CC8E

C Compiler for the
PIC18 Devices

Version 1.1

User's Manual

&

B Knudsen Data
Trondheim - Norway

CCB8E C Compiler B Knudsen Data

This manual and the CC8E compiler is protected by Norwegian copyright laws and thus by corresponding
copyright laws agreed internationally by mutual consent. The manual and the compiler may not be
copied, partially or as a whole without the written consent from the author. The PDF-edition of the
manual can be printed to paper for private or local use, but not for distribution. Modification of the
manual or the compiler is strongly prohibited. All rights reserved.

LICENSE AGREEMENT:

By using the CC8E compiler, you agree to be bound by this agreement. Only one person may use a
licensed CC8E compiler at the same time. If more than one person want to use the compiler for each
license, then this have to be done by some manual handshaking procedure (not electronic automated), for
instance by exchanging this manual as a permission key. You may make backup copies of the software,
and copy it to multiple computers. You may not distribute copies of the compiler to others. B Knudsen
Data assumes no responsibility for errors or defects in this manual or in the compiler. This also applies to
problems caused by such errors.

Copyright © B Knudsen Data, Trondheim, Norway, 2001 - 2004

This manual covers CC8E version 1.1 and related topics. New versions may contain changes without
prior notice.

Microchip and PICmicro are trademarks of Microchip Technology Inc., Chandler, U.S.A.

COMPILER BUG REPORTS:

The compiler has been carefully tested and debugged. It is, however, not possible to guarantee a 100 %
error free product.

If the compiler generates application code bugs, it is almost always possible to rewrite the program
slightly in order to avoid the bug. #pragma optimize can be used to avoid optimization bugs. Other
#pragma statements are also useful.

Please report cases of bad generated code and other serious program errors.

1) Investigate and describe the problem. If possible, please provide a complete C example program that
demonstrates the problem. A fragment from the generated assembly file is sometimes enough.

2) This service is intended for difficult compiler problems (not application problems).

3) Language: English

4) State the compiler version.

5) Send your report to support@bknd.com or by fax to (+47) 73 96 51 84.

Document version: B

CCB8E C Compiler B Knudsen Data

CONTENTS
1 INTRODUGCTION ...ttt ettt ettt ettt et te e sb e e ete s aee s be e sbeeebeebeeabeetbesbeesbeesbeesbesseesnsesnsesneeareeans 7
1.1 SUPPORTED DEVICESiiutiitteiteeiteettesttesteesteestesssessesssesssessseassessesssessssstssstesssesssesnsesssessssssssssesssesseessenss 7
1.2 INSTALLATION AND SYSTEM REQUIREMENTS ...cciiiiiuttiiiieeiisiittiii e e s s s s sibbasesesssssabbsssssssssssbbasasesssssnnns 8
SUPPOIt fOr 10N FIlE NAMES ... bbb sae bbb 8
L0 LT 101 (=] =T YRR PRRTRPI 8
1.3 IMIPLAB SUPPORTciiiittiee e ettt ettt e e e ettt e e ettt e e et e e e e e tb e e e e e atee e e sbtee e s ahbeeeeaabaeeesabeeesssbeeesantbeeesseeeessabeeans 8
1.4 SUMMARY OF DELIVERED FILESceeiittiiiiiitiieeiitiee e s ettt e e ettt e e eittee e s stte e e e sntaeeesabeaesssbaeaeantaeeesnnneassnbeeens 9
1.5 SHORT PROGRAM EXAMPLEtiiiiiiiii ettt ettt e ettt e et e e s et e e e eat e e e enbe e e e s ebbeeeeentaeeeenneeas 10
1.6 DEFINING THE PICMICRO DEVICEciiiiitiiitecte ettt ste ettt st ste e ste e nbeanbesnbesbaesbeesbeesbesnesnnesns 10
1.7 WWHAT TO DO NEXT cuttiutiiureitteiteeiteeiteetesstestsestesstesssesssssssssssessssssssasssssesssesssessssssesssesssesnsessessssssesssesnns 11
2 VARIABLES. ... oottt sttt et s bt e bt e eb e et e e ab e e bt e s b e e s be e be e beerbeebeeateeateeatearee e 12
2.1 INFORMATION ON RAM ALLOCATIONu.iittiitteiteetestreiteesteesseesseesesssesssesseesseessesssessssssessesssssssesnsenns 12
2.2 DEFINING VARIABLESvviitteiteeiteeteeteatteeteeiteesteeitesssesssessesssesassassesssesssesssestessbesssessesssessssssssasesssesns 12
a1l L= Y= LT o] [T S TPR 13
FLOBLING POINT ...ttt bt bbbt e s e e e e b e e be bt e b e e atene e b e besbeeeeenes 13
IEEET754 iNteroperabilitycooiiiiii et bbb 14
FIXEA POINE VAFTADIES ...ttt bbbttt ne b e b ens 15
Assigning variables t0 RAM @0UIESSES.cuiueiiiirerieie ettt be b sbe e ene s 16
SUPPOITEd tYPE MOUITIEESei ittt bt ee bbb bbb e 18
LOCAI VATTADIES ...ttt st ea e b be e e b e e be et e e st e erbesteesbeesbeeebeennas 18
TEMPOTArY VATTADIESvecvicee e ettt be s te e e e s e e e nteste e e nrenreanens 19
Arrays, SEIUCLUIES N0 UNIONS......c.veiviiieiieseeeeeie e sie e sesseeees e saestestesseesaesesseseestesreasaeseenseseeseessessensens 19
T 1= (o TSSOSO 20
1771 L= PSSR 20
2.3 USING RAM BANKS.citeiiteiiteiite ittt etteeteesteeitessaesteesteesbeesbeatesaseasseabsesbessbesssestsesbeesbeessesnsesnsesseeasesnns 20
The DanK tyPe MOGITIET ..ottt seesaesreeneas 21
RAM DANK SEIECTIONccvviiitiicciee ettt ettt ettt s e e st e e st e e eare e stbeesbbe e stbeesabeesabeesbeeesbeeeareeens 21
LOCAl USEI UPAALE FEGIONSttt sttt sttt bbbt b et eb et e e e e e ebe e b ans 21
2.8 POINTERS ...ttt eiittete e ittt e e ettt e e e ette e e e ettt e e e eabeeeestaeeeaatbeeeeaateseeaabaeeeatbeeeasseeessabeeaeantaseessseeesasbeeesanteneennens 22
P OINIEE MOUEIS......ve ettt e et e st e e et e e s tb e e sbbe e stbeeebbeestbeesbbeestbeeenbeeesteeeteeens 22
2.5 CONST DATA SUPPORTuiiiiittiie e ittt e e ettt e e ettt e e sttt e e e etbe e e e eateeeeabbeeeeastaeeeaabaeaeatbeeesasteseesssseaeaateeeeanes 23
Data 0f SIZ€ 16 DIt OF MOTEciviiiiei ettt b et e sbe e te e saaesbeeereeanas 23
Y TCT o T [= - SR 24
T L] o] =TS 24
3 Y N T A XK ettt ettt ettt et e b e et e et e he e e be e ebe e be et ehe e bt e bt be e beeAbe et b e be e be e beebeebeenreeateetrearee e 25
3. ST ATEMENTS vt eteette ettt iteetteesteete st e steeebe e beesbessbestsesbeesbeebeeabesaseabseabseabeeabeesbesbsesbeesbeebeentesnsesreereenns 25
T STALEIMBNT L.ttt et e st e e s be e b e e te et e bt e e be e be et e eabe et b e ereesteeareeareearas 25
WHITE STALEMENTeei it e e s e e et e e st e e e b e e sbbeesate e sbbeeebeeesbaeeeaeeesrbeeenreeanes 25
(0] t= 1 (=141 0| RSP SRPPRN 25
(o[BS =1 =10 =T 0| SO OSSO OPPOTPP 26
SWITCI STALEMENT. ...ttt ettt e et e e e ebe e e be e e beesabeesabeesabeesabeesabeeabeesateas 26
DIEAK STALEMENL. ... eiiiiii ettt et e s e et e e s bt e e b e e st b e e ebee e sbbeebeeesbeeebeessbeeebeeesteeesteeens 26
CONTINUE STALEIMENT ...ttt ettt ettt e et eeab e e teesbeesbeesbeeteaaeesasesbeeebeebeebeesbessbenseeas 27
FEEUIN STAEEMENT. .. .ot e et e e e et e e teeeteeeteeebeeesteeeteeenteeeteeesteeenreeens 27
Lo T0 (O IR P2 < 1=) OSSR 27
3.2 ASSIGNMENT AND CONDITIONS ...ecuviiutiitieiteeiteeiteeresssessesssesssessseesesssesssesssessesssesssesssessesssssssssesssenns 27
Special SYNTAX BXAMPIESeiviiieieieiere sttt e et e s te st e stesreeaeeseenaeeeneeneeseenreereans 27
(@00 o 111013 - TRRURRTRSTROP 28
BIt VATTADIES ...ttt e e et e et be e eabe e aabe e e be e e etaeeabre e 28
Multiplication, division @nd MOAUIO...........ccuiiiiiii b 29

CCB8E C Compiler B Knudsen Data

Precedence Of C OPEIALOrSc.vi e e sttt ettt st r e e e st saenteaneene e e eneenrenneanes 29
Mixed variable SizeS are allOWEdcooiiiiiiiiiie 30
R I 00 Ny 17 N 1 T RO U PP TSR TR ST RTOPROP 30
CONSEANT BXPIESSIONS ...t sttt et ettt ettt b ettt ea e et e b e ebeeb e e b e e bt e bt e e en b e sbesb e s b e ebe et e eneenbenbesbesbeaneanes 30
ENUMEIALION ...ttt ettt bbbt h et b e bt eb e e bt e bt e n e e nn e besbesneanes 31
34 FUNCTIONS ...ttt ettt ettt bttt etttk b e bt st e s e eh e eb e sh e e ka4 Rb e e he e e h e e eb £ 2 ke 2 m b e eh b e sb e e nbe e nb e e nbeambeennesaeenne e e 31
FUNCLION FEIUIMN VAIUES ...ttt b e sttt nb e sb bbb 31
Parameters in fUNCLION CAIIS..........coiiiii e e 31
INEEINAL FUNCLIONS ...ttt ettt et s 32
3D T PE CAST oottt ettt bbbt b bbb bbb btk bR bbbt b e bRt E bRt b bRt b bbb 33
3.6 ACCESSING PARTS OF A VARIABLEcotittieititesiettste ettt sttt sttt sttt st sttt sbe st st sbe st b s e 34
K A O3 = = N] 0 N OOV 35
3.8 PREDEFINED SYMBOLScuttttiteieteateseesesteseesesseseesestestesessessesessestesessessesessessesessessessasessensasessessasessenens 35
Automatically defined macros and SYMbBOISccooivviviiiicicc e 36
3.9 UPWARD COMPATIBILITY ..ttt ittettettaueeateesteesteesteasaesssessessseesseaaseasseasseassasssesteesbesssesssesssssssesssessesnsenns 36
4 PREPROCESSOR DIRECTIVES.......cctiiiititeistt ettt sttt sttt sttt sbesaatesnessasasneseas 37
HABTINE L.t b b bR Rt et et e b b e bt Rt et et naeebenbeeneas 37
MACEO CONCAENATION ...ttt ettt bt bbbt e s e e e e b e b bt st e e atese e e e besbeeneanes 37
MACKO SEENGITICATIONcuiieiiiiece ettt sbe b 37
=100 11 o [T U U R UPR SR UPOUP PRI 38
000) OSSO PRSP 38

3 | OSSO P PR 38
(01 OSSPSR 39

o 110 L TP P PR 39
=]) TSRS 39
2] [P TUTUSOUPUPPRURTRROS 39
2] Lo) OSSPV RTUSOUPOUPURRURURON 39
22T 0 (0] S TP P UPPTURTURTPROTN 39
4.1 THE PRAGMA STATEMENT ..cuttiittettettastesttesteesteeateeaseasseassesssasseeabeeabesasessseassesaeeaaeeabeabeanbeasbesseesseesenas 39
HPragma ACCESSGPR SN ...ttt ettt sb et et b e e e e e be e ebe e b e e beenbeenbennne s 39
#pragma alignLsbOrigin <a> [10 <D>] .o 39
HPragMa @SM2VAL L.....eeieeiieeieiieeeesteesteeste e e e e s e sseesseesaeanseenseassesseesseesseesteeseeanseaneeassesseessensseenennnenns 40
#pragma assert [/] <type> <text field=>........c.coevreieiiiie i 40
#pragma assume *<pointer= in rambank <N>ccocviiiiiiininin e 40
#pragma bit <name> @ <N.B or variable[.B]>......cccccoeririiiiiiri e 40
#pragma cdata[ADDRESS] = <SVXS>, .., VXSS ..ottt nne 40
#pragma char <name> @ <constant or Variable>ccccooviviieeiinie s 41
#pragma Chip [=] SUBVICE™S ...ttt ettt st sb e be st sne s 41
#pragma computedGoto [=] <O,13 ..ot ae e 41
#pragma config [<OffSEt>] = <EXPIrESSION>.......ccccooiiiiiiiiiie e e 41
#pragma iNHINEMALh 0,13ottt sb ettt b e bbb b sne s 42
HPragME INSEITCONSE ...ttt ettt e e bt b e b e b et et e sb e e be s bt ebeeb e e b e besaesbesbeaneas 42
#pragma interruptSaveCECK SNW,E> ... sresre e eneas 42
HPragma liIDrary SO/L> ...t e et e renreene s 42
#pragma optimize [=] [N:] <O,L> .ot nne s 42
#pragma origin [S] <EXPIESSION >ccviieieeieieseseseereeeeteseestestessearaeeesteseesresreanaeseesesseseesressesnens 43
#pragma rambank [S] <-,0,1,2,..,15 ..o nne s 43
#pragma rambase [S] NS ... et renreene s 43
HPragma FESEIVECTON SN ...ttt ettt s bt e e b e e be e sbe e bt e b e eabesbeesbeesbeanbennnens 43
#pragma return[<n>] = <Strings OF CONSLANTS Scccoiiiiiiiiiiii e 43
#pragma sectionDef <name> [:<id> <start> <end> [PROTECTED]]c.ccccoermrrrenierinninereannns 44
HPragma SACKLEVEIS N> ...ttt b e bbb e sne s 44
HPragma UNTOCKISR ..o bbb bbbt bt b e et e besbesbesbeeneas 44
#pragma updateBank [entry | exit | default] [Z] <O,1> ...oooiiiiiiiiiiece s 44
#pragma VersionFile [<FIlES] ..o e 45

CCB8E C Compiler B Knudsen Data

4.2 PICMICRO CONFIGURATIONcettttteteatesteseatesteseateseesestesaeseetessesessesseseesessesessessesessessesessessessasessensasens 45
5 COMMAND LINE OPTIONS ..ottt sttt sttt st 46
5.1 OPTIONS IN A FILE ...titieiteestee it ettt ateestt e bt esbeestesaeesbeesbeeabe e bt eae e eae e eb e e bt am b e ehbesb e e nbeenbeenbeanbesnnenneenbeenns 48
5.2 AUTOMATIC INCREMENTING VERSION NUMBER IN A FILE.......cccttiiiitiaitientiaiestesieesieesieesiesnessneseee e 49
B PROGRAM CODE ..ottt ittt sttt sttt be st teabe st e besbe st e te st st atesbe s e tesbe s areatns 50
6.1 PROGRAM CODE PAGES.......coitietiaiiisitesteesteeateasteateatsasteesbeesteasbesstesaeesbeeabe e bt anbeasbesbbesbeesbeesbeanneanneanns 50
6.2 SUBROUTINE CALL LEVEL CHECKING.....ccittiittittaittattestiesteeteasaesseesieesieesseasseassesssasssasbeessesseesssesssesnns 50
Stack level checking When USING INTEITUPL.........cooiiiiiiiiie e 50
RECUISIVE FUNCEIONS ..ottt et b e et b ettt bt sb et sb e be st 50
8.3 INTERRUPTS ..titetietisteieste sttt sttt sttt sttt s bt s bt s bt s bbbt bbbt b et s bttt b et 50
Custom INErruPt SAVE aNd FESTOTEcvvceieieeie ettt tesne e e e e seesrennesneens 53
6.4 STARTUP AND TERMINATION CODEveuvitiiiniitinieniesistesiesestestesessestesessessesessesteessestessssestessenessensesens 54
Clearing ALL RAM I0CALIONSc.vcveverieriesesteseeieseeste et a st e e et sr st saenee e ensenaeseesresnesnennes 54
6.5 LIBRARY SUPPORTututetiitesteseatessesessessesessessesessessesessessesessesseseasessessasessessasessessasessessasessensasessensasensenes 54
IMAEN TIDFAITES ...ttt bttt e et e bbbt bt e s e e e besaeeneens 54
INEEGET HDTAITES ...t e e b bbbt et e e b sbesbesbeaneas 55
FIXEU POINE TIDFAITES ...ttt bttt b et bbbttt e e b e eneens 56
F10ating POINt IIDFATIESoiii et sbe e 57
Floating point library fUNCHIONScooiiiii e e 58
Fast and compact iNliNE OPEIALIONScoiiiiiiieieei ettt sbe s 59
Combining inline integer math and library calls............cccovoiviieiiiii e 60

L G0l o011 1A=] o] SR 61
Floating POINt EXAMPIE.....c.eiiee e ereanes 61
HOW 10 SAVE COUE...... ettt ettt ettt bbbt b et bt 61
6.6 INLINE ASSEMBLYttutiiiititeteatesteseetesteseetessesestestes et st s b tes b e st es e ab et es e b et e e benb et e bt st n b et s e b e ntenes 62
DireCt COUBM INSLIUCLIONSeuiiuiitiiie ettt ettt b e sb bt se et et e e b beseeeeeenes 66
Generating single instructions USiNg C StAtEMENTS..........coiriiiiiiiee et 67
6.7 OPTIMIZING THE CODEcitiiitiautiaitesieesteesteeste e bt aeeaseesteesbeesbe e besseeaaeesbeeabeabeanbeesbeabeesbeesbeesbeenneanneanns 69
L0 o (T4 TV2=To B 1 - O TR PP US PRSP 69
Peephole OPHIMIZATIONooiiii bbbt e bbb 69
5.8 LINKER SUPPORTctiuttiuttatteateeatteteasteassesseesteesbeesaeaaseaseesaseaaeeabe e bt aabeasbeab b e ebeesbeenbeenbeenbeasneanneabeenbeenes 69
Using MPLINK 0r @ SiNgIe MOUUIEcoviieieiee ettt 70
Restrictions 0N the demO EAILIONc.coiiiiiiiee e et 71
Variables @Nd POINTEISoiviiiecie ettt e s e e e e stestesreena e eebesreseeneenreanens 71
LOCAI VAITADIES ... bbbt 72
HEAAET FIIES ...ttt ettt b e bbb eene e 73
USING RAM DANKScuveiesiisie ettt st st se s et et e tesnenteaneeneeneeeenneeneanes 73
BanK DIt UPAATING ..ottt bbb nr b e eae s 73
FFUNCEIONS ..ttt bbbttt bt bt bt bt e Rt e st e b sb e s b e e bt e b e et enteseeneenbesbeeneanes 73
USING COOR SECLIONS ...ttt ettt sttt ettt bttt s et b e bbb e st e s e et e b e s bt ebe et e e ne e s e e nnenbesbeebeanes 74

L0 C=] (] o] £ ST U TP TUPTUPTPPRPRO 74
Call 18VE] CRECKING ...ttt bttt bbbt be ettt ne e e e bbb ans 74
(@70]31] o1V (=T oo o TSR 75
Recommendations When using MPLINKcocoviioiiiie st 75
MPLAB and MPASM SUPPOIT.uviveeeieiteiesesteeieeees e stestesseesaeseesseseesaessesssesseseessessessessesssesssssessesssasenses 76
The MPLINK SCHIPE FIlE ...t renreeneas 76
EXample With 2 MOUUIESecvveieec sttt e e e e naenneens 78
6.9 THE CDATA STATEMENT ..tutitiitirtenietirtestetesteseesestessesestessesessessessasesseseasesbeseasesbensesesbensesessensesessenseseans 82
UsiNg the cdata SLAtEMENTooiiiiieie ettt b st se e be e e ens 83
StOrING EEPROM GALAc.eiiiiieieiiieieie ettt bbbt b e bbbt sne e 84

T DEBUGGINGcctitiietite ittt sttt sttt sttt st e be e be st e be e be st e b e e be st e sesbe b eseebe s etesbe s erentns 85
7.1 COMPILATION ERRORS......citiitiautiaitesieesteesteesteateaseesseesteesbee bt e besseesaeesbeeabeabeanbeasbesbbesbeesbeenbeenneenneanns 85
Error and Warning detailSo et 86

CCB8E C Compiler B Knudsen Data

Some common compilation ProbIEMS ... 86

7.2 MPLAB DEBUGGING SUPPORT......cciiittiieiitteeesitteeesiseesssiseeesssstesssssssssssassessssssssssssssssssssessssssessssssenes 86
(01 YA < o0 o o 1o o USROSV PR RRPTRPRR 87

7.3 ASSERT STATEMENT S . tutttiiieeitiiitbttteeeeesiib bt b e e et e e st e bbb aeesesssass bbb aessasesssbbbaaseasesssasbbabaeesesssasbbbbaeesesaas 87
7.4 DEBUGGING IN ANOTHER ENVIRONMENT L..utttiiiiiiiiiiiirieiie e e s s sibbbrieesessssssbssessssssssssssssssssssssssssssssesas 88

8 FILES PRODUGKEDottt ettt ettt ettt s e e e st e e e st e e s s sab e e e s st be e e sbbaeessabenessssbeneens 89
S TR 1 =5 o | RPN 89
8.2 ASSEMBLY OUTPUT FILE ..uutiiiiiii ittt ettt ettt s st r e e e e s s s sb b e b e e e e e s s sbb bbb e e e s e s s sabbbaaeesas 89
LRSI 2 TN =] I | = 90
S Iy I = 91
8.5 FUNCTION CALL STRUCTURE ...ccciitttee e ittt e setteee s sttt e s eettesssesaeesssseessssseessssssesssssseesesassessssssenesasseesesases 91

O APPLICATION NOTES. ...ttt ettt ettt e e et e e e et e e e s b e e e s abbae e s ebaneeseateeeassbeeeens 92
LS I 010]V [=1W 1 =1 o Y €T o T 92
Built in skip(), skipL(), skipM() functions for computed GOt0...........ccervrvrererireeririeerensere e 92
OFIGIN AIIGNMENT ...ttt b et b e b e e besb e e bt s b e ebeebeene e e e e e besbesbeene e 92
(OTo] 3] o U1 (=To Mo T (o I €= 0 o] 1 S TSSOSO 93
EXAMPIES ..ttt bbbttt e bR bR e £ R e et bRt eh b e Rt e neenr e b neeereenes 93

9.2 THE SWITCH STATEMENT .uvtttiiiieeiiiitttitteeesssssbtteseessssasbbbasseesssasabbbaseeaessssbbbbsasasesssabbbabaeesesssasbbraaeesas 95

Y = =\ D] ORI 96
Al PREDEFINED REGISTER NAMEScciiiitttiiiii e eiittit e e e s e et btt s s e s s s s sbb b bt e e e s s s s sbb bbb e e e s e s s saabbbbeeesesssassbenes 96
A2 ASSEMBLY INSTRUCTIONS.ccittieiiteiee ettt e eiteeessesteeesesbesessseesssestesesassessssssssessssresssassessessseeeessreneans 96
INSErUCTION EXECULION TIME .veiiivii ittt ettt et st e e st e s st e s sabe s s sbeseabessbessnbessbeesereeesres 98

CCB8E C Compiler B Knudsen Data

1 INTRODUCTION

Welcome to the CC8E C compiler for the Microchip PIC18 family of microcontrollers. The CC8E
compiler enables programming using a subset of the C language. Assembly is no longer required. The
reason for moving to C is clear. Assembly language is generally hard to read and errors are easily
produced.

C enables the following advantages compared to assembly:
» Source code standardization

» Faster program development

» Improved source code readability

» Easier documentation

» Simplified maintenance

« Portable code

The CC8E compiler was designed to generate tight and optimized code. The optimizer automatically
squeezes the code to a minimum. It is possible to write code that compiles into single instructions, but
with C syntax. This means that the C source code can be optimized by rewriting inefficient expressions.

The design priority was not to provide full ANSI C support, but to enable best possible usage of the
limited code and RAM resources. If the compiler generated less optimal code, this would force assembly
to be used for parts of the code.

CCB8E features

» Local and global variables of 8, 16, 24 and 32 bits, plus bit variables

» Efficient reuse of local variable space

» Generates tight and optimized code

» Produces binary, assembly, list, COD, error, function outline and variable files
* Automatic updating of the bank selection bits

» Enhanced and compact support of bit operations, including bit functions

» Floating and fixed point math up to 32 bit

e Math libraries including functions like sin(), log(), exp(), sqrt(), etc.

e Supports standard C constant data and strings in program memory (const)
« Pointer models of 8 and 16 bits, mixed sizes in same application allowed
 RAM and/or ROM pointers

e The size of single pointers can be automatically chosen by the compiler

» Extended call level by using GOTO instead of CALL when possible

» Access to most assembly instructions through corresponding C statements
* Inline assembly

» Integrated interrupt support

» Chip configuration information in source code

Size (in bits) of the variables supported by the different compiler editions:
STANDARD EXTENDED
i nteger 8+16+24 8+16+24+32
fixed 8+16+24 8+16+24+32
fl oat 24+32 16+24+32

1.1 Supported devices

16 bit PIC18 core:
e upto 16 RAM banks of 256 byte, plus access bank

CCB8E C Compiler B Knudsen Data

1.2 Installation and System Requirements

The CC8E compiler uses 32 bit processing (console application) and runs on IBM-PC compatible
machines using Windows (NT /95 /98 / me / 2000 / XP).

Installing CC8E is done by first creating a directory/folder on the hard disk where the compiler files
should be located. Most application programs are found in the "Program Files" folder on the C: drive.
Create for example folder CC8E here. The compiler is normally supplied as a ZIP file. A tool like
PKUNZIP or WINZIP is required to extract the files into the compiler folder.

CCB8E is now ready to compile C files. Header and C source files have to be created and edited by a
separate editor (not included), for instance in the MPLAB suite.

The CC8E files can be deleted without any un-installation procedure.

