
Elarva Compiler Manual

Rudolph Gatt

May 2011

Contents

1. Introduction 1
1.1 Elarva . 1
1.2 Elarva Design . 1

1.2.1 Specification . 1
1.2.2 Instrumentation . 2
1.2.3 Monitoring . 2
1.2.4 Handling Violations . 3
1.2.5 Mitigating the impact of verification 4

1.3 Document Outline . 4

2. Language Specification 6
2.1 Introduction . 6

2.1.1 Events . 6
2.1.2 States . 7
2.1.3 Transitions . 8
2.1.4 Properties . 9
2.1.5 User Registration Example 10
2.1.6 Variables . 10
2.1.7 Context . 11
2.1.8 Channels . 13

3. Elarva Tool 17
3.1 Introduction . 17
3.2 Required Components . 17
3.3 Elarva Compiler . 18
3.4 Monitoring Code . 18

3.4.1 Monitor . 19
3.4.2 Supervisor . 19
3.4.3 Tracer Process . 19
3.4.4 Set of FSMs . 21

ii

1. Introduction

1.1 Elarva

The Larva monitoring tool has been successfully applied to a number of indus-
trial Java systems, providing extra assurance of behaviour correctness. Given the
increased interest in concurrent programming, we propose Elarva, an adaptation
of Larva for monitoring programs written in Erlang, an established industry-
strength concurrent language. Object-oriented Larva constructs have been trans-
lated to process-oriented setting, and the synchronous Larva monitoring seman-
tics was altered to an asynchronous interpretation.

1.2 Elarva Design

This section illustrates how each runtime verification phase is tackled in Elarva.

1.2.1 Specification

Figure 1.1: Specification phase.

As in Larva the chosen specification is DATEs, a logic based on symbolic
automata, which offers a high degree of expressivity. Being designed for runtime
verification it requires much less computational resources than having a logic
to be decidable over all execution paths. Figure 1.1 depicts the specification

1

Chapter 1. Introduction

being fed to the Elarva compiler which transforms it into monitoring code and
instrumentation code.

1.2.2 Instrumentation

Figure 1.2: Instrumentation phase.

In Larva, the instrumentation is tackled via aspect-oriented programming
which uses joinpoints (i.e. identifiable points in the code) defined by a point-
cut (i.e. rule to which a number of joinpoints should match) to capture events.
This is achieved because Java, the implementation language used in Larva, sup-
ports aspect-oriented programming through AspectJ. Message passing concur-
rency languages do not support aspect-oriented programming therefore we had
to use another appraoch. We had two options, either use hand instrumentation
i.e. inserting specific code in the target system for each occurrence of a particular
event, or using the tracing mechanism of Erlang. We opted for the Erlang trac-
ing mechanism because it gives us an elegant way how to capture events without
modfying the target system while hand instrumentation would result in the clut-
tering of the target system. Figure 1.2 shows us the instrumentation phase where
the tracer process enables the Erlang tracing mechanism and begins to receive
trace messages by the Erlang virtual machine.

1.2.3 Monitoring

The Erlang tracing mechanism does not suspend the system while a trace event is
triggered therefore the target system will continue its execution while the Erlang
tracing mechanism generates trace events and sends them to the tracer process.
This requires us to adopt an asynchronous monitoring mode where the target
system and the monitoring code are both running in parallel but there exists a
delay between the occurence of events and the delivery of trace messages.

As we can see from figure 1.3, when the Erlang tracing mechanism is activated
the Erlang virtual machine sends trace messages to a tracer process. This tracer
process is the central and most important part of our monitoring code. The Erlang

2

Chapter 1. Introduction

Figure 1.3: Monitoring phase.

virtual machine can only send trace messages to a single process thus at any one
time there is only one tracer process. As a consequenece, the tracer process is
responsbile for receiving trace messages and generating meaningful events which
are forwarded to the appropiate FSMs. If the erlang virtual machine could send
trace messages to more than one process we could eliminate the tracer process
and let each FSM receive its pertaining events.

1.2.4 Handling Violations

Figure 1.4: Handling Violations phase.

