
ADOBE® FRAMEMAKER® 12
STRUCTURED APPLICATION DEVELOPER REFERENCE

© 2014 Adobe Systems Incorporated and its licensors. All rights reserved.

Structured Application Developer Reference Online Manual

If this guide is distributed with software that includes an end-user agreement, this guide, as well as the software

described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.

Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written

permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under copyright law

even if it is not distributed with software that includes an end-user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be

construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility

or liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under

copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of

the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to

refer to any actual organization.

Adobe, the Adobe logo, Acrobat, Distiller, Flash, FrameMaker, Illustrator, PageMaker, Photoshop, PostScript, Reader,

Garamond, Kozuka Mincho, Kozuka Gothic, MinionPro, and MyriadPro are trademarks of Adobe Systems Incorporated.

Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the

United States and/or other countries. Solaris is a trademark or registered trademark of Sun Microsystems, Inc. in the

United States and other countries. UNIX is a trademark in the United States and other countries, licensed exclusively

through X/Open Company, Ltd. SVG is a trademark of the World Wide Web Consortium; marks of the W3C are

registered and held by its host institutions MIT, INRIA, and Keio. All other trademarks are the property of their respective

owners.

This product contains either BISAFE and/or TIPEM software by RSA Data Security, Inc.

This product contains color data and/or the Licensed Trademark of The Focoltone Colour System.

PANTONE® Colors displayed in the software application or in the user documentation may not match PANTONE-

identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE® and other Pantone, Inc.

trademarks are property of Pantone, Inc. © Pantone, Inc. 2003. Pantone, Inc. is the copyright owner of color data and/or

software which are licensed to Adobe Systems Incorporated to distribute for use only in combination with Adobe

Illustrator. PANTONE Color Data and/or Software shall not be copied onto another disk or into memory unless as part of

the execution of Adobe Illustrator software.

Software is produced under Dainippon Ink and Chemicals Inc.'s copyrights of color-data-base derived from Sample

Books.

This product contains ImageStream® Graphics and Presentation Filters Copyright ©1991-1996 Inso Corporation and/or

Outside In® Viewer Technology ©1992-1996 Inso Corporation. All Rights Reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Certain Spelling portions of this product is based on Proximity Linguistic Technology. ©Copyright 1990 Merriam-

Webster Inc. ©Copyright 1990 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc.

Burlington, New Jersey USA. ©Copyright 2003 Franklin Electronic Publishers Inc.©Copyright 2003 All rights reserved.

Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. Legal Supplement

©Copyright 1990/1994 Merriam-Webster Inc./Franklin Electronic Publishers Inc. ©Copyright 1994 All rights reserved.

Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990/

1994 Merriam- Webster Inc./Franklin Electronic Publishers Inc. ©Copyright 1997All rights reserved. Proximity

Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA ©Copyright 1990 Merriam-

Webster Inc. ©Copyright 1993 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc.

Burlington, New Jersey USA. ©Copyright 2004 Franklin Electronic Publishers Inc. ©Copyright 2004 All rights reserved.

Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1991 Dr.

Lluis de Yzaguirre I Maura ©Copyright 1991 All rights reserved. Proximity Technology A Division of Franklin Electronic

Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990 Munksgaard International Publishers Ltd. ©Copyright

1990 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey

USA. ©Copyright 1990 Van Dale Lexicografie bv ©Copyright 1990 All rights reserved. Proximity Technology A Division

of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1995 Van Dale Lexicografie bv

©Copyright 1996 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington,

New Jersey USA. ©Copyright 1990 IDE a.s. ©Copyright 1990 All rights reserved. Proximity Technology A Division of

Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1992 Hachette/Franklin Electronic

Publishers Inc. ©Copyright 2004 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers,

Inc. Burlington, New Jersey USA. ©Copyright 1991 Text & Satz Datentechnik ©Copyright 1991 All rights reserved.

Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 2004

Bertelsmann Lexikon Verlag ©Copyright 2004 All rights reserved. Proximity Technology A Division of Franklin Electronic

Publishers, Inc. Burlington, New Jersey USA. ©Copyright 2004 MorphoLogic Inc. ©Copyright 2004 All rights reserved.

Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990

William Collins Sons & Co. Ltd. ©Copyright 1990 All rights reserved. Proximity Technology A Division of Franklin

Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1993-95 Russicon Company Ltd. ©Copyright 1995

All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA.

©Copyright 2004 IDE a.s. ©Copyright 2004 All rights reserved. Proximity Technology A Division of Franklin Electronic

Publishers, Inc. Burlington, New Jersey USA. The Hyphenation portion of this product is based on Proximity Linguistic

Technology. ©Copyright 2003 Franklin Electronic Publishers Inc.©Copyright 2003 All rights reserved. Proximity

Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1984 William

Collins Sons & Co. Ltd. ©Copyright 1988 All rights reserved. Proximity Technology A Division of Franklin Electronic

Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990 Munksgaard International Publishers Ltd. ©Copyright

1990 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey

USA. ©Copyright 1997 Van Dale Lexicografie bv ©Copyright 1997 All rights reserved. Proximity Technology A Division

of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1984 Editions Fernand Nathan

©Copyright 1989 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington,

New Jersey USA. ©Copyright 1983 S Fischer Verlag ©Copyright 1997 All rights reserved. Proximity Technology A

Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1989 Zanichelli ©Copyright 1989

All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA.

©Copyright 1989 IDE a.s. ©Copyright 1989 All rights reserved. Proximity Technology A Division of Franklin Electronic

Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990 Espasa-Calpe ©Copyright 1990 All rights reserved.

Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1989

C.A. Stromberg AB. ©Copyright 1989 All rights reserved. Proximity Technology A Division of Franklin Electronic

Publishers, Inc. Burlington, New Jersey USA.

Portions of Adobe Acrobat include technology used under license from Autonomy, and are copyrighted.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. government end users. The software and documentation are “Commercial Items,” as that term is defined

at 48 C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software

Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48

C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and

Commercial Computer Software Documentation are being licensed to U.S. Government end users (a) only as

Commercial items and (b) with only those rights as are granted to all other end users pursuant to the terms and

conditions herein. Unpublished-rights reserved under the copyright laws of the United States. For U.S. Government End

Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the provisions of

Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38

USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1

through 60-60, 60-250, and 60- 741. The affirmative action clause and regulations contained in the preceding sentence

shall be incorporated by reference.

Structured Application Developer Reference 1

Contents

Before You Begin . 5

Chapter 1 Structure Application Definition Reference 9

Contents of an application definition file9

Define an application9

Providing default information 11

Specifying the character encoding for SGML files . 11

Specifying conditional text output 13

Specifying a DOCTYPE element 13

Specifying a DTD 14

Specifying entities 14

Specifying entities through an entity catalog . 15

Specifying the location of individual entities . 16

Specifying names for external entity files . . . 17

Specifying public identifiers 18

Specifying a search path for external entity files 19

Specifying external cross reference behavior . . 20

Change file extension to .XML 20

Try alternative extensions 21

Specifying filename extensions 21

Enabling namespaces 22

Specifying a read/write rules document 22

Specifying a search path for included files in rules

documents 22

How FrameMaker searches for rules files . . . 23

Specifying a Schema for XML 23

Specifying an SGML declaration 24

Managing CSS import/export and XSL transformation

24

How the Stylesheets element affects CSS

generation 24

How the Stylesheets element affects CSS import 25

How the Stylesheets element affects XSL

transformation 25

Specifying a FrameMaker template 26

Specifying a structure API client. 27

Specifying the character encoding for XML files . 27

Display encoding 28

Encoding of CSS files 29

Exporting XML 29

Limiting the length of a log file 30

Mapping graphic notations to file types 30

Chapter 2 Read/Write Rules Summary 31

All Elements 31

Attributes 32

Books 33

Cross-references 33

Entities 34

Equations 34

Footnotes 35

Graphics 35

Markers 36

Processing instructions 37

Markup documents 37

Tables 38

2

Text 39

Text insets 39

Variables 39

Chapter 3 Read/Write Rules Reference 41

anchored frame 41

attribute 44

character map. 47

convert referenced graphics 49

do not include dtd 50

do not include sgml declaration. 51

do not output book processing instructions. . . 51

drop 51

drop content 53

element 54

end vertical straddle 57

entity. 59

entity name is 61

equation 63

export dpi is 64

export to file 67

external data entity reference 69

external dtd 70

facet 72

fm attribute 74

fm element. 75

fm marker 76

fm property 78

fm variable 89

fm version 90

generate book 91

implied value is 94

include dtd. 96

include sgml declaration 97

insert table part element 98

is fm attribute. 101

is fm char 105

is fm cross-reference element 107

is fm element 108

is fm equation element 109

is fm footnote element. 110

is fm graphic element 111

is fm marker element 112

is fm property. 114

is fm property value. 122

is fm reference element 125

is fm rubi element 127

is fm rubi group element 128

is fm system variable element 129

is fm table element 130

is fm table part element 132

is fm text inset 133

is fm value 135

is fm variable 137

is processing instruction 138

line break 138

marker text is 140

notation is 141

output book processing instructions 143

preserve fm element definition 144

preserve line breaks 145

Structured Application Developer Reference 3

processing instruction 147

proportional width resolution is 148

put element 149

reader 149

reformat as plain text 150

reformat using target document catalogs . . . 151

retain source document formatting 152

specify size in 153

start new row 155

start vertical straddle 156

table ruling style is 157

unwrap 158

use processing instructions 160

use proportional widths 160

value 161

value is 163

write structured document 163

write structured document instance only . . . 163

writer 164

Chapter 4 Conversion Tables for Adding Structure to Documents167

How a conversion table works 167

Setting up a conversion table 168

Generating an initial conversion table 169

Setting up a conversion table from scratch . . 170

Updating a conversion table 170

Adding or modifying rules in a conversion table . 171

About tags in a conversion table 171

Specifying the root element for a structured

document 172

Identifying a document object to wrap . . . 173

Identifying an element to wrap 174

Identifying a sequence to wrap 175

Providing an attribute for an element 177

Using a qualifier with an element 177

Handling special cases 179

Promoting an anchored object 179

Flagging format overrides 180

Wrapping untagged formatted text 180

Nesting object elements 181

Building table structure from paragraph format tags

182

Testing and correcting a conversion table . . . 182

Chapter 5 CSS to EDD Mapping .185

CSS Font Properties 185

CSS text properties 188

CSS color and backgrounds properties 189

CSS Formatting Model 190

CSS Pagination Properties 193

CSS generated content, automatic numbering, and

lists 194

CSS Tables 196

CSS Selectors 197

Chapter 6 XML Schema to DTD Mapping 199

Schema location 199

Namespace and Schema location attributes. . 200

Simple type mapping 200

Attributes of simple type elements 201

Complex type mapping 202

Group 202

4

Sequence 202

Choice 203

All 204

Named complex types 204

Named attribute groups 205

Abstract elements 206

Mixed content models 207

Supported Schema features 208

Defaults. 208

Any 208

Extension and restriction of complex types . . 209

Include, import, and redefine 209

Unsupported Schema features 211

Chapter 7 The CALS/OASIS Table Model213

FrameMaker properties that DO NOT have

corresponding CALS attributes 213

Element and attribute definition list declarations . 214

Element structure 216

Attribute structure 217

Inheriting attribute values 217

Orient attribute 217

Straddling attributes 217

Chapter 8 Read/Write Rules for the CALS/OASIS Table Model219

Chapter 9 SGML Declaration .223

Text of the default SGML declaration 223

SGML concrete syntax variants 225

Unsupported optional SGML features. 226

Chapter 10 ISO Public Entities .227

What you need to use ISO public entities 228

Entity declaration files 229

Entity read/write rules files 229

What happens with the declarations and rules . . 232

Chapter 11 Character Set Mapping 235

Glossary .243

Index .251

Structured Application Developer Reference 5

Before You Begin

This developer reference and its associated developer guide are for anybody who develops

structured FrameMaker® templates and XML or SGML applications. They are not written for end

users who author structured documents that use such templates and applications.

XML and SGML

FrameMaker can read and write XML (Extensible Markup Language) and SGML (Standard

Generalized Markup Language) documents. XML and SGML are both document markup

languages, and FrameMaker handles these markup languages in similar ways. However, there are

differences between the two, and this manual covers these differences whenever necessary.

When discussing the similarities between them, this manual refers to XML and SGML data as

markup data or markup documents. Otherwise, the manual refers to XML and SGML specifically to

draw attention to the differences between these markup languages. The majority of new

structured documentation projects are XML based, therefore XML now takes precedence over

SGML where necessary.

Developing structured FrameMaker templates

End users of FrameMaker can read, edit, format, and write structured documents—the structure

is represented by a hierarchical tree of elements. Each structured document is based on a

template that contains a catalog of element definitions. Each element definition can describe the

valid contexts for an element instance, and the formatting of element instances in various

contexts.

To support these end users, you create the catalog and accompanying structured template.

Developing XML and SGML applications

When FrameMaker reads markup data, it displays that data as a formatted, structured document.

When the software saves a structured FrameMaker document, the software can write the

document as XML or SGML.

For the end user, this process of translation between FrameMaker documents and markup data is

transparent and automatic. However, for most XML or SGML document types the translation

requires an XML or SGML application to manage the translation. You develop this application to

correspond with specific document types. When your end user opens a markup document with a

matching document type, FrameMaker invokes the appropriate structure application. If there is no

Before You Begin 6

match for a document type, the user can choose the application to use, or open the markup

document with no structure application.

A structure application primarily consists of:

• A structured template

• DTD or schema

• Read/Write rules (described in this manual)

• XSLT style sheets for pre and post process transformations (if necessary)

• An XML and SGML API client (if necessary) developed with the Frame® Developer’s Kit (FDK).

Prerequisites

The following topics, which are outside the scope of this manual, are important for you to

understand before you try to create a structured template or structure application:

• Structured document authoring in FrameMaker

• XML or SGML concepts and syntax, including how to work with a document type definition

• FrameMaker end-user concepts and command syntax

• FrameMaker template design.

In creating some XML or SGML applications, you may also need to understand the following:

• XSLT 1.0

• C programming

• FDK API usage.

If your application requires only the special rules described in this manual to modify the default

behavior of FrameMaker, you do not need programming skills. However, if you need to create an

XML and SGML API client to modify this behavior further, you need to program the client in C,

using the FDK. This manual does not discuss the creation of XML and SGML API clients. For this

information, see the Structure Import/Export API Programmer’s Guide.

Using FrameMaker documentation

FrameMaker comes with a complete set of end-user and developer documentation with which

you should be familiar. You can access the FrameMaker guides from the FrameMaker help and

support page, http://www.adobe.com/support/framemaker/.

If you use the Frame Developer’s Kit in creating your structure application, you’ll also need to be

familiar with the FDK documentation set.

Structured Application Developer Reference 7

Using this manual

This manual provides detailed reference information for application rules and properties. It can be

used in conjunction with the Structure Application Developer Guide. It does not currently include

EDD reference information. All EDD descriptive and reference information will be found in the

Developer Guide.

Typographical conventions

Using other FrameMaker documentation

The Using FrameMaker makes up the primary end-user documentation for this product. It explains

how to use the FrameMaker authoring environment for both structured and unstructured

documents. It also explains how to create templates for your documents.

In creating a structured template, you can refer to this manual for information on how your end

user interacts with the product and how to create a formatted template.

New features and changes in release 12(including those for structure applications and structured

documents) are listed and briefly described in the FrameMaker Getting Started Guide.

You will also find a range of other online documents from the FrameMaker help and support page,

http://www.adobe.com/support/framemaker/.

Monospaced font Literal values and code, such as XML, SGML, read/write
rules, filenames, and pathnames.

Italics Variables or placeholders in code. For example, in
name="myName", the text myName represents a value you
are expected to supply. Also indicates the first occurrence
of a new term.

Blue text A hyperlink you can click to go to a related section in this
book or to a URL in your web browser.

Sans-serif bold The names of FrameMaker User Interface objects (menus,
menu items, and buttons). The > symbol is used as
shorthand notation for navigating to menu items and sub
menus. For example, Element > Validate... refers to the
Validate... item in the Element menu.

Before You Begin 8

Using FDK manuals

If you create an XML and SGML API client for your XML or SGML application, you’ll need to be

familiar with the FDK. FDK documentation is written for developers with C programming

experience.

• FDK Programmer’s Guide is your manual for understanding FDK basics. This manual describes

how to use the FDK to enhance the functionality of FrameMaker and describes how to use the

FDK to work with structured documents. To make advanced modifications to the software’s

default translation behavior, refer to the Structure Import/Export API Programmer’s Guide.)

• FDK Programmer’s Reference is a reference for the functions and objects described in the FDK

Programmer’s Guide.

• Structure Import/Export API Programmer’s Guide explains how to use the FDK to make advanced

modifications to the software’s default behavior for translation between markup documents

and FrameMaker documents. This manual contains both descriptive and reference information.

For information on other FDK manuals, see “Using Frame Developer Tools” in the FDK

Programmer’s Guide.

Structured Application Developer Reference 9

1 Structure Application Definition
Reference 1

This chapter provides a comprehensive reference for all application properties that can be defined

in a structure application definition file.

Contents of an application definition file

The highest-level element in an structapps.fm file is StructuredSetup. That element’s

first child must be Version, to indicate the FrameMaker version. The Version element is

followed by zero or more SGMLApplication or XMLApplication elements, each of which

defines the pieces of a structure application. Finally, there can be an optional Defaults element,

which specifies information used unless overridden for a particular application.

The following table lists the main elements allowed in structapps.fm as children of the

StructuredSetup element. The table identifies the sections that discuss each of those

elements and the elements they may contain.

Define an application

FrameMaker collects all information pertaining to the set-up of a structured application into an

SGMLApplication or XMLApplication element. These elements have one required child

element and several optional child elements.

The first child of a parent SGMLApplication or XMLApplication element must be

ApplicationName and gives the name of the application. It looks like:

Application name: name

where name is a string used to identify your application in the Set Structure Application and Use

Structure Application dialog boxes. You cannot use the same name for multiple structure

applications.

Element Discussed in

ApplicationName “Define an application,” next

SGMLApplication “Define an application” on page 9

XMLApplication “Define an application” on page 9

Defaults “Providing default information” on page 11

Structure Application Definition Reference 10

D e f i n e a n a p p l i c a t i o n

If present, the optional child elements can occur in any order and can include the following

elements, discussed in the named sections:

Some elements provide pathnames (for entities and read/write rules files; hence

RulesSearchPaths and EntitySearchPaths elements). If the pathname is absolute, the

software looks there. If it can’t find it via the specified path, the log reports an error and the

operation is aborted. If a relative pathname is given, the software looks for the file in several

places:

• The directory containing the file being processed. For example, if you’re opening a DTD, the

software first searches the directory in which it found the DTD.

• $STRUCTDIR (for information on what directory this is, see Developer Guide, page 131:

Location of structure files).

• The directory from which you started FrameMaker.

Element Discussed in

DOCTYPE “Specifying a DOCTYPE element” on page 13

DTD “Specifying a DTD” on page 14

CharacterEncoding “Specifying the character encoding for SGML files” on page 11

ConditionalText “Specifying conditional text output” on page 13

Entities “Specifying entities” on page 14

ExternalXRef “Specifying external cross reference behavior” on page 20

FileExtensionOverride “Specifying filename extensions” on page 21

Namespace “Enabling namespaces” on page 22

ReadWriteRules “Specifying a read/write rules document” on page 22

RulesSearchPaths “Specifying a search path for included files in rules documents”

on page 22

Schema “Specifying a Schema for XML” on page 23

SGMLDeclaration “Specifying an SGML declaration” on page 24

Stylesheets “Managing CSS import/export and XSL transformation” on

page 24

Template “Specifying a FrameMaker template” on page 26

UseAPIClient,

UseDefaultAPIClient,

“Specifying a structure API client” on page 27

XMLDisplayEncoding “Specifying the character encoding for XML files” on page 27

XMLExportEncoding “Exporting XML” on page 29

XMLCharacterEncoding “XML character encoding from an SGML application” on

page HIDDEN

XMLWriteRules “Write rules for saving XML from an SGML application” on

page HIDDEN

P r o v i d i n g d e f a u l t i n f o r m a t i o n

Structured Application Developer Reference 11

If an application definition includes any of these elements, the value in the application definition

overrides any value for that element in the Defaults element. The sections following the next

section describe these elements in detail.

Providing default information

Some of the information you provide for individual applications may be common to all your

applications. For such information you can specify defaults that are used whenever an application

does not provide its own version of the information. You use the Defaults element to provide

such information.

If present, the optional child elements of Defaults can occur in any order (with the exception

of the Graphics element, which must be the last child) and can include the following elements,

which are discussed in the named sections:

Specifying the character encoding for SGML files

The CharacterEncoding element tells the software which encoding to use for the SGML text.

Typically, this is only important on non-Western systems, or in SGML applications that encounter

SGML files using double-byte text. It can contain one of the following child elements:

Element Discussed in

CharacterEncoding “Specifying the character encoding for XML files” on page 27

DTD “Specifying a DTD” on page 14

Entities “Specifying entities” on page 14

FrameDefaultAPIClient,

UseAPIClient
“Specifying a structure API client” on page 27

MaxErrorMessages “Limiting the length of a log file” on page 30

Namespace “Enabling namespaces” on page 22

ReadWriteRules “Specifying a read/write rules document” on page 22

RulesSearchPaths “Specifying a search path for included files in rules documents”

on page 22

SGMLDeclaration “Specifying an SGML declaration” on page 24

Stylesheets “Managing CSS import/export and XSL transformation” on

page 24

Template “Specifying a FrameMaker template” on page 26

XMLCharacterEncoding “XML character encoding from an SGML application” on

page HIDDEN

XMLWriteRules “Write rules for saving XML from an SGML application” on

page HIDDEN

Graphics “Mapping graphic notations to file types” on page 30

Structure Application Definition Reference 12

S p e c i f y i n g t h e c h a r a c t e r e n c o d i n g f o r S G M L f i l e s

ISOLatin1, ASCII, ANSI, MacASCII, ShiftJIS, KSC8EUC, GB8EUC, CNSEUC, Big5,

JIS8EUC. The CharacterEncoding element looks like this:

SGML character encoding: Iso Latin1

On a non-Western system, the text for an SGML file can contain double-byte text. This text can be

in any one of a number of different text encodings.

FrameMaker can interpret SGML files that contain double-byte text in #PCDATA, RCDATA, and

CDATA. The software expects all other text to be within the 7-bit ASCII range (which is supported

by all Asian fonts). This means that document content can be in double-byte encodings, but the

markup must be in the ASCII range. Typically, for example, the only text in a DTD that will contain

double-byte characters would be text used to specify attribute values.

To import and export SGML that contains double-byte text, you should specify the character

encoding to use, either as a default for all applications, or for a specific SGML application. For a

given SGML application there can only be one encoding. If you don’t specify an encoding for your

application, FrameMaker determines the encoding to use by considering the current default user

interface language and the current operating system; for the current language, it uses the

operating system’s default encoding. The default encodings for Windows® are:

You can have an Asian language for the user interface, but the content of the document files in

Roman fonts. In this case, any exported Roman text that falls outside of the ASCII range will be

garbled. For this reason, we recommend that you specify an encoding for any application that

might be used on a non-Western system.

The template for your application must use fonts that support the language implied by the

encoding you specify. Otherwise, the text will appear garbled when imported into the template.

You can fix this problem after the fact by specifying different fonts to use in the resulting files.

Important: For SGML documents, you should not use accented characters in element tag

names nor attribute names. If you use such characters, FrameMaker may not be able to

correctly import or export the document.

Languages Windows

Roman languages ANSI

Japanese Shift-JIS

Simplified Chinese GB8 EUC

Traditional Chinese Big5

Korean KSC8 EUC

S p e c i f y i n g c o n d i t i o n a l t e x t o u t p u t

Structured Application Developer Reference 13

Specifying conditional text output

Add a ConditionalText child to the XMLApplication element to control conditional text

output. Place a single child, OutputTextPI in this element. Then add one of the four children

listed in the following table to the OutputTextPI element:

*PIs are displayed only if the document settings are different from the template settings.

The ConditionalText element can only be a child of an XMLApplication element.

Specifying a DOCTYPE element

The DOCTYPE element specifies the generic identifier of the DOCTYPE declaration and root

element in markup documents used with this application. If you open a markup document with

the matching document element specified in the DOCTYPE declaration, FrameMaker uses this

application when translating the document. The element looks like:

DOCTYPE: doctype

where doctype identifies a document element.

For example,

DOCTYPE: chapter

matches a markup document with the following declaration:

<!DOCTYPE chapter ...>

If more than one application defined in the structapps.fm file specifies the same document

element, and the end user opens a file with that document element, the software gives the user

a choice of which of these applications to use. If the user opens a markup document for which no

application specifies its document element, the software gives the user the choice of all defined

applications.

Child of OutputTextPi FrameMaker outputs

hidden conditional text

Processing instructions

delimit conditional text

OutputAllTextWithPIs yes yes

OutputAllTextWithoutPIs yes no

OutputVisibleTextWithPIs no yes

OutputVisibleTextWithoutPIs no no

OutputAllTextWithPIsFiltered yes yes*

OutputVisibleTextWithPIsFiltered no yes*

Structure Application Definition Reference 14

S p e c i f y i n g a D T D

You can use more than one DOCTYPE element for an application, if that application is applicable

to multiple document elements. For example, if the Book application applies when the document

element is either chapter or appendix, you can use this definition:

Application name: Book

 DOCTYPE: chapter

 appendix

 . . .

The DOCTYPE element can be a child of an SGMLApplication or XMLApplication element.

Specifying a DTD

The DTD element specifies a file containing the external DTD subset that FrameMaker uses when

importing and exporting a markup document. It looks like:

DTD: dtd

where dtd is the pathname of a file containing a document type declaration subset.

Note that the file you specify with the DTD element must be an external DTD subset. It cannot be

a complete DTD. That is, the file cannot have the form:

<!DOCTYPE book [
 <!element book . . .>
 . . .
]>

Instead, it should simply have the form:

<!element book . . .>
. . .

For more information on external DTD subsets, see Developer Guide, page 89: XML and SGML

DTDs.

You can have only one DTD element for each SGMLApplication or XMLApplication. It can

also be a child of the Defaults element.

Specifying entities

To specify the location of various entities, you use the Entities element. It looks like this:

Entity locations

The possible child elements of a parent Entities element are:

Element Discussed in

EntityCatalogFile “Specifying entities through an entity catalog” on page 15

S p e c i f y i n g e n t i t i e s

Structured Application Developer Reference 15

If you use the EntityCatalogFile element, you cannot use any of the elements Entity,

FilenamePattern, or Public.

You can have only one Entities element for each application, although that Entities

element can have more than one of some of its child elements. The Entities element can also

be a child of the Defaults element.

Specifying entities through an entity catalog

The EntityCatalogFile element specifies a file containing mappings of an entity’s public

identifier or entity name to a filename. It looks like:

Entity locations

 Entity catalog file: fname

where fname is the filename of the entity catalog. Entity catalogs and their specified format are

described below.

You can specify multiple EntityCatalogFile elements in a single Entities element. If you

use this element, you cannot use any of the Entity, FilenamePattern, or Public elements.

You can use the EntityCatalogFile element both in the Entities element of the

Defaults element and in an SGMLApplication or XMLApplication element to specify

information for a particular application. When searching for an external entity, FrameMaker

searches the application’s entity catalogs before searching the default entity catalogs.

If you have an EntityCatalogFile element in an application definition, the software ignores

Entity, FilenamePattern, and Public elements in the Defaults element.

Why use entity catalogs

Technical Resolution 9401:1994 published by SGML Open discusses entity management issues

affecting how SGML documents work with each other:

• Interpreting external identifiers in entity declarations so that an SGML document can be

processed by different tools on a single computer system

• Moving SGML documents to different computers in a way that preserves the association of

external identifiers in entity declarations with the correct files or other storage objects.

The technical resolution uses entity catalogs and an interchange packaging scheme to address

these issues. FrameMaker supports such entity catalogs with the EntityCatalogFile

element.

Entity “Specifying the location of individual entities” on page 16

FileNamePattern “Specifying names for external entity files” on page 17

Public “Specifying public identifiers” on page 18

EntitySearchPaths “Specifying a search path for external entity files” on page 19

Element Discussed in

Structure Application Definition Reference 16

S p e c i f y i n g e n t i t i e s

Entity catalog format

Each entry in the entity catalog file associates a filename with information about an external entity

that appears in a markup document. For example, the following are catalog entries that associate

a public identifier with a filename:

PUBLIC "ISO 8879-1986//ENTITIES Added Latin 1//EN" "isolat1.ent"
PUBLIC "-//USA/AAP//DTD BK-1//EN" "aapbook.dtd"

In addition to entries mapping public identifiers to filenames, an entry can associate an entity

name with a filename:

ENTITY "chips" "graphics\chips.tif"

A single catalog can contain both types of entry.

If the specified filename in a catalog entry is a relative pathname, the path is relative to the

location of the catalog entry file.

For a complete description of the syntax of a catalog entry, see Technical Resolution 9401:1994

Entity Management published by SGML Open.

How FrameMaker searches entity catalogs

A single application may use multiple catalog files. When trying to locate a particular external

entity, FrameMaker searches the files one at a time until it finds the entry it is looking for. In each

file, the software first searches for an entity using the external entity’s public identifier. If the

software finds the identifier, it uses the associated filename to locate the entity. If it does not find

the public identifier, the software searches the file looking for the entity name. If it does not find

the entity name either, the software continues searching in the next catalog file.

In some circumstances, a system identifier specified in an external entity declaration may not be

valid. If so, FrameMaker uses public identifier and entity name mappings.

Specifying the location of individual entities

Instead of using an entity catalog to associate entities with files, you can use the Entity element

as a child of a parent Entities element. This element allows you to directly associate a filename

with an individual entity. It looks like:

Entity locations

 Entity name: ename
 Filename: fname

where ename is the name of an entity and fname is a filename.

You can specify multiple child Entity elements for a single Entities element. You use the

FilenamePattern and EntitySearchPaths elements to help the software find these files.

The Entity element can be a child of a parent Entities element in the Defaults element

to set default entity information, and of a parent SGMLApplication or XMLApplication

S p e c i f y i n g e n t i t i e s

Structured Application Developer Reference 17

element to specify information for a particular application. When searching for an external entity,

the software searches the application’s entity locations before searching the default entity

locations.

Specifying names for external entity files

One or more FilenamePattern elements can appear as a child of a parent Entities element

to tell the software how to locate an external entity.

A FilenamePattern element does not apply to an entity for which there is an Entity

element. Otherwise, it applies to all external entities except those with an external identifier that

includes a public identifier but no system identifier. The FilenamePattern looks like:

Entity locations:

 Filename pattern: pattern

where pattern is a string representing a device-dependent filename. The three variables that

can appear within pattern are interpreted as follows:

Case is not significant in variable names, although it may be significant in the values of the

variables. If a variable is undefined in a particular context, that variable evaluates to the empty

string.

A parent Entities element can contain multiple child FilenamePattern elements. The

software assumes the last pattern in the Entities element is:

Filename pattern: $(System)

Thus, if no FilenamePattern elements appear or even if no Entities element appears, the

software assumes system identifiers are complete pathnames and will check search paths to

locate the file.

How FrameMaker searches filename patterns

When locating an external entity, FrameMaker tests the value of the pattern arguments in

successive FilenamePattern elements that have the same parent Entities element, in the

order they occur, until it finds the name of an existing file. As it tests each pattern, it substitutes

relevant information from the entity’s declaration for variables in pattern.

You can use the FilenamePattern element both in the Entities element of the Defaults

element and in an SGMLApplication element to specify information for a particular

application. When searching for an external entity, FrameMaker tests all the filename patterns

specified for the application before it tests those in default FilenamePattern elements.

Variable Interpretation

$(System) The system identifier from the entity declaration

$(Notation) The notation name from the entity declaration of an external data entity

$(Entity) The entity name

Structure Application Definition Reference 18

S p e c i f y i n g e n t i t i e s

Example

Suppose the Entities element looks like:

Entity locations:

 Filename pattern: $(System).sgm

 Filename pattern: $(System).$(Notation)

and the markup document contains:

<!ENTITY intro SYSTEM "introduction.xml">
<!ENTITY chips SYSTEM "chipsfile" NDATA cgm>
. . .
&intro;
. . .
<graphic entity=chips>

When processing the reference to intro, the software searches for a file called

introduction.xml. It is an error if the file does not exist.

When processing the entity attribute of the graphic element, FrameMaker searches for a file

named chipsfile.cgm. If one is not found, it then looks for chipsfile.CGM, assuming that

the NAMECASE GENERAL parameter of the associated SGML declaration is NAMECASE
GENERAL YES.

Specifying public identifiers

The Public element of an Entities element tells the software how to process an external

identifier that has a public identifier but no system identifier. It looks like:

Entity locations:

 Public ID: pid
 Filename: fname

where pid is a public identifier and fname is the name of a file to be associated with the entity

using the public identifier.

You can give multiple Public elements in the same parent Entities element. If you want to

give multiple filenames to search for a particular public identifier, you can specify the same public

identifier in multiple Public elements.

Note: The NAMECASE GENERAL parameter of the SGML declaration determines the

case-sensitivity of notation names. For XML, the implied setting for this parameter is NO,

which means that names are case-sensitive.

For SGML, the value of this parameter in the reference concrete syntax is NAMECASE
GENERAL YES. With this declaration, the SGML parser forces notation names to

uppercase.

S p e c i f y i n g e n t i t i e s

Structured Application Developer Reference 19

You can use the Public element both in the Entities element of the Defaults element and

in an Entities element of an SGMLApplication or XMLApplication element to specify

information for a particular application. If a Public element occurs as a child of an

SGMLApplication or XMLApplication element, that identifier is used in preference to one

occurring as a child of the Defaults element.

Specifying a search path for external entity files

The EntitySearchPaths child of a parent Entities element tells the software what

directories to search for the files indicated by Entity, FilenamePattern, and Public

elements. It looks like:

Entity locations:

 Entity search paths

 1: directory1
 . . .

 N: directoryn

where each directoryi is a device-dependent directory name. The three variables and their

abbreviations that can be used to specify a directory are as follows:

Each directoryi value can be an absolute pathname or relative to $SRCDIR.

How FrameMaker searches for entity files

To locate an external entity, FrameMaker searches the specified directories in the order listed. You

can use the EntitySearchPaths element both in the Entities element of the Defaults

element and in an XMLApplication or SGMLApplication element. When searching for an

external entity, FrameMaker searches the directories named in the EntitySearchPaths

element for the application before it searches those in a default EntitySearchPaths element.

An Entities element can contain only one EntitySearchPaths element. The software

assumes the EntitySearchPaths element ends this way:

Entity search paths

 . . .

