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Abstract
Online load tracking is the problem of monitoring an in-

dividual electrical load’s energy usage by analyzing a build-
ing’s smart meter data. The problem is important, since
many energy optimizations require fine-grained, per-load en-
ergy data in real time; it also differs from the well-studied
problem of load disaggregation in that it emphasizes effi-
cient, online operation and per-load accuracy, rather than
accurate disaggregation of every building load via offline
analysis. In essence, tracking a particular load creates a vir-
tual power meter for it, which mimics having a networked-
connected power meter attached to it. To enable high per-
formance, we take a model-driven approach that focuses on
efficiently detecting a small number of identifiable load fea-
tures in smart meter data. Our results demonstrate that our
system, called PowerPlay, i) enables efficient online tracking
on low-power embedded platforms, ii) scales to thousands
of loads (across many buildings) on server platforms, and
iii) improves per-load accuracy by more than a factor of two
compared to a state-of-the-art load disaggregation algorithm.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous; J.7 [Computer Applications]: Computers in Other
Systems—Command and control

General Terms
Design, Measurement, Performance
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1 Introduction
Collectively, buildings consume significantly more

energy (41%) than society’s other broad sectors
of consumption—industry (30%) and transportation
(29%) [14]. As a result, the design of “smart” buildings
that are capable of automatically regulating their energy
usage has become an important research area. However,
one continuing impediment to improving building energy-
efficiency is that, despite much prior research [12], accurate,
fine-grained, online monitoring of electrical loads1 at large
scales remains problematic: deploying and maintaining
large numbers of embedded networked sensors in every
building is prohibitively expensive, invasive, and unreliable.
Unfortunately, timely and accurate knowledge of per-load
energy usage is a prerequisite for implementing many
energy optimization techniques [5, 7, 22].

Rather than rely on expensive instrumentation—via em-
bedded sensors—to monitor loads, an alternative approach
is to analyze electricity data from smart meters to infer a
load’s energy usage. This approach is becoming increasingly
attractive, since smart meters, which monitor an entire build-
ing’s energy usage at small intervals, e.g., minutes to sec-
onds, are now being widely deployed by electrical utilities
and consumers [10]. In this paper, we propose a new analy-
sis technique, which we call online load tracking, that mon-
itors the operation of individual building loads, i.e., when
they turn on or off and their fine-grained energy usage, by
analyzing smart meter data. In essence, “tracking” a partic-
ular load creates a virtual power meter for it, which mimics
having a network-connected energy meter attached to it.

Tracking loads online, i.e., in real time as a smart me-
ter generates new data, is critical since many higher-level
energy optimization techniques require such real-time data.
For example, an automated load scheduling policy that re-
duces a building’s peak power demand by deferring one or
more background loads must know the energy usage of each
background load to determine which of them to defer and
for how long [5]. As another example, a recommendation
engine may monitor the energy usage of a building’s interac-
tive loads to push energy-efficiency recommendations to oc-
cupants’ smartphones in real-time, directing them to take an
immediate action to better optimize their energy usage, e.g.,

1We use the term electrical load, or simply load, to refer to any distinct
appliance or device that consumes electricity.



such as turning off an idle coffee pot [2]. Essentially, on-
line load tracking is useful for any application that requires
attaching a power meter to a load that transmits its average
power usage every pre-specified time interval in real time.

Our work builds on prior work, which has already de-
veloped a variety of analysis techniques for smart meter
data, including load disaggregation [1, 11, 18, 26] and occu-
pancy detection [8]. Many startup companies are now com-
bining such energy-based analytics with cloud-based, “big
data” platforms [6] to mine building smart meter data en
masse. However, we argue that online load tracking dif-
fers from the well-studied problem of complete load dis-
aggregation, often termed Non-Intrusive Load Monitoring
(NILM) [1, 11, 18, 26], in two important respects:

Simplicity. Online load tracking is a simpler problem
than complete load disaggregation—load tracking targets in-
dividual loads, while complete load disaggregation focuses
on disaggregating an entire building by apportioning its total
energy usage across every load. Clearly, if complete, accu-
rate, and inexpensive disaggregation was feasible, it would
subsume the problem of online load tracking. However, tech-
niques for complete disaggregation continue to suffer from
inaccuracy, especially when disaggregating small loads or
scaling up to large numbers of loads [1]. Thus, load tracking
is better suited for scenarios where disaggregating all of a
building’s loads is either infeasible (due to the large number
of loads) or simply not necessary.

Efficiency. Prior disaggregation techniques implicitly as-
sume offline analysis and are often computationally expen-
sive. In contrast, load tracking explicitly targets online mon-
itoring in near real time. This leads us to focus on perfor-
mance issues not addressed in prior research, such as en-
abling tracking to either i) run on the low-power embedded
platforms used in smart meters or ii) scale to thousands of
loads on server platforms.

