

PersOnalized Smart Environments to increase Inclusion of people with DOwn’s syndrome

Deliverable D4.5

HCI user and developer manuals

Call: FP7-ICT-2013-10

Objective: ICT-2013.5.3 ICT for smart and

personalised inclusion

Contractual delivery date: 30.04.2015 (M18)

Actual delivery date: 01.05.2015

Version: v1

Editor: Silvia Rus (FhG)

Contributors: Riitta Hellman, Karde
 Erlend Øverby. Karde
 Lars Thomay Boye, Tellu
 Alexandra Covaci, MU
 Fengling Han, Karde
 Martin Majewski, FhG
 Steeven Zeiss, FhG

Reviewers: Terje Grimstad, Karde
 Dean Kraemer, MU

Dissemination level: Public

Number of pages: 35

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

2

Content

1 HCI components and the rationale of UI in POSEIDON ... 3

2 Poseidon Web ... 3

2.1 Introduction ... 3

2.2 Preparation and system introduction ... 3

2.3 Use of Poseidon web ... 4

2.4 Conclusions .. 10

3 Poseidon App - Android User Interface Implementation .. 10

3.1 Android Device Interface ... 11

3.2 Android System and Application Model .. 13

3.3 Widgets and Styles – The “look-and-feel” ... 14

3.4 Android User Interface Framework ... 15

3.5 Screen Adaptivity... 17

4 Moneyhandling App using the interactive table (CapTap) .. 19

4.1 The overlay .. 19

4.2 Using the Application .. 19

4.3 CapTap as static display ... 21

4.4 Unity3D application ... 22

4.5 UI rational and guidelines implementation ... 23

5 Navigation training system using Virtual Reality (VR) ... 24

5.1 Language and role selection .. 24

5.2 Caregiver side .. 25

Appendix 1: POSEIDON guidelines for developing accessible user interfaces 27

1. Principles of universal design .. 27

2. Design methodology for mock-up development (and beyond) .. 29

3. Information for all ... 32

4. Funka's guidelines for the development of accessible mobile interfaces................................. 32

5. Additional guidelines ... 33

Mobile Accessibility Standards .. 33

Standards to enable access for people with cognitive impairments .. 33

Other Sources of Informal Standards Information .. 34

7. Terminology and symbols in POSEIDON .. 34

8. Visual appearance, icons and colour palettes in POSEIDON ... 34

9. Basic accessibility requirements for web based systems .. 35

10. Branding .. 35

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

3

1 HCI components and the rationale of UI in POSEIDON

The four HCI components of the POSEIDON system are:

 POSEIDON web – a web application that offers basic calendar and reminder capabilities, but

also extends these by allowing to add additional information needed for the special calendar

appointment, ensuring an extended functionality.

 POSEIDON app – a mobile application which offers diverse functionality like a calendar and

navigation services, being strongly interconnected with the POSEIDON web and the stationary

navigation training

 Navigation training system using Virtual Reality (VR)- offers the functionality to prepare and

enrich routes with different media like photos and special instructions, allowing for the

primary user to train in a safe environment

 Moneyhandlin App with the interactive table (CapTap)– offers training for recognizing coins

and bills and paying products as well. Real money can be moved on the surface of table. The

table recognizes which coin has been selected.

Appendix 1, POSEIDON guidelines for developing accessible user interfaces, explains the concept of

the POSEIDON family design and the influencing factors which lead to the current design.

In the following the HCI interface for each of these components will be described.

2 Poseidon Web

2.1 Introduction
Poseidon web is the personalized environment for attentive users, which are called the carers in

POSEIDON project context. The target user of Poseidon web is the carers of people with Down’s

syndrome, who are attentive of people with Down’s syndrome and helps to plan their daily activities.

The main component of the Poseidon web is the personalized calendar which helps to schedule the

daily events of people with Down’s syndrome with specialized IT support. The Poseidon web is

cooperated with the Poseidon app running on a mobile system, typically a smart phone, to coordinate

the attentive users and the primary users.

In the following section, we will first introduce the Poseidon system composition and functions in

Section 3.2 and then give a screen shot based detailed illustration of the usage of the system in Section

3.3.

2.2 Preparation and system introduction
In order to run the Poseidon web, the carers have to have a running operating system which is

connected to the internet. The system has to install an up-to-date web browsers, e.g. Internet explorer

(IE), Chrome, or Firefox browser on windows operating system or safari on iOS operating system. There

is no specific system performance requirement.

1. Google Calendar account. We choose Google as the public calendar server to provide the

service. In order to access the Google calendar service, the carer needs to apply for a Google

account for each primary user. The document for helping apply for a Google account can be

obtained from https://accounts.google.com/SignUp.

2. POSEIDON web. Poseidon web is a web based system that can be accessible via any browsers.

The main functionality contains three parts: First, a personalized event scheduling calendar;

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

4

monitoring, showing information reported from the mobile app such as position, battery and

possibly others. The third function is personalization: setting user preferences.

3. Personalization. The Poseidon web is a customized and personalized event scheduling system

with additional IT supports. E.g. the primary user who is holding the mobile version of Poseidon

app can be displayed on the map of Poseidon web.

2.3 Use of Poseidon web
In the section, we will describe the usage of Poseidon web in three basic scenarios.

1. Login and change system setting.

Use the distributed primary user name and password to login to the Poseidon web, as shown

in Figure 1. The Web can be opened with the following link:

http://ri.smarttracker.no/poseidon.

Figure 1 Login Interface (click the Remember user to store the user information)

http://ri.smarttracker.no/poseidon

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

5

After logged into the system, you can click the gear icon (on the top-right corner) to go to system

setting to change the system language.

Figure 2 Change language setting

2. Connect to Google Account

 On the left side of the web, you can see a POSEIDON logo on the top followed by a

navigation bar containing calendar, Personalize and Monitor. Click the calendar icon

or text to see the calendar.

 Click on Connect Google calendar button (Figure 3) to connect to Google calendar

service. You might have other google account, if so click on add account to change to

the Google account you are going to connect to published event scheduling.

 Some browser might prevent popup page like in Figure 4, you need to manually enable

the popup of authorization page.

Figure 4 and 5 show the interface that Google requires your login information to permit Poseidon web

to publish events.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

6

Figure 3 Calendar view

Figure 4 Interface shows the interface that Google requires your login information to permit Poseidon web to
publish events.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

7

Figure 5 Click accept to give Poseidon web this ability to publish event

3. Working with Calendar

The basic calendar use contains adding, updating and deleting an event.

 Add event. Click a blank area of a calendar day or click the add button can add a calendar

event.

 In the popup page as shown in Figure 6, you can choose the event starting date, hour and

minutes and ending date, hour and minutes. This has to be done sequentially.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

8

Figure 6 Popup page for editing event

 Figure 7 shows an edited event “Go to school”, the fields include starting and ending

time, summary, routes, description and instructions, description are optional. The

routes are predefined in Poseidon system. You can add an alarm for the event by

clicking the alarm check box and edit the minute’s number prior to the event.

