CM316 Dual Serial Port utilityModule

User's Manual

CReal Time Devices)

RTD Embedded Technologies, Inc. "Accessing the Analog World"®

BDM-610020054 Rev. A

ISO9001 and AS9100 Certified

CM316 Dual Serial Port utilityModule User's Manual

RTD Embedded Technologies, INC.

103 Innovation Blvd. State College, PA 16803-0906

Phone: +1-814-234-8087 FAX: +1-814-234-5218

<u>E-mail</u> sales@rtd.com techsupport@rtd.com

web site http://www.rtd.com

Revision History

06.07.01. Initial release.

Published by:

RTD Embedded Technologies, Inc. 103 Innovation Blvd. State College, PA 16803-0906

Copyright 1999, 2002, 2003 by RTD Embedded Technologies, Inc. All rights reserved Printed in U.S.A.

The RTD Logo is a registered trademark of RTD Embedded Technologies. cpuModule and utilityModule are trademarks of RTD Embedded Technologies. PhoenixPICO and PheonixPICO BIOS are trademarks of Phoenix Technologies Ltd. PS/2, PC/XT, PC/AT and IBM are trademarks of International Business Machines Inc. MS-DOS, Windows, Windows 95, Windows 98 and Windows NT are trademarks of Microsoft Corp. PC/104 is a registered trademark of PC/104 Consortium. All other trademarks appearing in this document are the property of their respective owners.

Table of Contents

CHAPTER 1	INTRODUCTION1
	SERIAL PORT UTILITYMODULE
CHAPTER 2	INSTALLING THE UTILITYMODULE
	ED PROCEDURE
CHAPTER 3	JUMPER / SWITCH CONFIGURATION4
PC/104 BUS C JP1 INTERRUP JP2 Mode Sei JP3 – JP4 DM JP6 – JP7 I/O JP8 – JP13 RS	S SWITCH SETTINGS
CHAPTER 4	MEMORY MAP15
0x400 BOA	ESCC COMMUNICATIONS (READ / WRITE)
CHAPTER 5	USING THE UTILITYMODULE17
CHAPTER 6	RETURN POLICY AND WARRANTY
	CY

Table of Tables

TABLE 1 CONNECTOR /JUMPER DESCRIPTION TABLE	4
TABLE 2 BASE ADDRESS TABLE FOR COM PORTS	5
TABLE 3 PC/104 XT BUS CONNECTOR	
Гавle 4 PC/104 AT Bus Connector	8
Гавle 5 IRQ Jumpers	9
Гавle 6 Mode Jumpers	9
TABLE 7 JUMPERS OPTIONS FOR PORT A CLOCK SOURCES	11
TABLE 8 JUMPERS OPTIONS FOR PORT B CLOCK SOURCES	12
Гавle 9 DMA Jumpers	13
Γable 10 User I/O Ports A and B	13
TABLE 11 TERMINATION JUMPERS	14
Гавle 12 Sync / Clk Jumpers	14
Гавle 13 CM316 Memory Map	15

Table of Figures

FIGURE 1 CONNECTOR LOCATIONS	4

Chapter 1 INTRODUCTION

This manual gives information on the CM316 Dual Serial Synchronous/Asynchronous Port utilityModule. This module supports asynchronous (RS422/RS485/RS232) and synchronous byte and bit oriented data transfers, with jumper configurable IRQ lines, DMA lines and I/O addresses for your PC/104 applications.

CM316 Dual Serial Port utilityModule

The CM316 Dual Serial Port utilityModule was designed to provide two versatile serial synchronous/asynchronous ports to support the Real Time Devices cpuModules and other standard PC/104 processor modules.

Features

The following are major features of the CM316 utilityModule.