Support for long file names

CCB8E supports long file names. It is also possible to use spaces in file names and include directory
names. Equivalent include directory option formats:

-1"C\Program Fi |l es\ cc8e"
-1 C \ progra~1\cc8e

Equivalent include file formats:
#include "C \Program Fil es\cc8e\C file"
#i nclude "C:\progra~1\cc8e\Cfil e~1"

The alternative to long names is the truncated short format. The truncated form is decided by the file
system. The best guess consists of the 6 first characters of the long name plus ~1. The last number may be
different (~2) if the first 6 characters are equal to another name in the same directory.

MPLAB version 5 uses and displays the short format only.

User interface

The CC8E compiler is a command-line program. It requires a list of command line options to compile a C
source file and produce the required files.

Starting CC8E from Windows can be done from the Start->Run menu. Then type the full path name
including cc8e.exe (or use Browse). The list of compiler command line options are then written to the
screen. The normal way of using CC8E is to use it as a tool from an integrate environment like MPLAB.

Compiling a program requires a file name and command line options:

ccB8e -a sanplel.c <enter>

1.3 MPLAB Support

CCB8E can be selected as a tool in MPLAB which offers an integrated environment including editor and
tool support (compilers, assemblers, simulators, emulators, device programmers). Compilation errors are
easily handled. MPLAB supports point-and-click to go directly to the source line that needs correction.
CCB8E supports the COD file format used by MPLAB for program debugging. CC8E offers two modes of
source file debugging is available: C or assembly mode. Thus, tracing programs in MPLAB can be done
using assembly instructions or C statements. MPLAB is free, and can be downloaded from the Microchip
Internet site.

Please refer to the supplied file ‘install.txt’ for a description on how to install and use CC8E in the
MPLAB environment.

CCB8E C Compiler

B Knudsen Data

1.4 Summary of Delivered Files

CC8E. EXE

I NSTALL. TXT :

[NLI NE. TXT
CHI P. TXT

CDATA. TXT
CONFI G TXT
LI NKER. TXT
MATH. TXT

ERRATA. TXT

I NT18XXX. H

HEXCODES. H

CC8E. MTC
TLCCBE. I NI

OP. I NC
RELCC. | NC

DEMO. C

DEMO- VAR. C
DEMO- MAT. C
DEMO- FPM C
DEMO- FXM C
DEMO- ROM C
DEMO- PTR. C
DEMO- I NS. C

MATH16. H
MATH24. H
MATH32. H
MATHL6X.
MATH24X.
MATH32X.
MATHL6F.
MATH24F.
MATH32F
MATH24LB. H

IITTITITTT

MATH32LB. H

18C242. H ..

NEWS. TXT
README. TXT

—~~

=
el

(15:

18F452. H

conpi | er

installation guide and MPLAB set up

informati on on inline assenbly syntax

how to nake new chi p definitions

info on the #pragma cdata statenent

the Pl Cricro configuration bits

using MPLINK to link several nodules (C or asm
math |ibrary support

silicon errata issues

file

i nterrupt header

direct coded instructions

MPLAB t ool
MPLAB t ool

configuration file
configuration file

conmand line options in a file
options for generating object nodules for |inking
syntax denp file

defining RAM vari abl es

i nteger math

floating point math

fixed point math

const data and DW

tabl es and pointers

generating single instructions

8-16 bit math library
8-24 bit math library
8-32 bit math library

16 bit fixed point
24 bit fixed point library

32 bit fixed point library

16 bit floating point library
24 bit floating point library
32 bit floating point library
24 bit floating point functions

(log,sqgrt, cos,..)
32 bit floating point functions

(log,sqrt, cos,..)

library

Pl Cnicro header files

recent added features

(1) Not available on the DEMO and STANDARD edition

CCB8E C Compiler B Knudsen Data

1.5 Short Program Example

/* gl obal variables */
char a;
bit bl, b2,

/* assign nanes to port pins */
#pragma bit in @ PORTB.0
#pragm bit out @ PORTB.1

voi d sub(void)

{
char i; /* a local variable */
/* generate 20 pul ses */
for (i =0; i <20, i++) {
out = 1;
nop();
out = 0O;
}
}
voi d mai n(voi d)
{

/[l if (TO==1 &% PD==1/* power up */) {
/1 WARM RESET:

/1 clearRAM); // clear all RAM

11}

/* first decide the initial output |evel
on the output port pins, and then
define the input/output configuration.
Thi s avoi ds spi kes at the output pins. */

PORTA
TRI SA

Ob. 0010; /* out =1 */
Ob. 1111.0001; /* xxxx 0001 */

a =29, /* value assigned to global variable */
do
if (in==0) /* stopif "in" is low*/
br eak;
sub();
} while (-- a>0); [/* 9iterations */

/1 if (sonme condition)
/1 got o WARM RESET;

/* main is term nated by a SLEEP instruction */

1.6 Defining the PICmicro Device
CCS8E offers 3 ways to select the PICmicro device in an application;

10

CCB8E C Compiler B Knudsen Data

1) By a command line option. MPLAB will generate this option automatically.
- p18F242

2) By a pragma statement in the source code. Note that the command line option will override the
selection done by #pragma chip.

#pragma chi p Pl C18F242

3) By using include to directly select a header file. This is not recommended because there will be an
error if the command line option is also used.

#i ncl ude "18F242. h"

NOTE 1: When using a pragma statement or include file, remember to use this the beginning of the C
program so that it is compiled first. However, some preprocessor statements like #define and #if may
proceed the #include/#pragma statement.

NOTE 2: CC8E will use automatic include of the right header file when using the —p<device> or
#pragma chip statement.

NOTE 3: If the header file does not reside in the default project folder, then the path name is required.
This can be supplied by a command line option as an include folder/directory (-I<path>).

NOTE 4: New header files can be defined according to file “chip.txt’.

NOTE 5: ICD2 debugging requires defining a symbol before the header file is compiled to avoid that the
application use reserved resources:

a) By a command line option:
- DI CD2_DEBUG

b) By using #define in combination with #pragma chip or #include:
#defi ne | CD2_DEBUG

#pragma chi p Pl CL8F452 /1 or #include "18F452. H'

1.7 What to do next

It is important to know the PICmicro family and the tools well. The easiest way to start is to read the
available documentation and experiment with the examples. Then move on to a simple project. Some
suggestions:

e study the supplied program samples

» compile code fragments and check out what the compiler accepts

» study the optional assembly file produced by the compiler

Typical steps when developing programs is as follows:
» describe the system, make requirements

e suggest solutions that satisfy these requirements

» write detailed code in the C language

e compile the program using the CC8E compiler

» test the program on a prototype or a simulator

Writing programs for the PICmicro microcontroller family requires careful planning. Program and RAM
space are limited, and the key question is often: Will the application code fit into the selected controller?

11

CCB8E C Compiler B Knudsen Data

2 VARIABLES

The compiler prints information on the screen when compiling. Most important are error messages, and
how much RAM and PROGRAM space the program requires. The compiler output information is also
written to file *.occ. Example:

CC8E Version 1.1, Copyright (c) B Knudsen Data, Norway 2001-2004
--> EXTENDED edition, 8-32 bit int, 16-32 bit float, 32k code words
18\ deno. c:
Chip = 18C242
RAM :

6****** *kkkkkkkk *kkkkkk*x *kkkkkk*

40h khkkhkhkhkkhkk *hkhkhkhkhkkhkk *hkhkhkhkhkkdkk *hkhkhkhkhkdkk*x *hkhkhkhkkd*x *hkkkhkk*k*x **k*k*kk*k*x*x **k*kkkk*k*%
80h- kkkkkk *khkkkkhkkhkkk *khkkkhkkhkkhkkk *khkkhkkhkkhkkhkkk kkhkkhkkhkkhkkhkkk kkhkkkhkkhkkhkkk kkhkkkhkkhkkhkkk kkhkkkkkk*k
mh- kkkkkhkkhkkhkk *khkkkhkkhkkhkkk *khkkhkkhkkhkkhkkhkk *khkkhkkhkkhkkhkkk *khkkhkkkkkk *kkkkhkkhkkk kkkkkkkk kkhkkkkkk*k

Bank 0:220 1:254 bytes free
RAM usage: 38 bytes (31 local), 474 bytes free
File 'denpo.fcs'
Optimzing - renoved 27 code words (-16 %
File 'denp.var'
File 'denp. asn
File 'denp.|st'
File 'denp. cod'
File 'denp. occ'
File 'denp. hex'
Total of 175 code words (2 %

2.1 Information on RAM allocation

The compiler prints information on RAM allocation. A full map is printed for the access bank and bank 0,
which is useful to check out which RAM locations are still free. Detailed information on memory
allocation is written to file <src>.var when using the -V command line option.

Symbols:
* : free location
. predefined or pragna variable
= . local variable(s)
. global variable
7 . 7 free bits in this location

2.2 Defining Variables

CC8E supports integer, fixed and floating point variables. The variable sizes are 1, 8, 16, 24 and 32 bit.
The default int size is 8 bit, and long is 16 bit. Char variables are unsigned by default and thus range from
0 to 255. Note that 32 bit integer variables are not supported by all CC8E editions.

Math libraries may have to be included for math operations (Chapter 6.5 Library Support on page 54).

CCS8E uses LOW ORDER FIRST (or little-endian) on variables. This means that the least significant byte
of a variable is assigned to the lowest address. All variables are allocated from low RAM addresses and
upwards. Each RAM location can contain 8 bit variables. Address regions used for special purpose
registers are not available for normal allocation. An error message is produced when there is no space left
in a specific RAM bank or in the access bank. Tables and structures greater than 256 byte are allowed.

Note that variables are assigned to the access bank by default. See Chapter 2.3 Using RAM Banks on page
20 on how to use RAM banks.

12

CCB8E C Compiler

B Knudsen Data

Special purpose registers are either predefined or defined in chip-specific header files. This applies to

WREG, INDFO, PCL, STATUS, FSRO, Carry, etc.

Integer variables

unsi gned a8; /1 8 bit unsigned
char a8; /1 8 bit unsigned
unsi gned | ong i 16; /1 16 bit unsigned
char varX;

char counter, L _byte, H byte;
bit ready; // 0 or 1
bit flag, stop, senafor;

int i; /1 8 bit signed
signed char sc; // 8 bit signed
| ong i 16; /1 16 bit signed

uns8 u8; // 8 bit unsigned
unsl1l6 ul6; // 16 bit unsigned
uns24 u24; // 24 bit unsigned
uns32 u32; // 32 bit unsigned

int8 s8 // 8 bit signed

int1l6 s16; // 16 bit signed

int24 s24; // 24 bit signed

int32 s32; // 32 bit signed
The bitfield syntax can also be used:

unsi gned x : 24; /1 24 bit unsigned
int y: 16; /1 16 bit signed

The value range of the variables are:

TYPE S| ZE M N MAX
int8 1 -128 127
int16 2 - 32768 32767
i nt 24 3 - 8388608 8388607
i nt32 4 -2147483648 2147483647
uns8 1 0 255
uns16 2 0 65535
uns24 3 0 16777215
uns32 4 0 4294967295

Floating point

The compiler supports 16, 24 and 32 bit floating point. The 32 bit floating point can be converted to and

from IEEE754 by 3 instructions (macro in math32f.h).

Supported floating point types:
fl oat 16 : 16 bit floating point
float, float24 : 24 bit floating point
double, float32 : 32 bit floating point

13

CCB8E C Compiler

B Knudsen Data

For mat Resol ution Range

16 bit 2.4 digits +/- 3.4e38, +/- 1.1e-38
24 bit 4.8 digits +/- 3.4e38, +/- 1.1e-38
32 bit 7.2 digits +/- 3.4e38, +/- 1.1e-38

Note that 16 bit floating point is intended for special use where accuracy is less important. More details
on the floating point formats is found in ‘math.txt’. Information on floating point libraries is found in
Chapter 6.5 Library Support on page 54.

Floating point exception flags

The floating point flags are accessible in the application program. At program startup the flags should be
initialized:

FpFl ags = O; /1 reset all flags, disable rounding

FpRounding = 1; // enable roundi ng

Also, after an exception is detected and handled in the application, the exception bit should be cleared so
that new exceptions can be detected. Exceptions can be ignored if this is most convenient. New
operations are not affected by old exceptions. This also enables delayed handling of exceptions. Only the
application program can clear exception flags.

char FpFlags; // contains the floating point flags

bit FpQOverfl ow @FpFlags.1; // fp overflow

bit FpUnderFlow @ FpFlags.2; // fp underflow

bit FpDiv0 @ FpFlags.3; // fp divide by zero
bit FpDomai nError @ FpFlags.5; // domain error

bit FpRoundi ng @ FpFlags. 6; // fp rounding

/'l FpRoundi ng=0: truncation
/1 FpRoundi ng=1: unbi ased rounding to nearest LSB

IEEE754 interoperability

The floating point format used is not equivalent to the IEEE754 standard, but the difference is very small.
The reason for using a different format is code efficiency. IEEE compatibility is needed when floating
point values are exchanged with the outside world. It may also happen that inspecting variables during
debugging requires the IEEE754 format on some emulators/debuggers. Macros for converting to and
from IEEE754 are available:

mat h32f . h:
/1 before sending a floating point val ue:
fl oat 32Tol EEE754(f | oat Var) ;

/1l change to | EEE754 (3 instr.)

/1 before using a floating point value received:
| EEE754ToFl oat 32(f | oat Var) ;
/1 change from | EEE754 (3 instr.)

mat h24f . h:
fl oat 24Tol EEE754(f | oat Var) ;
/1 change to | EEE754 (3 instr.)
| EEE754ToF| oat 24(f | oat Var) ;
/1 change from | EEE754 (3 instr.)

14

CCB8E C Compiler B Knudsen Data

Fixed point variables

Fixed point can be used instead of floating point, mainly to save program space. Fixed point math use
formats where the decimal point is permanently set at byte boundaries. For example, fixed8_8 use one
byte for the integer part and one byte for the decimal part. Fixed point operations maps nicely to integer
operations except for multiplication and division which are supported by library functions. Information
on fixed point libraries is found in Chapter 6.5 Library Support on page 54.

fixed8 8 fx;

fx.low8 : Least significant byte, deciml part
fx.high8 : Mst significant byte, integer part

MSB LSB 1/256 = 0.00390625

07 01 : 7 + 0x01*0.00390625 = 7.0039625
07 80 : 7 + 0x80*0.00390625 = 7.5

07 FF : 7 + OxFF*0.00390625 = 7.99609375
00 00 : O

FF 00 : -1

FF FF : -1 + OxFF*0. 00390625 = -0.0039625

7F 00 : +127

7F FF : +127 + OxFF*0. 00390625 = 127.99609375
80 00 : -128

Convention: fixed<S><I> <D>:
<S> : 'U : unsigned
<none>: si gned
<I>: nunber of integer bits
<D> : nunber of decinmal bits

Thus, fixed16_8 uses 16 bits for the integer part plus 8 bits for the decimals, a total of 24 bits. The
resolution for fixed16_8 is 1/256=0.0039 which is the lowest possible increment. This is equivalent to 2
decimal digits (actually 2.4 decimal digits).

Built in fixed point types:

Type: #byt es Range Resol ution
fixed8_8 2 (1+1) -128, +127.996 0. 00390625
fixed8_16 3 (1+2) -128, +127.99998 0. 000015259
fixed8_24 4 (1+3) -128, +127.99999994 0. 000000059605
fixedl6_8 3 (2+1) -32768, +32767.996 0. 00390625
fixedl6_16 4 (2+2) -32768, +32767.99998 0.000015259
fixed24_8 4 (3+1) -8388608, +8388607.996 0.00390625
fixedUs_8 2 (1+1) 0, +255.996 0. 00390625
fixedUs_16 3 (1+2) 0, +255.99998 0. 000015259
fixedUs_24 4 (1+3) 0, +255.99999994 0. 000000059605
fixedUl6_8 3 (2+1) 0, +65535.996 0. 00390625
fixedUl6_16 4 (2+2) 0, +65535.99998 0.000015259
fixedU24_8 4 (3+1) 0, +16777215.996 0. 00390625
(additional types with decinmals only; no integer part)
fixed_8 1 (0+1) -0.5, +0.496 0. 00390625
fixed_16 2 (0+2) -0.5, +0.49998 0. 000015259
fixed_24 3 (0+3) -0.5, +0.49999994 0.000000059605
fixed_32 4 (0+4) -0.5, +0.4999999998 0.0000000002328
fixedU_ 8 1 (0+1) 0, +0.996 0. 00390625
fixedU 16 2 (0+2) 0, +0.99998 0. 000015259

15

CCB8E C Compiler B Knudsen Data

fixedu 24 3 (0+3) 0, +0.99999994 0.000000059605
fixedU 32 4 (0+4) 0, +0.9999999998 0. 0000000002328
To sum up:

1. All types ending on _8 have 2 correct digits after decimal point

2. All types ending on _16 have 4 correct digits after decimal point
3. All types ending on _24 have 7 correct digits after decimal point
4. All types ending on _32 have 9 correct digits after decimal point

Fixed point constants
The 32 bit floating point format is used during compilation and calculation.

fixed8 8 a = 10. 24;

fixedl6 8 a = 8 * 1.23;
fixed8 16 x = 2. 3e-3;
fixed8 16 x = 23.45e1;
fixed8 16 x = 23. 45e-2;
fixed8 16 x = 0.;
fixed8 16 x = -1.23;

Constant rounding error example:
Constant: 0.036
Variable type: fixedl6 8 (1 byte for deci mals)

Error cal cul ation: 0.036*256=9.216. The byte val ues assigned to the
variable are sinply 0,0,9. The error is (9/256-0.036)/0.036 = -0.023.
The conpiler prints this nornalized error as a warning.

Type conversion
The fixed point types are handled as subtypes of float. Type casts are therefore infrequently required.

Fixed point interoperability

It is recommended to stick to one fixed point format in a program. The main problem when using mixed
types is the enormous number of combinations which makes library support a challenge. However, many
mixed operations are allowed when CC8E can map the types to the built in integer code generator:

fixed8 16 a, b;

fixed 16 c;
a=>b+c; /1 OK, code is generated directly
a=>b* 10.22; // OK Ilibrary function is supplied

a b * c; // anewuser library function is required!

/1l a type cast can select an existing library function:
a=>b* (fixed8_16)c;

Assigning variables to RAM addresses

All variables, including structures and arrays can be assigned to fixed address locations. This is useful for
assigning names to port pins. It is also possible to define overlapping variables (similar to union).
Variables can overlap parts of another variable, table or structure. Multiple levels of overlapping is
allowed. The syntax is:

<vari abl e_definition> @<address | (constant_expression)>;
<vari abl e _definition> @<vari abl e_el enent >;

16

CCB8E C Compiler B Knudsen Data

Examples:

char th @ 0x25;
//bit thl @0x25.1; // overlap warning
bit thl @th. 1; /1 no warni ng

char tty;

bit bo;

char io @tty;

bit bx0 @ bO;

bit bx2b @tty. 7;

//char tui @ DbO; /1 size exceeded
/llong r @tty; /1 size exceeded

char tab[5];

long tr @tab;

struct {
long ti M
| ong uu;

} ham @t ab;

char aa @ttbh[2]; /1 char ttb[10];

bit ab @aa.7; /1 a second |l evel of overlapping
bit bb @ttb[1].1;

size2 char *cc @da.a; // 'da' is a struct

char dd[3] @da.sloi[1].pi.ncup;

unsl6é ee @fx.mdl6; // float32 fx;

TypeX ii @tab; /1 TypeX is a typedef struct

An expression can define the address of a variable. This makes it easier to move a collection of variables.

char tty @ (50+1-1+2);
bit ttl @(50+1-1+2+1). 3;
bit tt2 @(50+1-1+2+1).BX1; // enum{ .., BX1, .. };

Pragma statements can also be used (limited to bit and char types):
#pragm char port @ PORTC
#pragma char varX @ 0x23
#pragma bit 10pin @PORTA 1
#pragma bit ready @ 0x20.2

If the compiler detects double assignments to the same RAM location, this will cause a warning to be
printed. The warning can be avoided if the second assignment use the variable name from the first
assignment instead of the address (#pragma char var2 @ varl).

An alternative is to use the #define statement:

#define PORTX PORTC
#define ready PA2

Priority when allocating variables:

1. Variables permanently assigned to a location
2. Local variables allocated by the compiler
3. Global variables allocated by the compiler

17

CCB8E C Compiler B Knudsen Data

Supported type modifiers

static char a; /* a global variable; known in the current nodul e
only, or having the sane name scope as |ocal variables when used in a
| ocal bl ock */

extern char a; // global variable (in another nodul e)

auto char a; [// local variable
/] "auto' is normally not used

regi ster char a; // ignored type nodifier

const char a; /* ‘const’ tells that conpiler that the data is not
nodi fied. This allows global data to be put in program nmenory. */

volatile char a; /* ignored type nodifier. Note that CC8E use the
address to automatically decide that nost of the special purpose
registers are volatile */

pageO void fx(void); // |GNORED by CC8E
/'l page0, pagel, page2, page3

bankO char a; // variable ‘a resides in RAM bank 0
/1 bankO, bankl, bank2, . ., bank15
/'l shrBank, accessBank : access bank (unbanked)

size2 char *px; // pointer px is 16 bit w de
/1 sizel,size2

Local variables

Local variables are supported. The compiler performs a safe compression by checking the scope of the
variables and reusing the locations when possible. The limited RAM space in therefore used efficiently.
This feature is very useful, because deciding which variables can safely overlap is time consuming,
especially during program redesign. Function parameters are located together with local variables.

Variables should be defined in the innermost block, because this allows best reuse of RAM locations. It is
also possible to add inner blocks just to reduce the scope of the variables as shown in the following
example:

voi d mai n(voi d)

{
char i; /* no reuse is possible at the
outernost |evel of 'main' */
i = 9;
{ /! an inner block is added
char a;
for (a = 0; a < 10; at+)
i += fx(PORTB, 0);
}
sub(i);
{ /1 another inner block to enable better reuse
char b = s + 1;
int il=-1, i2 = 0;
/1 nore code
}
}

18

CCB8E C Compiler B Knudsen Data

Local variables may have the same name. However, the compiler adds an extension to produce an unique
name in the assembly, list and COD files. When a function is not called (defined but not in use), then all
parameters and local variables are truncated to the same (unused) location.

Temporary variables

Operations like multiplication, division, modulo division and shifts often require temporary variables.
However, the compiler needs NO PERMANENT SPACE for temporary variables.

The temporary variables are allocated the same way as local variables, but with a narrow scope. This

means that the RAM locations can be reused in other parts of the program. This is an efficient strategy
and often no extra space is required in application programs.

Arrays, structures and unions
One dimensional arrays is implemented.

char t[10], i, index, x, tenp;
unsl1l6 tx[3];

tx[i] = 10000;

t[1] =t[i] * 20; // ok

t[i] =t[x] * 20; // not allowed
temp = t[x] * 20;

t[i] = tenp;

Normal C structures can be defined, also nested types. Unions are allowed.

struct hh {
| ong a;
char b;
} vxli;

union {
struct {
char a;
intl6 i;
}opp;
char x[4];
uns32 | ;
} uni;

/1 accessing structure elenents
vxl.a = -10000;
uni . x[3] = vx1l.b - 10;

The equivalent of a (small) multidimensional array can be constructed by using a structure. However,
only one index can be a variable.
struct {
char e[4];
char i;
} multi[5];

multi[x].e[3] = 4;
multi[2].e[i+1] += tenp;

19

CCB8E C Compiler B Knudsen Data

Bitfields
Bitfields in structures are allowed. The size have to be 1, 8, 16, 24 or 32 bit.

struct bitfield {
unsi gned a : 1;

bi t c;
unsigned d : 32;
char aa;

} zz;

The CC8E compiler also allows the bitfield syntax to be used outside structures as a general way of
defining variable size:

int x : 24; |/ a 24 bit signed variable

Typedef

Typedef allows defining new type identifiers consisting of structures or other data types:
typedef struct hh HH;
HH var 1,

typedef unsigned ux : 16; // equal to unsl6
ux r, a, b;

2.3 Using RAM Banks
The RAM bank definitions are:

access bank: 0x000 — OxO07F and O0xF80 — OxFFF

bank O: 0x080 — OxOFF
bank 1: 0x100 — Ox1FF
bank 2: 0x200 — Ox2FF
bank 15: O0XFO0 — OXF7F

Using more than one RAM bank is done by setting the active rambank:

/* variabl es proceeding the first rambank statenent are placed in the
access bank. This is also valid for |ocal variables and paraneters */

#pragma ranbank 1
char a,b,c; /* a,b and c are located in bank 1 */
/* parameters and | ocal variables in functions placed here are al so

|l ocated in bank 1 ! */

#pragma ranmbank 0
char d; /* located in bank 0 */

The compiler automatically finds the first free location in the selected bank.

NOTE: Local variables and function parameters also have to be located. It may be necessary to use
#pragma rambank between some of the functions and even INSIDE a function. The recommended
strategy is to locate local variables and function parameters in the access bank. The access bank is
selected by:

#pragma ranbank —

20

CCB8E C Compiler B Knudsen Data

The bank type modifier
It is also possible to use the bank type modifier to select the RAM bank.

bankO. . bank15, shrBank/accessBank : can repl ace #pragm ranbank
/1 shrBank and accessBank is the access bank

bankl char tx[3]; // tx[] is located in bank 1

The bank type modifier defines the RAM bank to locate the variable. It can locate global variables,
function parameters and local variables. The bank type modifier applies to the variable itself, but not to
the data accessed. This difference is important for pointers.

NOTE 1: The bank type modifier have higher priority than #pragma rambank.

NOTE 2: Using 'extern' makes it possible to state the variable definition several times. However, the first
definition defines the rambank, and later definitions must use the same bank.

NOTE 3: When defining a function prototype, this will normally not locate the function parameters.
However, when adding a bank type modifier to a function parameter in a prototype, this will define the
bank to be used for this variable.

If variables are located in non-existing RAM banks for a device, these variables are mapped into existing
RAM banks (bank 0). This applies to the bank type modifiers and the #pragma rambank statement.

Using RAM banks requires some planning. The optimal placement requires least code to update the bank
selection bits. Some advise when locating variables:

All local variables and function parameters should preferably be put in the access bank.
The most frequently used variables (except arrays) should be placed in the access bank.
It is efficient to put the most frequent used arrays in bank 0

Try to locate variables which are close related to each other in the same bank.

Try to locate all variables accessed in the same function in the same bank.

agrwbdE

RAM bank selection

RAM and special purpose registers can be located in up to 16 banks. A special bank instruction is used to
select the right bank.

The bank selection bits are automatically checked and updated by the compiler, and attempts to update
the bank in the source code may be removed by the compiler. This feature can be switched off which
means that correct updating has to be done in the source code.

