and ,N is the  total samples used for Linear 
Average. N = AverageT/T 

 
 

The Moving Linear Averaging is illustrated in Figure 16. Assume the averaging period is AverageT 
but the progressive time for each averaging operation is deltaT, the output buffer will have a data 
rage of deltaT instead of AverageT. 
 

x[k], saved every T

AverageT

y[n] (saved every deltaT)

AverageT

AverageT

deltaT

N

N

N

 
 Figure 16. Illustration of moving linear average. 

The Moving Linear Average is useful in many situations. For example, in Sound Level Meter, Leq 
is defined as a linear averaged value over a long period of time, say 1 second to 24 hours. Assume 
the AverageT is 1 hour, without moving linear average, in a 24 hours period, you can only get 24 
readings. This is not very useful. With moving averaging, you can get the readings in every 1 
second, for the linear averaging of the past 1 hour. 
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Exponential Averaging 

In exponential averaging, records do not contribute equally to the average. A new record is 
weighted more heavily than old ones. The value at any point in the exponential average is given 
by: 
 

𝑦 𝑛 =  𝑦 𝑛 − 1  ∗  1 − 𝛼 +  𝑥[𝑛] ∗  𝛼 
 

where 𝑦 𝑛  is the nth average and 𝑥[𝑛] is the nth new record.  is the weighting coefficient. Usually 

 is defined as 1/(Number of Averaging). For example in the instrument, if the Number of 
Averaging is set to 3 and the averaging type is selected as exponential averaging, then 𝛼 = 1/3 
 
The advantage of this averaging method is that it can be used indefinitely. That is, the average will 
not converge to some value and stay there, as is the case with linear averaging. The average will 
dynamically respond to the influence of new records and gradually ignore the effects of old records.  
 
Exponential averaging simulates the analog filter smoothing process. It will not reset when a 
specified averaging number is reached. 
 
The drawback of the exponential averaging is that a large value may embed too much memory into 
the average result. If there is a transient large value as input, it may take a long time for y[n] to 
decay. On the contrary, the contribution of small input value of x[n] will have little impact to the 
averaged output. Therefore, exponential average fits a stable signal better than a signal with large 
fluctuations. 
 

Peak-Hold 

 
This method, technically speaking, does not involve averaging in the strict sense of the word. 
Instead, the “average” produced by the peak hold method produces a record that at any point 
represents the maximum envelope among all the component records. The equation for a peak-
hold is 
 

𝑦 𝑛 = MAX j=0
N−1 𝑥[𝑛 − 𝑗]  

 
Peak-hold is useful for maintaining a record of the highest value attained at each point throughout 
the sequence of ensembles. Peak-Hold is not a linear math operation therefore it should be used 
carefully. It is acceptable to use Peak-Hold in auto-power spectrum measurement but you would 
not get meaningful results for FRF or Coherence measurement using Peak-Hold. 
 
Peak-hold averaging will reset after a specified averaging number is reached. 
 

 

Linear Spectrum versus Power Spectrum Averaging 

Averaging can be applied to either linear spectrum or power spectrum. If you want to reduce the 
spectral estimation variance, use power spectral averaging. If you want to extract repetitive or 
periodic small signals from a noisy signal, you can use triggered capture and average them in 
linear spectral domain. Linear Spectrum averaging must be performed with on a triggered event so 
that the time signal of one average is correlated with other similar measurements.  Without time 
synchronizing mechanism, averaging in the Linear Spectrum domain makes no sense. Linear 
spectrum averaging is also called Vector averaging. It averages the complex FFT spectrum. (The 
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real part is averaged separately from the imaginary part.) This can reduce the noise floor for 
random signals since they are not phase coherent from time record to time record. 
 
Power Spectrum Averaging is also called RMS Averaging. RMS averaging computes the weighted 
mean of the sum of the squared magnitudes (FFT times its complex conjugate). The weighting is 
either linear or exponential. RMS averaging reduces fluctuations in the data but does not reduce 
the actual noise floor. With a sufficient number of averages, a very good approximation of the 
actual random noise floor can be displayed. Since RMS averaging involves magnitudes only, 
displaying the real or imaginary part, or phase, of an RMS average has no meaning and the power 
spectrum average has no phase information. 
 
Table 1 gives a summary of the averaging methods described above.  

 Table 1. Summary of Averaging Methods. 

