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Abstract:
The TRUBÁ (pipeline in Russian) code is a computational tool for studying thepropagation of Gaussian-sha-
ped microwave beams in a prescribed equilibrium plasma. This manual covers the basic material hended to 
use the implementation of TRUBA (version 3.4) interfaced with the numerical library of the TJ-II stellarator. 
The manual provides a concise theoretical background of the problem, specifi cations for setting up the input 
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Resumen:
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para las posibles futuras modifi caciones de TRUBA.
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Gaussian microwave beam in the complex eikonal form 

In what follows, the wave field in a weakly inhomogeneous and stationary medium is sought 

in the form of a monochromatic Gaussian shaped beam  

( ) α α ααβ αβ β
⎧ ⎫⎛ ⎞ ⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
= + + −0E E 1( ) ( ) ( ) ( )

2
exps i N s r M s iL s r r i tc

w wd d d .   (1) 

Hereinafter the Einstein sum convention for repeated indices is implied, and the coordinate 

system { }rα  is assumed to be Cartesian. In the above notation α α α= − ( )r r R sd , where 

( )sR  is the space curve of the central (reference) ray of the beam, with s  being a 

parameter of this ray. The treatment (1) is also known as the paraxial WKB expansion of 

the wave field phase. 

Matrices M  and L  in (1) possess several properties, worthy of being noted. Evidently, 

they are symmetric: 

αβ βα=M M ,   αβ βα=L L .      (2) 

Then, the vector ( )( ) ( ) ( )G N s M s iL s rα α αβ αβ β = + + d , which is the gradient of the 

complex eikonal, is necessarily a function of the position r . Hence, 

[ ]  

 

 

=
=

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= ⋅( )
( )

s
s

d d
ds dsr R

r R

R GG “        (3) 

and thus we arrive at the additional constraints: 

β α
αβ =
dR dNM
ds ds

,   
β

αβ =
dR

L
ds

0 .       (4) 

 

Power transfer along the ray trajectory 

The slowly varying amplitude 0E  of the wave field (1), for the mode m  under 

consideration, can be decomposed into a continuous superposition of plane waves by 

( )  = + + ⋅�
0E r N n e N n n r( ) 3( ) exp( ) ( ) nm iA dc

wd d d d∫ ,    (5) 

where A�  is the spectral density, m( )e  is the unit eigenvector corresponding to the 

eigenvalue l m( )  of the dispersion tensor ααβ αβ β αβ = − −n I n n K2Λ ,  n  is the normalized 

wave vector, I  is the unit dyadic and K  is the dielectric tensor. The dispersion relation for 
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the given mode is =( ) 0ml . As shown in [1], for the case of narrow spectrum, the total 

wave power flux is 

( )H ( ) ( )

( )

2 *| |
16

m m

s

c e eA ααβ β 
 
 

  =

⎡ ⎤
⎢ ⎥⎣ ⎦

=
n N

P n
∑
∑p

Λ     (6) 

and the sink term in the stationary power balance equation  ⋅ =“ wP   is given by 

ααβ β 
 
  =

⎡ ⎤⎣ ⎦−= m m
s

iw e eAw
p

A ( ) ( )

( )
2 *| |

8 n N
Λ ,    (7) 

with   = ⋅+� n RN n 3( ) exp( ) n( )iA s A dc
w dd d∫ . Superscripts H  and A  denote Hermitian 

and anti-Hermitian parts of the tensor, respectively. Evidently, ααβ β 
 
  = lm m me eH ( ) ( ) ( )* ReΛ  and 

ααβ β 
 
   = lm m mie eA ( ) ( ) ( )* ImΛ . We posit that the relation  =l m( )Re 0  is conserved along the 

reference ray hypercurve in the 6D phase space. Within the ansatz of (1), the 3D trajectory 

= s( )r R  is uniquely determined by the direction of P . So it is easily seen that the tangent 

to this trajectory, i.e. the /d dsR , is directed along the ( )[ ] s=n NnH∑ ∑ , where 

( )( , ) Re mf   =r nH l  and ( , )f f= r n  is an arbitrary non-vanishing real function. As a 

result, one can define 

, ,=

  = =∏
j

j H( )

0 1 2

( )detRe lH Λ .     (8) 

However, when more than one eigenvalue tends to zero, it is necessary to somehow isolate 

the root corresponding to the required mode. 

The aforesaid power balance equation in the ray coordinates takes the form 

  ⎛ ⎞
⎜ ⎟
⎝ ⎠

= ⋅sgndP d d w
ds ds ds

R RP ,     (9) 

Therefore, choosing the s  norm such that 

α

α
= −dR

ds n
∑
∑
H

,       (10) 

we obtain 

( )
( )2 Im[ ]m s

dP P fcds = −  = n N
w l ,             (11) 

where as before, ( )Re/ mf   = lH . The invariant =H 0  holds all along the reference ray, 

and the essential condition = 0/d dsH , together with (10), brings to 

α

α
=dN

ds r
∑
∑
H

.       (12) 

                                                 
[1] M. D. Tokman, E. Westerhof, M. A. Gavrilova. Wave power flux and ray-tracing in 

regions of resonant absorption. Plasma Phys. Control. Fusion 42 (2000) 91. 
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Clearly, the partial derivatives in (10) and (12) are to be evaluated on the reference ray. 

Equations (10) and (12) are usually referred to as ray-tracing equations, and the ( , )r nH  

function is known as the ray Hamiltonian. 
 