- Dual independent serial ports
- Synchronous communications
 - 1 Mbps transmit/receive operation
 - Byte Oriented
 - Monosynchronous
 - Bisynchronous
 - External Synchronous
 - Bit Oriented
 - > SDLC/HDLC
- Asynchronous communications
 - o five to eight bits per character
 - o start, programmable stop and optional parity bit
 - 4 Mbps transmit/receive operation
- 4 byte transmit FIFO with programmable interrupt and DMA request levels
- 8 byte receive FIFO with programmable interrupt and DMA request levels
- Independent transmit and receive control
- Standard modem interface
- Jumper selectable to interrupt line, base address, RS232/RS422-485 mode per port
- Includes 64 different selectable I/O base addresses
- Extended temperature range: -40 to +85C
- Low power-consumption
- Single +5V power supply

Software Included

• Self-explanatory diagnostic program included

Connectors and Switches

External connectors provided are:

- CN1: PC/104 Bus (XT)
- CN2: PC/104 Bus (AT)
- JP7: First COM port
- JP6: Second COM port

Switches provided are:

• SW1: Base address selection

Recommended Cables

XK-CM66

General Specifications

- Dimensions: 3.8 x 3.9 x 0.6" (97 x 100 x 16 mm)
- Weight (mass): 3.0 ounces (85 grams)
- 6-layer PCB
 - Operating conditions: Temperature: -40 - +85 degrees C Relative humidity: 0 - 95%, non-condensing Storage temperature: -55 to +125 degrees C

Configuring the utilityModule

The following sections contain information on configuring the utilityModule.

Please read this entire section before attempting to use the utilityModule!

Chapter 2 INSTALLING THE UTILITY MODULE

Since the utilityModule uses a PC/104 stackthrough bus, the only hardware installation you will do is placing the module to the PC/104 stack. To do this, you will connect the PC/104 bus connector with the matching connector of another module.

Recommended Procedure

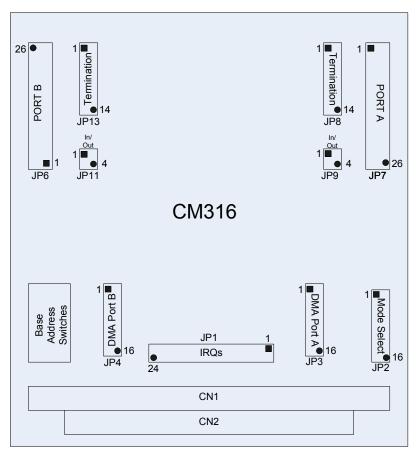
We recommend you follow the procedure below to ensure that stacking of the modules does not damage connectors or electronics.

- Turn off power to the PC/104 system or stack.
- Select and install standoffs to properly position the utilityModule on the PC/104 stack.
- Touch a grounded metal part of the stack to discharge any buildup of static electricity.
- Remove the utilityModule from its anti-static bag.
- Check that keying pins in the PC/104 bus connector are properly positioned.
- Check the stacking order: make sure an XT bus card will not be placed between two AT bus cards, or it will interrupt the AT bus signals.
- Hold the utilityModule by its edges and orient it so the bus connector pins line up with the matching connector on the stack.
- Gently and evenly press the utilityModule onto the PC/104 stack.

CAUTION: Do not force the module onto the stack! Wiggling the module or applying too much force may damage it. If the module does not readily press into place, remove it, check for bent pins or out-of-place keying pins, and try again.

Connecting the utilityModule

The following sections describe connectors of the utilityModule.


Finding Pin 1 of Connectors

A white area silk-screened on the PC board indicates pin 1 of connectors. A square solder pad visible on the bottom of the PC board also indicates it.

Chapter 3 JUMPER / SWITCH CONFIGURATION

Locations

The figure below shows a **TOP** view of the board with connector and pin locations.