To enable high performance, we take a model-driven
approach to load tracking, which focuses on detecting a
small number of identifiable load features in smart meter
data. These features derive from a parameterized model of
a load’s energy usage profile over time, which is based on a
small number of fundamental electrical characteristics, i.e.,
whether a load is resistive, inductive, non-linear, or cyclical.
A detailed description of these load types, and their corre-
sponding models, is described in prior work [3]. We select
a compact set of identifiable load features from the models
and then design efficient online methods for tracking loads
by detecting one or more of these features in smart meter
data. In doing so, we make the following contributions:
Feature Selection. We describe a compact set of fea-
tures that loads may exhibit, including power steps, spikes,
growths, decays, oscillations, and cycles. We extract a load’s
features from its model and then choose a small set of iden-
tifiable features for tracking. Using only identifiable features
to track loads increases efficiency, compared to using every
feature, while maintaining accuracy.
Online Load Tracking. For each feature, we design effi-
cient online methods to detect that feature in smart meter
data. Since a load may exhibit multiple features, tracking a
load may require using multiple feature detectors. Hence, we

present an online tracking algorithm that combines multiple
feature detectors to efficiently detect and track loads.
Implementation and Evaluation. We implement our load
tracking system, called PowerPlay, and evaluate it “live” us-
ing a 1Hz power meter. We show that our approach enables
efficient, online load tracking: on a 2.4 GHz, single-core
server, PowerPlay is able to track loads in smart meter data
comprised of nearly 100 loads in real time each second—the
same resolution of the building’s power meter. We also show
that PowerPlay improves per-load accuracy by more than a
factor of two compared to a state-of-the-art disaggregation
algorithm (based on Factorial Hidden Markov Models (FH-
MMs) [16, 18]) designed for offline analysis.

2 Background and Approach
PowerPlay assumes a building equipped with a networked

power meter that monitors its aggregate electricity usage
over time. We refer to this building power meter as a smart
meter. We assume smart homes employ automated energy
management techniques, which require real-time operational
knowledge of particular loads’ energy usage, e.g., air condi-
tioners (A/Cs), furnaces, or other appliances amenable to au-
tomated energy management. Rather than directly monitor-
ing such loads using sensors, our goal is to provide a virtual
power meter abstraction that tracks a load’s energy usage and
when it turns on and off from the home’s smart meter data.
Load tracking is useful in scheduling home loads or pushing
alerts to users (e.g., to indicate that a laundry cycle is com-
plete), or when exercising control over “large” loads (such as
A/Cs) across many homes to smooth grid demand.

2.1 Problem Statement
Formally, we define the problem of online tracking for

load pi as inferring its average power usage pi(t) from a
home’s total power usage P(t) recorded by its smart meter
over the period (t−τ, t]. Due to its online nature, computing
each pi(t) must complete within t + ε for some value of ε.
Observe that tracking a load’s power usage pi(t) also indi-
rectly reveals when it turns on and off. Load tracking targets
individual loads and does not attempt a full disaggregation,
as is common with NILM techniques, which try to infer pi(t)
for all n building loads, such that ∑

n
i=0 pi(t) = P(t). Further,

to the best of our knowledge, no prior NILM technique ad-
dresses online operation with a timing constraint.

Of course, perfectly tracking all n loads would be equiv-
alent to a complete and accurate disaggregation. Since load
tracking values system performance, as well as the accuracy
of a load’s inferred power readings, its goal is to both min-
imize ε and maximize accuracy. In this case, we measure
accuracy based on a load’s tracking error factor δ, which is
simply the error between a load’s actual and inferred power
usage, normalized by its total energy usage. If p̃i(t) denotes
load pi’s actual power usage at time t and pi(t) denotes its
inferred power usage from load tracking at time t, then we
define the tracking error factor over T intervals as:

δ =
∑

T
t=1 |p̃i(t)− pi(t)|

∑
T
t=1 p̃i(t)

(1)

Here, the numerator is the sum of the absolute errors at
each data point, and the denominator is the load’s total en-



ergy usage over T . Lower values of δ are better; an error fac-
tor of zero indicates perfect tracking. While there is no upper
bound on the tracking error factor, an error factor of one indi-
cates that the reading-to-reading errors are equal to the load’s
energy usage. In general, a tracking error factor near one is
not considered good, since simply inferring a load’s energy
usage to be zero at each time t results in δ = 1. Note that this
metric is a load-specific variant of the “total energy correctly
assigned” metric from prior work [18].

We denote the meter’s data resolution using the sampling
time interval τ. A coarser (or longer) sampling interval
“averages out” features in P(t), eliminating identifiable at-
tributes, while a finer (or shorter) interval reveals more at-
tributes, but also more data to process, as well as more noise.
Our work specifically targets consumer-grade power meters,
such as the TED [23], eGauge [9], and BrulTech, which com-
monly provide a sampling resolution of one reading per sec-
ond, e.g., τ=1 second. While today’s utility-grade smart me-
ters provide, at most, minute-level sampling, e.g., a reading
once every five to fifteen minutes is common, there are in-
dications the next generation of meters will provide second-
level sampling. For example, a U.K. subcommittee defining
future smart meter specifications recently released a report
advocating a five second sampling resolution [25].

2.2 Prior Work
Our focus on tracking individual loads, rather than com-

plete disaggregation, stems from a recognition that i) accu-
rate disaggregation continues to be an elusive goal despite
two decades of research, and ii) the simpler load tracking
problem is sufficient for many sensor-based applications and
can be more efficient and accurate. Prior disaggregation ap-
proaches differ widely based on τ’s value, which ranges from
>100,000,000 samples per second [21] to one sample per
hour [19]. Interestingly, a recent survey [1] points out that,
despite τ’s importance, prior work often does not report it.

In addition, despite the plethora of prior work on dis-
aggregation, the same survey [1] highlights the lack of re-
search that targets second-level sampling. To the best of
our knowledge, only Hart’s original work [11] and two re-
cent papers [16, 18], which both use an approach based on
Factorial Hidden Markov Models (FHMMs), target data with
second-level sampling resolution, albeit for full disaggrega-
tion. Since there is no prior work on online load tracking,
we use a FHMM technique modified for online operation
as a baseline “strawman” for comparing PowerPlay’s perfor-
mance and accuracy, as described in §6.