Since we adopted an asynchronous monitoring mode, we are restricted with
respect to the actions that can be taken upon a violation detection because upon
a violation detection the target system will continue execution with the possibility
of doing more damage (for example exposing sensitive data etc.). Even though

3

Chapter 1. Introduction

we cannot take an immediate action upon a violation detection, figure 1.4 shows
us how we can take action via the Supervisor behaviour which can restart the
target system to limit the damage. If the target system is designed with built-in
recovery strategies (i.e. routines that can rearrange the system’s state), we can
trigger these routines (for example by a function call or by a message) as an
action upon violation detection.

1.2.5 Mitigating the impact of verification

Figure 1.5: Mitigating the impact of verification phase.

The monitoring code induces an amount of overhead on the target system.
We have to minimise this overhead as much as possible. One way to minimise the
induced overhead is to adopt a distributed monitoring approach where the target
system runs on Erlang node while the monitoring code resides on a different
Erlang node and on a separate machine with dedicated hardware. Figure 1.5
shows us two erlang nodes running on two separate machines. The first machine
hosts the target system and a tracer process which receives trace messages from
the Erlang virtual machine. The tracer process on the first machine forwards
all trace messages to the other tracer process situated on the second machine
which generated meaningful events and forwards them to the appropiate FSMs.
It would be ideal if the Erlang virtual machine on the first Erlang node sends the
trace messages directly to the tracer process on the second machine however this
setting cannot be achieved because the tracer process must be a local process.

1.3 Document Outline

This manual is organised in two main parts:

• Language Specification - This part explains the language specification and
syntax of each construct used in Elarva.

4

Chapter 1. Introduction

• Elarva Tool - This part outlines the required components to use the Elarva
tool and also explains each component generated by the Elarva tool.

5

2. Language Specification

2.1 Introduction

The following sections give us an outline of the language specification and syntax
used in Elarva. An example of a user registration system, which allows users to
log in and use any provided services, is introduced bit by bit in each construct to
aid the reader to fully-understand the language specification used in Elarva and
how each construct can be used to monitor a particular target system.

2.1.1 Events

The alphabet of a DATE’s automaton are events where each event represents an
occurence of something meaningful in the target system. An event in an object-
oriented langauge might be a method call or an exception throw while an event
in a concurrent language might be a function call or the spawning of a process.
We have to be able to distinguish between events therefore each event must be
given a unique name. The events must be specified in a block with the following
format:

EVENTS{

...

}EVENTS

The event types that Elarva can handle are SEND, RECEIVE, CALL, LINK,

UNLINK, REGISTER, UNREGISTER, SPAWN and CHANNEL. We must also specify
the relevant arguments in each event. In a SEND or RECEIVE event type, the
specified arguments must reflect the format of the message being sent or received
respectively. In the CALL, LINK, UNLINK, and SPAWN event types, the specified
arguments must match the MFA tuple {Module, Function, Arity} where in
the CALL event type the tuple specifies which function is being called and in
the other events types the tuple specifies the initial function call of the process
either begin linked/unlinked or the process being spawned. In the REGISTER and
UNREGISTER event types, the specified arguments must match the name being
registered or unregistered respectively. So far an event declaration should be
specified as follows:

6

Chapter 2. Language Specification

eventName = eventType <arguments>

We can also target specific processes by specifying the MFA tuple before the
arguments. The MFA tuple matches with the initial function call made by the
process. Therefore the event declaration changes as follows:

eventName = eventType <{Module, Function, Arity> <arguments>

It is often convenient to be able to use wildcards to capture events that might
not be identical but have some similarities or where some information is only
available at runtime. This can be achieved by using an underscore ‘ _ ’ which
would act as a placeholder. Wildcards can be used inside arguments or instead
of the MFA tuple specifying the initial call of the process. The following are
examples of events using wildcards:

receiveAllMessagesEvent = RECEIVE <{module, test, 0> <_>

callEvent = CALL <_> <{module, test, 0}>

The following events block illustrates the events that a user can make in the
user registration system:

EVENTS{

login = SEND <_> <{login, User, Pass}>

logout = SEND <_> <{logout, User, Pass}>

request = SEND <_> <{request, User}>

}EVENTS

The BNF notation of the Event construct is given as follows:

Name ::= [a-zA-Z0-9]

Messages ::= Erlang messages

Module ::= [a-zA-Z0-9]

Function ::= [a-zA-Z0-9]

Arity ::= [0-9]

EventName ::= identifier

InitialCall ::= ‘{’ Module ‘,’ Function ‘,’ Arity ‘}’ | ‘_’

Arguments ::= Name | Messages | InitialCall | ‘_’

EventType ::= ‘SEND’ | ‘RECEIVE’ | ‘CALL’ | ‘LINK’ | ‘UNLINK’ | ‘REGISTER’ |

‘UNREGISTER’ | ‘SPAWN’ | ‘CHANNEL’

Event ::= EventName ‘=’ EventType ‘<’ InitialCall ‘>’ ‘<’ Arguments ‘>’

Events ::= Event Events | Event

EventsBlock ::= ‘EVENTS{’ Events ‘}EVENTS’

2.1.2 States

A state dictates the current status of the DATE’s automaton. States are divided
into a starting state, normal states and bad states. Each type of state must be
enclosed by a block. The following states block illustrates all the possible user
process states during its lifecycle:

7

Chapter 2. Language Specification

STATES{

BAD{ violation }BAD

NORMAL{ loggedIn }NORMAL

STARTING{ loggedOut }STARTING

}STATES

The BNF notation of the State construct is given as follows:

StateName ::= identifier

StateDecl ::= StateName

StateList ::= e | StateDecl StateList

Bad ::= ‘BAD{’ StateList ‘}Bad’

Normal ::= ‘NORMAL{’ StateList ‘}NORMAL’

Starting ::= ‘STARTING{’ StateDecl ‘}STARTING’

StateBlock ::= ‘STATES{’ Bad Normal Starting ‘}STATES’

2.1.3 Transitions

A transition causes a state change in the DATE’s automaton and has the following
format:

source -> destination [event \ condition \ action]

The source refers to the current state while the destination refers to which
state the DATE’s automaton moves. Each transition is trigerred by an event
therefore we must specify an event name. We can also specify a condition and
an action where a transition is taken only if the condition is satisfied and the
action is executed upon taking the transition. The condition must be a boolean
expression and can access information from the event’s argument. The action can
have four different formats which are:

{code, erlang code}

{restart}

{variable, get(...)/put(..., ...)}

{channel, [...]}

The first format allows the user to specify any Erlang code that he wants
to be executed. The second format is used to restart the target system via
the Supervisor behaviour. The third and fourth formats allows the user to use
variables and channels respectively which will be explained in subsequent sections.
Transitions must be enclosed in the following block:

TRANSITIONS{

...

}TRANSITIONS

The following transisitions block illustrates the transitions that a user process
can take:

8

Chapter 2. Language Specification

TRANSITIONS{

loggedOut -> loggedIn [login \\]

loggedIn -> loggedOut [logout \\]

loggedIn -> loggedIn [request \\]

loggedOut -> violation [request \\]

}TRANSITIONS

The last transition is the most important one because it dictates how a vi-
olation is reached when a requestReset event is triggered while the state is
loggedOut. The BNF notation of the Transition construct is given as follows:

StateName ::= identifier

EventName ::= identifier

Condition ::= BooleanExp

Code ::= erlang code

Variable ::= explained in subsequent section

ChannelList ::= explained in subsequent section

Action ::= ‘{’ ‘code’ ‘,’ Code ‘}’ |

‘{’ ‘restart’ ‘}’ |

‘{’ ‘variable’ ‘,’ Variable ‘}’ |

‘{’ ‘channel’ ‘,’ ChannelList ‘}’

ActionList ::= Action | Action ActionList

ActionBlock ::= ‘[’ ActionList ‘]’