Figure 1 Connector Locations

Table 1 Connector /Jumper Description Table

Connector	Function	Size
CN1	PC/104 XT Bus	64 pin
CN2	PC/104 AT Bus	40 pin
JP1	Interrupt Requests	24 pin
JP2	Mode Select Switches	16 pin
JP3	DMA Port A (Tx / Rx)	16 pin
JP4	DMA Port B (Tx / Rx)	16 pin
JP6	Port B	26 pin
JP7	Port A	26 pin
JP8	Port A RS422 /485 Terminations	14 pin
JP9	Port A Sync TxC	4 pin
JP11	Port B Sync TxC	4 pin
JP13	Port B RS422 / 485 Terminations	14 pin

Base Address Switch settings

			_		SW1	Base Address (hex)			
SW6	SW5	SW4	SW3	SW2		JP7 (Port A) Cmnd	JP7 (Port A) Data	JP6 (Port B) Cmnd	JP6 (Port B) Data
Closed	Closed	Closed	Closed	Closed	Closed	200	201	202	203
Closed	Closed	Closed	Closed	Closed	Open	208	209	20A	20B
Closed	Closed	Closed	Closed	Open	Closed	210	211	212	213
Closed	Closed	Closed	Closed	Open	Open	218	219	21A	21B
Closed	Closed	Closed	Open	Closed	Closed	220	221	222	223
Closed	Closed	Closed	Open	Closed	Open	228	229	22A	22B
Closed	Closed	Closed	Open	Open	Closed	230	231	232	233
Closed	Closed	Closed	Open	Open	Open	238	239	23A	23B
Closed	Closed	Open	Closed	Closed	Closed	240	241	242	243
Closed	Closed	Open	Closed	Closed	Open	248	249	24A	24B
Closed	Closed	Open	Closed	Open	Closed	250	251	252	253
Closed	Closed	Open	Closed	Open	Open	258	259	25A	25B
Closed	Closed	Open	Open	Closed	Closed	260	261	262	263
Closed	Closed	Open	Open	Closed	Open	268	269	26A	26B
Closed	Closed	Open	Open	Open	Closed	270	271	272	273
Closed	Closed	Open	Open	Open	Open	278	279	27A	27B
Closed	Open	Closed	Closed	Closed	Closed	280	281	282	283
Closed	Open	Closed	Closed	Closed	Open	288	289	28A	28B
Closed	Open	Closed	Closed	Open	Closed	290	291	292	293
Closed	Open	Closed	Closed	Open	Open	298	299	29A	29B
Closed	Open	Closed	Open	Closed	Closed	2A0	2A1	2A2	2A3
Closed	Open	Closed	Open	Closed	Open	2A8	2A9	2AA	2AB
Closed	Open	Closed	Open	Open	Closed	2B0	2B1	2B2	2B3
Closed	Open	Closed	Open	Open	Open	2B8	2B9	2BA	2BB
Closed	Open	Open	Closed	Closed	Closed	2C0	2C1	2C2	2C3
Closed	Open	Open	Closed	Closed	Open	2C8	2C9	2CA	2CB
Closed	Open	Open	Closed	Open	Closed	2D0	2D1	2D2	2D3
Closed	Open	Open	Closed	Open	Open	2D8	2D9	2DA	2DB
Closed	Open	Open	Open	Closed	Closed	2E0	2E1	2E2	2E3
Closed	Open	Open	Open	Closed	Open	2E8	2E9	2EA	2EB
Closed	Open	Open	Open	Open	Closed	2F0	2F1	2F2	2F3
Closed	Open	Open	Open	Open	Open	2F8	2F9	2FA	2FB
Open	Closed	Closed	Closed	Closed	Closed	300	301	302	303
Open	Closed	Closed	Closed	Closed	Open	308	309	30A	30B
Open	Closed	Closed	Closed	Open	Closed	310	311	312	313
Open	Closed	Closed	Closed	Open	Open	318	319	31A	31B