2.3 Basic Approach
PowerPlay employs a model-driven approach for load

tracking, which ensures accuracy and computational effi-
ciency by decomposing tracking into multiple distinct sub-
problems. Note that prior work on complete load disaggre-
gation typically conflates these subproblems. The subprob-
lems include (i) empirically modeling a load, (ii) extracting
features from the model, (iii) selecting the most identifiable
features, and, finally, (iv) detecting and tracking a load based
on these features. Figure 1 depicts the basic workflow of
each subproblem, which we, in turn, outline briefly below.

Basic Load
Models

Feature 
Extraction

Load 
Tracking

Appliance 
Activity

Offline Processing

Parameterized
Appliance Models

Feature
Detectors

-----

Online  Processing

Smart
Meter

Identifiable 
Features

Figure 1. PowerPlay uses offline modeling and feature
extraction for online load tracking.

1. Empirical Modeling. We first empirically model each
load’s energy usage based on properties of the four basic
types of electrical loads, i.e., resistive, inductive, capaci-
tive, and non-linear. Prior work describes how to derive
such models and shows that such empirical models accu-
rately capture the behavior of nearly every common house-
hold load [3]. We assume a load’s model accurately de-
scribes its energy usage when on.

2. Feature Extraction. After empirically modeling a
load, we decompose it into a set of features. Each feature
captures a subset of the load’s pattern of energy usage within
the model: the set of features collectively represents a con-
cise description of how the load’s operation manifests itself
in power data. Intuitively, a load tracking algorithm must
“search” for these features within a home’s aggregate smart
meter data to detect the presence of the load and track it.

3. Identifiable Feature Selection. PowerPlay optimizes
load tracking efficiency by distilling a load’s full feature set
into a subset of its most identifiable features. Identifiable fea-
tures are a load’s most prominent (and unique) features, such
that a tracking algorithm need only search for these identifi-
able features, rather than the full feature set, to detect and
track a load with high confidence. Clearly, the smaller the
set of identifiable features, the more efficient online detec-
tion.

4. Online Load Tracking. The final step is to design a
tracking algorithm that detects a load’s identifiable features
in the smart meter data in an online fashion.

The first three steps above, namely empirical modeling,
feature extraction, and identifiable feature selection, are one-
time tasks performed offline, while PowerPlay’s final detec-
tion and tracking step is continuous and online.

PowerPlay’s model-based, feature-driven tracking differs
from low-level time-series matching [13]. In essence, the
time-series approach takes either a trace or model of a load’s
raw power usage when on and “matches” it against a recent
(sliding) window of time-series data from a smart meter to
determine whether it is “embedded” in the data. Matching
typically involves computing a time-series distance function,
such as Euclidean distance or Dynamic Time Warping [15],
between the load’s raw power usage and the most recent set
of smart meter readings of equal size; a match then occurs



when the distance is less than a pre-defined threshold. Low-
level time-series matching is more expensive and less robust
than using higher-level features for load tracking.

3 Offline Feature Identification and Selection
We first describe the three offline steps in PowerPlay’s ap-

proach, namely modeling a load, extracting a load’s features,
and then selecting a subset of identifiable features to track.
As this process is a one-time step, we envision manufactur-
ers profiling each load and supplying its model and features
as part of its technical user manual. The information could
also be crowd-sourced, such as in The Power Consumption
Database, which already provides crowd-sourced informa-
tion on maximum and idle power for a wide range of loads,
indexed by type, manufacturer, and model number [24].

3.1 Modeling and Feature Extraction
Electrical loads in an alternating current (AC) system fall

into one of four basic types—resistive, inductive, capacitive,
or non-linear. Informally, resistive loads include heating el-
ements, such as a toaster; inductive loads include AC mo-
tors, such as fans or compressors; and non-linear loads in-
clude any type of electronic device, such as TVs or comput-
ers. Loads behaves differently based on their load type, but
devices of the same type exhibit many common behaviors.
Complex appliances that operate multiple internal loads, e.g.,
a refrigerator with a motor-based compressor and interior
light bulb, exhibit a composition of these behaviors. Further
details of how the four basic types map to real-world devices
are provided in [3]. Below, we enumerate the identifiable
features that PowerPlay tracks.

Stable Power Steps. The simplest feature is a discrete
change in average power from one stable value to another
stable value. Most disaggregation algorithms that analyze
real power data, e.g., at sampling resolutions coarser than
60Hz in the U.S., consider stable power steps as the only
identifiable feature. In reality, only a few low-power resistive
loads, such as incandescent lights, exhibit only these simple
steps when on.

Power Growth, Decay, and Spikes. Many loads expe-
rience smooth increases or decreases in power when turned
on (e.g., due to decreasing resistance as a heating element
warms), or abrupt and sudden spikes in power (e.g., when
starting an induction motor). We consider power growths,
decays, and spikes as distinct features: spikes capture an ini-
tial power surge, while logarithmic growths and exponential
decays capture gradual increases or decreases in power.

Bounded Power Oscillations. Many non-linear devices
based on electronic controllers (e.g., microwaves) draw a
seemingly random amount of power within a fixed range
when on. We consider bounded power oscillations between
maximum and minimum power thresholds as a distinct fea-
ture resembling a random walk between thresholds.

Stable Power Oscillations. Some non-linear loads only
have either an upper threshold or a lower threshold, resulting
in oscillations from a stable power state (e.g., due to the vari-
able draw of a switched mode power supply). Stable power
oscillations are a combination of the stable power feature and
power spike feature that captures frequent positive or nega-
tive random fluctuations from a stable power level.

Power Cycles. Many loads include timers that operate
them periodically in a repeating pattern, e.g., a dehumidi-
fier may include a timer that turns it on for two hours out of
every four hours. A cyclic feature captures the interval and
conditions at which the features repeat, and potentially their
duration, e.g., the length of a stable power level.