 N: $SRCDIR

Variable Abbreviation Interpretation

$HOME ~ The user’s home directory

$SRCDIR . The directory containing the document entity being

processed

$STRUCTDIR The structure directory in use (for information on what

directory this is, see Developer Guide, page 131: Location

of structure files)

Structure Application Definition Reference 20

S p e c i f y i n g e x t e r n a l c r o s s r e f e r e n c e b e h a v i o r

Thus, if there is no EntitySearchPaths element, the software assumes all markup files are in

the same directory.

Example

Assume the Defaults element is defined as follows:

Defaults

 Entity locations:

 Filename pattern: $(System).sgm

 Filename pattern: $(System).$(Notation)

 Entity search paths

 1: $HOME

 2: $SRCDIR

and the markup document contains:

<!ENTITY intro SYSTEM "introduction.xml">
<!ENTITY chips SYSTEM "chipsfile" NDATA cgm>
. . .
&intro;
. . .
<graphic entity=chips>

When processing the reference to intro, the software looks for the files:

$HOME/introduction.xml
$SRCDIR/introduction.xml

until it finds one of those files. When processing the graphic element, the software searches in

order for:

$HOME/chipsfile.cgm
$SRCDIR/chipsfile.cgm

Specifying external cross reference behavior

To ensure correct resolution of external cross references in XML, use the ExternalXRef

element. ExternalXRef can only be a child of XMLApplication.

Change file extension to .XML

Insert an ExternalXRef child in the XMLApplication element for the application you are

developing. In this ExternalXRef element, insert a ChangeReferenceToXML child. Finally,

insert an Enable element into the ChangeReferenceToXML element. It will look like this:

External X-Ref:

Change Reference To .XML: Enable

S p e c i f y i n g f i l e n a m e e x t e n s i o n s

Structured Application Developer Reference 21

When a document with an external cross-reference is saved to XML, FrameMaker then changes

the extension in the xref’s srcfile attribute to .xml and exports the cross-reference as:

<xref srcfile="filepath/filename.xml#elemID">

Where:

• filepath is the absolute path to the saved source XML file

• filename is the name of the saved source XML file

• elemID is the ID of the referenced element.

You can save the source file to XML before or after saving the original file to XML. In either case,

the file name specified for the XML document must be identical to the filename of the original

FrameMaker document except for the extension.

If you insert a Disable element instead of an Enable element into

ChangeReferenceToXML, FrameMaker retains the default behavior and does not change the

extension in the srcfile attribute.

Try alternative extensions

TryAlternativeExtensions specifies an option for importing external cross-references

from XML. It looks like this:

External X-Ref:

Try Alternative Extensions: Enable

If its content is Enable, and FrameMaker cannot open the file specified by the srcfile

attribute, it changes the extension and tries to open the resulting file instead. In particular, if the

original extension is .xml, FrameMaker also tries .fm; if the original extension is .fm,

FrameMaker also tries .xml. If the content of TryAlternativeExtensions is Disable,

FrameMaker creates an unresolved cross-reference if the specified file cannot be opened.

Disable is the default.

Specifying filename extensions

The FileExtensionOverride element specifies a filename extension to use when saving a

FrameMaker document as markup. This is particularly useful when saving XHTML documents.

Some web browsers that support XHTML can only read files with a .htm or .html extension.

When you save a document as XML (even using the XHTML doctype) FrameMaker gives the file a

.xml extension by default. You can use this element to specify a .htm extension when saving a

document as XHTML. The FileExtensionOverride element looks like this:

File Extension Override: extension

where extension is the string for the filename extension, minus the dot character. You can have

only one FileExtensionOverride element for each XML or SGML structure application.

Structure Application Definition Reference 22

E n a b l i n g n a m e s p a c e s

Enabling namespaces

The Namespace element specifies whether the current XML structure application supports

namespaces in XML. This element can contain either an Enable or Disable child element. The

Namespace element looks like this with namespaces enabled:

Namespace: Enable

You can have only one Namespace element for each XML structure application. It can also be a

child of the Defaults element. It is not applicable for an SGML application.

Specifying a read/write rules document

The ReadWriteRules element specifies the read/write rules document associated with the

application. It looks like:

Read/write rules: rules

where rules is the pathname of a FrameMaker read/write rules document.

You can have only one ReadWriteRules element for each application. It can also be a child of

the Defaults element.

Specifying a search path for included files in rules

documents

The RulesSearchPaths element is analogous to the EntitySearchPaths element, but it

pertains to additional files you include in a read/write rules document rather than to external

entities referenced within a markup document. Its Path child elements indicate individual

directories. It looks like:

Search paths for included read/write rules files:

 1: directory1
 . . .

 N: directoryn

Note: XML Schema: You must enable namespaces to allow FrameMaker to validate XML

against a Schema definition upon import and export. Schema allows an XML document to

reference multiple Schema locations in different namespaces. When this is the case, only

the first namespace is used. See Developer Guide, page 199: Schema location for

additional information.

S p e c i f y i n g a S c h e m a f o r X M L

Structured Application Developer Reference 23

where each directoryi is a device-dependent directory name. The two variables and their

abbreviations that can be used to specify a directory are as follows:

Each directoryi value can be an absolute pathname or relative to $RULESDIR.

How FrameMaker searches for rules files

Only one RulesSearchPaths element can occur as the child of a single parent

XMLApplication or SGMLApplication element or parent Defaults element. When

searching for a file you include in an read/write rules document, FrameMaker searches the

directories named in the RulesSearchPaths element for the application before it searches

those in the RulesSearchPaths element of the Defaults element.

The software assumes RulesSearchPaths ends in this way:

Search paths for included read/write rules files:

 . . .

 N: $RULESDIR

Thus, if there is no RulesSearchPaths element, the software assumes all files you include in

the read/write rules document are in the same directory as your rules document.

Specifying a Schema for XML

The Schema element, a direct child of XMLApplication, specifies the path and filename for an

XML Schema file that contains element declarations for XML. It look like this:

Schema: schema_path

where schema_path is the pathname of a file containing a Schema declaration file.

In order for a structure application to be selectable in the Use Structured Application list while

importing a document that is associated with a Schema, the Schema’s root element must be

included in the application’s DOCTYPE in the XmlApplication element.

Variable Abbreviation Interpretation

$HOME ~ The user’s home directory

$STRUCTDIR The structure directory in use (for information on what

directory this is, see Developer Guide, page 131: Location of

structure files)

Structure Application Definition Reference 24

S p e c i f y i n g a n S G M L d e c l a r a t i o n

Specifying an SGML declaration

The SGMLDeclaration element specifies the location of a file containing a valid SGML

declaration. It is used only for SGML applications and cannot be a child of an XMLApplication

element. The SGMLDeclaration element looks like:

SGML declaration: declaration

where declaration is the pathname of the SGML declaration file.

You can have only one SGMLDeclaration element for each SGML application. It can also be a

child of the Defaults element.

Managing CSS import/export and XSL transformation

The Stylesheets element of an XML structure application tells the software how to treat the

use of CSS stylesheets for a given XML document, and how and whether to perform XSL

transformation upon import or export of XML documents.

An XML application can have only one Stylesheets element. It can also be a child of the

Defaults element.

How the Stylesheets element affects CSS generation

You can specify whether to use an existing stylesheet, or whether FrameMaker should generate a

new one and use that for the exported XML. You can specify any number of stylesheets, and the

exported XML will include references to each one. The Stylesheets element also contains

instructions concerning the use of attributes and stylesheet processing instructions. The

Stylesheets element for CSS looks like:

CSS2 Preferences:

Generate CSS2: enable/disable
Add Fm CSS Attribute To XML: enable/disable

Retain Stylesheet Information: enable/disable
XML Stylesheet:

Type: stylesheet_type
URI: path

When you save a document to XML, FrameMaker can either use an existing stylesheet, or generate

a new one from the current EDD. How FrameMaker generates a stylesheet is determined by the

values of the children of the Stylesheets element. For more information about how

FrameMaker converts EDD information into a stylesheet, see Developer Guide, page 283: Saving

EDD Formatting Information as a CSS Stylesheet

GenerateCSS2 Specifies whether FrameMaker will generate a CSS when you save the document

as XML. It can be set to enable or disable. When this is set to enable, FrameMaker generates a CSS.

If a path is provided in StylesheetURI, FrameMaker saves the stylesheet to that location, with

M a n a g i n g C S S i m p o r t / e x p o r t a n d X S L t r a n s f o r m a t i o n

Structured Application Developer Reference 25

that filename. Otherwise, it saves the stylesheet to the same location as the XML document with

a filename xmldoc.css, where xmldoc is the name of the XML document you’re saving.

AddFmCSSAttrToXml Specifies whether FrameMaker will write instances of the fmcssattr

attribute to elements in the XML document. It can be set to enable or disable. An EDD can

include context selectors as criteria to assign format rules. CSS has no equivalent to this. When this

is set to enable, FrameMaker uses the fmcssattr attribute in certain elements so the CSS can

achieve the same formatting as the EDD.

RetainStylesheetPIs Specifies whether FrameMaker will retain the stylesheet declaration for

import and export of XML. It can be set to enable or disable. When this is set to enable,

FrameMaker does the following:

• On import, it stores the XML document’s stylesheet PI as a marker in the FrameMaker

document.

• On export, it writes the content of stylesheet PI marker in the resulting XML document.

StylesheetType Specifies the type of stylesheet. It contains a string for the stylesheet type.

Currently, you can specify CSS (upper or lower case) or XLS (upper or lower case). If you specify

XLS, FrameMaker will not generate a stylesheet.

StylesheetURI Specifies the URI for the stylesheet. It contains a string; for example,

/$STRUCTDIR/xml/xhtml/app/xhtml.css.

How the Stylesheets element affects CSS import

You can specify whether a CSS stylesheet that is referenced in an XML file is used to update the

formatting of the FrameMaker document. The ProcessStylesheetPI is an optional child of

the CssPreferences element and looks like this:

CSS2 Preferences:

ProcessStylesheetPI: enable/disable

ProcessStylesheetPI can have one of the following values: Enable or Disable. If the

value of the ProcessStylesheetPI element is Enable, then the CSS file referenced in the

XML file is used while opening the XML file. The default value of the ProcessStylesheetPI

element is Disable.

For more information about how the CSS file mentioned in the XML file is used when an XML file

is opened, see Chapter 5, “CSS to EDD Mapping.”

How the Stylesheets element affects XSL transformation

If an XML structure application specifies an XSL stylesheet, FrameMaker can apply transformations

defined in that stylesheet when importing an XML document, or when exporting a FrameMaker

document to XML. The XSLTPreferences element in the Stylesheets element allows you

to specify the XSL file to use for transformation upon import (PreProcessing) and/or export

Structure Application Definition Reference 26

S p e c i f y i n g a F r a m e M a k e r t e m p l a t e

(PostProcessing). StylesheetParameters elements allow you to set parameters of an

XSL stylesheet at run time, before the transformation takes place.

XSLT Preferences:

 Process Stylesheet PI: enable/disable

 Preprocessing:

Stylesheet: path
Stylesheet Parameters

Name: parameter name
Expression: exp

 Postprocessing:

Stylesheet: path
Stylesheet Parameters

Name: parameter name
Expression: exp

ProcessStylesheetPI Specifies whether FrameMaker will use the XSL file mentioned in the

xml-stylesheet PI of an XML file to transform that file. It can be set to enable or disable.

By default it is set to disable, and FrameMaker does not use the PI. Set to enable to use the PI.

PreProcessing Contains a Stylesheet element that specifies the XSL file to be used for

transformation upon import of an XML document. Transformation occurs before read rules are

applied. The XSLTPreferences element can contain 0 or 1 PreProcessing elements.

PreProcessing Contains a Stylesheet element that specifies the XSL file to be used for

transformation upon export of an XML document. Transformation occurs after write rules are

applied. The XSLTPreferences element can contain 0 or 1 PostProcessing elements.

Stylesheet Specifies the URI for the XSL file. It contains a string; for example,

/$STRUCTDIR/xml/xhtml/app/mystyles.xsl.

StylesheetParameters Contains ParameterName and ParameterExpression pairs. Each

pair specifies the name of a parameter used the XSL stylesheet, and an expression that constrains

the value of that parameter for the subsequent transformation.

For more information on XSL transformation of XML, see Developer Guide, Chapter 29, Additional

XSL Transformation for XML.

Specifying a FrameMaker template

The Template element specifies the location of the FrameMaker template. It looks like:

Template: template

where template is the pathname of a FrameMaker template.

The software uses this template to create new FrameMaker documents from markup documents,

which may be single documents resulting from the Open or Import command or documents in

a book created through the Open command.

S p e c i f y i n g a s t r u c t u r e A P I c l i e n t

Structured Application Developer Reference 27

If this element is not present, the software creates new portrait documents as needed. When you

import a markup document into an existing document, the software uses the import template

only to access reference elements that are stored on the template’s reference page. (For

information about reference elements, see Developer Reference, page 332: Translating SDATA

entities as FrameMaker reference elements.)

You can have only one Template element for each application. It can also be a child of the

Defaults element.

Specifying a structure API client

In an application definition, the UseDefaultAPIClient element tells the software that your

application does not use a special client for markup translation. In the defaults section, the

FrameDefaultAPIClient element serves the same purpose. The default client is named

FmTranslator.

If you do need a structure API client, use the UseAPIClient element in either context. For

information on creating structure API clients for a structure application, see the online manual

Structure Import/Export API Programmer’s Guide.

Specifying the character encoding for XML files

The XML specification supports UNICODE characters for document content and markup tokens. In

XML the given encoding is specified in the document prolog. The following example shows a

specification for ShiftJIS character encoding:

<?xml version="1.0" encoding="Shift_JIS" ?>

The XML specification states that an XML document must either specify an encoding in the prolog,

or it must be UTF-8 or UTF-16. FrameMaker follows this specification by assuming UTF-8 by default

if there is no encoding specified in the XML file.

If you read an XML file with character encoding that does not match either the declared encoding

or the default encoding (if no encoding is declared), it is likely that the import process will

encounter a character that does not match the encoding FrameMaker uses. In that case, you will

get a parsing error that says the document is not well-formed due to a bad token.

FrameMaker uses the encoding statement in the document prolog to determine which encoding

to use. The statement must specify one of the encodings supported by your specific FrameMaker

installation. FrameMaker ships with support for the following encodings:

Big5 KSC_5601

EUC-JP Shift_JIS

EUC-KR US-ASCII

EUC-TW UTF-16

GB2312 UTF-8

Structure Application Definition Reference 28

S p e c i f y i n g t h e c h a r a c t e r e n c o d i n g f o r X M L f i l e s

You can add other encodings to your FrameMaker installation—see Developer Guide, page 103:

Unicode and character encodings.

FrameMaker converts the encoding of the XML document to an internal display encoding. In this

way FrameMaker fully supports Unicode characters for text that is in #PCDATA, RCDATA, and

CDATA. For any #PCDATA character that it cannot interpret, FrameMaker uses a marker of type

UNKNOWNCHAR to represent the character. For unknown CDATA characters, FrameMaker uses XML

character references.

The following sections describe how to control the display encoding that FrameMaker uses, and

how to specify an encoding when you save a document as XML.

Display encoding

On import, FrameMaker converts the XML encoding to a display encoding that is appropriate for

a given language. However, FrameMaker cannot automatically determine which conversion to

make. Although the XML document prolog specifies an encoding, the document may contain

elements or other constructs that override the language implied by that encoding. As a result, you

should specify a display encoding for the structure application. The display encodings you can

specify are:

By default, FrameMaker uses the display encoding that matches the locale of your operating

system. To specify a different display encoding, use the XmlDisplayEncoding element.

XmlDisplayEncoding can contain one child element to specify one of the supported display

encodings.

The display encoding also determines how FrameMaker interprets the characters in markup

tokens such as GIs and attribute names. If FrameMaker encounters such a token with an unknown

character, FrameMaker drops the token. For more information, see Developer Guide, page 101:

Supported characters in element and attribute names.

For example, if your operating system locale is French, German, or English FrameMaker uses

FrameRoman by default. This is true, even if the XML prolog specifies an encoding for a different

language, such as ShiftJIS. To import XML encoded as ShiftJIS, you would use the

XmlDisplayEncoding element to specify JISX0208.ShiftJIS, as follows:

XML Display Encoding: JISX0208.ShiftJIS

ISO-8859-1 windows-1252

Display encoding: For this language:

FrameRoman Western European languages

JISX0208.ShiftJIS Japanese

BIG5 Traditional Chinese

GB2312-80.EUC Simplified Chinese

KSC5601-1992 Korean

E x p o r t i n g X M L

Structured Application Developer Reference 29

When you specify such an encoding, FrameMaker uses that encoding as the default for all the

#PCDATA, RCDATA, and CDATA in the imported XML. Markup tokens that include characters in the

upper range of the display encoding are interpreted correctly. If you have fonts installed for the

display encoding, then the text will appear as intended.

For another example, assume you have a version of US English FrameMaker installed on a

Traditional Chinese operating system. By default, FrameMaker uses Big5 as the display encoding.

It also supports any Big5 characters that are used in GIs and attribute names. If you are importing

an XML document that is in English, you would need to specify FrameRoman as the display

encoding.

Note that the XML standard includes the xml:lang attribute. This attribute can specify a change

of language for an element and its content. If that language is one of those listed in the table of

display encodings, a change made by this attribute take precedence over the setting made via

XmlDisplayEncoding.

Finally, the template for your application must use fonts that support the given language.

Otherwise, the text will appear garbled when imported into the template. You can fix this problem

by specifying different fonts to use in the resulting files.

Encoding of CSS files

FrameMaker supports the following encodings for CSS files: utf-8, utf-16, utf-16LE, and utf-16BE.

FrameMaker detects the encoding of a CSS file using the Byte Order Mark (BOM), and not the

“@charset” statement.

Exporting XML

Your XML structure application can include an XmlExportEncoding element to specify the

encoding to use when you save a document as XML. FrameMaker determines which encoding to

use according to the following rules:

The XmlExportEncoding element contains a string for the name of an encoding. The name

you provide must conform with the IANA naming conventions. The standard installation of

FrameMaker supports the encodings that are listed at the beginning of this discussion (see

page 27).

If: FrameMaker uses:

1

.

The structure application specifies a value for

XmlExportEncoding, and that encoding is

supported

The specified encoding

2

.

1 is not true, and the original XML source specified an

encoding, and that encoding is supported

The encoding that was specified in

the original XML source

3

.

1 and 2 are not true UTF-8

Structure Application Definition Reference 30

L i m i t i n g t h e l e n g t h o f a l o g f i l e

For example, to export your document as ISOLatin1, use the XmlExportEncoding element as

follows:

XML Export Encoding: ISO-8859-1

Limiting the length of a log file

The MaxErrorMessages child element of the Defaults element allows you to limit the

length of structure error reports. It looks like:

Maximum number of error messages: n

where n is the desired limit. If n is less than 10, the software resets it to 10. This must be the last

child of the parent Defaults element.

By default, FrameMaker does not write more than 150 messages (error messages and warnings)

to a single log file.

Messages pertaining to opening and closing book components are not included in this limit.

Messages generated through your own structure API client are also not counted, although if you

wish, you can count them using your own code.

In documents that generate large numbers of messages, the 151st message is replaced with a

note that additional messages have been suppressed.

Note that processing continues, even though further messages are not reported. This message

limit is reset for every file processed and for each component of a book.

Mapping graphic notations to file types

The Graphics child element of the Defaults element allows you to provide mappings from

graphic notation to file type by using the file name extension. In the example below the JPEG

notation is mapped to the .jpg extension.

Graphics

Notation: JPEG Filetypehint:jpg

The Graphics element may contain one or more Mapping elements.

Structured Application Developer Reference 31

2 Read/Write Rules Summary 2

This chapter lists the available read/write rules by category and briefly describes the purpose of

each rule. The categories, which are arranged alphabetically, are as follows:

• “All Elements” on page 31

• “Attributes” on page 32

• “Books” on page 33

• “Cross-references” on page 33

• “Entities” on page 34

• “Equations” on page 34

• “Footnotes” on page 35

• “Graphics” on page 35

• “Markers” on page 36

• “Processing instructions” on page 37

• “Markup documents” on page 37

• “Tables” on page 38

• “Text” on page 39

• “Text insets” on page 39

• “Variables” on page 39.

All Elements

To Use this rule Page

Translate a markup element element 54

Discard or unwrap a FrameMaker element on

export

fm element 75

Translate a markup element to a FrameMaker

element

is fm element 108

Translate a markup attribute within the

context of a single markup element

attribute 44

Read/Write Rules Summary 32

A t t r i b u t e s

Attributes

Inform FrameMaker not to update a

FrameMaker element’s definition when

updating an existing EDD

preserve fm element
definition

144

Discard a FrameMaker or markup

element

drop 51

Discard the content but not the structure of a

FrameMaker or markup element

drop content 53

Discard the structure but not the content of a

markup or FrameMaker element

unwrap 158

To Use this rule Page

Translate a markup attribute attribute 44

Discard a FrameMaker attribute fm attribute 74

Translate a markup attribute to a FrameMaker

attribute

is fm attribute 101

Translate a markup attribute within the

context of a single markup element

element 54

Discard a markup or FrameMaker attribute drop 51

Translate a markup attribute to a particular

FrameMaker property

is fm property 114

Translate a value for a markup attribute to a

FrameMaker property value

is fm property value 122

Translate a value of a markup notation

attribute or name token group to a value for

a FrameMaker choice attribute

is fm value 135

Translate a markup attribute value to a

FrameMaker property or a choice attribute

value

value 161

Specify the value to use for a markup implied

attribute when a document instance provides

no value

implied value is 94

To Use this rule Page

B o o k s

Structured Application Developer Reference 33

Books

Cross-references

To Use this rule Page

Specify whether to use elements or

processing instructions to indicate book

components when reading a markup

document

generate book 91

Specify elements to use to indicate book

components when reading a markup

document

put element
(described with generate book)

91

Specify the use of processing instructions to

indicate book components when reading a

markup document

use processing instructions

(described with generate book)

91

Specify whether or not to write processing

instructions that indicate book components

in a markup document

output book processing
instructions

143

To Use this rule Page

Translate markup elements to FrameMaker

cross-reference elements

is fm cross-reference
element

107

Translate FrameMaker cross-reference

properties when no markup attribute exists

fm property 78

Translate FrameMaker cross-reference

properties when no markup attribute exists

value is
(described with fm property)

78

Translate a markup attribute to a particular

FrameMaker property

is fm property 114

Translate a value for a markup attribute to a

FrameMaker property value

is fm property value 122

Translate a value of a markup notation

attribute or name token group to a value for

a FrameMaker choice attribute

is fm value 135

Translate a FrameMaker cross-reference

element to text in markup

fm element unwrap 75,

158

Read/Write Rules Summary 34

E n t i t i e s

Entities

Equations

To Use this rule Page

Translate a markup entity reference to an

appropriate FrameMaker representation

entity 59

Determine the form of names of entities

created for exported graphics

entity name is 61

Drop references to external data entities external data entity
reference

69

Translate an entity reference to a FrameMaker

variable

is fm variable 137

Translate an entity reference to a single

character

is fm char 105

Translate an entity reference to an element on

a reference page

is fm reference element 125

Translate an SDATA entity reference to a text

inset

is fm text inset 133

Determine the formatting of a text inset reformat as plain text 150

reformat using target
document catalogs

151

retain source document
formatting

152

Discard external data entity references drop 51

To Use this rule Page

Translate a markup element to a FrameMaker

equation element

is fm equation element 109

Specify export information for translating

FrameMaker equations

equation 63

Specify the filename used for exporting an

equation

export to file 67

Determine the form of names of entities

created for exported equations

entity name is 61

Specify the data content notation for an

exported equation

notation is 141

F o o t n o t e s

Structured Application Developer Reference 35

Footnotes

Graphics

Determine whether FrameMaker uses the

dpi attribute or the impsize attribute for

equations and also the resolution used

specify size in 153

Translate FrameMaker cross-reference

properties when no markup attribute exists

fm property 78

Translate FrameMaker cross-reference

properties when no markup attribute exists

value is

(described with fm property)

78

Translate FrameMaker equation properties to

markup attributes

is fm property 114

Translate a value for a markup attribute to a

FrameMaker property value

is fm property value 122

Translate a value of a markup notation

attribute or name token group to a value for

a FrameMaker choice attribute

is fm value 135

Translate a markup attribute value to a

FrameMaker property or a choice attribute

value

value 161

To Use this rule Page

Translate a markup element to a FrameMaker

footnote element

is fm footnote element 110

To Use this rule Page

Translate a markup element to a FrameMaker

graphic element

is fm graphic element 111

Specify export information for translating

FrameMaker graphics

anchored frame 41

Specify export information for translating

FrameMaker graphics that have a single inset

facet 72

Specify the filename used for exporting a

graphic or a facet of a graphic

export to file 67

Force the software to export graphic files that

were imported by reference

convert referenced graphics 49

To Use this rule Page

Read/Write Rules Summary 36

M a r k e r s

Markers

Determine the form of names of entities

created for exported graphics

entity name is 61

Specify the data content notation for an

exported graphic

notation is 141

Determine whether FrameMaker uses the

dpi attribute or the impsize attribute for

imported graphics objects and also the

resolution used

specify size in 153

Translate FrameMaker cross-reference

properties when no markup attribute exists

fm property 78

Translate FrameMaker cross-reference

properties when no markup attribute exists

value is

(described with fm property)

78

Translate FrameMaker graphic properties to

markup attributes

is fm property 114

Translate a value for a markup attribute to a

FrameMaker property value

is fm property value 122

Translate a value of a markup notation

attribute or name token group to a value for

a FrameMaker choice attribute

is fm value 135

Translate a markup attribute value to a

FrameMaker property or a choice attribute

value

value 161

To Use this rule Page

Discard FrameMaker non-element markers or

translate them to processing instructions

fm marker 76

Translate a markup element to a FrameMaker

marker element

is fm marker element 112

Determine whether marker text for marker

elements becomes content or an attribute

value in markup

marker text is 140

Drop references to external data entities external data entity
reference

69

Drop unrecognized processing instructions processing instruction 147

Translate FrameMaker non-element markers

to processing instructions

is processing instruction 138

Discard non-element markers drop 51

To Use this rule Page

P r o c e s s i n g i n s t r u c t i o n s

Structured Application Developer Reference 37

Processing instructions

Markup documents

Translate FrameMaker cross-reference

properties when no markup attribute exists

fm property 78

Translate FrameMaker cross-reference

properties when no markup attribute exists

value is

(described with fm property)

78

Translate FrameMaker marker properties to

markup attributes

is fm property 114

Translate a value for a markup attribute to a

FrameMaker property value

is fm property value 122

Translate a value of a markup notation

attribute or name token group to a value for

a FrameMaker choice attribute

is fm value 135

Translate a markup attribute value to a

FrameMaker property or a choice attribute

value

value 161

To Use this rule Page

Specify the treatment of unrecognized

processing instructions

processing instruction 147

Specify the use of processing instructions to

indicate book components when reading a

markup document

use processing instructions

(described with generate book)

91

Specify whether or not to write processing

instructions that indicate book components

in a markup document

output book processing
instructions

143

Translate FrameMaker non-element markers

to specific markup, or drop them

fm marker 76

Translate FrameMaker non-element markers

to processing instructions

is processing instruction 138

Discard processing instructions drop 51

To Use this rule Page

Specify whether or not to use an external DTD

subset to contain the DTD for a markup

document created by FrameMaker

include dtd 96

To Use this rule Page

Read/Write Rules Summary 38

T a b l e s

Tables

Specify whether or not to include an SGML

declaration in an SGML document created by

FrameMaker

include sgml declaration 97

Specify the system and public identifiers for

an external DTD subset

external dtd 70

Specify whether to create an entire markup

document or just a markup document

instance

write structured document 163

write structured document
instance only

163

To Use this rule Page

Translate a markup element to a FrameMaker

table element

is fm table element 130

Translate a markup element to a FrameMaker

element for a particular table part

is fm table part element 132

When creating a FrameMaker table, insert a

table part even if that part is empty

insert table part element 98

Specify that a particular element always

indicates a new table row

start new row 155

Indicate the start of a vertical straddle start vertical straddle 156

Indicate the end of a vertical straddle end vertical straddle 57

Specify the ruling style used for all tables table ruling style is 157

Specify the resolution used for column widths

with proportional widths

proportional width
resolution is

148

Specify that the software write the width of

table columns using proportional units

use proportional widths 160

Translate FrameMaker table properties to

markup attributes

is fm property 114

Translate a value for a markup attribute to a

FrameMaker property value

is fm property value 122

Translate a value of a markup notation

attribute or name token group to a value for

a FrameMaker choice attribute

is fm value 135

Translate a attribute’s name token value to a

FrameMaker property or choice value

value 161

To Use this rule Page

T e x t

Structured Application Developer Reference 39

Text

Text insets

Variables

To Use this rule Page

Translate an entity reference to a single

character

is fm char 105

Determine the treatment of line breaks in

reading and writing markup documents

line break 138

Define mappings between characters in the

markup and FrameMaker character sets

character map 47

To Use this rule Page

Translate an SDATA entity reference to a

FrameMaker text inset

entity

is fm text inset

59

133

Determine the formatting of a text inset reformat as plain text 150

reformat using target
document catalogs

151

retain source document
formatting

152

To Use this rule Page

Translate a markup element to a FrameMaker

system variable element

is fm system variable
element

129

Translate an entity reference to a FrameMaker

variable

is fm variable 137

Translate a markup entity reference to a

FrameMaker variable

entity 59

Determine treatment of FrameMaker non-

element variables

fm variable 89

Translate a FrameMaker system variable

element to text in markup

fm element unwrap 75,

158

Discard nonelement variables drop 51

Read/Write Rules Summary 40

T e x t

Structured Application Developer Reference 41

3 Read/Write Rules Reference 3

This chapter provides a reference to all read/write rules, listed in alphabetical order. The entry for

each rule starts with a brief explanation of the purpose of the rule and how to use it. The rule’s

description may include the following sections:

Synopsis and contexts The rule’s syntax and the context in which it can be used. If the rule

occurs as a subrule of another rule, the more general rule is shown. If the rule can be used in

multiple contexts, the synopsis shows each context. Each entry in this section shows a valid rule

that has the current rule either at the highest level or as one of its subrules.

Rule synopses use the following conventions:

• Bold portions and nonitalicized portions of a rule are entered by you as shown.

• Italicized portions of a rule indicate the rule’s arguments or possible subrules; you enter your

values.

• Brackets [] indicate optional parts of a rule; the entire form within the brackets can be included

or omitted.

Arguments The possible arguments to the rule. If an argument is optional, its default value is

provided. Some rules have subrule as one of their arguments. In these cases, a list of possible

subrules is provided. Some rule arguments allow variables. In these cases, a list of possible

variables is provided.

Details Instructions on how to use the rule and on FrameMaker behavior when the rule is not

supplied.

XSLT interaction Useful information about the relationship between FrameMaker’s Read/Write

rules and equivalent XSLT processing.

Examples Various examples of the rule.

See also Cross-references to other relevant information in the manual.

For information on how to create a Read/Write rules file and on the syntax of rules, see Developer

Guide, Chapter 18, Read/Write Rules and Their Syntax

anchored frame

Use the anchored frame rule and its subrules to define how FrameMaker handles the content

of anchored frames when writing to markup and creating a referenced graphic file. Subrules can

specify base entity name, file name construction, graphic file format, notation type and unit of

Read/Write Rules Reference 42

a n c h o r e d f r a m e

measure. The rule is used when an anchored frame contains FrameMaker graphics, more than one

imported graphic file, or a graphic file that has been copied into the document.

Synopsis and contexts

1. element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame subrule;
. . .}

2. element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame {

subrules;
}

. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag.

subrules An anchored frame rule can have one or more of the following

subrules:

entity name is, tells the software how to create the base name for

the entity associated with this element type.

export to file tells FrameMaker how to write the file name when it

creates a new graphic file, and optionally the graphic format for the file.

notation is specifies the data content notation of the entity file.

specify size in specifies the units to use when writing the file.

export dpi is tells FrameMaker the dpi setting to use for the

exported graphic file.

Details

The anchored frame rule must be a subrule of a writer rule for a graphic element.

On export, if the anchored frame contains only a single imported graphic file, FrameMaker uses

that graphic file for the resulting markup graphic element by default. If the anchored frame

contains more than one graphic file, or has been modified using FrameMaker graphics tools, the

software writes out a graphic file to be used. The default format for these graphic files is CGM. The

export format can be changed with the export to file rule. For more information about

Note: Use the facet rule for anchored frames that contain single graphic files that have

been imported by reference.

a n c h o r e d f r a m e

Structured Application Developer Reference 43

translating anchored frame contents, see Developer Guide, Chapter 23, Translating Graphics and

Equations

Examples

Assume you use the Graphic element for all graphic elements. If the graphic contains any single

facet, assume the graphic was imported as an entity and you want the default behavior. However,

if the author used FrameMaker graphic tools to create the objects in the graphic element, you

want the file written in QuickDraw PICT format.

To accomplish all this, use this rule:

element "graphic" {
 is fm graphic element;
 writer anchored frame export to file "$(docname).pic"

as "PICT";
}

Assume the FrameMaker document is named mydoc.fm. For the first graphic that is not a single

facet, the software writes out a graphic file named mydoc1.pic in the PICT format.

If the export DTD declares an entity attribute to identify the graphic file with the graphic

element, the software generates the following entity declaration:

<!ENTITY graphic1 SYSTEM "mydoc1.pic" NDATA PICT>

The corresponding graphic element in the markup could be:

<graphic entity = "graphic1"/>

If the export DTD includes only a file attribute to associate the graphic file with the graphic

element, the software uses this filename as its value:

<graphic file = "mydoc1.pic"/>

See also

Related rules “equation” on page 63

“facet” on page 72

Rules mentioned in

synopses

“element” on page 54

“is fm equation element” on page 109

“is fm graphic element” on page 111

“writer” on page 164

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 44

a t t r i b u t e

attribute

Use the attribute rule to describe how to process a markup attribute. By default, a markup

attribute translates to a FrameMaker attribute of the same name. Usually, this rule occurs as a

subrule of the element rule, to describe treatment of the attribute attr within the element gi.

Synopsis and contexts

1. [mdv] attribute "attr" {. . .
 subrule;
. . .}

2. element "gi" {. . .
 [mdv] attribute "attr" {. . .
 subrule;

. . .}
. . .}

Arguments

mdv An optional markup declared value, specifying the type of the markup

attribute. Legal values for an XML application are:

• cdata

• nmtoken

• nmtokens

• entity

• entities

• id

• idref

• idrefs

• notation

• group.