 Click save to save the event on Poseidon web and publish it to the calendar server such

that the Poseidon app on the mobile device can receive it. From now on you can

discover the interaction between the Poseidon Web and the mobile app for the

primary user.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

9

Figure 7 Go to school event

 After adding an event, you can click on the event icon on the calendar to delete or update it.

 The event editing are personalized to Poseidon use, and passed to the mobile app. Figure 8

shows a possible outlook of the mobile app for a calendar for how to use the mobile app,

please refer to screen shots of the mobile Poseidon app.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

10

Figure 8 events passed to the mobile Poseidon app

2.4 Conclusions
In summary, the Poseidon web is easy to use browser application that can edit personalized, extensible

events. Notifications of events and instruction can be added and automatically shown on the mobile

app.

3 Poseidon App - Android User Interface Implementation

Android was selected as the primary platform for mobile (tablet and phone) applications in the project,

and the platform for the first pilot, previously discussed in D5.1. When designing a mobile application,

there are a number of aspects to keep in mind if the result is to be user friendly. One needs to know

the possibilities and limitations of the hardware and the operating system of the target devices. One

must also consider the type of functionality which will be included and the type of user we are

targeting. Finally, it is important to not only consider the wanted functionality, but also non-functional

requirements and how to handle all the errors and exceptions which may occur. As the focus of this

deliverable is on user interfaces, we will not cover all these aspects here. We will mainly examine the

possibilities and challenges for user interface implementation on Android, with a special focus on

usability and personalisation/adaptivity as these are key aspects for the POSEIDON solution.

However, working with Android, as with any of the mobile platforms, it is important to understand

that we do not have complete freedom as application developers. We work within a context which

places restrictions on what we are allowed to do, and in addition there are user interface principles

followed by most apps which we should follow unless we have very good reasons for doing otherwise.

Android is an app platform rather than a general purpose operating system, designed with a specific

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

11

type of use in mind, to keep the user in control of the device and minimize the possibility for making

an app that violates the user’s wishes or drains the battery. If we don’t understand our target platform

we risk planning features which cannot be implemented as well as making an app which does not

behave the way users expect. Therefore, we look at some important topics of Android user interaction.

When reading this chapter, also keep in mind that Android has evolved a lot during the years it has

been one of the two big app platforms. Aspects of user interaction have changed quite a bit. This is a

usability problem, especially since Android devices typically only get a few updates before they are

stranded on an outdated version, meaning not all devices have the same Android version. In addition,

different manufacturers add their own features to the system, and while these modifications do not

usually go very deep, they affect the look and feel of the user interface.

The Android developer web page1 provides very comprehensive documentation for all aspects of

Android development, and is the main source for this chapter, along with Tellu’s experience developing

both commercial apps and research prototypes on Android.

3.1 Android Device Interface
We start with a quick look at the fixed parts of the interfaces of Android phones and tablets. Just about

all devices have the same three physical buttons along the sides: a power button and volume up/down

buttons. Mobile devices are rarely turned completely off, but the power button is used to turn on and

off the screen. All devices also have some navigation buttons (usually touch-sensitive areas rather than

physical buttons) along the bottom of the front. These were originally below the screen, and there

were four of them. Their order and icons varied between phone manufacturers and models, which was

bad for usability. From Android version 4.0, the first version to fit both phones and tablets, navigation

buttons could be shown on screen by the Android system. Google prefers this approach but does not

enforce it on manufactures, so some (notably Samsung) still have external buttons of their own design.

Any app design, including POSEIDON, must take these navigation buttons into consideration. They are

the intended way to navigate between functions in the device, and some of them are completely

outside the control of the app, so we cannot prevent the user from using them. We may incorporate

some of their functions into our own interfaces for usability’s sake, but we should keep in mind that

screen space is limited, and that those who have Android experience expect the buttons to have their

standard functions.

Two buttons are found in all interface variations: the home and back buttons. The home button

(usually a house icon) hides any app currently shown, to bring up the home screen. This button can’t

be disabled by the app, and means the user can always leave our app. If we really want it to be

persistent, we can detect every time it is removed and bring it back again, but this is generally a bad

practice as it takes control away from the user and makes the device unusable for anything else. Note

that the home screen is also just an app, a so-called launcher designed to start other apps, and it is

possible to make our app a launcher and use it as the home screen, although it is always possible for

the user to revert to the default launcher that comes with the device.

1 http://developer.android.com

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

12

Figure 9 Reference phone and tablet from Google. Note status lines along the top (1) and navigation lines along
the bottom (2)

The back button (with arrow icon) is meant to work much like in a web browser, going back to the

previous screen. This button is under app control. It is generally a good idea to let the end-user

backtrack in our app, as he would expect if he has previous Android experience, and to leave the app

when backtracking beyond the first view (it can still be active in the background).

Of the four buttons on older phones, the other two were menu and search. The menu button brings

up a pop-up menu, if one is defined by the app. A modern Android design guideline is to put the menu

items in an action bar along the top of the screen instead, but the popup menu is still much used, and

Samsung devices still has the menu button. The search button is not usually found on modern devices.

It may be overridden by the app, otherwise it will bring up the built-in search function of the phone,

hiding whatever the user was previously doing.

Finally, navigation includes a list of previously used apps, to allow the user to quickly switch between

tasks. This function has its own button in the modern on-screen interface, but other designs do not.

When there is no dedicated button, keeping the home button pressed for some time brings up this list.

As with the home button, this function cannot be prevented by the app.

In addition to considering the use of these buttons in relation to the app being designed, one should

also keep their location in mind when designing a screen layout. Putting a row of buttons along the

bottom of the screen within the app interface makes it easy to hit the navigation buttons by mistake,

especially for end-users with some impaired motor control. It may also be somewhat visually

confusing, although their styles will be clearly distinct, with the device’s buttons usually being quite

small white symbols on pure black.

If the device has on-screen navigation, the navigation bar is a constant presence along the bottom of

the screen. All devices have a status bar along the top. This shows vital status such as the time and

indicators for battery and networks, and it can show notifications – messages from apps or the system.

The status bar can be pulled down to show the notifications in full, and pressing a notification can bring

up the app in question. It is possible to have our app hide the status bar, though we need good reasons

to do so, as it is something users need if they are to use the device for more than our app. The details

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

13

of these bars have actually changed quite a bit with different Android versions. On tablets they used

to be combined in a single bar, and it is now possible to temporarily hide both bars, though the user

can always drag the navigation bar back on screen.

The last interface feature which must be considered is the keyboard. Just about all Android devices

today rely on “soft” keyboards shown on the screen. A soft keyboard will automatically show up when

an input field is selected, and the app may also request it specifically. Note that soft keyboards are part

of the Android system, not the app, and that device manufactures and individual users may install

various keyboard types and switch between them. It need not be a keyboard in the strict sense either;

it can be based on voice or handwriting input. This is a point of user customization of the device, but

outside the scope of an app.

So we have no control over this when designing the app, we just need to keep in mind that the

keyboard will probably show up when needed, taking over some of the screen space. In the vertical

orientation, the keyboard will typically take up the lower half of the screen. The app interface can

either shrink, effectively halving in size, or let the keyboard cover one half. The effect of the keyboard

must be considered when designing the interface. On phones, the keyboard with an input field will

generally take over the whole screen in the horizontal orientation. Regarding keyboards, it is also

important to keep in mind that these are usually quite small and cumbersome to use, so it’s always a

good idea to design to minimize the need for keyboard input.