Since essentially every electrical load is either an induc-
tion motor, heating element, non-linear electronics, or some
combination thereof, every load exhibits one or more of the
above features. Since the feature set is small, we only re-
quire a small set of detection techniques to identify these
features in smart meter data, as described in §4. Note that
the features above are parameterized for each specific load
(e.g., the magnitude of a step or the rate of a decay), and
may differ across two loads of the same type, e.g., two A/Cs
from different manufacturers may require different features
and parameters. Thus, PowerPlay’s offline component not
only extracts the features of a load, but also determines the
parameters for each feature. Figure 2 includes annotated fea-
tures in power usage data for a variety of common loads.
3.2 Selecting Identifiable Features

Since basic loads only include a few features, an online
load tracking algorithm can use all of their features to detect
their presence. However, complex loads, such as a wash-
ing machine, may exhibit an excessively large number of
features. Fortunately, searching for every feature is gener-
ally not necessary for accurate detection; it is often sufficient
to select a subset of prominent features to uniquely identify
the load. PowerPlay leverages this insight to only search for
a small set of identifiable features to match complex loads,
which improves both efficiency and scale.

Selecting identifiable features for a load is a one-time of-
fline task, and presents a tradeoff between accuracy and per-
formance. A smaller set of identifiable features improves
the efficiency of detection, but decreases tracking’s accuracy.
At present, we construct a complex load’s set of identifiable
features experimentally by iteratively adding the next high-
est magnitude features, e.g., that include the largest changes
in power, to the feature set and then executing our tracking
algorithm on historical data until the tracking error factor is
below a pre-defined threshold.

4 Online Load Tracking
In this section, we first describe PowerPlay’s online track-

ing algorithm and then describe the various feature detection
techniques the algorithm uses to detect the features from §3.
The right side of Figure 1 depicts this process.
4.1 Tracking Algorithm

PowerPlay’s tracking algorithm takes, as input, a set of
loads to track, a set of identifiable features for each load,
and a continuous stream of data from a smart meter. Feature
detectors for each load operate over a moving window of data
points of size W , starting from the most recent data point in
the time-series of a home’s power readings (i.e., a sliding
window ending with the most recent reading). The window
represents the minimum time period over which a feature
manifests itself. The output of the tracking algorithm acts as
a set of virtual power meters providing device-level power
data for each tracked load.
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Figure 2. Annotated features from representative loads.

PowerPlay orders the list of all identifiable features across
all loads into three sets, from most to least distinctive. The
first set contains “noisy” features, namely, all stable and
bounded power oscillation features across all loads in the
tracking set. The second set contains the remaining basic
features: steps, spikes, and decay/growth features across all
loads. The final set contains any cycle features for loads in
the tracking set. Given these ordered sets, the tracking algo-
rithm then repeatedly executes its main loop, which applies
every feature detector (from all loads) in order, as described
in §4.2. Note that PowerPlay buffers any smart meter data
that arrives while executing its main loop, and reads and ap-
pends it to the home’s power data time-series on the loop’s
next iteration. The time taken to complete the main loop de-
fines PowerPlay’s online performance, i.e., the minimum ε

it can support. For example, if the main loop takes 30 sec-
onds to complete, then the tracking algorithm can only out-
put each load’s inferred power usage every 30 seconds. The
exact value of ε depends on available hardware resources, as
well as the number of virtual power meters to simulate – i.e.,
twice as many tracked loads will increase ε by roughly 2X.

PowerPlay first detects the “noisy” features, i.e., those
that contain significant power fluctuations. These features
are detected, labeled, and filtered from the home’s power
data as described in §4.2. Detection and filtering of “noisy”
features first enables PowerPlay to more easily and accu-
rately detect the remaining features, as the residual filtered
data has less noise after filtering. After filtering, PowerPlay
applies the remaining basic feature detectors (e.g., spikes,
growth/decays, and steps) to identify and label those features
in the data. Finally, PowerPlay runs the cycle feature detector
over the list of labeled features to identify repeating patterns
of features – the cycle feature detector is unique in that its
input is a set of labeled features rather than raw time-series
data, and as such is run last.

For each desired virtual power meter (i.e., load in the
tracking set), PowerPlay then examines the list of labeled,
but unassigned, features found in the recent past (over a win-
dow W ). If the identifiable features of the load are found in
the window, it assigns these features to the load and declares
a load match. Upon assigning features to a load, PowerPlay
removes them from the list of unassigned features. For com-
posite loads, the set of features (over window W ) may need
to occur in a certain order (or within a certain time inter-
val) to infer a load’s presence. Finally, whenever PowerPlay
detects a load based on its features, it updates the load’s in-
ferred power usage pi(t) using the filtered feature data and
the load’s model, which captures the load’s full power usage
behavior.

(a) Filter (b) Label (c) Cluster (d) Reconstruct

Figure 3. Detection of a stable oscillation feature.

4.2 Feature Detection
PowerPlay’s tracking algorithm relies on individual fea-

ture detectors to identify the features described in §3, includ-
ing power steps, spikes, growth/decay, bounded oscillations,
and stable min-max oscillations. We detail each of these fea-
ture detectors below.

