Plasmid Fast Midiprep Kit

(High quality Plasmid Purification Kits for Transfection)

User Manual

Version 6.0

Catalog No. 11510F/11520F/11500F

Storage Conditions: Room Temperature

For Research Use Only

www.mbiotech.co.kr

Principle

The m.biotech High quality Plasmid Purification Kits for Transfection procedure is based on a modified alkaline lysis method, followed by binding of plasmid DNA onto membrane in the presence of low-salt and pH conditions. RNA, proteins, dyes, and low-molecular-weight impurities are removed by a medium-salt wash. Plasmid DNA is eluted in a high-salt buffer and the concentrated and desalted by isopropanol precipitation. No expensive equipment such as ultracentrifuges and HPLC, or toxic reagents, such as phenol and ethidium bromide are required.

Culture volume

Do not exceed the maximum recommended culture volumes given at the beginning of each protocol. Using larger culture volumes will lead to an increase in biomass and can affect the efficiency of alkaline lysis, leading to reduced yield and purity of the preparation. The protocol for High quality Plasmid Purification Kits for Transfection is optimized for use with cultures grown in standard Luria Bertani (LB) medium, grown to a cell density of approximately 3–4 x 109 cells per ml. We advise harvesting cultures after approximately 12–16 hours of growth, which typically is the transition from logarithmic into stationary growth phase. It is best to assess the cell density of the culture, and if that is too high, reduce the culture volumes accordingly or increase the volumes of Buffer T1, Buffer T2, Buffer T3. A high ratio of biomass to lysis buffers will result in poor lysis conditions and subsequently low DNA yield and purity. For determination of cell density calibration of each individual spectrophotometer is required to facilitate accurate conversion of OD600 measurements into the number of cells per ml. This can be achieved by plating serial dilutions of a culture onto LB-agar plates in the absence of antibiotics. The counted colonies are used to calculate the number of cells per ml, which is then set in relation to the measured OD600 values.

Convenient stopping points in protocols

The purification procedure can be stopped and continued later by freezing the cell pellets obtained by centrifugation. The frozen cell pellets may be stored at -20°C for several weeks. In addition, the DNA eluted from the Spin- or Ez-Column may be stored overnight at 2-8°C, after which the protocol can be continued.

Important Note

Please read the following notes before starting any of the Plasmid Purification procedures for Transfection.

Before equipment

- Add the RNase A Solution to Buffer T1, mix, store at 2-8 $^\circ C$.
- Check Buffer T2 before use for salt precipitation.
- If any precipitated, heat to dissolve (37 $^\circ$ C). Wear, gloves when handling these buffer.
- Isopropanol and 70% ethanol.
- In Spin-Column, If remainder should occur

Protocol for Plasmid Fast Midiprep Kit

(Reusable High quality Plasmid Purification Kits for Transfection) Please read "Important Notes" before starting.

Cat. No.	11510F	11520F	11500F	Storage	
	10 preps	25 prep	100 preps	Condition	
Buffer EQ	5 <mark>0 ml</mark>	125 ml	250 ml X 2ea	RT	
Buffer T1	50 ml	125 ml	125 ml X 4ea	RT	
Buffer T2	50 ml	125 ml	250 <mark>ml X 2ea</mark>	RT	
Buffer <mark>T3</mark>	50 ml	125 ml	250 ml X 2ea	RT	
Buffer TU	125 ml	125 ml X 2ea	250 ml X 4ea	RT	
		60 ml X1	125 ml X 1ea		
Buffer <mark>EN</mark>	50 ml	125 ml	250 ml X 2ea	RT	
Buffer TE	5 ml	12 ml	60 ml	RT	
RNase A (25mg/ml)	250 ul	600 ul	600 ul X 4ea	4 °C	
Midi Column & Tube	Each 10 ea	Each 25 ea	Each 100 ea	RT	
Protocol	1 ea	1 ea	1 ea	-	