3.2 Android System and Application Model
As was discussed in the framework deliverable (D5.1), mobile apps can either be built “natively” for an

app platform such as Android or iOS, or by using web technology so that it can (theoretically) run on

all major mobile platforms. We chose the first approach for the main POSEIDON mobile prototype,

partly because we have more of an existing code base to work from, but most importantly because we

have access to much more device functionality in this way, which is needed for such things as sensor

tracking in the background. For developing an assistive app we typically want a high degree of control

of the device. But while an Android app has more control of the underlying system than a web

application, and also somewhat more than an iPhone app, there are still clear restrictions. An app is

not like a native piece of software for a traditional desktop computer, which can have pretty much full

access to the system. Instead, it should be thought of as a plug-in to the app platform, where it must

co-exist with many other apps as well as a system that control it all and doesn’t give full system access

to any app.

There are some central principles behind the Android application model. One is that the user should

always be in control – the user can always close an app or change system-wide settings which affects

apps. Another is that of modularity and reuse – the user interfaces of an app should be able to mix

with other components in the system, and use other components which provides the necessary

functionality rather than reinventing the wheel. To give an example of both of these principles, let’s

say we want our app to send out an email. The Android way of doing this, is to send what is called an

intent to the system, with the email details such as address and text. The system will then ask the user

which of the email applications installed on the device should be used (the user can set a default to

avoid this question), and then bring up the email app with the email filled in, so that the user can

choose to send it or not. While these principles are good in many cases, they are problematic for us.

Our app gives up control, and the user may be confused by the various user interaction presented. We

cannot provide instructions for this, as it depends on what email apps are installed as well as Android

version and settings. It is technically possible for our app to send the email itself, but some things, such

as making a phone call, cannot be done without invoking system components and giving up control.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

14

Another important principle stems from the fact that Android is made for mobile systems, particularly

phones – an app can be closed by the system at any time, such as when battery is low or when a phone

call is coming in. In fact, the Android execution model is quite different from that of traditional desktop

applications, and it is important to understand it because of its implications for user interaction design.

The end-user is not supposed to turn apps “on” and “off”; they should just navigate between the views

they want, much like how you use the web. Some processes may be active in the background, based

on an activity started from a view, or a configuration, but it is left to the operating system to destroy

and recreate views and background processes based on available resources and what else is going on.

When you navigate back to a previously used app or bring it back from the list of last used apps, you

should not need to know if it was kept “behind the scenes” since you last used it, or if you get a freshly

created instance. This is an execution model adopted to the mobile use – the phone could run out of

battery at any time, or a phone call could come in forcing whatever else was going on to be removed.

You should still be able to return to previous activities and resume what you were doing.

One consequence of this execution model is very important for interface design. In the Android

convention, any input/changes the user has provided in a view should be preserved when the view is

removed, whether it’s because the end-user presses back, another view is taking over, or the phone is

about to shut down due to low battery. Therefore, a save button is usually not needed. This differs

from a desktop application, where you would expect to lose unsaved changes if you simply close the

window. Of course, it is still possible to include an explicit save button, or a cancel to not save changes,

but the convention of saving by default when removing a view should be followed for the most part,

both because smartphone users will expect it and because of the inherent instability of the mobile

device. If the end-user was editing something and then pressed the back button, consider showing a

little message to verify that the data was saved. Without going into technical details here, we will just

note that this “save on remove” behaviour is not something that comes for free. It requires great care

from the app developer to make sure the user always comes back to the app in a consistent state

independently of the rather arbitrary choice of the system to keep it in memory or create a new

instance.

For the POSEIDON app, we will use a simplified model, where we say that the app can be running in

the foreground or running in the background. No one but the app developer needs to know that the

distinction between these two and between background and not running at all are not so clear in the

Android execution model. We will say it is in the foreground when it is on screen and in focus, meaning

it is what the end-user sees and interacts with when using the phone. It is in the background when it

is running but not in the foreground. It is in the background when the end-user is not using the phone,

turning off the screen to save battery, and when another app is in the foreground. We need some

background functionality, such as keeping some sensors active and communicating with servers

occasionally. If we need to notify the user when running in the background, the Android convention is

to place a notification in the notification bar (this can have sound and/or vibration). Placing an icon in

the notification bar to show that the app is running in the background can also be considered. It can

indicate app status, for instance with colour. However, we should strive to keep user interaction to a

necessary minimum, and showing status might not be necessary.

3.3 Widgets and Styles – The “look-and-feel”
Turning now to the app user interface itself, we will consider options for its style. Widgets are the

elements of an interactive GUI (Graphical User Interface), such as buttons, input boxes, check boxes,

menus and scrollbars. Android has an extensive GUI framework, with widget types and visual styles for

these. One fundamental question is whether to use the native Android look as much as possible,

making the POSEIDON prototype look and feel much like other modern Android apps. There are several

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

15

advantages to this. For users with prior Android experience, it provides familiarity, while a custom user

interface may be harder to use simply for not following the learned conventions. And if we develop a

simple, cleaner UI to make the app easier to use, the simplicity can make the app feel both less

appealing and stigmatizing to some users. Using the default look also saves us the work of designing

an alternative.

On the other hand, there are some usability issues with the default Android look-and-feel. One is that

this is not the same on all devices. It has changed with different Android versions, and also

manufacturers add style modifications. This makes it difficult to provide detailed instructions that fit

all devices. However, the look-and-feel has become more stable and uniform from version 4.0 and

above, with the Android theme called Holographic, although this could change again in future. The

Holographic theme can also be criticized for its usability. It is a fashionable and somewhat minimalistic

design, but has occasional problems of low contrast and abstract widgets that are hard to interpret.

The alternative is to make something with better usability by emphasising simplicity, large elements

that are easy to see and interact with and good contrast. In fact we do not have to choose one or the

other. We can provide both options and make this an area of personalisation.

3.4 Android User Interface Framework
As we at least want the possibility to use Android’s default look, we want to use the Android GUI

framework. There is really no reason not to use it, at least as a starting point, because it is a flexible

and powerful system, with all the functionality needed to build a user interface. It is built up like most

such frameworks, with user interface elements (widgets), layouts for organising the elements on

screen and hooks for app code to handle interface events. It cleanly separates the rendering of the

widgets (how they look) from their logic, allowing us to change their style. We can both develop new

or modified elements, or put a different look on the existing ones. We will examine Android’s GUI

framework from the adaptability perspective, where there are strengths and weaknesses.

GUI adaptability on Android is closely tied to its system for application resources. We can say that

these resources are application content which is not programmed in the source code. The classic

example is media, such as images and sound we want to bundle with the app. But, just about

everything you see on screen can be defined by resources. All text to be seen by the user should be

defined in a text file put in the resources. And the user interfaces themselves – the structures of layouts

and elements – can be defined as XML files in the resources. While the creation and organisation of a

user interface can also be coded in the Java source code, it is easier to define this structure in an XML

file. But the important point of the resource system is that any resource file can have different versions,

and there are many different qualifiers which can be used to select between versions. One qualifier is

language and region, which is used for text. As long as all text is defined in a resource file, providing

support for another language is as easy as providing a translation for the text in the other language.