Table 2 Base address table for COM ports

Open	Closed	Closed	Open	Closed	Closed	320	321	322	323
Open	Closed	Closed	Open	Closed	Open	320	329	322 32A	323 32B
Open	Closed	Closed	Open	Open	Closed	330	331	332	333
Open	Closed	Closed	Open	Open	Open	338	339	33A	33B
Open	Closed	Open	Closed	Closed	Closed	340	341	342	343
Open	Closed	Open	Closed	Closed	Open	348	349	34A	34B
Open	Closed	Open	Closed	Open	Closed	350	351	352	353
Open	Closed	Open	Closed	Open	Open	358	359	35A	35B
Open	Closed	Open	Open	Closed	Closed	360	361	362	363
Open	Closed	Open	Open	Closed	Open	368	369	36A	36B
Open	Closed	Open	Open	Open	Closed	370	371	372	373
Open	Closed	Open	Open	Open	Open	378	379	37A	37B
Open	Open	Closed	Closed	Closed	Closed	380	381	382	393
Open	Open	Closed	Closed	Closed	Open	388	389	38A	38B
Open	Open	Closed	Closed	Open	Closed	390	391	392	393
Open	Open	Closed	Closed	Open	Open	398	399	39A	39B
Open	Open	Closed	Open	Closed	Closed	3A0	3A1	3A2	3A3
Open	Open	Closed	Open	Closed	Open	3A8	3A9	3AA	3AB
Open	Open	Closed	Open	Open	Closed	3B0	3B1	3B2	3B3
Open	Open	Closed	Open	Open	Open	3B8	3B9	3BA	3BB
Open	Open	Open	Closed	Closed	Closed	3C0	3C1	3C2	3C3
Open	Open	Open	Closed	Closed	Open	3C8	3C9	3CA	3CB
Open	Open	Open	Closed	Open	Closed	3D0	3D1	3D2	3D3
Open	Open	Open	Closed	Open	Open	3D8	3D9	3DA	3DB
Open	Open	Open	Open	Closed	Closed	3E0	3E1	3E2	3E3
Open	Open	Open	Open	Closed	Open	3E8	3E9	3EA	3EB
Open	Open	Open	Open	Open	Closed	3F0	3F1	3F2	3F3
Open	Open	Open	Open	Open	Open	3F8	3F9	3FA	3FB

PC/104 Bus Connectors, CN1 and CN2

Connectors CN1 and CN2 provide PC/104 bus connections. CN1 carries XT bus signals, and CN2 carries additional signals for the AT bus. The signals on CN1 and CN2 conform to the IEEE P966 standard for the PC/104 bus.

The following tables list the connector pinouts:

PC/104 XT Bus Connector, CN1						
Pin	Row A	Row B				
1	IOCHCHK*	0V				
2	SD7	RESETDRV				
3	SD6	+5V				
4	SD5	IRQ9				
5	SD4	-5V				
6	SD3	DRQ2				
7	SD2	-12V				
8	SD1	ENDXFR*				
9	SD0	+12V				
10	IOCHRDY	(KEYING PIN)				
11	AEN	SMEMW*				
12	SA19	SMEMR*				
13	SA18	IOW*				
14	SA17	IOR*				
15	SA16	DACK3				
16	SA15	DRQ3				
17	SA14	DACK1*				
18	SA13	DRQ1				
19	SA12	REFRESH				
20	SA11	SYSCLK				
21	SA10	IRQ7				
22	SA9	IRQ6				
23	SA8	IRQ5				
24	SA7	IRQ4				
25	SA6	IRQ3				
26	SA5	DACK2*				
27	SA4	TC				
28	SA3	BALE				
29	SA2	+5V				
30	SA1	OSC				
31	SA0	0V				
32	0V	0V				

PC/104 AT Bus Connector, CN2						
Pin	Row C	Row D				
0	0V	0V				
1	SBHE*	MEMCS16*				
2	LA23	IOCS16*				
3	LA22	IRQ10				
4	LA21	IRQ11				
5	LA20	IRQ12				
6	LA19	IRQ15				
7	LA18	IRQ14				
8	LA17	DACK0*				
9	MEMR*	DRQ0				
10	MEMW*	DACK5*				
11	SD8	DRQ5				
12	SD9	DACK6*				
13	SD10	DRQ6				
14	SD11	DRQ6				
15	SD12	DRQ7				
16	SD13	+5V				
17	SD14	MASTER*				
18	SD15	0V				
19	(KEYING PIN)	0V				

Table 4 PC/104 AT Bus Connector

Note: Two locations on the bus have mechanical keying pins to help prevent misconnection of the PC/104 bus. These keying pins are a part of the PC/104 standard, and we strongly recommend you leave them in place.