Legal values for an SGML application are:

• cdata

• name

• names

• nmtoken

• nmtokens

a t t r i b u t e

Structured Application Developer Reference 45

• number

• numbers

• nutoken

• nutokens

• entity

• entities

• notation

• id

• idref

• idrefs

• group.

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

subrule An attribute rule can have one of the following subrules:

drop discards the attribute. If this rule is used, no other attribute

subrules may be used.

or:

is fm attribute translates a markup attribute into a FrameMaker

attribute.

or:

is fm property translates a markup attribute to a FrameMaker

property such as the width of columns in a table. This subrule is applicable

only to cross-reference, marker, graphic, equation, table, and table part

elements.

An attribute rule can also have the following subrules:

implied value is specifies the value to use for an impliable attribute

for which no value is given in a document instance.

value translates one of the possible values of a markup name token,

group or a notation attribute to a specific token of a FrameMaker choice

attribute.

Details

• In some cases, the same attribute may occur in several markup elements and may require the

same treatment for most of those occurrences. In these situations, you can use the

Read/Write Rules Reference 46

a t t r i b u t e

attribute rule at the highest level to set the default treatment of the attribute. You can then

override the default in individual element rules.

• If the drop rule is used no other subrules of attribute may be used. The subrules is fm
attribute, and is fm property are mutually exclusive. That is, if you use one of these

rules, you cannot use the other rule.

Examples

• The following rule specifies that the sec attribute of the markup list element is in a name

token group and corresponds to the attribute Security on the corresponding FrameMaker

element:

element "list"
 group attribute "sec"
 is fm attribute "Security";

• Assume you have several elements that represent graphic objects. Each of them has an

attribute w, representing the width of the object. Use this rule to make the width be 3 inches

unless otherwise specified for a particular element:

attribute "w" {
 is fm property width;
 implied value is "3in";
}

• Assume you have an element team with an attribute color. The possible values for color

are r, b, and g. To change the names of these values in the corresponding FrameMaker choice

attribute, use this rule:

element "team" {
 attribute "color" {
 value "r" is fm value "Red";
 value "b" is fm value "Blue";
 value "g" is fm value "Green";
}}

See also

Related rules “fm attribute” on page 74

“is fm attribute” on page 101

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

c h a r a c t e r m a p

Structured Application Developer Reference 47

character map

Use the character map rule to define mappings between characters in the markup and

FrameMaker character sets. Many characters can be expressed using a string; others require using

the appropriate integer character code.

Synopsis and contexts

1. character map is cmap1 [, . . ., cmapn];
2. reader character map is cmap1 [, . . ., cmapn];
3. writer character map is cmap1 [, . . ., cmapn];
Arguments

cmapi A mapping between the character set used in the markup document and

the FrameMaker character set. Each cmapi has one of the following

forms:

sgmlch = fmch;
sgmlch = trap;
trap = fmch;

sgmlch is either a 1-character string or a character code representing a

character in the markup character set. sgmlch can be a single character

only if that character has the same character code in both the

FrameMaker and markup character sets. Otherwise, you must use the

integer character code.

fmch is either a 1-character string or a character code representing a

character in the FrameMaker character set.

For information on how to represent character codes and special

characters in strings, see Developer Guide, page 278: Strings and

constants.

Details

• Some characters might be defined in only one of the two character sets. The keyword trap is

provided for this situation. By default, FrameMaker discards trapped characters.

• The character map need not be a one-to-one mapping. If a character in the input document is

mapped to multiple characters in the output character set, FrameMaker uses the output

character from the last mapping to appear in the character map rule.

Note: XML: This read/write rule is primarily for SGML. XML can use UNICODE characters

which makes this rule unnecessary.By default FrameMaker assumes UTF-8 encoding for

XML import and export. If you want to use ISOLatin encoding with an XML document,

then you may need to use this rule to map characters.

Read/Write Rules Reference 48

c h a r a c t e r m a p

• If you use the character map rule at the highest level, do not also use it inside either a

reader rule or a writer rule. If you use this rule inside a reader rule or a writer rule and

also use it at the highest level, FrameMaker ignores the highest-level character map rule.

You can only have one occurrence of this rule at the highest level.

Similarly, the character map rule can appear in one reader rule and one writer rule at

most. The software ignores any subsequent uses of the character map rule.

• If you use the character map rule at the highest level, its behavior is bidirectional. For

example, you could have this rule:

character map is 0x20 = 0x12;

This rule specifies that the ISO Latin-1 space character (character code 0x20) maps to the

FrameMaker thin space character (character code 0x12). With this rule, FrameMaker translates

a thin space to a standard space when it writes a markup document. However, this rule

translates all spaces in a markup document to thin spaces in a corresponding FrameMaker

document. This is unlikely to be the desired behavior. For this reason, instead you should use

this rule:

reader character map is 0x20 = 0x12;

• By default, FrameMaker assumes that the character set your SGML documents use is ISO

Latin-1. It provides a default mapping between those character sets. For details, see Chapter 11,

“Character Set Mapping.” For information on other character sets you can use, see Chapter 10,

“ISO Public Entities.”

• By default, on export FrameMaker produces a character in the SGML document for most

printing characters in the corresponding FrameMaker document. FrameMaker documents

occasionally include unusual characters that serve no purpose outside FrameMaker. For

example, the codes 0x01 and 0x03 are nonprinting characters that represent information

about the insertion point movement. On export FrameMaker traps such characters, so that they

don’t appear in an exported SGML document.

Similarly, on import FrameMaker produces a character in the FrameMaker document for most

printing characters. It traps all control characters other than a tab or newline character.

• FrameMaker has an 8-bit character set. The SGML declaration can specify any character set that

the SGML parser can handle. Part of the character set description in the SGML declaration is

not human-readable and may not be interpretable automatically, therefore, any differences

between the native FrameMaker character set and the character set in the SGML document

must be specified with the character map rule.

• By default, FrameMaker discards trapped characters. You can provide a structure API client to

change the processing of trapped characters. For information on creating a structure API client,

see the Structure Import/Export API Programmer’s Guide.

Examples

• Both the FrameMaker and default SGML character sets have a character code for the character

ó (lowercase o with an acute accent). In FrameMaker, the character code is 0x97; in the default

c o n v e r t r e f e r e n c e d g r a p h i c s

Structured Application Developer Reference 49

SGML character set, the character code is 0xF3. If you want to trap the SGML character that

looks like ó, you might try using this rule:

character map is "ó" = trap;

Hhowever, because you enter your read/write rules in a FrameMaker document, FrameMaker

interprets that rule as:

character map is 0x97 = trap;

which is not the behavior you want. Instead, you should use this rule:

character map is 0xF3 = trap;

• By default, FrameMaker maps the SGML broken bar character to the FrameMaker solid bar

character |. The rule for doing so could be written in the following equivalent ways:

character map is 0xA6 = "|";
character map is 0xA6 = 0x7C;
character map is "\xA6" = "\x7C";

• To trap the SGML broken bar character, use this rule:

character map is 0xA6 = trap;

See also

• For information on the FrameMaker character set, see the FrameMaker Character Sets guide.

• For details of the default mapping between the FrameMaker and ISO Latin-1 character sets, see

Chapter 11, “Character Set Mapping.”

convert referenced graphics

Use the convert referenced graphics rule to force the software to write out a graphic

file when exporting a graphic element that uses a referenced graphic. By default, FrameMaker

does not write out graphic files in this case. It is usually more advantageous to simply reference

the same graphic file in both the markup and the FrameMaker document. However, you can use

this rule to convert all such graphic files to a specific format.

Synopsis and contexts

element "gi" { . . .
writer facet "facetname" convert referenced graphics;
. . . }

Arguments

There are no arguments for this rule

Details

• This rule must be a subrule of a facet rule for a graphic element.

Read/Write Rules Reference 50

d o n o t i n c l u d e d t d

• By default, if a graphic or equation element is imported by reference, the software does not

create a new graphic file for the element when exporting a FrameMaker document. You can

change that behavior using this rule.

Examples

• Assume you want to convert imported graphic files in graphic elements which have not

been edited in the FrameMaker document, to the PICT format. With the following example, the

software would create PICT files for each of these graphic elements:

element "graphic" {
 is fm graphic element;

writer {
facet default {

convert referenced graphics;
export to file "$(entity).pic" as "PICT";

}}

• For graphic elements with a single TIFF facet, the following example converts the graphic files

in the graphic element to PICT:

element "graphic" {
 is fm graphic element;
 writer facet "TIFF"{

convert referenced graphics;
export to file "$(entity).pic" as

"PICT";
}}

See also

do not include dtd

See “include dtd” on page 96.

Related rules “facet” on page 72

“export to file” on page 67

“writer” on page 164

General information

on this topic

Developer Guide, page 367: Translating Graphics and Equations

d o n o t i n c l u d e s g m l d e c l a r a t i o n

Structured Application Developer Reference 51

do not include sgml declaration

See “include sgml declaration” on page 97.

do not output book processing instructions

See “output book processing instructions” on page 143.

drop

Use the drop rule to indicate information that you want discarded. Examples of information you

might discard include a markup element or attribute that has no counterpart in FrameMaker, or a

FrameMaker non-element marker that has no counterpart in markup.

Synopsis and contexts

1. attribute "attr" drop;
2. element "gi" drop;
3. element "gi" {. . .

 attribute "attr" drop;
. . .}

4. external data entity reference drop;
5. fm attribute "attr" drop;
6. fm element "fmtag" drop;
7. fm marker type1 [, . . ., typen] drop;
8. fm variable drop;
9. processing instruction drop;
Arguments

attr The name of a markup or FrameMaker attribute. Note that fm
attribute names are case-sensitive and should appear as in the EDD.

The case of SGML attribute names depends on the setting of NAMECASE

in the SGML.dcl file—For XML attribute names are case sensitive.

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

typei A FrameMaker marker type, such as Index or Type 22.

Read/Write Rules Reference 52

d r o p

Details

• When FrameMaker encounters something to be discarded, it makes no attempt to insert the

corresponding information into the document it is creating. In the case of a dropped element,

it also discards all descendant elements.

• When creating an EDD from a DTD or schema, or a DTD from an EDD, FrameMaker does not

generate an element definition corresponding to a dropped element. It also removes any

references to the specified element in content rules for other elements unless you’ve specified

a preserve fm element definition rule for those elements.

• You can write a structure API client or XSLT stylesheet to process dropped information. Your

solution must also handle retrieving discarded information if it is needed when the document

is written back to its original format.

• If you use the drop rule in a rule, you can use no other subrules of the same rule. For example,

you cannot specify that FrameMaker both drop an attribute and translate it to a FrameMaker

property with the is fm property rule.

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop rule. For

consistency and maintainabilty try to avoid mixing the methods used to drop FrameMaker or XML

elements.

Examples

• A markup element used instead of a processing instruction to indicate that a page or line break

is desired may be discarded when the markup document is read. Text formatting rules in the

EDD can be used to indicate a page break in FrameMaker; there is no need to mark the break

with an element. To drop the markup element break, use this rule:

element "break" drop;

• By default, FrameMaker stores processing instructions that it does not recognize in non-

element markers. In this way, even though FrameMaker does not perform special processing

on the processing instruction, when you save the FrameMaker document back to markup, the

software writes out the processing instruction so that a different application can use it. If you

don’t need to write out the processing instructions, you could use this rule:

processing instruction drop;

See also

Related rules “drop content” on page 53

“unwrap” on page 158

“preserve fm element definition” on page 144

d r o p c o n t e n t

Structured Application Developer Reference 53

drop content

Use the drop content rule to either create a FrameMaker empty element or a markup element

with no content from occurrences of gi.

Synopsis and contexts

1. element "gi" {
is fm element "fmtag";
reader drop content;

}

2. element "gi" {
is fm element "fm tag";
writer drop content;

}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

• You can use this rule when you have an element whose content is created in a system-specific

way. If you plan to rely on some system to create the content, the existing content at the time

you import or export a document may not be relevant. For example, you may have a markup

element intended to contain a chapter number. In FrameMaker, you use FrameMaker’s

formatting capabilities to have the system maintain the value. When reading in the markup

document, you can drop the current content of the number element.

Rules mentioned in

synopses

“attribute” on page 44

“element” on page 54

“external data entity reference” on page 69

“fm attribute” on page 74

“fm element” on page 75

“fm marker” on page 76

“fm variable” on page 89

“processing instruction” on page 147

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 54

e l e m e n t

• Use drop content inside a reader rule when you translate markup documents to

FrameMaker documents. Use it inside a writer rule when you translate FrameMaker

documents to markup.

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop content

rule. For consistency and maintainabilty try to avoid mixing the methods used to drop content.

Examples

• Assume your DTD has a toc element that represents the table of contents for a markup

document. FrameMaker can automatically generate a table of contents, which means that this

markup element can have its contents dropped upon import.

element "toc" reader drop content;

• Assume the total element’s content is computed by a structure API client. Outside the

FrameMaker environment you will use a different program to perform the computation.

Consequently, you do not want the value that is current when the document is exported. To

discard the current value, use this rule:

element "total" writer drop content;

See also

element

You use the element rule as the primary rule for translating between a markup element and its

corresponding FrameMaker representation.

Synopsis and contexts

1. element "gi" {. . .
 subrule;
. . .}

Related rules “drop” on page 51

“unwrap” on page 158

Rules mentioned in

synopses

“element” on page 54

“reader” on page 149

“writer” on page 164

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Structure Import/Export API Programmer’s Guide

e l e m e n t

Structured Application Developer Reference 55

2. element "gi" {. . .
 transform;

subrule;
. . .}

Arguments

gi A markup element’s name (generic identifier).

transform The element rule can include a single transform subrule is used to map

to a FrameMaker object element.

 is fm colspec specifies that the element represents a CALS table

colspec. This subrule applies only to CALS tables.

is fm cross-reference element specifies that the element

corresponds to a FrameMaker cross-reference element.

is fm element translates the element to a particular FrameMaker

element. You use this subrule to rename the element.

is fm equation element specifies that the element corresponds

to a FrameMaker equation element.

is fm footnote element specifies that the element corresponds

to a FrameMaker footnote element.

is fm graphic element specifies that the element corresponds to

a FrameMaker graphic element.

is fm marker element specifies that the element corresponds to a

FrameMaker marker element.

is fm span spec specifies that the element represents a CALS table

spanspec. This subrule applies only to CALS tables.

is fm system variable element specifies that the element

corresponds to a FrameMaker system variable element.

is fm table element specifies that the element corresponds to a

FrameMaker table element.

is fm table part element specifies that the element corresponds

to a FrameMaker element for a particular table part, such as a table title

or cell.

subrule The subrules of element indicate the treatment of the markup element

and its attributes.

attribute specifies what to do with a markup element’s attributes.

drop discards the element.

Read/Write Rules Reference 56

e l e m e n t

fm attribute specifies what to do with attributes present in the

FrameMaker representation of the element but not in the markup

representation of it.

fm property specifies what to do with FrameMaker properties

associated with the element. This subrule applies only to elements that

correspond to graphic, equation, table, table part, cross-reference, or

marker elements.

marker text is specifies whether the text of a FrameMaker marker

element should be element content or an attribute value in markup. This

subrule applies only to marker elements.

drop content specifies that the content but not the structure of an

element should be discarded on import of a markup document.

end vertical straddle indicates that the associated table cell or

row element terminates a vertical table straddle. This subrule applies only

to table cell or row elements.

insert table part element indicates that the software should

insert the specified table part (title, heading or footing), even if the

markup element structure does not contain the corresponding element.

This subrule applies only to table elements.

line break determines whether to interpret line breaks in text

segments in elements in the markup document as forced returns or

spaces within the elements.

start new row indicates that the occurrence of the associated table

cell element always starts a new row in the table. This subrule applies only

to table cell elements.

start vertical straddle indicates that the associated table cell

element starts a vertical table straddle. This subrule applies only to table

cell elements.

unwrap indicates that the content of the element, but not the element

itself, should be included in the translated document.

anchored frame tells FrameMaker what to do with graphic elements

other than those with a single non-internal FrameMaker facet. This

subrule applies only to graphic elements.

drop content specifies that the content but not the structure of an

element should be discarded on export of a FrameMaker document.

writer equation tells FrameMaker what to do with equation

elements. This subrule applies only to equation elements.

e n d v e r t i c a l s t r a d d l e

Structured Application Developer Reference 57

writer facet tells FrameMaker what to do with a graphic element that

has a single non-internal FrameMaker facet. This subrule applies only to

graphic elements.

writer line break limits the length of lines the software generates

in the markup document.

writer notation is specifies a notation name when the element is

a graphic or equation.

writer specify size in specifies the units of measure for the size

of a graphic or equation element.

Details

If you use either the drop or unwrap subrule of an element rule, that subrule must be the

element’s only subrule. For example, you cannot both unwrap a markup element and translate it

to a FrameMaker element.

Examples

• To translate the markup element p to the FrameMaker element Paragraph, use this rule:

element "p" is fm element "Paragraph";

• To translate the markup element tab2 to a FrameMaker table element Two Table with two

columns, use this rule:

element "tab2" {
 is fm table element "Two Table";
 fm property columns value is "2";
}

See also

end vertical straddle

Use the end vertical straddle rule inside the element rule for a table row or table cell

to specify that the row (or the row containing the cell) indicates the end of a vertical straddle

Related rules “fm element” on page 75

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 58

e n d v e r t i c a l s t r a d d l e

started by some earlier table cell element. The straddle can end either before the current row or

at the current row.

Synopsis and contexts

element "gi" {
 is fm table row_or_cell element ["fmtag"];
 reader end vertical straddle "name1" [, . . . "namen"]
 [before this row];
. . .}

Arguments

gi A markup element’s name (generic identifier).

row_or_cell One of the keywords: row or cell.

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

namei A name associated with a table straddle. Each namei must occur in a

corresponding start vertical straddle rule.

Details

• Your DTD may contain elements that you want to format as tables in FrameMaker even though

the element hierarchy does not match that required by FrameMaker for tables. In such a

situation, the nature of the element hierarchy may indicate where vertical straddles begin and

end. The end vertical straddle rule allows you to specify such elements.

• Use this rule in conjunction with the start vertical straddle rule. That rule specifies

a table cell that indicates the first cell in a vertical straddle. In the start vertical
straddle rule, give a name to the particular straddle started by that element. In the end
vertical straddle rule, you must specify by name which vertical straddles started by

earlier cells are ended by the occurrence of gi.

• If you use this rule for a table cell element, you can end only one vertical straddle. If you use it

for a table row element, you can end more than one vertical straddle.

• If you use this element without the before this row keyword phrase, the cell or row (gi)

specified in the rule becomes part of the straddle. If you do include that keyword phrase, then

the straddle ends in the row above the one specified.

Examples

For an example of the use of this rule, see “Creating vertical straddles” on page 360.

See also

Related rules “start vertical straddle” on page 156

e n t i t y

Structured Application Developer Reference 59

entity

You use the entity rule to translate an entity to an appropriate FrameMaker representation.

With this rule, you can translate an entity to a particular character or set of characters, a reference

element, a text inset, or a FrameMaker variable. If you choose to translate the entity to a text inset,

you can also specify how to format that text inset in the resulting document.

Synopsis and contexts

1. entity "ename" {
 type_rule;
 [format_rule;]
. . .}

2. reader entity "ename" {
 type_rule;
 [format_rule;]
. . .}

Arguments

ename An entity name.

type_rule One of the following:

is fm char translates the entity to a particular character in

FrameMaker.

is fm reference element translates the entity to an element

whose content resides on a reference page in the FrameMaker document.

is fm text inset translates the entity to a FrameMaker text inset.

is fm variable translates the entity to a FrameMaker non-element

variable.

format_rule One of the following subrules can be specified, but only if type_rule is

is fm text inset:

reformat as plain text specifies that the software remove the

internal structure and formatting from the text of the text inset and apply

the formatting used at the insertion point.

reformat using target document catalogs specifies that the

software retain the text inset’s internal structure and apply the containing

document’s formats and element format rules to the text. This rule is

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

Read/Write Rules Reference 60

e n t i t y

applied as if the following three options were checked when a file is

imported through the File>ImportFile menu: 1. Reformat Using Target

Document’s catalog; 2. While importing Remove: Manual Page Breaks; and

3. While Importing Remove: Other Format Overrides. For more

information, see the section “Import text” in Chapter 9 of the Using

FrameMaker guide.

retain source document formatting specifies that the

software remove the internal structure of the text inset and retain the

formatting of the text inset as it appeared in the source document.

Details

• If you use the entity rule at the highest level, then it applies both on import and export. If

you use it inside a reader rule, then FrameMaker translates the entity as specified when

importing a markup document, but does not create an entity reference on export.

• For SGML, while you can use this rule to translate any entity type to a text inset, we recommend

you convert only SDATA entities to text insets. Note that the source file for such a text inset

must be a format FrameMaker can automatically filter. Also, such a text inset cannot use a

markup document as the source file.

• For XML and SGML, FrameMaker imports external text entities as text insets by default. The

source files for these insets can be markup or text files. The software stores entity information

on the Entity Declarations reference page so it can export the text inset as an external text

entity.

• For XML, SDATA and CDATA entities are not allowed.

Examples

• To translate the text entity mn to the FrameMaker variable Manual Name, use this rule:

entity "mn" is fm variable "Manual Name";

Suppose the text entity mn is declared as <!ENTITY mn "Developer’s Guide">, and

the template for the application does not contain a variable named Manual Name. Then the

software will create a FrameMaker variable named Manual Name defined as Developer’s
Guide and replace the reference in the text with the variable text Developer’s Guide.

However, if a FrameMaker variable named Manual Name, defined for example as My
Favorite Manual, currently exists in the template for the application, when importing

SGML, the software will not create a new variable nor modify the existing one. It will replace

the reference in the text with the variable text My Favorite Manual. When importing XML,

it does modify the variable definition.

e n t i t y n a m e i s

Structured Application Developer Reference 61

• To have FrameMaker create a text inset for the legalese entity using the text in the file

legal.fm and to have the software format that text inset as it appears in legal.doc, use

this rule:

entity "legalese" {
 is fm text inset "legal.fm";
 retain source document formatting;
}

See also

entity name is

Use the entity name is rule only in an element rule for a graphic or equation element to

provide information the software needs when writing a document containing graphics or

equations to markup. The entity name is rule determines the name FrameMaker gives an

entity reference it generates for the graphic or equation.

Synopsis and contexts

1. element "gi" {
 is fm equation element ["fmtag"];
 writer equation entity name is "ename";
. . .}}

2. element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame entity name is "ename";
. . .}}

3. element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname" entity name is "ename";
. . .}}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

Developer Guide, Chapter 25, Translating Variables and System Variable

Elements

Read/Write Rules Reference 62

e n t i t y n a m e i s

facetname A facet name. The string for the facetname must exactly match the string

for the facetname in the FrameMaker document. To determine a graphic

file’s facetname, select the graphic, click Graphics>ObjectProperties, and

observe the facetname in the dialog box.

ename A string representing the base name for an entity name.

Details

By default, when FrameMaker exports an external data entity for a graphic or equation, it uses the

entity name that is stored with the graphic inset. If there is no such entity name, the software

generates a name for the entity based on the element name. You use the entity name is

rule to change this behavior.

The entity name you specify is a base name FrameMaker uses to generate a unique entity name.

When it needs to create a new entity name, FrameMaker adds an integer to the name specified

by ename to create a unique name.

If the keyword facet is used, the rule applies to a graphic element that contains only a single

facet with the name specified by facetname. This occurs when the graphic element is an

anchored frame containing only a single imported graphic object whose original file was in the

facetname graphic format. You can use this rule multiple times if you want FrameMaker to treat

several file formats differently.

Examples

• Assume you have a markup element graphic that corresponds to graphic elements in

FrameMaker. Suppose further that some of the graphic elements in FrameMaker contain

imported-by-copy graphics, or contain modifications to a graphic inset using FrameMaker

graphic tools, or contain just graphic objects drawn using FrameMaker graphic tools. On

export, the software must create new graphic files for these elements and declare entities for

them. By default, FrameMaker would declare entities for these graphic elements based on the

element name "graphic," for example, graphic1, graphic2, and so on. To specify that the

names of the entities associated with such successive graphic elements have the form car1,

car2, and so on, use this rule:

element "graphic" {
 is fm graphic element;
 writer anchored frame entity name is "car";
}

• Assume with a single facet graphics in the car element sometimes use the IGES file format and

sometimes use the TIFF file format. Also assume that the DTD for the application does not

currently contain entity declarations for the imported-by-reference graphic files. By default, the

software would declare entities for all such graphics based on the element name "car," for

e q u a t i o n

Structured Application Developer Reference 63

example, car1, car2, and so on. If you want to name the entities for the IGES graphics icar

and the entities for the TIFF graphics tcar, then use this rule:

element "car" {
 is fm graphic element;
 writer facet "IGES" entity name is "icar";
 writer facet "TIFF" entity name is "tcar";
}

See also

equation

Use the equation rule only in an element rule for an equation element, to provide information

the software needs when writing to markup a document containing equations. FrameMaker

creates graphic files to represent equations. Use this rule to specify information about the files

FrameMaker creates for instances of the equation element. By default, the software creates a file

in CGM format for each equation, and the filename is based on the element name. Also, by default,

if the equation element is associated with an external data entity, then the entity name is based

on the element name.

Synopsis and contexts

element "gi" {
 is fm equation element ["fmtag"];
 writer equation subrule;
. . .}

Arguments

Related rules “export to file” on page 67

“notation is” on page 141

“specify size in” on page 153

Rules mentioned in

synopses

“element” on page 54

“is fm graphic element” on page 111

“is fm equation element” on page 109

“anchored frame” on page 41

“equation” on page 63

“facet” on page 72

“writer” on page 164

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 64

e x p o r t d p i i s

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

subrule An equation rule can have the following subrules:

entity name is tells the software how to create the base name for

the entity associated with this element type.

export to file tells the software to write a new file for the

associated external data entity.

notation is specifies the data content notation of the entity file.

specify size in specifies the units to use when writing the file.

Examples

Assume you have an element named math with an attribute of type Entity that is mapped to

the fm property entity for this element. If you want to create TIFF files for the equations in a

document named mytest.doc, you might use this rule:

element "math" {
 is fm equation element;
 writer equation export to file "$(docname).eqn" as "TIFF";
}

The software will create graphic files for each equation in mytest.doc named mytest1,

mytest2,...and will declare entities named math1, math2, ...for each graphic.

See also

export dpi is

You use the export dpi rule only in an element rule for a graphic or equation element, to

provide information the software needs when writing a document containing graphics or

Related rules “anchored frame” on page 41

“facet” on page 72

“is fm graphic element” on page 111

Rules mentioned in

synopses

“element” on page 54

“is fm equation element” on page 109

“writer” on page 164

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

e x p o r t d p i i s

Structured Application Developer Reference 65

equations to markup. The export dpi rule tells FrameMaker the dpi setting to use for an

exported graphic file.

Synopsis and contexts

1. element "gi" {
 is fm equation element ["fmtag"];
 writer equation
 export dpi is number;

. . .
. . .}

2. element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame
 export dpi is number;

. . .
. . .}

3. element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname"
 export dpi is number;

. . .
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

facetname A facet name. The string for the facetname must exactly match the string

for the facetname in the FrameMaker document. To determine a graphic

file’s facetname, select the graphic, click Graphics>ObjectProperties, and

observe the facetname in the dialog box.

number The required dpi value.

Details

• In the absence of this rule, FrameMaker uses the dpi setting associated with the graphic file. If

there is no setting associated with the graphic, the software assumes a value of 300.

• In Windows, if the initialization file for a graphics filter specifies a dpi setting that setting

overrides this rule whenever that filter is used to export a graphic file.

• If the keyword facet is used, the rule applies to a graphic element that contains only a single

facet with the name specified by facetname. This occurs when the graphic element is an

Read/Write Rules Reference 66

e x p o r t d p i i s

anchored frame containing only a single imported graphic object whose original file was in the

facetname graphic format. You can use this rule multiple times if you want FrameMaker to

treat several file formats differently.

Examples

• Assume you export the FrameMaker file Math.doc and have the following rule:

element "eqn" {
 is fm equation element "Equation";
 writer equation

export dpi is 72;
}

When FrameMaker finds an instance of the Equation element, it exports equations as graphic

files at 72 dpi.

• Assume you have the rule:

element "imp" {
 is fm graphic element;
 writer facet “TIFF”{

convert referenced graphics;
export dpi is 1200;
export to file "$(entity).tif";

}}

This rule tells FrameMaker for every graphic element with a single TIFF facet, it should write a

new graphic file with a dpi of 1200, using the entity name as part of the graphic file’s filename.

See also

Related rules “convert referenced graphics” on page 49

“entity name is” on page 61

“notation is” on page 141

“specify size in” on page 153

Rules mentioned in

synopses

“element” on page 54

“is fm graphic element” on page 111

“is fm equation element” on page 109

“anchored frame” on page 41

“equation” on page 63

“facet” on page 72

“writer” on page 164

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

e x p o r t t o f i l e

Structured Application Developer Reference 67

export to file

You use the export to file rule only in an element rule for a graphic or equation element,

to provide information the software needs when writing a document containing graphics or

equations to markup. The export to file rule tells FrameMaker how to write the file name

when it creates a new graphic file, and optionally the graphic format for the file.

Synopsis and contexts

1. element "gi" {
 is fm equation element ["fmtag"];
 writer equation
 export to file "fname" [as "format"];
. . .}

2. element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame
 export to file "fname" [as "format"];
. . .}

3. element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname"
 export to file "fname" [as "format"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

facetname A facet name. The string for the facetname must exactly match the string

for the facetname in the FrameMaker document. To determine a graphic

file’s facetname, select the graphic, click Graphics>ObjectProperties, and

observe the facetname in the dialog box.

fname A base filename which can be either absolute or relative to the output

directory. Note: If path information is included in fname, use double

backslashes to translate path backslashes correctly. The fname argument

can contain the variables $(docname) and $(entity), described

below.

format A file data content format code, such as TIFF or PICT. See Developer Guide,

Chapter 23, Translating Graphics and Equations for a complete list of

graphic format codes. format must be one of these code names.

Read/Write Rules Reference 68

e x p o r t t o f i l e

Details

• By default, if a graphic element has a single facet (other than a FrameMaker internal facet) that

was imported by reference, FrameMaker does not create a new graphic file. On export, the

original file will be associated with a markup graphic element via the file attribute, or via the

entity attribute plus a corresponding entity declaration. You can use the convert
referenced graphics rule to force FrameMaker to export such graphic files.

• If the keyword facet is used, the rule applies to a graphic element that contains only a single

facet with the name specified by facetname. This occurs when the graphic element is an

anchored frame containing only a single imported graphic object whose original file was in the

facetname graphic format. In this case, the rule is only executed if the convert
referenced graphics rule is also used. Otherwise, it is ignored.You can use this rule

multiple times if you want FrameMaker to treat several file formats differently.

• If your rules specify the software will write a graphic file, if a graphic element has a single facet

(other than a FrameMaker internal facet), FrameMaker writes the graphic file in that format by

default. It writes the graphic file for equation elements and all other graphic elements in CGM

format by default.

If you supply a format argument, you must first make sure that the format is one known to

FrameMaker. For information on which graphic export filters the software provides and on how

to add new ones, see Developer Guide, Chapter 23, Translating Graphics and Equations.

• The fname argument can use these variables:

• The fname argument is used as a template for the actual filename FrameMaker generates for

a particular graphic or equation element. FrameMaker takes the filename specified with the

fname argument and may append an integer to the filename to ensure uniqueness of the

filename. For an example of this behavior, see the first example below.

Examples

• Assume you export the FrameMaker file Math.fm and have the following rule:

element "eqn" {
 is fm equation element "Equation";
 writer equation
 export to file "$(docname).eqn" as "PICT";
}

Variable Meaning

$(entity) The value of the corresponding markup element’s entity attribute. If the

source of the graphic inset wasn’t originally an entity, this variable defaults to

a unique name based on the name of the element. You can change this name

using the entity name is rule.

$(docname) The name of the FrameMaker file, excluding any extension or directory

information.

e x t e r n a l d a t a e n t i t y r e f e r e n c e

Structured Application Developer Reference 69

When FrameMaker finds an instance of the Equation element, it generates filenames of the

form MathN.eqn until it finds a name that does not collide with an already existing file. For

example, if you already have files in the specified directory named Math1.eqn and

Math2.eqn, the software writes the first equation to a file named Math3.eqn. FrameMaker

writes the equation file in PICT format, instead of the default CGM format.

• Assume you have the rule:

element "imp" {
 is fm graphic element;
 writer facet "TIFF" {

convert referenced graphics;
export to file "$(entity).tif";

}}

This rule tells FrameMaker that if it encounters a graphic element with an imported graphic file

with a single TIFF facet, it should write that graphic to the file specified by $(entity).tif.

See also

external data entity reference

Use the external data entity reference rule to drop references to all external data

entities. By default, FrameMaker stores such references as the marker text in non-element Entity

Reference markers.

Synopsis and contexts

external data entity reference drop;

Related rules “convert referenced graphics” on page 49

“entity name is” on page 61

“notation is” on page 141

“specify size in” on page 153

Rules mentioned in

synopses

“element” on page 54

“is fm graphic element” on page 111

“is fm equation element” on page 109

“anchored frame” on page 41

“equation” on page 63

“facet” on page 72

“writer” on page 164

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 70

e x t e r n a l d t d

ArgumentsNone.

Details

• In markup, the values of general entity name attributes, such as those used with graphics, are

not considered entity references. This rule does not affect how FrameMaker treats general

entity name attributes. In XML such entity name attributes are the only way to reference non-

parsed entities such as graphics.

• When you translate a markup document to FrameMaker, when the software encounters an

external data entity reference such as:

&door;

it stores the reference as the text of a non-element DOC Entity Reference marker by default,

with the following marker text:

door

When you translate a FrameMaker document to markup, it outputs the marker text of non-

element DOC Entity Reference markers as entity references.

Examples

To discard all external data entity references, use this rule:

external data entity reference drop;

See also

external dtd

Use this rule to specify how an exported markup instance refers to the current structure

application’s DTD. By default, FrameMaker uses the name of the file containing the DTD as the

system identifier in the external identifier for the DTD. The external dtd rule provides the

software with a different external identifier. The different forms of the rule allow specification of a

system identifier, public identifier, or both.

Synopsis and contexts

1. writer external dtd is system;
2. writer external dtd is system "sysid";
3. writer external dtd is public "pubid";

Rules mentioned in

synopses

“drop” on page 51

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

e x t e r n a l d t d

Structured Application Developer Reference 71

4. writer external dtd is public "pubid" "sysid";
Arguments

sysid A system identifier.

pubid A public identifier.