Shape of the Gaussian beam 

Making use of the complex coupling = + iQ M L , constraints (4) combined with (10) and 

(12) give rise to the second invariant of the reference ray 

ˆ 0Dα =H ,     D̂ Q
r nα αβ
α β

= +∑ ∑
∑ ∑

.    (13) 

We note here that the total derivative along the reference ray can be written as 

ˆd dR D
ds s ds

α
α+= ∑

∑
.       (14) 

The condition ˆ 0( )/d D dsα =H  then leads to the sought beam-shape matrix equation  

ˆ ˆdQ
D D

ds
αβ

αβ= H ,      (15) 

which can be splitted to give 

( )αβ
α α αβ β β

α αβ β
γ γ γγ δ δ

γ γ γ δ

    

= + + + −∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

H H H HdM
M M M M L L

ds r r r n r n n n
2 2 2 2

,    (16) 

αβ
αβα β

α β
γγδ δ

γ γ γ γδ δ

    ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + + +∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

H H H HdL
M L M L

ds r n n n r n n n
2 2 2 2

.  (17) 

Equations (10) – (12), (16) and (17) constitute the system of the so-called beam-tracing 

equations [2]. The aforementioned constraints appearing now as 

=H 0 ,     αβ
αβ

= −∑ ∑
∑ ∑
H HM
n r

,     αβ
β

=∑
∑
HL
n

0     (18) 

should be used when setting the boundary values at =s 0 , and later as a check of 

consistency. The system of equations (16) and (17) can be solved separately from (10) and 

(12), provided that the trajectory of the reference ray is pre-computed. So it is useful in 

practice to decompose the beam-tracing procedure into the reference ray tracing with the 

subsequent beam-shaping.  
 

                                                 
[2] E. Poli, G. V. Pereverzev, A. G. Peeters. Paraxial Gaussian wave beam propagation in an 

anisotropic inhomogeneous plasma. Phys. Plasmas 6 (1999) 5. 
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Non-relativistic ray Hamiltonian 

We cite here the well-known (see, e.g. [3]) expression for the Maxwellian-hot-plasma 

dispersion tensor in a local coordinate system such that 0,0,( )B=B  and ,0,( )n n=n ||^ : 

=−
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

− −
= −

−−

− ∑ ∑
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i i
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Y Z Y Z Y Z

Y Z Y Y Z Y Z

Y Z Y Z Y Z
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n n n
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£ £s
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s

£ £ £ £s s
ks ks s ks ks ks ks ks

s

|| ||

||

^

^ ^

¶

s s
s k ¶

≤

≤

≤
≤

kk k
l l

lkk l
l

k l z
l

z

2

2

( )

( )

( )
( )

2

2

2

0

2

2
2

22

1 0
0 1 0

0 1

( ) ,

 (19) 

where s  runs over the plasma species, =( ) sgn( )cs s≤ w , = 2 2
pqs sw w/ ,  = 2n us ^ s sml / , 

= cus sw w/2 2 , =m c Ts s sm /2 , 1 ( )2 1( )un−= −|| sks s sm / ≤z k , = −Yks k s sl lexp( ) ( )I , 

=Zks ksz( )Z , kI  is the k th-order modified Bessel function of the first kind, =z( )Z  

−  
0

2/exp 4( )i i t t dt∫
¶

z  is the nonrelativistic plasma dispersion function, which can be 

represented for real arguments as follows: 

  
⎛ ⎞
⎜ ⎟
⎝ ⎠

= − −
0

2 2exp 2 exp( ) ( ) ( )
x

ix x t dtpZ ∫ .    (20) 

The primed variables in (19) denote the derivatives of the corresponding functions with 

respect to their actual arguments. 

Since the use of TRUBA is focused upon the EC frequency range at present, the ion 

contribution has been neglected in this version and the sum over k is truncated to   10k| | . 

In order to avoid the =1eu  singularity in the determinant of (19), persisted in the em ¶→  

limit, the ray Hamiltonian is defined as  −= H( )( )1 deteuH Λ . 

The cold-limit expression 

⎡ ⎤⎣ ⎦= − − + − − + + + −2 2 2 21 1 2 1 1 1( ) ( )( ) ( ) ( )e e e e e e en n q u q q u n q q||H ,          (21) 

whenever it would be used, is replaced by the following single-root Hamiltonian: 

( 1,2) 2 2
1 12 2 3max( , ) ( ) 2 4( / )m

minD D D Dn a a a a a = ±  = + = −∓H ^ , ,  (22) 

                                                 
[3] M. Brambilla. Kinetic theory of plasma waves, homogeneous plasmas. (Oxford Univ. 

Press, Oxford, 1998). 
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where 

1 1 e ea u q= − − ,            
2

2 2 1 1 2 1( ) ( ) ( )( )e e e e e ea q q n u q u q= − − − + − −|| ,        (23) 
2 22 2

3 1 1 1( ) ( ) ( )( )e e ea q n q n u= − − − − −|| ||       

are the coefficients of 4n^ , 2n^ , and 0n^  in the polynomial (21), and the customized small 

parameter > 0minD  prevents the Hamiltonian from degradation when the modes are nearly 

degenerate (at the vacuum-plasma interface). 

Both O- and X- modes at densities under the O-mode cutoff are treated using the cold-

plasma Hamiltonian (22). The general hot-plasma Hamiltonian derived from (19) is 

“switched on” for 21
2

1 1 1( )( )( )ee uq n> + + − ||  so that to provide O-X mode conversion, 

and for 2 3n⊥ >  thus allowing for electron Bernstein waves. 

The TRUBA code proceeds with the O-X conversion in the following ad hoc manner. If the 

reflection point is revealed along the ray trajectory of the incident O-mode, and the width of 

the further evanescent layer is small enough, the launching point for the transmitted ray is 

to be determined on moving from that point along the density gradient until the dispersion 

relation is fulfilled again. It was shown in [4] that the ray trajectory continued from this 

point is asymptotically equivalent to the limiting central trajectory of the transmitted part of 

the wave packet. The wave vector of the launching ray is equated with its value at the 

reflection point. The fraction of the transmitted power is calculated using the one-

dimensional O-mode tunneling theory [5,6]: 

{ }2 2/2 2 1exp ( )[ ]q opte e n n nu uc ⊥−= − +||
w /h p ,    (24) 

where q  is the density gradient length and 2 1/( )opt e en u u= + , with all the parameters 

taken at the reflection point.  