Linear Spectrum 
Averaging 

Power Spectrum Averaging 

No statistical spectral 
estimate, for deterministic 
signals only. 

Statistical spectral estimate, for 
signals with random characteristics. 

Signal must have periodic 
components. 

Applicable to both pure random and 
mixed random/periodic signals. 

Improve SNR. Does not improve SNR. 

Requires a synchronized 
trigger in fixed relation to the 
signals. 

Does not require a synchronized 
trigger. 

 

Spectrum Estimation Error 

You may wonder how much confidence we should have when we take the spectral measurement. This 
is a academic topic that can go very deep. First you must classify your signal types. If you are 
measuring a deterministic signal, with very few averaging, the spectrum estimation can be very 
accurate. If the signal has a random nature, with partially random, or significant measurement noise, 
more averaging must be used. 
 
Assume the time data is captured from a stationary random process and we calculate various spectra 
using window, FFT and averaging techniques, how much we can trust the measured spectra can be 
measured by a statistical quantity, standard deviation. Here are a few useful equations to compute the 
standard deviation of the spectra when linear averaging is used: 
 

Functions being 
estimated 

Standard Deviation 

Auto-spectrum Gxx 

n

1
 

Cross-spectrum |Gyx| 

nCyx ||

1
 

Coherence Function 
Cyx

2
 

nCyx

Cyx

||

2)1( 2
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Frequency Response 
Function Hyx 

nCyx

Cyx

2||

)1( 2
 

 
where n is the average number in linear averaging. The transfer function is computed in the cross-
power spectrum method as presented earlier.  
 
Assume a signal is random and has an expected power spectral density at 0.1 V

2
/Hz. The goal of 

a measurement is to average a few power spectra and to estimate such an expected value. If the 
average number is 1, meaning, with no average, the standard deviation of the error of such a 
measurement will be 100%. When we average two frames of auto power spectra, the standard 

deviation of the error will become 
1

 2
= 70.7%   When the average number is increased to 100, the 

standard deviation of the error of the reading is 10%. This means that the reading is likely in the 
neighborhood of (0.1±0.01) V

2
/Hz  

 
Now if this signal has a deterministic nature, say a sine wave, the spectral estimation error will only 
be applied to the random portion, i.e., the noisy portion, of this signal. 
 
 

Overlap Processing 

To increase the speed of spectral calculation, overlap processing can be used to reduce the 
measurement time. The diagram below shows how the overlap is realized.  
 

 

 Figure 17. Illustration of overlap processing. 

As shown in this picture, when a frame of new data is acquired after passing the Acquisition Mode 
control, only a portion of the new data will be used.   Overlap calculation will speed up the 
calculation with the same target average number. The percentage of overlap is called overlap ratio. 
25% overlap means 25% of the old data will be used for each spectral processing. 0% overlap 
means that no old data will be reused. 
 
Overlap processing can improve the accuracy of spectral estimation. This is because when a data 
window is applied, some useful information is attenuated by the data window on two ends of each 
block. However, it is not true that the higher the overlap ratio the higher the spectral estimation 
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accuracy. For Hanning window, when the overlap ratio is more than 50%, the estimation accuracy 
of the spectra will not be improved.  
 
Another advantage to apply overlap processing is that it helps to update the display more quickly.  
 

Single Degree of Freedom System 

This section briefly discusses the single degree of freedom (SDOF) system as background for the 
frequency response function and damping estimation methods.  
 
The vibration nature of a mechanical structure can be decomposed into multiple, relatively 
independent Single-Degree-Of-Freedom systems. Each SDOF system can be modeled as a mass 
fixed to the ground by a spring and a damper in parallel as shown in Figure 18. The frequency 
response function (FRF) of this mechanical system is also shown. 

 
 Figure 18. SDOF system and their frequency response. 

The differential equation of motion for this system is given by 
 

𝑚𝑥 +  𝑐𝑥 + 𝑘𝑥 = 𝑓(𝑡)  
The natural frequency ωn and damping ratio ζ can be calculated from the system parameters as   

𝜔𝑛
2 =

𝑘

𝑚
,   𝑎𝑛𝑑     2𝜁𝜔𝑛 =

𝑐

𝑚
  

where m is the mass, k is the spring stiffness and c is the damping coefficient. 
The natural frequency, 𝜔𝑛  , is in units of radians per second (rad/s). The typical units displayed on 

a digital signal analyzer are in Hertz (Hz). The damping ratio, can also be represented as a 
percent of critical damping – the damping level at which the system experiences no oscillation. This 
is the more common understanding of modal damping.. Figure 18 illustrates the response of a 
SDOF system to a transient excitation showing the effect of different damping ratios. 
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 Figure 19. Step response of a SDOF system with different damping ratios. 