The compiler uses global optimizing techniques to minimize the extra code needed to update the bank
selection bits. Removing all unnecessary updating is difficult. However, there should be few redundant
instructions.

NOTE: The compiler REMOVE attempts to use the bank instruction (MOVLB) in user source code.
However, it is possible to switch to manual updating by the -b command line option, or locally by a
pragma statement.

Local user update regions
The automatic updating can be switched off locally. This is done by pragma statements:

#pragm updateBank 0 /* OFF */
#pragm updat eBank 1 /* ON */

21

CCB8E C Compiler B Knudsen Data

These statements can be inserted anywhere, but they should surround a smallest possible region. Please
check the generated assembly code to ensure that the desired results is achieved. Another use of #pragma
updateBank is to instruct the bank update algorithm to do certain selections. Refer to Section #pragma
updateBank on page 44 in Chapter 4.1 The pragma Statement for more details.

NOTE: The safest coding is to not assume any specific contents of the bank selection bits when a local
update region is started. The compiler uses complex rules to update the bank selection bits outside the
local regions. Also, all updating inside a local update region is traced to enable optimal updating when the
local update region ends.

2.4 Pointers
Single level pointers is implemented.

char t[10], *p;

p = &[1];
*p = 100;
p[2] ++;

The compiler allows using a 8 bit RAM pointer when all accesses using this pointer is limited to the same
bank. The bank is automatically detected and used. In some cases it may be needed to define this bank
directly. For example when using a 8 bit pointer from several modules through relocatable assembly. An
error message is printed if a restricted pointer is loaded with an address from the wrong RAM bank.

bankl char t[10];
bank3 char *pi;
#pragma assume *pi in ranbank 1

pi = &[2];

Pointer models

Using 8 bit pointers when possible saves both code and RAM space. CC8E allows the size of all single
pointers to be decided automatically. However, pointers in structures and arrays have to be decided in
advance, by using the memory model command line options or a size type modifier. Note that the
operator ‘sizeof(pointer)” will lock the size according to the chosen default model. Using sizeof(pointer)
is normally not required and should be avoided.

That default pointer sizes are used only when the pointer size is not chosen dynamically. The priority
when deciding the pointer size is:

1) Pointer size type modifiers

2) Automatic chosen pointer size (single pointers)

3) Pointer size chosen according to the default model

Command line options:
-mcl : default ‘const’ pointer size is 1 byte (8 bits)
-mc2 : default ‘const’ pointer size is 2 bytes (16 bits)
-mrl : default RAM pointer size is 1 byte
-mr2 : default RAM pointer size is 2 bytes
-mmL1 : default pointer size is 1 byte (all pointer types)
-mm?2 : default pointer size is 2 bytes (all pointer types)

Pointer size type modifiers:

» sizel: pointer size is 1 byte (8 bits)
e size2: pointer size is 2 bytes (16 bits)

22

CCB8E C Compiler B Knudsen Data

bankl size2 float *pf;

The supported pointer types are:

a) 8 hit pointer to RAM. The compiler will automatically update the MSB bits (FSROH).

b) 16 bit pointer to RAM. This format is required only when the same pointer have to access locations
in different 256 byte RAM segments.

c) 8 hit pointer to program memory. This pointer can access up to 256 byte data.

d) 16 bit pointer to program memory. This pointer can access more than 256 byte data.

e) 16 bit pointer to RAM or program memory. Bit 15 is used to detect RAM or program memory
access.

2.5 Const Data Support

CCB8E supports constant data stored in program memory. The C keyword ‘const' tells the compiler that
these data do not change. Examples:

const char *ps = "Hello world!";
const float ftx[] = { 1.0, 33.34, 1.3e-10 };

The compiler will normally insert 'const' data at the end of the user code (high address). The following
pragma statement will allow the 'const' data to be inserted between two user functions, or at a specific
address (if using #pragma origin first):

#pragma i nsert Const

The implementation of constant data supports the following features:

» both 8 and 16 bit pointers to const data in the same application

» the size of single const pointers can be chosen automatically

e const pointers can access both RAM and program memory

« the compiler will not put all constant data in a single table, but rather make smaller tables if this
saves code space

» duplicate strings and other data are automatically merged to save space

Recommendations:

It is recommended to use small data tables and structures. This allows the compiler to merge equal data
items and build optimal blocks of constant data.

Limitations:

1) The compiler will not initialize RAM variables on startup
2) Data items of 16 bit or more in structures with more than 256 byte data must be aligned

Data of size 16 bit or more

The compiler allows access of 8, 16, 24 and 32 bits data, including fixed and floating point formats.
When using arrays or structures with more than 256 byte data, single data items have to be aligned.
Alignment means that there should not be any remainder when dividing the offset with the size of the
data item. This is only a problem when defining structures containing data of different sizes.

const long tI[5]
const uns24 th[]
const int32 ti[]

{ 10000, -10000, O, 30000, -1 };
{ 1000000, OxFFFFFF, 9000000 };
{ 1000000000, Ox7FFFFFFF,

- 900000000 };

23

CCB8E C Compiler B Knudsen Data

const fixed8 8 tf[] ={ -1.1, 200.25, -100.25 };
const float tp[] ={ -1.1, 200.25, 23e20 };
const double td[] = { -1.1, 200.25, 23e-30};
const floatl6 ts[] ={ -1.1, 200.25, 23e-30};

I
d

tI[i]; [/ reading a long integer
td[x]; // reading a double float constant

Merging data
The compiler will automatically merge equal strings and sub-strings, and also other data items. Using

small tables will increase the chance of finding data items that can be merged. Note that data containing
initialized addresses (ROM and RAM) are not merged. Examples:

1. The string "world!" is identical to the last part of the string "Hello world!". It is therefore not required
to use additional storage for the first string. The compiler handles the address calculations so that
merged (or overlapping) strings are handled fully automatically. Note that the string termination "\0'
also have to be equal, otherwise merging is not possible. For example, the string "world" can not be
merged with the above strings.

2. Merging applies to all kinds of data. Data is compared byte by byte. This allows the first two of the
following tables to be merged with the last one.

const char al[]
const char a2[]
const char a3[]

{ 10, 20, 30 };
"ab";
{5 10, 20, 30, 'a', 'b', 0};

Examples
A table of pointers to strings:

const struct ({
const char *s;

}otb[] ={
"Hello world",
"Monday",
"WE)I’|d" /1 automatically merged with first string
1
p =tb[i].s; [/ const char *p; char i;
t = *p++; /1 char t;
t = p[x]; /'l char x;

Note that ‘const struct' is required to put the pointer array in program memory. Using ‘const char *tx[];'
means that the strings resides in program memory, but the table tx[]' resides in RAM.

String parameters:
myfunc(“Hello”); [// void nyfunc(const char *str);

myfunc(& ab[i]); // char tab[20]; // string in RAM
nmyfunc(ctab); // const char ctab[] = “A string”;

24

CCB8E C Compiler

B Knudsen Data

3 SYNTAX

3.1 Statements

C statements are separated by semicolons and surrounded by block delimiters:

{ <statenent>; .. <statenent>; }

The typical statements are:
/1 if, while, for, do, switch, break, continue,
/1 return, goto, <assignnment>, <function call>
while (1) {

k = 3;

X
if (PORTA == 0) {
for (i =0; i < 10; i++) {

pin_1 = 0;
do {
a = sanple();
a=rr(a);
s += a;
}
while (s < 200);
}
reg -= 1,
}
if (PORTA == 4)
return 5;
else if (count == 3)
goto X;
i f (PORTB. 3)
br eak;

}

if statement
if (<condition>)
<st at enent >;
else if (<condition>)
<st at enent >;
el se
<st at enent >;

The else if and else parts are optional.

while statement

whi I e (<condition>)
<st at enent >;

while (1) { .. } /1 infinite | oop

for statement
for (<initialization> <condition>; <increnent>)
<st at enent >;

initialization: legal assignment or empty

25

CCB8E C Compiler B Knudsen Data

condition: legal condition or empty
increment: legal increment or assignment or empty

for (v =0; v <10; v++) { .. }
for (; v <10; v++) { .. }
for (v =0; ; v--) {

)
for (i=0; i<5 a.b[x]+=2) { .. }

do statement

do
<st at enent >;
whil e (<condition>);

switch statement

The switch statement supports variables up to 32 bit. The generated code is more compact and executes
faster than the equivalent 'if - else if' chain.

switch (<variable>) {
case <constant 1>:
<statenent>;, .. <statenent>;
br eak;
case <const ant 2>:
<statement>; .. <statenent>;
br eak;

defaul t:
<statenment>; .. <statenent>;
br eak;

}

<variable>: all 8-32 bit integer variables including W
break: optional
default: optional, can be put in the middle of the switch statement

switch (token) {
case 2:
i += 2;
br eak;

case 9:
case 1:
defaul t:
i f (PORTA == 0x22)
br eak;

case 'P':
pinl =0; i -= 2
br eak;

break statement

The “break;” statement is used inside loop statements (for, while, do) to terminate the loop. It is also used
in switch statements.

26

CCB8E C Compiler B Knudsen Data

while (1) {
|f (var == 5)
br eak;
}

continue statement
The “continue;’ statement is used inside loop statements (for, while, do) to force the next iteration of the
loop to be executed, skipping any code in between. In while and do-while loops, the loop condition is
executed next. In for loops, the increment is processed before the loop condition.

for (i =0; i <10; i++) {

it (i == 7)
conti nue;

}

return statement
return <expression>; /* exits the current function */

return; /* no return val ue */
return i+1l; /* return value */

goto statement
got o <l abel >;

Jumps to a location, forward or backward.
goto XYZ;
XYZ:

3.2 Assignment and Conditions
Basic assignment examples:

i = x - 100;

y =AY Iy =y""A;

W | = 0x10; /1 W= W] 0x10;

a=b=c+ 1, // multiple assignment

/! operations: + - & | N * [% << >>

flag = 1; // set bit variable

i++ [*or*/ ++i; [*or*/ i
i--; [*or*/ --i; [*or*/ i

Special syntax examples

#define nx 'a
if (!nmx)

27

CCB8E C Compiler B Knudsen Data

W= W- 3; // ADDLW 256-3

b =1fx() - 3;

/1l Post- and pre-increnenting of pointers
char *cp

t = *--cp;

t |= *++cp

*cp-- = t;

t = *cp++ + 10;

/1l pre-increnmenting of variables
t = ++b | 3;

sum --b, 10);

t = tab[--b];

Conditions

[++ | --] <variabl e> <cond-oper> <val ue>
[& condition]
[|] condition]

cond- oper : == = > >= < <=

if (x ==7) ..

if (Carry ==1 && al < a2) ..
if (y >44 || Carry || x!1=2)
if (--index > 0)

if (bx ==1 || ++i < max)

if (sub_1() '= 0)

Bit variables

bit a, b, ¢, d;
char i, j, k;

bit bitfun(void) // bit return type (using Carry bit)
{

return O; /1 Clear Carry, return
return 1; /1l Set Carry, return
nop() ;
return Carry; // return
return b; /1 Carry=b; return
return li;
return b & PORTA. 3;

}

b = bitfun2(bitfun(), 1);
if (bitfun())

if ('bitfun()) ..

if (bitfun() == 0)
I'charfun();

charfun() > 0;
Ibitfun();

Carry = bitfun();

b & bitfun();

T OTOT
I

28

CCB8E C Compiler B Knudsen Data

if (bitfun() == b) ..
if (bitfun() == PORTA 1)

i += b; // conditional increment

i -= b; /! conditional decrenent

i = k+Carry;

i = k-Carry;

b =1!b; // Toggle bit (or b=b==0;)
b =1c; // assign inverted bit

PORTA. 0 = ! Carry;
a &= PORTA. 0;
PORTA. 1 | = a;
PORTA. 2 &= a;

/ assign condition using 8 bit char variables
Li;

'w

j == :

k 1= 0;

/
b
b
b
b
b i > 0;

/1 assign bit conditions
b =c&d; //also &&, |, ||, +, ~, == != < > >z <=

/1 conditions using bit variables
if (b==c) .. /] also != > < >= <=

// initialized local bit variables
bit bx = ¢cx == "+";
bit by = fx() != OxFF;

Multiplication, division and modulo
mul tiplication : alé = bl6é * c16; // 16 * 16 bit

A general multiplication algorithm is implemented, allowing most combinations of variable sizes.
Including a math library allows library calls to be generated instead of inline code. The algorithm
makes shortcuts when possible, for instance when multiplying by 2. This is treated as a left shift.

di vi si on : alé bl6 / c8; /1 16 /| 8 bit

nodul o : a32 b32 %cl6; // 32 %16 bit

The division algorithm also allows most combinations of variable sizes. Shortcuts are made when
dividing by 2 (or 2*2*..). These are treated as right shifts.

Precedence of C operators

H ghest: ()

++ --

* %

+ -

<< >>

< <= > >=

|
Lowest : = 4= -= *= |[= etc.

29

CCB8E C Compiler

B Knudsen Data

Mixed variable sizes are allowed

a32
alé

Most combinations of variables are allowed, the compiler performs sign extension is required. Multiple

(uns32) b24 * c8; [//
alé + bS§;

I

24 * 8 bit,
16 + 8 bit,

result 32 bit
result 16 bit

operations in the same expression are allowed when using 8 bit variables.
a8 = b8 + ¢c8 + d8 + 10;

3.3 Constants

X = 34; [* deciml */

X = 0x22; /* hexadeci mal */

X = "A; /* ASCI| */

X = 0b010101; /* binary */

X = 0x1234 / 256; [* 0x12 : MSB */

X = 0x1234 % 256; [* 0x34 : LSB */

X = 33 % 4; [* 1 */

x = OxF & OxF3; /* 3 */

X = 0x2 | 0x8; /* 10 */

X = 0x2 ™ OxF; /* 0bl1101 */

X = 0b10 << 2; [* 8 */

X =rl1l+(3* 8- 2); [* 22 */
X =rl+ (3 + 99 + 67 - 2); [* 167 */
x = ((OxF & OxF3) + 1) * 4; [* 16 */

Please note that parentheses are required in some cases.

Constant expressions

The size of integers is by default 8 bits for this compiler (other C compilers use typically 16 or 32 bits
depending on the CPU capabilities). An error is printed if the constant expression loses significant bits

because of value range limitations.

char a;
a

SR G Y

(10 * 100) / 256;
(10L * 100) / 256;
((uns16) 10 * 100)
(uns16) (10 * 100)
(10 * 200) / 256;

/1 no error,

/1 an error is printed
/1 no error

/ 256; // no error

/ 256; // error again

Adding a L means conversion to long (16 bit).

The command line option -cu force 32 bit evaluation of constants so that no significant bits are lost.

Some new built in types can also be used:

TYPE

int8 :
i nt 16:
i nt 24:
i nt 32:
uns8 :
uns16:
uns24:
uns32:

8
16
24
32

16
24
32

bi t
bi t
bi t
bi t
bi t
bi t
bi t
bi t

si gned
si gned
si gned
si gned
unsi gned
unsi gned
unsi gned
unsi gned

Sl ZE

AP WONEFEPRRWNPE

M N

-128

- 32768

- 8388608

- 2147483648
0

0
0
0

200 is a long int

MAX

127

32767
8388607
2147483647
255

65535
16777215
4294967295

30

CCB8E C Compiler B Knudsen Data

The constant type is by default the shortest signed integer. Adding an U behind a constant means that it is
treated as unsigned. Note that constants above 0x7FFFFFFF are unsigned by default (with or without an
U behind).

Enumeration

An enumeration is a set of named integer constants. It can often replace a number of #define statements.
The numbering starts with 0, but this can be changed:

enum { Al, A2, A3, A4 };

typedef enum{ alfa = 8, beta, zeta = -4, eps, } ENI;

ENL1 nn;

enum con { Read_A, Read B };

enum con mm

nmm = Read_A;

nn eps;

3.4 Functions

Function definitions can look as follows:
voi d subroutine2(char p) { /* C statenents */}
bit functionl(void) { }
l ong function2(char W { }
void mai n(void) { }

Function calls:
subroutinel();
subrouti ne2(24);
bitX = functionl();
X function2(W;

y fx1(fx3(x));

The compiler need to know the definition of a function before it is called to enable type checking. A
prototype is a function definition without statements. Prototypes are useful when the function is called
before it is defined. The parameter name is optional in prototypes:

char function3(char);
voi d subroutinel(void);

Function return values

Functions can return values up to 4 bytes wide. Return values can be assigned to a variable or discarded.
Handling and using return values is automated by the compiler.

The least significant byte is always placed in W. Signed variables and variables larger than 8 bits also use
temporary variables on the computed stack.

A function can return any value type. The W register is used for 8 bit return value if possible. The Carry
flag is used for bit return values. The compiler will automatically allocate a temporary variable for other
return types. A function with no return value is of type void.

Parameters in function calls

There are no fixed limit on the number of parameters allowed in function calls. Space for parameters are
allocated in the same way as local variables which allows efficient reuse. The bit type is also allowed.
Note that if W is used, this has to be the LAST parameter.

char func(char a, unsl6 b, bit ob, char W;

31

CCB8E C Compiler B Knudsen Data

Internal functions
The internal functions provides direct access to certain inline code:

btsc(Carry); // void btsc(char); - BTFSC f, b

bt ss(bit2); /1 void btss(char); - BTFSS f, b

clrwdt (); /1 void clrwdt(void); - CLRWADT

cl ear RAM) ; /1 void clearRAMvoid); clears all RAM

i = decsz(i); // char decsz(char); - DECFSzZ f,d

W= incsz(i); // char incsz(char); - INCFSZ f,d

nop(); /1 void nop(void); - NOP

nop2(); /1 void nop2(void); - branch (2 cycles)
retint(); /1 void retint(void); - RETFIE

W=rl(i); /1 char rl(char); - RLFi,d

i =rr(i); /1 char rr(char); - RRFi,d

sl eep(); /1 void sleep(void); - SLEEP

skip(i); /1 void skip(char); - conputed goto (single word)
skipL(i); /1 void skipL(char); - conputed goto (double word)
ski pMi); /1 void skipMchar); - conputed goto (m xed size)
k = swap(k); // char swap(char); - SWAPF k,d

W= addWFC(Kk);// char addWC(char); - ADDWC k, d

i = subFWB(k);// char subFWB(char); - SUBFWB k,d

i = subWrB(k);// char subWB(char); - SUBWB k,d

W= rlnc(i); [/ char rlnc(char); - RLNCF i,d

i =rrnc(i); [/ char rrnc(char); - RRNCF i,d

i = decsnz(i);// char decsnz(char); - DCFSNz f,d

W= incsnz(i);// char incsnz(char); - INFSNzZ f,d

b = negate(b);// char negate(char); - NEG- f

W = decadj (W;// char decadj(char); - DAW

multiply(i); // void multiply(char); - MJLW f

mul tiply(50); // void multiply(char); - MILLWIiteral
skiplfEQa); [/ void skiplfEQchar); - CPFSEQ f
skiplfLT(a); // void skiplfLT(char); - CPFSLT f
skiplfGr(a); [/ void skiplfGI(char); - CPFSGT f

ski pl fZero(a);// void skiplfZero(char); - TSTFSZ f
pushStack(); // void pushStack(void); - PUSH

popSt ack() ; /! void popStack(void); - POP

softReset(); // void softReset(void); - RESET

t abl eRead(); /1 void tabl eRead(void); - TBLRD *

t abl eReadl nc(); /1 void tabl eReadl nc(void); - TBLRD *+
t abl eReadDec() ; /1 void tabl eReadDec(void); - TBLRD *-
t abl eReadPrelnc(); // void tabl eReadPrel nc(void); - TBLRD +*
tableWite(); /1 void tableWite(void); - TBLWI *
tabl eWitel nc(); /1 void tableWitelnc(void); - TBLWI *+
tabl eWiteDec(); /1 void tableWiteDec(void); - TBLWI *-
tableWitePrelnc();// void tableWitePrelnc(void); - TBLW +*

The internal rotate functions (rl, rr) are also available for the larger variable sizes:

rotation
rotation

left
right

alé6
a32

rli(ale);
rr(a32);

/1 16 bit
/1 32 bit

Note that skip(i) requires that all instructions in the table are single word (single word increments).
Similarly, skipL(i) requires that all instructions in the table are double words (GOTO,CALL,etc.), and the
skipL argument skips double words on each increment. The compiler will adapt the optimization to this

32

CCB8E C Compiler B Knudsen Data

need, and print an error message if this is not possible. The skipM(i) allows both double and single word
instructions in the table, but note that the skipM use single word increments when calculating the offset.

The inline function nop2() is implemented by a BRANCH to the next address. Thus, nop2() can replace
two nop() to get more compact code. The main use of nop() and nop2() is to design exact delays in timing
critical parts of the application.

3.5 Type Cast

Constants and variables of different types can be mixed in expressions. The compiler converts them
automatically to the same type according to the stated rules. For example, the expression:

a=>b + c;

consists of 2 separate operations. The first is the plus operation and the second is the assignment. The
type conversion rules are first applied to b+c. The result of the plus operation and a are treated last.

The CC8E compiler use 8 bit int size and contains significantly many data types (integers, fixed and
floating point). The type cast rules have been set up to provide best possible compatibility with standard
C compilers (which typically use 16 or 32 bit int size).

The type conversion rules implemented are:

if one operand is double -> the other is converted to double

if one operand is float -> the other is converted to float

if one operand is 32 bit -> the other is converted to 32 bit

if one operand is 24 bit -> the other is converted to 24 bit

if one operand is long -> the other is converted to long

if one operand is unsigned -> the other is converted to unsigned

ouprwdE

NOTES: The sign is extended before the operand is converted to unsigned. Assignment is also an
operation. Constants are SIGNED, except if U is added. The bit type is converted to unsigned char. The
fixed point types are handled as subtypes of float.

Type conversion in C is difficult. The compiler may generate a warning if a type cast is required to make
the intention clear. Remember that assignment (=) is a separate operation. The separate operations are
marked (1:), (2:) and (3:) in the following examples.

unsl1l6 ale6;
uns8 b8, c8;
int8 i8, j8;

al6 = b8 *c8; /* (1:) In this case both b8 and c8 are 8 bit unsigned, so the type of the multiplication is 8
bit unsigned. (2:) The result is then assigned to a 16 bit unsigned variable al6. Converting the 8 bit
unsigned result to 16 bit unsigned means clearing the most significant bits of a16. The compiler generates
a warning because significant bits of the multiplication are lost due to the type conversion rules. */

al6 = (unsl6) (b8 * c8); /* (1:) Adding parenthesis just isolate the multiplication and the multiplication
result is still 8 bit unsigned. (2:) The (uns16) type cast is not needed because this type cast is done
automatically before the assignment. The compiler generates a warning because significant bits of the
multiplication are lost due to the type conversion rules. */

al6 = (unsl6) b8 * c8; /* (1:) Converting one of the arguments to 16 bit unsigned BEFORE the

multiplication is the right syntax to get a 16 bit result. (2:) The result and the destination al6 now have
the same type for the assignment and no type conversion is needed. */

33

CCB8E C Compiler B Knudsen Data

al6 = (uns8) (b8 * ¢8); /* (1:) The multiplication result is 8 bit unsigned. (2:) The (uns8) type cast tells
the compiler that the result should be 8 bit unsigned, and no warning is generated even though it looks
like significant bits of the multiplication are lost. */

al6 = b8 * 200; /* (1:) Constant 200 is a 16 bit signed constant (note that 200U is an 8 bit unsigned
constant, and that 127 is the largest 8 bit signed constant). Argument b8 is therefore automatically
converted to 16 bit. The constant is then converted to unsigned and the result is 16 bit unsigned. (2:) The
result and the destination a16 now have the same type for the assignment and no type conversion is
needed. */

al6 = (intl16) i8 * j8; /* (1:) Both arguments are converted to 16 bit signed and the result is 16 bit signed.
(2:) The result is converted to unsigned before the assignment, but this does not mean any real change
when the size is the same (example: -1 and OxFFFF have the same 16 bit representation). */

al6 = (unsl6) (uns8)i8 * (uns8)j8; /* (1:) To get an 8*8 bit unsigned multiplication it is required to cast
both arguments to unsigned before extending the size to 16 bit unsigned. Otherwise the sign bit will be
extended and the multiplication will need more code and cycles to execute. (2:) The result and the
destination a16 now have the same type for the assignment and no type conversion is needed. */

al6 = ((uns16) b8 * ¢8) / 3; /* (1:) Converting one of the arguments to 16 bit unsigned before the
multiplication gives a 16 bit result. (2:) Division is the next operation and is using the 16 bit unsigned
multiplication result. Constant 3 is 8 bit signed, and is then automatically converted to 16 bit signed and
further to 16 bit unsigned. The result of the division is 16 bit unsigned. (3:) The division result and the
destination a16 now have the same type for the assignment and no type conversion is needed. */

3.6 Accessing Parts of a Variable
Each bit in a variable can be accessed directly:

uns32 a;

a.7 = 1, /1l set bit 7 of variable ato 1

if (a.31 == 0) /1 test bit 31 of variable a
t[i].4 = 0; /1l bit 4 of the i'th el ement

Bit 0: least significant bit

Bit 7: nost significant bit of a 8 bit variable
Bit 15: nobst significant bit of a 16 bit variable
Bit 23: nost significant bit of a 24 bit variable
Bit 31:. nost significant bit of a 32 bit variable

Also, parts of a variable can be accessed directly:

unsl6 a;
uns32 b;
a.low8 = 100; // set the least significant 8 bits
a = b.highl6; // load the nost significant 16 bits

lowd : least significant byte
hi gh8 : npst significant byte
m d8 : second byte

m dL8 : second byte

mdH8 : third byte

lowl6 : least significant 16 bit
mdlé : nmiddle 16 bit

hi ghl6: nost significant 16 bit
low24 : least significant 24 bit
hi gh24: nost significant 24 bit

34

CCB8E C Compiler B Knudsen Data

The table shows which bits are accessed depending on the variable size in bytes (1,2,3,4) and the sub-
index used. The * indicates normal use of the sub-index:

1 2 3 4

| ow8 0-7 * 0-7 * 0-7 * 0-7

hi gh8 0-7 * 8-15 * 16-23 * 24-31
m d8 0-7 8-15 * 8-15 8-15
m dL8 0-7 8-15 8-15 * 8-15
nm dH3 0-7 8-15 16-23 * 16-23
| owl6 0-7 0-15 * 0-15 * 0-15
m d16 0-7 0-15 8-23 * 8-23
hi gh16 0-7 0-15 * 8-23 * 16-31
| ow24 0-7 0-15 0-23 * 0-23
hi gh24 0-7 0-15 0-23 * 8-31

3.7 C Extensions
CCB8E adds some extensions to the standard C syntax:

1. The bit variable type
2. The interrupt function type

3. C++ style comments are allowed :
/l a comment, valid to the end of the line

4. Local variables can be declared between statements as in C++. Standard C requires local variables to
be defined in the beginning of a block.

