
 1

E M B I E N T E C H N O L O G I E S

Sparklet – Embedded GUI Library

User Manual

 Embien Technologies
No 3, Sankarapandian Street,

Madurai, India 625017
www.embien.com

2

 3

Table of Contents
1 Introduction .. 7

1.1 Purpose of the Document ... 8

1.2 Scope of the Document ... 8

1.3 Conventions Used ... 8

2 Development Overview .. 9

2.1 Overview .. 10

2.2 Sparklet GUI Library ... 10

2.3 Flint IDE ... 10

2.4 RAPIDSEA Libraries .. 10

3 Architecture ... 11

3.1 Design Principle .. 12

3.2 Library Architecture ... 13

3.3 Hardware ... 14

3.3.1 Display ... 14

3.3.2 Input Devices ... 14

3.3.3 Timer .. 14

3.3.4 Misc Components .. 14

3.4 HAL ... 15

3.4.1 Display ... 15

3.4.2 Input Device .. 15

3.4.3 OS/Scheduler .. 16

3.4.4 Timing .. 16

3.5 Graphics Device Interface .. 16

3.5.1 Controls and Rendering .. 17

3.5.2 Core Module .. 17

3.5.3 Event Handling .. 17

3.5.4 Frame Buffer Handling ... 17

3.5.5 Image Rendering ... 18

4

3.5.6 Font Rendering ... 18

3.5.7 Messages ... 18

3.6 Widgets.. 18

3.7 Applications .. 19

4 Using Sparklet ... 21

4.1 Code Organization .. 22

4.2 Configuration .. 22

4.2.1 HAL Configuration .. 22

4.2.2 Library Configuration... 23

4.2.3 Widget Configuration ... 23

4.3 Implementation .. 23

4.3.1 Starting Sparklet ... 24

4.3.2 Threads and Priority .. 24

4.4 Building ... 24

4.5 Running ... 24

4.6 Simulation ... 24

5 APIs .. 25

5.1 Available APIs ... 26

6 Customization ... 27

6.1 Skin .. 28

 5

Table of Tables
Table 1 Conventions used ... 8

Table 2 HAL functions for display manipulation ... 15

Table 3 Input events from HAL .. 15

Table 4 HAL Functions for internal usage .. 16

Table 5 Directories and Organization .. 22

Table 6 HAL Configuration Options ... 23

Table 7 Configuration Options .. 23

Table 8 Task Priorities ... 24

Table 9 Draw Customization Information ... 28

Table of Figures
Figure 1 Block Diagram ... 13

Revision History

Revision Author Description

1.0 – 29 Jul 2015 SP Initial release

Introduction 7

1 Introduction

Introduction

This chapter provides a brief introduction about the Sparklet Embedded GUI
library and sets the context for the further reading of the document,

Chapter

1

8 Introduction

1.1 Purpose of the Document

Sparklet Embedded UI library is a light weight library created to run on top of resource critical

embedded systems. Intended for a wide range of applications not limited to Industrial HMI’s,

Medical devices, consumer electronics, auto infotainment panels, Sparklet provides a very rich User

Experience that can be customized to the tastes of the vendor and the industry.

This document provides a complete overview of development for Sparklet embedded GUI library

including the tools available for development, procedures for simulation in host PC before running

in the actual target etc.

1.2 Scope of the Document

This document explains the internals of the Sparklet library, including its architecture, components

that make it up. Also the document explains various tools and techniques associated with the

Sparklet development.

This document provides both the user perspective - necessary for developing applications on top of

Sparklet and the developer perspective - needed for customizing and improving functionalities of

the library.

Details of the Application Programmer Interface i.e. APIs that are available to the user are available

as a separate document called Sparklet API Manual in http:\\www.embien.com\downloads page.

Information about using Flint Plug-in to develop screens for Sparklet is not documented here.

Instead it is available as a separate document in http:\\www.embien.com\downloads page.