Transition ::= StateName ‘->’ StateName ‘[’ EventName ‘\’ ‘\’ ‘]’ |

StateName ‘->’ StateName ‘[’ EventName ‘\’ Condition ‘\’ ‘]’ |

StateName ‘->’ StateName ‘[’ EventName ‘\’ ‘\’ Action ‘]’ |

StateName ‘->’ StateName ‘[’ EventName ‘\’ Condition ‘\’ Action ‘]’

TransitionList ::= Transition | Transition TransitionList

TransitionBlock ::= ‘TRANSITIONS{’ TransitionList ‘}TRANSITIONS’

2.1.4 Properties

A property represents a system behaviour that we need to monitor and is made up
of events, states and transitions which form a DATE’s automaton. Each property
must be given a unique name to be able to distinguish between one property and
another when monitoring multiple properties. Hence the format of the property
monitoring a user is given as follows:

PROPERTY user {

EVENTS{ ... }EVENTS

STATES{ ... }STATES

TRANSITIONS{ ... }TRANSITIONS

}PROPERTY

The BNF notation of the Property construct is given as follows:

PropertyName ::= identifier

Property ::= ‘PROPERTY’ PropertyName ‘{’ EventsBlock StateBlock

TransitionBlock ‘}PROPERTY’
PropertyBlock ::= Property PropertyBlock | ϵ

9

Chapter 2. Language Specification

2.1.5 User Registration Example

As from section 4.3 we have been introducing an example of how we can monitor
a user registration system. We will now present the whole script together with the
respective automaton in figure 2.1 and continue building upon this example to
illustrate the variable, context and channel constructs in the upcoming sections.

Figure 2.1: Automaton and Elarva script for user registration example.

2.1.6 Variables

There exists situations where the user might need to keep some information ac-
quired from an event’s arguments to be able to monitor a property. As a conse-
quence, each property has an internal state which can hold variables. A user can
create a variable by using the following format in a transition’s action as follows:

source -> destination [event \ \ {variable, put(variableName, variableValue)}]

A stored variable can be used both in the condition and action and can be
retrieved as follows:

... get(variableName)

10

Chapter 2. Language Specification

We continue to extend the user registration example by adding a variable
action to the first transition as follows:

TRANSITIONS{

loggedOut -> loggedIn [login \\{variable, put(user, User)}]

...

}TRANSITIONS

When the transisition is taken, the argument User is retrieved from the mes-
sage sent by the user and saved under the identifier user. The BNF notation of
the Variable construct is given as follows:

VariableName ::= identifier

VariableValue ::= erlang term

Variable ::= ‘get(’ VariableName ‘)’ |

‘put(’ VariableName ‘,’ VariableValue ‘)’

2.1.7 Context

Properties have to be enclosed in one container called the global context as follows:

GLOBAL{

PROPERTY propertyName { ... }PROPERTY

...

}GLOBAL

Properties declared under the global context act on the whole target system.
However we can specify properties for each process through the use of the fore-
ach context where processes are distinguishable by the initial function called on
spawning. Hence a foreach context should be specified as follows:

FOREACH <{Module, Function, Arguments> {

PROPERTY propertyName { ... }PROPERTY

...

}FOREACH

The arguments support wildcards through the use of an underscore, ‘ ’, which
acts as a placeholder. Figure 2.2 illustrates the differences between properties
declared under the global context and properties declared under a foreach context.
Another important difference is that properties declared under the global context
are uniquely identifiable by their property name while properties declared under a
foreach context are uniquely identifiable by their property name and the process’s
Pid that they are monitoring.

So far the user registration example was able to monitor one user at a time
since only one automaton was being created. Through the use of the context
construct an automaton can be created for each user process spawned, identified
by the MFA tuple passed in the foreach declaration. The following change in
the script allows each user process spawned to be monitored by an individual
automaton:

11

Chapter 2. Language Specification

Figure 2.2: Global Context vs Foreach Context.

GLOBAL{

FOREACH <{user, new, []> {

PROPERTY user{

EVENTS{

login = SEND <{login, User, Pass}>

logout = SEND <{logout, User, Pass}>

request = SEND <{request, User}>

}EVENTS

...