5. Binary constants : 0bxxxxxx or bin(Xxxxxx)
The individual bits can be separated by the ".";
0b0100
Ob. 0. 000. 1. 01. 00000
bi n(0100)
bi n(0001. 0100)

6. Preprocessor statements can be put into macros. Such preprocessor statements are not extended to
multiple lines. The inserted preprocessor statements are evaluated when the macro is expanded, and not
when it is defined.

#defi ne MAX \

{ \
a = 0; \

#if AAA == 0 && BBB == 0 \
b = 0; \

#endi f \

}

7. Several of the type modifiers are not standard in C (bank0..bank15, accessBank, sizel,size2)

More C extensions are allowed by the #pragma statement.

3.8 Predefined Symbols
The basic PICmicro registers are predefined (header files defines the rest):

35

CCB8E C Compiler B Knudsen Data

TOSU, TOSH, TOSL,

STKPTR,

PCLATU, PCLATH, PCL,

TBLPTRU, TBLPTRH, TBLPTRL, TBLPTR, TABLAT,

PRODH, PRODL,

| NTCON, | NTCON2, | NTCON3,

| NDFO, POSTI NCO, POSTDECO, PREI NCO, PLUSW), FSROH, FSROL, FSRO,
W V\REG

| NDF1, POSTI NC1, POSTDEC1, PREINC1l, PLUSW., FSR1H, FSR1L, FSR1,
BSR, BSRL,

| NDF2, POSTI NC2, POSTDEC2, PREINC2, PLUSW2, FSR2H, FSR2L, FSR2,
STATUS,

Carry, DC, Zero_, Overflow, Negative

The following names are defined as internal functions, and are translated into special instructions or
instruction sequences.

btsc, btss, clearRAM clrwdt, decsz, incsz, nop, nop2, retint, rl,
rr, sleep, skip, skipL, skipM swap, decsnz, incsnz, addWC, subWFB,
subFWB, rlnc, rrnc, negate, decadj, multiply, skiplfEQ skiplfLT,
ski pl f GT, skiplfZero, pushStack, popStack, softReset, tableRead,

t abl eReadl nc, tabl eReadDec, tabl eReadPrelnc, tableWite,
tableWitelnc, tableWiteDec, tableWitePrelnc

Extensions to the standard C keywords:

bankO, .. bank15, bit, fixed8 8, .. fixed24_8, floatl1l6, fl oat24,
float32, int8, intl6, int24, int32, interrupt, accessBank, shrBank
sizel, size2, uns8, unsl6, uns24, uns32

Standard C keywords used:

auto, break, case, char, const, continue, default, double, enum
extern, do, else, float, for, goto, if, inline, int, long, return,
short, signed, sizeof, static, struct, swtch, typedef, union,
unsi gned, void, while,

define, elif, ifdef, ifndef, include, endif, error, pragma, undef

The remaining standard C keywords are detected and compiled. One is ignored (register), and the rest
cause a warning to be printed (volatile, line).

Automatically defined macros and symbols

The following symbols are automatically defined when using the CC8E compiler, and can be used in
preprocessor macros:

__CC8E__ := Integer version nunber: 1000 neans version 1.0

__CoreSet ___ := 1800: PIC18

3.9 Upward Compatibility

The aim is to provide best possible upward compatibility from version to version. Sometimes the
generated code is improved. If the application programs contain timing critical parts (depends on an exact
instruction count), then these parts should be verified again, for example by using the MSDOS program fc
(file compare) on the generated assembly files.

36

CCB8E C Compiler B Knudsen Data

4 PREPROCESSOR DIRECTIVES

The preprocessor recognizes the following keywords:

#defi ne, #undef, #incl ude
#if, #ifdef, #ifndef, #elif, #else, #endif
#error, #pragna

A preprocessor line can be extended by putting a \' at the end of the line. This requires that there are no
space characters behind the '\'.

#define
#define counter vl
#define MAX 145
#define echo(x) v2 = X
#define mx() echo(1) /* nested macro */

Note that all #define's are global, even if they are put inside a function.

Preprocessor directives can be put into the #define statement.

Macro concatenation
The concatenation operator ## allows tokens to be merged while expanding macros. Examples:

#def i ne CONCAT(NAME) NAMVE ## _conmand()

CONCAT(qui t) => qui t _conmand()

CONCAT() => _conmmand()
CONCAT(dumy(); hel p); => dunmy(); hel p_command()
#def i ne CONCAT2(N1, N2) N1 ## _comm ## N2()

CONCAT2(hel p, and) => hel p_comm and()

#def i ne CONCAT3(NBR) Ox ## NBR

CONCAT3(0f) ; => 0xOf

#def i ne CONCAT4(TKN) TKN ## =

CONCAT4(+) => +=

#define nrg(s) s ## _nsg(s)
#define xnrg(s) nrg(s)

#def i ne foo alt

nT g(f 00) => foo_nsg(alt)
xnr g(f o0) => alt_nsg(alt)
#define | LLEGALL() ## _command

#define | LLEGAL2() _conmand ##

Macro stringification
The stringification operator # allows a macro argument to be converted into a string constant. Examples:

#define STRING 1(ARG) #ARG

STRI NG 1(hel p) => "hel p"
STRING 1(p="foo\n";) => "p=\"foo\\n\";"

37

CCB8E C Compiler B Knudsen Data

#define STRING 2(Al, A2) #Al " " #A2
STRI NG 2(x, y) => "x" " " "y" (equivalent to "x y")

#define str(s) #s
#define xstr(s) str(s)

#def i ne foo 4
str(foo) => "foo"
xstr(foo) => "4"

#defi ne WARN | F(EXP) \
do { if (EXP) \
war n("Warning: " #EXP "\n"); } \

while (0)

WARN_I| F (x==0); =>do { if (x==0)
warn("Warning: " "x==0" "\n"); } while (0);
#include

#i ncl ude "test.h"
#i ncl ude <test. h>

#include's can be nested. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-1<dir>). The current directory is skipped when using #include <test.h>.

#undef
#defi ne MAX 145

#imdef MAX /* renpoves definition of MAX */

#undef does the opposite of #define. The #undef statement will not produce any error message if the
symbol is not defined.

#if
#if defined ALFA && ALFA ==

/* statenents conpiled if ALFA is equal to 1 */
/* conditional conpilation may be nested */
#endi f

An arbitrary complex constant expression can be supplied. The expression is evaluated the same way as a
normal C conditional statement is processed. However, every constant is converted to a 32 bit signed
constant first.

1) macro's are autonmtically expanded
2) defined(SYMBOL) and defined SYMBOL are replaced by 1 if the synbol
is defined, otherw se O.
3) legal constants : 1234 -1 'a' "\\'
4) legal operations : + - * [%>> <<
::!:<<=>>=|| &&

b~ 0

38

CCB8E C Compiler B Knudsen Data

#ifdef
#i f def SYMBOL

/* Statenents conpiled if SYMBOL is defined
Condi tional conpilation can be nested. SYMBOL
shoul d not be a variable or a function nanme. */
#endi f

#ifndef

#i f ndef SYMBCL
/* statenents conpiled if SYMBOL is
not defined */
#endi f

#elif
#i fdef AX
#elif defined BX || defined CX
/* statenents conpiled if AX is not

defined, and BX or CX is defined */
#endi f

t#else
#i f def SYMBOL

#el se
#endi'f

#endif
#i f def SYMBOL

#endi.f

#error
#error This is a custom defined error nessage

The compiler generates an error message using the text found behind #error.

4.1 The pragma Statement
The pragma statement is used for processor specific implementations.

#pragma accessGPR <n>

The number of RAM bytes in the access bank can be defined. The default setting is 128 (0x80). The start
address of the SFR regeisters in the access bank at the end of the data space will also change accordingly.
This statement is normally found in the chip header files.

#pragm accessGPR 0x60 // access RAM from O to Ox5F
#pragma alignLsbOrigin <a> [to]

This pragma statement allows the origin to be aligned. The compiler will check if the least significant
byte of the origin address is equal to <a>, or alternatively within the range <a> to . If this is not true,

39

CCB8E C Compiler B Knudsen Data

the origin is incremented until the condition becomes true. Both <a> and may range from -254 to
254, and should be even numbers.

#pragma al i gnLsbOrigin O

#pragma alignLsbOrigin 6 to 100

#pragma alignLsbOrigin 0 to 190 /1 [-254 .. 254]
#pragma al i gnLsbOrigin -100 to 10

Such alignment is useful to make sure that a computed goto does not cross a 256 byte address boundary.
More details are found in Section Origin alignment on page 92 in Chapter 9.1 Computed Goto.

#pragma asm2var 1
Enable equ to variable transformation. Defined in Chapter 6.6 Inline Assembly on page 62.

#pragma assert [/] <type> <text field>

Assert statements allows messages to be passed to the simulator, emulator, etc. Refer to Chapter 7.3
Assert Statements on page 87 for details.

#pragma assume *<pointer> in rambank <n>

The #pragma assume statement tells the compiler that a 8 bit RAM pointer operates in a limited address
range. Refer to Chapter 2.4 Pointers on page 22 for details.

#pragma assume *p in ranbank 3

#pragma bit <name> @ <N.B or variable[.B]>

Defines the global bit variable <name>. Useful for assigning a bit variable to a certain address. Only valid
addresses are allowed:

#pragma bit bitxx @ 0x20.7
#pragma bit rx @ FSROH. 1
#pragma bit C bit @Carry

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning
to be printed. The warning can be avoided if the second assignment use the variable name from the first
assignment instead of the address (#pragma bit var2 @ varl).

#pragma cdata]ADDRESS] = <VXS>, .., <VXS>

The cdata statement can store 16 bit data in program memory at fixed addresses. Refer to Chapter 6.9 The
cdata Statement on page 82 for details.

#pragm cdat a[ADDRESS] = <VXS>, .., <VXS>
#pragma cdat a[] = <VXS>, .., <VXS>
#pragma cdat a. | DENTI FI ER = <VXS>, .., <VXS>

ADDRESS: 24 bit byte address
VXS : < VALUE | EXPRESSION | STRI NG
VALUE: 0 .. OxFFFF
EXPRESSI ON: any valid C constant expression
i.e. O0x1000 | (3*1234)
STRING "Valid C String\r\n\0\x24\x8\ xe\ xFF\ xffi\\""

40

CCB8E C Compiler B Knudsen Data

#pragma char <name> @ <constant or variable>

Defines the global variable <name>. Useful for assigning a variable to a certain address. Only valid
addresses are allowed:

#pragma char i @ 0x20
#pragma char PORTX @ PORTC

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning
to be printed. The warning can be avoided if the second assignment use the variable name from the first
assignment instead of the address (#pragma char var2 @ varl).

#pragma chip [=] <device>

Defines the chip type. This allows the compiler to select the right boundaries for code and memory size,
variable names, etc. Note that the chip type can also be defined as a command line option.

#pragma chi p Pl C18C242

This statement have to proceed any normal C statements, but some preprocessor statements, like #if and
#define, can be compiled first.

The supported devices are defined in a PICmicro header file (i.e. “18C242.h’). It is also possible to make
new header files. Refer to file ‘chip.txt’ for details.

#pragma computedGoto [=] <0,1>

This statement can be used when constructing complicated computed goto's. Refer to Chapter 9.1
Computed Goto on page 92 for details.

#pragm conputedGoto 1 // start region
#pragma conputedGoto O // end of region

#pragma config [<offset>] = <expression>

This statement allow PICmicro configuration information to be put in the generated hex and assembly
file. ID locations can also be programmed.

#pragma confi g[<of fset>] = <expressi on>
#pragma confi g[<of fset>] | = <expression>
#pragma confi g[<of fset>] &= <expressi on>

#pragma config | D <of fset>] = <expression>

Examples:

#pragma config[0] = 0Ob.1.000.0101 /1 byte at address 0x300000
#pragma config[1l] |= 3 /1 set bit 0,1 (addr 0x300001)
#pragma config[2] & ~OxFO, |= O0x80 // clear bit 4-7, set bit 7
#pragma config[2+1] = OxF | 0x80

#pragma config ID[0] = 0x99 /1l byte at address 0x200000
#pragma config ID 1] = 0x88 /1l byte at address 0x200001
#pragma config ID 2] = 0x03

The CONFIG and ID are specified in BYTES. Refer to Chapter 4.2 PICmicro Configuration on page 45
for more details.

41

CCB8E C Compiler B Knudsen Data

#pragma inlineMath <0,1>
The compiler can be instructed to generate inline integer math code after a math library is included.

#pragma inlineMath 1
a=»>b*c; /1 inline integer code is always generated
#pragma inlineMath O

#pragma insertConst

The compiler will normally insert ‘const' data at the end of the user code (high address). The following
pragma statement will allow the ‘const' data to be inserted between two user functions, or at a specific
address (if using #pragma origin first):

#pragma i nsert Const

#pragma interruptSaveCheck <n,w,e>

The compiler will automatically check that vital registers are saved and restored during interrupt. Please
refer to Chapter 6.3 Interrupts on page 50 for details (or file ‘int18xxx.h’). The error and warning
messages can be removed:

#pragma i nterrupt SaveCheck n // no warning or error
#pragma i nterrupt SaveCheck w // warning only
#pragma i nterrupt SaveCheck e // error and warning (default)

#pragma library <0/1>

CCS8E will automatically delete unused (library) functions.

#pragma library 1

/1 functions that are deleted if unused

/1 applies to prototypes and function definitions
#pragma library O

#pragma optimize [=] [N:] <0,1>
This statement enables optimization to be switched ON or OFF in a local region. A specific type of
optimization can also be switched on or off. The default setting is on.

redirect goto to goto

remove superfluous gotos

replace goto by skip instructions

remove instructions that affects the zero-flag only.
replace INCF and DECF by INCFSZ and DECFSZ
remove superfluous updating of PAO and PA1
remove other superfluous instructions

remove superfluous loading of W

9. to be defined

10. inserts TSTFSZ, CPFSEQ

11. inserts branch

ONoorwWNE

Examples:
#pragma optimn ze
#pragma optimn ze
#pragnma optin ze
#pragnma optin ze

/* ALL off */
/* ALL on */
1 /* type 2 on */
0 /* type 1 off */

R, NRO

/* conbi nati ons are al so possible */

42

CCB8E C Compiler B Knudsen Data

#pragma optimze 3:0, 4:0, 5:1
#pragm optimze 1, 1:0, 2:0, 3:0

NOTE: The command line option -u will switch optimization off globally, which means that all settings
in the source code are ignored.

#pragma origin [=] <expression>
Valid byte address region : 0x0000 - <upper device byte code address>

Defines the byte address of the following code. The current active location can not be moved backwards,
even if there is no code in that area. Origin can not be changed inside a function.

#pragma origin 8 // high priority interrupt start address
#pragma origin 0x700 + 2
#pragma origin SECTI ON(APPSEC) // relocatable asm (option —rsc)

#pragma rambank [=] <-,0,1,2,..,15>
- => access bank: 0x000 - OxO7F

0 => bank O: 0x080 — OxOFF
1 => bank 1: 0x100 — Ox1FF
2 => bank 2: 0x200 — Ox2FF
15 => bank 15: OxFO0 — OxF7F

#pragma rambank defines the region where the compiler will allocate variable space. The compiler gives
an error message when all locations in the current bank are allocated.

RAM banks are only valid for some of the controllers. Non-existing banks for the other controllers are
mapped into bank 0.

#pragma rambase [=] <n>

Defines the start address when declaring global variables. The use of rambank and rambase are very
similar. The address have to be within the RAM space of the chip used. NOTE that the start address is not
valid for local variables, but rambase can be used to select a specific RAM-bank.

#pragma resetVector <n>

Some chips have an unusual startup vector location. The reset-vector then have to be specified. This
statement is normally NOT required, because the compiler normally use the default location, which is the
first location.

#pragma reset Vector 0O /1 at byte address O
#pragma reset Vector 10 /1 at byte address 10
#pragma reset Vector - /1 NO reset-vector at all

#pragma return[<n>] = <strings or constants>

Allows multiple return statements to be inserted. This statement should be proceeded by the skip()
statement. The compiler may otherwise remove most returns. The constant <n> is optional, but it allows
the compiler to print a warning when the number of constants is not equal to <n>. Refer to Chapter 9.1
Computed Goto on page 92 for more details. Note that ‘const’ data types should normally be used for
constant data.

skip(W;
#define NoH 11
#pragma return[NoH = "Hello world"

43

CCB8E C Compiler B Knudsen Data

#pragma return[5] =1, 4, 5, 6, 7
#pragma return[] =012 3 44 'H \
"Hell 0" 2 3 4 0x44

#pragma return[]="H 'e "'I" '"I" '0
#pragma return[3] = 0b010110 \

0b111 0x10
#pragma return[9] = "a \" \r\n\0"

#pragma return[] = (10+10*2), (Ox80+' E) "nd"
#pragma return[] = 10000 : 16 /* 16 bit constant */ \
0x123456 : 24 /* 24 bit constant */ \
(10000 * 10000) : 32 /* 32 bit constant */

#pragma sectionDef <name> [:<id> <start> <end> [PROTECTED]]

#pragma sectionDef allows code sections to be defined and used in the application when generating
relocatable assembly (option -rsc) . Predefined code sections are STARTUP, ISERVERS, ISERVER18
and PROG. These definitions will also automatically appear in the script file.

#pragm sectionDef |DLOC:idl ocs 0x200000 - 0x200007 PROTECTED
#pragm sectionDef CONFI GS: config 0x300000 - 0x30000D PROTECTED
#pragm secti onDef EEPROM eedata OxFO0000 - OxFOOOFF PROTECTED
#pragm sectionDef APPSEC. appdef1 0x1000 - O0x102F

#pragma sectionDef PROG

Further details are found in Section Using code sections on page 74 in Chapter 6.8 Linker Support.

#pragma stackLevels <n>
The number of call levels can be defined (normally not required). PIC18 uses by default 31 levels.

#pragm stackLevels 30 // max 64

#pragma unlockISR

The interrupt routines normally have to reside on address 0x8 and 0x18. The following pragma statement
will allow the interrupt routine to be placed anywhere. Note that the compiler will NOT generate the link
from address 0x8/0x18 to the interrupt routine.

#pragma unl ockl SR

#pragma updateBank [entry | exit | default] [=] <0,1>

The main usage of #pragma updateBank is to allow the automatic updating of the bank selection register
to be switched on and off locally. These statements can also be inserted outside the functions, but they
should surround a region as small as possible

#pragm updateBank 0 /* OFF */
#pragm updat eBank 1 /* ON */

Another use of #pragma updateBank is to instruct the bank update algorithm to do certain selections.
These statements can only be used inside the functions:

#pragm updateBank entry = 0
/* The '"entry' bank force the bank bits to be set
to a certain value when calling this function */

#pragm updateBank exit = 1
/* The 'exit' bank force the bank bits to be set

44

CCB8E C Compiler B Knudsen Data

to a certain value at return fromthis function */

#pragm updat eBank default = 0

/* The 'default' bank is used by the conpiler at
| oops and | abel s when the al gorithm give up
finding the optimal choice */

#pragma versionFile [<file>]

Allows a version number at the and of the include file to be incremented for each compilation. The use of
this statement is defined in Chapter 5.2 Automatic incrementing version number in a file on page 49.

4.2 PICmicro Configuration

PICmicro configuration information can be put in the generated hex and assembly file. ID locations can
also be programmed. The configuration information is generated IF AND ONLY IF the #pragma config
statement is included. Note that some PICmicro programming devices may reject this information.

Syntax:
#pragma confi g[<of fset>] = <expressi on>
#pragma confi g[<of fset>] |= <expression>

#pragma confi g[<of fset>] &= <expression>

#pragma config | D <of fset>] = <expression>

Examples:

#pragma config[0] = 0Ob.1.000.0101 /1 byte at address 0x300000
#pragma config[1] |= 3 /1 set bit 0,1 (addr 0x300001)
#pragma config[2] & ~OxFO, |= Ox80 // clear bit 4-7, set bit 7
#pragma config[2+1] = OxF | 0x80

#pragma config IDf 0] = 0x99 /1 byte at address 0x200000
#pragma config I D 1] = 0x88 /1 byte at address 0x200001
#pragma config I D 2] = 0x03

The CONFIG and ID are specified in BYTES.

CCS8E will join 2 bytes into a 16 bit WORD in the generated hex, asm and list files. If only one byte is
defined for a word, then the default value is used for the undefined byte. The default setting of config
attributes are 1. ID locations have 0 as default value.

It is also possible to define the CONFIG and ID locations by using #pragma cdata statements. Then 16
bits words is defined directly.

CONFIG word start address:
PI1C18 : 0x300000

ID word start address:
PIC18 : 0x200000

45

CCB8E C Compiler B Knudsen Data

5 COMMAND LINE OPTIONS

The compiler needs a C source file name to start compiling. Other arguments can be added if required.
The syntax is:

CCBE [options] <src>.c [options]

-a[<asmfile>] : produce assembly file.
The default file name is <src>.asm

-A[scHDftumiJRN+N+N] : assembly file options

s: symbolic arguments are replaced by numbers

c: no C source code is printed

H: hexadecimal humbers only

D: decimal numbers only

f: no object format directive is printed

t: no tabulators, normal spaces only

u: no extra info at the end of the assembly file

m: single source line only

i: no source indentation, straight left margin

J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion

N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

-b : do not update bank selection bits (BSR register)
-bu : non-optimized updating of the bank selection bits

-CCJ<file>] : produce COD file, C mode
-CAJ<file>] : produce COD file, ASM mode

-cd : allow cdata outside program space (warning only)

-cu : use 32 bit evaluation of constant expressions

-cxc : do not search current directory for include files

-dc : do not write compiler output file <src>.occ

-D<name>[=xxx] : define macro. Equivalent to #define name xxx
-e : single line error messages (no source lines are printed).

-ed : do not print error details

-ew : do not print warning details

-eL : list error and warning details at the end

-E<N> : stop after <N> errors (default is 4).

-f<hex-file-format> : i.e. INHX8M, INHX8S, INHX16, INHX32. Default is INHX32. Note that
INHX8S use output files: <file>.HXH and <file>.HXL

-F : produce error file <src>.err
-FM : MPLAB compatible error format

-g : do not replace call by goto

46

CCB8E C Compiler B Knudsen Data

-GW : dynamic selected skip() format, warning on long format

-GD : dynamic selected skip() format (default)

-GS : always short skip() format (error if 256 byte boundary is crossed)
-GL : always long skip() format

-I<directory> : include files directory/folder. Up to 5 library directories can be supplied by using
separate -I<dir> options. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-1<dir>). The current directory is skipped when using #include <test.h>.

-L[<col><lin>] : produce list file <src>.lIst
The maximun number of columns per line <col> and lines per page <lin> can be changed. The default
setting is -L80,60

-LFSR- : do not use the LFSR instruction
-LFSR+ : use the LFSR instruction

-mcl : default ‘const’ pointer size is 1 byte (8 bits)
-mc2 : default ‘const’ pointer size is 2 bytes (16 bits)
-mrl : default RAM pointer size is 1 byte

-mr2 : default RAM pointer size is 2 bytes

-mmLl ; default pointer size is 1 byte (all pointer types)
-mmz2 : default pointer size is 2 bytes (all pointer types)

-o<name> : write hex file to name

-O<directory> : output files directory. Files generated by the compiler are put on this directory, except
when a full path name is supplied.

-p<device> : defines the chip type (i.e. -pPIC18C242 or —-p18C242). The device have to supported by a
header file (i.e. 18C242.H). No default device is available.

-g<N>: assume disabled interrupt at the <N> deepest call levels. For example, —q1 allows the main
program to use all stack levels for function calls. Disabling interrupt at the deepest call level MUST then
be properly ensured in the user application program.

-Q : write the call tree to <src>.fcs.

-r : generate relocatable assembly (no hex file)

-rsc[=][<filename.lkr>] : generate relocatable asm, and update the linker script file
-r2[=][<filename.lkr>] : generate relocatable asm, use separate logical section for interrupt routine
-rb<N>: name on RAM bank 0 is BANK<N>, default BANKO

-ro<N>: add offset <N> when generating local variable block name

-rx : make variables static by default

-S : silent operation of the compiler

-U : no optimizing

-V[rnuD] : generate variable file, <src>.var, sorted by address as default.
r: only variables which are referenced in the code

n: sort by name

u: unsorted

D: decimal numbers

-we : no warning when fixed point constants are rounded

47

CCB8E C Compiler B Knudsen Data

-wi : no warning on multiple inline math integer operations

-wm : no warning on single call to math integer function

-wO : warning on operator library calls

-Wr : no warning on recursive calls

-wS : warning (no error) when constant expression loses significant bits
-wU : warning on uncalled functions

-W : wait until key pressed after compilation

-x<file> : assembler executable: -xC:\progra~1\mplab\mpasm.exe
-X<option> : assembler option: -X/q (all options must be separate)

-zZ : optimize (inline multiplication) for size
-zD : optimize (inline multiplication) for speed (default)

Doublequotes " " allows spaces in the option:
-1"C\Program Fi |l es\ cc8e"

A path name can be written using /" if this is supported by the file system, example:
c:/conmpiler/lib/file.h

Default compiler settings:

» hex file output to file <name>.hex
e optimizing on

» extended call level is allowed

e update bank selection bits

Permanent assigned settings:
* nested comments is allowed
e charis unsigned

5.1 Options in afile
Options can be put in a file. The syntax is:

cc8e [..] +<filename> [..]

Many option files can be included, and up to 5 levels of nested include files are allowed. Options in a file
allows an unlimited number of options to be stated. Linefeed, space and TAB separates each option.
Comments can be added in the option file using the syntax:

/1 the rest of the line is a coment

Spaces can be added to each option if a space is added behind the '-' starting the option. This syntax
disables using more than one option on each line. Examples:

- DMC =1+ OP

- p 18C242 /1 comrent

-p 18C242 /1 this will not work

- p 18C242 -a [// not this either

Note that the file path is required if the file does not reside on the current directory.
String translation rules for options in a file:
1. Doublequotes " " allows spaces in the option, quotes are removed

2. Using \" means a single quote " in an option

-1"C\Program Fi |l es\ cc8e" ==> -1 C.\Program Fi | es\ cc8e

48

CCB8E C Compiler B Knudsen Data

-1C."\Program Fil es"\cc8e ==> -1 C.\Program Fi | es\ cc8e
-DWString="\"Hello\n\"" ==> -DWString="Hel l o\ n"
-DQuote="\\"" ==> -DQuote="\"'

5.2 Automatic incrementing version number in a file

The compiler is able to automatically increment one or more version numbers for each compilation.
Three different syntax alternatives are available.