Weakly relativistic ray Hamiltonian 

The weakly relativistic approximation is referred to as the àm 1e  condition, which is valid 

in most ECRH experiments. We start from the expression (2) from Ref. [7] that uses the 

                                                 
[4] A. V. Timofeev. Electromagnetic oscillations near the critical surface in a plasma: 

Methodological note. Plasma Phys. Rep. 27 (2001) 922. 
[5] E. Mjølhus. Coupling to Z mode near critical angle. J. Plasma Phys. 31 (1984) 7. 
[6] A. A. Zharov. Theory of the conversion of normal waves in a nonuniform magnetized 

plasma. Sov. J. Plasma Phys. 10 (1984) 642. 
[7] I. P. Shkarofsky. Dielectric tensor in Vlasov plasmas near cyclotron harmonics. Phys. 

Fluids 9 (1966) 561. 
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only extra assumption of e eál m , thus still allowing for the short-wavelength Bernstein 

waves, which typically possess 20el d . As before, we disregard the motion of ions. 

Following the technique of [7], but not restricting to 1eál , we obtain the following: 

2 ( ) ( ) ( )
3/ 3/ 5/2 2 2

2( ) ( ) ( ) ( )
3/ 3/ 5/ 5/2 2 2 2

( ) ( ) ( ) ( )
75/ 5/ 5/ /2 2 2 2

0 0 1

0 0 10

21 1 0

2

2

2

2

2
2

1
2 22

1 0
0 1 0

0 1

e e

e
e

e e e e

e

e

e

e

e e

i

i i

i

n n n
n

n n n

q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡
⎢
⎢
⎢− − −⎢
⎢

+
⎣

− −
= −

−−

   

+     

    

|| ||

||

^

^ ^

∑
∑

∑ ∑ ∑
∑ ∑ ∑

∑
∑

k kk
l l l

lk lk
l l l l

lk
ll

m

R R R

R R R R

R R R R

Λ

=−

⎤
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥⎦

∑
¶

k ¶
,

 (25) 

where  ( )
2

( )
1

2
( )

/
, , ,2 ( ) e

e

jj
uze

a n
z aa z  

 

+=
=

⎡ ⎤
⎢ ⎥⎣ ⎦

= eR R
||

m kn n
m

∑ | |
∑

l k  ,  , ,=j …0 1 , and 

( )
0

2
, , , exp 1 1 1

( ) ( )i i i i i
at dtz a zt t t t

⎛ ⎞
⎜ ⎟
⎝ ⎠

+= − − − − −
¶

n k n
l ll k IR ∫    (26) 

is the Robinson’s relativistic plasma dispersion function [8]. This function may be expanded 

via usual Shkarofsky functions , ⎛ ⎞
⎜ ⎟
⎝ ⎠

= − − − −
F

¶

n n
0

2
( ) exp 1 1( )i i i i

at dtz a zt t t∫ : 

1
0

0
2 2 1, , , ( , ) 1  

(2 )2 !
+( ) +j j j j

j

j
j jz a g z a g g g

=
+ + −

−= = = −∑R F
¶k

n n kkk
kll k l
k

, ,  .   (27) 

Keeping only the leading term in (27) will reduce the dispersion tensor (25) to the standard 

1eál  weakly relativistic expression. The so-called moderately relativistic approximation 

[9] corresponds to retaining some higher-order terms of this expansion. 

Except for 1ál , use of (27) is computationally expensive and suffers from subtraction 

errors. In order to speed up the rate of the Hamiltonian evaluation, the following quite 

accurate approximation is implemented in the code: 

, , , exp( ) ( ) ( ) ( , )

( ) 1 ( , ) ( 1 , )

( )

( )

( )
( )
[

]
C

C

z a z a

h z h a h z h a
+− −

+ + − − + +
n k k n k

k n n

l k º l l l

l

IR F
F F ,

  (28) 

where 1
2( ) ( ) ( )2 1( )C ++

= −k k k
l
k

l l lI I  and 2 1 2( )/h = − .  In order to preserve the 

peculiar behavior of the fundamental harmonic ( 1= −k ) contributions to the combinations 

                                                 
[8] P. A. Robinson. Relativistic plasma dispersion functions. J. Math. Phys. 27 (1986) 1206. 
[9] D. G. Swanson. Exact and moderately relativistic plasma dispersion functions. Plasma 

Phys. Control. Fusion 44 (2002) 1329. 
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11 22 122iK K K+ −  and 13 23iK K+ , the l - derivatives of the Robinson’s function in (25) 

should be computed as 

1 1, , , , 1( ) ( ) ( ) ( )+ += − + +n n n nΩ Ω Ω Ω
| |

| | | | | | | |
∑
∑

kk k k k
l l
R R R R ,  (29) 

at least for the fundamental harmonic. 

The Shkarofsky function has a valuable asymptotic representation, in terms of the Z  

function and its high-order derivatives, in a domain of large real a : 

( ) ( ) ( )

( ) ( ) ( ) 5/2

3 4 53 4 5
3 54

2 6 7 3 97 96
3 3 34

1 1
2 6

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[
]

z a h h h h

h h h O a −

= − + + +

+ + + +

Fn y u y u y u y

u y u u y u y

Z Z Z Z

Z Z Z ,
  (30) 

with −= + n 1/24 2( )h a , = +y n( )h z , and = +u n/j ja . If z  is real, (30) is also valid in 

regions − +à n1z  and − à1z a . A further useful property is that ( , )z aFn  of half-integer 

index n  can be expressed in terms of the “classical” plasma dispersion function [10]: 

1/ 1/ 1/ 1/2 2 2 2
1/2 1/2

1/ 1/ 1/ 1/2 2 2 2
3/2 1/2

2
1

2

( , ) ( ) ( )
( )

( , ) ( ( ) ) ( ( ) )

( ) ( )[ ]

[ ]

i i

i i

iz a a z a a z a
z a

z a a z a a z a
a

= − + − + − + −
−

= − + − − − + −

F

F

Z Z

Z Z
 ,  (31) 

and for 0≥k  

+5/ +1/ +3/2 2 2
1
2

1( , ) ( ) ( , ) ( ) ( , )1[ ]z a a z z a z aa= + − − +F F Fk k kk  .   (32) 