Other than language, the most important quantifiers are those dealing with screen properties, such as

size, resolution and orientation. The resource system is important for making the app fit different

screens. We will look at this in detail in the next section.

There is a whole system of resource files we can use to define a user interface, because we can define

an entity using references to other resource files for some of its properties. This serves two important

purposes. One is that it makes it easy to change a property for the developer, having the whole app

affected by changing it one place instead of having to search through all the layout files. The other is

that the referenced resource file can be qualified separately from the one which references it, so that

different GUI properties can adapt to different types of context changes. We will describe a strategy

for fulfilling this potential.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

16

Firstly, a layout file defines the layout – the elements and how they are laid out in relation to each

other – but with many of the properties defined in other resource files. All text is of course defined in

its own resource, so that the app can be adapted to several languages. Sizes, such as margins between

elements, should be defined in its own file and referenced from the layout file, both so that it is easy

to change for the whole app in one place and so that we can provide variations based on screen

properties if we want. For many GUI elements, we should define styles. A style is a collection of

properties. Styles are especially important for text elements, where it typically combines font size,

colour and other such properties. The font size of a style should in turn reference the size file already

mentioned, while colour properties should reference colour variables defined by a theme. A theme is

basically a style to be used for the app as a whole. In this strategy we mainly use it to give values to

colours and other drawables (a solid colour and an image can often be interchanged). It is possible to

have multiple themes and switch between them, thereby changing the look of the whole app with a

single property. This system of resources is complex, and there can be difficulty in getting the full

picture with the definitions spread throughout a number of files. However, it does make it possible to

change certain properties while keeping the rest constant without redundant definitions that would

damage application maintainability.

A resource in itself is static, so we should not completely define all user interfaces this way. If we need

to adapt a user interface to content and context at runtime, this must be done by code. A simple

example is a list of elements – we cannot fully define the interface statically because the number of

elements and what they are will vary. Instead we can define the frame interface holding the list as one

resource, and the list element as another resource. So for dynamic interfaces we break it down into

pieces we can define as resources and then instantiate in code as they are needed to populate the

interface.

Layout files are processed by the compilation process, and source code is generated which gives each

resource element an integer identifier which can be used in the code. The Android system

automatically selects the correct resources based on device configuration. For instance, language is an

Android setting which the user can change through the setting interface. Whenever a configuration

changes, including the orientation of the screen, the Android system destroys any currently visible

apps and launches them again with the correct resources.

This brings us to the limitations of the resource system. One negative is that we as app developers

have no control over what resources are selected; this is controlled by the system. We also cannot

define our own qualifiers to use the system to do our own adaptations. Another drawback is that the

whole resource set is “hard-coded” in the app by the compilation process. It is not possible to introduce

resources at run-time. We cannot even provide reference to resources directly from external sources

such as a server or a file. If we have two themes, called “theme_a” and “theme_b” in the resource file,

these will have integers assigned to them by the compilation process, let’s say 1 and 2. We can provide

the value 1 from the external source to select the first theme, and it works, but if later we update the

app and compile a new version we have no guarantee that the numbers are assigned the same way,

so 1 may now refer to something else.

One of the most requested features for personalisation is text size. This however simple to implement

can cause issues in the UI. One problem is inherent in the concept: it becomes harder to create good

layouts if the text size can vary. What used to fit on a single screen does not any more when the size

increases. Another problem is the implementation. When we define sizes in resources, we do so in a

pixel-independent unit which is automatically scaled to different resolutions. We can also use a unit

which in addition can be scaled based on a text size property. Although this unit type was there and

documented from the very beginning, it took a very long time before it was actually implemented in

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

17

Android. Now it is implemented, and it depends on a system setting the user can change in the setting

interface. This typically has three possible values: normal, larger and largest. So Android has a solution,

but it is device-specific rather than app-specific, and an app is not supposed to tamper with it. We can

rely on it, and give the user instructions for how to change this setting (a bit complicated since the

setting interface is different on different devices). Alternatively we could make our own solution by

putting size definitions into themes, making it a choice of theme. This could be a feasible approach,

although theme is usually a question of colours and images, with text size possibly varying with screen

size and the system setting.

The resource system is good for what it’s made for, but whenever we need other forms of adaptability

we must create it ourselves.

3.5 Screen Adaptivity
One thing Android has very good mechanisms for, is adapting the app to different screen

configurations. It has been a requirement for Android, since it was designed to run on many different

devices. Two key screen properties are pixel density and size. Let’s say two screens A and B have the

same number of pixels, such as 1280x800. In a sense they are the same from the low-level software

perspective – the frame buffer is the same size and we can draw the same amount of pixels on them.

But A could be a phone while B is a tablet. B is much larger, while A has a much higher pixel density

(the pixels are smaller). In this case we want to fit more content on B instead of just making everything

look very big, so we want to use less pixels than on A when drawing the same element. Screen C could

be the same size as A but with half the pixel density. Since they are phones of the same size we want

to fit the same content, which means C must also use fewer pixels per element.

In an Android device the screen has a pixel density qualifier. We can define all dimension values, such

as text sizes and layout margins, in a pixel-independent unit which is scaled automatically based on

pixel density. Graphical resources will also be scaled automatically. This way Android adapts an app to

different screens with minimal effort from the developer. It is also possible to provide different

resources for different screen densities, mainly for images as providing them in the right resolution

may give better image quality than relying on the automatic scaling.

Supporting different screen sizes requires a bit more care to do well. If we design the layouts for

phones and don’t provide alternatives, it will run on tablets but it will typically not utilize the extra

space well, thereby looking badly designed. Here we can use the resource qualifiers to provide

different layouts for different screen sizes. However, we should strive to minimize the duplication of

layout definitions, only providing different versions of what really needs to be different. It’s important

to make clever layouts that can fit on as wide a range of screen sizes as possible. It’s very easy to make

a layout that fits exactly to the screen of your phone, and then when the app runs on other phones

with slightly different sizes or a different aspect ratio it’s all wrong. We risk this problem with layouts

designed to fit all its elements on the screen at once, while layouts based on scrolling are generally not

a problem. So making a non-scrolling layout we need to take great care, using relative positioning of

elements and dynamic gaps between them. We must also keep in mind the possible effects of text size

adjustment and multiple language support (the translation may have quite a different number of

characters).

Pixel density and screen size are static properties of a device, but keep in mind that the size available

to the app can be halved when the keyboard shows up. There is one other important screen property

which can change at any time – the orientation. A mobile device can have its screen in the vertical

portrait orientation, or in the horizontal landscape orientation. The app needs a strategy for how it will

handle this. One option is to only design for one of the orientations, and lock the app to this orientation

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

18

so that what’s on screen doesn’t change if the phone is turned around. If we do let the orientation vary

we can choose to provide separate versions of some of the layouts for the two orientations. Typically

at least some of the layouts need this to look good and utilize screen space in both orientations, so it

is more work to support both orientations. The choice of strategy depends on the type of devices we

want the app to run on and the content we want it to display. For phones and smaller tablets, the

portrait orientation tends to be the natural way to hold the device, except for when looking at film or

photos, while a larger tablet is seldom held this way.