1. Option : -ver#verfile.c
#i nclude "verfile.c" [/ or <verfile.c>

2. Option : -ver
#pragma versionFile /1 next include is version file
#include "verfile.c" [/ or <verfile.c>

3. Option : -ver
#pragma versionFile "verfile.c" [/ or <verfile.c>

Note that the command line option is required to make this increment happen. It is the decimal number
found at end of the included file that is incremented. The updated file is written back before the file is
compiled. No special syntax is assumed in the version file. Suggestions:

#defi ne MY_VERSION 20
#define VER_ STRING "1.02.0005"
/* VERSION : 01110 */

If the decimal number is 99, then the new number will be 100 and the file length increases by 1. If the
number is 099, then the file length remains the same. A version file should not be too large (up to 20k),
otherwise an error is printed.

Formats 2 and 3 above allows more than one version file. It is recommended to use conditional
compilation to manage several editions of the same program.

49

CCB8E C Compiler B Knudsen Data

6 PROGRAM CODE

6.1 Program Code Pages

The PIC18 devices does not use code pages. The pragma codepage/location and page type modifiers
offered by CC5X to select code pages are ignored.

6.2 Subroutine Call Level Checking

Subroutine calls are limited to 31 levels for the PIC18 devices. The compiler automatically checks that
this limit is not exceeded.

The compiler can replace CALL by GOTO to seemingly achieve deeper call levels.

1. When a function is called once only, the call can be replaced by a goto. All corresponding returns are
replaced by gotos. Call is NOT replaced by goto when;
a) The program counter (PCL) is manipulated in the user code (computed goto) in a function of
type char.
b) The number of return literal exceeds 10
c) The function is called from another codepage and the number of returns exceeds 10

2. Call followed by return is replaced by a single goto.

Stack level checking when using interrupt

CCS8E will normally assume that an interrupt can occur anywhere in the main program, also at the deepest
call level. An error message is printed if stack overflow may occur. This is not always true, because the
interrupt enable bits controls when interrupts are allowed. Sometimes the main program need all 31 stack
levels for making calls.

The -q<N> option force CC8E to assume that interrupt will NOT occur at the <N> deepest call levels of
the main program.

The application writer must then ensure that interrupt will not occur when executing functions at the
deepest <N> call levels, normally by using the global interrupt enable bit. CC8E will generate a warning
for the critical functions. (The normal error message is always generated when the application contains
more than 31 call levels.)

For example, the -q1 option generates a warning for functions calls that will put the return address at
stack level 31 (no free stack entry for interrupt). Using -q2 means an additional warning at stack level 30
if the interrupt routine requires 2 levels, i.e. contains function calls.

It is NOT recommended to use the -q<N> as a default option.

Recursive functions

Recursive functions are possible. Please note that the termination condition have to be defined in the
application code, and therefore the call level checking can not be done by the compiler. Also note that the
compiler does not allow any local variables in recursive functions. Function parameters and local
variables can be handled by writing code that emulates a stack.

A warning is printed when the compiler detects a function which call itself directly or through another
function. This warning can be switched off with the -wr command line option.

6.3 Interrupts
The PIC18 devices allows both low priority and high priority interrupts.

50

CCB8E C Compiler

B Knudsen Data

The structure of the interrupt service routine is as follows:

#i ncl ude "int 18XXX. h"

void _highPrioritylnt(void);

#pragma origin 0x8
interrupt highPrioritylntServer(void)

{

}

I

/1
/1

W STATUS and BSR are saved to shadow registers

handl e the interrupt
8 code words avail able including call and RETFIE

_highPrioritylnt();

/1

restore W STATUS and BSR from shadow regi sters

#pragma fast Mode

#pragm origin 0x18
interrupt |owPrioritylntServer(void)

{

/1

W STATUS and BSR are saved by the next macro.

i nt_save_registers

/*

NOTE : shadow regi sters are updated, but will be
overwritten in case of a high-priority interrupt.
Ther ef ore #pragnma fast Mode shoul d not be used on
lowpriority interrupts. */

/'l save remai ning registers on denmand (error/warning)
/1unsl6 sv_FSRO = FSRO;

/1unsl6 sv_FSR1 = FSRI;

//unsl6 sv_FSR2 = FSR2;

//uns8 sv_PCLATH = PCLATH,

/1 uns8 sv_PCLATU = PCLATU,

//uns8 sv_PRODL = PRODL;
//uns8 sv_PRODH = PRODH;
/1uns24 sv_TBLPTR = TBLPTR
//uns8 sv_TABLAT = TABLAT,

/1 handl e the interrupt

..

/1 restore registers that are saved
/1 FSRO = sv_FSRO;

/1 FSR1L = sv_FSR1,;

/1 FSR2 = sv_FSR2;

/1 PCLATH = sv_PCLATH;
/1 PCLATU = sv_PCLATY;
// PRODL = sv_PRODL;
/1 PRODH = sv_PRODH;
/1 TBLPTR = sv_TBLPTR;
/1 TABLAT = sv_TABLAT;

int_restore_registers // W STATUS and BSR

51

CCB8E C Compiler B Knudsen Data

/* IMPORTANT : G EH/ A E or G EL should nornmally NOT be
set or cleared in the interrupt routine. GEH/ G EL are
AUTOMATI CALLY cl eared on interrupt entry by the CPU
and set to 1 on exit (by RETFIE). Setting GEH/GEL to
1 inside the interrupt service routine will cause
nested interrupts if an interrupt is pending. Too deep
nesting may crash the program! */

void _highPrioritylnt(void)
/! save registers on demand

/1 restore registers on denand

}

The keyword interrupt allows the routine to be terminated by a RETFIE instruction. It is possible to call a
function from the interrupt routine (it have to be defined by a prototype function definition first).

The interrupt routine requires at least one free stack location because the return address is pushed on the
stack. This is automatically checked by the compiler, even function calls from the interrupt routine.
However, if the program contains recursive functions, then the call level can not be checked by the
compiler.

The interrupt vector is permanently set to address 0x8 and 0x18. The interrupt service routines can only
be located at these addresses. The #pragma origin statement have to be used in order to skip unused
program locations.

The following pragma statement will allow the interrupt routine to be placed anywhere. Note that the
compiler will NOT generate the link from address 0x8/0x18 to the interrupt routine.

#pragma unl ockl SR

Vital registers such as STATUS, BSR and W should be saved and restored by the interrupt routine.
However, registers that are not modified by the interrupt routine do not have to be saved. The file
‘int18xxx.h’ contains recommended program sequences for saving and restoring registers. Other registers
must be saved manually. The interrupt routine can also contain local variables. Storage for local variables
is allocated separately because interrupts can occur anytime.

IMPORTANT: CC8E will AUTOMATICALLY check that vital registers are saved and restored during
interrupt. This applies to:

Group 1:. WMWREG STATUS, BSR : nopbst frequent used

Group 2: FSRO, FSR1, FSR2 : indirect access

Group 3: TBLPTR, TABLAT : reading 'const' data

Group 4: PRODL, PRODH : multiplication instructions
Group 5: PCLATH, PCLATU . conputed goto

NOTE that it is not required to save registers before starting to service the interrupt. Section Custom
interrupt save and restore on page 53, shows a list of instructions that that will not disturb the main
registers.

It is possible to limit the save and restore of a specific register to a small region inside the interrupt
service routine, if this register is modified only inside this region.

52

CCB8E C Compiler B Knudsen Data

CCB8E supports CUSTOM save and restore sequences. If you want to use your own register save and
restore during interrupt, please read the following Section Custom interrupt save and restore.

The compiler will detect if the initially mentioned registers are modified during interrupt processing
without being saved and restored. The supplied macros for saving and restoring registers will only save
W, STATUS and BSR. The other registers have to be saved and restored by user code when needed.

For example, if FSRO is modified by a table or pointer access, or by direct writing, the compiler will
check that FSRO is saved and restored, also in nested function calls. Note that the FSR0 saving and
restoring can be done in a local region surrounding the indexed access, and does not need to be done in
the beginning and end of the interrupt routine.

A warning is printed if the Group 2 - 5 registers mentioned above are saved but not changed. The error
and warning messages printed can be removed:

#pragma i nterrupt SaveCheck n // no warning or error
#pragma interrupt SaveCheck w // warning only
#pragma i nterrupt SaveCheck e // error and warning (default)

Note that the above pragma also change the checking done on all registers.

Custom interrupt save and restore

It is not required to use the above save and restore macros. CC8E also supports custom interrupt
structures.

A) You may want to use your own save and restore sequence. This can be done by inline assembly. If
CCB8E does not accept your code, just insert (on your own risk):

#pragma i nterrupt SaveCheck n // no warning or error

B) No registers need to be saved when using the following instructions in the interrupt routine. The
register save checking should NOT be disabled.

bt ss(bx1); /1 BTFSS 0x70,bx1 ; access RAM SFR only
bx2 = 1; /1 BSF 0x70,bx2 ; access RAM SFR only
bx1 = 0; /1 BCF 0x70,bx1 ; access RAM SFR only
bx3 = ! bx3; /1 BTG 0x70,bx3 ; access RAM SFR only
bt sc(bx1); /1 BTFSC 0x70, bx1l ; access RAM SFR only
vs = swap(vs); [// SWAPF vs,1 ; access RAM SFR only
vs = incsz(vs); // INCFSZ vs,1 ; access RAM SFR only
nop(); /1 NOP

vs = decsz(vs); // DECFSZ vs,1 ; access RAM SFR only
clrwdt(); /1 CLRWDT

a=b; /1 MOVFF a, b ; all RAM SFR

..etc. /1 CALL, GOTO, BRA, RCALL,..

C) It is possible to enable interrupt only in special regions (wait loops) in such a way that main registers
can be modified during interrupt without disturbing the main program. The register save can then be
omitted and the save checking must be switched off to avoid the error messages:

#pragma i nterrupt SaveCheck n // no warning or error

INTERRUPTS CAN BE VERY DIFFICULT. THE PITFALLS ARE MANY.

53

CCB8E C Compiler B Knudsen Data

6.4 Startup and Termination Code

The startup code consists of a jump to main(). No variables are initiated. All initialization has to be done
by user code. This simplifies design when using the watchdog timer or MCLR pin for wakeup purposes.

The SLEEP instruction is executed when the processor exit main(). This stops program execution and the
chip enters the low power mode. Program execution may be restarted by a watchdog timer timeout or a
low state on the MCLR pin.

P1C18 also allows restart by interrupt. A RESET instruction is therefore inserted if main is allowed to
terminate (SLEEP). This ensures repeated execution of the main program.

Clearing ALL RAM locations

The internal function clearRAM() will set all RAM locations to zero. The generated code use the FSRO
register. The recommended usage is:

voi d mai n(voi d)

if (TO==1 &% PD==1/* power up */) {
WARM RESET:
clearRAM); // set all RAMto O
}

i f (condi tion)
got o WARM RESET;
}

The code size and timing depends on the actual chip. Typically 4 or 5 instruction cycles is required for
each RAM location. At 4 MHz, each instruction cycle is 1 microsecond. The PIC18C452 device contains
1536 RAM locations which means 1536*5 = 7680 instruction cycles or 7.68 milliseconds at 4 MHz.

6.5 Library Support

The library support includes standard math and support for user defined libraries. The library files
should be included in the beginning of the application, but after the interrupt routines.

/1 ..interrupt routines

#i ncl ude “mat hl6. h” /1 16 bit integer math
#include “math24f.h” // 24 bit floating point
#include “math24l b.h” // 24 bit math functions

CCS8E will automatically delete unused library functions. This feature can also be used to delete unused
application functions:

#pragma library 1
/1 library functions that are deleted if unused
#pragma library O

Math libraries

Integer: 8, 16, 24 and 32 bit, signed and unsigned
Fi xed point: 20 formats, signed and unsigned
Fl oating point: 16, 24 and 32 bit

All libraries are optimized to get compact code. All variables (except for the floating point flags) are
allocated on the generated stack to enable efficient RAM reuse with other local variables.

54

CCB8E C Compiler

B Knudsen Data

Note that fixed point requires manual worst case analysis to get correct results. This must include
calculation of accumulated error and avoiding truncation and loss of significant bits. It is often straight
forward to get correct results when using floating point. However, floating point functions requires
significantly more code. In general, floating point and fixed point are both slow to execute. Floating point
is FASTER than fixed point on multiplication and division, but slower on most other operations.

Operations not found in the libraries are handled by the built in code generator. Also, the compiler will

use inline code for operations that are most efficient handled inline.

The following command line options are available:

-we : no warning when fixed point constants are rounded

-wO : warning on operator library calls
-wi : no warning on multiple inline math integer operations

-wm : no warning on single call to math integer function

Integer libraries

The math integer libraries allows selection between different optimizations, speed or size. The libraries
contains operations for multiplication, division and division remainder.

mat h16. h
mat h24. h
mat h32. h

The min and max timng cycles are approxi mate only.

Si gn:

basic library,
basic library,
basic library,

unsi gned, S:

Sign Res=argl op arg2

A: mat h32. h
B: mat h24. h
C. mat h16. h
.B. S 24
A. S 32
A . - 32
.B. - 24
A. S 32
A . - 32
A. S/- 32
ABC - 16
AB. - 24
A . - 32
ABC - 16
.B. - 24
A . - 32
.B. - 24
A . - 32
ABC S 16
AB. S 24
A. S 32
ABC S 16
.B. S 24
A. S 32
.B. S 24

16
16
16
24
32
32
32

16
24
32
16
24
32
24
32

16
24
32
16
24
32
24

~ YN YN Y Y N~~~ L R S

~ e Y~ Y~~~

16
16
16
24
16
16
32

16
16
16
24
32

16
16
16
24

up to 16 bit
up to 24 bit
up to 32 bit

si gned

Pr ogram

Code

31
41
27
33
49
43
57

19
20
21
22
25
26
29
36

33
35
37
43
45
47
52

Approx. CYCLES
mn aver max
47 47 49
55 56 61
49 49 49
54 54 54
70 70 73
67 67 67
87 87 87
232 232 232
365 365 365
514 514 514
235 239 283
392 407 488
549 575 677
443 452 563
715 729 939
193 197 206
302 306 317
427 432 444
244 252 305
377 398 464
526 557 639
452 470 587

55

CCB8E C Compiler

B Knudsen Data

w !

nunununuunuunnm

16
16
16
24
32

32

16
24
32
16
24
32
24
32

16
24
32
16
24
32
24
32

Fixed point libraries

math16x.h : 16 bit fixed point, 8_8, signed and unsigned
math24x.h : 24 bit fixed point 8_16, 16_8, signed and unsigned
math32x.h : 32 bit fixed point 8_24, 16_16, 24_8, signed and unsigned

The libraries can be used separately or combined.

! 32

% 8
% 8
% 8
% 16
% 16
% 16
% 24
% 32

% 8
% 8
% 8
% 16
% 16
% 16
% 24
% 32

61

18
19
20
20
23
24
37
34

26
28
30
40
42
44
50
60

724

222
352
498
228
374
520
435
706

184
291
413
239
369
515
446
717

750

222
352
498
231
393
554
442
718

185
291
413
245
381
534
458
736

965

222
352
498
260
454
632
531
898

187
295
418
278
424
587
550
919

The timing stated is measured in instruction cycles (4*clock) and includes parameter transfer, call, return
and assignment of the return value. The timing values are found by executing a large number of iterations
using selected argument values.

Sign: -: unsigned, S
Sign Res=argl op arg2
mat h16x. h:

S 88=818~*2828

- 8 8=88~* 88

S 88=828/ 838

- 8 8 =828/ 828
mat h24x. h:

S 168 =16 8 * 16_8
- 16 8 = 16 8 * 16_8
S 16.8 =168/ 16_8
- 168 = 16_8 / 16_8
S 8.16 =8_16 * 8_16
- 8 16 = 8 16 * 8_16
S 8.16 =816/ 8_16
- 8 16 = 8_16 / 8_16
mat h32x. h:

S 24 8 =248"* 24 8
- 24 8 =24 8 * 24 8
S 248 =248/ 248
- 24 8 =24 8/ 248

si gned

Program

Code
44
23
46
29

Code
74
50
55
36

89
65
55
36

Code

150

123
64
43

Appr ox. CYCLES
mn aver max
50 52 56
38 38 38
422 440 507
437 453 533
mn aver max
83 87 91
71 71 71
686 718 861
709 734 901
98 102 106
86 86 86
846 895 1061
877 918 1117
mn aver max
124 130 134
112 112 112
1014 1060 1311
1045 1081 1365

56

CCB8E C Compiler B Knudsen Data

S 16_16= 16_16*16_16 135 147 153 157
- 16_16= 16_16*16_16 108 135 135 135
S 16_16= 16_16/16_16 64 1206 1275 1559
- 16_16= 16_16/16_16 43 1245 1303 1629
S 824 =2824* 824 150 162 168 172
- 824 =824* 824 123 150 150 150
S 824 =824/ 824 64 1398 1491 1807
- 824 =824/ 824 43 1445 1524 1893

Floating point libraries

mat h16f.h : 16 bit floating point basic math

mat h24f .h : 24 bit floating point basic math
mat h24lb.h : 24 bit floating point library

mat h32f .h : 32 bit floating point basic math
mat h32lb.h : 32 bit floating point library

NOTE: The timing values includes parameter transfer, call and return and also assignment of the return
value.

Basic 32 bit nath: Approx. CYCLES
Si ze mn aver max

a* b: mltiplication 131 128 132 139
a/ b: division 104 441 495 580
a + b: addition 154 38 123 193
a - b: subtraction add+5 45 130 200
int32 -> fl oat 32 67 41 66 110
float32 -> int32 80 36 74 137
Basic 24 bit math: Approx. CYCLES

Si ze mn aver max
a*b nmul tiplication 82 78 81 93
al/ b: division 87 270 297 345
a + b: addition 132 32 104 161
a - b: subtraction add+5 39 111 168
int24 -> float24 52 33 60 95
float24 -> int24 70 31 68 112
Basic 16 bit nath: Approx. CYCLES

Si ze mn aver max
a* b: mltiplication 51 46 49 57
al/ b: division 73 121 136 151
a + b: addition 104 26 80 123
a - b: subtraction add+5 33 87 130
intl6 -> fl oat 16 58 37 65 98
floatl6 -> intl6 53 26 57 96

The following operations are handled by inline code: assignment, comparing with constants,
multiplication and division by a multiple of 2 (i.e. a*0.5, b * 1024.0, c/4.0)

57

CCB8E C Compiler B Knudsen Data

Floating point library functions

float24 sqrt(fl oat?24); /1 square root
I nput range: positive nunber including zero
Accuracy: ME: 1-2, relative error: < 3*10**-5 (*)
Timng: mn aver max 637 706 782 (**)
Si ze: 153 words + basic 24 bit math library
M ni mum conpl et e program exanpl e: 382 words

float32 sqrt(float32); /'l square root
| nput range: positive nunber including zero
Accuracy: ME: 1-2, relative error: < 1.2*¥10**-7 (*)
Timng: mn aver max 1699 1893 2200 (**)
Si ze: 168 words + basic 32 bit math library
M ni mum conpl et e program exanpl e: 580 words

float24 | og(float24); /1 natural log function
| nput range: positive nunber above zero
Accuracy: Me 1, relative error: < 1.5%10**-5 (*)
Timng: mn aver max 1210 1714 1985 (**)
Si ze: 210 words + basic 24 bit math library
M ni mum conpl et e program exanpl e: 584 words

float32 | og(float32); /1 natural log function
| nput range: positive nunber above zero
Accuracy: Me: 1, relative error: < 6*10**-8 (*)
Timng: mn aver max 1713 2377 2699 (**)
Si ze: 264 words + basic 32 bit math library
M ni mum conpl et e program exanpl e: 743 words

float24 | 0gl0(fl oat24); /1 10gl0 function
| nput range: positive nunber above zero
Accuracy: MeE 1-2, relative error: < 3*10**-5 (*)
Timng: mn aver max 1293 1794 2067 (**)
Si ze: 15 words + size of |og()
M ni mum conpl et e program exanpl e: 599 words

float32 | 0gl0(fl oat32); /1 10gl0 function
| nput range: positive nunber above zero
Accuracy: ME: 1-2, relative error: < 1.2*¥10**-7 (*)
Timng: mn aver max 1840 2502 2793 (**)
Size: 17 words + size of |og()
M ni mum conpl et e program exanpl e: 760 words

float 24 exp(float24); /1 exponential (e**x) function
I nput range: -87.3365447506, +88.7228391117
Accuracy: ME: 1, relative error: < 1.5*10**-5 (*)
Timng: mn aver max 903 1539 1725 (**)
Si ze: 247 words + 95(floor24) + basic 24 bit math
M ni mrum conpl et e program exanpl e: 641 words

float 32 exp(float32); /1 exponential (e**x) function
I nput range: -87.3365447506, +88.7228391117
Accuracy: ME: 1, relative error: < 6*10**-8 (*)
Timng: mn aver max 1920 2073 2301 (**)
Si ze: 317 words + 134(floor32) + basic 32 bit nath

58

CCB8E C Compiler B Knudsen Data

M ni mum conpl et e program exanpl e: 834 words

fl oat 24 explO(fl oat24); /1 10**x function
I nput range: -37.9297794537, +38.531839445
Accuracy: ME: 1, relative error: < 1.5*10**-5 (*)
Timng: mn aver max 917 1610 1739 (**)
Si ze: 254 words + 95(floor24) + basic 24 bit math
M ni mum conpl et e program exanpl e: 648 words

float 32 explO(fl oat32); /1 10**x function
I nput range: -37.9297794537, +38.531839445
Accuracy: MeE: 1, relative error: < 6*10**-8 (*)
Timng: mn aver max 1565 2086 2335 (**)
Size: 323 words + 134(floor32) + basic 32 bit nath
M ni mum conpl et e program exanpl e: 840 words

float 24 sin(float24); /1 sine, input in radians
float 24 cos(fl oat24); /1 cosine, input in radians
I nput range: -512.0, +512.0
Accuracy: error: < 3*10**-5 (*)
The relative error can be |larger when the output is
near 0 (for exanple near sin(2*Pl)), but the
absolute error is lower than the stated val ue.
Timng: mn aver nmax 374 1195 1396 (**)
Si ze: 211 words + basic 24 bit math library
M ni mum conpl et e program exanpl e: 563 words

float 32 sin(float32); /1 sine, input in radians
float 32 cos(float32); /1 cosine, input in radians
| nput range: -512.0, +512.0 : Can be used over a
much wi der range if |ower accuracy is accepted
(degrades gradually to 1 significant decinmal digit
at input val ue 10**6)
Accuracy: error: < 1.2*10**-7 (*)
The relative error can be larger when the output is
near 0 (for exanple near sin(2*Pl)), but the
absolute error is lower than the stated val ue.
Timng: mn aver max 1789 2193 2529 (**)
Si ze: 352 words + basic 32 bit math library
M ni mum conpl et e program exanpl e: 807 words

(*) The accuracy of the math functions have been checked using many thousands of calculations. ME=1
means that the mantissa value can be wrong by +/- 1 (i.e. 1 bit). The relative error is then 1.5*10™ for 24
bit floating point, and 6*10°® for 32 bit floating point. Only a small fraction of the calculations may have
the stated error.

(**) The min and max timing stated have been found by simulating many thousands calculations.

However, the min and max limits are approximate only. All timing is measured in instruction cycles.
When using a 4 MHz oscillator, one instruction cycle is 1 microsecond.

Fast and compact inline operations
The compiler will use inline code for efficiency at some important operations:

Integer:
- converting to left and right shifts; a*8,a/2

59

CCB8E C Compiler B Knudsen Data

- selecting high/low bytes/words: a / 256, a % 256, b % 0x10000
- replacing remainder by AND operation: a % 64, a % 0x80

Fixed Point:
- converting to left and right shifts: a*8,a/2
- all operations except multiplication and division are implemented inline

Floating point:

- add/sub (incr/decr) of exponent: a * 128.0,a/2
- operations==and!=: a==b,a!=0.0

- comparing with constants; a >0, a<=10.0

- inverting the sign bit: a=-a,b=-a

Combining inline integer math and library calls
It is possible to force the compiler to generate inline integer math code after a math library is included.

This may be useful when speed is critical or in the interrupt service routine. Functions with parameters or
local variables are not reentrant because local variables are mapped to global addresses, and therefore the
compiler will not allow calls from both main and the interrupt service routine to the same function.
unsl6 a, b, c;
a=>b*c; /1 inline code is generated
#i ncl ude "nat h16. h"
a=»>b* c; /1 math library function is called
#pragma inlineMath 1
a=>b* c /1 inline code is generated
#pragma inlineMath 0O

a=»>b* c; /1 math library function is called

Inline type modifier on math operations

It is possible to combine inline integer math and math library functions without making a special purpose
math library. This is done by stating that the selected operations are inline BEFORE the standard math
library is included. It is optimal to use inline code when there is only one operation of a certain type.

inline uns24 operator * (uns24 argl, uns24 arg2);
#i ncl ude "mat h24. h"

The math prototypes are found in the beginning of the standard math libraries. Just remember to remove
the operator name before adding the inline type modifier.

A warning is printed when there is ONE call to a unsigned integer math library function. The warning can
be disabled by the -wm command line option.

NOTE that the inline type modifier is currently IGNORED, except for the math operations.

Detection of multiple inline math integer operations

The compiler will print a warning when detecting more than one inline math integer operation of the
same type. Including a math library will save code, but execute slightly slower. Note that assembly code
inspection and type casts are sometimes needed to reduce the number of library functions inserted.

The warning can be disabled by the -wi command line option.

60

CCB8E C Compiler B Knudsen Data

Fixed point example

#pragma chi p Pl Cl8C242

#i ncl ude "nmat h24x. h"

unsl6 dat a;

fixedl6_8 tx, av, ng, a, vx, prev, kp;

voi d mai n(voi d)

{
vx = 3.127;
tx += data; /1 automatic type cast
data = kp; /1 assign integer part
if (tx < 0)
tx = -tx; /1 make positive
av = tx/20.0;
mg = av * 1.25;
a =ng * 0.98; /1 0.980469, error: 0.000478
prev = vx;
vx = a/5.0 + prev;
kp = vx * 0.036; /1 0.03515626, error: 0.024
kp = vx / (1.0/0.036); // 27.7773437
}

CODE: 266 code words including library (129)

Floating point example

CODE: 596 code words including library (424). The statements are identical to the above fixed point
example to enable code size comparison.