If you have other modules without keying pins, we suggest you modify them to include keying.

JP1 Interrupt Requests / Sharing

Interrupt sharing is a mechanism which allows different devices or different boards to share the same active high IRQ lines on the PC/104 bus, given that there is a interrupt sharing circuit associated with each device / board. The utilityModule provides interrupt-sharing circuits for the board; thus allowing sharing of each IRQ line with other boards.

Interrupt sharing in a PC/104 system requires one 1K pull-down resistor per IRQ line for all the devices that share the IRQ. Installing a ground jumper in the utilityModule will pull its associated IRQ line down with 1K resistor. When multiple boards are placed in a system care should be taken not to install the ground jumper on more than one board as this will reduce the pull down resistor value increasing the effective drive load, which in turn will keep devices from driving the IRQ line high. With one board installed in the system JP1 (23-24) must be jumpered since the driver is an open emitter type. For more than one board or for multiple IRQ sharing boards only one ground jumper needs to be installed for the system.

Description	Jumper Pins
IRQ 3	1-2
IRQ 4	3-4
IRQ 5	5-6
IRQ 6	7-8
IRQ 7	9-10
IRQ 9	11-12
IRQ 10	13-14
IRQ 11	15-16
IRQ 12	17-18
IRQ 14	19-20
IRQ 15	21-22
GND	23-24

Table 5 IRQ Jumpers

JP2 Mode Select Switches

Description	Pins	Open	Shorted
Port A Serial Comm Mode	1-2	RS422 / 485	RS232
Port A Int / Ext Sync / TxClk	3-4	External	Internal
Port A Request To Send / Always	5-6	Always	RTS
14.7456MHz / 16.0000MHz	7-8	16MHz	14MHz
Port B Serial Comm Mode	9-10	RS422 / 485	RS232
Port B Int / Ext Sync / TxClk	11-12	External	Internal
Port B Request To Send / Always	13-14	Always	RTS
ESCC ZiLOG Rx Clock Source	15-16	Rx Clk	Tx Clk

Table 6 Mode Jumpers

Port x Serial Comm Mode

Makes appropriate port A or B either differential mode (RS422/485) or single ended mode (RS232).

Port x Int / Ext Sync and ESCC Transmit Clock

WARNING WHEN SYNC OR TRANSMIT CLOCK SOURCE IS FROM THE EXTERNAL CONNECTOR (JP7 FOR PORT A, JP6 FOR PORT B) THE APPROPRIATE PIN ON THE ESCC SHOULD BE MADE AS AN INPUT TO AVOID DRIVER CONTENTION AND POSSIBLE DAMAGE TO THE BOARD.

When left open the clock and sync source come from the appropriate connector (JP7 for Port A, JP6 for Port B). When shorted the ESCC is the source for the transmitter clock and sync signal and the appropriate pins at JP7 and JP6 become outputs.

Port x Request to Send /Always

The RS422/485 on board drivers have two physical enables and this jumper is used to enable one of these enables either always or with the request to send signal.

14.7456MHz / 16.0000MHz

This jumper is the clock source for the ESCC ZiLOG chip.

ESCC ZiLOG Rx Clock Source

This jumper determines whether the receive clock source for the ESCC is the transmitter clock (this may be onboard or external) or the receiver clock from the connector. See the table below for the list of options. Care should be taken to NOT have an external driver on the connector in certain instances (see below table).