Details

• Use this rule when you export FrameMaker documents to markup documents To use this rule,

you must have a DTD specified for the current structure application in the structapps.fm

file.

• By default, FrameMaker does not reproduce the DTD in the document type declaration subset.

Instead, it uses the filename of the DTD that was specified in the structure application to write

a document type declaration of the form:

<!DOCTYPE doctype SYSTEM "fname" [. . .

where doctype is the document type name and fname is the DTD filename specified in the

structure application. This rule allows you to specify different system and public identifiers.

• To output both external DTD and Schema with an XML document, use this rule and specify a

Schema file for output in the XML structure application (in structapps.fm). This rule

modifies how the external DTD is written.

To output Schema only, with no DTD, specify only the Schema file, not the DTD, in

structapps.fm. You do not need to use this rule.

• You cannot use the external dtd rule in the same read/write rules file as the include
dtd rule.

Examples

• To specify a local DTD as an external DTD and include the path with the filename, you could

use this rule:

writer

external dtd is
 system "/doc/dtds/manuals.dtd";

Note that the Windows platform requires two backslashes in paths in the rules file in order to

translate as one backslash.

• To specify and locate the CALS DTD as an external DTD, you could use this rule:

writer external dtd is
 public "-//USA-DOD//DTD MIL-M-38784B//EN"
 "/doc/dtds/cals.dtd";

Read/Write Rules Reference 72

f a c e t

• To specify just the CALS DTD as an external DTD using a public identifier, you could use this

rule:

writer external dtd is
public “-//USA-DOD//DTD MIL-M-38784B//EN”;

You could then specify the location of the DTD in the structure application using the

EntitiesLocation element. A DTD is an entity in the strictest sense.

See also

facet

Use the facet rule only in an element rule for a graphic element, to provide information the

software needs when writing a document containing graphics to markup. The facet rule applies

only when a graphic element is an anchored frame containing only a single imported graphic

object whose original file was in the facetname graphic format. Use this rule to specify

information about the graphic file and/or entity declaration for instances of the graphic element.

Synopsis and contexts

element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname" subrule;
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

facetname The name of the particular facet to which this rule applies, or “default”

for all facets.

subrule A facet rule can have the following subrules:

convert referenced graphics tells the software to create new

graphic files for imported graphic files with a single facet.

Related rules “include dtd” on page 96

“include sgml declaration” on page 97

“write structured document” on page 163

“write structured document instance only” on page 163

Rules mentioned in

synopses

“writer” on page 164

f a c e t

Structured Application Developer Reference 73

entity name is tells the software how to create the base name for

the entity associated with this element type.

export to file tells the software the name to use for graphics it

creates, and optionally, the graphic format to which it should convert.

notation is specifies the data content notation of the entity.

specify size in specifies the units to use when writing the file.

Details

To specify all facets, use the keyword default for the facetname argument. For example:

element "pict" {
is fm graphic element "Picture";
writer {

facet default {
convert referenced graphics;
export to file "$(entity).tif" as "TIFF";
. . .

}}}

will convert every imported graphic file in the document to a TIFF file, no matter what its original

facet was.

Examples

By default, FrameMaker does not create a new graphic file for a graphic element that originated

as an external entity, and was not modified by the user in any way. Assume you want the software

to generate a graphic file for every imported TIFF file, whether it was modified or not. Then you

could use this rule:

element "pict" {
 is fm graphic element "Picture";
 writer {
 facet "TIFF" {

convert referenced graphics;
export to file "$(entity).tif" as "TIFF";

}}}

See also

Related rules “anchored frame” on page 41

“convert referenced graphics” on page 49

“equation” on page 63

Read/Write Rules Reference 74

f m a t t r i b u t e

fm attribute

You use the fm attribute rule with the “drop” subrule to discard an attribute that you’ve

defined for a FrameMaker element but that does not exist on the corresponding markup element.

Read/write rules do not support double-byte characters, so you cannot use this rule to drop

attributes with double-byte characters in their names.

Synopsis and contexts

1. fm attribute "attr" drop;
2. element "gi" {. . .

 fm attribute "attr" drop;
. . .}

Arguments

attr A FrameMaker attribute name.

gi A markup element’s name (generic identifier).

Examples

• Assume the element chapter exists in both the markup and FrameMaker representations of

your documents. In FrameMaker, you use the XRefLabel attribute in formatting cross-

references to this element. Since this attribute exists only for formatting purposes, you don’t

want it in the markup document. To drop this attribute on export, use this rule:

element "chapter" {
 is fm element;
 fm attribute "XRefLabel" drop;
}

• If you use the XRefLabel attribute on many elements for the same purpose, you can discard

it from all elements on export with this rule:

fm attribute "XRefLabel" drop;

Rules mentioned in

synopses

“element” on page 54

“is fm equation element” on page 109

“is fm graphic element” on page 111

“writer” on page 164

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

f m e l e m e n t

Structured Application Developer Reference 75

• If you want to keep the XRefLabel attribute on the appendix element, but drop it from all

others, use these rules:

element "appendix" {
 is fm element;
 attribute "xreflab" is fm attribute "XRefLabel";
}
fm attribute "XRefLabel" drop;

Note that the order of these rules is not important. If you reversed them, the XRefLabel

attribute would still be correctly interpreted for the appendix element, since that reference

to the attribute is more specific. Note also that case is sensitive for fm attribute names.

See also

fm element

Use the fm element rule to tell FrameMaker what to do on export with FrameMaker elements

that do not correspond to markup elements. Read/write rules do not support double-byte

characters, so you cannot use this rule to process elements with double-byte characters in their

names.

Synopsis and contexts

1. fm element "fmtag" drop;
2. fm element "fmtag" unwrap;
Arguments

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

• Use this rule when you export FrameMaker documents to markup documents.

• If you use this rule, you may want to write a structure API client to handle the export of the

element or to create it on import.

Related rules “attribute” on page 44

“is fm attribute” on page 101

Rules mentioned in

synopses

“element” on page 54

“drop” on page 51

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 76

f m m a r k e r

• The first version of this rule discards the FrameMaker element on export. The second version

inserts the contents of fmtag in the corresponding markup document, but not fmtag itself.

• If you use this rule to unwrap FrameMaker cross-reference elements or system variable

elements, those elements become text in the resulting markup document.

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop and unwrap

rules. For consistency and maintainabilty try to avoid mixing the methods used to drop or unwrap

FrameMaker elements.

Examples

• If Chapter Number is a FrameMaker element that you want to discard on export, use this

rule:

fm element "Chapter Number" drop;

If you use this rule and want to create this element on import, you need to write a structure

API client.

• If Modification Date is a FrameMaker system variable element that you wish to translate

to text on export to markup, use this rule:

fm element "Modification Date" unwrap;

See also

fm marker

On export, you use the fm marker rule to tell FrameMaker what to do with non-element

markers other than markers of the type reserved for storing processing instructions, PI entities,

and external data entities. (By default, Structure PI markers are reserved for processing

instructions, and Entity Reference markers are reserved for external data entities.) In the absence

of a rule to the contrary, the software creates processing instructions for non-element markers.

Related rules “element” on page 54

“is fm element” on page 108

Rules mentioned in

synopses

“drop” on page 51

“unwrap” on page 158

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

f m m a r k e r

Structured Application Developer Reference 77

You can also choose to discard them. Read/write rules do not support double-byte characters, so

you cannot use this rule to process markers with double-byte characters in their names.

Synopsis and contexts

fm marker ["type1", . . ., "typen"] drop;
fm marker ["type1", . . ., "typen"] is processing instruction;

Arguments

typei The name of a FrameMaker marker type.

Details

• If typei is specified, this rule applies only to markers of that type.

If no typei is specified, this rule applies to all non-element markers other than markers of the

reserved type. For information on what the software does with the reserved marker type, see

Developer Guide, Chapter 26, Translating Markers

• You can have multiple occurrences of this rule in a rules file, to determine different treatment

for different FrameMaker markers. You can have only one occurrence of the rule with no

explicitly listed markers. A given marker type can be explicitly mentioned in only one

occurrence of this rule.

• The order of fm marker rules is not important. A more specific occurrence of the rule always

takes precedence over a more general occurrence. For example, the following rules:

fm marker "Index" is processing instruction;
fm marker drop;

have the same effect, exporting only index markers as processing instructions, if they occur in

this order:

fm marker drop;
fm marker "Index" is processing instruction;

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop rule. For

consistency and maintainabilty try to avoid mixing the methods used to drop FrameMaker non-

element markers.

Examples

• To discard all non-element markers, use this rule:

fm marker drop;

• To discard non-element conditional text markers but retain all others as processing

instructions, use this rule:

fm marker "Conditional Text" drop;

Read/Write Rules Reference 78

f m p r o p e r t y

• To retain only Index and Hypertext markers as processing instructions and drop all other non-

element markers, use the following set of rules:

fm marker "Index", "Hypertext" is processing instruction;
fm marker drop;

See also

fm property

You use the fm property rule to determine values for properties defined for certain types of

FrameMaker constructs that you do not want to represent as markup attributes.

Synopsis and contexts

1. Cross-reference elements

element "gi" {
 is fm cross-reference element ["fmtag"];
 fm property cross-reference format value is val;
. . .}

1.1 Arguments

val A valid cross-reference format name. These names are case-sensitive and

must appear in the rule the same as in the structure application’s

template.

2. Graphic elements or equation elements

element "gi" {
 is fm graphic_or_equation element ["fmtag"];
 fm property prop value is "val";
. . .}
MathML equations

element "mathml" {
 is fm mathmlequation element "RuleML";

attribute "sideways" is fm property composedpi;
. . .}

2.1 Arguments

Related rules “is fm marker element” on page 112

Rules mentioned in

synopses

“drop” on page 51

“is processing instruction” on page 138

General information

on this topic

Developer Guide, Chapter 26, Translating Markers

f m p r o p e r t y

Structured Application Developer Reference 79

prop • alignment Indicates the anchored frame’s
horizontal alignment on the page.

val

– aleft Align left

– acenter Align center

– aright Align right

– ainside Align inside, or closest to the binding margin.

– aoutside Align ouside, or farthest from the binding margin.

• angle Indicates an angle of rotation for the anchored frame that

contains the graphic. You must specify exact multiples of 90 degrees.

Otherwise, the value is ignored and the graphic is imported at 0

degrees (default).

val examples:

– 0 No rotation (default)

– 90 Rotate 90 degrees clockwise

– -90 Rotate 90 degrees anticlockwise

– 180 Rotate 180 degrees

– 270 Rotate 270 degrees.

• baseline offset Indicates how far from the baseline of a

paragraph to place an anchored frame. Baseline offset is relevant only

for anchored frames whose position attribute is one of inline, sleft,

sright, snear, or sfar.

val A number plus a valid unit of measure, e.g. “12pt”, “10mm”. If not

supplied, the value is 0.

• cropped Indicates whether a wide graphic should be allowed to

extend past the margins of the text frame. The cropped property is

relevant only for anchored frames whose position attribute is one

of top, below, or bottom.

val

– 0 The graphic may extend past the margins of the text frame.

– 1 (Default) The graphic is cropped at the margins of the text frame.

• dpi Indicates how to scale an imported graphic object.

val The value of the dpi attribute must be an integer greater than 0.

If not supplied, the default value is 72.

• entity Provides the entity name of the imported graphic. This rule

limits the graphic import to a single, fixed file for all instances of the

element.

Read/Write Rules Reference 80

f m p r o p e r t y

val A valid entity name as defined in an entity declaration in the

markup instance.

• file Provides the file name of the imported graphic. This rule limits

the graphic import to a single, fixed file for the element.

val A valid file name for an imported graphic.

• floating Indicates whether the graphic should be allowed to float

from the paragraph to which it is attached. The floating property is

relevant only for anchored frames whose position property is one

of top, below, or bottom.

val

– 0 (Default) No float, the graphic must stay with the paragraph.

– 1 Allow float.

• height Indicates the height of the anchored frame.

val The value for a single imported graphic object is the sum of the

height of the object plus twice the value of the vertical offset property.

• horizontal offset Indicates how far the graphic object is offset

from the right and left edges of the anchored frame.

val A number with a valid unit of measure. If not supplied, the

delault value is 6.0pt.

• import angle Indicates an angle of rotation in degrees for the

graphic inside its anchored frame.

val A real number, if not supplied, the default value is 0.0.

• import by reference or copy Indicates whether an

imported graphic object remains in a separate file or is copied into the

FrameMaker document on import from markup.

val

– ref (Default) The object is referenced and will not be copied into

the document.

– copy The object will be copied into the document.

• import size indicates the size of the imported graphic object by

specifying a width and height.

val Two numbers, separated by a space, with a valid units of

measure. The first measurement is the width and the second is the

height. If no unit of measure is supplied, points are assumed. Example:

“100mm 50mm”.

• near-side offset Indicates how far to set a frame from the text

frame to which the frame is anchored. It is relevant only for anchored

f m p r o p e r t y

Structured Application Developer Reference 81

frames whose position attribute is one of sleft, sright, snear, or

sfar.

val A number plus a valid unit of measure, e.g. “12pt”, “10mm”. If not

supplied, the value is 0.

• position Indicates where on the page to put the anchored frame.

If not supplied, the value is below.

val Possible anchoring position values are as follows:

– inline At insertion point.

– top At top of column.

– below Below current line.

– bottom At bottom of column.

– sleft Outside column - left side.

– sright Outside column - right side.

– snear Outside column - right side.

– sfar Outside column - side closer to the page edge.

– sinside Outside column - side closer to the binding.

– soutside Outside column - side farther from the binding.

– tleft Outside text frame - left side.

– tright Outside text frame - right side.

– tnear Outside text frame - side closer to the page edge.

– tfar Outside text frame - side farther from the page edge.

– tinside Outside text frame - side closer to the binding.

– toutside Outside text frame - side closer to the binding.

– runin Run into paragraph.

• sideways Indicates that the imported graphic will be flipped left to

right to give a mirror image.

val

– 0 (Default) No flip.

– 1 Flip left/right.

• vertical offset Indicates how far the graphic object is offset

from the top and bottom edges of the anchored frame.

val A number plus a valid unit of measure. If not supplied, the

delault value is 6.0pt.

• width Indicates the width of the anchored frame.

val The value for a single imported graphic object is the sum of the

width of the object plus twice the value of the horizontal offset

property.

Read/Write Rules Reference 82

f m p r o p e r t y

• poster The name of the file displayed as the poster for an imported

media file. For SWF files, FrameMaker displays the first frame of the SWF

file as the poster. For a SWF file whose first frame cannot be read, and

for all other media types, FrameMaker displays the relevant

placeholder image.

val A valid path to the location of the poster file.

• graphic name A name assigned to the imported object, for easy

identification when linking to it.

val A string representing the graphic name.

• activate in PDF A boolean value indicating whether or not the

graphic element is activated when the PDF file containing it, is opened.

The default value is False.

val

– 0 (Default) Not activated in PDF.

– 1 Activated in PDF.

• open in pop-up window A boolean value indicating whether or

not the graphic element in a PDF file is displayed in a new frame, when

clicked.

val

– 0 (Default) Not opened in pop-up window.

– 1 Opened in pop-up window.

• javascript file The JavaScript file that is attached to the

graphic object with a U3D facet.

val A valid path to the location of the JavaScript file.

• U3D view The object perspectives available for a 3D object. The

selected view is rendered when the document is saved. All predefined

views of the 3D object are available when the document is converted

to a PDF file. The last view that you selected in the document, before

saving, becomes the default view in the PDF.

val A valid object perspective available for the 3D object.

• background color The color of the background for the anchored

frame containing the 3D file.

val A valid color for the background.

• render mode The rendering mode for an imported 3D object. The

default value is Solid.

val A valid rendering mode.

f m p r o p e r t y

Structured Application Developer Reference 83

• lighting The lighting scheme to cast a 3D object using different

light sources. The default lighting scheme for all 3D objects is Lights

From File.

val A valid lighting scheme for casting the 3D object.

• link to text A 3D object and a destination marker that links the

object to text in the document.

val Number of links from the 3D object and link name - destination

marker pairs.

For example, linktotext="2;Ground_Plane=newlink

aa;Blue_Sphere=newlink cc;"

• compose Dpi The resolution, in Dpi, of the image composed by the

MathML editor for a MathML object, displayed in FrameMaker.

val A valid resolution for the MathML object.

• alt text The text that is displayed when a graphic element cannot

be rendered.

val A string for the alternate text.

• font size The size of the font used for MathML objects.

val A valid size for the MathML object fonts.

3. Marker elements

element "gi" {
 is fm marker element ["fmtag"];
 fm property prop value is val;.
. . .}

3.1 Arguments

prop • marker text Provides a fixed text string for all instances of the

marker.

val Any valid marker text string.

• marker type Identifies the type of marker if not provided by a

markup attribute.

val A valid marker type name.

4. Table elements

element "gi" {
 is fm table element ["fmtag"];
 fm property prop value is val;.
. . .}

4.1 Arguments

Read/Write Rules Reference 84

f m p r o p e r t y

prop • column ruling Specifies whether all columns should have ruling

on their right side. This property does not specify the style or weight

of the ruling. The default ruling is defined by the relevant table format

in the structured template.

val

– 0 Columns have no ruling.

– 1 Columns have ruling.

• column widths The width of successive columns in the table. On

import from markup these widths are reapplied regardless of any

changes made by the user.

val Each value is either an absolute width or a width proportional to

the size of the entire table. If proportional widths are used, the pgwide

attribute or page wide property determines the table overall width.

Example for a three column table:

“22mm 40mm 100mm”.

• columns The number of columns in the table. This is essential to the

correct rendering of the table if the markup does not state the number

of columns as an attribute value.

val An integer greater than 0.

• page wide This is relevant only to tables whose columns use

proportional widths on pages with more than a single column. In this

case, the attribute indicates whether the entire table should be the

width of the column in which it is anchored, or the width of the overall

text frame.

val

– 0 (Default) The table is the width of the text column.

– 1 The table is the width of the text frame.

• row ruling Specifies whether all rows should have ruling on their

bottom side. This property does not specify the style or weight of the

ruling. The default ruling is defined by the relevant table format in the

structured template.

val

– 0 Rows have no ruling.

– 1 Rows have ruling.

• table border ruling Specifies whether the table should have

ruling around its outside borders. This property does not specify the

style or weight of the ruling. The default ruling is defined by the

relevant table format in the structured template.

val

f m p r o p e r t y

Structured Application Developer Reference 85

– all Rows have no ruling.

– top Rows have ruling.

• table format Specifies the table format for all instances of the

FrameMaker table element.

val A name of a table format that is present in the application’s

structured template.

5. Table cell elements

element "gi" {
 is fm table cell element ["fmtag"];
 fm property prop value is val;.
. . .}

5.1 Arguments

prop • column name Associates a name with a cell in a given column.

val A valid column name as defined in a colspec.

• column number Indicates the column number that the cell will start

in. This rule is used when the column number is not available in the

markup and requires each cell in a given row to have a unique element

name.

val An integer greater than 0.

• column ruling Specifies whether the cell should have ruling on

its right side. This property does not specify the style or weight of the

ruling. The default ruling is defined by the relevant table format in the

structured template.

val

– 0 Cell has no right side ruling.

– 1 Cell has right side ruling.

• end column name Specifies the name of a column that ends a

straddle.

val A valid column name as defined in a colspec.

• horizontal straddle Specifies the number of columns a

straddled cell spans.

val An integer greater than 1 and no greater than the number of

columns.

• more rows Specifies the number of additional rows a straddled cell

spans.

Read/Write Rules Reference 86

f m p r o p e r t y

val An integer greater than 1 and no greater than the number of

rows in the table part. The total number of rows the cell occupies is
more rows+1.

• rotate Indicates how much to rotate the contents of a cell.

val The CALS model restricts this property to a boolean value, where

1 indicates a rotation of 90 degrees anti-clockwise. FrameMaker

extends the possible values to allow rotations of 0, 90, 180, and 270

degrees.

• row ruling Specifies whether the cell should have ruling on its

bottom side. This property does not specify the style or weight of the

ruling. The default ruling is defined by the relevant table format in the

structured template.

val

– 0 Cell has no bottom side ruling.

– 1 Cell has bottom side ruling.

• span name Applies a predefined CALS spanspec, starting at this cell.

val A valid spanspec name.

• start column name Specifies the name of a column that begins

a horizontal straddle.

val A valid column name as defined in a colspec.

• vertical straddle Specifies the number of rows a straddled cell

spans.

val An integer greater than 1 and no greater than the number of

rows in the section (head, body or foot) of the table that contains the

starting cell.

• cell angle Specifies the angle of rotation

val The degrees.

• use fill override Specifies whether a custom fill percentage

overrides the fill percentage specified in the table format.

val

– 0 Cell has no fill override.

– 1 Cell has fill override.

• fill override Specifies the fill percentage for the cell.

val A valid fill percentage.

f m p r o p e r t y

Structured Application Developer Reference 87

6. Table row elements

element "gi" {
 is fm table row element ["fmtag"];
 fm property prop value is val;.
. . .}

6.1 Arguments

prop • maximum height Specifies the maximum height for each row in

the table.

val A number plus a valid unit of measure, e.g. “24pt”, “15mm”. If not

supplied, the maximum height of the row is not limited.

• minimum height Specifies the minimum height for each row in the

table.

val A number plus a valid unit of measure, e.g. “12pt”, “9mm”. If not

supplied, the minimum height of the row is not limited.

• row type Sets the row type.

val

– heading

– body

– footing

• row ruling Specifies whether the cell should have ruling on its

bottom side. This property does not specify the style or weight of the

ruling. The default ruling is defined by the relevant table format in the

structured template.

val

– 0 Cell has no bottom side ruling.

– 1 Cell has bottom side ruling.

7. For CALS table colspecs:

element "gi" {
 is fm colspec;
 fm property prop value is val;
. . .}

7.1 Arguments

prop • cell alignment character

• cell alignment offset

• cell alignment type

• column name

Read/Write Rules Reference 88

f m p r o p e r t y

• column number

• column ruling

• column width

• row ruling

• vertical alignment

8. element "gi" {
 is fm spanspec;
 fm property prop value is val;
. . .}

8.1 Arguments

prop • cell alignment character

• cell alignment offset

• cell alignment type

• column ruling

• end column name

• row ruling

• span name

• start column name

• vertical alignment

9. Used at the top level

fm property prop value is “val”;
9.1 Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

• This rule applies only to an element corresponding to a cross-reference, graphic, equation,

marker, table, or table part element.

• Some FrameMaker properties have no natural markup counterparts. If you choose to not

translate such properties as markup attributes, a markup document will not contain

information on appropriate values for these properties. In this situation, you can use the fm
property rule to explicitly set property values when reading a markup document.

f m v a r i a b l e

Structured Application Developer Reference 89

• This rule can be used either at the highest level to set a default or within an element rule to

specify the translation of a property for a particular element.

• If you use this rule to set a property value explicitly, you cannot also have a markup attribute

that corresponds to this property. For example, the following rule is erroneous:

element "tab2" {
 is fm table element;
 attribute "w" is fm property column widths;
 fm property column widths value is "1in 2in";
}

Examples

• To translate the markup element table to a FrameMaker table with two columns:

element "table" {
 is fm table element;
 fm property columns value is "2";
}

On import to FrameMaker, the software creates the table as a 2-column table in FrameMaker.

• Assume you have a markup element halfpage that holds a 4.5 inch by 6.5 inch graphic

object; it does not use an attribute to store the size information. You can translate this to a

FrameMaker graphic as follows:

element "halfpage" {
 is fm graphic element;
 fm property width value is "6.5";
 fm property height value is "4.5";
}

See also

fm variable

On export, use the fm variable rule to tell FrameMaker what to do with certain variables. Use

this rule if you do not want them translated to entities. Read/write rules do not support double-

Related rules “is fm property” on page 114

“is fm property value” on page 122

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

Developer Guide, Chapter 23, Translating Graphics and Equations

Developer Guide, Chapter 24, Translating Cross-References

Developer Guide, Chapter 26, Translating Markers

Read/Write Rules Reference 90

f m v a r i a b l e

byte characters, so you cannot use this rule to process variables with double-byte characters in

their names.

Synopsis and contexts

fm variable ["var1", . . ., "varn"] drop;
Arguments

vari The name of a FrameMaker variable.

Details

• Use this rule when you export FrameMaker documents to markup documents. It applies only

to non-element variables, not to system variable elements.

• If vari is specified, this rule applies only to that variable. If no vari is specified, this rule

applies to all variables.

• If you use this rule, you may want to write a structure API client, or use an XSLT transform to

handle the export of variables or to create variables on import.

• You can have multiple occurrences of this rule in a rules document to determine different

treatment for different FrameMaker variables. You can have only one occurrence of the rule

with no explicitly listed variables. A given variable can be explicitly mentioned in only one

occurrence of this rule.

Examples

To translate the FrameMaker variables Licensor and Product as entities and discard all other

variables, use these rules:

entity "licensor" is fm variable;
entity "product" is fm variable;
fm variable drop;

See also

Related rules “is fm system variable element” on page 129

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

Developer Guide, Chapter 25, Translating Variables and System Variable

Elements

Structure Import/Export API Programmer’s Guide

f m v e r s i o n

Structured Application Developer Reference 91

fm version

The fm version rule specifies the version of the product being run. It is required and must be

the first rule in all rules documents. If you create your rules document with the New Read/Write

Rules command, this rule automatically appears in the document.

Synopsis and contexts

fm version is "8.0";
ArgumentsNone.

Details

Note that you would use the string "8.0" in this rule even though the product version may be

an incremental release above 8.0, such as 8.0.1.

See also

generate book

Use the generate book subrule of a highest-level reader rule to specify whether FrameMaker

should use elements or processing instructions to indicate where in a markup document to start

a book and its components in the corresponding FrameMaker book.

Synopsis and contexts

1. reader generate book
 use processing instructions;

2. reader generate book
{
 put element "gi1" in file ["fname1"];
 . . .
 put element "giM" in file ["fnameM"];
}

3. reader generate book [for doctype "dt1" [, . . . "dtN"]]
{
 put element "gi1" in file ["fname1"];
 . . .
 put element "giM" in file ["fnameM"];
}

Arguments

General information

on this topic

Developer Guide, Chapter 18, Read/Write Rules and Their Syntax

Read/Write Rules Reference 92

g e n e r a t e b o o k

dti A document type name.

gij A generic identifier.

fnamej A filename for the book component. FrameMaker adds a counter to the

name (before the suffix if there is one) as needed, to generate a unique

filename. You can use the $(bookname) variable to base the

component’s filename on the book filename (excluding any suffix). If you

do not supply this argument, the filename is gij.doc.

Details

• By default, when reading a markup document into FrameMaker, the software uses the <?FM
book ?> and <?FM document ?> processing instructions to indicate the start of a book

and of its components. The following rule confirms this default behavior:

reader generate book
 use processing instructions;

• Your DTD may be defined so that you can use elements to indicate the start of a book and its

components. When you use the second form of the generate book rule, FrameMaker

creates a book for every markup document you translate. When you use the third form of the

generate book rule, it creates a book only for markup documents whose DTD specifies the

document type you’ve listed in the rule. If you have a markup document with a different

document type, FrameMaker translates that document as a single FrameMaker document, even

if it contains elements referenced in put element rules. For example, assume you have this

rule:

reader generate book for doctype "manual"
 put element "chapter" in file;

If you translate a markup document whose highest-level element is report, that document

becomes a single FrameMaker document, even if it contains chapter descendant elements.

• When it encounters one of the gij elements specified in a put element subrule,

FrameMaker starts a new book component. Since the software does not allow an element to

be broken across files, it places the entire gij element in the same file, even if another element

appears that you’ve said should start a new file. To illustrate, assume the section element can

occur either within or outside of a chapter element and you have this rule:

reader generate book {
 put element "chapter" in file;
 put element "section" in file;
}

When FrameMaker encounters a chapter element, it starts a new file. If it encounters a

section element as a child of that chapter element, it does not start a new file. It continues

with the file started by the chapter element. On the other hand, if the software encounters

a section element outside a chapter element it does start a new file for it.

• Consider these points when dividing a markup document into book components:

g e n e r a t e b o o k

Structured Application Developer Reference 93

– Every FrameMaker document must contain exactly one highest-level element. That is, there

cannot be two elements in a single file that do not have an ancestor element in the same

file.

– A book element can contain substructure but cannot directly contain text. That is, child

elements that can contain text must occur in separate files.

Assume you have this rule:

reader generate book
 put element "chapter" in file;

And you have a markup document with the following element structure:

<manual>
<chapter>

<head>Introduction</head>
. . .

</chapter>
<appendix>

<head>The final word</head>
. . .

</appendix>
</manual>

When FrameMaker translates this document, it creates a book with manual as the highest-

level element in the book file. When it encounters the chapter element, the software starts

a new file for that element. When it encounters the appendix element, FrameMaker flags an

error, because your rules have not told it what to do with this element. It cannot put the

element in the same file as the preceding chapter element, because that would create two

highest-level elements in the same file. It also cannot put the appendix element in the book

file, because it contains text.

• By default, when it writes a FrameMaker book to markup, the software writes <?FM book ?>

and <?FM document ?> processing instructions for the book and book components. It does

this even if you use the generate book rule to have particular elements specify book

components when reading a markup document. If you do not want FrameMaker to output

these processing instructions, use writer do not output book processing
instructions.

Examples

• If you know that a markup document should always correspond to a FrameMaker book and

that individual files in the book should start when the document reaches a toc or chapter

element, you can use this rule:

reader generate book {
 put element "toc" in file;
 put element "chapter" in file "ch.doc";
}

Read/Write Rules Reference 94

i m p l i e d v a l u e i s

With this rule, FrameMaker creates a book for each markup document. In a markup document,

FrameMaker starts a new book component when it encounters a toc or chapter element.

For the first toc element, FrameMaker uses the filename toc1 unless a file of that name

already exists in the directory it is using. It continues that book component until it encounters

either another toc element or a chapter element. At that point, it starts a new book

component. It tries to put the first chapter element in a file called ch1.doc.

• Assume that a markup document whose highest-level element is either manual or book

should correspond to a FrameMaker book and any other markup document should correspond

to an individual FrameMaker document. Further assume that the books created from manual

and book elements should have new files for each instance of the elements chapter, front,

or toc. To accomplish all this, you can use this rule:

reader generate book for doctype "manual", "book"
{
 put element "chapter" in file "ch.doc";
 put element "front" in file;
 put element "toc" in file "$(bookname).toc";
}

With this rule, FrameMaker asks you for a name for the book file if you open a markup

document with manual as its document type. If you specify myfile.book as its name, and

the document contains two chapter elements, one front element, and one toc element,

FrameMaker creates the following files: myfile.book, ch1.doc, ch2.doc, front, and

myfile.toc.

See also

implied value is

Use the implied value is rule to specify default attribute values in your EDD to correspond

with imported elements that specify no value for the attribute. For example, assume your DTD

declares an element named list, which has an attribute named style defined as

<!ATTLIST list style (bul | num) #IMPLIED>. For importing the DTD, you can use

this rule to set up a default value in the EDD for the Style attribute of the List element. Then,

if you import a list element that has no value for style, this default attribute value will be used

Related rules “output book processing instructions” on page 143

General information

on this topic

Developer Guide, Chapter 28, Processing Multiple Files as Books

i m p l i e d v a l u e i s

Structured Application Developer Reference 95

for formatting purposes. Also, when you export the EDD, the DTD will declare the style attribute

for the list element as #IMPLIED.

Synopsis and contexts

1. attribute "attr" {. . .
 implied value is "val";
. . .}

2. element "gi" {. . .
 attribute "attr" {. . .
 implied value is "val";
. . .} . . .}

Arguments

attr The name of an impliable attribute in markup.

val A value to use for the attr attribute.

gi A markup element’s name (generic identifier).

Details

• This rule is for importing DTDs and exporting EDDs. In FrameMaker, a default attribute value

can only be specified in the EDD, so this rule has no effect when importing a markup instance

or exporting a FrameMaker document.

• This rule specifically does not supply an attribute value for an element that has no value in the

markup instance. It only sets up a default attribute value in the EDD. This default value can be

used for formatting by attributes. When you export the document, FrameMaker will not add a

value for the attribute to the element’s start tag.

• The rule can be used in a highest-level attribute rule to specify the value to use for that

attribute in any element. Alternatively, it can be used in an attribute rule within an

element rule to specify the value for that element only.

Examples

Assume you have these declarations for a markup element used for cross-references:

<!ELEMENT xref EMPTY>
<!ATTLIST xref
 id IDREF #IMPLIED
 format CDATA #IMPLIED>

Read/Write Rules Reference 96

i n c l u d e d t d

And you have this rule:

element "xref" {
 is fm cross-reference element;
 attribute "format" {
 is fm property cross-reference format;
 implied value is "Page";
}}

When FrameMaker encounters an instance of the xref element in a markup document and that

instance does not have a value for the format attribute, the software use the Page cross-

reference format for the cross-reference in the FrameMaker document.

See also

include dtd

By default, when creating a markup document, FrameMaker includes in the document type

definition an external identifier that refers to the DTD file. Therefore, it does not include a copy of

actual declarations in the document type declaration subset. The include dtd rule tells

FrameMaker to do so.

Synopsis and contexts

writer [do not] include dtd;
ArgumentsNone.

Details

• You use this rule when you export FrameMaker documents to markup documents. If this rule

is specified, FrameMaker does not generate an external identifier in the DOCTYPE declaration.

• To confirm the default behavior, you can use the opposite rule:

writer do not include dtd;

• The include dtd rule and the external dtd rule are mutually exclusive. That is, you

cannot use both of these rules in the same read/write rules file. (If you try to put both of these

rules in the same file, you will get an alert.) Also, the include dtd rule and the write
structure document instance only rule are mutually exclusive.

Related rules “value” on page 161

Rules mentioned in

synopses

“attribute” on page 44

“element” on page 54

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

“Default value” on page 198

i n c l u d e d t d

Structured Application Developer Reference 97

• To write an entire markup document, including a DTD and (for SGML) an SGML declaration with

the document instance, you must use the following rules:

writer {
include sgml declaration;
include dtd;

}

• This rule uses the DTD that is specified in the current structure application. If that DTD includes

references to external files, this rule does not expand those references as it writes out the DTD.

Instead, it writes out the references as they appear in the parent DTD file.

• You can use this rule to translate the EDD from the current document as an a DTD that is

written in the markup document. To do this, use the include dtd rule, but use a structure

application that does not specify a DTD in its definition. Be warned that if your document uses

the CALS table model, the resulting DTD may be incorrect.