#pragma chi p Pl C18C242

#i ncl ude "mat h24f . h"

unsl1l6 dat a;

float tx, av, ng, a, vx, prev, kp;

voi d mai n(voi d)

{
I nit FpFl ags(); /1 enabl e roundi ng as default
vx = 3.127,
tx += data; /1 automatic type cast
data = kp; /1 assign integer part
if (tx <0)
tx = -tx; /1 make positive
av = tx/20.0;
mg = av * 1.25;
a =nm * 0.98;
prev = vx;
vx = a/5.0 + prev;
kp = vx * 0.036;
kp = vx / (1.0/0.036);
}

How to save code
Choices that influence code size:

1. What libraries to include (24/32 bit float or fixed point)

61

CCB8E C Compiler B Knudsen Data

2. Rounding can be disabled permanently. Note that this will reduce the accuracy of the math functions
slightly.

#def i ne DI SABLE_ROUNDI NG

#i ncl ude "mat h32f. h"

3. Optimization. Note that optimize for speed is default. Also note that the code saving is small.
#define FP_OPTIM SIZE // optimze for SIZE
#define FP_OPTIM SPEED // optimze for SPEED: default

The recommended strategy is to select a main library for the demanding math operations. Different
floating and fixed point operations should only be mixed if there is a good reason for it.

Mixing different data types is possible to save code and RAM space. For example using a small type in
an array and a larger type for the math operations.

So, first decide what math library to include. For floating point the main decision is between the 24 bit or
the 32 bit library. If you use 32 bit operations, this can be combined with 24 (and 16) bit floating point
types to save RAM.

Automatic type conversion:
i nteger <-> float/double
i nteger <-> fixed point
fl oat <-> double
fixed point <-> float/double : requires additional functions

In general, using the smallest possible data type will save code and RAM space. This must be balanced
against the extra work to analyze the program to prevent overflow and too large accumulated errors. If
there is plenty of code space in the controller, and timing is no problem, then large types can be used.
Otherwise analysis is required to get optimal selections.

It is recommended to keep the number of called library functions as low as possible. Although function
selection is done automatically by the compiler, it is possible to use type casts or even make a custom
library by copying the required functions from existing libraries. All libraries are written in C. CC8E can
print a warning for each operator function that is called (option -wO).

6.6 Inline Assembly
The CC8E compiler supports inline assembly located inside a C function. There are some restrictions

compared to general assembly. First, it is only possible to CALL other functions. Second, GOTO is
restricted to labels inside the function.

#asm
assenbly instructions
#endasm

Features:

e many assembly formats

e equ statements can be converted to variable definitions
» macro and conditional assembly capabilities

» call C functions and access C variables

» C style comments is possible

» optional optimization

e optional automatic bank updating

Inline assembly is NOT C statements, but are executed in between the C statements. It is not
recommended to write the code like this:

62

CCB8E C Compiler B Knudsen Data

i f (a==b)
#asm
nop // this is not a C statenent (by definition)
#endasm

a=0;, // THHSis the conditional statenent!!!

Inline assembly supports DW. This can be used to insert data or special instructions. CC8E will assume
that the data inserted are instructions, but will not interpret or know the action performed. Bank selection
bits are assumed to be undefined when finishing executing DW instructions.

#asm

DW OxFFFF ; any data or instruction (2 bytes stored)
DW OxFFFF, 0, 0xC000 ; multiple words

#endasm

Assembly instructions are not case sensitive. However, variables and symbols requires the right lower or
upper case on each letter.

cl rwdt

Nop
NOP

The supported operand formats are:

k EXPR

f,a VAR + EXPR, A

f,d,a VAR + EXPR, D, A

f,b,a VAR + EXPR, EXPR, A

fs,fd VAR + EXPR, VAR + EXPR

f,k VAR + EXPR, EXPR

a LABEL or FUNCTI ON_NANMVE

EXPR := [EXPR OP EXPR | (EXPR) | -EXPR]

EXPR := a valid C constant expression, plus assenbly extensions

Constant formats:

MOVLW 10 ; decimal radix is default
MOVLW OxFF ; hexadeci mal

MOVLW 0b010001 ; binary (C style)
MOVLW " A ; a character (C style)
MOVLW . 31 ; deci mal constant

MOVLW .31 + 20 - 1 ; plus and mnus are all owed
MOVLW H FF' ; hexadeci mal (radix 16)
MOVLW h' OFF'

MOVLW B' 011001’ ; binary (radix 2)

MOVLW b' 1110. 1101"

MOVLW D' 200 ; decimal (radix 10)

MOVLW d' 222!

MOVLW MAXNUMRAEXP ; defined by EQU or #define
; MOVLW 22h ; NOT al | oned

Note that the specification of access bank (,0) or banked access (,1) is OPTIONAL, and automatically
decided by the variable accessed. If this information is added, then the compiler checks that it is equal to
the access required by the variable. Variables residing at address 0-0x7F and 0xF80-0xFFF must use the
access bank. All other accesses must be banked.

63

CCB8E C Compiler B Knudsen Data

decf ax,WO // load result into W ax in access bank
decf ax,W1 // load result into W ax in bank 0 .. 15
decf ax,W // load result into W inmplicit banked/accessbank

Formats when loading then result into the W register (implicit banked/accessbank):

decf ax,0 // load result into W
iorwf ax,w// load result into W
iorwf ax, W

Formats when writing the result back to the RAM register (implicit banked/accessbank):

decf ax

decf ax,1
iorwf ax,f
iorwf ax, F

Bit variables are accessed by the following formats (implicit banked/accessbank):

bcf Carry

bsf Zero_

bcf ax, B2 ; B2 defined by EQU or #define
becf ax, 1

bcf STATUS, Carry ; Carry is a bit variable

Arrays, structures and variables larger than 1 byte can be accessed by using an offset.

clrf a32 ; uns32 a32; // 4 bytes
clrf a32+0

clrf a32+3

clrf tab+9 ; char tab[10];

; clrf tab-1 ; not all owed
Labels can start anywhere on the line:

got o LABEL4
LABEL1

: LABEL2
LABEL3:
LABEL4 nop
nop

goto LABELZ2

Functions are called directly. A single 8 bit parameter can be transferred using the W register.

nmovl w 10
call f1 ; equivalent to f1(10);
rcall f1 ; equivalent to f1(10);

The ONLY way to transfer multiple parameters (and parameters different from 8 bit) is to end assembly
mode, use C syntax and restart assembly mode again.

#endasm

func(a, 10, e);
#asm

64

CCB8E C Compiler B Knudsen Data

The EQU statement can be used for defining constants. Assembly blocks containing EQU's only can be
put outside the functions. Note that Equ constants can only be accessed in assembly mode. Constants
defined by #define can be used both in C and assembly mode.

#asm

BO equ 0

B7 equ 7
MAXNUMR 4 EXP equ OxFF
#endasm

Equ can also be used to define variable addresses. However, the compiler do not know the know the
difference between an Equ address and an Equ constant until it is used by an instruction. When an Equ
symbol is used as a variable, that location is disabled for use by other variables. The symbol then changes
from an Equ symbol to a variable symbol and is made available in C mode also. There is a slight danger
in this logic. DO NOT USE a series of Equ's to define an array. If one of the locations are not read or
written directly, the compiler will not know that it is a part of an array and may use it for other purposes.
Reading and writing through FSR and INDF is not used to transform equ definitions. Therefore, define
arrays by using C syntax (or #pragma char).

/'l enable equ to variable transfornation
#pragma asnRvar 1

Al equ 0x20

CLRF Al
;Al is changed froman equ constant to a char variable

Comments types allowed in assembly mode:

NOP ; a conment

NOP /1 C style coments are also valid

/*

CLRWDT

NOP /* nested C style comments are also valid */
*/

Conditional assembly is allowed. However, the C style syntax have to be used.

#i f def SYMBOLA
nop

t#el se

cl rwdt

#endi f

Most preprocessor statements can be used in assembly mode:
#pragma return[] = "Hell o"

C style macros can contain assembly instructions, and also conditional statements. Note that the compiler
does not check the contents of a macro when it is defined.

#defi ne UUA(a, b)\

cl rwdt\
movliw a \

#if a == 10 \
nop \
#endi f \

65

CCB8E C Compiler B Knudsen Data

clrf b

UUA(10, ax)
UUA(9, PORTA)

Note that labels inside a makro often need to be supplied as a parameter if the makro is used more than
once. Also note that there should always be a backslash '\' after a #endasm in a macro to avoid

error messages when this macro is expanded in the C code. This applies to all preprocessor statements
inside macro's.

#define wait X(uSec, LBM \

#asm \
LBM \
NOP \
NOP \
DECFSZ uSec, 1 \
GOTO LBM \
#endasm \

wai t X(i, LL1):
wai t X(i, LL2):

The compiler can optimize and perform bank updating in assembly mode. This does not happen
automatically, but has to be switched on in the source code. It is normally safe to switch on optimization
and bank updating. Instructions updating the bank register are removed before the compiler insert new
instructions. If the assembly contains critical timing, then the settings should be left off, at least in local
regions.

/1 default |ocal assenbly settings are b- o-
#pragm asm default b+ o+ // change default settings

#asm /1 using default |ocal settings
#endasm

#asm b- o- /1 define local settings

#pragm asm o+ // change setting in assenbly node
#endasm /1 end current |ocal settings

Interpretation:

o+ : current optimzation is perforned in assenbly nobde

0- : no optimization in assenbly node
b+ : current bank bit updating is performed in assenbly node
b- : no bank bit update in assenbly nobde

Note that b+ o+ means that updating is performed if the current setting in C mode is on. Updating is
NOT performed if it is switched off in the C code when assembly mode starts. The command line options
-b, -u will switch updating off globally. The corresponding source code settings are then ignored.

Direct coded instructions
The file “hexcodes.h” contains C macro's that allow direct coding of instructions.

Note that direct coded instructions are different from inline assembly seen from the compiler. The

compiler will view the instruction codes as values only and not as instructions. All high level properties
are lost. The compiler will reset optimization, bank updating, etc. after a DW statement.

66

CCB8E C Compiler B Knudsen Data

Example usage:
#i ncl ude "hexcodes. h"

// 1. In DWstatenents:

#asm

DW __ SLEEP /'l Enter sleep node

DW __ MOWAF(__ | NDFO, 0) /1l Store indirectly

DW __ANDLW 0x80) /[l W= W& 0x80;

DW __ DECF(__FSROL, __F, 0) /1 Decrenent FSROL (access bank)

DW __ CLRF(OxFF, 1) /1 Clear ram (banked access)

DW _BCF(__STATUS, Carry,0) // Clear Carry bit

DW _ BRA(3) /1 Branch 3 instruction words forward
DW _ BRA(0) /1 Branch 0 (= no operation)

DW _ BRA(-1) /1 Branch -1 backward (infinite | oop)
DW _ BC(-2) /1 Branch on Carry 2 words backwards
DW __ MOVFF(__INDFO, _ INDF1l) // Move byte indirectly

DW _ LFSR(0, 0x130) /1 Load 12 bit constant into FSRO
DW __ GOrQ(0) /!l Goto byte address 0O

#endasm

// 2. In cdata statenents:
#pragma cdata[1] = _ GOTQ(Ox3FF)

Generating single instructions using C statements

The compiler will normally generate single instructions if the C statements are simple. Remember to
inspect the generated assembly file if the application algorithm depends upon a precisely defined
instruction sequence. The following example show how to generate single instructions from C code.

nop(); /1 NOP

f =W [l MOV f

f =0; /1 CLRF f
w=1f - W /1 SUBWF f, W
f=f-WwW /1 SUBWF f
w=f - 1; // DECF f,W
f =f - 1 /1 DECF f
w=r~Ff | W Il 1ORW f, W
f=f] W [1 ORWF f
w=1f &W /1 ANDWF f, W
f=f &W /1 ANDWF f
w=f ~w /1 XORWF f, W
f=frWwW /1 XORWF f
w=f + W /1 ADDWF f, W
f=f +W /1 ADDWF f
W= f; /1 MOVF f, W
W= f ~ 255; /] COVF f, W
f = f ~ 255 /1 COVF f
W= f + 1; /1 INCF f, W
f =f + 1; /1 1 NCF f
W= decsz(i); [// DECFSZ f,W
f = decsz(i); [// DECFSZ f
W= rr(f); /1 RRCF f, W
f =rr(f); /'l RRCF f
W= rl(f); /[l RLCF f, W
f =rl(f); /1 RLCF f
W= swap(f); /1 SWAPF f, W
f = swap(f); /1 SWAPF f

67

CCB8E C Compiler

B Knudsen Data

incsz(i);
incsz(i);
0;

1;

= Ib;
btsc(b);

bt ss(b);

sl eep();
clrwdt () ;
return 5;
s1();

goto X;

W = 45;

W= W]| 23;
W= W& 53;
W= wWn 12;
W= 33 + W
W= 33 - W
return;
retint();

W= addWFC(f);

wW
f
b
b

(on

f = addWFC(f);
= subWrB(f);
f = subWrB(f);
W = subFWB(f);
f = subFWB(f);
W= rrnc(f);
f =rrnc(f);
W= rlnc(f);
f =rlnc(f);
W = decsnz(i);
f = decsnz(i);
W= incsnz(i);
f = incsnz(i);
f = negate(f);
W = decadj (W ;
mul tiply(f);
mul tiply(50);
ski pl fEQ(f);
ski pl fLT(f);
ski pl fGT(f);

ski pl f Zero(f);
pushSt ack();
popSt ack();
sof t Reset () ;

t abl eRead();

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
11
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
11
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

tabl eReadl nc();//
t abl eReadDec();//

t abl eReadPrel nc();

tableWite();

| NCFSZ f, W
| NCFSZ f
BCF f, b
BSF f,b
BTG f,b
BTFSC f, b
BTFSS f, b
SLEEP
CLRVWDT
RETLW 5
CALL s1
&Oro X
MOVLW 45

| ORLW 23
ANDLW 53
XORLW 12
ADDLW 33
SUBLW 33
RETURN
RETFI E
ADDWFC f, W
ADDWFC f
SUBWFB f, W
SUBWFB f
SUBFWB f, W
SUBFWB f
RRNCF f, W
RRNCF f
RLNCF f, W
RLNCF f
DCFSNZ f, W
DCFSNZ f

I NFSNZ f, W
| NFSNZ f
NEGF f

DAW

MULWF f
MULLW 50
CPFSEQ f
CPFSLT f
CPFSGT f
TSTFSZ f
PUSH

POP

RESET
TBLRD *
TBLRD *+
TBLRD *-

/1 TBLRD +*

[/ TBLWI *
tableWitelnc();// TBLW *+
tabl ewiteDec();// TBLWI *-
tableWitePrelnc(); // TBLWI +*

68

CCB8E C Compiler B Knudsen Data

6.7 Optimizing the Code

The CC8E compiler contains an advanced code generator which is designed to generate compact code.
For example when comparing a 32 bit unsigned variable with a 32 bit constant, this normally requires 12
instructions. When comparing a 32 bit variable with 0, this count is reduced to 5. The code generator
detects and take advantage of similar situations to enable compact code.

Most of the code is generated inline, even multiplication and division. However, if many similar and
demanding math operations have to be performed, then it is recommended to include a math library.

Optimized Syntax
Testing multiple bits of 16 bit variables or greater:

unsl6 x;

if (x & OxFO)

if (!'(x & 0x30))

if ((x & OxFO0) == 0x300)
if ((x & Ox7F00) < 0x4000)

Testing single bits using the '&' operator:

if (a & 0x10) /| BTFSC/ BTFSS a, 4
if (!(a & 0x80)) /| BTFSS/ BTFSC a, 7
if ((al6 & 0x200) == 0) // BTFSS/ BTFSC al6+1, 1

Peephole optimization

Peephole optimizing is done in a separate compiler pass which removes superfluous instructions or
rewrite the code by using other instructions. This optimization can be switched off by the -u command
line option. The optimization steps are:

1) redirect goto to goto

2) remove superfluous gotos

3) replace goto by skip instructions

4) replace INCF and DECF by INCFSZ and DECFSZ
5) remove instructions that affects the zero- flag only.
6) remove superfluous updating of PAQ and PA1

7) remove other superfluous instructions

8) remove superfluous loading of the W register

9) to be defined

10) inserts TSTFSZ, CPFSEQ

11) inserts branch

NOTE: Optimization can also be switched on or off in a local region. Please refer to the #pragma
optimize statement for more details.

6.8 Linker Support

CC8E supports the relocatable assembly format defined by Microchip. This means that MPLINK can be
used to link code modules generated by CC8E, including MPASM assembly modules. There are many
details to be aware of. It is therefore recommended to read this file carefully. The important issues are
related to:

» external functions and variables
e ram bank updating

« call level checking

* MPLINK script files

69

CCB8E C Compiler B Knudsen Data

e MPLAB integration

The command line option "-rsc' (or -r2' or '-r') makes CC8E generate relocatable assembly. This file is
then assembled by MPASM and linked together with other C and assembly modules by MPLINK. This
can automated by using 'make' to build the whole application in several stages.

NOTE that if you need the application program to be as compact as possible, then it is recommended to
use only ONE C module. Source code modularity is obtained by using many C files and include these
in the main C module by using #include.

Command line options:
-rsc[=<file.lkr>] : generate rel ocatable assenbly and use separate
| ogi cal sections for the interrupt routines. Al so generate or update
the conplete linker script file. If the Iinker script file nane is
not specified, then the C nodule nanme will be used with the extension
".Ikr'. The script file will only be generated when conpiling the
nodul e contai ni ng main().

-r2[=][<file.lkr>] : generate rel ocatable assenbly with separate

| ogi cal sections for the interrupt routines. A partial |inker script
file (containing dynam c definitions of page and i ntserv8 or

i ntservl8) is generated and should be included in the main |inker
script file. If the partial linker script file name is not specified,
then the C nodule name will be used with the extension '.lkr'.

-r : generate relocatable assenbly wi thout separate |ogical sections
for the interrupt routines. NO linker script file is generated.

-rx : make variables static by default

External assembler options
-x<file>: assenbler executable: -xC\progra~1\npl ab\ npasm exe
- X<option>:. assenbler option: -X/'q (all options nust be separate)

Assembly file options (normally not used):
-rb<N> : nane on RAM bank O i s BANK<N>, default BANKO
-ro<N> : add of fset <N> when generating |ocal variable block nane

Using MPLINK or a single module

Currently it is best to use a single C module for several reasons. MPLINK support was mainly offered to
enable asm modules to be added.

Limitations when using MPLINK:

1. Asm mode debugging only (C source code appear as comments)

2. Multiple C modules does not allow the static local variable stack to be calculated for the whole
program, meaning that much more RAM space will be used for local variables.

3. Call level checking must be done manually

4. Computed goto will be slower because the compiler can not check 256 byte address boundary
crossing.

5. Inefficient RAM bank updating, meaning mode code.

The main reasons for using multiple modules is probably:

1. Faster build: However, CC5X is increadible fast. MPASM doing much simpler tasks is 3 times
slower.

2. Module separation: However, sufficient module separation can be achieved by using multiple C files.

3. Asm modules: Inline ASM is supported by CC5X.

70

CCB8E C Compiler B Knudsen Data

C modules can be merged into a single module and still be viewed as single modules. Such C
modules can be used in several projects without modification. The procedure is as follows:

1. Include the separate modules into the main module:
#i ncl ude "nodul el. c"
#i ncl ude "nodul e2. c

Il ..

#i ncl ude "nodul eN. c"
Il ..

void main(void) { .. }

2. Each module should include the required header files in the beginning of the module. This can be
private or common header files:

#i ncl ude "header1.c"
#i ncl ude "header2.c"
Il ..

#i ncl ude "headerN. c"
/1

/1 nmodul e functions

3. If the same header file is included in more than one module, it will be required to prevent compiling
the same header file definitions more than once. This is done by using the following header file framing:

#i fndef _HEADER N _Synbol /1 the first header file line

#defi ne _HEADER N _Synbol /1 conpile this Iine once only
1.

/1 header definitions as required

/1

#endif /1 the |l ast header file |ine

Restrictions on the demo edition
There are some restrictions when using relocatable assembly on the CC8E DEMO:

1. Asingle demo C module is possible, plus many assembly modules.

2. The demo C module can call EXTERN functions and use extern variables defined in assembly
modules.

3. The demo C module is NOT allowed to export extern functions or variables.

4. main() must be defined in the demo C module. The interrupt routines should preferably also be
defined in the demo C module.

5. The demo C module can maximum contain 1024 instructions

Variables and pointers

Variables defined in other module can be accessed. CC8E needs to know the type, and this is done by
adding 'extern' in front of a variable definition.

extern char a;

All global variables that are not 'static' are made available for other modules automatically. CC8E inserts
'GLOBAL' statements in the generated assembly file.

CCS8E will generate a'MOVLW LOW (var_name+<offset>)' when using the address operators
'‘&var_name'.

71

CCB8E C Compiler B Knudsen Data

Global bit variables is a challenge. It is recommended to first define a char variable and then use 'bit bx @
ch.0;". Otherwise CC8E will defines a global char variable with random name. This name have the format
'_Gbit<X><X>" where <X> is (more or less) random selected letters. This variable is reserved by a RES
statement and used in the assembly file when generating relocatable assembly.

bit bi;
bl = 0: // BCF _GbitQB+0,0

The variable file (*.var) is slightly modified when generating relocatable assembly. Note that most
addresses stated in the variable file are reallocated by MPLINK.

Option -rx will make variables static by default. This means that variables will not be visible outside the
module unless 'extern’ is added in front of the type definition. Note that option -rx requires that an extern
pointer definition need to be stated before the allocation of the pointer.

extern char *px; [// definition only, no allocation of space
char *px; /1 space is allocated for the pointer

IMPORTANT: ‘const' data can not be 'extern' because MPLINK does not support the const access
functions generated by CC8E. Identifiers with the ‘const’ modifier will not be made visible outside the
module. This also applies to struct objects with const pointers.

IMPORTANT: Allocation of pointers is slightly different when using relocatable assembly. The main
reason for this is that CC8E can not trace how addresses are assigned to pointers between different
modules. There is no change on local and static pointers. An extern visible pointer without a size modifier
(sizel/size2) will be 16 bit wide.

An extern visible pointer with the sizel modifier will access addresses from 0 - 255. An error is printed if
the pointer is assigned higher addresses. However, it is possible to force an extern 8 bit pointer to access a
specific bank by a pragma statement:

extern sizel char *px;
#pragm assume *px in ranbank 2

Note that 8 bit pointers in a struct can only access addresses from 0 - 255, even if the struct is static or
local.

Local variables

CCB8E uses a different naming strategy on local variables when generating relocatable assembly. CC8E
reserves a continuous block in each ram bank (or access bank) and use this name when accessing local
variables.

IMPORTANT RESTRICTION: The main() routine, interrupt service routines and all extern functions are
defined as independent call trees or paths. A function called from two independent call paths can not
contain local variables or parameters because address sharing can not be computed in advance. CC8E
detects this and generates an error message.

The name of the local RAM blocks are _LcRA, LcRB, etc. The last letter is related to the RAM bank
and the second last to the module name. Adding option -rol will for example change name _LcAA to

_LcBA. This can be used if there is a collision between local variable block defined in separate C
modules. MPLINK detects such collisions.

-ro<N> : add of fset <N> when generating |ocal variable block nane

72

CCB8E C Compiler B Knudsen Data

Local variables for external available functions are allocated separately. One block for each extern
function. This often means inefficiently use of RAM. It is therefore recommended to use 'extern’ only on
those functions that have to be extern, and use few local variables in the extern functions. Also consider
using global variables.

Header files

It is recommended to make common header files that contains global definitions that are included in all C
modules. Such files can contain definitions (#define), 10 variable names, etc.

Using RAM banks

RAM bank definitions only applies to devices with RAM located in more than one bank.

Note that the RAM bank of ALL variables have to be known (defined) during compilation. Otherwise the
bank bit updating will not be correct. The bank is defined by using "#pragma rambank' between the
variable definition statements, also for ‘extern’ variables. An alternative is to use the bank type modifier
(bank0..bank3, shrBank).

#pragma ranmbank 0
char a, b;

#pragma ranbank 1
extern char arrayl[10];

#pragma ranbank -
extern char ex; /] access RAM

Bank bit updating

CCB8E use an advanced algorithm to update the bank selection bits. However, it is not possible to trace
calls to external functions. Therefore, calling an external function or allowing incoming calls makes
CCB8E assume that the bank bits are undefined. This often means that more code compared to the optimal
bank bit update strategy.

It is therefore recommended to only use ‘extern’ on those functions that have to be extern, and keep the
number of calls between modules to a minimum.

Functions

Functions residing in other modules can be called. Functions defined can be called from other modules
(also from assembly modules).

NOTE that ALL functions that are called from another module needs an ‘extern’ first. This is an extra
requirement that is optional in C. The reason is that the compiler needs to decide the strategy on bank bit
updating and local variables allocation. It is most efficient to use FEW extern functions.

extern void funcl(void); // defined in another nodule

extern void func2(void) { .. } [/ can be called from another nodul e
NOTE that extern functions can only have a single 8 bit parameter which is transferred in W (not
const/pointer/bit). This is because local storage information is not shared between modules. The return

value can not be larger than 8 bit for the same reason (bit values are returned in Carry).

Supported extern function parameter types: char, uns8, int8
Supported extern function return types: char, uns8, bit

73

CCB8E C Compiler B Knudsen Data

CCS8E inserts a 'GLOBAL <function>' in the generated assembly code for all external available functions.
'EXTERN <function>"is inserted for functions defined in other modules.

If the C module contains main(), then a 'goto main' is inserted in the STARTUP section.

Using code sections

It is possible to use #pragma origin and #pragma cdata when the compiler know the section the following
code should be placed in. The compiler automatically knows the STARTUP, ISERVERS, ISERVER18
and PROG sections. In addition it is possible to define sections manually in the C file. These definitions
will also automatically appear in the script file when using the -rsc option.

#pragm sectionDef |DLOC:idl ocs 0x200000 - 0x200007 PROTECTED
#pragm sectionDef CONFIGS: config 0x300000 - 0x30000D PROTECTED
#pragma secti onDef EEPROM eedata OxFO0000 - OxFOOOFF PROTECTED
#pragm sectionDef APPSEC. appdef1 0x1000 - Ox102F

#pragma sectionDef PROG

Note the difference between using:

#pragma origin 0x1000 => generates: APPSEC CODE 0x1000
and

#pragma origin SECTI ON(APPSEC) => generates: APPSEC CODE

The first origin says "from the start of the APPSEC section”, while the last origin says "somewhere" in
the APPSEC section". Locating code from a specific address is sometimes useful, but note that MPLINK
does not allow the above origin statements to be mixed for code belonging to the same section.