Figure 10 An Android phone in portrait and landscape orientations

For the POSEIDON pilots, the target device is a large phone (5-6 inches screen size). This means that

we don’t have to have multiple versions of layouts. We can focus on this limited size range and portrait

orientation, at least initially, and later provide alternatives if there is a need.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

19

4 Moneyhandling App using the interactive table (CapTap)

The interactive table is placed on a stable surface in front of a monitor. For example it can be placed

on a regular coffee table. The Moneyhandling App is running on the local PC, while the interactive table

is connected to the local network. How to set up the interactive table is described more in detail in

D5.6 - Integrated POSEIDON technology technical documentation.

The UI with the Moneyhandling App comprises of two parts, the UI of the application itself and the

interactive table with its overlay. These components will be presented in the following.

4.1 The overlay
The Moneyhandling App features localized CapTap overlays that visualize the spatial distribution of

interactive elements of the CapTap. For the Pilot 1 there are three overlays versions, one with

Norwegian Krones, English Pound and the Euro.

Figure 11 Overlay for the CapTap – here the Euro version

The overlay for the CapTap is divided in three regions. The upper region represents the buttons that

can also be found in the application. The functions connected to the buttons are displayed at the

screen and change according to the content and context of the current screen. The lower left region is

the money area. Each border limits the sensitive area of the CapTap for that specific printed coin or

note. The orange rectangle is the money placement area (the tray).

4.2 Using the Application
Start the application as described in D5.6.

The main menu shown in Figure 12 gives you three options:

Quit: quit the application and return to the Desktop.

Settings: options to change the language and the position of the button bar (Pilot 1)

Scenarios: choose a scenario (Pilot 1 has currently one single exercise scenario)

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

20

Figure 12 Start screen of the application

Figure 13 Setting menu: Positioning the buttons - at the bottom (l.) or at the top (r.).

Inside the menus you can navigate either by using the mouse and clicking on the buttons, or by

knocking on the corresponding places on the overlay on top of the CapTap. The three buttons (blue,

red and green) have analogous meaning on both, the screen and the overlay.

With that in mind you can toggle the settings options for changing the buttons position an entering

the language menu by clicking or knocking the red button, which is labelled “next” in this particular

menu screen.

Figure 14 Localization options

From the MainMenu the scenario menu can be reached. Pilot 1 has only one scenario that can be

started by clicking or knocking the green button that is labelled “play”. After selection the exercise

begins. On the upper left a product is shown. Right next to it the price to pay is displayed. (Compare

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

21

Figure 14). Choose the notes and coins you need to pay the product by knocking on the note or coin

and then knock on the orange tray field.

Figure 15 Example screen of a product

If you think you have picked the needed money knock or click on the green button that is labelled

“pay”. Now you get a visual feedback.

Figure 16 Visual feedback for the chosen amount of money.
(left) exact choice, (middle) overpaid, (right) not enough paid.

4.3 CapTap as static display
The Moneyhandling App is build with Unity3D for Windows x86 / x64 and Mac OS X 10.10 (Yosemite)

and uses the CapTap as input (HCI) device on which it heavily relies – in fact the CapTap is mandatory

for using the Moneyhandling App because it “extends” the user interface from the virtual

representation on the computer screen into the physical world of the user. Without the CapTap a wide

area of the applications (virtual) screen-surface is not available.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

22

Figure 17 Developer's view of scene "ScnScenarioOne" with the actual screen on top
and the virtual area on the bottom.

The technical point of view is that the CapTap represents a static display for dynamic interaction. Static

display means that the content visible on the CapTap is fixed for the timespan of the usage of the

application. This static display is visualized by the overlays described in 4.1.1. It is static but

customizable: the user can switch between different overlay sheets available for the CapTap and the

Moneyhandling App to e.g. customize the localization of the imprints (currency and language). Being

a static display with capacitive touch and audio knock (tap) functionalities the content shown on the

CapTaps overlays corresponds directly to the Moneyhandling App’s logic and mechanics. The

interaction process is described in section 4.1.2. The mentioned overlays are currently not recognized

by the CapTap per se thus no automatic calibration or customization of the app’s logic or settings is

performed. They are a pure visual guidance for the user to recognize the spatial distribution of the

different logical sensing locations. The customization has to be performed through the Moneyhandling

App’s settings menu, also described in section 4.1.2.

4.4 Unity3D application
For extending the Moneyhandling App the content of the software projects archive or repository has

to be made available on the developer’s local machine. Further the most current version of Unity3D

(not lower than 5.0.1f1) is necessary to avoid problems with compatibility and feature availability. Pilot

1 has been developed with the professional version of Unity3D for that a purchased license is needed.

Nevertheless the first pilot is not using any pro-features by now, so the free versions should work as

well until further notice.

 Please refer to the Unity3D’s user manual (http://docs.unity3d.com/Manual/index.html) for further

information on how to work with Unity3D per se.

http://docs.unity3d.com/Manual/index.html

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

23

Figure 18 Unit3D project view. In this editor's configuration the project overview pane is on the left hand side.

To begin extending the Moneyhandling App the root folder of the project has to be opened with

Unity3D. Unity3D scans the content of the entire folder structure and creates all necessary

supplementary data. For repository and data handling convenience this generated data should be

dismissed or ignored when versioning any changes because it can affect the work of another developer

respectively on another machine. After importing the project into Unity3D the Scenes folder can be

found on the projects overview pane. Inside this folder the so-called Scenes are located, which

represents a logical entity including e.g. all menus, interactive objects and visible assets. Pilot 1 consists

of two scenes that are ScnMenus and ScnScenarioOne.

 ScnMenus contains the entry point for the application where the user can navigate into the

settings of the Moneyhandling App or start a new scenario / exercise.

 ScnScenarioOne contains the Pilot 1 single exercise and can be started through the Scenarios

menu inside the ScnMenus scenario screen.

Either the ScnMenus’ as well as the ScnSenarioOne’ buttons and screens can receive input from the

CapTap’s ButtonBar shown in the figures above or the computer mouse as commonly known from

WIMP systems. The main difference is that the mouse interaction is only meant for assistance purposes

and cannot “solve” exercises because they rely on the interaction with the (imprinted) money and the

tray on the CapTap. Nevertheless an assisting person can cancel, restart or confirm an action via a click

on one of the three context related buttons on the screen’s ButtonBar.

All logic interactions and scripts are written in the C# (C Sharp) language but Unity3D also supports

JavaScript.

The main further development focus of the Moneyhandling App should be on the layout, the feedback

provision and the perceptibility of the shown information. It is a important but not trivial to achieve a

relatedness of the content and interaction to real life challenges but having enough abstraction to

make a learning app available on a computer. Pilot 1 will gather feedback and experience for further

knowledge especially in combination with the CapTap.