- 1. Harvest a 50 ml cultured high-copy-number plasmids or cosmids (>2 μ g DNA/ml LB). If you wish to stop the protocol and continue later, freeze the cell pellets at -20°C.
- Apply 5 ml of Buffer EQ to the Midi-Column. Let stand for 1 min.
 Centrifuge at ≥ 4,000 x g in a swing-bucket rotor at room temperature for 1 min or vacuum.
 OR centrifuge at ≥ 8,000 x g in a fixed-angle rotor for 3 min (*disregard of remainder, next step*). Discard the flow-through.
- 3. Suspend pelleted bacterial cells in 5 ml of Buffer T1.
- 4. Add 5 ml of Buffer T2. Mix gently by inverting the capped tube five times. *Do not vortex.* Incubate at room temperature for 5 min.
- 5. Add 5 ml o<mark>f Buffer T3. Mix immediately by</mark> inverting the tube five times. *Do not vortex.*
- 6. Centrifuge at ≥ 15,000 x g at room temperature for 10 min. If centrifugation is done at 4°C, supernatant must be warmed to room temperature before loading on column.
- 7. Apply the cleared lysate of step 6 into the equilibrated Midi-Column. Centrifuge at \geq 4,000 x g in a swing-bucket rotor at room temperature for 1 min or vacuum. OR centrifuge at \geq 8,000 x g in a fixed-angle rotor for 3 min (*disregard of remainder, next step*). Discard the flow-through.
- 8. Apply 12 ml of Buffer TU to the Midi-Column.

Centrifuge at \geq 4,000 x g in a swing-bucket rotor at room temperature for 2 min or vacuum. OR centrifuge at \geq 8,000 x g in a fixed-angle rotor for 3 min (*disregard of remainder, next step*). Discard the flow-through.

9. Place the Midi-Column in a clean 50 ml centrifuge tube (not provided).

Apply 5 ml of Buffer EN to the Midi-Column. Centrifuge at \geq 4,000 x g in a swing-bucket rotor at room temperature for 2 min. OR centrifuge at \geq 8,000 x g in a fixed-angle rotor for 3 min (*disregard of remainder, next step*).

Note: For constructs larger than 45–50 kb, prewarming the Buffer EN to 65°C may help to increase yield.

- 10. Precipitate DNA by adding 0.7 volume isopropanol to the eluted DNA. Mix and centrifuge at \geq 15,000 x g at 4°C for 30 min. carefully discard the supernatant.
- Wash DNA pellet with 2 ml 70% ethanol. Centrifuge at ≥ 15,000 x g at 4°C for 10 min. Carefully and fully pipet off the ethanol wash without disturbing the pellet. Air-dry the pellet.

12. Redissolve the DNA in 0.4 ml or a suitable volume of Buffer TE, pH 8.0 or 10 mM Tris-Cl, pH8.5.

Troubleshooting Guiade

This troubleshooting guide may be helpful in solving any problems that may arise.