Stable Oscillation Detector. This detector examines data
for frequent power oscillations from a stable minimum or
maximum power level, such that for every negative power
delta (i.e., a power drop) there is a corresponding positive
power delta in the near future. More formally, it identifies a
stable power oscillation feature by scanning a recent window
of data, while maintaining a stable power level p, which it
updates only if power deviates from p by at least T watts for
at least D seconds. The parameters T and D are specific to
a particular device that exhibits this feature. Power changes
that update p are considered background activity, which are
excluded from the stable power oscillation feature, while any
other oscillations within the window are flagged for consid-
eration in the feature. Finally, we cluster nearby groups of
labeled points to result in the time range (and flagged deltas)
comprising the feature.

To filter the feature from the raw data, we remove from
the data any oscillations that do not result in an update to
p, and then use them to reconstruct the feature’s second-to-
second energy usage due to its stable oscillation behavior, as
illustrated in Figure 3. In determining the D parameter for
each load, the goal is to set it long enough to ensure changes
in power are not random oscillations due to some other load,
but short enough to prevent filtering short-lived loads. For
T , the goal is to select a value large enough to capture the
expected oscillations without attributing the power usage of
unrelated background loads to the feature.

Bounded Oscillation Detector. The bounded oscillation
detector examines data for groups of deltas within a cer-
tain range that reverse themselves—change from positive to
negative—frequently within a given minimum window size
(e.g., 60 seconds). In particular, the detector looks for a
minimum proportion of reversals within the window (e.g.,
50%), extending the window size until the minimum pro-
portion is not met or several seconds have passed without a
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Figure 4. Example of bounded oscillation detector.

reversal (i.e., power use has stabilized, indicating the device
is off). Within the resulting window, power deltas exceeding
the bounded power range are filtered out, as these changes
are presumably caused by other devices. As an example, we
might parameterize a bounded oscillation feature for a par-
ticular microwave by dictating that at least 50% of reversals
over its time window are within a 30W range. Thus, over an
initial 15s window, there must be at least 8 reversals to detect
the feature, at which point the detector extends the window
until (i) the minimum reversal percentage no longer holds,
or (ii) a short period passes, e.g., 10s, without any rever-
sals. This approach serves to extend the window as long as
necessary without overly lengthening the window for long-
running loads. To extract the feature, we pair active windows
of reversals with matching on and off power steps of the ap-
proximate expected size for the feature (e.g., 1000W for a
particular microwave), as illustrated in Figure 4.

Growth/Decay Detector. To detect a decay or growth
feature, we identify positive steps near a feature’s expected
magnitude, representing possible ‘on’ events. Since the ex-
pected decay or growth rate specifies a maximum per-second
negative step (for a decay) or positive step (for a growth),
the detector then scans forward, discarding all changes that
exceed the expected maximum. The result of this process
is a filtered time-series that, assuming the data actually rep-
resents a growth or decay, should approximately fit an ex-
ponential or logarithmic curve. The detector then performs
the standard Levenberg-Marquardt Algorithm (LMA) [20]
to perform curve fitting. If the fit fails, or the derived de-
cay/growth parameter is far from the expected value, the de-
tector moves on to the next possible ‘on’ event. If the fit is
successful, then the detector identifies the ‘off’ event for the
device, or, equivalently, the duration of the decay/growth. To
do this, the detector gradually extends the fitted curve while
looking for an ‘off’ step of the expected magnitude, based on
the magnitude of the ‘on’ step plus the cumulative growth or
decay of the fitted curve, which increases with the length of
the curve. The detector then chooses the ‘off’ step within a
bounded interval most closely matching the expected value.
In this case, bounding prevents a runaway search. After se-
lecting the ‘off’ step, the detector is able to trivially recon-
struct the entire feature, based on the identified ‘on’ and ‘off’
events and the fitted curve between them. The process of fit-
ting and filtering a decay feature is illustrated in Figure 5.

Spike Detector. Power spikes manifest themselves across
multiple seconds, either due to variation in a load’s exact ac-
tivation time, i.e., when it activates within the one-second
sampling interval, or due to a short ramp-up period, which is
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Figure 5. Operation of the decay/growth detector.

especially prevalent in high-wattage loads. Thus, the spike
detector collapses consecutive power steps in the same di-
rection, e.g., up or down, into a single aggregate power step.
Once collapsed, we identify spikes by a large positive step,
followed immediately by a smaller, but still significant, neg-
ative step (currently, at least 30% of the positive step). Im-
portantly, the spike detector separates the spike itself from its
load’s standard power step feature. For example, PowerPlay
considers the series of changes in power [0, 0, +500, -400,
0, 0] both a +100W power step feature with a 500W power
spike. Although the naı̈ve step-only approach would output a
+500W step and a -400W step, the spike detector recognizes
that this time-series most likely represents a 100W inductive
load, such as a 100W refrigerator. Since the magnitude of a
spike is highly influenced by when a load turns on within the
sampling interval, we represent the spike as a binary flag as-
sociated with the regular power step feature, e.g., the +100W
step in our refrigerator example.

Step Detector. While power steps are the simplest fea-
ture, the trivial approach to identifying them (detecting
second-to-second deltas of a certain magnitude) is often in-
accurate due to the fact that loads turn on at different points
within the sampling interval. Thus, similar to the spike de-
tector above, we collapse multi-second power deltas in the
same direction into a single aggregate delta before compar-
ing the step’s magnitude against a specific (i.e., parameter-
ized) step feature. Deltas previously assigned to other fea-
tures are excluded from consideration in this process.