}PROPERTY

}FOREACH

}GLOBAL

The property user is now declared under a foreach context. Events under
a foreach context cannot be specified with the MFA tuple before the arguments
since we already know which initial function the process has executed on spawn-
ing. The BNF notation of the Context construct is given as follows:

Argument ::= erlang term

Arguments ::= [Argument]

Event ::= EventName ‘=’ EventType ‘<’ Arguments ‘>’

Foreach ::= ‘FOREACH’ ‘<’ Module ‘,’ Function ‘,’ Arguments ‘{’
PropertyBlock ‘}FOREACH’

ForeachBlock ::= Foreach ForeachBlock | ϵ
GlobalContext ::= ‘GLOBAL’ PropertyBlock ForeachBlock ‘GLOBAL’

12

Chapter 2. Language Specification

2.1.8 Channels

DATEs automata can communicate together by sending messages to each other
denoted as the Channel construct. These messages are used to either trigger
target system events or to trigger artificial events i.e. events which do not belong
to the target system. Channels can be used in a transition’s action as follows:

source -> destination [event \ \ {channel, [{channelType, property_name, event]}]

We can trigger a target system event by passing the event name and any other
related arguments. If we want to trigger an artificial event we first have to declare
the event in the events block as follows:

EVENTS{

eventName = CHANNEL <{Module, Function, Arity> <arguments>

...

}EVENTS

This aids the user to distinguish which events are generated by the target
system and those that are generated by the automata. A channel is divided into
three types:

{global, property_name, event}

{parent, property_name, event}

{foreach, property_name, event}

As shown in figure 2.3, the global type is used to send an event to a property
which is declared under the global context, which can be uniquely identified by
its property name.

Figure 2.3: Global channel type.

The parent type can be used when we are using multiple properties under
a foreach context. The property receving the channel message can be uniquely
identified by its property name and by the process’s PID being monitored, both
known by the property sending the channel message. Figure 2.4 depicts a property
using the parent channel type to communicate with another property declared in
the same foreach context.

13

Chapter 2. Language Specification

Figure 2.4: Parent channel type.

Figure 2.5: Foreach channel type - Property sending channel event is declared under
the Global context.

The last channel type is the foreach which is used to allow a property to
communicate with another property declared under a foreach context, having
separate contexts. In this channel type we cannot uniquely identify a property
because we need both the property name and the process’s Pid and we only
know the property name since the two properties have separate contexts. As a
consequence, we have to send the channel message to all properties monitoring
the same behaviour, identified by the property name, for each process instance.
In figure 2.5, a property declared under the global context is using the channel
construct to trigger an event in another property, declared under a foreach con-
text. The channel event must be triggered on all foreach instances because the
property declared under the global context does not have any knowledge of the
process’s PID. The same applies if the property sending the channel message is
declared under a separate foreach context than the foreach context of the prop-
erty receiving the channel message, as depicted in 2.6. The user should specify

14

Chapter 2. Language Specification

Figure 2.6: Foreach channel type - Property sending channel event is declared under
a Foreach context.

a condition in the property receiving the channel message to be able to target an
individual property.

We will extend further more the user registration example, to illustrate how
the channel construct can be used, by allowing the system to upgrade itself
while running. While the system is upgrading, users cannot request any service
therefore if a user sends a request while the system is upgrading a violation is
triggered. To be able to monitor this scenario we have to extend the property
user by the following changes:

...

EVENTS{

...

upgrade = CHANNEL <upgrade>

resume = CHANNEL <resume>

}EVENTS

STATES{

...

NORMAL{

...

upgrading

}NORMAL

}STATES

TRANSITIONS{

...

loggedIn -> upgrading [upgrade \\]

upgrading -> loggedIn [resume \\]

upgrading -> violation [request \\]

}TRANSITIONS

...

15

Chapter 2. Language Specification

We also have to include another property which will monitor the system and
check whether the system is currently running or upgrading. The need for this
property arises from the fact that property user is declared under a foreach
context, which can only receive events generated by a user process, and therefore
cannot be able to detect whether the system is currently running or upgrading.
The property which acts on the system is given as follows:

...