1.3 Conventions Used

The below table gives a summary of conventions used throughout the document.

int main () Source code, most likely in C language

init_sgui Function available in Sparklet UI library

Table 1 Conventions used

Development Overview 9

2 Development Overview

Beginning Development

Reader is introduced to various tools associated with the Sparklet UI development
including the Flint IDE, RAPIDSEA etc.

Chapter

2

10 Development Overview

2.1 Overview

Sparklet Embedded UI library is a stand-alone library that can be used with any customer

application. Generally it is compiled together with the customer logic. Though it is sufficient to

develop screens, Embien offers more tools to aid firmware development for the user. These tools

include

 Flint - Eclipse Plug-in - for Sparklet Screen development

 RAPIDSEA - Embien Application library for logic development

Details of these tools are explained below.

2.2 Sparklet GUI Library

Sparklet GUI library is provided in source form to the customers along with few examples. This

highly optimized library is organized in a developer friendly fashion as explained in detail in the next

chapter. .

2.3 Flint IDE

Developing screens and arranging them for proper layout is a tedious process as well as a time

consuming one. Considering this, Embien has developed Flint - a GUI design tool. Flint is

implemented as a plug-in to eclipse, taking advantage of the advanced features of the hugely

successful platform. Installable across a range of Eclipse versions, this tool enables users to design

the UI with a simple drag and drop approach. Further features and functionalities of each widget can

be configured with convenience of a mouse, without even going in to the details of the UI

implementation.

This tool along with the procedure to use it is detailed in a separate document Flint User Manual

available from downloads page of our website.

2.4 RAPIDSEA Libraries

RAPIDSEA - RAPId Deployment Suite for Embedded Applications is a collection of embedded system

functionalities that can be sued to develop and deploy embedded firmware. RAPIDSEA supports

most popular architectures and targets including Arduino, FRDM boards, PCI MCUs, Raspberry PI

etc. RAPIDSEA can be configured graphically using Flint IDE and compiled using standard compiler

for the platform.

For more details on the same, kindly visit our website.

Architecture 11

3 Architecture

Architecture

This chapter provides insight to the design principles of Sparklet, describes the
internals of the UI library and about the different logical layers in which it is
organized.

Chapter

3

12 Architecture

3.1 Design Principle

Before going in to the details of the Sparklet Embedded UI library, it is important to understand the

principles behind the design of the same. Following considerations are factored during the design.

 Source Code in ANSI C - For use with standard Embedded systems

 Platform independent design

 Highly configurable

 Modular architecture

 Scalable design

 Support for multiple applications

 One App-One Window design

 Run with and without OS/RTOS

 Support for modern UI aesthetics

 Support for multi-touch

 Leverage underlying hardware functionalities as much as possible

Sparklet has successfully implemented most of these principles and, in each successive revisions, is

moving forward towards a more universal and advanced GUI library.

With this, we will go in to the architecture of the library and follow it up with detailed discussion on

the components.

Architecture 13

3.2 Library Architecture

The below block diagram depicts the architecture of the Sparklet Embedded GUI library.

Figure 1 Block Diagram

Sparklet library is organized as 4 layers, each represented as a large horizontal rectangles sitting

above the underlying hardware. They are

 Hardware Abstraction Layer - HAL

 Graphics Device Interface

 Widgets

 Applications

These horizontal layers are again made up on multiple components. Each of the small boxes

represents a component in the library that performs a particular functionality. These components

could be implemented either as a single file, across multiple source files or a part of a single file.

These components have clearly defined entry points through which other components interact. Also

they are provided with mechanisms such as callback to communicate asynchronously.

14 Architecture

Though technically Hardware and Applications layer are not a part of Sparklet, they are nevertheless

discussed in detail it is important to understand the overall functionality.

3.3 Hardware

Sparklet library is designed to run on a low end target. It could be run on a low power

microcontroller that is clocked at a few tens of MHz Though faster the processor, it is better the

performance, it is possible to get best results with careful tuning and configuration of the library and

hardware.

Memory is also a very important criterion as the controls/widget to be rendered occupies memory.