Cycle Detector. Unlike the detectors above, the cycle
detector operates on a series of labeled features (from the
detectors above), and then i) identifies each potential cyclic
feature from the data and ii) chooses a sequence of the fea-
tures that most closely matches the cycle’s expected period
length. Figure 6 illustrates the process, where the cyclic fea-
ture is a spike. To determine the best sequence of cyclic fea-
tures of a particular type, we chose an arbitrary cyclic fea-
ture of the type at time t1, then the next one closest to time
t2 = t1+ period, and so on for tk = tk−1+ period. To account
for features missed by its particular feature detector, we may
also match tk to tk = tk−1 +2∗ period. The ‘error’ of the re-
sulting sequence of tk is computed as ∑k |tk− tk−1− period|,
i.e., the amount the sequence differs from the expected pe-
riod. This error is computed for all sequences starting from
each possible t1, and the detector selects as the predicted cy-
cle the sequence with the lowest total error. After determin-
ing the sequence of cycle ‘on’ events, we filter and recon-
struct the feature’s energy usage by filling in its correspond-
ing load’s model starting from each ‘on’ event, as shown in
the final step of Figure 6.
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Figure 6. Operation of the cycle detector.

As an example, consider a refrigerator with a 30 minute
period and a magnitude range between 80W and 120W for
its spikes at startup. Now suppose the detector extracts all
spikes (due to the refrigerator’s compressor) from the data,
and of those spikes, each one with a step between 80W and
120W occur at times [0m, 20m, 30m, 55m]. In this case, the
detector labels events at 0m, 30m, and 55m as the ‘on’ events
of the refrigerator, while excluding the the event at 20m, as it
is does not match the expected period. While this is a brute-
force approach, the relatively small number of cyclic loads,
ensures the process is not computationally expensive.

5 Implementation
We implement PowerPlay’s feature detectors and tracking

algorithm as a library in Perl. The input to the tracking algo-
rithm is a continuous stream of new smart meter data, which
PowerPlay buffers while executing its main loop. Thus, if
each iteration of the main loop takes ε time, then the next
iteration will consider the set of data points that arrive and
are buffered over the previous ε. The tracking algorithm also
has, as input, the set of loads to detect and the corresponding
set of identifiable features (parameterized separately for each
load) extracted offline. The algorithm then outputs, for each
load, its inferred per-second power usage over ε for each it-
eration of the main loop, resulting in a separate time-series
of power data for each load in the tracking set.

We deploy PowerPlay in a real home. We describe the
home, its loads, and our instrumentation in prior work [4].
Briefly, the home includes a Internet-enabled power me-
ter installed in its electrical panel to monitor the second-
to-second power usage of the home and each of its cir-
cuits. There are multitude of such meters now available, both
commercially [23] and in recent research [17], that record
home-level and circuit-level data at 1Hz sampling resolution.
We also record ground truth power data (or on-off events,
which we correlate with the power meter data) for individ-
ual loads not connected to dedicated circuits using either Z-
Wave Smart Energy Switches, Insteon iMeters, or Insteon
SwitchLincs. In total, our deployment includes 92 sensors
producing roughly four million data points per day. Such an
extensive deployment is necessary to compare our results,
based the home’s power data, with ground truth power data
from each individual load.

Of course, since our offline modeling and feature extrac-
tion methodology is new to this paper, we must manually
model each load we track and extract its important features
ourselves. However, our hope is that, by demonstrating the
usefulness of our models in analysis, we will motivate man-
ufacturers to use our methodology to derive models and ex-
tract features as part of a load’s design and publicly release

them. We also plan to release the models and extracted fea-
tures for the loads that we track in §6.

6 Evaluation
We evaluate the accuracy and efficiency of PowerPlay’s

online load tracking algorithm in our home deployment. We
first measure the computational overhead of load tracking to
quantify PowerPlay’s efficiency, which enables it to either
track loads on low-power embedded platforms or scale to
thousands of loads (across many homes) on server platforms.
We then evaluate PowerPlay’s accuracy by quantifying the
tracking error factor δ for various loads. In both cases, since
there is no prior work on load tracking, we compare Power-
Play to a complete disaggregation algorithm (based on FH-
MMs) modified for online operation. In this case, we use the
same approach as Kolter and Johnson [18] to evaluate their
Reference Energy Disaggregation Dataset (REDD), which is
similar to the technique by Kim et al. [16].

Since PowerPlay relies on load models computed offline,
we manually model a representative set of loads in our de-
ployment home that collectively cover each feature type. The
set includes a toaster oven (steps, decays), a refrigerator and
freezer (steps, spikes, cycles), a heat recovery ventilator or
HRV (stable oscillations), and a dryer (bounded oscillations,
cycles, steps, decays). PowerPlay then tracks these loads in
real time using per-second power data for the entire home,
which operates 92 distinct loads.

6.1 Tracking Efficiency
PowerPlay operates online by continuously receiving

power readings each second and executing its main loop to
perform feature detection on the most recent window of data.
Since PowerPlay stores recent data in memory, I/O overhead
is negligible and efficiency is solely a result of the computa-
tional overhead of the feature detectors.

The tracking efficiency of PowerPlay is determined by the
computation overhead of the feature detectors in processing
the most recent window of data. This overhead determines
both (a) the tracking delay (ε from §2) of the system, where
ε=1 second is perfect (1 Hz) real-time tracking, and (b) the
number of loads (and homes) that a platform can effectively
track. Note that, since PowerPlay’s main loop detects fea-
tures across all loads, increasing the number of loads, ig-
noring parallelism, increases tracking delay across all loads.
Thus, we measure the aggregate number of loads PowerPlay
can track, while maintaining a low tracking delay.