Problem	Comments and suggestions				
Low or no DNA yield					
No DNA in lysate					
a) Plasmid did not	Check the conditions for optimal growth.				
Propagate					
b) Alkaline lysis was	If cells have grown to very high densities or a larger amount of				
Inefficient	cultured medium than recommended was used, the ratio of				
	biomass to lysis reagent is shifted. This may result in poor lysis				
	c <mark>onditions, beca</mark> use the volumes of Buffer T1, T2, and T3 are not				
	su <mark>fficient for setting the plasmid</mark> DNA free efficiently. Reduce				
	cu <mark>lture vo</mark> lume or increase volumes of Buffer T1, T2, and T3.				
	Al <mark>so in</mark> sufficient mixing of ly <mark>sis re</mark> agen <mark>ts will resul</mark> t in reduced				
	yield.				
c) Insufficient lysis for	For low-copy plasmid prepara <mark>tions,</mark> doubling the volumes of				
low-copy plasmids	Buffers T1, T2, and T3 may help to increase plasmid yield and				
	quality.				
d) Lysate incorrectly	Check Buffer T2 for SDS precipitation resulting from low storage				
prepa <mark>red</mark>	temperatures and dissolve the SDS by warming.				
DNA is found in the flow-	t <mark>hrough</mark> of cleared lysate				
a) Plasmid Purification	I <mark>f rich cu</mark> lture media, such as TB or 2x YT are used, culture				
membrane o <mark>verloaded</mark>	volumes must be reduced. It may be necessary to adjust LB				
	cu <mark>lture volu</mark> me if the plasmid and ho <mark>st strain sho</mark> w extremely				
	hi <mark>gh copy</mark> number or growth rates.				
b) RNase A digestion	E <mark>nsure t</mark> hat RN <mark>ase A is</mark> adde <mark>d to Buff</mark> er T <mark>1 befor</mark> e use.				
omitted					
c) RNase A digestion	Reduce culture volume if necessary. If Buffer T1 containing				
Insufficient	RNase A is more than 6 months old, add additional RNase A.				
d) SDS was in lysate	Buffer T3 before use. If lysate is too viscous for effective mixing				
	of Buffer T3, reduce culture volume or increase volumes of Buffer				
	T1, T2, and T3.				
No DNA in eluate					
a) No DNA in the lysate	See section "No DNA in lysate"				
b) DNA passed through in	See previous two sections.				
the flow-through or wash					

Plasmid Fast Midiprep Kit

fraction

Little or no DNA after precipitation

a) DNA failed to	Ensure that the precipitate is centrifuged at \geq 15,000 x g for 30				
precipitate	min. Recover DNA by centrifuging for longer and at higher				
	speeds. Try another isopropanol batch.				
b) DNA pellet was lost	Isopropanol pellets are glassy and may be difficult to see. Mark				
	the outside of the tube before centrifugation. Isopropanol pellets				
	may also be loosely attached to the side of the tube, so pour				
	supernatant off gently.				
c)DNA was poorly	Check that DNA is completely redissolved. Be sure to wash any				
redissolved	DNA off the walls, particularly if glass tubes and a fixed-angle				
	rotor are used. Up to half of the total DNA may be smeared on				
	the walls. Alternatively, a swinging bucket rotor can be used to				
	e <mark>nsure that the pellet is located at t</mark> he b <mark>ottom of the</mark> tube.				
Plasmid DN <mark>A difficult to</mark> I	redissolve				
a) Pellet was overdried	Ai <mark>r-dry p</mark> ellet instead of using a vacuum, especially if the DNA is				
	o <mark>f hig</mark> h molecular weight. <mark>Redis</mark> solve DNA by warming the				
	solution slightly, and allowing more time for redissolving.				
b) Re <mark>sidual</mark> isopr <mark>opano</mark> l	Ensure that pellets are washed with 70% ethanol to remove				
in pe <mark>llet</mark>	traces of isopropanol. Redissolve DNA by warming the solution				
	slightly, a <mark>nd allowing mor</mark> e time for rediss <mark>olving. Increase vo</mark> lume				
	of buffer used for redissolving if necessary.				
c) Too <mark>muc</mark> h salt	Ensure that isopropanol is at room temperature for precipitation,				
in pelle <mark>t</mark>	and wash the pellet twice with room temperature 70% ethanol.				
	R <mark>ecover DNA by</mark> increa <mark>sing the</mark> volume of buffer used for				
	re <mark>dissolving.</mark>				
d) Buffer pH <mark>was too low</mark>	Ensure that the pH of the buffer used for redissolving is ≥ 8.0 ,				
	si <mark>nce DNA</mark> does <mark>not d</mark> issolve well in acidi <mark>c solution</mark> s.				
e) Resuspension (T1)	I <mark>ncrease</mark> resuspension (T1) volume if the solution above the				
volume too low	pellet is highly viscous.				
Contaminated DNA/poor	-quality DNA				
a)Genomic DNA in the	Mixing of bacterial lysate was too vigorous. The lysate must be				
eluate	handled gently after additional Buffer T1, T2 and T3 to prevent				
	shearing of chromosomal DNA. Reduce culture volume if lysate is				
	too viscous for gentle mixing.				
b) RNA in the eluate	RNase A digestion was insufficient. Check culture volume against				
	recommended volumes, and reduce if necessary. Check that the				
	RNase A provided with the kit has been used.				