Practically, however, only the 3<k  functions can be safely treated using this method due 

to numerical instability of the recursion (32). Moreover, in the case of | | 1a á  this formula 

should be completely rejected. Instead of (32), the following relations can be used here: 

0 !
( , ) ( ,0)

j
a

j
j jz a e z a+

−

=
= −∑ aF F

¶

n n  ,     1
1( ,0) 1 ( ,0)( )z z z+ = −F Fn nn  .     (33) 

Similar to the splitting technique (22) of the non-relativistic Hamiltonian, O- and X- modes 

in low-density plasma are to be traced using the linearized Hamiltonian 

{ }2
H 2( 1,2) 2 2,( )max 1 det( )/ ( )[ ] ( )| |

m

m
mine mn Du n n n =

±  = − −
^

^ ^ ^∑ ∑ΛH  ,  (34) 

where 2
mn^  is the corresponding root (computed numerically) of the H( ) 0det =Λ  equation 

while the other parameters (i.e. eq , eu , em , and n || ) are kept fixed at their values.  

 

                                                 
[10] V. Krivenski, A. Orefice. Weakly relativistic dielectric tensor and dispersion functions of 

a Maxwellian plasma. J. Plasma Phys. 30 (1983) 125. 
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Absorption of the ray 

In calculating the damping coefficient we make use of the relation 

( ) ( ) A
2( ) 0Re

( ) ( )ImRe det detIm [ ][ ] m
j m m

m j
n

≠ = 
  = −∏

^l
l l Λ Λ  ,   (35) 

where 2
mn^  is the numerically computed root (recall Eq.(34)), so that equation (11) has the 

following versatile form: 

A
H

2

2

2

2

2
( ) ( )Im det det

det

/ ( )
2

( )/ ( )

[ ]
[ ]

[ ]
m

m
m

n
n

n

ndP
cPds n

 
− = −^

^

^

^

^

∑ ∑w

∑ ∑
Λ Λ

Λ
H

 .  (36) 
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Reduction of L  to the diagonal form 
 

where αs  are the laboratory coordinates of 3e , ⊥ = −s s231  and J  is the rotation angle 

ensuring the diagonal form of =T LTTL . This angle or, rather, its sine and cosine should 

be found from the equation ααβ β= =12 1 2 0L T TL   which gives   =J ctan2 2 , 

( ) ( ) ( )
( ) ( ) ( ) ( )

⊥

⊥ ⊥

⎡ ⎤− − − + −⎣ ⎦
− + − + + + − +

=c
s s s L L s s L s s L s L

s s s L s s s L s s s L s L s s s L s L

2 2 2
3 1 2 11 22 1 2 12 1 23 2 13

2 2 2 2 2 2 2 4 2
1 3 2 11 2 3 1 22 1 2 3 12 33 3 1 13 2 232 1 2

, (39) 

and, hence, 

= − +c cJ / 2( )
2

sgnsin 1 1 4 1 ,     += +2
2
1cos 1 1 4 1cJ / .  (40) 

Having determined T , we easily obtain ie  and ( ) 

−
=

1 2

i iic
wr L , ,=i 1 2 . On restoring the 

laboratory representation, for given values of J  and 
 
ri , the inverse transformation is 

straightforward (T  is an orthogonal matrix): =L T TTL . 

 

 The objective is to find the transformation such that 

ααβ β

  

  

  

= +1 2

1 2

2 2

2 2L r r
c
w d d

r r
w w

,  (37)

with 
 
ri  being the principal radii of the cross-

sectional attenuation. Let 
  

−
=

1

3
d d
ds ds
R Re , then if 

≠ “z3e  we can introduce a local Cartesian

coordinate system αw  with basis vectors 1e  and 2e
lying in the cross-section of the beam, as shown in 

Fig. 1. Both systems are related via α αβ β=d wr T , 

with the generating matrix 

Figure 1 
Attenuation ellipse in the 
cross-section of the beam and 
the associated orthonormal 
vector basis (red). 

⊥ ⊥

⊥ ⊥

⊥ ⊥

− − −⎡ ⎤
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

J J J J

J J J J

J J

s s s s s s ss s

s s s s s s ss s

s s s

2 1 3 2 1 3
1

1 2 3 1 2 3
2

3

sin cos cos sin

sin cos cos sin

cos sin

T ,     (38)

“z J
e1

e2

e3
dR
ds
__
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Reduction of M  to the diagonal form in vacuum 

In plasma M  is generally a nondegenerate matrix. This makes the diagonalization of M  

useless. On the contrary, in vacuum the first of the constraints (4) is reduced to 

αβ β = 0M N  so that the canonical transformation must give  

α α ααβ β

  

  

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ = + +1 2

1 2

2 2

3
1 1
2 2N r M r r p pd d d w ww ,    (41) 

with ip  being the principal focal parameters of the wave front paraboloid (they are equal to 

the principal radii of the wave front curvature on the beam axis). In (41) use is made of 

=N 1 . The procedure of finding the diagonal form =T MTTM  is the same as for L , 

with =3e N . The inverse focal parameters, which are of practical use, are given by 

− =1
i iip M . 