 
A SDOF system with light damping factor will have longer oscillation in a transient process. This is 
why the exponential window may be chosen to reduce the leakage effect in its spectral analysis.  
 
 

dB and Linear Magnitude 

Most often, amplitude or power spectra are shown in the logarithmic unit decibels (dB). Using this 
unit of measure, it is easy to view wide dynamic ranges; that is, it is easy to see small signal 
components in the presence of large ones. The decibel is a unit of ratio and is computed as follows. 
 

dB = 10log10 (PowerPref) 
 
where Power is the measured power and Pref is the reference power. 
 
Use the following equation to compute the ratio in decibels from amplitude values. 
 

dB = 20log10 (AmplAref) 
 

where Ampl is the measured amplitude and Aref is the reference amplitude. 
 
When using amplitude or power as the amplitude-squared of the same signal, the resulting decibel 
level is exactly the same. Multiplying the decibel ratio by two is equivalent to having a squared ratio. 
Therefore, you obtain the same decibel level and display regardless of whether you use the 
amplitude or power spectrum. 
 
As shown in the preceding equations for power and amplitude, you must supply a reference for a 
measure in decibels. This reference then corresponds to the 0 dB level. Different conventions are 
used for different types of signals. A common convention is to use the reference 1 Vrms for 
amplitude or 1 Vrms squared for power, yielding a unit in dBV or dBVrms. In this case, 1 Vrms 
corresponds to 0 dB. Another common form of dB is dBm, which corresponds to a reference of 1 

mW into a load of 50 for radio frequencies where 0 dB is 0.22 Vrms, or 600 for audio 
frequencies where 0 dB is 0.78 Vrms. 
 
The picture below shows a sine wave with 1V amplitude displayed in dB. Because the reference is 
1Vpk , it shows the peak value of this sine wave as 0dB. 
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 Figure 20. Show a 1Vpk sine signal in frequency domain with dB scaling. 

 
Another display format is called Log, or LogMag. The Log display shows the signal scaled 
logarithmically  with the grid values and cursor readings in actual engineering value. The picture 
below shows the same signal in LogMag.  

 
 

 

 Figure 21. A 1Vpk sine signal in frequency domain with LogMag scaling. 

When dB reference is not specified, the dB reference is 1.0 engineering unit. In acoustics 
application, the dB reference for the sound pressure value is set to 20uPa. The same input signal 
will result in different dB readings when dB reference is changed. 
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TRANSIENT CAPTURE AND HAMMER TESTING 

Transient Capture 

In the previous Chapters of this manual, we have discussed how the acquisition mode can be 
defined in the CSA Editor and selected on the CoCo device. This chapter will demonstrate how to 
use CoCo to conduct hammer testing.  Hammer testing refers to impact or bump testing that is 
conducted using an impact hammer to apply an impulsive force excitation to a test article while 
measuring the response excitation from an accelerometer or other sensor.  This type of 
measurement is a transient event that usually requires triggering, averaging and windowing.   First, 
let’s briefly review the Transient Capture function on CoCo. 
 
Transient Capture is one of the most common used functions for dynamic data acquisition. In 
CoCo the Transient Capture is implemented by setting up the Acquisition Mode.  Acquisition 
Mode defines how to transform the time streams into block by block time signals. It sets the 
trigger and the overlapping processing. Before the Acquisition Mode stage, the instrument 
acts as a data recorder while after the Acquisition Mode, it is acts as a signal analyzer. 
 

Acquisition 

Mode

Block-by-

Block 

time 

signals

Time 

streams 

Data recorder Signal Analyzer

 
 Figure 22. Transient capture operation on CoCo. 

Besides Acquisition Mode, you must first enable at least one time stream as a trigger 
candidate in the CSA Editor. Trigger candidates are those time streams that can be selected 
as a trigger source. The names of these trigger candidates will be passed to the CoCo. 
During runtime, one of the trigger source candidates must be selected as the trigger source. 
 