• When you use this rule, no Schema information is included in the output. If you use this rule

to output an internal DTD and the XML structure application specifies a Schema file for export,

that file is converted to internal DTD (see Chapter 6, “XML Schema to DTD Mapping”) and that

DTD is saved with the markup document.

If the XML structure application specifies both a Schema file and a DTD, the DTD is output as

the internal DTD and the Schema is dropped.

If the XML structure application specifies neither a Schema file nor a DTD, an internal DTD is

created from the first of these sources that is available:

– an external DTD for the imported document;

– a DTD that is the result of conversion from a Schema in the imported document;

– the element catalog of the template.

Examples

If your document type declarations are in a file called report.dtd, then by default FrameMaker

includes this document type declaration in the document it creates on export:

<!DOCTYPE report SYSTEM "report.dtd" [
. . . more declarations specific to this document instance . . .
]>

If you specify the include dtd rule, then FrameMaker includes this document type declaration

in the document it creates:

<!DOCTYPE report [
. . . declarations specific to this document instance . . .
. . . contents of the file, report.dtd . . .
]>

Read/Write Rules Reference 98

i n c l u d e s g m l d e c l a r a t i o n

See also

include sgml declaration

By default, FrameMaker does not include an SGML declaration in a generated SGML document.

The sgml declaration rule tells FrameMaker to include one. The SGML declaration is copied

from the file in the associated application subset. To see the default SGML declaration used by

FrameMaker, see Chapter 9, “SGML Declaration.”

Synopsis and contexts

writer [do not] include sgml declaration;
ArgumentsNone.

Details

• To confirm the default behavior, you can use the opposite rule:

writer do not include sgml declaration;

• You cannot use the include sgml declaration rule in the same read/write rules file as

the write sgml document instance only rule. Note that using both rules in the

same rules file does not give an error. Also, “write sgml document instance only” takes priority,

regardless of order.

• To write an entire SGML document, including an SGML DTD and SGML declaration with the

document instance, you must use the following rules:

writer {
include sgml declaration;
include dtd;

}

See also

Related rules “external dtd” on page 70

“include sgml declaration,” next

“write structured document” on page 163

“write structured document instance only” on page 163

Note: XML: This read/write rule is for SGML-only.

Related rules “external dtd” on page 70

“include dtd,” (the previous section)

“write structured document” on page 163

“write structured document instance only” on page 163

i n s e r t t a b l e p a r t e l e m e n t

Structured Application Developer Reference 99

insert table part element

You use the insert table part element rule when creating a FrameMaker table element

on import of a markup document. This rule tells FrameMaker to create a table part of the

designated type, even if the markup document does not contain content for that table part.

Synopsis and contexts

element "gi" {. . .
 is fm table element ["fmtag1"];
 reader insert table part element ["fmtag2"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag1 A FrameMaker element tag for a table element. These names are case-

sensitive and must appear in the rule the same as in the EDD.

part One of the keywords: title, heading, or footing.

fmtag2 A FrameMaker element tag for a table part element.

Details

By default, as the last step in creating a table element when reading a markup document,

FrameMaker discards parts of the table that have no content, even if the general rule for the

element requires that table part. (Your EDD may supply the content, for example, by using format

rules that specify a prefix for the element.) If you do not want FrameMaker to remove the table

part element with no content, OR if you want FrameMaker to create a table part element for you

when the markup instance does not contain this element, use the insert table part
element rule.

Examples

Assume you have a markup element statetab, which you represent as a 3-column table in

FrameMaker, with the same table headings everywhere it occurs. You use formatting rules in the

EDD to specify the table headings. In this situation, the markup document does not include

information that corresponds to the table headings, so you want the software to add the table

heading element when reading such a markup instance and drop it when exporting a

FrameMaker document to markup. Suppose your DTD has these declarations:

<!ELEMENT statetab ((state, pop, income)+)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT pop (#PCDATA)>
<!ELEMENT income (#PCDATA)>

Read/Write Rules Reference 100

i n s e r t t a b l e p a r t e l e m e n t

and your EDD has these FrameMaker element definitions:

Element (Table): State Table

 General rule: State Head, State Body

 Text format rules

 1. In all contexts.

 Use paragraph format: TableCell

Element (Table Heading): State Head

 General rule: State Head Row

 Text format rules

 1. In all contexts.

 Default font properties

 Weight: Bold

Element (Table Row): State Head Row

 General rule: Label

Element (Table Cell): Label

 General rule: <EMPTY>

 Text format rules

 1. If context is: {first}

 Numbering properties

 Autonumber format: State

 Else if context is: {last}

 Numbering properties

 Autonumber format: Household Income

 Else

 Numbering properties

 Autonumber format: Population

Element (Table Body): State Body

 General rule: State Row+

Element (Table Row): State Row

 General rule: State, Income, Population

Element (Table Cell): State

 General rule: <TEXT>

Element (Table Cell): Income

 General rule: <TEXT>

Element (Table Cell): Population

 General rule: <TEXT>

Note that the Label element provides the text for the column headings.

i n s e r t t a b l e p a r t e l e m e n t

Structured Application Developer Reference 101

You could use these rules:

element "statetab" {
 is fm table element "State Table";
 fm property columns value is "3";
 reader insert table heading element "State Head";
}

element "state" {
 is fm table cell element;
 fm property column number value is "1";
 fm property row type value is "Body";
}

element "income" is fm table cell element;

element "pop" is fm table cell element "Population";

fm element "State Head" drop;
fm element "State Body" unwrap;
fm element "State Row" unwrap;

To convert the following instance to the desired FrameMaker document:

<statetab>
<state>Georgia</state>
<pop>15,000,000</pop>
<income>25,000</income>
<state>Mississippi</state>
<pop>8,000,000</pop>
<income>18,000</income>

</statetab>

• The first rule identifies statetab as a 3-column table element and tells it to always create a

heading element for an occurrence of this statetab.

• The second rule identifies state as a table cell that must always occur in the first column of

a body row. This ensures that FrameMaker starts a new table row whenever it encounters a

state element.

• The other element rules identify other elements used as table cells. The fm element drop

rule causes the software to drop the element that was created by FrameMaker per the insert
element rule so that it does not appear in the markup. Note also that it is necessary for the

software to have a tablerow element and a tablebody element in its table structure.

However, these do not appear in the markup document. FrameMaker creates such necessary

elements by default. Since they do not correspond to markup elements, they are unwrapped

on export to markup—not dropped, because that would lose the contents of the entire table.

Read/Write Rules Reference 102

i s f m a t t r i b u t e

See also

is fm attribute

Use the is fm attribute rule to specify that a markup attribute translates to a FrameMaker

attribute. The optional parts of this rule allow you to have the software make several changes to

the attribute during translation. Read/write rules do not support double-byte characters, so you

cannot use this rule to process attributes with double-byte characters in their names.

Synopsis and contexts

1. [mdv] attribute "attr" {. . .
 is fm [read-only] [fmtype] attribute
 ["fmattr"] [range from low to high];
. . .}

2. element "gi" {. . .
 [mdv] attribute "attr"
 is fm [read-only] [fmtype] attribute
 ["fmattr"] [range from low to high];
. . .}

Arguments

mdv An optional markup declared value, specifying the type of the markup

attribute. Legal values for an XML application are:

• cdata

• nmtoken

• nmtokens

• entity

• entities

• id

• idref

• idrefs

• notation

• group.

Legal values for an SGML application are:

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

i s f m a t t r i b u t e

Structured Application Developer Reference 103

• cdata

• name

• names

• nmtoken

• nmtokens

• number

• numbers

• nutoken

• nutokens

• entity

• entities

• notation

• id

• idref

• idrefs

• group.

attr A markup attribute name.

fmtype A FrameMaker attribute type. Legal values are: String, Strings, Integer,

Integers, Real, Reals, UniqueID, IDReference, IDReferences, and Choice.

fmattr A FrameMaker attribute name.

low A number, indicating the low end of a numeric range.

high A number, indicating the high end of a numeric range.

Details

• You can use the is fm attribute rule in a highest-level attribute rule to specify the

translation of that attribute in all elements for which it is defined. Or you can use it in an

attribute subrule in an element rule to specify the translation of the attribute in only

that element.

• You may want some markup attributes to become FrameMaker properties. If so, you cannot

also import them as FrameMaker attributes. For information on the defined FrameMaker

properties, see “is fm property” on page 114.

• To specify only that the attribute is an attribute in both representations, use this version:

attribute "attr" is fm attribute;

Read/Write Rules Reference 104

i s f m a t t r i b u t e

• To also rename it during translation, use this version:

attribute "attr" is fm attribute "fmattr";

• To specify that the FrameMaker attribute is read-only—that is, that an end user cannot change

the attribute’s value—use this version:

attribute "attr" is fm read-only attribute;

• To specify that an attribute that takes numeric values can have values only in a particular range,

use this version:

attribute "attr" is fm attribute range from low to high;

• To specify that a markup attribute with a particular declared value translates to a FrameMaker

attribute of a type other than the default translation, use this version:

mdv attribute "attr" is fm fmtype attribute;

• Note that you can use more than one of the optional pieces of the is fm attribute rule

at the same time. For example, you can both rename an attribute and state that it is read-only

by using this version:

attribute "attr" is fm read-only attribute "fmattr";

Examples

• To translate the markup sec attribute to the FrameMaker SecurityRanking attribute in all

elements in which it occurs, use this rule:

attribute "sec" is fm attribute "SecurityRanking";

• To translate the markup sec attribute to the FrameMaker SecurityRanking attribute in

most elements in which it occurs, but to change it to the Section attribute in the BookPart

element, use these rules:

element "BookPart"
 attribute "sec" is fm attribute "Section";

attribute "sec" is fm attribute "SecurityRanking";

• Assume you have a markup attribute named perc with a declared value of CDATA, and

assume you know that this attribute always has values that are integers in the range from 0 to

100. You can translate the perc attribute to the Percentage attribute with this rule:

cdata attribute "perc"
 is fm integer attribute "Percentage" range from 0 to 100;

i s f m c h a r

Structured Application Developer Reference 105

• Assume that a markup element has an attribute with declared value name and that the

attribute has a defined set of allowable values. You can translate that attribute and some of its

possible values with the following rule:

element "fish" {
 name attribute "loc" {
 is fm choice attribute "CommonLocation";
 value "micro" is fm value "Micronesia";
 value "galap" is fm value "Galapagos Islands";
 value "png" is fm value "Papua New Guinea";
}}

See also

is fm char

For SGML, use the is fm char rule to translate an SGML SDATA entity to a single character

in FrameMaker. For XML, use this rule to translate an internal entity to a single character in

FrameMaker.

Synopsis and contexts

1. entity "ename" is fm char ch [in "fmchartag"];
2. reader entity "ename" is fm char ch [in "fmchartag"];
Arguments

ename An entity name.

ch A one-character string or a numeric character code (specified using the

syntax for an octal, hexadecimal, or decimal number described in

Developer Guide, page 278: Strings and constants). Note that if the

desired character is a digit or a white-space character, you must enter it

as a numeric character code.

fmchartag A FrameMaker character format tag.

Note that the character format must use a non-standard font family such

as Symbol or Zapf Dingbats for this argument to take effect.

Related rules “fm attribute” on page 74

Rules mentioned in

synopses

“attribute” on page 44

“element” on page 54

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 106

i s f m c h a r

Details

• For SGML, instead of using this rule to translate an SDATA entity, you can use a parameter

literal of a particular form. For information on how to do so, see Developer Guide, page 328:

Translating SDATA entities as special characters in FrameMaker.

• For XML, SDATA entities are not allowed. This rule translates internal entities to FrameMaker

characters, and it translates FrameMaker to internal entities.

• You can use the is fm char rule within an entity rule at the highest level to have the

translation occur in both directions. Or you can put the entity rule inside a reader rule to

have the translation occur only when reading a markup document into FrameMaker. For

example, your SGML document might use a period entity for entering some instances of the

period character in your SGML document. If you use this rule:

entity "period" is fm char ".";

then the entity references for period in the instance are translated correctly to the period

character in FrameMaker. But on export, all periods in the document become references to the

period entity (which is not likely what you had in mind). To have the period entities read

correctly when importing an instance, but have periods remain the period character on export,

use this version of the rule:

reader
 entity "period" is fm char ".";

• Without the in clause, the software translates the entity using the default character format of

the enclosing paragraph element. Frequently, however, special characters require a font

change. In these cases, you use the in clause.

• For SGML, DTDs frequently use the entity sets defined in Annex D of the SGML Standard, often

called ISO public entity sets, for providing commonly used special characters. FrameMaker

includes copies of these entity sets and provides rules to handle them for your application. For

information on how FrameMaker supports ISO public entities, see Chapter 10, “ISO Public

Entities.”

Examples

• To translate the SDATA entity sum as the mathematical summation sign in the Symbol font (

), you could use either of these rules in your rules document:

entity "sum" is fm char "S" in "Symbol";

entity "sum" is fm char "\x53" in "Symbol";

entity "sum" is fm char 0x53 in "Symbol";

If FrameMaker encounters a reference to the summation entity when importing a markup

document, it replaces the reference with  (assuming your FrameMaker template defines the

Symbol character format appropriately and the entity is declared in the DTD). If the software

encounters  when exporting an document, it generates a reference to the summation entity

i s f m c r o s s - r e f e r e n c e e l e m e n t

Structured Application Developer Reference 107

(assuming the Symbol character format is defined appropriately and applied to the character,

and that the DTD for your application has an entity declaration for “sum”).

• To translate both the thin and en internal entity references in an XML instance to en spaces

in FrameMaker and to write all en spaces as an en entity reference, use these rules:

entity "en" is fm char 0x13;
reader entity "thin" is fm char 0x13;

See also

is fm cross-reference element

Use the is fm cross-reference element rule to identify a markup element that

translates to a cross-reference element in FrameMaker. You can choose either to have the same

name in both representations or to change the name during translation. The markup element

should have an attribute of type IDREF and declared content of EMPTY. Read/write rules do not

support double-byte characters, so you cannot use this rule to process elements with double-byte

characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm cross-reference element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use the is fm cross-reference element rule, the other subrules of the element

rule that you can use for that markup element are as follows:

• attribute specifies what to do with a markup element’s attributes.

• fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

• fm property specifies what to do with FrameMaker properties associated with the element.

Rules mentioned in

synopses

“entity” on page 59

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

Read/Write Rules Reference 108

i s f m e l e m e n t

• reader drop content specifies that the content but not the structure of an element

should be discarded on import of a markup document.

Examples

• To have the markup element xref become the FrameMaker cross-reference element Xref,

use this rule:

element "xref" is fm cross-reference element;

• To have it become the FrameMaker cross-reference element CrossRef, use this rule:

element "xref" is fm cross-reference element "CrossRef";

See also

is fm element

If you do not specify a value for fmtag, the is fm element rule specifies only that a markup

element remains an element in FrameMaker. This is the default behavior. With a value for fmtag,

this rule changes the element name when it is translated between markup and FrameMaker.

Synopsis and contexts

element "gi" {. . .
 is fm element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use the is fm element rule, the other subrules of the element rule that you can use

for that markup element are as follows:

• attribute specifies what to do with a markup element’s attributes.

• fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

• fm property specifies what to do with FrameMaker properties associated with the element.

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 24, Translating Cross-References

i s f m e q u a t i o n e l e m e n t

Structured Application Developer Reference 109

• reader drop content specifies that the content but not the structure of an element

should be discarded on import of a markup document.

• writer drop content specifies that the content but not the structure of an element

should be discarded on export of a FrameMaker document.

XSLT interaction

XSLT allows precise, context based control over element renaming. For consistency and

maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

To translate the markup element par to the FrameMaker element Paragraph, use this rule:

element "par" is fm element "Paragraph";

See also

is fm equation element

Use the is fm equation element rule to identify a markup element that translates to an

equation element in FrameMaker. You can choose either to have the same name in both

representations or to change the name during translation. Read/write rules do not support

double-byte characters, so you cannot use this rule to process elements with double-byte

characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm equation element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup

element are as follows:

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 110

i s f m f o o t n o t e e l e m e n t

• attribute specifies what to do with a markup element’s attributes.

• fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

• fm property specifies what to do with FrameMaker properties associated with the element.

• writer equation tells FrameMaker what to do with equation elements.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker equation elements. However,

XSLT allows precise, context based control over element renaming. For consistency and

maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

• To have FrameMaker equation element Eqn become the markup element eqn, use this rule:

element "eqn" is fm equation element;

• To have FrameMaker equation element Equation become the markup element eqn, use this

rule:

element "eqn" is fm equation element "Equation";

See also

is fm footnote element

Use the is fm footnote element rule to identify a markup element that translates to a

footnote element in FrameMaker. You can choose either to have the same name in both

representations or to change the name during translation. Read/write rules do not support

double-byte characters, so you cannot use this rule to process elements with double-byte

characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm footnote element ["fmtag"];
. . .}

Arguments

Related rules “is fm graphic element” on page 111

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

i s f m g r a p h i c e l e m e n t

Structured Application Developer Reference 111

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup

element are as follows:

• attribute specifies what to do with a markup element’s attributes.

• fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker footnote elements. However,

XSLT allows precise, context based control over element renaming. For consistency and

maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

• To translate the markup element fn to the Fn footnote element in FrameMaker, use this rule:

element "fn" is fm footnote element;

• To translate it to the Footnote footnote element, use this rule:

element "fn" is fm footnote element "Footnote";

See also

is fm graphic element

Use the is fm graphic element rule to identify a markup element that translates to a

graphic element in FrameMaker. You can choose either to have the same name in both

representations or to change the name during translation. Read/write rules do not support

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 112

i s f m g r a p h i c e l e m e n t

double-byte characters, so you cannot use this rule to process elements with double-byte

characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm graphic element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup

element are as follows:

• attribute specifies what to do with a markup element’s attributes.

• fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

• fm property specifies what to do with FrameMaker properties associated with the element.

• writer anchored frame tells FrameMaker what to do with graphic elements other than

those with a single non-internal FrameMaker facet.

• writer facet tells FrameMaker what to do with an imported graphic element that has a

single non-internal FrameMaker facet.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker graphic elements. However,

XSLT allows precise, context based control over element renaming. For consistency and

maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

• To translate the markup element pict to the Pict graphic element in FrameMaker, use this

rule:

element "pict" is fm graphic element;

• To translate it to the Picture graphic element, use this rule:

element "pict" is fm graphic element "Picture";

See also

Related rules “is fm equation element” on page 109

i s f m m a r k e r e l e m e n t

Structured Application Developer Reference 113

is fm marker element

Use the is fm marker element rule to identify a markup element that translates to a

marker element in FrameMaker. You can choose either to have the same name in both

representations or to change the name during translation. Read/write rules do not support

double-byte characters, so you cannot use this rule to process elements with double-byte

characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm marker element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup

element are as follows:

• attribute specifies what to do with a markup element’s attributes.

• fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

• fm property specifies what to do with FrameMaker properties associated with the element.

• marker text is specifies whether the text of a FrameMaker marker element should be

element content or an attribute value in markup.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker marker elements. However,

XSLT allows precise, context based control over element renaming. For consistency and

maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 114

i s f m p r o p e r t y

Examples

• To translate the markup element m to the M marker element in FrameMaker, use this rule:

element "m" is fm marker element;

• To translate it to the Marker marker element, use this rule:

element "m" is fm marker element "Marker";

See also

is fm property

Use the is fm property rule to translate a markup attribute to a FrameMaker property. This

rule can apply in a highest-level attribute rule to set a default. Or it can apply within an

element rule for a table, table part, marker, cross-reference, graphic, or equation element, to set

the property only for that element. Read/write rules do not support double-byte characters, so

you cannot use this rule to process attributes with double-byte characters in their names.

Synopsis and contexts

1. attribute "attr" {. . .
 is fm property prop;
. . .}

2. element "gi" {. . .
 attribute "attr" {. . .
 is fm property prop;
. . .} . . .}

Arguments

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

prop A FrameMaker property. Possible properties are:

• For cross-reference elements:

– cross-reference format

Related rules “marker text is” on page 140

“fm marker” on page 76

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 26, Translating Markers

i s f m p r o p e r t y

Structured Application Developer Reference 115

– cross-reference id

• For graphic and equation elements:

– alignment Indicates the anchored frame’s horizontal alignment

on the page.

– angle Indicates an angle of rotation for the anchored frame that

contains the graphic. The markup must specify exact multiples of 90

degrees. Otherwise, the value is ignored and the graphic is imported

at 0 degrees which is the default. Examples:

– 0 No rotation (default).

– 90 Rotate 90 degrees clockwise.

– -90 Rotate 90 degrees anticlockwise.

– 180 Rotate 180 degrees.

– 270 Rotate 270 degrees.

– baseline offset Indicates how far from the baseline of a

paragraph to place an anchored frame. Baseline offset is relevant

only for anchored frames whose position attribute is one of inline,

sleft, sright, snear, or sfar.

– cropped Indicates whether a wide graphic should be allowed to

extend past the margins of the text frame. The cropped property

is relevant only for anchored frames whose position attribute is

one of top, below, or bottom.

– dpi Indicates how to scale an imported graphic object.

– entity Provides the entity name of the imported graphic.

– file Provides the file name of the imported graphic.

– floating Indicates whether the graphic should be allowed to

float from the paragraph to which it is attached. The floating

property is relevant only for anchored frames whose position

property is one of top, below, or bottom.

– height Indicates the height of the anchored frame. The height of

a single imported graphic object is the sum of the height of the

object plus twice the value of the vertical offset property.

– horizontal offset Indicates how far the graphic object is

offset from the right and left edges of the anchored frame.

– import angle Indicates an angle of rotation in degrees for the

graphic inside its anchored frame.

– import by reference or copy Indicates whether an

imported graphic object remains in a separate file or is copied into

the FrameMaker document on import from markup.

– import size indicates the size of the imported graphic object

by specifying a width and height.

Read/Write Rules Reference 116

i s f m p r o p e r t y

– near-side offset Indicates how far to set a frame from the

text frame to which the frame is anchored. It is relevant only for

anchored frames whose position attribute is one of sleft,

sright, snear, or sfar.

val A number plus a valid unit of measure, e.g. “12pt”, “10mm”. If

not supplied, the value is 0.

– position Indicates where on the page to put the anchored

frame. If not supplied, the value is below. Possible anchoring

position values are as follows:

– inline At insertion point.

– top At top of column.

– below Below current line.

– bottom At bottom of column.

– sleft Outside column - left side.

– sright Outside column - right side.

– snear Outside column - right side.

– sfar Outside column - side closer to the page edge.

– sinside Outside column - side closer to the binding.

– soutside Outside column - side farther from the binding.

– tleft Outside text frame - left side.

– tright Outside text frame - right side.

– tnear Outside text frame - side closer to the page edge.

– tfar Outside text frame - side farther from the page edge.

– tinside Outside text frame - side closer to the binding.

– toutside Outside text frame - side closer to the binding.

– runin Run into paragraph.

– sideways Indicates that the imported graphic will be flipped left

to right to give a mirror image.

– vertical offset Indicates how far the graphic object is offset

from the top and bottom edges of the anchored frame.

– width Indicates the width of the anchored frame. The value for a

single imported graphic object is the sum of the width of the object

plus twice the value of the horizontal offset property.

• For marker elements:

– marker text Provides the text content of the marker.

– marker type Identifies the type of marker.

• For table elements:

i s f m p r o p e r t y

Structured Application Developer Reference 117

– column ruling Specifies whether all columns should have

ruling on their right side. This property does not specify the style or

weight of the ruling. The default ruling is defined by the relevant

table format in the structured template.

– column widths The width of successive columns in the table.

On import from markup these widths are reapplied regardless of

any changes made by the user. If proportional widths are used, the

pgwide attribute or page wide property determines the table

overall width.

– columns The number of columns in the table. This is essential for

the correct rendering of the table.

– page wide This is relevant only to tables whose columns use

proportional widths on pages with more than a single column. In

this case, the attribute indicates whether the entire table should be

the width of the column in which it is anchored, or the width of the

overall text frame.

– row ruling Specifies whether all rows should have ruling on

their bottom side. This property does not specify the style or weight

of the ruling. The default ruling is defined by the relevant table

format in the structured template.

Expected markup attribute value:

– 0 Rows have no ruling.

– 1 Rows have ruling.

– table border ruling Specifies whether the table should

have ruling around its outside borders. This property does not

specify the style or weight of the ruling. The default ruling is defined

by the relevant table format in the structured template.

Expected markup attribute value:

– all Rows have no ruling.

– top Rows have ruling.

– table format Specifies the table format for all instances of the

FrameMaker table element.

Expected markup attribute value: A name of a table format that is

present in the application’s structured template.

• For table cell elements:

– column name Associates a name with a cell in a given column.

– column number Indicates the column number that the cell will

start in.

– column ruling Specifies whether the cell should have ruling

on its right side. This property does not specify the style or weight

Read/Write Rules Reference 118

i s f m p r o p e r t y

of the ruling. The default ruling is defined by the relevant table

format in the structured template.

Expected markup attribute value:

– 0 Cell has no right side ruling.

– 1 Cell has right side ruling.

– end column name Specifies the name of a column that ends a

straddle.

– horizontal straddle Specifies the number of columns a

straddled cell spans.

– more rows Specifies the number of additional rows a straddled

cell spans.

Expected markup attribute value: An integer greater than 1 and no

greater than the number of rows in the table part. The total number

of rows the cell occupies is more rows+1.

– rotate Indicates how much to rotate the contents of a cell.

Expected markup attribute value: The CALS model restricts this

property to a boolean value, where 1 indicates a rotation of 90

degrees anti-clockwise. FrameMaker extends the possible values to

allow rotations of 0, 90, 180, and 270 degrees.

– row ruling Specifies whether the cell should have ruling on its

bottom side. This property does not specify the style or weight of

the ruling. The default ruling is defined by the relevant table format

in the structured template.

Expected markup attribute value:

– 0 Cell has no bottom side ruling.

– 1 Cell has bottom side ruling.

– span name Applies a predefined CALS spanspec, starting at this

cell.

Expected markup attribute value: A valid spanspec name.

– start column name Specifies the name of a column that

begins a horizontal straddle.

Expected markup attribute value: A valid column name as defined in

a colspec.

– vertical straddle Specifies the number of rows a straddled

cell spans.

Expected markup attribute value: An integer greater than 1 and no

greater than the number of rows in the section (heading, body or

footing) of the table that contains the starting cell.

i s f m p r o p e r t y

Structured Application Developer Reference 119

– use fill override Specifies whether a custom fill percentage

for the cell shading overrides the fill percentage specified in the

table format.

Expected markup attribute value:

– 0 Cell has no fill override.

– 1 Cell has fill override.

– fill override Specifies the fill percentage for the cell shading

that overrides the fill percentage in the table format.

Expected markup attribute value: A valid fill percentage for the cell

shading.

– use shading override Specifies whether a custom color for

the cell shading overrides the shading color specified in the table

format.

Expected markup attribute value:

– 0 Cell has no shading override.

– 1 Cell has shading override.

– fill override Specifies the color for cell shading that

overrides the shading color in the table format.

Expected markup attribute value: A valid shading color for the cell

shading.

– use bottom ruling override Specifies whether the cell

bottom ruling overrides the bottom ruling specified in the table

format.

Expected markup attribute value:

– 0 Cell has no bottom ruling override.

– 1 Cell has bottom ruling override.

– bottom ruling override Specifies the style of the cell

bottom ruling that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell bottom

ruling.

– use top ruling override Specifies whether the cell top

ruling overrides the top ruling specified in the table format.

Expected markup attribute value:

– 0 Cell has no top ruling override.

– 1 Cell has top ruling override.

– top ruling override Specifies the style of the cell top ruling

that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell top ruling.

Read/Write Rules Reference 120

i s f m p r o p e r t y

– use left ruling override Specifies whether the cell left

ruling overrides the left ruling specified in the table format.

Expected markup attribute value:

– 0 Cell has no left ruling override.

– 1 Cell has left ruling override.

– left ruling override Specifies the style of the cell left

ruling that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell left ruling.

– use right ruling override Specifies whether the cell

right ruling overrides the right ruling specified in the table format.

Expected markup attribute value:

– 0 Cell has no right ruling override.

– 1 Cell has right ruling override.

– right ruling override Specifies the style of the cell right

ruling that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell right ruling.

– angle Specifies the angle of rotation for the cell that overrides the

angle in the table format.

Expected markup attribute value: A valid angle of rotation for the cell.

• For table row elements: maximum height, minimum height,

row type, or row ruling.

– maximum height Specifies the maximum height for each row in

the table.

Expected markup attribute value: A number plus a valid unit of

measure, e.g. “24pt”, “15mm”. If not supplied, the maximum height

of the row is not limited.

– minimum height Specifies the minimum height for each row in

the table.

Expected markup attribute value: A number plus a valid unit of

measure, e.g. “12pt”, “9mm”. If not supplied, the minimum height of

the row is not limited.

– row type Sets the row type as heading, body or footing.

– row ruling Specifies whether the cell should have ruling on its

bottom side. This property does not specify the style or weight of

the ruling. The default ruling is defined by the relevant table format

in the structured template.

Expected markup attribute value:

– 0 Cell has no bottom side ruling.

– 1 Cell has bottom side ruling.

i s f m p r o p e r t y

Structured Application Developer Reference 121

– row placement Specifies the row placement in the table.

Expected markup attribute value: A valid position for the row in

the table.

– keep with prev Specifies whether the row is always on the

same page as the previous row in the table.

Expected markup attribute value:

– 0 Row need not remain on the same page as the previous

row.

– 1 Row is always on the same page as the previous row in the

table.

– keep with next Specifies whether the row is always on the

same page as the next row in the table.

Expected markup attribute value:

– 0 Row need not remain on the same page as the next row.

– 1 Row is always on the same page as the next row in the

table.

• For CALS table colspecs:

– cell alignment character

– cell alignment offset

– cell alignment type

– column name

– column number

– column ruling

– column width

– row ruling

– vertical alignment

• For CALS table spanspecs:

– cell alignment character

– cell alignment offset

– cell alignment type

– column ruling

– end column name

– row ruling

– span name

– start column name

– vertical alignment

Read/Write Rules Reference 122

i s f m p r o p e r t y

Details

• If you use the is fm property rule to translate a markup attribute to a FrameMaker

property, the markup attribute does not also appear as a FrameMaker attribute.

• If you use this rule in a highest-level attribute rule, it applies only to elements that have

that attribute and are of the appropriate type. For example, if you have these declarations:

<!ATTLIST (graphic | table) w CDATA #IMPLIED>

and these rules:

attribute "w" is fm property width;
element "graphic" is fm graphic element;
element "table" is fm table element;

the w attribute becomes the width property of the graphic element but remains an

attribute for the table element, since tables do not have a width property. If you intended

w to be the column width for tables, you should use these rules:

element "graphic" {
 is fm graphic element;
 attribute "w" is fm property width;
}

element "table" {
 is fm table element;
 attribute "w" is fm property column width;
}

Examples

• The markup attribute w may be used for multiple elements to represent the width of a table’s

columns. To translate it to the FrameMaker property column width:

attribute "w" is fm property column width;

• To translate the attribute form to the cross-reference formatting property cross-
reference format for the element xref:

element "xref" {
 is fm cross-reference element;
 attribute "form" is fm property cross-reference format;
}

See also

Related rules “fm property” on page 78

“is fm property value,” next

Rules mentioned in

synopses

“element” on page 54

“attribute” on page 44

i s f m p r o p e r t y v a l u e

Structured Application Developer Reference 123

is fm property value

Use the is fm property value rule when a markup attribute has a name token group as

its declared value and you want to rename the individual name tokens when translating to and

from FrameMaker property values. Read/write rules do not support double-byte characters, so

you cannot use this rule to process attributes with double-byte characters in their names.

Synopsis and contexts

1. value "token" is fm property value propval;
2. attribute "attr" {. . .

 value "token" is fm property value propval;
. . .}

3. element "gi" {. . .
 attribute "attr" {. . .
 value "token" is fm property value propval;
. . .} . . .}

Arguments

token A token in a name token group.

propval A defined FrameMaker property value.

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

Details

• This rule can be used at the highest level to set a default, or within an attribute rule.

• Use this rule when the corresponding markup attribute translates to a property in FrameMaker.

If the markup attribute translates to a choice attribute instead, you need to use the is fm
value rule to specify the correspondence between markup tokens and FrameMaker attribute

choices.

General information

on this topic

Developer Guide, page 345: Formatting properties for tables

Developer Guide, page 373: Anchored frame properties

Developer Guide, page 375: Other graphic properties

Developer Guide, Chapter 26, Translating Markers

Developer Guide, Chapter 24, Translating Cross-References

Read/Write Rules Reference 124

i s f m p r o p e r t y v a l u e

• When using this rule, remember that markup does not permit a token to appear in the declared

value of more than one attribute of an element. For example, the following rule:

element "picture" {
 is fm graphic element;
 attribute "place" {
 is fm property position;
 value "left" is fm property value subcol left;
 }
 attribute "just" {
 is fm property alignment;
 value "left" is fm property value align left;
}}

<!ATTLIST picture
 place (left, sright, snear, . . .)
 just (left, aright, acenter, . . .)
>

• FrameMaker defines the table border ruling property for working with tables and the

alignment and vertical alignment properties for working with colspecs and

spanspecs.

If you use the CALS table model for your tables, you should use read/write rules to translate

these properties to the frame, align, and valign attributes on appropriate elements. There

is also a default correspondence between the FrameMaker property values and the defined

value in markup.

If you do not use the CALS table model, you may still choose to translate these FrameMaker

formatting properties to markup attributes. In this case, you must also determine the

translation from property value to defined value.

• If you use the CALS table model, the frame attribute has the following defined values: all,

top, bottom, topbot, sides, and none. The values for the corresponding table border
ruling property are the same as the defined values, except that the topbot defined value

is the top and bottom property value.

The align attribute and the corresponding cell alignment type property have the

following values: left, center, right, justify, and char.

The valign attribute and the corresponding vertical alignment property have the

following values: top, middle, and bottom.

i s f m r e f e r e n c e e l e m e n t

Structured Application Developer Reference 125

Examples

• To use the table border ruling property for a non-CALS table and to set its name

tokens, use this rule:

element "tab" {
 is fm table element;
 attribute "frame" {
 is fm property table border ruling;
 value "all" is fm property value all;
 value "top" is fm property value top;
 value "bottom" is fm property value bottom;
 value "topbot" is fm property value top and bottom;
 value "sides" is fm property value sides;
 value "none" is fm property value none;
}}

• To rename the FrameMaker import by reference or copy property as the refcopy

attribute, and to also change the name tokens, use this rule:

attribute "refcopy" {
 is fm property import by reference or copy;
 value "r" is fm property value reference;
 value "c" is fm property value copy;
}

See also

is fm reference element

For SGML, use the is fm reference element rule to translate an entity in markup to an

element defined on a reference page in a FrameMaker document (a reference element). For XML,

use this rule to translate an internal entity to a reference element. Read/write rules do not support

double-byte characters, so you cannot use this rule to process elements with double-byte

characters in their names.