 

Vacuum solution for the beam shape 

In any homogeneous medium 

α =dN
ds

0 ,     ( ) ( ) ( )α ααβ αβ β βγ γ δ δ
γ δ

 

+ = + +∑
∑ ∑

Hd M iL M iL M iL
ds n n

2
. (42) 

If the medium is also isotropic, as is the case with vacuum, then =H H n2( ) so that  

α
α  

 = − ∑
∑
HdR N

ds n22 ,     ααβ β
α β

  

= +
2 2

2 2 22 4
( )

I N N
n n n n
∑ ∑ ∑
∑ ∑ ∑ ∑

H H H
,  (43) 

with I  being the unit dyadic. Let us transform the coordinate system, for example using 

the same generating matrix (38) as employed above but with =J 0  and =3e N , 

⊥ ⊥

⊥ ⊥

⊥

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−

− −=

N N N Ns s
N N N Ns s
s N

1 3 2
1

2 3 1
2

30

T ,     ⊥ = −s N 2
31 .    (44) 

Now the non-vanishing beam coefficients are governed by the matrix Riccati equation 

= −
w
ij

ik jk
dQ

Q Q
d

,      (45) 
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where Latin indices range from 1 to 2, ( )= + iTQ T M L T , and the subscript 3 has been 

omitted from w . The analytic solution of (45) is 

( )( )( ) ( ) ( ) ( )
−

⎡ ⎤
⎣ ⎦= + + + +ij ij ijQ Q I Q Q Q Qd d d

1

0 0 11 0 22 0 01w w w w w w w ,  (46) 

where ( ) ( ) ( )= − 2
0 11 0 22 0 12 0Q Q Q Qw w w  and = −dw w w0 . Then, at the vacuum-plasma 

interface, one should restore the original coordinate representation + =i TM L TQT  that 

will be passed to the numerical solver. 
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Input files for the code 

TRUBA.INI 

line # input parameters and explanation 

1 
Rx, Ry, Rz – Cartesian coordinates in cm for the origin of the central ray; the 

coordinate system coincides with that of TJ-II Library. Type: real. 

2 Control flag F1 for interpreting of the next line; see below. Type: integer. 

3 

Vector 
G
N . If F1=0: Nx, Ny, Nz – absolute components, manually adjusted or 

taken from somewhere else. If F1=1: Nxh, Nyh, Nzh – relative components; the 

value of h will be computed by the code. If F1=2: N^1h, N^2h, N||, where N|| is 

the parallel component of 
G
N , N^1 and N^2 are the perpendicular components 

directed along —y  and 
G
×Β —y  correspondingly; the value of h will be computed 

by the code. If F1=3 and |qe-1|<0.001 (critical layer): h1, h2, h3, and 
G
N  will be 

constructed so as to + = / 2 2
1,2 1,2 1 2

N h h h^ 0.001 , = sgn( ) +( )/3 e e
N h u u1& . 

4 f – Microwave frequency in GHz. Type: real. 

5 
Mode m of the wave to be launched: m=1 – O-mode, m=2 – X-mode, m=0 – 

hot plasma mode. Type: integer. 

6 

n1, n2, n3 – Coefficients of density profile = ( - ) 32
e 1

nnn n y1 ä1013 cm-3. Type: 

real. Or alternatively, the key word “tabular:” (case sensitive; preceding 

characters are ignored) and then the name of the file containing tabulated 

density profile (leading and trailing blanks are ignored). 

7 

t1, t2, t3 – Coefficients of electron temperature profile = ( - ) 32
e 1

ttT t y1 keV. 

Type: real. Or alternatively, the key word “tabular:” (case sensitive; preceding 

characters are ignored) and then the name of the file containing tabulated 

electron temperature profile (leading and trailing blanks are ignored). 

8 
Ds – Increment of the ray parameter for output; is also the interval of s for the 

ODE solver to integrate over, during each step. Type: real. 

9 
Control flag F2 for the calculation mode: F2=0 – ray-tracing, F2=1 or 2 – 

beam-tracing. F2=1 is valid only for vacuum launch. Type: integer. 

10 

If F2=0 or 1: JL, r1, r2, where JL is the rotation angle in degrees which is 

defined in Fig.1 and associated text, r1 and r2 are the principal radii of the 

beam attenuation ellipse in cm. If F2=1, these values are used to initialize Lab. 

If F2=0, these values are used to initialize a parallel bunch of 4 characteristic 

surrounding rays to be traced right after the central ray (if one of rs is zero, 

corresponding two rays will be taken away; if both rs are zeros, only central ray 

will be traced). If F2=2: Lxx, Lxy, Lxz, Lyy, Lyz, Lzz, in cm-1. Type: real. 



 

 

TRUBA User Manual 13

 

11 

If F2=0, this line is ignored. If F2=1: JM, 1/p1, 1/p2, where JM is the rotation 

angle in degrees which ensures the diagonal form of Mab, 1/p1 and 1/p2 are the 

inverse principal focal parameters of the wave front in cm-1. If F2=2: Mxx, Mxy, 

Mxz, Myy, Myz, Mzz, in cm-1. Type: real. 

12 
Control flag F3 for the dielectric tensor model: F3=0 – non-relativistic, F3=1 – 

weakly relativistic, F3=11 – “lite” weakly relativistic (valid if le á 1, up to the 

2nd EC harmonic). Type: integer. 

13 
Control flag F4 for the choice of ODE solver: F4=1 – D02EJF (NAG), F4=2 – 

LSODE/non-stiff (ODEPACK), F4=3 – LSODA (ODEPACK). Type: integer. 

14 Relative tolerance parameter for ODE solvers. Type: real. 

15 

Control flag F5 for the choice of the ray-tracing termination condition: F5=1 – 

P(s)/P(0)<10-9, F5=2 – 2N^ >103 and |ue-1|<10-3, F5=3 – 2
e eN u^ m >/ 50 , 

F5=4 – any of the last two criteria fulfilled. By default, tracing goes on till the 

ray comes upon the wall of the vacuum vessel. Type: integer. 

16 
Control flag F6 for the choice of output style of the RAY*.DAT files: F6=1 – all 

the values in the lines #4 and #5 are preceded with its titles (see below), F6=0 

– the same without the titles. Type: integer. 

17 
Control flag F7 for the choice of output mode for the POWER*.DAT files: F7=1 – 

two more columns are output if m = 1 or 2 (see below), F7=0 – optional output 

is suppressed. Type: integer. 

18 

Control flag F8 for the choice of output mode for the B_U_G_S file: F8=2 – 

detailed auxiliary/debugging information, F8=1 – only checkpoint data, F8≤0 – 

no output. If F8=-1, all the output to the screen is suppressed, except for the 

error messages. Type: integer. 