	JP2		JP9	Description			
Pins 15-16	Pins 1-2	Pins 3-4	Pins 3-4		Description		
RX CLK source	RS 422 /232	TX CLK source	To output connector	ESCC Rx source	ESCC Tx Source	Tx Conn Source	
Closed	Closed	Open	Closed	Rx 232 Ext	Rx 232 Ext	Rx 232 Ext	
Closed	Closed	Open	Open	Tx 232 Ext	IX 252 EX	None	
Closed	Closed	Closed	Closed	Tx Loopback		Tx 232 USART	
Closed	Closed	Closed	Open	Tx 232 Ext	None	None	
Open	Closed	Closed	Closed		None	Tx 232 USART	
Open	Closed	Closed	Open	Rx 232 Ext		None	
Open	Closed	Open	Closed	KA 252 EAU	Rx 232 Ext	Rx 232 Ext	
Open	Closed	Open	Open		KA 252 EAt	None	
Closed	Open	Closed	Closed	Tx Loopback		Tx 422 USART	
Closed	Open	Closed	Open	None	None	Partially driven Tx 422 USART	
Open	Open	Closed	Closed		None	Tx 422 USART	
Open	Open	Closed	Open	Rx 422 Ext	7	Partially driven Tx 422 USART	
Open	Open	Open	Closed				
Open	Open	Open	Open		Rx 422 Ext	None	
Closed	Open	Open	Closed	Tx 422 Ext	RA 722 LA I	None	
Closed	Open	Open	Open	1A 722 LA			

Table 7 Jumpers Options for Port A clock sources

	JP2		JP9	Description						
Pins 15-16	Pins 9-10	Pins 11-12	Pins 3-4							
RX CLK source	RS 422 /232	TX CLK source	To output connector	ESCC Rx source	ESCC Tx Source	Tx Conn Source				
Closed	Closed	Open	Closed	Rx 232 Ext	Rx 232 Ext	Rx 232 Ext				
Closed	Closed	Open	Open	Tx 232 Ext	KA 252 LAU	None				
Closed	Closed	Closed	Closed	Tx Loopback		Tx 232 USART				
Closed	Closed	Closed	Open	Tx 232 Ext	None	None				
Open	Closed	Closed	Closed		None	Tx 232 USART				
Open	Closed	Closed	Open	Rx 232 Ext		None				
Open	Closed	Open	Closed	KX 232 EXt	Rx 232 Ext	Rx 232 Ext				
Open	Closed	Open	Open		KX 252 EXt	None				
Closed	Open	Closed	Closed	Tx Loopback		Tx 422 USART				
Closed	Open	Closed	Open	None	None	Partially driven Tx 422 USART				
Open	Open	Closed	Closed			Tx 422 USART				
Open	Open	Closed	Open	Rx 422 Ext		Partially driven Tx 422 USART				
Open	Open	Open	Closed	H						
Open	Open	Open	Open		Rx 422 Ext	None				
Closed	Open	Open	Closed	Tx 422 Ext	KA 422 EAU	INOLIC				
Closed	Open	Open	Open	1 A 422 EAU						

Table 8 Jumpers Options for Port B clock sources

JP3 – JP4 DMA Selects

DMA will only work when **NO** two channels are set to use the same DMA. That is to say that Port A and Port B both transmit and receive must be set to use different DMA requests and acknowledges. DMA does not work without jumpers installed.

Dese	Jumper Pins	
Port A (JP3)	Port B (JP4)	oumper rins
Tx DMA 0	Tx DMA 0	1-2
Tx DMA 1	Tx DMA 1	3-4
Tx DMA 2	Tx DMA 2	5-6
Tx DMA 3	Tx DMA 3	7-8
Rx DMA 0	Rx DMA 0	9-10
Rx DMA 1	Rx DMA 1	11-12
Rx DMA 2	Rx DMA 2	13-14
Rx DMA 3	Rx DMA 3	15-16