	If Buffer T1 is more than 6 months old, add more RNase A.				
c) Nuclease contamination	Check buffers for nuclease contamination and replace if				
	necessary. Use new glass- and plasticware, and wear gloves.				
d) Lysis time was too	Ensure that lysis step (Buffer T2) does not exceed 5 min.				
Long					
e) Overloaded alkaline	Check the culture volume and yield against the capacity of the				
lysis	Spin-				
	Column. Reduce the culture volume accordingly or alternatively				
	increase and a second				
	the volume of Buffer T1, T2, and T3.				
f) Plasmid DNA	DNA was poorly buffered. Redissolve DNA in Buffer TE, pH 8.0, to				
is	inhibit				
nicked/sheared <mark>/Degrade</mark> d	nuclease activity and maintain stable pH during storage.				
g) Shearing d <mark>uring</mark>	R <mark>edissolve DNA</mark> gently, without vortexing or vigorous pipetting.				
Redissolving	Avoid				
	us <mark>ing sm</mark> all pipet tips.				
h) Par <mark>tic</mark> les in	Centrifuge the DNA solution and transfer supernatant to a new				
rediss <mark>olve</mark> d DNA	tube. The particles have no affect on DNA quality. Alternatively,				
	use Ultra <mark>HiFast kits cont</mark> aining Precipitatior, which filters the				
	eluate.				
Poor DNA performance					
a) To <mark>o much</mark> salt in pellet	Ensure that isopropanol is at room temperature for precipitation,				
	and wash the pellet twice with room temperature 70% ethanol.				
	Precipitate the DNA again to remove the salt.				
b) Residual pr <mark>otein</mark>	Check culture volume against the recommended volumes and				
	re <mark>duce if nec</mark> essary. Ensure that the bacterial lysate is cleared				
	properly by				
	c <mark>entrifugat</mark> ion at ≥15,000 x g for 45 min <mark>, or using</mark> a Cartridge.				
Extra DNA bands on analy	/tical gel				
a) Dimer form of plasmid	Dimers or multimers of supercoiled plasmid DNA are formed				
	during rep <mark>lication of pl</mark> asmid DNA. Typically, when purified				
	plasmid DNA is electrophoresed, both the supercoiled monomer				
	and dimer form of the plasmid are detected upon ethidium				
	bromide staining of the gel. The ratio				
	of these forms is often host dependent.				
b) Plasmid has formed	This species runs faster than closed circular DNA on a gel and is				
Denatured supercoils	resistant				
	to restriction digestion. Do not incubate cells for longer than $\boldsymbol{5}$				

c) Possible deletion mutants Some sequences are poorly maintained in plasmids. Check for deletions by restriction analysis. Cosmid clones, in particular, should always be prepared from freshly streaked, well-isolated colonies, since cosmids are not stable in *E. coli* for long periods of time.

Blocked Spin-Column

a) Lysate was turbid

Ensure that the lysate is clear before it is loaded onto the column. Ensure that Buffer T3 is chilled before use. Check g-force and centrifugation time. Alternatively, clear the lysate using a Cartridge. To clear a blocked Spin-Column, positive pressure may be applied (e.g., by using a syringe fitted into a rubber stopper with a hole).