Synopsis and contexts

1. entity "ename" is fm reference element ["fmtag"];

2. reader entity "ename" is fm reference element ["fmtag"];

Related rules “fm property” on page 78

“is fm property” on page 114

Rules mentioned in

synopses

“attribute” on page 44

“element” on page 54

“value” on page 161

Read/Write Rules Reference 126

i s f m r e f e r e n c e e l e m e n t

Arguments

ename An entity name.

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

• For SGML, instead of using this rule to translate an SDATA entity, you can use a parameter

literal of a particular form. For information on how to do so, see Developer Guide, page 332:

Translating SDATA entities as FrameMaker reference elements.

• For XML, SDATA entities are not allowed—this rule translates internal entities.

• You can use the is fm reference element rule within an entity rule at the highest

level to have the translation occur in both directions. Or you can put the entity rule inside a

reader rule to have the translation occur only when reading an SGML document into

FrameMaker. Remember that the SDATA entity must be declared in the DTD in order to use this

rule.

• The FrameMaker element must occur in a flow named Reference Elements. That flow

must be on a reference page of the application’s template file with a name that starts with

SGML Utilities Page—for example, SGML Utilities Page 1 or SGML
Utilities Page Logos. For information on working with reference pages, see the

FrameMaker user guide.

• When FrameMaker encounters references to the specified entity while translating an markup

document to FrameMaker, it copies the appropriate element from its reference page in the

FrameMaker template associated with the structure application. When it encounters an

instance of an element associated with one of the reference pages while writing a FrameMaker

document to markup, it generates an entity reference.

• When you use this rule, the fmtag element must be defined for your FrameMaker documents

and valid in the contexts in which ename occurs. If it is not, the resulting FrameMaker

document is invalid.

Examples

Assume you have an entity named legalese which contains text you need to include in many

places. The entity is too long to be a FrameMaker variable, and you don’t want to treat it as an

entire paragraph. Instead, you can choose to have the entity correspond to a text range element

called LegaleseFragment.

To do so, add the following rule to your rules document:

entity "legalese" is fm reference element "LegaleseFragment";

The entity declaration in your DTD looks like this for XML:

<!ENTITY legalese "">

i s f m r u b i e l e m e n t

Structured Application Developer Reference 127

The entity declaration in your DTD looks like this for SGML:

<!ENTITY legalese SDATA "[]">

Create a reference frame on the reference page of your application which contains the element

“LegaleseFragment” with your boilerplate text. In order for the element to be treated as a “text

range” use the appropriate TextFormatRules for this element in the EDD.

When FrameMaker translates a markup document that contains the following markup:

<para>The rules are &legalese; for this situation.</para>

It produces the following element structure:

See also

is fm rubi element

Use the is fm rubi element rule to identify a markup element that translates to a Rubi

element in FrameMaker. You can choose either to have the same name in both representations or

to change the name during translation. Read/write rules do not support double-byte characters,

so you cannot use this rule to process elements with double-byte characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm rubi element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Para

LegaleseFragment <some lengthy text . . .>

The rules are

for this situation.

Rules mentioned in

synopses

“entity” on page 59

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

Read/Write Rules Reference 128

i s f m r u b i g r o u p e l e m e n t

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup

element are as follows:

• attribute specifies what to do with a markup element’s attributes.

• fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

Examples

• To translate the markup element rubitext to the Rubitext element in FrameMaker, use

this rule:

element "rubitext" is fm rubi element;

• To translate it to the MyRubiTextp element, use this rule:

element "rubitext" is fm rubi element "MyRubiText";

See also

is fm rubi group element

Use the is fm rubi group element rule to identify a markup element that translates to

a Rubi group element in FrameMaker. You can choose either to have the same name in both

representations or to change the name during translation. Read/write rules do not support

double-byte characters, so you cannot use this rule to process elements with double-byte

characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm rubi group element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

i s f m s y s t e m v a r i a b l e e l e m e n t

Structured Application Developer Reference 129

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup

element are as follows:

• attribute specifies what to do with a markup element’s attributes.

• fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

Examples

• To translate the markup element rubigroup to the Rubigroup element in FrameMaker, use

this rule:

element "rubigroup" is fm rubi group element;

• To translate it to the MyRubiGroup element, use this rule:

element "rubigroup" is fm rubi group element "MyRubiGroup";

See also

is fm system variable element

Use the is fm system variable element rule to identify a markup element that

translates to a system variable element in FrameMaker. You can choose either to have the same

name in both representations or to change the name during translation. Read/write rules do not

support double-byte characters, so you cannot use this rule to process elements with double-byte

characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm system variable element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 130

i s f m t a b l e e l e m e n t

Details

• If you use this rule, the other subrules of the element rule that you can use for the same

markup element are:

attribute specifies what to do with a markup element’s attributes.

fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

• This rule does not apply to translating non-element FrameMaker variables.

Examples

To translate the markup element date to the Date system variable element in FrameMaker, use

this rule:

element "date" is fm system variable element;

You specify which system variable to use by adding a rule to the Date element’s definition in the

FrameMaker EDD. For example:

Element (System Variable):Date

System variable format rule

In all contexts.

Use system variable:Current Date (Long)

See also

is fm table element

Use the is fm table element rule to identify a markup element that translates to a table

element in FrameMaker. You can choose either to have the same name in both representations or

Related rules “is fm variable” on page 137

“fm variable” on page 89

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 25, Translating Variables and System Variable

Elements

i s f m t a b l e e l e m e n t

Structured Application Developer Reference 131

to change the name during translation. Read/write rules do not support double-byte characters,

so you cannot use this rule to process elements with double-byte characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm table element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

• If you use the CALS table model, you do not need to use this rule to translate the CALS table

element properly.

• If your markup element declarations for a table element do not include an attribute that

corresponds to the columns property, you must use the fm property rule to specify a

number of columns for the table.

• If you use this rule, the other subrules of the element rule that you can use for the same

markup element are as follows:

– attribute specifies what to do with a markup element’s attributes.

– fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

– fm property specifies what to do with FrameMaker properties associated with the

element.

– reader insert table part element indicates that the software should insert the

indicated table part (table title, table heading, or table footing), even if the markup element

structure or instance does not contain the corresponding element.

Examples

• To translate the markup element gloss to the Gloss table element in FrameMaker, use this

rule:

element "gloss" is fm table element;

• To translate it to the Glossary table element, use this rule:

element "gloss" is fm table element "Glossary";

See also

Rules mentioned in

synopses

“element” on page 54

Read/Write Rules Reference 132

i s f m t a b l e p a r t e l e m e n t

is fm table part element

Use the is fm table part element rule to identify a markup element that translates to

a table part element in FrameMaker, such as a table title element. You can choose either to have

the same name in both representations or to change the name during translation. Read/write

rules do not support double-byte characters, so you cannot use this rule to process elements with

double-byte characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm table part element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

part A FrameMaker table part. One of the keywords: title, body, heading,

footing, row, cell.

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

• If you use the CALS table model, you do not need to use this rule to translate elements

representing parts of tables in CALS properly.

• If you map a markup element to a FrameMaker table part element, then the element cannot

be used anywhere in the instance except as that table part. For example, if you have a

“title” element and you use the following rule:

element “title” is fm table title element;”

Then you would not be able to insert a “title” element in a Chapter element.

• If you use this rule, the other subrules of the element rule that you can use for the same

markup element are as follows:

– attribute specifies what to do with a markup element’s attributes.

– fm attribute specifies what to do with attributes present in the FrameMaker

representation of the element but not in the markup representation.

– fm property specifies what to do with FrameMaker properties associated with the

element.

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

i s f m t e x t i n s e t

Structured Application Developer Reference 133

– reader end vertical straddle indicates that the associated table row or cell

element terminates a vertical table straddle. This subrule applies only if part is row or

cell.

– reader start new row indicates that the associated table cell element indicates the

start of a new row in the table. This subrule applies only if part is cell.

– reader start vertical straddle indicates that the associated table cell element

starts a vertical table straddle. This subrule applies only if part is cell.

Examples

• To translate the markup element head as the FrameMaker table heading element Head, use

this rule:

element "head" is fm table heading element;

• To translate the markup element dfn as the FrameMaker table cell element Definition, use

this rule:

element "dfn" is fm table cell element;

See also

is fm text inset

Use the is fm text inset rule to translate a declared entity to a text inset in FrameMaker.

While you can translate any entity to a text inset, we suggest you only do this with SDATA entities

when working with SGML. Read/write rules do not support double-byte characters, so you cannot

use this rule to process elements with double-byte characters in their names.

Synopsis and contexts

1. entity "ename" is fm text inset "fname"
[in body_or_ref flow "flowname"];

2. reader entity "ename" is fm text inset "fname"
[in body_or_ref flow "flowname"];

Arguments

Rules mentioned in

synopses

“element” on page 54

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

Note: XML: The XML standard does not allow SDATA entities, so you cannot use this

rule for that purpose. FrameMaker translates external text entities as text insets by default,

so this rule is not necessary for that type of entity.

Read/Write Rules Reference 134

i s f m t e x t i n s e t

ename An entity name.

fname A filename containing the text to include. This file must be a FrameMaker

document or a file of a type for which FrameMaker has a filter, for

example, a MS-Word document.

body_or_ref One of the keywords: body or reference, indicating the type of text

flow in which to find the text to include. You can specify this option only

if fname is a FrameMaker document.

flowname The name of the FrameMaker text flow.

Details

• By default, external text entities in markup are imported as text insets. For the markup to be

valid, the external text entities must be text, XML, or SGML files. In the FrameMaker document,

the text insets use these files as their sources. It is probably most advantageous to retain these

files for the text insets; you do not need to use the is fm text inset rule to import

external text entities as text insets.

• The source file for the text inset must either be a FrameMaker file or a file of a format

FrameMaker can filter automatically. You cannot use an SGML file as the source of the text inset.

• Instead of using this rule to translate an SGML SDATA entity to a text inset, you can use a

parameter literal of a particular form. For information on how to do so, see Developer Guide,

page 330: Translating SDATA entities as FrameMaker text insets.

• You can use the is fm text inset rule within an entity rule at the highest level to

have the translation occur in both directions. Or you can put the entity rule inside a reader

rule to have the translation occur only when reading an SGML document into FrameMaker.

• If fname is not a FrameMaker document, you cannot specify the in body flow or in
reference flow options. In this case, FrameMaker uses all of the text in the file specified

by fname for the text inset.

If fname is a FrameMaker document and you do not specify a flow to use, FrameMaker use the

contents of the main body flow of the specified document.

• Important: flowname must exactly match the name of a flow in the document. If there is

no match for the type of flow you specify (body or reference), then a crash will result. If there

is more than one matching flow, FrameMaker uses the first matching flow.

• By default, the software reformats the text inset to conform to the format rules of the

document containing the text inset. If the source for the text inset has element structure,

FrameMaker also retains that element structure.

You can confirm this behavior with the reformat using target document catalogs

rule. You can change this behavior using the subrules reformat as plain text or

retain source document formatting.

i s f m v a l u e

Structured Application Developer Reference 135

• FrameMaker requires that a structured flow have exactly one highest-level element. For this

reason, you cannot use a single text inset to include multiple elements at the top level of the

inset. You must use multiple text insets for this purpose.

• FrameMaker puts an end-of-paragraph symbol after a text inset. For this reason, you cannot use

a text inset to insert a range of text inside a single paragraph. To do so, you can translate the

entity either as a FrameMaker variable (with the is fm variable rule) or as a reference

element (with the is fm reference element rule).

Examples

Assume you have declared an SGML SDATA entity. You also have a single paragraph of boilerplate

text to be used in your documents. You can place this text on a reference page in a text column

with a flow called BoilerPlate in the FrameMaker template for your SGML application. If that

template is the file template.doc, you could use this rule to translate occurrences of the

boiler entity to a text inset in corresponding FrameMaker documents:

entity "boiler"
 is fm text inset "template.doc"

in reference flow "BoilerPlate";

See also

is fm value

Use the is fm value rule to translate the value of a markup attribute to a particular choice for

a FrameMaker choice attribute. The attribute’s declared value must be a name token group or

NOTATION.

Synopsis and contexts

1. value "token" is fm value "val";

Related rules “reformat as plain text” on page 150

“reformat using target document catalogs” on page 151

“retain source document formatting” on page 152

“is fm reference element” on page 125

“is fm variable” on page 137

Rules mentioned in

synopses

“entity” on page 59

“reader” on page 149

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

Read/Write Rules Reference 136

i s f m v a l u e

2. attribute "attr" {. . .
 value "token" is fm value "val";
. . .}

3. element "gi" {. . .
 attribute "attr" {. . .
 value "token" is fm value "val";
. . .} . . .}

Arguments

token A token in a name token group.

val An allowed value for a FrameMaker choice attribute.

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

Details

Use this rule when the corresponding markup attribute translates to a choice attribute in

FrameMaker. If the markup attribute translates to a FrameMaker property, you need to use the is
fm property value rule to specify the correspondence between markup tokens and

FrameMaker property values.

Examples

• If the token list (r | b | g) is used by multiple attributes, you can use these rules to

translate the individual tokens consistently:

value "r" is fm value "Red";
value "b" is fm value "Blue";
value "g" is fm value "Green";

• If the token list (r | b | g) is used by several attributes as above but by the bird element

differently, you can add this rule to the above rules:

element "bird" {is fm element;
] attribute "species" {

 value "r" is fm value "Robin";
 value "b" is fm value "Blue Jay";
 value "g" is fm value "Goldfinch";
}}]

See also

Related rules “is fm property value” on page 122

i s f m v a r i a b l e

Structured Application Developer Reference 137

is fm variable

Use the is fm variable rule to translate a declared markup text entity to a FrameMaker non-

element variable.

Synopsis and contexts

1. entity "ename" is fm variable ["var"];
2. reader entity "ename" is fm variable ["var"];
Arguments

ename An entity name.

var A FrameMaker variable name.

Details

You can use the is fm variable rule within an entity rule at the highest level to have the

translation occur in both directions. Or you can put the entity rule inside a reader rule to have

the translation occur only when reading a markup document into FrameMaker.

Examples

• To translate the markup element v to a non-element FrameMaker variable of the same name:

entity "v" is fm variable;

• To translate the FrameMaker variable Licensor to the markup element lic, use this rule:

entity "lic" is fm variable "Licensor";

See also

Rules mentioned in

synopses

“attribute” on page 44

“element” on page 54

“value” on page 161

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Related rules “fm variable” on page 89

“is fm system variable element” on page 129

Rules mentioned in

synopses

“entity” on page 59

General information

on this topic

Developer Guide, Chapter 25, Translating Variables and System Variable

Elements

Read/Write Rules Reference 138

i s p r o c e s s i n g i n s t r u c t i o n

is processing instruction

On export, you use the is processing instruction rule to tell FrameMaker to create

processing instructions for all non-element markers or for non-element markers of a particular

type. By default, FrameMaker creates processing instructions for all non-element markers. You

have the option of discarding non-element markers; you might use this rule in conjunction with

the drop rule when you want to discard some but not all non-element markers.

Synopsis and contexts

fm marker ["type1", . . ., "typen"] is processing instruction;
Arguments

typei A FrameMaker marker type, such as Index or Type 22.

Details

If you do not supply any typei arguments, this rule applies to all non-element markers other

than markers of the type reserved by FrameMaker for storing processing instructions, PI entities,

and external data entities. (By default, the reserved marker types are DOC PI, DOC Entity
Reference, and DOC Comment.)

Examples

To discard all nonelement markers other than Index markers, use these rules:

fm marker "Index" is processing instruction;
fm marker drop;

See also

line break

Use the line break rule to tell FrameMaker about any limits on the length of lines in a markup

file it generates. You also use it to tell the software whether or not to interpret line breaks in a

markup document as FrameMaker paragraph breaks within elements.

Synopsis and contexts

1. reader line break is mode;
2. writer line break is mode;

Rules mentioned in

synopses

“fm marker” on page 76

General information

on this topic

Developer Guide, Chapter 26, Translating Markers

l i n e b r e a k

Structured Application Developer Reference 139

3. element "gi" {. . .
 reader {. . .
 line break is mode;
. . .} . . .}

4. element "gi" {. . .
 writer {. . .
 line break is mode;
. . .} . . .}

Arguments

mode For writer: n characters (where n is a positive integer in C syntax).

For reader: one of forced return or space.

gi A markup element’s name (generic identifier).

Details

• This rule can be used at the highest level to set a default or within an element rule to set line

breaks for only that element.

• On export, FrameMaker behaves as follows:

When exporting the text of a paragraph, it ignores line breaks. It includes a space separating

the two words on either side of a line break and attempts to avoid generating lines longer than

n characters (the default is 80). It maintains a counter indicating how many characters it has

placed on a single line. After this counter reaches n-10, it changes the next data character

space to a record end.

It generates a markup record end at the end of every paragraph and flow in the FrameMaker

document.

If you want a start-tag for an element and its contents to appear on the same line in the markup

document, you must write aa structure API client.

• On import you have control over record ends not ignored by the underlying parser. Within a

reader rule, mode can be one of the following:

forced return informs FrameMaker that a line break within a text segment should be

converted to a forced return.

space informs FrameMaker that a line break within a text segment should be treated as a

space. This is the default.

Examples

Line breaks may need to be treated differently within different elements. For example, a line break

within an example element may need to be preserved on import, while a line break within a par

element may be a word break:

element "example" reader line break is forced return;
element "par" reader line break is space;

Read/Write Rules Reference 140

m a r k e r t e x t i s

marker text is

Use the marker text is rule to indicate whether the text of a marker element should become

an attribute value or the content of the corresponding markup element. Note that the markup

element must not be declared as empty if you want the marker text to be translated as content.

Synopsis and contexts

element "gi" {. . .
 is fm marker element ["fmtag"];
 marker text is attr_or_content;
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

attr_or_content One of the keywords: attribute or content.

Details

• By default, FrameMaker translates a marker element in FrameMaker to a markup empty

element. It writes the marker text as the value of the markup element’s text attribute.

• Instead of the default, you can have FrameMaker translate a marker element to a markup

element whose content model is #PCDATA. The marker text becomes the element’s content.

Examples

• To state that the markup element mkr corresponds to the FrameMaker element Marker and

to confirm the default behavior, you can use this rule:

element "mkr" {
 is fm marker element "Marker";
 marker text is attribute;
}

With this rule, the FrameMaker element definition:

Element (Marker): Marker

corresponds to the DTD declarations:

<!ELEMENT mkr EMPTY>
<!ATTLIST mkr

text CDATA #IMPLIED
type CDATA #IMPLIED>

n o t a t i o n i s

Structured Application Developer Reference 141

In this case, if the FrameMaker document contains an instance of the Marker element whose

marker text is “Some marker text” and whose type is Type 22, the markup output includes:

<mkr text="Some marker text" type="Type 22"/>

• To state that the markup element mkr corresponds to the FrameMaker element Marker but

that the marker text should become element content in markup, you can use this rule:

element "mkr" {
 is fm marker element "Marker";
 marker text is content;
}

With this rule, the FrameMaker element definition:

Element (Marker): Marker

corresponds to the DTD declarations:

<!ELEMENT mkr (#PCDATA)>
<!ATTLIST mkr type CDATA #IMPLIED>

In this case, if the FrameMaker document contains an instance of the Marker element whose

marker text is “Some marker text” and whose type is Type 22, the output includes:

<mkr type="Type 22">
Some marker text
</mkr>

See also

notation is

Use the notation is rule only in an element rule for a graphic or equation element, to

provide information the software needs when writing a document containing graphics and

equations to markup. FrameMaker uses this rule to determine the data content notation name to

include in entity declarations it generates.

Synopsis and contexts

1. element "gi" {
 is fm equation element ["fmtag"];
 writer equation notation is "notation";
. . .}}

Rules mentioned in

synopses

“element” on page 54

“is fm marker element” on page 112

General information

on this topic

Developer Guide, Chapter 26, Translating Markers

Read/Write Rules Reference 142

n o t a t i o n i s

2. element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame notation is "notation";
. . .}}

3. element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname" notation is "notation";
. . .}}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

type One of the rules anchored frame, facet, or equation. If facet,

you must also supply the facetname argument.

If type is equation, the rule applies to equation elements.

If type is facet, the rule applies to a graphic element that contains only

a single facet with the name specified by facetname. This occurs when

the graphic element is an anchored frame containing only a single

imported graphic object whose original file was in the facetname

graphic format. You can use this rule with type set to facet multiple

times if you want the software to treat several file formats differently.

If type is anchored frame, the rule applies to a graphic element

under all other circumstances.

facetname A facet name. The string for the facetname must exactly match the string

for the facetname in the FrameMaker document. To determine a graphic

file’s facetname, select the graphic, click Graphics>ObjectProperties, and

observe the facetname in the dialog box.

notation A string representing a data content notation name.

Details

By default, FrameMaker uses the first eight characters of the name of the facet it exports as the

data content notation. If the graphic or equation has only internal FrameMaker facets, the

software uses CGM as the data content notation.

Examples

Assume your end users use the af graphic element within FrameMaker, creating the graphics

using FrameMaker tools, but want to store them in TIFF format on export. Furthermore, you want

o u t p u t b o o k p r o c e s s i n g i n s t r u c t i o n s

Structured Application Developer Reference 143

to name the files based on the FrameMaker document’s name, but with an extension of .gr. You

can accomplish this with the following rule:

element "af" {
 is fm graphic element;
 writer anchored frame {
 notation is "TIFF";
 export to file "$(docname).gr";
}}

If you export the FrameMaker file intro.doc, the software writes the following entity

declaration for the first instance of the af element that it finds:

<!ENTITY af1 SYSTEM "intro1.gr" NDATA TIFF>

See also

output book processing instructions

By default, when FrameMaker converts a FrameMaker book to markup, it puts ?FM book? and

?FM document? processing instructions in the markup document to indicate where the

individual files in the FrameMaker documents began. You use the output book processing
instructions rule to confirm or change this behavior.

Synopsis and contexts

writer [do not] output book processing instructions;
ArgumentsNone.

Related rules “convert referenced graphics” on page 49

“entity name is” on page 61

“export to file” on page 67

“specify size in” on page 153

Rules mentioned in

synopses

“element” on page 54

“is fm graphic element” on page 111

“is fm equation element” on page 109

“anchored frame” on page 41

“equation” on page 63

“facet” on page 72

“writer” on page 164

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 144

p r e s e r v e f m e l e m e n t d e f i n i t i o n

Details

If you use the generate book rule to tell FrameMaker to use elements to identify book

components when reading a markup document, you might choose to not have it output

processing instructions when writing the book to markup. In this case, use this rule:

writer do not output book processing instructions;

See also

preserve fm element definition

Use the preserve fm element definition rule to tell FrameMaker, when it is updating

an EDD from a revised DTD, not to update the definition of a set of FrameMaker elements and

their attributes on the basis of the DTD and other rules.

Synopsis and contexts

reader {. . .
 preserve fm element definition "fmtag1"[, . . ., "fmtagN"];
. . .}

Arguments

fmtagi A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

FrameMaker uses the preserve fm element definition rule only when updating an

EDD from a DTD. By default, when it updates an existing EDD, the software changes the definitions

of FrameMaker elements to reflect the new DTD and all read/write rules. You may not want the

definition of the FrameMaker element to change. For example, if one of your rules is to unwrap

the element body, then any element with a definition that includes body will be modified

directly include the contents of body instead of including body.

Examples

• Assume you have the rule:

fm element "Body" unwrap;

and the element definitions:

Element (Container): Figure1

 General rule: Caption, Body

Related rules “generate book” on page 91

General information

on this topic

Chapter 28, “Processing Multiple Files as Books”

p r e s e r v e l i n e b r e a k s

Structured Application Developer Reference 145

Element (Container): Figure2

 General rule: Body, Footer

Element (Container): Body

 General rule: Header, Line+

The corresponding declarations are:

<!ELEMENT figure1 (caption, header, line+)>
<!ELEMENT figure2 (header, line+, footer)>

If you update the EDD containing the preceding definitions and use as input the DTD with the

preceding declarations, FrameMaker replaces the definitions of Figure1 and Figure2 with:

Element (Container): Figure1

General rule: Caption, Header, Line+

Element (Container): Figure2

General rule: Header, Line+, Footer

If you wish to retain the original definitions of Figure1 and Figure2 in the revised EDD,

include this rule:

reader preserve fm element definition "Figure1", "Figure2";

• Suppose you want to use a structure API client to reverse the order of child elements in

corresponding markup and FrameMaker elements. For example, assume you have the

declaration:

<!ELEMENT ex (a, b)>

and the FrameMaker element definition:

Element (Container): Ex

General rule: B, A

If you have no rules and update the EDD in this situation, FrameMaker updates the definition

of Ex to correspond to the markup declaration. To suppress this change, use this rule:

reader preserve fm element definition "Ex";

See also

preserve line breaks

Use the preserve line breaks rule to tell FrameMaker to keep line breaks for an element

when importing and exporting markup documents. When importing markup, it translates every

RE in the element as a forced return. When exporting markup, it translates forced returns as RE

characters, and the line ends FrameMaker creates when automatically wrapping the text as non-

Related rules “drop” on page 51

“unwrap” on page 158

Read/Write Rules Reference 146

p r e s e r v e l i n e b r e a k s

RE line breaks in the markup file. This is useful for elements that use RE characters to insert white

space in an element’s content.

Synopsis and contexts

element {. . .
 preserve line breaks ;
. . .}

ArgumentsNone

Details

• For an element using this rule, the software writes a an RE (line break) immediately after the

open tag and immediately before the close tag.

• For an element using this rule, on export, FrameMaker writes a space character entity reference

and an RE (line break) for each necessary line break in the markup file. See the “line break” rule

for information on how FrameMaker determines where to put these line breaks by default.

Forced returns (shift-return) translate as RE characters (line breaks) in the markup file.

• For SGML, the space character entity uses the ISO entities reference (&#SPACE).

• For XML, no entity reference is written for the space character.

• For XML, this rule adds the xml:space attribute to the affected elements, with a value of

preserved. This attribute directs XML applications to respect the whitespace characters in

the element’s content. On import this attribute is retained—if the EDD for your template does

not specify an xml:space attribute for the given element, then that attribute will be invalid.

You can either define this attribute in your EDD, or use read/write rules to drop the attribute

on import.

• For export and import to have the same results, preserve line breaks must be specified

for the same elements. For example, assume you use preserve line breaks on export

for an element named Code. FrameMaker writes a space character entity reference and an RE

(line break) when a line approaches the maximum line length, and it writes RE characters (line

breaks) for forced returns. Now assume you remove preserve line breaks from the rules for the

Code element. On import, FrameMaker will translate as spaces the space character entity

reference/RE pairs, and as spaces any RE characters (line breaks) not removed by the parser

(default behavior). Thus the forced returns (shift-return) are lost and the imported file is not the

same as the exported file.

• When importing markup, preserve line breaks overrides the line break is
space rule, if that rule is set. On import, preserve line breaks has the same effect for

the specified element as the line break is forced return rule.

p r o c e s s i n g i n s t r u c t i o n

Structured Application Developer Reference 147

Examples

The following rule preserves line breaks on import and export for the element named code:

fm element "code" {
is fm element "Code";
preserve line breaks;

}

See also

processing instruction

Use the processing instruction rule to drop processing instructions that are not

recognized by FrameMaker. By default, the software stores such processing instructions as the

marker text in non-element markers of type DOC PI and DOC Comment.

Synopsis and contexts

processing instruction drop;
ArgumentsNone

Details

• When you translate a markup document to FrameMaker and the software encounters an

unrecognized processing instruction such as:

<?mypi?>

it stores the processing instruction as the text of a non-element DOC PI marker by default,

with the following as the marker text:

mypi

When you translate a FrameMaker document to markup, it outputs the corresponding

processing instruction if it finds a non-element DOC PI marker with text in that format.

• This rule does not affect how FrameMaker treats the processing instructions it does recognize

for books, book components, and other non-element markers.

Examples

To discard all unrecognized processing instructions, use this rule:

processing instruction drop;

Rules mentioned in

synopses

“element” on page 54

Related rules “line break” on page 138

Read/Write Rules Reference 148

p r o p o r t i o n a l w i d t h r e s o l u t i o n i s

See also

proportional width resolution is

Use the proportional width resolution is rule to change the number used as the

total for proportional column widths in tables. By default, if FrameMaker writes proportional

columns widths, those widths add to 100.

Synopsis and contexts

writer proportional width resolution is "value";
Arguments

value An integer indicating the total for proportional column width values.

Details

Using this rule does not indicate that FrameMaker uses proportional widths, only that if

FrameMaker writes proportional widths, then those widths add to value instead of 100. To tell

FrameMaker to use proportional widths, you must include the use proportional widths

rule.

Examples

• Assume you do not use the proportional width resolution is rule, but have this

rule:

writer use proportional widths;

Further assume you have a 5-column table whose first two columns are 1 inch wide and whose

last three columns are 2 inches wide. If the column widths are written to the colwidth

attribute of the markup table element, then FrameMaker creates this start-tag for that table:

<table colwidth="12.5* 12.5* 25* 25* 25*">

• Assume you have the same table as in the last example and you use this rule:

writer {
 use proportional widths;
 proportional width resolution is "8";
}

FrameMaker writes this start-tag for the table:

<table colwidth="1* 1* 2* 2* 2*">

Rules mentioned in

synopses

“drop” on page 51

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

p u t e l e m e n t

Structured Application Developer Reference 149

• Assume you have the same table as in the previous examples and you use this rule:

writer proportional width resolution is "8";

That is, you do not also have the use proportional widths rule. In this case,

FrameMaker ignores the “proportional width resolution” rule and writes this start-tag for the

table:

<table colwidth="1in 1in 2in 2in 2in">

See also

put element

See “generate book” on page 91.

reader

The reader rule indicates a rule that applies only on import to FrameMaker. It can be used at the

highest level to set a default, or within an element rule to specify information particular to that

element.

Synopsis and contexts

1. element "gi" {. . .
 reader {. . .
 subrule;
. . .} . . .}

2. reader {. . .
 subrule;
. . .}

Arguments

gi A markup element’s name (generic identifier).

subrule Valid subrules:

character map changes how FrameMaker translates between

individual characters in the markup and FrameMaker character sets.

Allowed only at the highest level.

drop content imports only the element itself, not its contents.

Allowed only within an element rule.

Related rules “use proportional widths” on page 160

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

Read/Write Rules Reference 150

r e f o r m a t a s p l a i n t e x t

end vertical straddle specifies the end of a vertical straddle in a

table. Allowed only within an element rule for a table cell or row

element.

entity specifies the treatment of an entity in FrameMaker. Allowed only

at the highest level.

generate book specifies how to identify book components in a

markup document. Allowed only at the highest level.

insert table part element specifies that FrameMaker should

generate a table part (table title, table heading, or table footing) even if

there is no content for that part. Allowed only within an element rule for

a table element.

line break changes the treatment of line breaks in the markup

instance which are not handled by the parser on import. Allowed at the

highest level or within an element rule.

preserve fm element definition instructs the software not to

modify a FrameMaker element definition when updating an existing EDD.

Allowed only at the highest level.

start new row specifies that this table cell element starts a new row

in the table. Allowed only within an element rule for a table row

element.

start vertical straddle specifies the start of a vertical straddle

in a table. Allowed only within an element rule for a table cell element.

table ruling style is specifies the ruling style to apply to all

tables. Allowed only at the highest level.

Examples

To change the default ruling style for tables:

reader table ruling style is "thick";

reformat as plain text

Use the reformat as plain text rule in an entity rule for an entity you want to translate

as a text inset in FrameMaker. This specifies that the software should remove any element

structure from the text inset and reformat the text using the format rules of the document into

which the text inset is placed. You specify the other choices for formatting text insets with the

r e f o r m a t u s i n g t a r g e t d o c u m e n t c a t a l o g s

Structured Application Developer Reference 151

rules reformat using target document catalogs and retain source
document formatting.

Synopsis and contexts

1. entity "ename" {
 is fm text inset “fname”;
 reformat as plain text;
. . .}

2. reader entity "ename" {
 is fm text inset “fname”;
 reformat as plain text;
. . .}

Arguments

ename An entity name.

See also

reformat using target document catalogs

Use the reformat using target document catalogs rule in an entity rule for an

entity you want to translate as a text inset in FrameMaker. This specifies that the software should

retain any element structure from the text inset and reformat the text using the format rules of

the document into which the text inset is placed. This is the default behavior for entities treated

as text insets. You specify the other choices for formatting text insets with the rules reformat
as plain text and retain source document formatting.

Synopsis and contexts

1. entity "ename" {
 is fm text inset “fname”;
 reformat using target document catalogs;
. . .}

Related rules “reformat using target document catalogs,” next

“retain source document formatting” on page 152

Rules mentioned in

synopses

“entity” on page 59

“is fm text inset” on page 133

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

Read/Write Rules Reference 152

r e t a i n s o u r c e d o c u m e n t f o r m a t t i n g

2. reader entity "ename" {
 is fm text inset “fname”;
 reformat using target document catalogs;
. . .}

Arguments

ename An entity name.

See also

retain source document formatting

Use the retain source document formatting rule in an entity rule for an entity you

want to translate as a text inset in FrameMaker. This specifies that the software should remove any

element structure from the text inset, but keep the formatting of the source document, rather

than reformatting it according to the rules of the document that contains the text inset. You

specify the other choices for formatting text insets with the rules reformat as plain text

and reformat using target document catalogs.

Synopsis and contexts

1. entity "ename" {
 is fm text inset “fname”;
 retain source document formatting;
. . .}

2. reader entity "ename" {
 is fm text inset “fname”;
 retain source document formatting;
. . .}

Arguments

ename An entity name.

Related rules “reformat as plain text,” (the previous section)

“retain source document formatting” on page 152

Rules mentioned in

synopses

“entity” on page 59

“is fm text inset” on page 133

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

s p e c i f y s i z e i n

Structured Application Developer Reference 153

See also

specify size in

Use the specify size in rule only in an element rule for a graphic or equation element,

to provide information the software needs when writing a document containing graphics and

equations to markup. This rule determines which of the dpi or the impsize attribute

FrameMaker uses to indicate the size of a graphic or equation. The rule also indicates what units

are used for impsize and the resolution in which sizes are reported is always 0.001. If there is no

specify size in rule, FrameMaker uses the dpi attribute.