Most likely the screen to be painted is also to be stored in the memory in a section called frame

buffer. Sparklet provides numerous configuration options that can be used to optimize the memory

requirements of the library. These are discussed later. For now, we will look in to some of the major

hardware components needed for the Sparklet library.

3.3.1 Display

Obviously Display is the first and foremost hardware component needed to run any UI library. There

are different kinds of Display technologies available such as TFT LCD, STN LCD, LED, HDMI etc. These

displays could be of any dimension i.e. resolution specified by width x height. They may have

different color depths - represented by bpp (bits per pixel). Displays are usually interfaced with the

microcontroller with display controllers that are necessary for generating the timing and for

transferring data from the frame buffer memory to the display. Some types of displays may have

frame buffers internally and are interfaced with the MCU over a general bus interface like SPI/I2C.

3.3.2 Input Devices

Input devices are needed to help user interact with the system. Different kinds of input devices are

available such as touch controllers, mouse, joystick, keyboard etc. Nowadays touch panels are the

most common type of input device being used. They are generally connected to the microcontroller

using over interfaces like I2C or SPI along with dedicated lines for interrupt to notify the processor of

touch events

3.3.3 Timer

Though timers are not directly needed for the Sparklet to function, there is a need for a mechanism

to track time between events, invoking timeout handlers etc. Since timers are always available in the

SoC being used, they are the best way to implement timing. Timer implementation is highly specific

to the device being used.

3.3.4 Misc Components

There are other components that can be available in the hardware like the DMA engine, Bit-blit

engines etc. These can be used to optimize the performance of the UI library DMA engines can be

used to take copy of frame buffers, transfer chunk of data etc. Bit-blit engine can be used to transfer

Architecture 15

rectangular regions as needed by the UI library. Hardware accelerators and GPUs can help

performing dedicated draw operations faster.

3.4 HAL

As explained in the earlier section, there exist different kinds of devices on which the Sparklet UI

library might be running. In keeping with the design principles, the Sparklet library is designed to run

independent of them. This is achieved by a HAL – Hardware Abstraction Layer which needs to export

certain functions to the top layer. This section explains the HAL layer along with the list of functions

to be supported to enable Sparklet on the device.

3.4.1 Display

Whether the display uses frame buffer or not, the following functions are used by the library to do

any draw operation on the display.

Function Name Description

arch_draw_pixel Draw a pixel at given position with given color

arch_draw_hor_line Draw a horizontal line

arch_draw_ver_line Draw a vertical line

arch_draw_filled_rect Draw a filled rectangle

Table 2 HAL functions for display manipulation

As these form the basic operations, any complex shape can be formed with these. For detailed

information of the same, kindly refer to the Sparklet API Manual.

It is important that these functions are implemented in the best way possible for the given

hardware. For example, if there are options to any of these by hardware like GPU or 2D accelerators,

it is recommended to follow the same, to achieve the best performance.

3.4.2 Input Device

Sparklet, as of now, understand only input events as mouse events. It respective of the input device

technology, the data is to be given in using mouse events. The function,sevt_post_mouse_event,

must be used to provide the same to Sparklet. So even touch panel events, should be fed as

User Touch Action Event to generate

User touches the panel SEVT_MOUSE_LB_DOWN

User keeps on touching the panel SEVT_MOUSE_LB_STILL_DOWN

User removes his hand/stylus from the panel SEVT_MOUSE_LB_UP

Table 3 Input events from HAL

16 Architecture

These events, along with the co-ordinates, when sent to the Sparklet, it will be processed and

converted to proper actions such as button click, double click etc.

3.4.3 OS/Scheduler

The Sparklet library could be running on top of a bare metal system, or on an RTOS or even a full-

fledged OS like Linux. And since Sparklet supports multiple applications at the same time, it is

necessary for various mechanisms for sharing resources among execution contexts. HAL events are

used to indicate occurrence of certain actions and HAL Locks are used for sharing resources

exclusively. Following are the list of functions to be supported by the HAL in this aspect.