Table 9 DMA Jumpers

JP6 – JP7 I/O Ports

Desci	ription	Signal		Pin		
RS232	RS422 / 485	Port A	Port B			
Ground	Ground	GND	GND	1		
	Transmit Data +	TXD+	TXD+	2		
Transmit Data	Transmit Data -	TXD-	TXD-	3		
Transmit Clock	Transmit Clock -	TXC-	TXC-	4		
Receive Data	Receive Data -	RXD-	RXD-	5		
	Receive Data +	RXD+	RXD+	6		
Request To Send	Request To Send -	RTS-	RTS-	7		
Receive Clock	Receive Clock -	RXC-	RXC-	8		
Clear To Send	Clear To Send -	CTS-	CTS-	9		
No Connect	No Connect	NC	NC	10		
Data Set Ready	Data Set Ready -	DSR-	DSR-	11		
	Request To Send +	RTS+	RTS+	12		
Ground	Ground	GND	GND	13		
Data Terminal Ready	Data Terminal Ready -	DTR-	DTR-	14		
Data Carrier Detect	Data Carrier Detect -	DCD-	DCD-	15		
No Connect	No Connect	NC	NC	16		
	Receive Clock +	RXC+	RXC+	17		
	Data Set Ready +	DSR+	DSR+	18		
	Data Carrier Detect +	DCD+	DCD+	19		
	Data Terminal Ready +	DTR+	DTR+	20		
	Synchronization +	SYNC+	SYNC+	21		
Synchronization	Synchronization -	SYNC-	SYNC-	22		
	Transmit Clock +	TXC+	TXC+	23		
No Connect	No Connect	NC	NC	24		
	Clear To Send +	CTS+	CTS+	25		
No Connect	No Connect	NC	NC	26		

Table 10 User I/O Ports A and B

JP8 – JP13 RS422 / 485 Terminations

You can change the mode switch to set either port as RS422 or RS485 (See JP2). In this case, you must connect JP6 or JP7 to an RS422 or RS485 compatible device.

When using RS422 or RS485 mode, you can use the port in either half-duplex (two-wire) or full-duplex (four-wire) configurations. For half-duplex (2-wire) operation, you must connect RXD+ to TDX+, and connect RXD- to TXD-.

Note! These 120-ohm termination resistors are provided on the utilityModule. When these pins are jumpered a 120Ω Termination is placed in parallel across the + and – signals. Pins do **NOT** get shorted in RS232 Mode. Termination is usually necessary on all RS422 receivers and at the ends of the RS485 bus. If the termination resistors are required, they can be enabled by jumpering the corresponding bits on JP8 or JP13.

Description	Sig	nal	Jumper Pins
Description	Port A	Port B	oumper i mo
Data Set Ready	DSR	DSR	1-2
Data Carrier Detect	DCD	DCD	3-4
Clear To Send	CTS	CTS	5-6
Receive Data	RxD	RxD	7-8
Synchronization	SYNC	SYNC	9-10
Receive Clock	RxC	RxC	11-12
Transmit Clock	TxC	TxC	13-14

Table 11 Termination Jumpers

JP9 – JP11 Sync / TxC source

The TxC jumper should be installed when the ZiLOG ESCC transmitter clock is configured as a source for driving the RxC clock pins in differential mode. The Sync jumper should be installed when the board is used as a source for the synchronization pulse (i.e. internal synchronization). These jumpers should not be installed in RS232 mode.

Description	Jumper Pins
Sync	1-2
TxC	3-4

Table	12	Sync /	Clk J	lumpers
-------	----	--------	-------	---------

Chapter 4 MEMORY MAP

The figure below shows the board memory map. Addresses are offsets from the Base Address which is determined by the switch settings (see Table 2):

Address Offset	Description
0x0	ESCC Command Register A
0x1	ESCC Data Register A
0x2	ESCC Command Register B
0x3	ESCC Data Register B
0x4	FPGA Status Register
0x400	FPGA Board ID Register
0x402	FPGA Board ID Reset

Table 13 CM316 Memory Map

0x0 – 0x3 ESCC Communications (Read / Write)

These registers access the ESCC chip. A read or write to the ESCC command register is done by first writing the address that you want to access on the ESCC to 0x0 port A / 0x2 port B and then reading or writing the data value to or from 0x0 port A / 0x2 port B. Both of these back to back operations are written to the command register. The data register is used to retrieve serial data from the ESCC FIFO. The user only has to do a read or write to 0x1 port A/ 0x3 port B with the required data value. For further information and the ESCC datasheet see the Zilog website.