Synopsis and contexts

1. element "gi" {
 is fm equation element ["fmtag"];
 writer equation specify size in units
. . .}

2. element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame specify size in units
. . .}

3. element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname" specify size in units
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

facetname A facet name. The string for the facetname must exactly match the string

for the facetname in the FrameMaker document. To determine a graphic

Related rules “reformat as plain text” on page 150

“reformat using target document catalogs,” (the previous section)

Rules mentioned in

synopses

“entity” on page 59

“is fm text inset” on page 133

General information

on this topic

Developer Guide, Chapter 21, Translating Entities and Processing

Instructions

Read/Write Rules Reference 154

s p e c i f y s i z e i n

file’s facetname, select the graphic, click Graphics>ObjectProperties, and

observe the facetname in the dialog box.

units The units in which the size of the element is coded. Valid values: cm, cc,

dd, in, mm, pc, pi, or pt.

Details

• Use this rule when you export FrameMaker documents to markup documents.

• FrameMaker reports the size of the elements in the indicated units, at a fixed resolution of

0.001.

Examples

• Suppose your document has a graphic element, graph, containing an Anchored Frame sized

to fit a FrameMaker-drawn circle with a diameter of 3.15 centimeters. Given the rule:

element "graph" {
 is fm graphic element;
 writer anchored frame specify size in cm;
}

FrameMaker generates the attribute height="3.150cm" and attribute
width="3.150cm".

• With the same graphic, if the rule is:

element "graph" {
 is fm graphic element;
 writer anchored frame specify size in mm;
}

FrameMaker generates height="31.500mm" and attribute width="31.500mm".

See also

Related rules “convert referenced graphics” on page 49

“entity name is” on page 61

“export to file” on page 67

“specify size in” on page 153

s t a r t n e w r o w

Structured Application Developer Reference 155

start new row

Use the start new row rule in the element rule for a table cell element to specify that an

occurrence of the table cell element indicates that FrameMaker should start a new table row to

contain that cell.

Synopsis and contexts

element "gi" {. . .
 is fm table cell element ["fmtag"];
 reader start new row ["name"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

name An optional name to identify this row

Details

• Your DTD may contain elements that you want to format as tables in FrameMaker even though

the element hierarchy does not match that required by FrameMaker for tables. In such a

situation, the nature of the element hierarchy may indicate where new rows should begin.

• In some cases, you can use a rule such as the following to indicate that a table cell starts a new

row:

element "gi" {
 is fm table cell element;
 fm property column number value is "1";
}

Rules mentioned in

synopses

“element” on page 54

“is fm graphic element” on page 111

“is fm equation element” on page 109

“anchored frame” on page 41

“equation” on page 63

“facet” on page 72

“writer” on page 164

General information

on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 156

s t a r t v e r t i c a l s t r a d d l e

With this rule, when FrameMaker encounters a gi element, it tries to place that element in the

first column of the current table row. If there is already a cell in the first column of the current

row, the software automatically creates a new row for gi. In this situation, you would not also

need the start new row rule.

However, if there is not already a cell in the first column of the current row when the software

encounters a gi element, it puts the gi cell in the current row and does not create a new row

for it. This can happen if the table has a vertical straddle in the first column. When FrameMaker

encounters a gi element on a row that should have a vertical straddle in the first column, with

only the rule above, the software puts the gi element in the same row (because that cell isn’t

occupied). To guarantee a new row starts with the occurrence of gi instead, you should use

this rule:

element "gi" {
 is fm table cell element;
 fm property column number value is "1";
 reader start new row;
}

Examples

For a complete example using the start new row rule, see Developer Guide, page 354:

Omitting explicit representation of table parts.

See also

start vertical straddle

Use the start vertical straddle rule inside the element rule for a table cell to specify

that an occurrence of the cell element indicates the start of a vertical straddle.

Synopsis and contexts

element "gi" {. . .
 is fm table cell element ["fmtag"];
 reader start vertical straddle "name";
. . .}

Arguments

Related rules “start vertical straddle,” next

Rules mentioned in

synopses

“element” on page 54

“is fm table part element” on page 132

“reader” on page 149

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

t a b l e r u l i n g s t y l e i s

Structured Application Developer Reference 157

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

name A name associated with a table straddle. This name must occur in at least

one corresponding end vertical straddle rule.

Details

• Your DTD may contain elements that you want to format as tables in FrameMaker even though

the element hierarchy does not match that required by FrameMaker for tables. In such a

situation, the nature of the element hierarchy may indicate where vertical straddles should

begin and end. The start vertical straddle rule allows you to specify such elements.

• Use this rule in conjunction with the end vertical straddle rule. That rule specifies a

table cell or row that indicates the end of the vertical straddle started by this rule.

• You give a name to the particular straddle started by gi. In the corresponding end
vertical straddle rule or rules, you use the same name to specify that the element ends

this vertical straddle.

Examples

For an example of the use of this rule, see Developer Guide, page 357: Creating parts of a table

even when those parts have no content.

See also

table ruling style is

You use the table ruling style is rule to specify the ruling style for all tables.

Synopsis and contexts

reader table ruling style is "style";
Arguments

Related rules “start new row,” (the previous section)

Rules mentioned in

synopses

“element” on page 54

“is fm table part element” on page 132

“reader” on page 149

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

Read/Write Rules Reference 158

u n w r a p

style A ruling style for all tables. One of the keywords: None, Double, Medium,

Thick, Thin, or Very Thin.

Details

• This rule specifies the ruling style applied to all tables. When working with the CALS table

model, you can use the frame, colsep, and rowsep attributes to determine whether or not

portions of a table have rulings. However, these attributes have boolean values. Consequently,

you can only use them to say whether or not a table has a ruling, not what type of ruling to

use if it does have one. In this situation, you could use the table ruling style is rule

to set the ruling style for all tables.

• FrameMaker considers the ruling style set with this rule as custom ruling. If you re-import

formats to the FrameMaker document and remove overrides, the ruling style set with this rule

will remain. If possible, therefore, you should use table formats to specify ruling styles.

Examples

To specify that all tables should use the Thick ruling style, use this rule:

reader table ruling style is "Thick";

See also

unwrap

Use the unwrap rule when you do not want to preserve an element on translation from one

representation to another. If you specify that FrameMaker should unwrap an element (gi or

fmtag), the software places the element’s content as part of the content of the element’s parent

element, but does not make an element for gi or fmtag itself.

Synopsis and contexts

1. element "gi" unwrap;
2. fm element "fmtag" unwrap;
Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

u n w r a p

Structured Application Developer Reference 159

Details

• When FrameMaker encounters an element to be unwrapped, it does not insert a corresponding

element into the document it is creating. Instead, it inserts the content of an unwrapped

element.

• If you use this rule to unwrap FrameMaker cross-reference elements or system variable

elements, those elements become text in the resulting markup document.

• When importing a DTD or exporting an EDD, FrameMaker does not generate an element

definition or declaration corresponding to an element that is unwrapped. Furthermore, when

an element uses the unwrapped element in its definition, the software replaces the name of

the unwrapped element with its content model or general rule in the general rule or content

model of the element that used it or replaces it with the list of its children in an exception. You

can change this behavior by using the preserve fm element definition rule.

• You cannot use the unwrap rule with any other subrule of the element or fm element

rules. For example, you cannot specify that a markup element both be unwrapped and be

translated to a FrameMaker element.

Examples

• A markup document used to produce both the student’s and teacher’s edition of a textbook

might include an ANSWER element used for answers to exercises. In producing the teacher’s

edition of the textbook, this element might be unwrapped into FrameMaker as text. A structure

API client could associate this element with the condition tag Answer.

• Suppose a DTD contains the following declarations:

<!ELEMENT wrapper - - (a, b)>
<!ELEMENT x - - (p, q, wrapper, r)>
<!ELEMENT y - - (#PCDATA) +(wrapper)>

and you have this rule:

element "wrapper" unwrap;

FrameMaker would generate the following element definitions:

Element (Container): X

General rule: P, Q, A, B, R

Element (Container): Y

General rule: <TEXT>

Inclusions: A, B

See also

Related rules “preserve fm element definition” on page 144

“drop” on page 51

Read/Write Rules Reference 160

u s e p r o c e s s i n g i n s t r u c t i o n s

use processing instructions

See “generate book” on page 91.

use proportional widths

Use the use proportional widths rule to indicate that when FrameMaker writes the width

of table columns, it should use proportional measurements. By default, if the software writes the

width of table columns, it uses absolute measurements.

Synopsis and contexts

writer use proportional widths;
ArgumentsNone.

Details

• If you use this rule when writing an attribute indicating the width of one or more columns in

a table, FrameMaker writes values such as "25*", where the asterisk * indicates a proportional

measurement, instead of values such as "0.25in" which are absolute measurements.

• If you use this rule, you can also use the proportional width resolution is rule to

determine what number the values add to. Without the proportional width
resolution is rule, the proportional measurements add to 100.

Examples

• Assume you do not use the proportional width resolution is rule, but have this

rule:

writer use proportional widths;

Further assume you have a 5-column table whose first two columns are 1 inch wide and whose

last three columns are 2 inches wide. If the column widths are written to the colwidth

attribute of the markup table element, then FrameMaker creates this start-tag for that table:

<table colwidth="12.5* 12.5* 25* 25* 25*">

Rules mentioned in

synopses

“element” on page 54

“fm element” on page 75

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

v a l u e

Structured Application Developer Reference 161

• Assume you have the same table as in the last example and you use this rule:

writer {
 use proportional widths;
 proportional width resolution is "8";
}

FrameMaker writes this start-tag for the table:

<table colwidth="1* 1* 2* 2* 2*">

See also

value

Use the value rule to translate the value of a markup attribute to the value of a particular

FrameMaker property or to a particular choice for a FrameMaker choice attribute. The attribute’s

declared value must be a name token group or NOTATION and a name token group.

Synopsis and contexts

1. value "token" subrule;
2. attribute "attr" {. . .

 value "token" subrule;
 . . .}

3. element "gi" {. . .
 attribute "attr" {. . .
 value "token" subrule;
 . . .} . . .}

Arguments

token A token in a name token group.

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

subrule One of the following:

is fm value translates a markup value to a particular choice for a

FrameMaker choice attribute.

Related rules “proportional width resolution is” on page 148

General information

on this topic

Developer Guide, Chapter 22, Translating Tables

Read/Write Rules Reference 162

v a l u e

is fm property value translates a markup value to the value of a

particular FrameMaker property.

Details

The rule can be used at the highest level to set a default, within a highest-level attribute rule to

set the default for all attributes that use that token, or within an element rule to set the default

for a particular token within a particular attribute in that element.

Examples

• To rename the FrameMaker import by reference or copy property as the refcopy

attribute, and to also change the name tokens, use this rule:

attribute "refcopy" {
 is fm property import by reference or copy;
 value "r" is fm property value reference;
 value "c" is fm property value copy;
}

• If the token list (r | b | g) is used by multiple attributes, you can use these rules to

translate the individual tokens consistently:

value "r" is fm value "Red";
value "b" is fm value "Blue";
value "g" is fm value "Green";

• If the token list (r | b | g) is used by several attributes as above, but by the bird element

differently, you can add this rule to the above rules:

element "bird" {is fm element;
] attribute "species" {
 value "r" is fm value "Robin";
 value "b" is fm value "Blue Jay";
 value "g" is fm value "Goldfinch";
 }}]

See also

Related rules “is fm value” on page 135

“is fm element” on page 108

Rules mentioned in

synopses

“attribute” on page 44

“element” on page 54

General information

on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

v a l u e i s

Structured Application Developer Reference 163

value is

See “fm property” on page 78.

write structured document

By default, when you save a FrameMaker document to markup, the software writes out the

document instance, any declarations for the internal DTD subset, and a DOCTYPE statement

which references the external DTD subset, but (for SGML) not an SGML declaration nor the

declarations within the external DTD subset. If an XML structure application (in structapp.fm)

specifies a Schema file for output, that file is also written with the XML document. You can use

this rule to confirm the default behavior.

Synopsis and contexts

writer write structured document;
ArgumentsNone.

Details

You cannot use the write structure document rule and the write sgml document
instance only rule in the same read/write rules file.

See also

write structured document instance only

By default, when you save a FrameMaker document to markup, the software writes out the

document instance, any declarations for the internal DTD subset, and a DOCTYPE statement

which references a file for the external DTD subset. For SGML, it does not write an SGML

declaration. This rule causes the software to write the document instance only--no external or

internal DTD, no Schema, and no SGML declarations.

Synopsis and contexts

writer write structured document instance only;
ArgumentsNone.

Related rules “external dtd” on page 70

“include dtd” on page 96

“include sgml declaration” on page 97

“write structured document instance only,” next

Read/Write Rules Reference 164

w r i t e r

Details

• By default, when you translate a FrameMaker document to markup, as its last step the software

runs the parser on the markup document to check its validity. If you use this rule, FrameMaker

does not write a complete markup document and so does not send the result through the

parser.

• You cannot use the write structure document instance only rule in the same

read/write rules file as any of the write structure document, include dtd, or

include sgml declaration rules.

See also

writer

The writer rule indicates a rule that applies only on export of a FrameMaker document to

markup. It can be used at the highest level to set a default or within an element rule to specify

a subrule for that element.

Synopsis and contexts

1. writer {. . .
 subrule;
. . .}

2. element "gi" {. . .
 writer {. . .
 subrule;
. . .} . . .}

Arguments

gi A markup element’s name (generic identifier).

subrule Valid subrules:

anchored frame tells FrameMaker what to do with graphic elements

other than those with a single non-internal FrameMaker facet. Allowed

only within an element rule for a graphic element.

character map determines the correspondence between individual

characters in the FrameMaker and markup character sets. Allowed only at

the highest level.

Related rules “external dtd” on page 70

“include dtd” on page 96

“include sgml declaration” on page 97

“write structured document,” (the previous section)

w r i t e r

Structured Application Developer Reference 165

convert referenced graphics tells the software to create new

files for graphic files that were imported by reference. drop content

exports a FrameMaker element without its contents. Allowed only within

an element rule.

equation tells FrameMaker what to do with equation elements. Allowed

only with an element rule for an equation element.

external dtd specifies an external DTD to use. Allowed only at the

highest level.

facet tells FrameMaker what to do with a graphic element that has a

single non-internal FrameMaker facet. Allowed only with an element

rule for a graphic element.

[do not] include dtd specifies information to exclude or include

in the written document. Allowed only at the highest level.

[do not] include sgml declaration specifies information to

exclude or include in the written document. Allowed only at the highest

level.

line break specifies treatment of line breaks not handled by the

parser on export. Allowed at the highest level or within an element rule.

[do not] output book processing instructions specifies

whether or not to create processing instructions that identify book

components when writing a FrameMaker book as a markup document.

Allowed only at the highest level.

proportional width resolution is specifies the total value to

which proportional widths for table columns add up. Allowed only at the

highest level.

use proportional widths specifies that the software should use

proportional values in describing the widths of table columns. Allowed

only at the highest level.

write structured document specifies that an entire SGML

document should be written, not just the document instance. This is the

default. Note that the external DTD subset is not written to the file.

Instead, a DOCTYPE statement with a reference to the external DTD file is

written. Allowed only at the highest level.

write structured document instance only specifies that

only the document instance should be written, not the DTD and SGML

declaration. Allowed only at the highest level.

Read/Write Rules Reference 166

w r i t e r

Examples

• To tell FrameMaker not to use processing instructions to identify book components when

writing a FrameMaker book as a markup document, use this rule:

 writer do not output book processing instructions;

• Assume you want all graphics to be exported in TIFF format. Further assume that some of your

graphic elements were imported from the TIFF format. For these elements you don’t want to

create a new external data entity. To accomplish this, use these rules:

element "graphic" {
 is fm graphic element;
 writer facet default{
 convert referenced graphics;
 export to file “$(entity) .tif as “TIFF”;
 writer anchored frame
 export to file "$(entity).tif" as "TIFF";
}

Structured Application Developer Reference 167

4 Conversion Tables for Adding Structure
to Documents 4

You can set up a conversion table to help end users automate the task of adding structure to

documents. The conversion table uses paragraph and character formats to identify which

unstructured document objects to wrap in elements, and element tags to identify which child

elements to wrap in parent elements. A user wraps all of a document’s contents in one move by

applying a structure command to the document and referring to one of your conversion tables.

This chapter describes how to set up a conversion table and define object and element mapping

in it. For information on the commands for adding structure to documents, see the FrameMaker

user’s manual

How a conversion table works

A conversion table contains rules for mapping between document objects and elements and

between child elements and parent elements. The table is a regular FrameMaker table, with at

least three columns and one body row. Each body row holds one rule.

The first column in a conversion table specifies a document object, a child element, or a sequence

of child elements or paragraphs to wrap in an element. A document object is a paragraph, text

range, table, table part (such as heading or row), equation, variable, footnote, Rubi group, Rubi

text, marker, cross-reference, text inset, or graphic (anchored frame or imported graphic object).

The second column in the table specifies the element in which you want to wrap the object, child

element, or sequence. The third column can specify an optional qualifier to use as a temporary

label for the element in rules that are applied later. For example:

W r a p t h i s o b j e c t I n t h i s e l e m e n t W i t h t h i s
q u a l i f i e r

P:BulletItem Item Bullet

E:Item[Bullet]+ BulletList

The first column uses a

one-letter code and

usually a tag to identify

an object or element.

The second column

specifies the element in

which to wrap the object

or element.

The third column can

provide a label for the

new element to be used

in later rules.

Conversion Tables for Adding Structure to Documents 168

S e t t i n g u p a c o n v e r s i o n t a b l e

To add structure to a document or book, an end user chooses the Structure Current

Document..., Structure Documents..., or Structure Current Book... command from the

StructureTools > Utilities submenu and refers to one of the conversion tables.

When you add structure to a document manually, you typically begin with the lowest-level

components and work up to the highest level. For example, to add structure to a chapter you

might start by wrapping sub-paragraph objects like text ranges and tables, then wrap the

contents of paragraphs together in Paragraph elements, then wrap sequences of Head and

Paragraph elements in Section elements, and so on until the entire document is wrapped in

a single highest-level Chapter element.

The process of adding structure with a conversion table is similar to adding structure manually.

FrameMaker begins by applying rules to document objects below the paragraph level, then

applies rules at the paragraph level, and proceeds through successively higher levels. The process

stops when FrameMaker reaches a single highest-level element or when no more rules can be

applied. To understand this process, it helps to have manually structured a document.

Using the sample table above, FrameMaker first wraps each paragraph with the paragraph format

BulletItem in an element called Item and gives the element a qualifier called Bullet. Then

it wraps each Item element with the qualifier Bullet in a parent element called BulletList.

FrameMaker tries to order the rules as much as possible. If a rule needs a building block that is

generated by a later rule, the later rule is run first so that all of the building blocks in the first rule

are available. To make a conversion table easy to interpret for a human reader, you may want to

write the rules in the order they should be applied.

Setting up a conversion table

You can have FrameMaker generate an initial conversion table for you from an unstructured

document or book, or you can create a conversion table entirely from scratch. If you already have

a document that end users need to add structure to, or a document that is similar to one users

will add structure to, you’ll probably want to let FrameMaker generate the initial table. You can

modify the rules in the table as necessary.

After creating a conversion table, you can update it from other unstructured documents. Updating

a table adds rules for any objects in the document that are not yet in the table.

A conversion table document can include the conversion table itself (which may be split up into

several tables) and text or graphics you want to include for documenting the rules. It cannot have

any tables other than conversion tables. You need to save the document before it can be used for

adding structure to other documents or books.

Each body row in a conversion table holds one mapping rule. FrameMaker reads only the

information in the first thee columns of the body rows, so you can use additional columns and

headings and footings for comments about rules.

S e t t i n g u p a c o n v e r s i o n t a b l e

Structured Application Developer Reference 169

For information on defining and modifying the rules in a table, see “Adding or modifying rules in

a conversion table” on page 171.

Generating an initial conversion table

You can have FrameMaker generate a conversion table from an unstructured document. This is

the easiest way to begin a new conversion table.

To generate an initial conversion table, choose Generate Conversion Table from the

StructureTools menu in a document with objects you want to structure. Select Generate New

Conversion Table in the dialog box and click Generate.

The software looks through the flows on body pages in the document and compiles a list of every

object that can be structured. For each object, it gives the object type and the format tag used in

the document (if the object has a format), and maps the object to an element. The element tag is

the same as the format tag, or if the object does not have a format, the element tag is a default

name such as CELL or BODY. If necessary, FrameMaker removes parentheses and other characters

to create an element tag that is valid.

The initial conversion table gives you a first pass through the document, identifying objects to

wrap in elements. It does not identify child elements to wrap in parent elements—you need to

add those rules to the table yourself.

This is an example of an initial conversion table:

For details on the object type identifiers used in the table (such as P: and TC:), see “Identifying

a document object to wrap” on page 173.

Note that if there are conflicts in a format tag from the unstructured document, an object type

identifier in lowercase is prepended to any duplicate element tag. In the example above, the

W r a p t h i s o b j e c t I n t h i s e l e m e n t W i t h t h i s
q u a l i f i e r

P:Head1 Head1

P:Head2 Head2

P:Body Body

P:Code Code

SV:Current Date \(Long\) CurrentDateLong

C:Code cCode

TC: CELL

TR: ROW

Conversion Tables for Adding Structure to Documents 170

S e t t i n g u p a c o n v e r s i o n t a b l e

element tag for text ranges with the Code character format is cCode because the document also

has a paragraph format called Code.

When you create an initial table, FrameMaker does not examine the document’s format catalogs—

it looks only at objects actually used in the document. For this reason, the table may not be as

complete as you need. You may want to update the table from a set of documents that together

provide all or most of the objects you need rules for. You can also add and modify rules manually.

The initial convertion table does not contain a root element for the structure hierarchy, but you

can add one manually, using the tag RE:RootElement, so that documents you convert using

the table will have a “well formed” structure in which all elements are children of the root element.

See “Specifying the root element for a structured document” on page 172.

The initial conversion table does contain elements for all defined paragraph and character formats

that are used in the unstructured document, and for all objects, including cross references,

markers, footnotes, equations, graphics, system variables, and tables. Formatting is retained in the

structured document created from the table, and carried forward into the EDD in

ParagraphFormattingTag elements.

If the original document contains format overrides or unnamed formats applied directly to text,

you can create named formats from them before conversion, or flag them for manual update in

the conversion table. See “Flagging format overrides” on page 180 and “Wrapping untagged

formatted text” on page 180.

Setting up a conversion table from scratch

You can set up a regular FrameMaker table to serve as a conversion table. The table must appear

on a body page in its own document. The document and table can be structured or unstructured.

Begin a conversion table this way if you do not yet have an unstructured document to use for

generating the table.

To set up a conversion table from scratch, create a new document and insert a table with at least

three columns and one body row. The table can have any number of heading or footing rows.

You can divide a conversion table into several smaller tables. This is helpful when you have many

rules and want to organize the rules in groups. Each table must have at least three columns and

one body row. You can add explanatory heads and paragraphs between the tables to document

the rules. Do not include tables that are not conversion tables.

Updating a conversion table

After creating a conversion table, you may want to update the table from at least one other

unstructured document to get a more complete list of objects. FrameMaker adds a rule for each

object from the document that is not already listed in the table.

To update a conversion table, choose Generate Conversion Table... from the StructureTools

menu in a document with the objects you want to structure. Select the name of the conversion

table document in the Update Conversion Table popup menu and click Generate.

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Structured Application Developer Reference 171

When you update a conversion table, the process that FrameMaker goes through is similar to the

process of generating an initial table. The software does not examine the document’s format

catalogs—it looks only at objects actually used in the document.

Adding or modifying rules in a conversion table

Each body row in a conversion table holds one mapping rule. Follow these steps to define a

mapping rule:

1. In the first column, identify a document object, a child element, or a sequence of child

elements or paragraphs to wrap.

You use a one- or two-letter code to identify the type of item and, in most cases, a format or

element tag to narrow the definition. See “Identifying a document object to wrap” on

page 173, “Identifying an element to wrap” on page 174, or “Identifying a sequence to wrap”

on page 175.

2. In the second column, specify an element in which to wrap the object, child element, or

sequence.

Type one valid element tag. If you are writing rules for a document that already has element

definitions, use tags from the document’s Element Catalog.

If you are wrapping a table part, graphic, or inset, FrameMaker always wraps all instances of

the object in the same kind of element. The element has a default tag, such as CELL, BODY,

GRAPHIC, or INSET. Type a different tag in the second column only if you want to override

the default tag.

You can also give an element an attribute with a value. For details, see “Providing an attribute

for an element” on page 177.

3. (Optional) In the third column, add a qualifier for the new element tag.

A qualifier is a temporary label that you can attach to an element tag for the structuring

process. If you wrap the element in a parent element in a later rule, you include the qualifier

tag with the element tag. For details, see “Using a qualifier with an element” on page 177.

To make a conversion table easy to read and to help you think through the process, we

recommend that you put the rules in order from the lowest level to the highest. In the first rows

of the table, write rules that wrap individual document objects such as text ranges, tables, and

paragraphs; next add rules that wrap child elements in parent elements; then add rules that wrap

sequences in elements; and finally add rules that wrap elements in one root element.

Every flow in a document must have a highest-level element, and the element can be different for

each flow.

About tags in a conversion table

Format and element tags in a conversion table are case-sensitive and must be specified the way

they are defined in their catalogs. Qualifier tags are also case-sensitive, and two occurrences of

Conversion Tables for Adding Structure to Documents 172

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

one qualifier must match exactly. The following characters are not allowed in an element tag, but

can appear in a format or qualifier tag if you precede them with a backslash (\) in the table:

() & | , * + ? % [] : \

A space character does not need to be preceded with a backslash. For example, you can write the

tag Format A.

You can use a percentage sign (%) as a wildcard character in a format or element tag to match

zero, one, or more characters. For example, P:%Body matches paragraphs with the format tag

Body, FirstBody, or BulletBody.

Specifying the root element for a structured document

FrameMaker now allows you to specify a root element, the highest valid element in a document,

so that the converted document adheres to structured document convention.

To do so, specify the optional RE:RootElement after conversion. You must add it manually to

the conversion table, specifying the tag itself, RE:RootElement, in the first column, and the

element name that you choose in the second column.

When you generate a structured document using this manually modified conversion table, the

resulting document contains a well-formed hierarchy with a valid root element. If you convert an

entire book using the table, each document contains a valid root element.

The root element name that you choose should be unique within the document. If you specify a

name that its being already defined for some other object, the root element is ignored. You can

still generate a structured document with the table, but it will not have a valid root element, and

a message is added to the FrameMaker Log window: “Element name defined in second column

of conversion table for root element is not unique. Root element ignored.”

The root element tag should appear only once in the conversion table. If it appears anywhere else

with a different name, it is ignored and a generated document does get a root element, but if it

appears twice with the same name, both elements are ignored and a generated document will

have no root element.

If no root element is generated for a document (either because the conversion table contains no

RE:RootElement tag or because it is not specified correctly), the ‘NoName’ element appears at

the top of the element hierarchy. The rest of the elements are its children, and the hierarchy is

shown to have an invalid structure.

The RE:RootElement is particularly useful for unstructured documents that do not easily

conform to the required structure rules, maybe due to poor adherance to tagging rules or too

many manual style overrides. In these cases it may be uneconomic to tailor your conversion table

for every possible formatting variation.

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Structured Application Developer Reference 173

Identifying a document object to wrap

To identify a document object to wrap in an element, type an object type identifier and

(optionally) a format tag in the first column of the table. Separate the identifier and format tag

with a colon.

FrameMaker finds all the objects with that type and format and wraps them in the element you

specify in the second column of the table. If you leave the format tag out of the rule, FrameMaker

finds all the objects with the specified type that are not identified in other conversion rules.

For example:

These are the object type identifiers and format tags you can use:

Object type Identifier Format tag

Paragraph P: Paragraph format tag

Text range C: Character format tag

Table T: Table format tag

Table title TT: (none)

Table heading TH: (none)

Table body TB: (none)

Table row TR: (none)

Table cell TC: (none)

System variable SV: Variable format name

User variable UV: Variable format name

Graphic (anchored frame or

imported object)

G: (none)

Footnote F: Location of footnote: Table or Flow

Rubi group RG: (none)

Rubi text R: (none)

Marker M: Marker type

W r a p t h i s
o b j e c t

I n t h i s e l e m e n t

P:Body Para

T:RulesTbl RulesTbl

T: StandardTbl

Q:Small SmallEqns

This rule wraps all tables

not named in other rules,

regardless of format tag.

Conversion Tables for Adding Structure to Documents 174

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Table parts, graphics, and text insets do not have any formatting information, so FrameMaker

wraps all instances of those objects in the same kind of element. The element has a default tag,

such as CELL, BODY, GRAPHIC, or INSET. (Specify a different tag in the second column to

override the default tag.)

You can write identifiers and the keywords for footnote location or equation size in any

combination of uppercase and lowercase letters. The names of formats and marker types are case-

sensitive, however, and must be typed the way they are specified in their catalogs.

A system variable can be wrapped in a variable element but a user variable cannot. If you identify

a user variable, FrameMaker wraps it in a container element with the tag specified in the second

column.

FrameMaker wraps a text inset in a container.

Identifying an element to wrap

To identify a child element to wrap in a parent element, type the object type identifier E: followed

by an element tag and (optionally) a qualifier in brackets in the first column of the table. The

qualifier must already be defined for the element in a rule applied earlier.

FrameMaker finds all instances of the element and wraps them in the element you specify in the

second column of the table. You can omit the element tag if you include a qualifier.

For example:

You can type the E: identifier in either uppercase or lowercase. The element tags are case-

sensitive, however, and must be typed the way they are specified in their catalog. You can even

omit the E: identifier—when FrameMaker reads an object name with no identifier, it assumes the

object is an element.

To identify a table child element to wrap in a table parent element, type the object identifier TE:

followed by E:, an element tag, and (optionally) a qualifier in brackets in the first column of the

Cross-reference X: Cross-reference format name

Text Inset TI: (none)

Equation Q: Size of equation: Small, Medium, or Large

Object type Identifier Format tag

W r a p t h i s
o b j e c t

I n t h i s e l e m e n t

E:Item[Bullet] BulletItem

E:[1Head] ChapHead

This rule wraps all elements

with the qualifier 1Head not

named in other rules.

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Structured Application Developer Reference 175

table. This allows you to name a table element from one or more child elements, rather than

naming it from a table format tag (with the T: identifier).

For example:

Most often, you wrap multiple elements together in one parent. You can use E: or TE: to identify

a sequence of elements for this. For more information, see “Identifying a sequence to wrap,” next.

For more information on qualifiers, see “Using a qualifier with an element” on page 177.

Identifying a sequence to wrap

You can wrap a sequence of child elements in a parent element. For example, you might wrap a

Head element followed by one or more Paragraph and List elements in a higher-level

Section.

You can also wrap a sequence of unwrapped paragraphs in an element. For example, you might

wrap a sequence of paragraphs with the format tag Body all in one Note element. (With other

unwrapped document objects such as tables, graphics, and text ranges, you can wrap only one

object in an element.)

To identify a sequence to wrap, specify object type identifiers and element tags or paragraph

format tags, and use symbols to further describe the sequence. You can mix elements and

unwrapped paragraphs together in one specification.

These are the symbols you can use:

W r a p t h i s
o b j e c t

I n t h i s e l e m e n t

TB:RulesBody RulesBody

TE:E:RulesBody RulesTbl

This rule wraps RulesBody table

child elements in a RulesTbl

table element.

Symbol Meaning

Plus sign (+) Item is required and can occur more than once.

Question mark (?) Item is optional and can occur once.

Asterisk (*) (SGML only) Item is optional and can occur more than once.

Comma (,) Items must occur in the order given.

Ampersand (&) Items can occur in any order.

Vertical bar (|) Any one of the items in the sequence can occur.

Parentheses Beginning and end of a sequence.

Conversion Tables for Adding Structure to Documents 176

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

The symbols available are the same connectors, occurrence indicators, and parentheses used in

general rules in an EDD. For more information on the symbols, see “Writing an EDD general rule”

on page 177.

For example:

Strict or loose sequence specification

If you already have a well defined or standard based application structure, you may try to use the

general rule specification as it is defined in your EDD. In many cases, with well formatted

unstructured documents, you will achieve excellent conversion results. However, in practice

unstructured documents often break the rules. You will find incorrect tagging, manual formatting

overrides and other non-standard features.

Your strict conversion table will not cope well with these souce documents. It will fail to wrap

sequences that do not match a strict specification. You can avoid these problems by providing a

less restrictive sequence specification.

The revised sequence specification must be compatible with the required structure for example if

the EDD specified this general rule:

Head, Para+, Table?, Graphic?, Section*

The strict sequence specification could be identical. However, if the conversion table encountered

a document whith no Head element or a Para between Table and Section, the entire

sequence will not be wrapped. The revised sequence specification could be:

Head?, (Para | Table| Graphic)*, Section*

This will give the correct conversion when the source document is well tagged but will also cope

with a wide range of variations.

To identify this sequence Use this specification

One or more Item elements Item+

An element tagged Item[Bullet]

followed by one or more unwrapped

paragraphs tagged Bullet

E:Item[Bullet], P:Bullet+

A ChapNum element followed by a

ChapName element

ChapNum, ChapName

A Head element followed by zero or more

Paragraph, BulletList, or

NumberList elements

Head, (Paragraph|BulletList|
NumberList)*

An Item[FirstNItem] element

followed by one or more Item[NItem]

elements

Item[FirstNItem], (Item[NItem])+

or

[FirstNItem], ([NItem])+

A RulesTitle table title element followed

by a RulesBody table body element

TE:E:RulesTitle, E:RulesBody

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Structured Application Developer Reference 177

Providing an attribute for an element

When you specify an element in the second column of the table, you can provide an attribute for

the element. In the structured document, all the element instances will have the attribute name

and value.

To provide an attribute for an element, type the attribute name and value in brackets after the

element tag in the second column of the table. Separate the name and value with an equal sign,

and enclose the value in double quotation marks.

For example:

If the unstructured document has an Element Catalog with an element and attribute matching the

one you’re providing, the attribute is the type specified in the catalog. If the attribute does not

match an attribute already defined, the type is string.

If you need to use a double quotation mark in an attribute value, escape the quotation mark with

a backslash (\). Other restrictions on characters are determined by the attribute’s type. (The string

type allows any arbitrary text string.) For information on these restrictions, see “Attribute type” on

page 194.

To give an element more than one attribute, separate the attribute definitions with an ampersand

(&). For example, this specification gives the element a Type attribute with the value Numbered

and a Content attribute with the value Procedure:

List [Type="Numbered" & Content="Procedure"]

For an example of an attribute that maintains formatting information from a qualifier, see “Using

a qualifier with an element,” next.