Function Name Description

arch_init_event Creates an event and returns the handle

arch_wait_for_event Waits for the event on timeout in ms

arch_set_event Sets the event

arch_clear_event Clears the event

arch_delete_event Deletes the event

arch_init_lock Creates an lock event and returns the handle

arch_wait_for_lock Waits and acquire the lock on timeout in ms

arch_release_lock Releases the lock

arch_delete_lock Closes the windows lock handle

Table 4 HAL Functions for internal usage

These mechanisms can be implemented using the native IPC methods for example,

WaitForSingleObject in Win32, proprietary function in RTOS etc.

3.4.4 Timing

Timing is an important feature needed to determine the outcome of various possible actions. Apart

of the functions, arch_wait_for_event and arch_wait_for_lock, which needs precise timing, Sparklet

also calls sgui_time_delay_hmsm function internally. This must also be supported by the HAL.

3.5 Graphics Device Interface

Above the HAL, there is the functionality called Graphics Device Interface- GDI for short. It is the

core layer that implements the functionality of the Sparklet. Now we will look in to some of the sub-

modules that constitute the GDI.

Architecture 17

3.5.1 Controls and Rendering

Every unit that occupies a space in the screen and that can handle an event is called a Control.

Sparklet organizes these Controls in a linked list mechanism with Z ordering. A control may lie on top

of one or more controls and might be visible fully or partially or not at all. Based on the visibility and

ordering, Sparklet calculates the regions visible to the user and organizes them as draw regions. It is

sufficient if only these draw regions are rendered as only these are visible. This calculation results in

significance performance increase of the UI rendering.

3.5.2 Core Module

The core module is essentially the root window that is responsible for the overall functionality of the

Sparklet library. The UI can be considered as a single window application where the top-most

window also called the root window running on full screen. Any windows created by the user are

technically child control of the root window.

This core module must be run as a separate execution task or as a thread, depending up on the

underlying scheduling mechanism. It must call the init_sgui function followed by the

handle_root_win_msg function before any other UI specific functions are called. This function will

block on itself till the UI is stopped and handles the overall control of the library.

3.5.3 Event Handling

Event handling in Sparklet is done by a separate execution task or a thread. The function

sgui_event_manager must be called from the thread. This function locks on itself till the library is

exited and is responsible for handling various events provided into Sparklet via the functions like

sevt_post_mouse_event.

Once events are submitted, the Event handling module fetches them one by one from the queue

and processes them. First, if the screen is rotated, the event co-ordinate is translated to the new

one (landscape to portrait or portrait to landscape). Then the event is upgraded if needed. For

example, a single click event will be upgraded to double click if another click has occurred in the

immediate past. Then based on the co-ordinate the target control is found and the event handler of

the same is called with the event.

Then the control that received the event can handle it as per the implementation requirements of

the control.

3.5.4 Frame Buffer Handling

Sparklet uses very basic operations like drawing a pixel, a line, rectangle and filled rectangle to

perform the entire necessary UI rendering. As the device screen might be rotated, the library does

the necessary adjustment, and calls the architecture specific function to do these draw operations.

18 Architecture

3.5.5 Image Rendering

Sparklet library, by itself supports rendering different kinds of images. Supported formats include

BMP, RAW, PNG etc. Also these images could be loaded from memory or from a file. Refer to the

Image APIs section of the Sparklet API manual for detailed description of associated functions.

3.5.6 Font Rendering

Fonts need to be compiled along with the Sparklet source. Fixed width fonts as well as variable

width fonts are supported. Also it is possible to rotate the rendering to 90, 180 or 270 degrees

counter clockwise. The functions supported can be found under the Text Operation APIs section of

the Sparklet API Manual.

3.5.7 Messages

While events are mechanisms to provide the Sparklet inputs form HAL, messages are the

mechanism used by Sparklet to send processed information to the User applications. Messages

might be generated internally in response to a user interaction (Button action from Mouse Button

Down) or timeout or user generated messages for inter application communication.

The messages are submitted asynchronously to the message queue of particular application and

must be handled by the handler of the window.