PROPERTY system {

EVENTS{

upgrade = CALL <{system, start, 0}> <{system, upgrade, 0}

resume = CALL <{system, start, 0}> <{system, resume, 0}

}EVENTS

STATES{

BAD{ }BAD

NORMAL{ upgrading }NORMAL

STARTING{ running }STARTING

}STATES

TRANSITIONS{

running -> upgrading [upgrade \\ {channel, [{foreach, user,

{’upgrade’, upgrade}}]}]

upgrading -> running [resume \\ {channel, [{foreach, user,

{’resume’, resume}}]}]

}TRANSIIONS

}PROPERTY

...

The property system will monitor the system and send channel events to all
instances of the property user when the system begins upgrading and when the
system is resumed.

The BNF notation of the Channel construct is given as follows:

EventData ::= ‘{’ EventName ‘,’ erlang term ‘}’

Channel ::= ‘{’ ‘global’ ‘,’ PropertyName ‘,’ EventData ‘}’ |

‘{’ ‘parent’ ‘,’ PropertyName ‘,’ EventData ‘}’ |

‘{’ ‘foreach’ ‘,’ PropertyName ‘,’ EventData ‘}’

ChannelList ::= [Channel]

16

3. Elarva Tool

3.1 Introduction

In this chapter we outline the required components, in section 3.2, needed to use
Elarva for monitoring a target system. We continue by explaining the architecture
of the Elarva compiler in section 3.3 and illustrate each entity that make up the
monitoring code in section 3.4.

3.2 Required Components

In order to monitor a target system with Elarva the user needs the following
components:

• Target system - the system to be monitored which must be implemeted as
a gen server.

• Specification - DATE properties written in Elarva script.

• Elarva compiler - an Erlang system which given an Elarva script generates
the necessary monitoring code for monitoring the target system.

The following script gives us an example of an Elarva script which will be
used to monitor a client-server system where users can login onto a server and
use its services:

GLOBAL{

PROPERTY user{

EVENTS{

login = CALL <{user, new, 1}> <{user, login, 2}>

logout = CALL <{user, new, 1}> <{user, logout, 2}>

request = SEND <{user, new, 1}> <{request, Service}>

}EVENTS

STATES{

BAD{ violation }BAD

NORMAL{ loggedIn }NORMAL

17

Chapter 3. Elarva Tool

STARTING{ loggedOut }STARTING

}STATES

TRANSITIONS{

loggedOut -> loggedIn [login \\]

loggedIn -> loggedOut [logout \\]

loggedIn -> loggedIn [request \\]

loggedOut -> violation [request \\]

}TRANSITIONS

}PROPERTY

}GLOBAL

We will use the above script to illustrate how the monitoring code is generated
and implemented.

3.3 Elarva Compiler

Figure 3.1: Elarva Compiler.

As we can see from figure 3.1, the Elarva compiler is divided into three parts:
a lexer, a parser and the actual compiler. The user can use the compiler by
executing the following function:

compiler:compile(system_name, script_path).

The script is first passed to the lexer, implemented by leex (a regular expres-
sion based lexical analyzer generator for Erlang), which converts the script to a
set of tokens. The set of tokens is then passed to the parser, implemented by
yeec (a parse-tree generator for Erlang), which generates a parse tree. Finally
the parse tree is passed to the actual compiler which generates the necessary
monitoring code.

3.4 Monitoring Code

Figure 3.2 illustrates us the entities that make up the monitoring code. In the
following sections we explain each entity’s responsabilities and any necessary im-
plementation issues.

18

Chapter 3. Elarva Tool

Figure 3.2: Monitoring code structure.

3.4.1 Monitor

The monitor is a module used to start the global properties and the supervisor,
which in turn starts the system and the tracer process. The user has to call the
function monitor:start/0 to start the monitoring. The main reason why we
opted to start the global properties in the monitor module is to allow each global
property to be registered before the system is started since registering a process
might generate a bottleneck if the system is already started.

3.4.2 Supervisor

The supervisor is responsible for starting the tracer process and the system. This
approach allows the system and the tracer process to be restared if any one of
them terminates abnormally. The supervisor can also be used to terminate and
restart the system if a violation is detected by an automaton.