4.5 UI rational and guidelines implementation
The Moneyhandling App implements the overall design of the Poseidon UI guidelines. The buttons, the

overlays and the App uses the colours specified in the POSEIDON interface design document V1. Some

examples are given in Figure 11, Figure 12, and Figure 15 The used font throughout the application is

Arial. The flat design paradigm was forced, so no outlines or 3D effects where used. According to the

guidelines no decorative elements are used and no disturbing animations are implemented in the

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

24

application that disturbs or irritates the user. Only the shift of the screens is visualized with a swift

animation to indicate that the screen’s content has changed.

Figure 12 shows the screen design, which is divided into three parts: the button area (ButtonBar), the

title area and the content area. The position of the button area and title area can be swapped in the

preferences. The title area is held in the POSEIDON orange, the buttons are coloured in red, blue and

POSEIDON turquoise (green), the product area is in grey and the price area in POSEIDON orange. The

visual feedback icons shown in Figure 15 are coloured in the POSEIDON colours scheme as well.

5 Navigation training system using Virtual Reality (VR)

The navigation training system is addressed to two personas: caregiver and person with Down

Syndrome. Each user can interact with the system through dedicated interfaces that allow them to

accomplish a set of actions.

5.1 Language and role selection
The users are asked to select their language and their role, and based on this selection, the specific

screens and functionalities are displayed (Figure 1).

Figure1 Language and Role selection

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

25

5.2 Caregiver side
After language and role selection, the caregiver is asked to configure details for routes: points of

interest, start and end addresses, customised information about every step (Figure 2).

Once the addresses composing the route are described, the carer configures the details for each step.

Caregivers can customise routes step by step by orientating the heading in a certain direction, give

written indications, choose representative photos and enable or disable types of automatic feedback

(maps, audio, Google directions).

Images added as visual feedback can be taken from sources like Google Places or Panoramio, or

uploaded from the hard disk (Figure 3).

Figure 2 Addresses of interest and Routes configuration

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

26

Figure 2 Addresses of interest and Routes configuration

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

27

Appendix 1:

POSEIDON guidelines for developing accessible

user interfaces
Edited by Riitta Hellman and Erlend Øverby – Karde AS (13.3.2015)

The purpose of this document is to provide guidance on usability and accessibility for the designers,

developers and the ones responsible for testing and evaluating the POSEIDON system and its services.

This chapter provides a collection of practical advice of how to design the interaction so that it meets

the requirements and capabilities of the target group of POSEIDON. The goal has been to try to keep

these guidelines as simple as possible.

This document is based on a number of existing guidelines. The most important of these are:

 Principles of universal design2

 Information for all: European standards for making information easy to read and understand3

(follows this document as separate attachment)

 Guidelines for the development of accessible mobile interfaces by Funka4 (follows this

document as separate attachment)

 Cognitive Accessibility User Research of W3C5 (Chapter 3.5 follows this document as separate

attachment)

1. Principles of universal design
Universal design is more than accessibility. With a focus on universal design we can have a more holistic

approach to how we develop the POSEIDON system and services.

The concept of universal design is based on the design of products and environments to be usable by

all people. Some of the principles are difficult to apply to ICT-based products and services. A subset of

the principles for universal design will, however, apply for the POSEIDON project. In addition, we

propose some implications these will have for the POSEIDON system:

Principle 1: Equitable use

The design is useful and marketable to people with diverse abilities.

Principle 2: Flexibility in use

The design accommodates a wide range of individual preferences and abilities.

2 http://www.ncsu.edu/project/design-projects/udi/center-for-universal-design/the-principles-of-universal-

design/
3 http://www.inclusion-europe.org/images/stories/documents/Project_Pathways1/Information_for_all.pdf
4
http://www.funkanu.com/PageFiles/22075/Guidelines_for_the_development_of_accessible_mobile_interface
s.pdf
5 https://w3c.github.io/coga/user-research/#down-syndrome

http://www.ncsu.edu/project/design-projects/udi/center-for-universal-design/the-principles-of-universal-design/
http://www.ncsu.edu/project/design-projects/udi/center-for-universal-design/the-principles-of-universal-design/
http://www.inclusion-europe.org/images/stories/documents/Project_Pathways1/Information_for_all.pdf
http://www.funkanu.com/PageFiles/22075/Guidelines_for_the_development_of_accessible_mobile_interfaces.pdf
http://www.funkanu.com/PageFiles/22075/Guidelines_for_the_development_of_accessible_mobile_interfaces.pdf
https://w3c.github.io/coga/user-research/#down-syndrome

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

28

POSEIDON recommendations

 All users should be allowed to adjust their preferences for how the system should communi-
cate with them (e.g., size of fonts, contrasts, colours, etc.). Enabling assistive technology such
as synthetic speech (i.e., multimodality) is important.

 If a user has tremor, or problems with fine motor skills, and tapping a tablet/smartphone
with her fingers could be problematic, the system should be set up so that it is more tolerant
for user errors, timing for accepting that a button is pressed etc.

Principle 3: Simple and intuitive use

Use of the design is easy to understand, regardless of the user's experience, knowledge, language skills,

or current concentration level.

POSEIDON recommendations

 Only relevant actions should be displayed in the user interface.

 All (most) action buttons should be located at the bottom of the screen, and they should
always be visible.

 Help/information should always be located at the bottom-right corner of the screen, or to
the right from the specific location where help or additional information is available.

 Search (if relevant) should always be located at the top-right corner of the screen.

 Action buttons should be a combination of icons and text. Exceptions may be made for the
user interface, such as lists of choices created by the end-user and where suitable icons are
not available, or when uploading of an icon is not provided.

 Focus points of a video service should always be at the centre of the screen (important for
video content).

Principle 4: Perceptible information

The design communicates necessary information effectively to the user, regardless of ambient

conditions or the user's sensory abilities.

POSEIDON recommendations

 Regardless of context of use, all information on the screen should be easily readable and
understandable.

 Textual information presented to the end-user must be meaningful, and take into account
the end-users capabilities and cultural frame of understanding.

Principle 5: Tolerance for error

The design minimises hazards and the adverse consequences of accidental or unintended actions.

POSEIDON recommendations

 When the end-user enters wrong data or is using the system in a "non-predicted" way, the
system should be "forgiving" and provide guidance to the end-user, and help to recover the
error.

 If there are technical problems (disturbances in data communication, internet connection
failure etc.), the system should still try to provide meaningful information to the end-users.

Principle 6: Low physical effort

The design can be used efficiently and comfortably and with a minimum of fatigue.

This principle is important when handling tools, opening doors etc. The POSEIDON system that will be

operated on tablet PCs and/or smartphones will require very low physical effort.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

29

Principle 7: Size and space for approach and use

Appropriate size and space is provided for approach, reach, manipulation, and use regardless of user's

body size, posture, or mobility.

POSEIDON recommendations

 All action buttons both on the web and on tablet PCs and smartphones must be large and
easy to click/tap.

2. Design methodology for mock-up development (and beyond)

To achieve the goal of a highly usable system, it is important that we start the interaction design by

developing high-level mock-ups (paper prototypes). These could be pictures of the web-design of the

POSEIDON family tools, or tablet PC functionality. This will help the design team to figure out how the

POSEIDON system should work, what input does it require, and what kinds of output are expected.