 

TJ2_B.INI 

line # input parameters and explanation 

1 
Name of the file containing the coefficients of a given configuration. To be 

passed to the initialization routine of the TJ-II Library. Type: character. 

2 
Name of the file containing the namelist with the currents flowing trough the 

different coils of the device. To be passed to the initialization routine of the TJ-II 

Library. Type: character. 

3 
Artificial scale factor for the magnetic field returned by the TJ-II Library. Type: 

real. 
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File indicated in the 6th line of TRUBA.INI, if any. 

line # input parameters and explanation 

1 
j_n – The number of tabulated density values (type: integer); [dne/dy]y=0 and 

[dne/dy]y=1 in 1013 cm-3 (type: real). 

2 — 

j_n+1 

Values of y, in the order of increasing 

from 0 to 1. Type: real. 

Corresponding values of density ne in 

1013 cm-3. Type: real. 

 

File indicated in the 7th line of TRUBA.INI, if any. 

line # input parameters and explanation 

1 
j_t – The number of tabulated electron temperature values (type: integer); 

[dTe/dy]y=0 and [dTe/dy]y=1 in keV (type: real). 

2 — 

j_t+1 

Values of y, in the order of increasing 

from 0 to 1. Type: real. 

Corresponding values of electron 

temperature Te in keV. Type: real. 

 

Files indicated in the first two lines of TJ2_B.INI. 

For any details see the init_tj2_lib routine documentation. 
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Output of the code 

Screen, the asterisk (*) unit. 

If F8≠-1: 

at the origin of the central ray:   q= qe, u= ue, flux= y; 

if F1=1:   » N is multiplied by h,    if F1=2:   » Nt2 is set to 2N^ ; 

Starting ray tracing…; 

while tracing: the number of step, m, 2N^ , at the end: y, qe; 

if F2=1, 2:   Starting beam shaping…; 

while shaping: the number of step. 

Whenever: 

diagnoses of abnormalities. 
 

RAY0.DAT  [RAY1.DAT, RAY2.DAT, etc.]* 

line # 

in record 

block 

output values and explanation 

1 

In vacuum pre-tracing: 0. During tracing in plasma: 

the number of step. In vacuum post-tracing: -1, 

except the first record after exit: -2. Also -2 in the 

case of preconditioned stop in plasma. Type: 

integer. 

In vacuum: 0. In plasma:  

current value of le = 

/2
e eN u^ m . Type: real. 

2 Rx, Ry, Rz – Current coordinates in cm of the reference ray. Type: real. 

3 Nx, Ny, Nz – Components of the vector 
G
N  on the reference ray. Type: real. 

4 
Current values of , , ,2 2

e eN N q u^ &  (preceded with the titles if F6=1). In vacuum the 

first three are zeroes. Type: real. 

5 
Current value of H =H max ,/ ( )4N^1  (preceded with the title if F6=1). In vacuum: 

0. Type: real. 

* The files, which are not necessarily output, will henceforth be colored blue. 
 

RAY0T.DAT  [RAY1T.DAT, RAY2T.DAT, etc.] 

The same as above, for the rays underwent tunneling through the qe=1 layer (O-mode 

only). The first record block is for the point just before tunneling (found from minimum 
2N^ <0.01 on the ray trajectory); the second block is for the first point of the transmitted 

ray. The 5th line in these two blocks contains 2
2N^ , instead of H. No more peculiarities. The 

step numbering continues the original one. 
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POWER0.DAT  [POWER1.DAT, POWER2.DAT, etc.] 

1st column 2nd column* 3rd column* last column 

The number of step. Im(N) ( )∑ N
c

exp - Im( )Dw
2 w  

P/P1, with P1=P in 

the first line. 

* These columns are output only if F7=1 and m = 1 or 2.  
 

POWER0T.DAT  [POWER1T.DAT, POWER2T.DAT, etc.] 

The same as above, for the rays underwent tunneling through the qe=1 layer (O-mode 

only). The only difference: the 3rd column and the last column are multiplied by the 

transmission coefficient (damping before the tunneling is out of account here). 

 

BEAM0.DAT 

line # 

in record 

block 

output values and explanation 

1 
The number of step (or 0, -1, -2), synchronized with the RAY0.DAT. Type: 

integer. 

2 Coordinates of the 
G

1e  basis vector of the beam attenuation ellipse. Type: real. 

3 Coordinates of the 
G

2e  basis vector of the beam attenuation ellipse. Type: real. 

4 r1, r2 – Principal radii of the beam attenuation ellipse in cm. Type: real. 

5 Mxx, Mxy, Mxz, Myy, Myz, Mzz, in cm-1. Type: real. 

 

REFLECTION 

line # 

in record 

block 

output values and explanation 

1 Rx, Ry, Rz – Cartesian coordinates in cm of the emergent ray spot on the vessel. 

2 Nx, Ny, Nz – Components of the vector 
G
N  for the ray reflected from the vessel. 

Such information on all rays traced is successively collected in this file. 
 

Damp_profile0.dat  [Damp_profile1.dat, Damp_profile2.dat, etc.] 

1st column 2nd column 

iy , i.e. the normalized effective 

radius; i = line number: from 1 to 

200. 
-

( )+
abs i i i 0

+
i i

-

-
W W§ <d y y y

y y
, where = ±( )2±

i iy y 1 400 . 
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To calculate the net radial profile of power deposition per unit volume absW Vd d  from the 

results of a multiple ray-tracing simulation, one has to sum up the 2nd–column vectors for 

all the rays of a bunch (correspondingly weighted), then multiply the result by the total 

power of the beam and divide it by the plasma volume (or, more strictly, by V yd d ). 
 

Damp_profile0T.dat  [Damp_profile1T.dat, Damp_profile2T.dat, etc.] 

The same as above, for the rays underwent tunneling around the qe=1 layer (O-mode only). 

The transmission efficiency is taken into account here, except for a damping of the ray 

before the tunneling. 
 