0x4 FPGA Status (Read)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R	R	R	R	R	EB	EA	DSRB	DSRA

- Bit 0: Data Set Ready Status of Port A
- Bit 1: Data Set Ready Status of Port B
- Bit 2: Port A Echo enabling
 - 1: Echo Disabled (Rcvr data always 1) active RTS time)
- Bit 3: Port B Echo enabling
 - Echo Disabled (Rcvr data always 1) active RTS time)
 Reserved
- 0: Echo enabled (user will hear own Tx data during
- 0: Echo enabled (user will hear own Tx data during

Bit 15-4:

0x400 Board ID Register (Read)

A byte or word accessible read shows the user the device, vendor and fpga board information.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Device ID:	C316
Vendor ID:	1435
FPGA version	XXXX

0x402 Board ID Reset (Read)

A read resets the board ID register counter.

COM ports

The utilityModule features Zilog dual Enhanced Synchronous Communications Controller (ESCC) Z85230 part.

ZiLOG Documentation

Due to the complexity of the Zilog serial chip, it is impossible for us to reproduce all programming information in this manual. If you will be doing in-depth programming of the serial port controller, we suggest you obtain the Z85230 datasheet / apnotes from the manufacturer.

The Z85230 datasheet is available on-line in electronic format as an Adobe Acrobat (. PDF) file on the Zilog website:

www.zilog.com

You may also contact:

Zilog Worldwide Headquarters

532 Race Street

San Jose, CA 95126-3432

Or by phone/fax:

Phone: 408-558-8500

Fax: 408-558-8300

16 Mbps support

With 16 MHz clock input selected (JP2, 7-8 left open), the utilityModule is capable of provide data rates up to 16 Mbps using NRZ encoding in RS422/RS485 mode. Since RS232 standard restricts data rate to 20 Kbps, you might experience failure at higher data rate above 250 Kbps with 16 MHz clock select for the utilityModule.

Chapter 6 RETURN POLICY AND WARRANTY

Return Policy

If you wish to return a product to the factory for service, please follow this procedure:

Read the Limited Warranty to familiarize yourself with our warranty policy.

Contact the factory for a Return Merchandise Authorization (RMA) number.

Please have the following available:

- Complete board name
- Board serial number
- A detailed description of the board's behavior

List the name of a contact person, familiar with technical details of the problem or situation, along with their phone and fax numbers, address, and e-mail address (if available).

List your shipping address!!

Indicate the shipping method you would like used to return the product to you. *We will not ship by next-day service without your pre-approval.*

Carefully package the product, using proper anti-static packaging.

Write the RMA number in large (1") letters on the outside of the package.

Return the package to:

RTD Embedded Technologies, Inc. 103 Innovation Blvd. State College PA 16803-0906 USA

Limited Warranty

RTD Embedded Technologies, Inc. warrants the hardware and software products it manufactures and produces to be free from defects in materials and workmanship for one year following the date of shipment from RTD Embedded Technologies, INC. This warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, RTD Embedded Technologies will repair or replace, at its option, any defective products or parts at no additional charge, provided that the product is returned, shipping prepaid, to RTD Embedded Technologies. All replaced parts and products become the property of RTD Embedded Technologies. Before returning any product for repair, customers are required to contact the factory for an RMA number.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH HAVE BEEN DAMAGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE (such as: use of incorrect input voltages, improper or insufficient ventilation, failure to follow the operating instructions that are provided by RTD Embedded Technologies, "acts of God" or other contingencies beyond the control of RTD Embedded Technologies), OR AS A RESULT OF SERVICE OR MODIFICATION BY ANYONE OTHER THAN RTD Embedded Technologies. EXCEPT AS EXPRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND RTD Embedded Technologies EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED HEREIN. ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES FOR MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED TO THE DURATION OF THIS WARRANTY. IN THE EVENT THE PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED ABOVE, THE PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED ABOVE. UNDER NO CIRCUMSTANCES WILL RTD Embedded Technologies BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS, AND SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

RTD Embedded Technologies, Inc. 103 Innovation Blvd. State College PA 16803-0906 USA Our website: www.rtd.com