When the users perform an action "using" the mock-up, they do have some expectations for what will

happen.

It is important that the POSEIDON system meets these expectations. The initial design cycle should

work to identify the end-users expectations, and at the same time identify what information is needed

from a developer's perspective to make the system work, and to provide the expected result.

For the mock-ups (high-fidelity paper prototypes), we have identified a set of design principles that

should be followed. These are presented in the next section. Later, these principles should be applied

to the development of the HCI of the final POSEIDON system.

When developing user interfaces there are some very central design principles to follow6:

Principle 1: Learnability

The user interface should be easy to use from the first time a user interacts with it. There should be no

need to learn new functionality or new ways of user interaction. The system should be based on

recognition rather than the need to recall previous experiences.

POSEIDON recommendations

 All action buttons should be located at the bottom of the screen, and they should always be
visible, common tasks should be located at the same place all the time, such as help, search,
information etc.

 Based on the experience of the system, the first time a user uses the application some help
and guidance should be provided, and after some times of use the help and guidance should
be less intrusive.

6 Adapted from:
http://www.slideshare.net/OpenRoad/mobile-ui-design-user-centered-design-and-ui-best-practices,
http://www.google.com/about/company/philosophy/,
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/UEBestPractic
es/UEBestPractices.html,
http://designfestival.com/5-principles-of-user-centered-interface-design/,
http://www.netmagazine.com/features/10-principles-mobile-interface-design,
http://uxdesign.smashingmagazine.com/2011/07/18/seven-guidelines-for-designing-high-performance-
mobile-user-experiences/

http://www.slideshare.net/OpenRoad/mobile-ui-design-user-centered-design-and-ui-best-practices
http://www.google.com/about/company/philosophy/
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/UEBestPractices/UEBestPractices.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/UEBestPractices/UEBestPractices.html
http://designfestival.com/5-principles-of-user-centered-interface-design/
http://www.netmagazine.com/features/10-principles-mobile-interface-design
http://uxdesign.smashingmagazine.com/2011/07/18/seven-guidelines-for-designing-high-performance-mobile-user-experiences/
http://uxdesign.smashingmagazine.com/2011/07/18/seven-guidelines-for-designing-high-performance-mobile-user-experiences/

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

30

Principle 2: Efficiency

The number of steps a user takes to complete a task should be as few as possible. The need for hori-

zontal and vertical scrolling should be kept to a minimum. Wizards should be used to simplify complex

interactions. Real world metaphors should be used where applicable. Less is more: most likely we need

to leave stuff out.

POSEIDON recommendations

 Main device-orientation is horizontal. (This applies to tablets, but not a carer app for
smartphones, where the vertical orientation is preferable for most tasks.)

 All scrolling is vertical – no horizontal scrolling.

 All action buttons are located at the bottom of the screen, and are always visible. Exceptions
to this may be buttons to handle the video content (e.g. Start-button in the middle of the
screen and the like).

 Only relevant functionality should be visible.

 All information and help texts should be context sensitive, the information and help text
should be relevant and to the point.

Principle 3: Error recovery

The system should be designed so that it is hard or even impossible for a user to make mistakes. How-

ever, when a user mistake occurs, this should be clearly communicated with information on which

actions to take to continue the use of the system.

If there is a system error, this should also be communicated in a clear way, with simple and under-

standable information to the end-user. All error messages should be useful. The system should provide

guidance on how the user should recover from the error.

POSEIDON recommendations

There are three different types of errors that need to be addressed and have a consistent error

recovery methodology.

1. User error
2. Device application error
3. Server application error (including error on services invoked from the POSEIDON system)

It should not be necessary to re-enter any data when an error situation appears.

When restarting the app or service, it should launch at the same state as it was when the error

occurred.

 The system should be "forgiving" on user errors and provide mechanism for graceful
degradation of functionality when an error situation occurs.

 E.g., if the video service is not responding, the system should continue to work (just not display
the video), and the "space" used for the video should not be left blank.

Principle 4: Simplicity

Tasks frequently performed should be easy to do, and less common tasks should be possible to do.

Unnecessary functionality should be avoided. The layout and design should be uncluttered.

The navigation should be narrow and shallow, providing only necessary functionality. For this, we need

to understand profoundly the context of when and where our users will use the system.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

31

POSEIDON recommendations

 There should not be more than maximum three levels of navigation, ideally there should only
be one level of navigation in the POSEIDON system.

 The design and design elements should be clean and simple.

 Where applicable, well-known principles and best practice should be applied.

Principle 5: Mapping

What the user expects to happen is what should happen. There should be a mapping between the

conceptual model the user has of the system, and how the system actually works.

POSEIDON recommendations

 The conceptual model behind the POSEIDON system should be well documented and de-
scribed.

Principle 6: Visibility

The most important information should be most visible, and less important information should be less

visible. When using a touch interface, no button should be smaller than the user's fingertips plus

"necessary margin" for users with tremor or problems with fine motor skills.

POSEIDON recommendations

 Only relevant actions should be displayed.

 All buttons should be of an easily press able size, with clear boundaries.

 Buttons should not be smaller than the size of the thumb.

Principle 7: Feedback

The user should be in control of the interface and not the other way around. The system should provide

quick responses. If the response will take some time a progress bar or some other useful information

should be provided. Speed and responsiveness are crucial for the user experience.

In today’s computing environment one second is an "eternity" to wait for response from the system

or application. If a system does not respond within a reasonable time frame, the users will assume

there is an error and try again, or press other buttons that will null-out existing action causing con-

fusion and a bad user experience.

POSEIDON recommendations

 If an action takes more than one second, a progress bar or other relevant information should
be displayed to the end-user.

Principle 8: Consistency

Identical items, and identical functionality should always be displayed and behave the same way across

the entire system/application.

POSEIDON recommendations

 All agreed common user actions should be tested and documented.

 All confirmation, information, help and error "pages" should have the same look-and-feel
throughout the system.

 The system should be as predictable as possible.

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

32

Principle 9: Satisfaction

The users should enjoy using the POSEIDON system/software. The software should perform its

expected tasks well and nothing more. If she would like to perform another task, she would most likely

use another application (or system).

POSEIDON recommendations

 Only core-functionality should be provided by the POSEIDON system.

 For secondary functionality we should defer the end-users to other applications that solve
those tasks well.

Principle 10: Predictability

When a system follows the principle of predictability, the user would know what to expect from the

system: The behaviour is consistent throughout the application/system/service. With a consistent user

interface the user will not experience surprises. When a user presses a button or invokes a service, it

should be evident for the user what to expect, and it should also be evident how the results will be

presented.

To ensure a predictable user experience, it is important to understand the targeted users' expectations

and the conceptual models7 they have for the system they are using. If we design a system based on a

different conceptual model than the one of the end-users', the user interaction and how they use the

system will never match the anticipations of the developers, and the system will score low on usability

and expectations of the users. If the system is designed following the conceptual model of the end-

users, we will get a high score on usability, because the behaviour of the system is what the end-users

predict. The system and the user interaction follow the users’ expectations.