Cartridges

Cartridge clogs during filtration

a)Too large <mark>culture</mark>	Use no more than the culture volume recommended in the						
volu <mark>m</mark> e used	p <mark>rotoc</mark> ol.						
b) In <mark>effic</mark> ient mixing after	Mix well until a fluffy white material has formed and the lysate is						
addit <mark>ion of</mark> Buffe <mark>r T3</mark>	no longer viscous.						
c) Mixing too vigorous	After addition of Buffer T3 the lysate should be mixed						
after addition of Buffer T3	immediately but gently. Vigorous mixing disrupts the precipitate						
	into tiny particles which may clog the Cartridge.						
d) Cartridge was not	After addition of Buffer T3 the lysate should be poured						
loaded immediately after	immediately into the Cartridge. Decanting after incubation may						
addition of Buffer T3	disrupt the precipitate into tiny particles which may clog the						
	Cartridge.						
e) Cartridge was agitated	Pour the lysate into the Cartridge immediately after addition of						
during incubation	N <mark>eutraliza</mark> tion Solution and do not agitate during the 10 min						
	incubation. Agitation causes the precipitate to be disrupted into						
	tiny particles, instead of forming a layer.						
f) Incubation after addition	Ensure incubation is performed at room temperature Buffer T3 on						
of Buffer T3 on ice instead	ice instead of in the Cartridge. Precipitate flotation is more						
of at RT	efficient at room temperature than on ice.						
g) Incubation time after	Incubate with Buffer T3 as indicated in the protocol. If the						
addition of Buffer T3 too	precipitate has not risen to the top after the 10 min incubation,						
short	carefully run a sterile pipet tip or sterile spatula around the						
	cartridge wall to dislodge the precipitate before continuing with						
	the filtration.						

Lysate not clear after filtration

a) Precipitate was forced	Filter until all of the lysate has passed through the Midi or Maxi
through the	Cartridge, but do not apply extreme force. Approximately 12 ml
Catridge	(Midi) or 25 ml (Maxi) of the lysate are typically recovered.

Precipitator Modules

DNA does not perform well

a) Eluate contains	Ensure that	the	memb	rane is	dried	by	pressing	air thr	ough	the
residual alcohol	Precipitator	at	least	twice.	Dry	the	outlet	nozzle	of	the
	Precipitator v	with	absorb	ent pap	er.					

Precipitator clogs during use

a) Too much DNA applied	Do not load eluate from several columns on the Precipitator.					
to the Precipitator						
b) Precipitator <mark>Midi</mark>	Use the size of Precipitator corresponding to the Spin-Column					
Module was used for	being used.					
precipitation of eluate						
from a <mark>c</mark> olum <mark>n</mark>						
c) Eth <mark>an</mark> ol wa <mark>s used for</mark>	U <mark>se of</mark> ethanol instead of isop <mark>ropan</mark> ol fo <mark>r precipitatio</mark> n le <mark>ad</mark> s to a					
precip <mark>itat</mark> ion instead	f <mark>iner</mark> precipi <mark>tate t</mark> hat can clog the module.					
of iso <mark>propan</mark> ol						
Prec <mark>ipitator casing</mark> break	s, causing leakage					
a) Excessive exposure of	Prolonged incubation with alcohol may weaken the joint between					
Precipitator to alcohol	upper and lower part of the Precipitator.					
	Complete steps 15~20 within 10~15 min.					
b) Precipitator attached	Do not apply excessive force, bending, or twisting when attaching					
with excessive force	t <mark>he Precip</mark> itator to the syringe.					
c) Precipitato <mark>r inlet was</mark>	D <mark>o not stress th</mark> e inlet by resting one e <mark>dge of the Pr</mark> ecipitator on					
bent during processing	a hard surface (e.g., the edge of a sink) and depressing the					
	s <mark>yringe</mark> plunge <mark>r. Always appl</mark> y g <mark>entle, ev</mark> en, pressure					
	perpendicularly to the Precipitator.					

Customer & Technical Services

For technical assistance and more information please contact us. www.mbiotech.co.kr Tel : +82-31-556-3905 Fax : +82-31-790-0079 E-mail : info@mbiotech.co.kr

Plasmid Fast Midiprep Kit