3.6 Widgets

While the GDI layer provides all the necessary modules to work with the UI, Sparklet provides

another layer consisting of modules called Widgets that are created for convenience of the user.

Widgets are implemented on top of the control layer and provide a logical functionality in the UI like

a button or a label. Widgets take care of creating underlying controls, rendering, event handling etc

and finally output messages to the user layer. Some of the widgets available as of now are

 Button

 Canvas

 Check box

 Combo box

 Dialog

 Fixed view

 Graph

 Holder

 Image holder

 Key board

Architecture 19

 List box

 List view

 Menu

 Meter

 Message box

 Progress bar

 Scrollbar

 Scroll view

 Slider

 Static

 Tab

 Taskbar

 Text Area

 Viewport

 Widget

 Window

 Text edit

For more details on how to use these widgets, please refer to the Sparklet API Manual. It is possible

to create new widgets as per the user equipments as well. Implementation of widgets like Static,

button and list box can be referred to implement custom widgets.

3.7 Applications

Applications represent organization of different functionalities as presented to the user. It is up to

the user design philosophy to decide the way of organizing the applications. For example, in a HMI

device, one application could be for configuration and another for viewing the current status.

In Sparklet, each application is created as a window that occupies the full screen. It supports running

multiple applications at a time and it is possible to switch from one to another. But only one

application can occupy the display at a time.

Using Sparklet 21

4 Using Sparklet

Using Sparklet

This chapter introduces concepts for the developer and sets stage for developing
application on Sparklet. Topics covered include code organization, configuration,
building and running the library on target.

Chapter

4

22 Using Sparklet

4.1 Code Organization

Source code of the Sparklet Embedded UI library is organized in a logical fashion to enable ease of

navigation and modification. Written in ‘C’, there are two folders primarily – SRC and INC. the SRC

folder contains the c files while the INC folder contains the header files. The following table provides

the list of directories under these two directories.

Folder Description

APP User implementation of applications and other logic

FNT Font Implementation

GDI Graphics Device Interface implementation – the core modules of
Sparklet

HAL Hardware Abstraction Layer

UTIL Utilities like memory pool allocator, PNG decoder etc

WID Widgets and their implementation

 Table 5 Directories and Organization

It is strongly recommended to follow this directory structure as it eases integration with other

supporting tools like Windows Simulator and Flint IDE.

4.2 Configuration

Sparklet is highly configurable to suit the needs of the user. Different kinds of configuration options

are available. Some of the major groups under which the options are organized are HAL

Configuration, Library Configuration and Widget configuration. The details are explained in the

following section.

4.2.1 HAL Configuration

Under this grouping, the options that are available can be used to customize the Sparklet for the

underlying hardware platform. Configurations include setting the basic type of data types,

architecture specific rendering operations

Some of the major configurations to be done for the Sparklet library for a particular device are

Option Description

INT8U Native data type for unsigned 8 bit data type

SCOLOR Data type for color

SGUI_LOCK Lock variable

SCOORD Data type for co-ordinate

Using Sparklet 23

Table 6 HAL Configuration Options

More of these options are described in detail in the Sparklet API Manual.

4.2.2 Library Configuration

The necessary options to change the features available in the Sparklet library are grouped in this

section. These options are sub-grouped as follows

 General Configuration – Setting display resolution, color depth, supported widgets etc.

 Image Configuration – Configuring list of supported image types etc.

 Debug Configuration – Debug options to be used during development.

 Miscellaneous Configuration –Other configurations like memory pool etc.

Some of the major configurations to be done for the Sparklet library for a particular device are

Option Description

SGUI_DEFAULT_DISP_MODE Default display mode

SGUI_DISPLAY_SCREEN_WIDTH Display screen width

SGUI_DISPLAY_SCREEN_HEIGHT Display screen height

VIRTUAL_SCREEN_WIDTH Virtual screen width

VIRTUAL_SCREEN_HEIGHT Virtual screen height

SGUI_MAX_NUM_APP_WINDOWS Number of application windows

SGUI_DISABLE_TASKBAR Enable/Disable taskbar

SGUI_SYSTEM_FONT Default System Font

Table 7 Configuration Options

Detailed description of these configurations is documented in the Sparklet API Manual.