If the sections starting at address 0x200000 and 0x300000 are not defined, then the compiler will
automatically use section names IDLOCS and CONFIG. However, it is recommended to use the above
definitions in the C file, especially when using the -rsc option.

The compiler estimate the current hex address, and use this to detect when to insert the ISERVERS and
ISERVER18 sections when using the '-rsc’ or -r2' options. Sometimes these sections should not be
inserted. This problem will occur infrequently and is easily detected because MPLINK will report the
conflict. This problem can be solved by inserting the following statements at the right place:

#pragma sectionDef PROG
#pragma ori gi n SECTI ON(PROG)

Interrupts

CCB8E requires that the interrupt functions are located at address 8 and 0x18. Writing the interrupt service
routine in C using MPLINK will require some care.

The best method is to use SEPARATE logical sections in the linker script file for the interrupt service
routines. This is a robust solution. CC8E will generate a full (or partial) script file to avoid manual
address calculation. Node that #pragma origin 0x8 and 0x18 must be used for the interrupt routines.

It is also possible to design an assembly module containing the interrupt service routines. Information on
how to do this should be found in the MPASM/MPLINK documentation.

Call level checking

CCS8E will normally check that the call level is not exceeded. This is only partially possible when using
MPLINK. CC8E can ONLY check the current module, NOT the whole linked application.

When calling an external function from the C code, CC8E will assume that the external call is one level
deep. This checking is sometimes enough, especially if all C code is put in one module, and the assembly

74

CCB8E C Compiler B Knudsen Data

code modules are called from well known stack levels. Calling C function from assembly will require
manual analysis of the call level.

Therefore, careful verification of the call structure is required to avoid program crash when using too
deep calls (max 31 levels). The compiler generated *.fcs files can provide information for this checking.

Calls to external functions is written in the *.fcs file. External function calls are marked [EXTERN].

Computed goto

CCB8E will always use the long format when generating code for skip(). It is not possible to use the -GS
option in combination with relocatable assembly.

Recommendations when using MPLINK

1. Use as few C modules as possible because of:

a) inefficient bank bit updating between modules

b) local variable space can not be reused between modules
c) only single 8 bit parameter in calls between modules

d) only 8 or 1 bit return values between modules

2. Use definition header files that are shared between modules. Include the shared definition in all C
modules to enable consistency checking.

a) variables: add bank information
/1 nodul el.c
ext ern shrBank char b;
#defi ne ARRAY_SI ZE 10
extern bankO char array[ARRAY_SI ZE] ;
/1 nodul e3. asm
extern bankl char mulcnd, mulplr, Hbyte, L_byte;

b) constants, definitions, enumerations and type information
#defi ne Myd obal Def 1

enum { S1 = 10, S2, S3, S$4 S5 };

/1l nanes assigned to port pins

#pragma bit in @ PORTB.0

#pragm bit out @ PORTB.1

3. Define bit variables to overlap with a char variable

/* extern */ char nyBits;

bit bl @nyBits.O0;

bit b2 @nyBits. 1;

/1 use 'extern char nyBits;' for global bits and put the
/1 definitions in a shared header file. Mve definition
/1 'char nyBits;' to one of the nodules.

4. It is recommended to use the -rsc option to enable the compiler to AUTOMATICALLY generate and
later update the linker script.

5. Set up a 'makefile’ to enable automatic (re)compilation and linking. Follow the guidelines when using
MPLAB. Edit and use the option "+reloc.inc' when compiling C modules.

6. Do the final call level checking manually
7. Update conventions in assembly functions called from C modules: The bank selection bits should be

updated in the beginning of assembly functions that are called from C.

75

CCB8E C Compiler B Knudsen Data

MPLAB and MPASM support
Please refer to ‘linker.txt” for details on how to set up a project with several modules in MPLAB.

Note that MPASM will generate its own warnings and messages. These should normally be ignored.
MPASM do not know about the automatic bank bit updating and will display messages about this.
MPASM have generated the message if the asm file extension is used in the message.

Program execution tracing will always use the assembly file as source when using MPLINK. MPASM
can generate object code from assembly modules. There are some restrictions and additions when using
relocatable modules compared to using a single assembly module.

CCB8E does not support the object code directly, but generates relocatable assembly that MPASM use to
generate the object file. MPASM is started from within the CC8E so that no extra command is required
(only the right command line options).

Case Sensitivity option in MPASM is by default On, and should remain On because C use case dependent
identifiers.

Options to start MPASM and generate relocatable object code:
-XC: \ progra~1\ npl ab\ npasm exe -X/ o -X/q

Options when assembling and linking a single file:
-XC: \ progra~1\ npl ab\ npasm exe -X/q

If the CC8E error file option (-F) is missing, CC8E will read the error file generated by MPASM and
write the error and warnings found there to the screen and the output file (*.occ). The error file is
then deleted.

If the CC8E error file option (-F) is present, CC8E will write error and warnings to the error file (*.err)
and append the error and warnings generated by MPASM at the end of this file.

Note that MPLAB will automatically show the contents of the error file if it is non-empty. Otherwise the
screen output is displayed in 'Build Results' window.

The MPLINK script file

The compiler is able to generate the FULL linker script file. This is done when using command line
option -rsc[=<file.lkr>]. The compiler will automatically do the following when the C module contains
interrupt routine(s):

a) Generate or update a complete script. If the file exists initially, then it should preferably contain an
empty line. The script file will only be generated when compiling the module containing main().

b) Add, remove and adjust definitions that are maintained by the compiler.

c) Forward code section definitions to the script file, and allow the definitions to be used in #pragma
origin statements etc.:

#pragm sectionDef <secl D>[:<secDef> <start> - <l ast> [<PROTECTED>]]

#pragma sectionDef |DLOC:idlocs 0x200000 - 0x200007 PROTECTED
#pragm sectionDef CONFI GS: config 0x300000 - 0x30000D PROTECTED
#pragm secti onDef EEPROM eedata OxFO0000 - OxFOOOFF PROTECTED
#pragm sectionDef APPSEC. appdef1 0x1000 - Ox102F

76

CCB8E C Compiler B Knudsen Data

#pragma sectionDef PROG
d) Code definition will be adjusted automatically to ensure that there are no overlapping.

e) When a variable is located at a fixed address, the compiler will automatically EXCLUDE this address
from the default bank definition in the script file. The largest free region in the bank will be defined, and
made available for allocation by MPLINK. It is important that the main C module knows all fixed RAM
definitions. Otherwise it is required to make a manual definition in the script file to exclude "unknown"

locations from normal allocation.

It is also possible to make the linker script file manually, although this should normally not be preferred.
MICROCHIP supplies sample linker script files for each device with the file extension 'Ikr' (look in the
MPLAB directory). When making a linker script file for a specific project, this file can be copied and
edited to suit the needs of CC8E.

The sample MPLINK script files must be changed slightly if the interrupt function is written in C. The
reason is that the interrupt functions must start at addresses 8 and 0x18 when using CC8E. It could be
possible to use a vector at address 8 / 0x18, but this slows down interrupt response.

CHANGE 1: Interrupt routine in C WITH a separate logical section. CC8E generates a partial script file
when using the -r2 command line option (or -r2[=]<file.lkr>). This file is written if (and only if) CC8E
compiles a module with an interrupt service routine. The generated script file may look like:

CODEPAGE NAME=i ntserv18 START=0x18 END=0x31
CODEPAGE NAME=page START=0x32 END=0x7FFF

The required change in the main script file is then:
| NCLUDE nodul el. | kr /1 change to right nodul e/script file nane
CHANGE 2: Interrupt routine in C WITHOUT a separate logical section. Example change:

CODEPACGE NAME=vectors START=0x0 END=0x7 PROTECTED
/1 NEW VALUE Ao

CODEPAGE NAME=page START=0x8 END=0x7FFF
/1 NEW VALUE Aoooo.

CHANGE 3: If INTERRUPTS are not used, then the first code page can start at address 4. Example
change:

CCODEPAGE NAME=vectors START=0x0 END=0x3 PROTECTED
/1 NEW VALUE Aooooo.

CODEPAGE NAME=page START=0x4 END=0x7FFF
/1 NEW VALUE Ao

CHANGE 4: LOGICAL sections must be added. Note that if a logical RAM section is missing, then the
variables that belongs to this section will be put in the "default™ section. MPLINK gives no error on
missing logical sections in the script file and the program will fail.

SECTI ON NAME=STARTUP ROMrvectors /1 Reset vector

SECTI ON NAME=I SERVER8 ROMVEi nt serv8 /1 High priority interrupt
SECTI ON NAME=I SERVER18 ROMEi ntserv18 // Low priority interrupt
SECTI ON NAME=PROG ROVEpage /1 code space

SECTI ON NAME=| DLOCS ROWFi dl ocs /1 1D locations

77

CCB8E C Compiler

B Knudsen Data

SECTI ON
| ocation
SECTI ON

SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON

NAME=CONFI G

NAME=EEDATA

NAME=ACSRAM
NAME=BANKO
NAME=BANK1
NAME=BANK2
NAME=BANK3
NAME=BANK4
NAME=BANKS

ROVEconfi g
ROMEeedat a

RAM=accessram
RAM=gpr O
RAM=gpr 1
RAM=gpr 2
RAM=gpr 3
RAM=gpr 4
RAM=gpr 5

CHANGE 5: modifications when using 1ICD2:

START=. .
START=0x7DC0

START=0x500
START=0x5F4

/1

11

/1
/1
/1
/1

/1
/1

Configuration bits
EEPROM dat a

ACCESS RAM
RAM bank
RAM bank
RAM bank
RAM bank
RAM bank
RAM bank

gabhwNEF O

END=0x7DBF
END=0X7FFF PROTECTED

END=0x5F3
END=0x5FF PROTECTED

| ogi cal section for the high priority interrupt
| ogi cal section for the low priority interrupt

CODEPAGE NAMVE=page

CODEPAGE NAME=debug

DATABANK NAME=gpr 5

DATABANK NAME=dbgspr
Logical code blocks:

STARTUP startvector

| SERVER8

| SERVER18

PROG code space

CONFI G config word

| DLCCS i d-1ocations

EEDATA EEPROM dat a
Logical RAM blocks:

ASCRAM Access RAM

BANKO bank 0

BANK1 bank 1

BANK2 bank 2

BANK3 bank 3

BANK4 bank 4

BANK5S bank 5

BANK15 bank 15
Command line options:
Bank naming:

-rb0 BANKO

-rbl BANK1

Separate interrupt logical section (hamed ISERVER8/ISERVER18)
use name of current
use defined file nane

-r2

r2[=]<file. lkr>

Example with 2 modules
This example demonstrates the syntax only.

is the nane of the frist
is the nane of the frist

RAM bank (default)
RAM bank

nmodul e (<rmodul e>. | kr)

// LR R I S I R I I R R I R I R I O R I R I O R O

// MODULEL. C
#pragma chi p Pl CL8F452
#i ncl ude "gl obdef 1. h"

78

CCB8E C Compiler

B Knudsen Data

#i ncl ude "int 18xxx. H'

void _highPrioritylnt(void);

#pragma origin 0x8
i nterrupt

hi ghPrioritylntServer(voi d)

/1 W STATUS and BSR are saved to shadow registers
/1 8 code words available including call and RETFIE

/1l restore W STATUS and BSR from shadow regi sters

{
/1 handl e the interrupt
_highPrioritylnt();
#pragma fast Mode

}

#pragma origin 0x18

i nterrupt

{

}
/*

| owPriorityl nt Server (void)

/1 W STATUS and BSR are saved by the next
i nt_save_registers

nmacr o.

/* NOTE : shadow regi sters are updated, but will be

overwritten in case of a high-priority interrupt.

Ther ef ore #pragnma fast Mode shoul d not be used on

lowpriority interrupts. */

/'l save remai ning registers on demand (error/warning)

/1unsl1l6 sv_FSRO
/1unsl6 sv_FSR1
//unsl6 sv_FSR2
//uns8 sv_PCLATH PCLATH,;
/1uns8 sv_PCLATU = PCLATU,
//uns8 sv_PRODL = PRODL;

//uns8 sv_PRODH = PRODH;

//uns24 sv_TBLPTR = TBLPTR
//uns8 sv_TABLAT = TABLAT,

FSRO:;
FSR1;
FSR2;

/1 handl e the interrupt
/1

/1 restore registers that are saved
/1 FSRO = sv_FSRO;

/1 FSR1 sv_FSR1;

/1 FSR2 sv_FSRz;

/I PCLATH = sv_PCLATH,

/I PCLATU = sv_PCLATUY,

/1 PRODL = sv_PRODL;

/1 PRODH = sv_PRODH;

[/ TBLPTR = sv_TBLPTR

/| TABLAT = sv_TABLAT,;

int restore_registers // W STATUS and BSR

| MPORTANT : G EH/ G E or G EL should nornmally NOT be

79

CCB8E C Compiler

B Knudsen Data

set or cleared in the interrupt routine. GEH G EL are
AUTOVATI CALLY cl eared on interrupt entry by the CPU
and set to 1 on exit (by RETFIE). Setting GEH/GEL to
1 inside the interrupt service routine will cause
nested interrupts if an interrupt is pending. Too deep
nesting may crash the program! */

void _highPrioritylnt(void)

{
/'l save registers on demand
/] restore registers on denand
}
bank0 char a;
bit bl, b2;

static char *ppm
shrBank char sr;

voi d sub(bankl char ax)

{
bankl char i; /* a local variable */
/* generate pul ses */
for (i =0; i <= ax+l; i++) {
out = 1;
nop2();
out = 0;
a ++; /] increment global variable
}
}
voi d mai n(void)
{
PORTA = 0b0010;
TRI SA = 0b0001;
if (TO==1 &% PD==1/* power up */) {
clearRAM); // set all RAMto O
a = 5;
bl = 1;
}
ppm = O;
Sr ++;
a = reverse(sr); // call assenbly routine
b2 = !b1;
do {
if (in == 1)
br eak;
sub(a&3);
} while (a < 200);
}

80

CCB8E C Compiler B Knudsen Data

// LR R I I I I I I I I I S I R I S O I I R I I I O

/1 File: globdefl.h
// GLOBAL DEFI NI TIONS TO BE | NCLUDED I N ALL C MODULES

/'l nanes assigned to port pins
#pragma bit in @ PORTA O
#pragm bit out @ PORTA.1

/1 nodul el.c
extern bankO char a;

/1 nodul e2. asm
extern bankl char result;
extern char reverse(char W;

khkhkkhkhkhkhkhhkhhhhkhhhhhhhhkhhhhhhhhkhhhhkhhhdhdhkhdhkrdkhkrkk rkk **x*%
’

; MODULE2. ASM
#1 NCLUDE " P18F452. | NC"

BANK1 UDATA

result RES 1 ; result hol der

tnp RES 1 ; tenporary | ocation
count RES 1 ; |oop counter

GLOBAL result

PROG CCDE
reverse
GQ.OBAL reverse
nmovl b 1
movwf t np
nmovl w 8

movwf count

| oop rrcf tnmp, F, 1
rlcf result, F, 1
decfsz count, F, 1
goto | oop
movf result, W 1
return

END
// kkkkhkkhkkhkhkhkkhkkkhkhkkhkhkhkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhkkkhkkhk kikikhkkkkkk k,kikik*k*x*%
/1 File: 18F452. LKR
/1 This exanple linker script file is for use with the -r2 option.

/1l However, it is reconmended to instead use the -rsc option to |et
/1l the conpiler automatically generate and update the whol e script!

LI BPATH

CODEPAGE NAME=vect or s START=0x0 END=0x7 PROTECTED
CODEPAGE NAME=i nt serv8 START=0x8 END=0x17

| NCLUDE nodul el. | kr

81

CCB8E C Compiler

B Knudsen Data

// * % %

CODEPAGE
CCDEPAGE
CCDEPAGE
CCODEPAGE

ACCESSBANK

DATABANK
DATABANK
DATABANK
DATABANK
DATABANK
DATABANK

ACCESSBANK

SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON

SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON

File 'nodul el.|kr'
/] *** using option -r2,

and defi nes

is generated by the conpil er when
"intservi8'

END=0x7F

END=0x FF

END=0x1FF
END=0x2FF
END=0x3FF
END=0x4FF
END=0x5FF

and ' page'.
END=0x200007
END=0x30000D
END=0x 3FFFFF
END=0xFOOOFF

NAME=i dl ocs START=0x200000
NAME=confi g START=0x300000
NAME=devi d START=0x3FFFFE
NAMVE=eedat a START=0xF00000
NAME=accessram START=0x0
NAMVE=gpr O START=0x80
NAVE=gpr 1 START=0x100
NAVE=gpr 2 START=0x200
NAME=gpr 3 START=0x300
NAME=gpr 4 START=0x400
NAMVE=gpr 5 START=0x500
NAME=accesssfr START=0xF80

NAME=STARTUP
NAME=I SERVERS
NAME=| SERVER18
NAME=PROG
NAME=| DLOCS
NAME=CONFI G
NAME=EEDATA

NAME=ACSRAM
NAME=BANKO
NAME=BANK1
NAME=BANK2
NAME=BANK3
NAME=BANK4
NAME=BANKS

6.9 The cdata Statement
The cdata statement stores 16 bit data in program memory.

ROVEvect or s 1/
ROVEI nt ser v8 1/
ROVEI nt serv18 [/

ROVEpage /1
ROWVEi dl ocs /1
ROVEconfi g /1
ROVEeedat a /1
RAM=accessram //
RAMEgpr 0 /1
RAMEgpr 1 /1
RAMEgpr 2 /1
RAMEgpr 3 /1
RAMEgpr 4 /1
RAMEgpr 5 /1

END=0xFFF

Reset vector

PROTECTED
PROTECTED
PROTECTED
PROTECTED

PROTECTED

H gh priority interrupt
Low priority interrupt
code space

ID | ocations

Configuration bits |oc.

EEPROM dat a

ACCESS RAM

RAM bank
RAM bank
RAM bank
RAM bank
RAM bank
RAM bank

gabhwNEF O

NOTE 1: cdata[] can currently not be used with relocatable assembly. When using MPLINK, such data
statements can be put in an assembly module.

NOTE 2: Constant data should normally be stored using the ‘const’ type modifier. However, cdata[] is
useful for storing data and instructions at fixed addresses.

NOTE 3: There is no check on validity of the inserted data or address. However, it is NOT possible to
overwrite program code and other cdata sections (except config, ID and EEPROM data). The data is
added at the end of the assembly and hex file in the same order as it is defined.

SYNTAX:

#pragm cdat a[| ADDRESS]
#pragma cdat a[]
#pragma cdat a. | DENTI FI ER

ADDRESS: 24 bit
< VALUE |
VALUE: O ..
EXPRESSI ON: C const ant expr.
"Valid C String\r\n\0\x24\ x8\ xe\ xFF\ xffi\\""

VXS :

STRI NG

OXFFFF

<VXS>,
<VXS>,
<VXS>,

byt e address
EXPRESSI ON |

(i.e.

STRI NG

., <VXS>
., <VXS>
., <VXS>

0x1000+(3*1234))

82

CCB8E C Compiler B Knudsen Data

String translation: \xHH or \xH : hexadeci mal nunber
\0 == 0 V1 =1 \2 => 2 \3 == 3 \4 => 4
\5 == 5 \6 => 6 \7 = 7 \a == 7 \b => 8
\t => 9 \n => 10 \f => 12 \v => 11 \r => 13
\\ => the backsl ash character itself (0x5C)

\"o=> """ (0x22)
\xHH or \xH : hexadeci mal nunber
"\1Conflict" is better witten as "\1" "Conflict"

Strings are stored as 8 bit ASCII characters. The least significant 8 bits of each code word are filled first.
Strings are aligned on word addresses for each <VVXS>. However, alignment does not occur when writing
Ilabcll Ildeflll

IDENTIFIER: any undefined identifier. It is converted to a macro identifier and set to the current cdata
word address. The purpose is to provide an automatic way to find the address of stored items.

Empty cdata statements can be used to set or read the current cdata address.
#pragma cdata ADDRESS] // set current cdata address
#pragma cdata.IDENTIFIER // "get" current cdata address

Only cdata within the valid code space is counted when calculating the total number of code words.

Using the cdata statement
1. Defining special startup sequences:

#i ncl ude "hexcodes. h"
#pragma cdata[0] = __ NOP
#pragma reset Vector 2 /1 goto main at byte address 2

2. Storing packed strings and other data

The cdata definitions should be put in a separate file and included in the beginning of the program. This
enables identifiers to be used in the program and checking to be performed.

#defi ne CDATA START 0x80
#pragma cdat a[CDATA START] // start of cdata bl ock
#pragm cdat a[] OxFFFF, 0x2000, 0x1000
#pragnma cdat a[] 0x100, (10<<4) + 3456,\
10, 456, 10000

#define D8(l,h) | + h*256
#define D32(x) x%x10000, x/0x10000
#pragm cdata[] = D38(10,20), D32(10234543)

0x10, 200+3000
“Hel 1 o worl d\ 0"
“Anot her string\r\n" “nerged”

#pragma cdata. | DO
#pragma cdata. | D1
#pragnma cdata. | D2

#pragm cdata.| D TABLE = I DO, ID1l, I1D2 // store addresses
#pragma cdat a. CDATA END /1 end of cdata bl ock
#pragm origin CDATA END // program code foll ow here

void wite(unsl6 strlD);

83

CCB8E C Compiler B Knudsen Data

write(lDl);
wite(lD2);

All cdata start addresses have to be decided manually. The setup could be as follows:

cdata definitions

C functions at addresses |ower than CDATA START
/1 #pragma origin CDATA START /1 optional
#pragma ori gin CDATA END

C functions at addresses hi gher than CDATA END

The #pragma origin CDATA_START is not required, because data overlapping is detected automatically.
However, the compiler tells how many instructions are skipped for each origin statement. The cdata
words are not counted at this printout.

Statement #pragma origin CDATA_END allows functions to be stored right after the cdata area. This
origin statement is not required if all cdata are located at the end of the code space.

Preprocessor statements can be used for checking size during compilation:

#if CDATA END - CDATA START > 20
#error This is too nmuch
#endi f

Storing EEPROM data

EEPROM data can be put into the HEX file at addresses 0xF00000 and forward for transfer to the
internal EEPROM during programming of a device. Note that each cdata item is 16 bit wide, and will
thus define 2 EEPROM locations. The low 8 bit will be stored first (even addresses) then the high 8 bit
(odd addresses). The compiler does not know how much EEPROM space a device has.

#defi ne EEPROM START 0xF00000
#pragm cdat a] EEPROM _START] /1 start of cdata bl ock
#pragm cdata[] = OxFFFF, 1000 // 4 bytes EEPROM data

#define D8(I,h) ((I) + (h)*256)
#pragm cdata[] = D8(10, 20), D8(0, 2+5) // 4 bytes

Strings will be stored as a number of 2*8 bits when using cdata.

#pragma cdata[] = "Hello world!\0"

84

CCB8E C Compiler B Knudsen Data

7 DEBUGGING

Removing compilation errors is a simple task. The real challenge is to reveal the many application bugs.
ALWAYS remember to check the assembly file if the application program does not behave as expected.
Using a compiler does not remove the need for understanding assembly code.

Debugging methods

There are several ways of debugging the program:

1. Test (parts of) the program on a simulator. This allows full control of the input signals and thus exact
repetition of program execution. It is also possible to speed up testing to inspect long term behavior
and check out rare situations. How to do this is application dependent.

2. Use a hardware emulator. An emulator allows inspection and tracing of the internal program state
during execution in the normal application environment, including digital and analog electronics.

3. Insert application specific test-code and run the program on a prototype board. Then gradually
remove the extra code from the verified program parts. The key is to take small steps and restore the
program to a working state before doing the next change. The extra test code can consist of:

1) Code that produces patterns (square waves) on the output pins. This can be checked by an
oscilloscope.

2) Repetition of output sequences.

3) Extra delays or extra code to handle special situations.

The different debugging methods have their advantages and disadvantages. It can be efficient to switch
between several methods.

Compiler bugs

Compiler bugs are hard to detect, because they are not checked out until most other tests have failed.
(Silicon bugs can be even harder). Compiler bugs can often be removed by rewriting the code slightly, or,
depending on the type of bug, try:

1) #pragma optimize

2) #pragma updateBank

3) command line option; -u

4) command line option: -bu

5) command line option: -b

ALWAYS remember to report instances of compiler bugs to B Knudsen Data.

7.1 Compilation Errors

The compiler prints error messages when errors are detected. The error message is proceeded by 2 lines
of source code and a marker line indicating where the compiler has located the error. The printing of
source and marker lines can be switched off by the -e command line option. The maximum number of
errors printed can also be altered. Setting the maximum to 12 lines is done by the command line option -
El12.

The format of the error messages is:
Error <filenane> <line nunber>: <error nessage>

Some errors are fatal, and cause the compiler to stop immediately. Otherwise the compiling process
continues, but no output files are produced.

If there is a syntax error in a defined macro, then it may be difficult to decide what the problem actually

is. This is improved by printing extra error messages which points to the macro definition, and doing this
recursively when expanding nested macro's.

85

CCB8E C Compiler B Knudsen Data

NOTE: When an error is detected, the compiler deletes existing hex and assembly files produced by the
last successful compilation of the same source file.

Error and warning details

The compiler prints a short description of the error message to the output screen and to the *.occ file, but
not to the *.err file. Note that the description will not be visible when enabling the error file in MPLAB.
The *.occ file can then be opened and inspected.

-ed : do not print error details (disable)

-ew : do not print warning details (disable)

-eL : list error and warning details at the end

Some common compilation problems

e not enough variable space
Solution: Some redesign is required. The scope of local variables can be made more narrow. A better
overlapping strategy for global variables can be tried.

» the compiler is unable to generate code
Solution: Some of the C statements have to be rewritten, possibly using simpler statements.

* too much code generated

Solution: rewrite parts of the code. By checking the assembly file it may be possible to detect inefficient
code fragments. Rewriting by using the W register directly may sometimes reduce the code size.
Experience has shown that around 10% of the hex code can be removed by hand-optimizing the C code.
Optimal usage of RAM banks is important.

e too deep call level
Solution: rewrite the code. Remember that the compiler handles most cases where functions are called
once only.

7.2 MPLAB Debugging Support

The CC8E compiler can be used inside the MPLAB environment. The COD file format for debugging
purposes is supported. Two modes of source file debugging is available:

a) Using the C source file(s).

b) Using the generated assembly file as the source file. The format of the assembly file in order to suit
the debugging tool. Take a look at the assembly file options. Some suggestions:

-Al+6+10 - AmiJ : sinmul ator |
-Al+6+6 - Am Js : sinmulator |1
- A6+8+12Jt . conpact |

- An6+8+12Jt . conpact 11

Enabling the COD-file is done by a command line option:

- CC<f i | ename>: generate debug file using C source file(s). <filename> is optional. The asm file
option is also switched on.