3.4.3 Tracer Process

The tracer process is started by the supervisor and is responsible for enabling the
Erlang tracing mechanism and for receiving trace messages sent from the Erlang
virtual machine. The tracer process is mainly divided into two parts. The first
part initialises the Erlang tracing mechanism while the second part, the trace
loop, takes care of receving and processing trace messages.

The first part enables the Erlang tracing mechanism by calling the erlang:tr-
-ace/3 function. The first argument takes the Pid of the process that is going
to be traced, the second argument takes a boolean value and the third argument
takes a flag list. We pass the system’s Pid, that has already been started, as the

19

Chapter 3. Elarva Tool

first argument. The second argument represents whether we want to enable or
disable tracing, therefore we pass the boolean value true. As last argument we
pass a flag list that is build upon the events specified in the script. If we consider
the script presented in the section 3.2, the Erlang tracing mechanism is enabled
as follows:

erlang:trace{whereis(system), true, [set_on_spawn, call, send]),

erlang:trace_pattern({user, login, 2}, true, [local]),

erlang:trace_pattern({user, logout, 2}, true, [local]),

The events types in the script are CALL and SEND, therefore we specify the call
and send flags in the flag list. The set on spawn flag is used to allow any child pro-
cess to inherit the flags of its parent, including the set on spawn flag. In this way
any process created by the target system can be traced by the Erlang virtual ma-
chine. We also make use of the ‘receive’ and procs trace flags when the user speci-
fies an event with type RECEIVE and one of LINK, UNLINK, REGISTER, UNREGISTER

and SPAWN respectively in the script. The erlang:trace_pattern/3 function is
used to determine the set of functions that are going to be monitored.

The second part of the tracer process is the trace_loop/0 function which
receives the trace messages sent from the Erlang virtual machine and generates
meaningful events that are forwarded to the appropiate automata. The Erlang
virtual machine can send trace messages only to one process therefore we had to
adopt a centralized approach where the tracer process receives all trace messages
and forwards them to the appropiate automata. The ideal scenario would be to
have a decentralized approach where the Erlang virtual machine would send mes-
sages to each automaton and each automaton only receives the events pertaining
to it. Figure 3.3 shows us the difference between a centralized approach and a
decentralized approach.

Figure 3.3: Centralized approach vs. Decentralized approach.

The following shows us part of the trace_loop/0 function generated from the
script used in the section 3.2:

20

Chapter 3. Elarva Tool

trace_loop() ->

receive Trace ->

case Trace of

{trace, Pid, call, {user, login, A}, _} ->

gen_fsm:send_event(system_user_fsm, {’login’, A}),

trace_loop();

{trace, Pid, send, {request, Service}, _} ->

gen_fsm:send_event(system_user_fsm, {’request’, {request, Service}}),

trace_loop();

...

_ ->

trace_loop()

end

end.

For each event found in the script a pattern is written in the case block. When
a trace message is received the function tries to match the trace message with a
pattern. When a pattern matches with the recieved message an event is sent to
the appropiate automaton.

3.4.4 Set of FSMs

Each property defined in the script has to be monitored by an automaton. We
opted to implement automata with the gen fsm behaviour to make good use
of the OTP framework and take benefit of its advantages. Therefore for each
property declared in the script the Elarva compiler generates a gen fsm module.
The following is a part of the gen fsm, generated for the script used in section
3.2:

-module(system_user_fsm).

-behaviour(gen_fsm)

...

init(State)

{ok, loggedOut, State}.

loggedOut(Event, State) ->

...

case Event of

{’login’, A} ->

{next_state, loggedIn, State};

...

The init/1 function returns a tuple that is used to specify the start state of
the FSM, loggedOut in our case, and to initialize any state data needed in the
life cycle of the FSM. Furthermore a function is created for each state specified
in the script. When an event is sent to the gen fsm the function named after the
current state is executed. Therefore when a login event is sent to this gen fsm
and the current state is loggedOut the state moves to the loggedIn state.

21