4.2.3 Widget Configuration

Various options are provided to configure the supported widgets including setting the size for

internal components, supported actions etc. Refer to the Sparklet API Manual for complete list of

the options.

4.3 Implementation

Users can start writing applications on top of Sparklet library with minimal effort. Various examples

are provided in the documentation along with demo applications to start with. Tools like Flint are

available to develop the UI screen graphically.

24 Using Sparklet

4.3.1 Starting Sparklet

Following is the typical sequence of steps to be followed when running the Sparklet.

1. Perform architecture specific initialization and set up RTOS.

2. Create a task to run the main functionality of Sparklet. Then call the init_sgui function

followed by function handle_root_win_msg

3. Create a task to run the event handling functionality of Sparklet. Then call the

sgui_event_manager function form that thread.

4. Create custom tasks after these calls are executed. Sparklet calls sgui_start_user_app

function, which can be used for this purpose.

The demo code provided will give a clear idea about starting Sparklet.

4.3.2 Threads and Priority

As explained, in a RTOS environment, each of the tasks can be run as separate threads. The

following table provides an idea about the priority organization for the same.

Priority

High User specific non-UI task

Table 8 Task Priorities

4.4 Building

Building the library source is highly specific to the architecture and the development environment of

the target. For more information for compiling the code, refer to the documentation of the same.

4.5 Running

Each target needs different procedure to run the code. Refer to the documentation of the

associated tools/microcontroller for running the compiled output.

4.6 Simulation

The Sparklet library is provided with a Visual Studio 2008 project file to enable users develop their UI

and test it on the host machine before deploying it on the target. Developing in a VS2008

environment significantly reduces the development time and helps catch many issues. An

executable called SGUI.exe is generated up on compiling the same that can even be sent to different

teams for validation purpose.

APIs 25

5 APIs

APIs

This chapter provides information about knowing the Application Programmer
Interface of the Sparklet Embedded GUI library

Chapter

5

26 APIs

5.1 Available APIs

Sparklet UI library provides a clearly defined set of functions called Application Programmer

Interface for the users to program with. These APIs are defined with intention of using the library

seamlessly for different use cases.

The source code of the Sparklet UI is thoroughly documented. The comments sections are written

for Doxygen and a manual called Sparklet API Manual is generated from the same. The latest version

of that manual can be downloaded from the download section of our website –

http:www.embien.com/downloads. Kindly refer to that manual for knowing about the functions and

configuration options of the Sparklet.

Customization 27

6 Customization

Customization

Sparklet provides numerous options to customize as per the user requirements.
This chapter provides information about various possibilities like changing the
Skin etc

Chapter

6

28 Customization

6.1 Skin

It is possible to change the theme of the whole Sparklet library to match that of the customer’s UI

philosophy with very few modifications.

All the widgets are rendered using a function registered with it. The default implementation draws

with a classic model. This default rendering can be simply disabled by enabling the following macros

DISABLE_CLASSIC_SKIN

When this macro is set to a non-zero value, the default functions are not compiled in. Then the user

can implement function like sbutton_draw, sstatic_draw etc.

Typically these functions are of the form,

int sbutton_draw (SBUTTON *ptr_button, DRAW_INFO *ptr_draw_info)

The first argument provides the pointer to the base control. The second argument provides the

pointer to the structure that provides information about the draw operation to be performed and

has the following fields.

Field Description

src_pos.x X co-ordinate of the top-left position to draw the control

src_pos.y Y co-ordinate of the top-left position to draw the control

ub_direct Whether invoked directly or not (via a parent draw)

ub_draw_mode Drawing mode

dst_pos Destination position where it will be copied to. Must not be used.

Table 9 Draw Customization Information

Care should be taken to optimize the rendering by drawing only the draw-able-regions as much as

possible. Also regions outside the given widget area must not be drawn.

Customization 29