B_U_G_S 

Intended for output of any data helpful in analysis of results or debugging (if F8=2). If 

F8=1, only the changes of the wave mode along the ray trajectory are registered, 

successively for all the rays traced. 
 



 

 

18 TRUBA User Manual

 

job assignment

TRUBA.INI TJ2_B.INI

loading the magnetic
      configuration

initiation of beam/rays

vacuum?
  vacuum
pre-tracing

setting the boundary values

tracing in plasma

vacuum?
   vacuum
post-tracing

vessel wall?

finding the origin for
   the reflected ray

calculation
 of power
deposition
   profile

  job
done?

 beam-
tracing?

yes

no

yes

no

yes

no

no

yes

no

yes

end

RAY*.DAT

POWER*.DAT

BEAM0.DAT

REFLECTIONDamp_profile*.dat

Internal structure of the code 

 

Figure 2 
Flow chart of TRUBA, showing the principal 
steps involved in a run of the code. 
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Contents of the beam-data array O(0:18) 
 

array component value, in beam- or ray-tracing mode 

O(0) P(s)/P(0) 

O(1) Rx (s) 

O(2) Ry (s) 

O(3) Rz (s) 

O(4) Nx (s) 

O(5) Ny (s) 

O(6) Nz (s) 

O(7) Mxx (s) Rx (0) 

O(8) Lxx (s) Ry (0) 

O(9) Mxy (s) Rz (0) 

O(10) Lxy (s) Nx (0) 

O(11) Mxz (s) Ny (0) 

O(12) Lxz (s) Nz (0) 

O(13) Myy (s) ⋅G
0( )1e x—  

O(14) Lyy (s) ⋅G
0( )1e y—  

O(15) Myz (s) ⋅G
0( )1e z—  

O(16) Lyz (s) ⋅G
0( )2e x—  

O(17) Mzz (s) ⋅G
0( )2e y—  

O(18) Lzz (s) ⋅G
0( )2e z—  

 
Here 

G
1e  and 

G
2e  are the principal orts of the beam attenuation ellipse. 
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Synopsis of subroutines 

 

SUBROUTINE Local_1(r(3), B(3), modB, q, u, t, fl) 

Input: r(1:3)=(x, y, z) – Cartesian coordinates of a point in cm. 

Output: B(1:3)=(Bx , By , Bz) – components of the magnetic field 
G
B  in tesla, modB =

G
B| |

in tesla, q = qe , u = ue , t = -1
em , fl – normalized magnetic flux. 

SUBROUTINE Local_2(r(3), B(3), modB, q, u, t, Dq(3), Dt(3), DB(3,3)) 

Input: r(1:3)=(x, y, z) – Cartesian coordinates of a point in cm. 

Output: B(3) – magnetic field 
G
B  in tesla, modB =

G
B| | in tesla, q = qe , u = ue , t = -1

em , 

Dq(3) – gradient of qe in cm-1, Dt(3) – gradient of -1
em  in cm-1, DB(3,3) – gradient 

of 
G
B  in cm-1 (  i, j =( ) /i jDB dB dr ). 

SUBROUTINE Local_3(r(3), B(3), modB, q, u, t, Dq(3), Dt(3), Du(3), DDq(3,3), DDt(3,3), 

DDu(3,3), Z2(3,3), Z3(3,3,3), Z4(3,3,3,3)) 

Input: r(1:3)=(x, y, z) – Cartesian coordinates of a point in cm. 

Output: B(i) =Bi in tesla, modB =B in tesla, q = qe , u = ue , t = -1
em , i =( ) /e iDq dq dr  in cm-1, 

i =( ) /-1
e iDt d drm  in cm-1, i =( ) /e iDu du dr  in cm-1,  i, j =( ) /e

2
i jDDq d q dr dr  in cm-2, 

 i, j =( ) /-1
e

2
i jDDt d dr drm  in cm-2,  i, j =( ) /e

2
i jDDu d u dr dr  in cm-2,  i, j =( )Z2

( )/ /j id B B dr  in cm-1, 2
j k iZ3 d B B B dr  i, j,k =( ) ( )/ /  in cm-1,    i, j,k, l =( )Z4

×/ ( )/( )/ /l k i jd B B d B B dr dr  in cm-2. 

SUBROUTINE DIELECTR_NR(q, u, t, nl2, nt2, K(3,3)) 

Input: q = qe , u = ue , t = -1
em , nl2 = 2n& , nt2 = 2n^ . 

Output: K(3,3) – non-relativistic dielectric tensor, as it appears in (19). 

SUBROUTINE DIELECTR_WR(q, u, t, nl2, nt2, K(3,3)) 

Input: q = qe , u = ue , t = -1
em , nl2 = 2n& , nt2 = 2n^ . 

Output: K(3,3) – weakly relativistic dielectric tensor, as it appears in (25), with the use of 

(28). 
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SUBROUTINE DIELECTR_WR1(q, u, t, nl2, nt2, K(3,3)) 

Input: q = qe , u = ue , t = -1
em , nl2 = 2n& , nt2 = 2n^ . 

Output: K(3,3) – weakly relativistic dielectric tensor, as it appears in (25), with the use of

the expansion (27) retaining only those terms of lower orders that would be

necessary and sufficient for frequencies up to the 2nd EC harmonic in the le á 1 limit. 

SUBROUTINE ZERO_DTH(m, q, u, t, nl2, nt2, nt2m) 

Input: mode m of the wave, q = qe , u = ue , t = -1
em , nl2 = 2n& , nt2 = 2n^ . 

Output: nt2m = 2
mn^  – the root of the dispersion equation: 

…   corresponding to the given mode, if {m = 1 or 2} and {[ue>1 and qe<0.1] or 

[ue<1 and qe<(1- 2n& )(1- eu )]}; 

…   otherwise, closest to the 2n^  input. 

SUBROUTINE DAMP(O(6), g) 

Input: O(1:6) containing O(1:3)=
G
R  in cm, and O(4:6)=

G
N . 