We perform the following experiments on a single-core
server running Ubuntu Linux (kernel version 3.2.0) with
a 2.4GHz Xeon processor. We vary a common window
size across all features, then observe the tracking delay (ε)
achieved by PowerPlay. As seen in Figure 7, the tracking de-
lay is modest across every load. For example, with an exces-
sively long tracking window of 24 hours, PowerPlay com-
pletes in less than 3 seconds per load. As expected, loads
with more features (e.g, the dryer) result in a longer track-
ing delay. We also observe that the tracking delay effectively
varies linearly with the tracking window size. As a result,
shortening the window size linearly decreases the tracking
delay. In practice, most features require significantly less
than a 24-hour window to reliably detect.
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Figure 7. PowerPlay’s tracking algorithm is efficient,
with tracking delays of at most a few seconds.

Result: PowerPlay is able to track multiple loads in real-
time, or near real-time, on commodity servers.

We also compare PowerPlay’s scalability with a com-
plete disaggregation algorithm based on FHMMs. Here, we
assume a server must track loads across many homes, not
just a single home. We quantify both PowerPlay’s perfor-
mance (with 24-hour and 4-hour tracking windows) and an
FHMM approach following [18]. Since disaggregation using
the FHMM is exponential in the number of building power
states (which is based on the number of loads and the num-
ber of power states per load), the FHMM approach models
each load as having only four power states and disaggregates
at the level of circuits rather than individual loads. Since our
home has only 25 circuits, but operates 92 individual loads,
our FHMM performance numbers for a complete disaggre-
gation are conservative.

Since the FHMM approach requires a sizable amount of
data, e.g., 24 hours, for complete disaggregation, it cannot
operate on a small window size. As a result, our modified
FHMM executes a similar main loop as PowerPlay, but al-
ways disaggregates the most recent 24 hours of data. Our
example online FHMM incurs an 86 second tracking delay
to track the loads in Figure 7 for a single home. In contrast,
PowerPlay imposes only a 5.6 second and 0.6 second delay
for the 24-hour and 4-hour tracking windows, respectively,
for the same home. We also plot the scalability of each ap-
proach on a quad-core server running at 2.4GHz in Figure 8,
where the number of independent homes we track is on the
x-axis (each home is an independent tracking process that
runs in parallel). We see that the FHMM approach does not
operate in real-time: even tracking loads in a mere 10 homes
imposes a tracking delay greater than 10 minutes. Power-
Play performs much better with the same 24-hour time win-
dow, supporting roughly 100 homes with a tracking delay of
2.5 minutes. The more realistic scenario, with a smaller 4-
hour time window, scales even better: PowerPlay tracks each
of the five loads in 1000 homes (or 5000 total loads) with a
tracking delay of only 2.5 minutes.
Result: PowerPlay scales to support online tracking of many
homes; in this case, tracking 5000 loads across 1000 homes
with a tracking delay of only 2.5 minutes.

Finally, we also consider PowerPlay’s performance on
embedded platforms that track a set of loads within a home,
such as in an embedded energy monitoring and analytics
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Figure 9. Both PowerPlay and the FHMM approach ac-
curately assign the energy used by loads each day.

platform [17]. To evaluate this case, we deploy PowerPlay on
a low-power DreamPlug computer with a 1.2GHz ARM pro-
cessor and 512MB memory, costing less than $100. Tracking
the same five loads as above in our deployment home with a
4-hour tracking window, PowerPlay achieves a tracking de-
lay of just 18 seconds, with individual load tracking times
ranging from less than a second for the refrigerator to four
seconds for the toaster.
Result: PowerPlay is capable of online tracking of loads
within a home on low-power embedded platforms.
6.2 Tracking Accuracy

In addition to efficiency, load tracking must also be ac-
curate to be useful. As before, we compare PowerPlay’s
accuracy in tracking multiple loads’ real-time power usage
with the FHMM approach, which performs a complete dis-
aggregation. We take the conservative approach of training
the FHMM on per-load data from the home that we disag-
gregate, although doing so is often not possible in practice,
since disaggregation is typically only useful in homes where
such training data is not available. As disaggregation often
focuses on inferring a breakdown of per-load energy usage
for a building over a long time period, e.g., an entire day or
week. Figure 9 shows the actual energy usage over an en-
tire day for five loads, as well as the inferred energy usage
from both PowerPlay and the FHMM disaggregation. We
see that both PowerPlay and FHMM accurately predict each
load’s energy usage over long periods of time, although the
FHMM approach is less accurate for the heat recovery ven-
tilator due to its stable power oscillations. Our results are
consistent with prior work on the FHMM approach, which
performs as well, or better, than other prior approaches to
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Figure 10. PowerPlay error factors when scaling up to
highly noisy and complex smart meter data.

disaggregation [16, 18].
Result: The accuracy of PowerPlay’s inferred energy usage
for loads in the tracking set over long periods is comparable
to that of complete disaggregation via a FHMM.

Unfortunately, inferring energy usage over a long period
is not appropriate for online operation, and does not take into
account when a load uses energy. We use the tracking error
factor δ from §2 to quantify per-load accuracy over time. In
Figure 10, we first quantify accuracy as we scale up the num-
ber of non-tracked loads in a home, since more loads result
in more (and less visible) features. In this case, the x-axis is
a rough measure of the data’s complexity, i.e., the number of
power deltas >15W. By gradually adding circuits from our
home deployment to the smart meter data. For example, the
far left side of the graph includes only one circuit (the one in-
cluding the corresponding tracked load) and each data point
to the right represents a dataset with one more circuit added
to it. For each new circuit, we track the loads and compute
the error factor per load on the new dataset. Figure 10 plots
the results for our representative loads. Note that the x-axis
is on a log scale, since a small number of loads contribute
the majority of the power deltas. For comparison, we also
include a second model of the freezer that only uses step
features, to illustrate the effect of removing all but the most
trivial features present in PowerPlay.