- CA<f i | ename>: generate debug file using generated assembly file as source. <filename> is optional.
The asm file option is also switched on.

Arrays:

Arrays and structures represent a slight challenge, because all variables passed in the COD file are
currently either char or bit types.

86

CCB8E C Compiler B Knudsen Data

This is solved by adding new variables which appears during debugging:
char table[3]; --> table, /* offset 0 */
tabl e _el, /* offset 1 */
table e2 /* offset 2 */
struct {
char a;
char b;
} st; --> st, /* offset O (elenent "a') */
st_ el /* offset 1 (element 'b') */

This means that the name of a structure element is not visible when inspecting variables in a debugger.

ICD2 debugging

ICD2 debugging requires defining a symbol before the header file is compiled to avoid that the
application use reserved resources:

a) By a command line option:
- DI CD2_DEBUG

b) By using #define in combination with #pragma chip or #include:
#def i ne | CD2_DEBUG

#pragma chip PICI8FA52 // or #include "18F452. H

7.3 Assert Statements
Assert statements allows messages to be passed to the simulator, emulator, etc.

Synt ax: #pragna assert [/] <type> <text field>
[/] : optional character

user defined assert

user defined emrul ator comrand

user defined printf
user defined | og conmand

<type> : a
e
f
[

<text field> undefined syntax, valid to the end of
the Iine. The Iine can be extended by a '\’
character |ike other preprocessor statenents.

#pragm assert /e text passed to the debugger
#pragm assert e text passed to the debugger

#pragm assert ; this assert command is ignored

NOTE 1: comments in the <text field> will not be removed, but passed to the debugger.

NOTE 2: Only ASCII characters are allowed in the assert text field. However, a backslash allows some
translation:

\0=>0, \1=>1, \2=>2 \3=>3, \4=>14

\5 =>5 \6=>6, \7=>7, \a=>7 \b=>28

\t => 9, \n => 10, \v => 11, \f => 12, \r => 13

USE OF MACRO'S: Macro's can be used inside assert statements with some limitations. The macro
should cover the whole text field AND the <type> identifier (or none of them). Macro's limited to a part

87

CCB8E C Compiler B Knudsen Data

of the text field are not translated. Macro's can be used to switch on and off a group of assert statements
or to define similar assert statements.

#defi ne COVMMON _ASSERT a text field
#define AA /

#pragma assert COVMON_ASSERT
#pragma assert AA a text field

Macro AA can also disable a group of assert statements if writing:
#define AA ;

#define XX /a [/* this will NOT work */
#pragm assert XX causes an error nessage

7.4 Debugging in Another Environment

Testing a program larger than 500-1000 instructions can be difficult. It is possible to debug parts of the
program in the Windows/MSDOS environment. Another C compiler have to be used for this purpose.
Using another environment has many advantages, like faster debugging, additional test code, use of
printf(), use of powerful debuggers, etc. The disadvantage is that some program rewriting is required.

All low level activity, like 10 read and write, have to be handled different. Conditional compilation is
recommended. This also allows additional test code to be easily included.

#i fdef SIM

/1 simulated sequence

/1l or test code (printf statenents, etc.)
#el se

/1 lowlevel PICricro code
#endi f

The following can be compiled and debugged without modifications:

General purpose RAM access

Bit operations (overlapping variables requires care)

Use of FSRx and INDFx (with some precautions)

Use of rl(), rr(), swap(), nop() and nop2(). Carry can be used together with rl() and rr(). Direct use of
Zero_ should be avoided.

5. Use of the W register

poppE

The recommended sequence is to:

1. Write the program for the actual PICmicro device.

2. Continue working until it can be compiled successfully.

3. Debug low-level modules separately by writing small test programs (i.e. for keyboard handling,
displays, I1C-bus 10, RT-clocks).

4. Add the necessary SIM code and definitions to the code. Debug (parts of) the program in another
environment. Writing alternative code for the low-level modules is possible.

5. Return to the PICmicro environment and compile with SIM switched off and continue debugging
using the actual chip.

88

CCB8E C Compiler B Knudsen Data

8 FILES PRODUCED

The compiler produces a compiler output file and a hex file that may be used for programming the
PICmicro chips directly. The hex file is produced only there are no errors during compilation. The
compiler may also produce other files by setting some command line options:

« assembly, variable, list, function outline, COD and error files

8.1 Hex File

The default hex file format is INHX32. The format is changed by the -f command line option. The
INHX8M, INHX8S and INHX32 formats are:
: BBaaaaTT112233...CC

BB - nunber of data words of 8 bits, nax 16
aaaa - hexadeci mal address (byte-address)
TT - type :

00 : nornml objects
01 : end-of-file (: 0O0000001FF)
11 - 8 bits data word
CC - checksum - the sumof all bytes is zero.

The 16 bit format used by INHX16 is defined by:
: BBaaaaTT111122223333. .. CC

BB - nunber of data words of 16 bits, max 8
aaaa - hexadeci mal address (of 16 bit words)
TT - type :

00 : nornal objects
01 : end-of-file (: 0O0000001FF)
1111 - 16 bits data word
CC - checksum - the sumof all bytes is zero.

8.2 Assembly Output File

The compiler produces a complete assembly file. This file can be used as input to an assembler. Text
from the source file is merged into the assembly file. This improves readability. Variable names are used
throughout. A hex format directive is put into the assembly file. This can be switched off if needed. Local
variables may have the same name. The compiler will add an extension to ensure that all variable names
are unique.

There are many command line options which change the assembly file produced. Please note the
difference between the -a and the -A options. The -a option is needed to produce an assembly file, while
the -A option changes the contents of the assembly and list files.

The general format is -A[scHDftumiJN+N+N].

s: symbolic arguments are replaced by numbers

¢: no C source code is printed

H: hexadecimal numbers only

D: decimal numbers only

f: no object format directive is printed

t: no tabulators, normal spaces only

u: no extra info at the end of the assembly file

m: single source line only

i: no source indentation, straight left margin

J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion

N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

89

CCB8E C Compiler B Knudsen Data

Note that the options are CASE sensitive.

Some examples:

Defaul t : ; X++;
mo01 I NCF x

-AsDJ : mD01 INCF 10 ; X++;

-Ac mD01 I NCF X

-AJ6+8+11 : m001 | NCF X ; X++;

-Ai J1+6+10 : nDO1

I NCF x D X+t

- Al Js1+6+6 : nDO1

| NCF 0Ah DX+t

8.3 Variable File

The variable list file contains information on the variables declared. Variables are sorted by address by
default, but this can be changed. The compiler needs the command line option -V to produce this file. The
file name is <src>.var.

The general format is -V[rnuD]. The additional letters allows the file contents to be adjusted:

r: only variables which are referenced in the code
n: sort variables by name

u: keep the variables unsorted

D: use decimal numbers

Variable file contents:

X

B Addres Size #AC Nanme

X-> L : local variable
G : global variable
P assigned to certain address
E extern vari abl e
R over | apping, directly assigned
C const vari abl e

B-> - access RAM
0 bank 0
1 : bank 1

etc.
Address -> Ox00A : file address

0x00C. 0 : bit address (file + bit nunber)
Size -> size in bytes (0 for bit)

#AC -> 12: nunber of direct accesses to the variable

Examples:

X
R
P
L
L
G
G

B Address Size #AC Nane
[-] Ox00B 1 : 10: alfa
[-] Ox00B 1 12: fixc
[-] Ox00D 1 1. 1ok
[0] 0x012.0 0 6: bl
[0] 0x012.1 0 16: bx
[0] Ox015 1 23. b

90

CCB8E C Compiler B Knudsen Data

When a function is not called (unused), all its parameters and local variables are truncated to the same
location. Example:
L [-] OxOOF 1 : 16<> pm2_

8.4 List File

The compiler can also produce a list file. The command line option is -L or -L[<col>,<lin>]. The
maximum number of columns per line <col> and lines per page <lin> can be altered. The default setting
is -L.200,60. The contents of the list file can be changed by using the -A option.

8.5 Function Call Structure

The function call structure can be written to file <src>.fcs. This is useful for codepage optimization and
function restructuring in case of call level problems. Note that two different formats are produced; the
first is a list of functions, the second is a recursive expansion of the function call structure. The command
line option is -Q for both formats.

Format sample:

F: functionl TH#1
func2 . #5
del ay . #2
func3 . #3

The meaning of the symbols is:

1. func2, delay and func3 are called from functionl
2. #1:functionl is called once

3. #3:func3is called 3 times (once from functionl)

The call structure is expanded recursively. The indentation show the nesting of the function calls in the
source. The true call level is printed at the beginning of the line. The true call level is different from the
indentation level when CALL's have been replaced by GOTO's. A mark is then printed at the end of the
line in such cases. The interrupt call level is handled automatically and checked. There is a separate
expansion for the interrupt service routine.

LO main

L1 functionl
L2 func2
L2 del ay
L2 func3

L1 functionl ..

Explanation of symbols used:

e L1:stacklevel 1 (max 31 levels). This is the REAL stack level, compensated when CALL's have
been replaced by GOTO.

« ..:only the first call is fully expanded if more that one call to the same function occur inside the
same function body.

e [CALL->GOTO] : CALL replaced by GOTO in order to get more call levels

 [T-GOTO]: CALL+RETURN is replaced by GOTO to save a call level.

» [RECURSIVE] : recursive function call

91

CCB8E C Compiler B Knudsen Data

9 APPLICATION NOTES

9.1 Computed Goto

Computed goto is a compact and elegant way of implementing a multiselection. It can also be used for
storing a table of constants. However, the ‘const’ type modifier is normally the best way to store constant
data in program memory.

WARNING: Designing computed goto's of types not described in this section may fail. The generated
assembly file will then have to be studied carefully because optimization and updating of the bank
selection bits can be wrong.

Note that PCLATU and PCLATH in most cases have to be updated before writing to PCL. The compiler
can do ALL updating and checking automatically.

Built in skip(), skipL(), skipM() functions for computed goto

The different skip functions allows both single and double word instructions to be used in the table.

1. skip(i): all instructions in the table must be single word, using single word increments.
2. skipL(i): all instructions in the table must be double words, using double word increments.
3. skipM(i): both double and single word instructions in the table, using single word increments.

Note that the compiler will check the table contents when using skip() and skipL(), and generate en error
message if the single/double word conditions are not met. Also note that ‘goto LABEL;’ statements
inside the table will not be changed to a branch if skipL() is used. This makes it easy to change a skip()
table to a skipL() table if a branch is out of reach.

The skip functions use 8 bit parameters only. Note however that the range of skipL() is 128 double word
instructions. Carry is automatically generated if the table cross a 256 byte address boundary. Options
available:

-GD : dynamic selected skip format (default)

-GW : dynamic selected skip format, warning on long format
-GS : always short skip format (error if boundary is crossed)
-GL : always long skip format

When using the -GS option, CC8E will generate an error if the table cross a 256 byte address boundary.
The short format enables most compact code, but requires manually moving the table in the source code
if the error is produced.

Origin alignment

It is possible to use #pragma origin to ensure that a computed goto inside a function does not cross a 256
byte address boundary. However, this may require many changes during program development. An
alternative is to use #pragma alignLsbOrigin to automatically align the least significant byte of the origin
address. Note that this alignment is not possible when using relocatable assembly. Relocatable assembly
requires another approach to fix the address. This is found in Section Using code sections on page 74 in
Chapter 6.8 Linker Support.

Example: A function contain a computed goto. After inspecting the generated list file, there are 15
instructions words between the function start and the address latch update instruction (MOVF PCL,W,0
updates PCLATH and PCLATU). The last computed goto destination address (offset 10) resides further 2
+ 10 instructions words below the address latch update instruction. A fast a compact computed goto
requires that these addresses resides on the same “byte page” (i.e. (address & OxFFFFO0O) are identical for
the two addresses). This is achieved with the statement:

92

CCB8E C Compiler B Knudsen Data

#pragma alignLsbOrigin -(15+41)*2 to 254 — (2+10)*2 — (15+1)*2

The alignment pragma statement is not critical. The compiler will generate an error (option -GS) or a
warning (-GW) if the computed goto cross a boundary because of a wrong alignment. An easier approach
is to align the LSB to a certain value (as long as program size is not critical).

#pragma alignLsbOrigin O /] align on LSB = 0
#pragma al i gnLsbOrigin 0 to 190 /Il [-254 .. 254]
#pragma al i gnLsbOrigin -100 to 10

Computed goto regions

The compiler enters a goto region when skip, skipL or skipM is detected. In this region optimization is
slightly changed, and some address checks are made. The goto region normally ends where the function
ends.

A goto region can also be started by a pragma statement:

#pragm conput edGoto 1 /1 start c-goto region
/1 useful if PCL is witten directly

A goto region can also be stopped by a pragma statement:

#pragm conputedGoto 0 // end of c-goto region

/* recomended if the function contains code
bel ow the goto region, for instance when the
tabl e consists of an array of goto
statements (exanples follow later). */

Computed Goto Regions affects:
1. Optimization

2. Register bank bit updating
3. 256 byte boundary checks

Examples

char subO(char i)

{

i' code words forward
"Hell o worl d"
10 "nore text" 0 1 2 3 OxFF

skip(i); /1 junps
#pragma return[] =
#pragma return[] =
/* This is a safe and position-i ndependent nethod
of coding return arrays or |ookup constant
tables. It works for all PICnicro devices. The
conpi l er handl es all checki ng and code
generation issues. It is possible to use return
arrays |i ke above or any C statenents. */

return 110;
return Ox2F;

93

CCB8E C Compiler

B Knudsen Data

void su

{

b3(char s)

/* the next statenents could also be witten as

a switch statenent, but this solution is

fastest and nobst conpact. */

if (s >= 3)
goto Default;

skip(s);

goto CaseO

goto Casel;

got o Last Case;

#pragma conputedGoto O // end of c-goto region
CaseO:

/* user statenents */

return;
Casel:
Last Case:

/* user statenents */

return;
Def aul t:

/* user statenents */

return;
}
voi d sub4(char s)
{

/* this solution can be used if very fast
execution is inportant and a fixed nunmber of
instructions (2/4/8/..) is executed at each
sel ection. Please note that extra statenents
have to be inserted to fill up enpty space
bet ween each case. */

if (s >= 10)

got o END;

s =rlnc(s); /* multiply by 2 */

s =rlnc(s); /* multiply by 2 */

skip(s);

/] execute 4 instructions at each sel ection

Case0: nop(); nop(); nop(); return
Casel: nop(); nop(); nop(); return;
Case2: nop(); nop(); nop(); return;
Case3: nop(); nop(); nop(); return
Cased4: nop(); nop(); nop(); return
Case5: nop(); nop(); nop(); goto END;
Case6: nop(); nop(); nop(); goto END
Case7: nop(); nop(); nop(); goto END
Case8: nop(); nop(); nop(); goto END;
Case9: nop(); nop(); nop(); goto END
#pragm conputedGoto O /* end of region */
END:

94

CCB8E C Compiler

B Knudsen Data

: /] More statenents

}

9.2 The switch statement

char select(char W

{
switch(W {
case 1: /* XORLW 1
[* .. */
br eak;
case 2: /* XORLW 3
br eak;
case 3: /* XORLW 1
case 4: /* XORLW 7
return 4,
case b: /* XORLW 1
return 5;
}
return O; /* default */
}

*/

*/
*/

*/

The compiler performs a sequence of XORLW <const>. These constants are NOT the same as the
constants written in the C code. However, the produced code is correct! If more compact code is required,
then consider rewriting the switch statement as a computed goto. This is very efficient if the cases are

close to each other (i.e. 2, 3, 4,5, ..).

95

CC8E - APPENDIX

B Knudsen Data

APPENDIX

Al Predefined Register Names

All register names, including the predefined ones, are found in the header files. The predefined register

names are:
char TOSU, TOSH, TOSL;
char STKPTR;
uns24 TBLPTR;
char TBLPTRU, TBLPTRH, TBLPTRL,
char PCLATU, PCLATH, PCL;
char PRODH, PRODL;
char | NTCON, | NTCON2, | NTCON3;
char W WREG
char BSR, BSRL;
uns1l6 FSRO;
char | NDFO, POSTI NCO, POSTDECO,
unsl1l6 FSRIi;
char | NDF1, POSTI NC1, POSTDECI,
unsl6é FSR2;
char | NDF2, POSTI NC2, POSTDEC2,
char STATUS;
bit Carry, DC, Zero_, Overflow,

A2 Assembly Instructions
Assenbl y: St at us: Oper at
ADDLW Kk C,DC Z NO/ W=k
ADDW f,d,a CDC Z NOV d =f
ADDWC f,d,a C,DC,Z,NOV d = f
ANDLW k Z,N W= W
ANDW f,d, a Z,N d =f
BC | - Br anch
BN | - Br anch
BNC | - Br anch
BNN | - Br anch
BNOV | - Br anch
BNz | - Br anch
BOV | - Br anch
BRA | - Br anch
BZ | - Br anch
BCF f,b,a - f.b =
BSF f,b,a - f.b =
BTG f,b,a - f.b =
BTFSC f,b, a - Bit te
BTFSS f,b, a - Bit te
CALL k - Call s
CLRF f,a Z f = 0;
CLRWDT - TO, PD WDOT =
COVF f,d,a Z,N d =f

TABLAT;

PREI NCO, PLUSW), FSROH,

PREI NC1, PLUSWL, FSRI1H,

PREI NC2, PLUSW2, FSR2H,

Negati ve;

Add literal
Add Wand f
+ C Add with Carry
AND literal
AND W and f
Carry
Negati ve
No Carry
Not Negative
Not Overfl ow
Not Zero
Overfl ow
al ways
if Zero
0; Bit clear f
1; Bit set f
If.b; Bit toggle
st f, skip if clear
st f, skip if set
ubrouti ne
Clear f
0; dear watchdog timer
N 255; Conpl ement f

-3

FSROL;
FSRI1L;

FSR2L;

and W

and W

96

CC8E - APPENDIX

B Knudsen Data

| NCF

| NCFSZ
| NFSNZ
| ORLW
| ORWF
LFSR
MOVF
MOVFF
MOVLB
MOVLW
MOVWF
MULLW
MULWF
NEGF
NOP
POP
PUSH
RESET
RETLW
RETURN
RETFI E
RLCF
RLNCF
RRCF
RRNCF
RCALL
SETF
SLEEP
SUBLW
SUBWF
SUBFV\B
SUBWFB
SWAPF
TBLRD
TBLRD
TBLRD
TBLRD
TBLWI
TBLWI
TBLWI
TBLWI
TSTFSZ
XORLW
XORWF

Notes:
d
d

11l
o

=~

=X —h 4 %k F ¥ 4 F F k —h —h —h —h X~ 1| —h — —h —h —h —h I

a -
a -
a -
C
,d,a -
,d,a -
,d,a C DC, Z, N, OV
,d,a C,DC, Z, N, OV
,d,a -
,d,a -
Z, N
d, a Z, N
k -
d, a Z,N
f -
a -
a -
a C DC, Z, N, ov
d, a C Z N
d, a Z,N
d, a C Z N
d, a Z, N
a -
TO, PD
C, DC, Z, N, OV
d,a C DC, Z, N, OV
d,a C DC, Z, N, OV
d,a C DC, Z, N, OV
d, a -
a -
Z,N
d, a Z, N

destination f
destination W

Skip if f=w

Skip if f>W

Skip if f<wW

Deci mal adj ust W

Decrenent f, skip if not zero
Decrenent f, skip if zero

d=f - 1 Decrenent f

Go to address

d =f + 1; | ncrement f
Increnment f, skip if zero
Increnent f, skip if not zero
W= W| k; Inclusive ORIliteral
d=f | W Inclusive OR Wand f
FSRx = 12 bits literal

d =f; Move f

Move f to f

BSR = k

W= k; Move literal to W
f =W Move Wto f

PRODH, PRODL = W* k; Miltiply
PRODH, PRODL = W* f; Miltiply
f = ~f+1; Negate

No operation

Pop val ue from stack

Push PC on stack

Reset device

Return, put literal in W
Return from subroutine

Return from i nterrupt

Rotate left f through carry bit
Rotate left f

Rotate right f through carry bit
Rotate right f

Rel ative call

f = OxFF; Set f

Go into standby node, WOT = 0

W=k - W Subtract Wfromliteral
d=f - W Subtract Wfrom f

d =W-f - ~C, Subtract with borrow
d=f — W- ~C, Subtract with borrow

Swap hal ves f
TABLAT = *TBLPTR;
TABLAT = *TBLPTR++;
TABLAT = *TBLPTR- -;
TABLAT = *++TBLPTR;
*TBLPTR = TABLAT;

* TBLPTR++ = TABLAT;
* TBLPTR++ = TABLAT;
*++TBLPTR TABLAT;

W= W" k; Exclusive OR literal
d=f W Exclusive OR Wand f

97

CC8E - APPENDIX B Knudsen Data

ON—™"®

TO
PD

using BSR to sel ect bank (0 — 15)
usi ng access bank (0x0 — Ox7F, OxF80 - OxFFF)
file register

Zero bit : Z=1if result is 0

Carry bit

c=1 i ndi cates carry on addition
C=0 : indicates borrow on subtraction
Digit Carry bit

DC =1 i ndi cates carry on addition

DC =10 i ndi cates borrow on subtraction
Ti neout bit

Power down bit

Instruction execution time

Most instructions execute in 1 instruction cycle (4 clock cycles), except:
e branch instructions when PC is modified (BC, BRA, RCALL)

e skip instructions when next instruction is skipped

e double word instructions (MOVFF, LFSR, GOTO, CALL)

e instructions that modify the program counter, i.e: ADDWF PCL

98

	1 INTRODUCTION
	1.1 Supported devices
	1.2 Installation and System Requirements
	Support for long file names
	User interface

	1.3 MPLAB Support
	1.4 Summary of Delivered Files
	1.5 Short Program Example
	1.6 Defining the PICmicro Device
	1.7 What to do next

	2 VARIABLES
	2.1 Information on RAM allocation
	2.2 Defining Variables
	Integer variables
	Floating point
	IEEE754 interoperability
	Fixed point variables
	Assigning variables to RAM addresses
	Supported type modifiers
	Local variables
	Temporary variables
	Arrays, structures and unions
	Bitfields
	Typedef

	2.3 Using RAM Banks
	The bank type modifier
	RAM bank selection
	Local user update regions

	2.4 Pointers
	Pointer models

	2.5 Const Data Support
	Data of size 16 bit or more
	Merging data
	Examples

	3 SYNTAX
	3.1 Statements
	if statement
	while statement
	for statement
	do statement
	switch statement
	break statement
	continue statement
	return statement
	goto statement

	3.2 Assignment and Conditions
	Special syntax examples
	Conditions
	Bit variables
	Multiplication, division and modulo
	Precedence of C operators
	Mixed variable sizes are allowed

	3.3 Constants
	Constant expressions
	Enumeration

	3.4 Functions
	Function return values
	Parameters in function calls
	Internal functions

	3.5 Type Cast
	3.6 Accessing Parts of a Variable
	3.7 C Extensions
	3.8 Predefined Symbols
	Automatically defined macros and symbols

	3.9 Upward Compatibility

	4 PREPROCESSOR DIRECTIVES
	
	#define
	Macro concatenation
	Macro stringification
	#include
	#undef
	#if
	#ifdef
	#ifndef
	#elif
	#else
	#endif
	#error
	#pragma accessGPR <n>
	#pragma alignLsbOrigin <a> [to]
	#pragma asm2var 1
	#pragma assert [/] <type> <text field>
	#pragma assume *<pointer> in rambank <n>
	#pragma bit <name> @ <N.B or variable[.B]>
	#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
	#pragma char <name> @ <constant or variable>
	#pragma chip [=] <device>
	#pragma computedGoto [=] <0,1>
	#pragma config [<offset>] = <expression>
	#pragma inlineMath <0,1>
	#pragma insertConst
	#pragma interruptSaveCheck <n,w,e>
	#pragma library <0/1>
	#pragma optimize [=] [N:] <0,1>
	#pragma origin [=] <expression>
	#pragma rambank [=] <-,0,1,2,..,15>
	#pragma rambase [=] <n>
	#pragma resetVector <n>
	#pragma return[<n>] = <strings or constants>
	#pragma sectionDef <name> [:<id> <start> <end> [PROTECTED]]
	#pragma stackLevels <n>
	#pragma unlockISR
	#pragma updateBank [entry | exit | default] [=] <0,1>
	#pragma versionFile [<file>]

	4.2 PICmicro Configuration

	5 COMMAND LINE OPTIONS
	5.1 Options in a file
	5.2 Automatic incrementing version number in a file

	6 PROGRAM CODE
	6.1 Program Code Pages
	6.2 Subroutine Call Level Checking
	Stack level checking when using interrupt
	Recursive functions

	6.3 Interrupts
	6.4 Startup and Termination Code
	Clearing ALL RAM locations

	6.5 Library Support
	Math libraries
	Integer libraries
	Fixed point libraries
	Floating point libraries
	Floating point library functions
	Fast and compact inline operations
	Fixed point example
	Floating point example
	How to save code

	6.6 Inline Assembly
	Direct coded instructions
	Generating single instructions using C statements

	6.7 Optimizing the Code
	Optimized Syntax
	Peephole optimization

	6.8 Linker Support
	Using MPLINK or a single module
	Restrictions on the demo edition
	Variables and pointers
	Local variables
	Header files
	Using RAM banks
	Bank bit updating
	Functions
	Using code sections
	Interrupts
	Call level checking
	Computed goto
	Recommendations when using MPLINK
	MPLAB and MPASM support
	The MPLINK script file
	Example with 2 modules

	6.9 The cdata Statement
	Using the cdata statement
	Storing EEPROM data

	7 DEBUGGING
	7.1 Compilation Errors
	Error and warning details
	Some common compilation problems

	7.2 MPLAB Debugging Support
	ICD2 debugging

	7.3 Assert Statements
	7.4 Debugging in Another Environment

	8 FILES PRODUCED
	8.1 Hex File
	8.2 Assembly Output File
	8.3 Variable File
	8.4 List File
	8.5 Function Call Structure

	9 APPLICATION NOTES
	9.1 Computed Goto
	Built in skip(), skipL(), skipM() functions for computed goto
	Origin alignment
	Computed goto regions
	Examples

	9.2 The switch statement

	APPENDIX
	A1 Predefined Register Names
	A2 Assembly Instructions
	Instruction execution time