Ideally there should not be any surprises for the end-user when using the system. If something

unexpected happens, the methods for solving the unexpected should be predictable and well known

by all users.

3. Information for all

All information in the apps and other software products of the POSEIDON project should follow easy-

to-read guidelines of Inclusion Europe8, where appropriate, and possible to implement (i.e. Electronic

information and Videos).

4. Funka's guidelines for the development of accessible mobile interfaces

Funka's guideliens include easy-to-understand advice in following categories:

 Choice of solution

 Design

 Layout and design

 Interaction

 Content

 User settings

7 In this context, a conceptual model is the mental model an end-user has of how the systems works, and the
end-users understanding of how different services and functions provided by the system works. An end-user will
use the system based on the mental model she has on how the system works.
8 http://www.inclusion-europe.org/images/stories/documents/Project_Pathways1/Information_for_all.pdf

http://www.inclusion-europe.org/images/stories/documents/Project_Pathways1/Information_for_all.pdf

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

33

5. Additional guidelines

This information has been provided by Gill Whitney at Middlesex University.

Mobile Accessibility Standards

A good starting point is the information on Mobile Accessibility9 available from W3C. There is a lot of

content on this page and linked to this page, so it would be advisable to scan to see what is of use.

The Draft BBC Mobile Accessibility Guidelines10 (and11) are possibly slightly easier to read and provide

some good (although possibly basic) information on issues such as fonts and layout.

A basic information sheet describing the main issues with respect to mobile accessibility is available

from Tim Shelton of AccessibleTech, Inc at12 There are a number of similar papers available, but this

one benefits from being short and easy to read.

Standards to enable access for people with cognitive impairments

W3C are currently involved in working on the area of standards for accessibility for people with

cognitive and learning disabilities, more information can be found at13 This task force has not yet

published anything but you can browse their mail archives at14.

WebAim is a non-profit organisation based at the Center for Persons with Disabilities at Utah State

University. They provide web accessibility expertise internationally. Their information on designing for

people with cognitive impairments can be found at15. The information describes both what the users

need and how to meet those needs.

WebAim also provides WAVE, a web accessibility evaluation tool, the section Evaluating Cognitive Web

Accessibility can be found at16. Their Cognitive Web Accessibility Checklist is probably useful for any

system.

ETSI (the European Telecommunications Standards Institute) has a Human Factors Section, they are

currently trying to get funding for future research on the needs of people with Cognitive Impairments

to support their standardisation work. If they get funding for this work it is likely to result in draft

standardisation information and/or a report such as their report on Access to ICT by Young People

available from17.

More information on ETSIs human factors work can be found at18.

9 http://www.w3.org/WAI/mobile/
10 http://www.bbc.co.uk/blogs/internet/posts/Accessibility-Mobile-Apps
11 http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml
12 http://www.accessibletech.com/dw/resources/mobile_web_access.html
13 http://www.w3.org/WAI/PF/cognitive-a11y-tf/
14 http://lists.w3.org/Archives/Public/public-cognitive-a11y-tf/
15 http://webaim.org/articles/cognitive/
16 http://wave.webaim.org/cognitive
17 http://docbox.etsi.org/EC_Files/EC_Files/tr_102133v010101p.pdf
18 http://portal.etsi.org/TBSiteMap/HF/Summary.aspx

http://www.w3.org/WAI/mobile/
http://www.bbc.co.uk/blogs/internet/posts/Accessibility-Mobile-Apps
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml
http://www.accessibletech.com/dw/resources/mobile_web_access.html
http://www.w3.org/WAI/PF/cognitive-a11y-tf/
http://lists.w3.org/Archives/Public/public-cognitive-a11y-tf/
http://webaim.org/articles/cognitive/
http://wave.webaim.org/cognitive
http://docbox.etsi.org/EC_Files/EC_Files/tr_102133v010101p.pdf
http://portal.etsi.org/TBSiteMap/HF/Summary.aspx

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

34

Other Sources of Informal Standards Information

In addition to the formal standards a number of companies provide in-house information on how their

ICT products meet the needs of people with cognitive impairments. These include Microsoft, see19.

7. Terminology and symbols in POSEIDON

When developing an application that shall be used across several countries and regions it is important

that the terminology used in the user interfaces are meaningful and accurate with regard to what the

end-user expects. It is also important that the terminology used in the user interface is easy to

translate, and that the terms used are meaningful also in other languages. The terminology used

should not only be meaningful in all languages, we should also thrive for language equivalency, and

not merely a translation of terms.

When using symbols (icons) in the user interface to communicate different user actions it is important

that the symbols used convey the same meaning across cultural borders – as far as possible. The

symbols should mean the same for all people using the system. If some symbols could be interpreted

differently in different cultures/languages an alternative symbol should be used.

It is also important that the symbols and terminology are used consistently throughout the applications

and systems in POSEIDON.

All texts and icons/symbols should be tested and evaluated by relevant user groups in the partner

countries of POSEIDON to ensure that they communicate well and convey the same meaning and ex-

pectations across culture and language.

In our user interfaces we will also provide help texts and information texts that will be invoked in dif-

ferent parts of the system. It is important that the help and information texts are contextualised and

only provide relevant information for that specific part of the system. In addition all texts should be in

all POSEIDON partner languages, and the text provided in all languages should be semantically

equivalent.

8. Visual appearance, icons and colour palettes in POSEIDON

The POSEIDON apps and other software products (interactive table, carer's web) must be designed

according to best possible practice of accessibility, and with special attention given to the require-

ments of persons with Down Syndrome.

The visual design must be very clear, without decorative elements, disturbing animations, or other

design elements which may make the interaction difficult. Simple and clear icons, good contrasts

everywhere, etc., are basic requirements. Faded edges should be avoided.

The visual appearance must also follow a "family resemblance" so that the user always understands

that she in inside the POSEIDON system. Important elements here are choice of colour palettes and

the idea behind the icon design. Icons should when possible be combined with text.

How users interpret icons is a difficult matter to handle, though, and ambiguities are certainly per-

manent to a certain extent. In order to avoid misunderstandings, it is recommended to choose

commonly used icons, such as following examples (not necessarily relevant for POSEIDON as such):

19 http://www.microsoft.com/enable/guides/language.aspx

http://www.microsoft.com/enable/guides/language.aspx

FP7 ICT Call 10 STREP POSEIDON Contract no. 610840

35

For visually impaired users, the POSEIDON system must provide high contrast alternatives, such as

black-and white palettes, in addition to the "branded" POSEIDON palette. This is very important for

the readability of the text elements.

9. Basic accessibility requirements for web based systems
All web based services and information produced for the end-users of the POSEIDON project should

ideally meet the following recommendations towards accessibility and usability:

 Separate content from presentation

 Use HTML5

 Use CSS3 for presentation

 Follow the W3C/WCAG2 guidelines20

10. Branding
Apart from the accessibility aspects, it may be important to brand teh POSEIDOM with a logo. This may

be useful for end users who need to recognise the apps and other software products. One sketch is

drafted below:

20 http://www.w3.org/TR/WCAG20/#guidelines

http://www.w3.org/TR/WCAG20/#guidelines