As expected, the error factors increase as we add more cir-
cuits and more complexity to a home’s data. We also see that
the freezer’s accuracy is nearly a factor of two higher when
including its full set of identifiable features, compared to re-
stricting it to only step features. However, beyond a com-
plexity of 1000 power deltas, the error factors stay roughly
constant (with the exception of the refrigerator), even when
the complexity goes to 50,000 power deltas. The refriger-
ator’s accuracy decreases significantly when adding a com-
plex load, e.g., in this case a heat recover ventilator that ex-
hibits stable power oscillations. The reason is that its cycle
detector is unable to select spikes that correspond to the re-
frigerator, due to the heat recovery ventilator generating a
large number of similarly-sized spikes at various intervals.

Figure 11 then examines three specific points from the
previous graph and compares them with the FHMM ap-
proach. In Figure 11(a), we use both PowerPlay and the

FHMM approach to track a load from data that only includes
that load. As shown, the FHMM approach is nearly perfect,
since its model is trained on the actual data we disaggregate
in this case. By comparison, PowerPlay shows some error
due to the fact that our models, while accurate, only include
offline features and not attributes based on when and how
long the load operates. However, Figure 11(b) and (c) shows
the error factor for the same loads if we include every cir-
cuit both with (b) and without (c) the complex heat recovery
ventilator. Prior work on load disaggregation has generally
evaluated their algorithms at small scales, e.g., 5-10 indi-
vidual loads, that are not representative of the multitude of
small and complex loads present in a modern home. Our re-
sults demonstrate that PowerPlay performs well even as the
number and complexity of loads scales up.

The result shows that PowerPlay is significantly more ac-
curate than the FHMM approach for each load, with the ex-
ception of the clothes dryer. While PowerPlay is not more
accurate than the FHMM approach at small scales, as in (a),
with less “noisy” data, it is significantly more accurate as
complexity increases. For example, PowerPlay is nearly per-
fect at detecting the second-to-second power usage of the
toaster even within a highly complex trace, largely due to
PowerPlay’s highly accurate model of the toaster (as shown
in Figure 11(a)). In general, the improvement in error fac-
tor for each load over the FHMM approach is greater than
2X (and over 100X in the case of the toaster). Both Power-
Play and the FHMM approach perform well on the clothes
dryer because it is large compared to the other loads (∼6kW
peak power versus ∼1kW peak power), such that the added
complexity does not affect detection.
Result: PowerPlay maintains a low per-load tracking er-
ror factor as the number of loads, and their complexity, in-
creases in a home. For the loads in our tracking set, the error
factor is generally a factor of two less than a state-of-the-art
disaggregation algorithm based on FHMMs.
6.3 Case Study: Demand Response Capacity

Lastly, we consider a real application of scalable, online
load tracking, where a utility wishes to monitor aggregate de-
mand response capacity across a neighborhood in real time.
In this case, we assume the utility is only able to reduce de-
mand by deferring customers’ A/Cs, such that the demand
response capacity at any point in time is the amount of power
consumed by each active A/C. Thus, to estimate demand re-
sponse capacity over time, the utility must know: i) what
percentage of its customers have active A/Cs, and ii) how
much power they are consuming.

We assume a utility server collects smart meter data from
each home, and runs PowerPlay to track the power usage
of customer A/Cs. For our case study, we consider a 10-
day period of our deployment home’s smart meter data, in-
cluding a central A/C. To simulate many homes across a
neighborhood, we generate 100 virtual homes by randomly
time-shifting the A/C’s power usage within the smart meter
data, which results in 100 distinct homes with different time-
varying A/C power usage. PowerPlay then uses our model of
the A/C (which includes a mix of the cycle, decay, and step
features) to track each home’s A/C power usage. Finally,
we use PowerPlay’s output to query the set of active A/Cs
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Figure 11. PowerPlay is more robust to noisy smart meter data than the FHMM-based approach.

across homes over time. For example, at a random point in
time, 34 of the 100 homes had an active A/C, with Power-
Play correctly identifying the status of each A/C with 96%
accuracy. In particular, PowerPlay detected 30 out of 34 ac-
tive A/Cs and all inactive A/Cs, demonstrating 88% recall
and 100% precision. Of the 30 detected A/Cs, PowerPlay’s
second-to-second inferred power readings differed from the
A/Cs actual power usage by an average of 104W (out of its
3kW peak and 2.6kW average power). PowerPlay estimated
the total A/C power usage across the neighborhood, i.e., its
demand response capacity, to be 78.1kW, which differs from
the actual capacity of 87.9kW by 12%, with the difference
primarily due to the four undetected active A/Cs. Excluding
the undetected A/Cs, the total A/C power inferred by Power-
Play differed from the actual power by less than 1%.
Result: PowerPlay enables new applications for online an-
alytics on smart meter data—in this case accurate, online
estimation of the grid’s demand response capacity,
7 Conclusions

This paper presents PowerPlay, a system for online load
tracking that emphasizes both efficiency and accuracy. In
essence, “tracking” a particular load creates a virtual power
meter for it, which mimics having a network-connected en-
ergy meter attached to it. PowerPlay takes a model-driven
approach to online load tracking, which focuses on detect-
ing a small number of identifiable load features in smart me-
ter data. This paper enumerates an identifiable set of fea-
tures common across loads, and then designs methods to ef-
ficiently detect them in smart meter data. By using a high-
level feature abstraction, PowerPlay enhances computational
tractability, enabling efficient and accurate online load track-
ing. Our results show that PowerPlay is able to track loads in
near real-time, even on low-power embedded platforms, and
improves per-load accuracy by a factor of two compared to a
FHMM-based disaggregation algorithm.
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