Impact Hammer Testing 

Typically impact hammer testing is conducted with a signal analyzer to measure FRFs  of the 
device under test.  The FRFs can be used to determine the modal properties of the device such as 
the natural frequencies and damping ratios.  In addition the data can be exported to third party 
modal analysis software to compute mode shapes.   
 
An impact hammer test is the most common method of measuring FRFs.  The hammer imparts a 
transient impulsive force excitation to the device.  The impact is intended to excite a wide range of 
frequencies so that the DSA can measure the vibration of the device across this range of 
frequencies.  The bandwidth or frequency content of the excitation input depends on the size and 
type of impact hammer that is used.  The dynamic force signal is recorded by the DSA.  After the 
impact, the device vibrations are measured with one or more accelerometers or other sensor and 
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recorded by the DSA.  The DSA then computes the FRF by comparing the force excitation and the 
response acceleration signals.  Impact testing is depicted in Figure 23. 
 

 
 Figure 23. Illustration of a typical impact test and signal processing. 

 
The following equipment is required to perform an impact test: 
 
1. An impact hammer to excite the structure. With CoCo we recommend using an impact 

hammer with IEPE output, which allows the hammer to be connected directly to the analyzer 
without extra signal conditioning.  

2. One or multiple accelerometers that are fixed on the structure. Again, IEPE accelerometers 
can be used directly with CoCo without additional signal conditioning. 

3. Coco Signal Analyzer 
4. The CoCo can be used to extract the resonance frequencies and damping factors of the 

structure.  In addition third party software can be used to extract modal shapes and animate 
the vibration modes. 

 
A wide variety of structures and machines can be impact tested. Of course, different sized 
hammers are required to provide the appropriate impact force, depending on the size of the 
structure; small hammers for small structures, large hammers for large structures. Realistic signals 
from a typical impact test are shown in Figure 10. 
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 Figure 24. Typical impact test data.  Top left shows excitation force impulse time signal, top right shows response 

acceleration time signal and bottom shows FRF spectrum. 

 

Impact Test Analyzer Settings 

The following settings are used for impact testing.   
 
1. Trigger Setup including trigger level and pre-trigger delay are used to capture the transient 

signal for FRF processing.   It is important to capture the entire short transient signal it in the 
sampling window of the FFT analyzer. To insure that the entire signal is captured, the analyzer 
must be able to capture the impulse and impulse response signals prior to the occurrence of 
the impulse with the pre-trigger.  

 
2. Force & Exponential Windows. Two common time domain windows that are used in impact 

testing are the force and exponential windows. These windows are applied to the signals after 
they are sampled, but before the FFT is computed in the analyzer. 

 
The force window is used to remove noise from the impulse (force) signal. Ideally, an impulse 
signal is non-zero for a small portion of the sampling window, and zero for the remainder 
of the window time period. Any non-zero data following the impulse signal in the sampling 
window is assumed to be measurement noise. CoCo has a unique way to implement the force 
window. This was discussed in the data windowing section in the previous chapter. 
 
The exponential window is applied to the impulse response signal. The exponential window is 
used to reduce leakage in the spectrum of the response. 
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3. Accept/Reject: Because accurate impact testing results depend on the skill of the operator, 
FRF measurements should be made with averaging, a standard capability in all modern FFT 
analyzers. FRFs should be measured using at least 4 impacts per measurement. Since one or 
two of the impacts during the measurement process may be bad hits (too hard causing 
saturation, too soft causing poor coherence or a double hit causing distortion in the spectrum), 
an FFT analyzer designed for impact testing should have the ability to accept or reject the 
result of each impact after inspecting the impact signals. An accept/reject capability saves a lot 
of time during impact testing since you don’t have to redo all measurements in the averaging 
process after one bad hit. 
 

4. Modal Damping Estimation. The width of the resonance peak is a measure of modal 
damping. The resonance peak width should also be the same for all FRF measurements, 
meaning that modal damping is the same in every FRF measurement. A good analyzer should 
provide an accurate damping factor estimate. CoCo uses a curve fitting algorithm to estimate 
the damping factor. The algorithm reduces the inaccuracy caused by the poor spectrum 
resolution or noise.  

 
5. Modal Frequency estimation. The analyzer must provide capability of estimating the 

resonance frequencies.  CoCo uses an algorithm to identify the resonance frequencies based 
on the FRF. 
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