Output: ( ){ } A H

Ø
g

0
= lim Im det –det det( ) ( ) ( )/Λ Λ Λ

H
H  – damping coefficient, so that (11) 

takes the form dP ds gP
c

=–2/ w
. 

SUBROUTINE QDAMP(a, b, Oa(6), Ob(6), G) 

Input: a and b – s-coordinates of adjacent points of the ray trajectory; Oa(1:6) containing 

Oa(1:3)=
G
R a( )  in cm, Oa(4:6)=

G
N a( ) ; and Ob(1:6) containing 

G
R b( ) , 

G
N b( ) . 

Output: G – integral of the damping coefficient g (see above), from a to b, taken along the 

spline-interpolated hyper-trajectory in 6D phase space. 

SUBROUTINE ZERO_F(F, a, b, Fa, Fb, c) 

Input: F – user-supplied real function of which a zero will be found, between a and b; 

Fa = F(a) and Fb = F(b) must be opposite in sign. 

Output: c – computed zero. 

SUBROUTINE D1H(O(6), O1(6)) 

Input: O(1:6) containing O(1:3)=
G
R  in cm, and O(4:6)=

G
N . 

Output: O1(1:6) containing O1(1:3)=
G

∂ ∂H/ r  in cm-1, and O1(4:6)=
G

∂ ∂H/ n . 
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SUBROUTINE D2HX(O(6), X(6,6)) 

Input: O(1:6) containing O(1:3)=
G
R  in cm, and O(4:6)=

G
N . 

Output: X(1:6, 1:3)=  
G

∂ ∂1:6( )[ ]/O1 r  and X(1:6, 4:6)=  
G

∂ ∂1:6( )[ ]/O1 n  at given point; 

O1(1:6) is the output of D1H. 

SUBROUTINE FRHS0(X, Y(6), DY(6)) 

Input: X – independent variable, Y(6) – solution at X. 

Output: DY(6) – RHS of the system of ODEs i i 1 6dy dx f x y y= , , ,( )…/ , i = 1, …, 6, assembled 

of (10) and (12). 

SUBROUTINE FRHS1(X, Y(12), DY(12)) 

Input: X – independent variable, Y(12) – solution at X. 

Output: DY(12) – RHS of the system of ODEs i i 1 2 12dy dx f x y y y/ = , , , ,( )… , i = 1, 2, …, 12, 

assembled of (16) and (17). 

SUBROUTINE FRWRDT(e(3), X(6), T(3,3)) 

Input: e(3) – any vector aligned with the direction of degeneracy, X(6) – vector composed 

from the 11-, 12-, 13-, 22-, 23- and 33- elements of symmetric degenerate matrix 

of the quadratic form (37) to be reduced. 

Output: T(3,3) – generating matrix (38) of the transform required. 

SUBROUTINE INVRST(e(3), th, T(3,3)) 

Input: e(3) – any vector, th – angle in degrees. 

Output: T(3,3) – matrix transposed with respect to (38); can serve as a generating matrix 

of the transform restoring the laboratory coordinate representation. 

SUBROUTINE YNR(x, n, Y(n)) 

Input: x – real argument, n – number of components in the output. 

Output: vector containing Y(j) = e-x
 Ij-1(x), where Ij is the modified Bessel function of the 

first kind, j = 1, …, n. 

SUBROUTINE INSIDE(x, y, z, in) 

Input: x, y, z – coordinates of a point in m (for concordance with the tj2 routine). 

Output: in (logical): .true. if this point is inside the vessel, .false. otherwise. 
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SUBROUTINE SEGMENT(phi, R1, Z1, R2, Z2, e1(3), e2(3)) 

Input: phi – toroidal angle in radians of the section, (R1, Z1) and (R2, Z2) – two points (in 

m) in this section, which are presumably on different sides of the vessel surface. 

Output: e1(3), e2(3) – coordinates (in m) of the pair of adjacent vertexes of the polygon

representing the vessel section, such that these vertexes enclose the point of 

intersection with the line joining given points. If no intersection – two zero vectors. 

SUBROUTINE CROSS(x1, y1, x2, y2, x3, y3, x4, y4, x, y, k) 

Input: the line segment between the points (x1,y1) and (x2,y2), and the line segment 

between another two points (x3,y3) and (x4,y4), on a plane. 

Output: (x,y) – coordinates of the intersection point, if any; k (integer) classifies the 

positional relationship of the given line segments: 2 – overlap, 1 – cross at a point, 

0 – mutually disjoint and parallel, -1 – mutually disjoint and non-parallel, -2 –

mutually disjoint though aligned. 

SUBROUTINE CLspline(n, x, x1, x2, f1(n), f2(n), df1(n), df2(n), f(n)) 

Input: n – number of dimensions, x – coordinate of a point, between x1 and x2,  f1(n)

and f2(n) – values of a function at x1 and x2,  df1(n) and df2(n) – values of a 

derivative at x1 and x2. 

Output: f(n) – the value of the spline interpolant f = FC+(FL–FC)3/F0
2 at the given point, 

where FC is the cubic interpolant, FL is the linear interpolant, and F0 = 

max{|f1– f2|, e–1
 max{|df1|,|df2|}|x1–x2|}. 

SUBROUTINE CSPL(n, x(n), y(n), Dy(2), C(3,n–1)) 

Input: n – number of tabulated values, x(n) – array containing the data point abscissas 

(must be increasing), y(n) – array containing the data point ordinates, Dy(2) –

array containing the values of dy/dx at the outmost points. 

Output: C(3,n–1) – array containing the cubic spline coefficients: y(x) = y(i)+C(1,i)(x–

x(i))+C(2,i)(x–x(i))2+C(3,i)(x–x(i))3, x(i) ≤ x < x(i+1), i = 1,..., n–1. 
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Calls to external libraries 

 

TJ2LIB [11] 

or its substitute 

init_tj2_lib 
b_field_car 
flux_car 

grad_flux_car 
tj2 

+ dependencies 

NAG [12] D02EJF + dependencies 

ODEPACK [13] 

LSODE 
LSODA 

+ dependencies 
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