Using a qualifier with an element

Qualifiers act as temporary labels that preserve formatting information from the unstructured

document until all elements have been wrapped. Qualifiers are used only in the conversion

table—they do not show up in a final structured document.

To use a qualifier with an element specified in the second column of the table, type the qualifier

tag in the third column. Then when you wrap the element in a later rule, type the qualifier tag in

brackets after the element tag in the first column. Spell and capitalize the qualifier the same way

W r a p t h i s o b j e c t I n t h i s e l e m e n t
P:Intro Para[Security="Unclassified"]

P:Important Note[Label="Important"]

E:Item+ List[Type="Numbered"]

Conversion Tables for Adding Structure to Documents 178

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

in the two places. FrameMaker keeps track of qualifiers separately from elements, so you can use

the same tag for an element and its qualifier.

For example:

In the example above, an unstructured document has both bulleted items and numbered items,

with paragraph formats called BulletItem and NumberItem. When adding structure to the

document, you want to wrap all the items in an Item element with a parent element of either

BulletList or NumberList. To do this, you need to keep the BulletItem and

NumberItem formatting designations long enough to determine in which list to wrap the items.

The conversion table first associates qualifiers called bulleted and numbered with new Item

elements. Then it wraps each Item element in either a BulletList or a NumberList, as

specified by its qualifier.

Note that if you specify an attribute for formatting information in the second column, you cannot

use the attribute as a label for preserving formatting during the conversion process. You still need

to use the qualifier. For example:

W r a p t h i s o b j e c t I n t h i s e l e m e n t W i t h t h i s
q u a l i f i e r

P:BulletItem Item bulleted

P:NumberItem Item numbered

E:Item[bulleted]+ BulletList

E:Item[numbered]+ NumberList

First specify the qualifier for the element.

Then include the qualifier with the element in later rules.

W r a p t h i s o b j e c t I n t h i s e l e m e n t W i t h t h i s
q u a l i f i e r

P:BulletItem Item bulleted

P:NumberItem Item numbered

E:Item[bulleted]+ List[Type="Bulleted"]

E:Item[numbered]+ List[Type="Numbered"]

H a n d l i n g s p e c i a l c a s e s

Structured Application Developer Reference 179

Handling special cases

You may need to accommodate a few special circumstances or requirements in a conversion table.

Promoting an anchored object

In an unstructured FrameMaker document, a table or an anchored graphic must be anchored in

a paragraph. The anchor specifies which paragraph to keep the object with as an author continues

to edit the document. When a user adds structure to the document, the table or graphic normally

becomes a child of the paragraph with the anchor, like this:

In a structured document, you often want a table or graphic element to be at the same level as

its surrounding paragraph elements. FrameMaker can break the table or graphic out of its

paragraph and promote the element to be a sibling of the paragraphs, like this:

To break a table or graphic out of its paragraph and promote it one level, add the keyword

promote in parentheses after the element tag for the table or graphic. (The keyword is not case-

sensitive.) For example:

W r a p t h i s o b j e c t I n t h i s e l e m e n t
T:Table Table (promote)

Conversion Tables for Adding Structure to Documents 180

H a n d l i n g s p e c i a l c a s e s

Note that FrameMaker promotes the object at the location of the anchor symbol in the paragraph.

If the symbol is in the middle of the paragraph, the structured document will have half of the

paragraph, then the table, and then the other half of the paragraph. Typically, you want the

symbol to be at the end of the paragraph.

Flagging format overrides

An unstructured document may have format overrides. This happens when someone uses the

Paragraph or Character Designer to make formatting changes to a paragraph or text range but

does not save the changes in the catalog format.

When an end user adds structure to a document, FrameMaker does not normally identify format

overrides. You can have FrameMaker flag all element instances in the document that have

overrides so that the user can find the overrides and decide how to handle them in a structured

context.

To flag format overrides, add the rule flag paragraph format overrides or flag
character format overrides to the first column of the table. (The rule is case-insensitive.)

This is a general instruction for the table, so you do not add anything to the second and third

columns. For example:

At each element instance that has an override in the document, FrameMaker adds an attribute

called Override with the value Yes.

Wrapping untagged formatted text

It is possible for someone to format a text range by applying commands from the Font, Size, and

Style submenus in the Format menu—and not use a character format at all. This leaves the text

formatted but without a tag that you can refer to in your conversion table.

You can have FrameMaker find text that has been formatted with the submenu commands and

wrap it in a “catch-all” element. After adding structure to a document, the end user will probably

W r a p t h i s o b j e c t I n t h i s
e l e m e n t

flag paragraph format overrides

flag character format overrides

Note: Use the FrameMaker utility "Create and Apply Formats" before conversion to turn

format overrides and untagged formatted text into named paragraph and character

formats, which can be carried forward automatically into the structured document and

EDD.

H a n d l i n g s p e c i a l c a s e s

Structured Application Developer Reference 181

want to look at these instances and change them to other elements (such as Emphasis) that

more specifically describe the type of formatting.

To wrap untagged formatted text, add the rule untagged character formatting to the

first column of the table and add an element to the second column. (The rule is case-insensitive.)

For example:

This might also be useful while you are developing a conversion table. You can add structure to a

sample document with this rule to see if the document has any untagged formatting.

Nesting object elements

Typically, a non-paragraph object such as a table or graphic is wrapped in an object element and

then wrapped in a paragraph element. You can also wrap the object in more than one level below

the paragraph. Sometimes you need to do this to conform to a DTD that requires more hierarchy,

or you may just want to be able to use two objects together.

To nest object elements in a paragraph, define each mapping in a separate rule in the table. For

example:

In the example above, the rules wrap an index marker in an Index element and a graphic anchor

in a Graphic element, and then they wrap the two elements together in a Figure text range

element. This way, the graphics in a structured document will automatically have a marker

identifying a location to be included in an index.

W r a p t h i s o b j e c t I n t h i s e l e m e n t
untagged character formatting UntaggedText

Note: Use the FrameMaker utility "Create and Apply Formats" before conversion to turn

format overrides and untagged formatted text into named paragraph and character

formats, which can be carried forward automatically into the structured document and

EDD.

W r a p t h i s o b j e c t I n t h i s e l e m e n t
M:Index Index

G: Graphic

E:Index & E:Graphic Figure

Conversion Tables for Adding Structure to Documents 182

T e s t i n g a n d c o r r e c t i n g a c o n v e r s i o n t a b l e

Building table structure from paragraph format tags

When FrameMaker adds structure to tables, it normally wraps all instances of a table part in the

same kind of element and uses a default name for the element, such as CELL, ROW, HEADING, or

BODY. You can override the default name by providing a different element tag in the second

column of the conversion table.

If you want to have more than one kind of element for a particular table part, you can build the

structure up from the format tags used in the cells or titles. This allows you to distinguish between

different formatting used in different instances of a single table part. For example, a table may

have a few special body rows with italicized text that marks divisions in the table. Or a table may

have two titles, one of them a subtitle in a different font size.

To build table structure from paragraph format tags, for each cell or title rule use the TC: or TT:

type identifier followed by the P: identifier and a format tag in the first column of the table. For

example:

In the example above, the rules map cells that use a DividerCell paragraph format in an

element called DividerCell and map cells that use a BodyCell paragraph format in an

element called BodyCell. Then they wrap both kinds of cell elements in the same default ROW

element and continue the wrapping normally.

Testing and correcting a conversion table

You should test and correct a conversion table as you develop it. To do this, prepare a sample

document that represents the type of documents the table will apply to, and use the conversion

table to add structure to the sample. Make sure your sample document has all of the document

objects that the final documents may contain.

When a structure command reads a conversion table, it identifies any syntax errors in the rules

and displays the errors in a log file. Correct the table and test it again until no more errors are

found.

You may find it helpful to wrap only document objects for your first testing pass, without

wrapping in higher levels of hierarchy. When you’re sure that the rules for wrapping individual

W r a p t h i s o b j e c t I n t h i s e l e m e n t
TC: P:DividerCell DividerCell

TC: P:BodyCell BodyCell

TR:DividerCell+ ROW

TR:BodyCell+ ROW

TB:Row+ BODY

T e s t i n g a n d c o r r e c t i n g a c o n v e r s i o n t a b l e

Structured Application Developer Reference 183

objects are correct, start writing and testing the rules to wrap elements and sequences in parent

elements.

Conversion Tables for Adding Structure to Documents 184

T e s t i n g a n d c o r r e c t i n g a c o n v e r s i o n t a b l e

Structured Application Developer Reference 185

5 CSS to EDD Mapping 5

This chapter provides a reference for the CSS to EDD mapping feature, grouped by CSS property

category. Each property’s description includes the following headings.

CSS property The CSS 2.0 property name

CSS Property Values A simple list of the available property values.

Mapped to EDD property Shows the element name of the equivalent EDD formatting property.

For table parts it shows the mapping for EDD table parts.

Comments/Values Addtional information about the mapping includes EDD element property

values.

While importing a Cascading Style Sheet (CSS) into an EDD, any property or selector in the CSS

that cannot be mapped to an equivalent EDD rule is ignored by FrameMaker. No error log is

displayed and errors in the CSS file are not reported.

The EDD does not support all properties and selectors defined in CSS 2.0. While importing a CSS

into an EDD, FrameMaker will ignore any unsuported properties or selectors.

CSS Font Properties

Fonts are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values

font-
family

font-family
family-name |
generic-family

PropertiesFont < Family

element.

Font Set is not supported.

• Generic-Family can’t be

supported.

• Only one font-family can

be specified using the EDD

Family element.

CSS to EDD Mapping 186

C S S F o n t P r o p e r t i e s

font-size length in units

• cm (centimeters)

• ex (exs)

• in (inches)

• mm (millimeters)

• pc (picas)

• pt (points)

• px (pixels)

PropertiesFont < Size

element.

Only font-size with a length in

points is recognised, all other

length types are ignored and the

% (percentage) % values are not mapped as

FrameMaker does not calculate

relative values proportionally.

Relative size with these

values:

• larger

• smaller

Not supported

Absolute size with value

of:

• xx-small

• x-small

• small

• medium

• large

• x-large

• xx-large

PropertiesFont < Size

element.

The corresponding absolute

values in FrameMaker are

mapped as follows:

• xx-small = 7.0pt

• x-small = 8.4pt

• small = 10pt

• medium = 12pt (Default)

• large = 14.4pt

• x-large = 17.3pt

• xx-large = 20.8pt

font-style normal | italic |

oblique

PropertiesFont < Angle

with Regular or Italic child

elements.

CSS oblique is mapped to EDD

Italic.

font-
variant

normal | small-
caps

CSS small-caps is mapped to

EDD PropertiesFont <
Case < SmallCaps.

No action for normal.

CSS property CSS Property Values Mapped to EDD property Comments/Values

C S S F o n t P r o p e r t i e s

Structured Application Developer Reference 187

font-
weight

normal | bold |

bolder | lighter |

100 | 200 | 300 | 400 |

500 | 600 | 700 | 800 |

900

PropertiesFont <
Weight.

CSS normal and bold are

mapped to Regular and Bold
All weights <= 400 are mapped

to Regular, and > 400 are

mapped to Bold.

Relative values bolder and

lighter cannot be mapped as

FrameMaker does not calculate

relative values.

font font-style | font-
variant | font-
weight | font-size

line-height |

font-family |

caption | icon |

menu | message-box
| small-caption |
status-bar

As listed for the individual CSS

properties above.

caption, icon, menu,

message-box, small-
caption and status-bar

fonts are not supported.

font-
stretch

normal | ultra-
condensed |

condensed | semi-
condensed | semi-
expanded |

expanded | extra-
expanded | ultra-
expanded

PropertiesFont <
Stretch.

The mappings from CSS to

FrameMaker EDD are:

• ultra-condensed = 50

• extra-condensed = 60

• condensed = 72

• semi-condensed = 86

• normal = 100

• semi-expanded = 120

• expanded = 144

• extra-expanded = 173

• ultra-expanded = 207

wider | narrower PropertiesFont <
StretchChange.

• wider = +20

• narrower = -20

font-size-
adjust

number | none @font-face is not supported.

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS to EDD Mapping 188

C S S t e x t p r o p e r t i e s

CSS text properties

The CSS text properties are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values

text-
decoration

underline PropertiesFont <
Underline element.

 overline PropertiesFont <
Overline element.

line-through PropertiesFont <
Strikethrough element.

blink Blink is not supported.

text-
transform

uppercase PropertiesFont < Case <
Uppercase element.

Both text-transform and

font-variant map to the

Case element of EDD. If both

these properties are used for an

element context, then only the
text-transform value is

used.

lowercase PropertiesFont < Case <
Lowercase element.

capitalize capitalize is not supported.

text-align left | right |

center | justify |

string

PropertiesBasic <
PgfAlignment.

CSS left, right, center and

justify are mapped to EDD

Left, Right, Center, and

Justified respectively.

CSS string is not supported.

text-
indent

length |

percentage
PropertiesBasic <
Indents < FirstIndent
percentage value is not

supported.

line-
height

number | length |

percentage
Not supported

word-
spacing

normal | length |

inherit
PropertiesAdvanced <
WordSpacing.

The CSS length value maps to

the EDD minimum value.

In the EDD, WordSpacing

accepts percentage values of the

font's em space. Therefore, only

an em value of CSS word-
spacing can be mapped to

EDD.

C S S c o l o r a n d b a c k g r o u n d s p r o p e r t i e s

Structured Application Developer Reference 189

CSS color and backgrounds properties

The CSS color and background properties are mapped as in the following table:

letter-
spacing

normal | length |

inherit
PropertiesAdvanced <
LetterSpacing.

In the EDD, LetterSpacing

can have a value of “yes” or

“no”. A positive value for CSS

length maps to “yes” in the

EDD.

text-
shadow

Not supported

white-
space

Not supported

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS property CSS Property Values Mapped to EDD property Comments/Values

color name | rgb PropertiesFont < Color • If the name of color is

specified and that color is not

defined in FrameMaker (CSS

includes 16 predefined color

names), a new color is created

with that name and is

assigned the value, rgb.

• If the rgb value of the color is

specified, a new color name is

created with that value.

background-color background color

background-image Not supported

background-attachment Not supported

background-position Not Supported

background-repeat Not Supported

CSS to EDD Mapping 190

C S S F o r m a t t i n g M o d e l

CSS Formatting Model

The CSS Box Model and Formatting Model are mapped as in the following table:

background background-
color* |

background-image

| background-
repeat |

background-
attachment |

background-
position
*Mapped to EDD

property,

background color.

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS property CSS Property Values Mapped to EDD property Comments/Values

margin-
right

length |

percentage | auto
PropertiesBasic <
Indents < RightIndent.

The percentage value is not

supported.

margin-
left

length |

percentage | auto
PropertiesBasic <
Indents < FirstIndent

and LeftIndent.

The percentage value is not

supported.

margin-top length |

percentage | auto
PropertiesBasic <
Indents < SpaceAbove.

The percentage value is not

supported.

margin-
bottom

length |

percentage | auto
PropertiesBasic <
Indents < SpaceBelow.

The percentage value is not

supported.

margin margin-right |

margin-left |

margin-top |

margin-bottom

As listed for the individual CSS

properties above.

C S S F o r m a t t i n g M o d e l

Structured Application Developer Reference 191

border,
border*

Not supported

padding,

padding*
Not supported

width Not supported

height Not supported

min-width Not supported

min-height Not supported

max-width Not supported

max-height Not supported

float left PropertiesPagination <
Placement < SideHead <
Left

The main flow in the target

structured document must have

“room for side head” enabled to

acheive the expected result.

right Not supported

clear Not supported

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS to EDD Mapping 192

C S S F o r m a t t i n g M o d e l

display inline CSS inline elements are

supported by using the

TextRangeFormatting

element.

• When CSS inline is

specified all CSS properties

that map to EDD

PropertiesFont child

elements are retained. All

other CSS properties are

ignored.

• The default behaviour of CSS

inline is equivalent to a

FrameMaker text range.

• The default behaviour of CSS

bock is equivalent to a

FrameMaker paragraph.

• If there are two different rules

for a single element in which

one of the selectors is more

specific than the other, and

both rules specify the display

property with a different

value, then in FrameMaker

the final value of the display

property is undefined, and

the corresponding element

type in the EDD is also

undefined.

block CSS block elements are

supported by using the

ParagraphFormatting

element.

run-in PropertiesPagination <
Placement < RunInHead

element

compact PropertiesPagination <
Placement < SideHead

element

The main flow in the target

structured document must have

“room for side head” enabled to

acheive the expected result.

list-item PropertiesNumbering <
AutoNumFormat

An appropriate

AutoNumFormat must be

created based on the list-
style-type property.

CSS property CSS Property Values Mapped to EDD property Comments/Values

C S S P a g i n a t i o n P r o p e r t i e s

Structured Application Developer Reference 193

CSS Pagination Properties

The CSS Pagination properties are mapped as in the following table:

CSS property CSS Property Values EDD property Comments/Values

page-
break-
before

auto | always |

avoid | left | right

| inherit

PropertiesPagination <
StartPosition
CSS to EDD element mapping:

• always = TopOfpage

• left = TopOfLeftPage

• right =
TopOfRightPage.

The avoid property is not

supported.

page-break-after Not supported

page-break-inside Not supported

widows/

orphans

integer|inherit PropertiesPagination <
WidowOrphanLines

In CSS, widows and orphans are

different properties and hence

they can have different values.

But, in the EDD, a single element,

WidowOrphanLines, controls

both values, and hence they

have the same value.

marks crop | cross Not supported

@page Not supported An EDD has no control over the

page layout. In FrameMaker

page layout is designed into the

structured template.

page Not supported To acheive the required result

set up a suitable

ApplyMasterPages command.

See the Using Adobe®

FrameMaker® guide.

size length | auto |

portrait |

landscape |

inherit

An EDD has no control over the

page layout. In FrameMaker

page layout is designed into the

structured template.

CSS to EDD Mapping 194

C S S g e n e r a t e d c o n t e n t , a u t o m a t i c n u m b e r i n g , a n d l i s t s

CSS generated content, automatic numbering, and lists

The CSS generated content, automatic numbering, and lists are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values

list-
style-type

• disc

• circle

• square

• decimal

• decimal-leading-

zero

• lower-roman

• upper-roman

• lower-alpha

• upper-alpha

• lower-latin

• upper-latin

• lower-greek

• hebrew

• armenian

• georgian

• cjk-ideograph

• hiragana

• katakana

• hiragana-iroha

• katakana-iroha

• none

Not supported This CSS property is not

supported in EDD. We have to

enhance EDD for this.

list-style-image Not supported

list-style-position Not supported

list-style list-style-type,

list-style-image,

list-style-
position

Not supported

C S S g e n e r a t e d c o n t e n t , a u t o m a t i c n u m b e r i n g , a n d l i s t s

Structured Application Developer Reference 195

content string The text content of the Prefix

or Suffix element.

 string, attr(attname),

open-quote and close-
quote may be used in any

combination as required.

Separate each item with

whitespace.

• To create a Prefix use the CSS

:before psuedo element

selector

• To create a Suffix use the CSS

:after psuedo element

selector

• In CSS, the string generated

by the content property

can have any CSS style. In

contrast, EDD Prefix and

Suffix rules can have only

use font formatting (through

the PropertiesFont

element).

attr(attname) <$attribute[attname]>

open-quote "

close-quote "

counter Not supported

uri, quotes Not supported

counter-
increment

Not supported

counter-
reset

Not supported

counter Not supported

counters Not supported

marker Not supported

marker
offset

Not supported

White-
space

Not supported

position Not supported

z-index Not supported

visibility Not supported

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS to EDD Mapping 196

C S S T a b l e s

CSS Tables

Container is the default element type in an EDD. An element can be specified in CSS as a

table component or table component group using the display property. If an

element is a Container in the EDD but the CSS specifies the element as Table/table-Tow, then

the element type in EDD is changed from Container to the corresponding table element type.

CSS property CSS Property Values Mapped to EDD property Comments/Values

display table Element < Table • FrameMaker table part

elements cannot have

PrefixRules or

SuffixRules. So, a rule

with the :after or

:before pseudo element

selector, is ignored.

• FrameMaker table part

elements cannot have

TextRangeFormatting

element in the EDD. So, the

inline value of the

display property is

ignored.

table-inline Not supported

table-row Element < TableRow

table-row-group Element < TableBody

table-header-
group

Element < TableHeading

table-footer-
group

Element < TableFooting

table-cell Element < TableCell

table-caption Element < TableTittle

colspan

rowspan

Straddling in FrameMaker core The New element needs to be

added in EDD.

border FM core supports border in

Table and Table cell.

The New element needs to be

added in EDD.

background FM core supports background in

Table and Table cell.

The New element needs to be

added in EDD.

C S S S e l e c t o r s

Structured Application Developer Reference 197

CSS Selectors

The CSS selectors are mapped as in the following table:

table-column

table-column-group

Not supported. Column

selectors are also not supported

as they are applied in table-

column and table-column-

group only.

caption-
side

top | bottom | left |

right
Not supported

empty-
cells

show | hide Not supported

table-
layout

auto | fixed Not supported

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS selector Matches EDD selector

* any element The * selector matches any single

element of the document tree. So,

properties specified using * are applied

to all elements in EDD.

E Any element Elem Element(Container): E

F E Any element E that is descendent of

element F
If context is: * < F

F > E Any E element that is child of F Element (Container): E

If context is: F

F + E Any E element that immediately follows

F
{after F}
* + E maps to {notfirst}.

.class any element with class “class” Not supported

#id element with ID id Element (Container): E

If context is: [IDname="id"]

:first-child Any element that is the first child of its

parent

{first}

:link
:visited

Hyperlink visited or not Ignored as it does not apply to

FrameMaker.

CSS to EDD Mapping 198

C S S S e l e c t o r s

:active
:hover
:focus

Any element that is activated by the user

using the mouse, etc.

Ignored as it is for an interactive browser

:lang(c) Any element whose content is in the ‘C’

language

Element (Container):E

General Rule: <ANY>

If context is: [xml:lang=”c”]

[att] Any element with attribute att Not supported

[att=val] Any element with attribute att and

value val.

Element (Container):E

General Rule: <ANY>

If context is: [att=”val”]

[att~=val] Any element that includes the word

“val” in its value.

Not supported

[att |= “val”] Any element with an att attribute value

“val-..”

Not supported

E:first-letter The first letter of any element E Not supported

E:first-line The first line of any element E Not supported

E:before
E:after

The text to be inserted at the start/end of

any element E
Maps to Prefix and Suffix rules in EDD. For

more details, see the “content”

property.

CSS selector Matches EDD selector

Structured Application Developer Reference 199

6 XML Schema to DTD Mapping 6

When XML documents are associated with an XML Schema declaration, FrameMaker can convert

the Schema to a DTD declaration, from which you can create or modify an EDD. The content

models of Schema and DTD are not identical. This chapter shows how Schema definitions are

mapped into DTD definitions.

For details of how special objects are handled when converting Schema to DTD, see the individual

object discussions in Developer Guide, Part IV, Translating Between Markup Data and FrameMaker

If you wish to modify the DTD that is generated automatically, you can do so. If you do this,

reference the modified DTD from the original XML document. When FrameMaker imports an XML

document that references both a Schema and DTD, it uses the DTD to create the FrameMaker

elements, although it still validates the contents against the Schema.

Schema location

You can import an XML document that references a Schema file, and you can specify a Schema

file in your structure application, to use for validating a document upon export to XML.

To specify a Schema file for use in exporting to XML, modify the structapps.fm file. The

element Schema, a child of the XmlApplication element, specifies the Schema file path for

export. The property Namespace in XmlApplication must be set to true if instance

documents use namespaces. See “Specifying a Schema for XML” on page 23

For importing an XML document, include the path of the Schema file in the XML using

attributes—noNamespaceSchemaLocation or schemaLocation depending on whether

your schema includes a target namespace or not. A DTD is generated automatically when you

import the XML, and the EDD is generated from the DTD.

Schema allows an XML document to reference multiple Schema locations in different namespaces

using the root-element attribute xsi:schemaLocation, which can have multiple values. This

feature has no equivalent in DTD. If an XML document references multiple Schema locations,

FrameMaker uses only the first one for generating a DTD and for validation.

You can load XML documents that use noNamespaceSchemaLocation. For example:

<RootElementName id="RootElementID"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MySchema.xsd">

Note: The DTD generated from Schema always uses UTF8 encoding, regardless of the

encoding used in the Schema file.

XML Schema to DTD Mapping 200

S i m p l e t y p e m a p p i n g

If an imported document references both a valid DTD location and a Schema location, the

document is validated against the Schema. If there is no Schema location value, it is validated

against the DTD. If neither location is specified, the load shows a warning similar to the one for a

document that has no DOCTYPE statement.

If an imported document references both a DTD location and a Schema location, but the

referenced DTD location is not valid, the load fails with the error “invalid external entity.”

FrameMaker does not, in this case, generate a new DTD from the referenced Schema.

Namespace and Schema location attributes

The root element is not created automatically, therefore, the conversion process adds attributes

for namespace definitions and schema location in all global elements specified in the Schema,

which are then copied into the EDD that is created from the DTD. If you do add a root element,

as recommended, these attributes are not needed, although they are not harmful.

If you wish, you can remove these extra attributes in two ways:

• After you generate an EDD from Schema, remove the extra attributes from the non-root

elements in the EDD, and create a template. In this case, you do not need to provide an external

DTD in the instance XML document.

• Remove the extra attributes from the non-root elements in the generated DTD, and save the

modified DTD as an external DTD in the instance document. This is the technique to use if you

want to modify the default mapping to DTD. In this case, you do not need a template. If you

do wish to create a template, you can remove the attributes from the EDD as well.

Simple type mapping

All simple types in Schema translate to #PCDATA in DTD, and the Schema type anyType

translates to the DTD type ANY. For example:

Schema

<xsd:element name="AString" type="xsd:string"/>
<xsd:element name="AnUnsignedInt" type="xsd:unsignedInt"/>
<xsd:element name="ABoolean" type="xsd:boolean"/>
<xsd:element name="AgYearMonth" type="xsd:gYearMonth"/>
<xsd:element name="AgMonthDay" type="xsd:gMonthDay"/>
<xsd:element name="AnyTypeElem" type="xsd:anyType"/>

S i m p l e t y p e m a p p i n g

Structured Application Developer Reference 201

DTD

<!ELEMENT AString(#PCDATA)>
<!ELEMENT AnUnsignedInt(#PCDATA)>
<!ELEMENT ABoolean (#PCDATA)>
<!ELEMENT AgYearMonth (#PCDATA)>
<!ELEMENT AgMonthDay (#PCDATA)>
<!ELEMENT AnyTypeElem (ANY)>

Attributes of simple type elements

Attribute of simple types translate to CDATA, NMTOKEN, NMTOKENS, ID, IDREFS, ENTITY, and

so on. Enumeration facets in attributes are exported to DTD. Other simple type facets, xsd:list

facets, and xsd:union facets are dropped.

Note the translation of use, fixed and default attribute combinations in the following

example:

Schema

<xsd:attribute name="ReqdAttr" type="xsd:int" use="required"/>
<xsd:attribute name="OptAttr" type="xsd:int" use="optional"/>
<xsd:attribute name="ProhAttr" type="xsd:int" use="prohibited"/>
<xsd:attribute name="FixedReqdAttr" type="xsd:int" use="required"

fixed="23"/>
<xsd:attribute name="OptDefAttr" type="xsd:int" use="optional"

default="12"/>
<xsd:attribute name="FixedOptAttr" type="xsd:int" use="optional"

fixed="25"/>
<xsd:attribute name="EnumAttr" use="optional" default="Male">

<xsd:simpleType><xsd:restriction base="xsd:string">
<xsd:enumeration value="Male"/>
<xsd:enumeration value="Female"/>

</xsd:restriction></xsd:simpleType>
</xsd:attribute>

DTD

 <!ATTLIST ElemName
FixedOptAttr NMTOKEN #FIXED "25"
EnumAttr (Male|Female) "Male"
OptDefAttr NMTOKEN "12"
ReqdAttr NMTOKEN #REQUIRED
FixedReqdAttr NMTOKEN #FIXED "23"
OptAttr NMTOKEN #IMPLIED>

XML Schema to DTD Mapping 202

C o m p l e x t y p e m a p p i n g

Complex type mapping

Complex content models in Schema translate to similar constructs in DTD, insofar as possible. If

there are any errors in the Schema that result in a content model ambiguity, the content model is

translated to ANY in DTD.

Group

The group content model in Schema translates to a group in DTD. For example:

Schema

<xsd:element name="GroupElem">
<xsd:complexType><xsd:sequence><xsd:choice>

<xsd:group ref="IntStr"/>
<xsd:element name="MMIncl" type="xsd:string"/>

</xsd:choice></xsd:sequence></xsd:complexType>
</xsd:element>

<xsd:group name="IntStr" id="Group1">
<xsd:sequence>

<xsd:element name="Int" type="xsd:int" minOccurs="2"
 maxOccurs="2"/>

<xsd:element name="Str" type="xsd:string"/>
</xsd:sequence>

</xsd:group>

DTD

<!ELEMENT GroupElem (((abc:Int,abc:Int),abc:Str)|abc:MMIncl)>

Sequence

A Schema sequence content model translates to a sequence in DTD. Note the translation of

minOccurs and maxOccurs attribute value combinations in the following example.

C o m p l e x t y p e m a p p i n g

Structured Application Developer Reference 203

Schema

<xsd:element name="TestOccurence">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Min0" type="xsd:int" minOccurs="0"/>
<xsd:element name="Max1" type="xsd:int" maxOccurs="1"/>
<xsd:element name="Min0Max1" type="xsd:int" minOccurs="0"

maxOccurs="1"/>
<xsd:element name="Min1Max1" type="xsd:int" minOccurs="1"

 maxOccurs="1"/>
<xsd:element name="Min2MaxI" type="xsd:int" minOccurs="2"

maxOccurs="unbounded"/>
<xsd:element name="Min0Max2" type="xsd:int" minOccurs="0"

maxOccurs="2"/>
<xsd:element name="Min2Max10" type="xsd:int" minOccurs="2"

maxOccurs="10"/>
<xsd:element name="Min2Max3" type="xsd:int" minOccurs="2"

maxOccurs="3"/>
</xsd:sequence>

</xsd:complexType>

DTD

<!ELEMENT TestOccurence
((Min0?,Max1,Min0Max1?,Min1Max1,(Min2MaxI,Min2MaxI,Min2MaxI*),
 (Min0Max2*),(Min2Max10,Min2Max10,Min2Max10*),
 (Min2Max3, Min2Max3, Min2Max3?))>

Choice

A Schema choice content model translates to a choice in DTD. For example:

Schema

<xsd:element name="ChoiceElem">
<xsd:complexType>

<xsd:sequence>
<xsd:choice>

<xsd:element name="Int" type="xsd:int"/>
<xsd:element name="Str" type="xsd:string"/>
<xsd:element name="MMIncl" type="xsd:int"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

XML Schema to DTD Mapping 204

C o m p l e x t y p e m a p p i n g

DTD

<!ELEMENT ChoiceElem ((Int|Str)|MMIncl)>
<!ELEMENT Int (#PCDATA)>
<!ELEMENT Str (#PCDATA)>
<!ELEMENT MMIncl (#PCDATA)>

All

A Schema all content model translates to a choice of elements with multiple occurrences in DTD.

For example:

Schema

<xsd:element name="DataType">
<xsd:complexType>
<xsd:all>

<xsd:element name="AName" type="xsd:Name"/>
<xsd:element name="AQName" type="xsd:QName"/>
<xsd:element name="ANCName" type="xsd:NCName"/>
<xsd:element name="AnyURI" type="xsd:anyURI"/>
<xsd:element name="ALanguage" type="xsd:language"/>
<xsd:element name="AnID" type="xsd:ID"/>
<xsd:element name="AnIDRef" type="xsd:IDREF"/>
<xsd:element name="AIDREFS" type="xsd:IDREFS"/>

</xsd:all></xsd:complexType></xsd:element>

DTD

<!ELEMENT DataType
(AName|AQName|ANCName|AnyURI|ALanguage|AnID|AnIDRef|AIDREFS)*>

Named complex types

Named complex types in Schema are dropped, and their content model is substituted into the

corresponding DTD elements. For example:

C o m p l e x t y p e m a p p i n g

Structured Application Developer Reference 205

Schema

<xsd:element name="AddressDetails">
<xsd:complexType><xsd:sequence>

<xsd:element name="ToAddress" type="USAddress"/>
<xsd:element name="FromAddress" type="USAddress"/>

</xsd:sequence></xsd:complexType>
</xsd:element>

<xsd:complexType name="USAddress">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:int"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
<xsd:attribute name="headquarter" type="xsd:string"

use="required"/>
</xsd:complexType>

DTD

<!ELEMENT AddressDetails (ToAddress,FromAddress)>
<!ELEMENT ToAddress ((name,street,city,state),zip)>
<!ATTLIST ToAddress country NMTOKEN #FIXED "US"

headquarter CDATA #REQUIRED >
<!ELEMENT FromAddress

((name,street,city,state),zip)>
<!ATTLIST FromAddress

country NMTOKEN #FIXED "US"
headquarter CDATA #REQUIRED >

<!ELEMENT name (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

Named attribute groups

Named attribute groups in Schema are dropped, and the attributes are put into the corresponding

DTD attribute list. For example:

XML Schema to DTD Mapping 206

C o m p l e x t y p e m a p p i n g

Schema

<xsd:element name="PersonalDetails">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>

</xsd:sequence>
<xsd:attributeGroup ref="PersonalData"/>

</xsd:complexType>
</xsd:element>

<xsd:attributeGroup name="PersonalData">
<xsd:attribute name="Age" type="xsd:int" use="required"/>
<xsd:attribute name="Gender">

<xsd:simpleType><xsd:restriction base="xsd:string">
<xsd:enumeration value="Male"/>
<xsd:enumeration value="Female"/>

</xsd:restriction></xsd:simpleType>
</xsd:attribute>

</xsd:attributeGroup>

DTD

<!ELEMENT PersonalDetails (Name)>
<!ATTLIST PersonalDetails

Age NMTOKEN #REQUIRED
Gender (Male|Female) #IMPLIED>

<!ELEMENT Name (#PCDATA)>

Abstract elements

For an abstract element in Schema is substituted into DTD elements using its own substitution

group, if one is defined. Otherwise, the element maps directly to a DTD element. For example:

C o m p l e x t y p e m a p p i n g

Structured Application Developer Reference 207

Schema

<xsd:element name="RootElem">
<xsd:complexType><xsd:all>

<xsd:element name="Elem1" type="xsd:int" minOccurs="0"/>
<xsd:element ref="AbstractElem"/>

</xsd:all></xsd:complexType>
</xsd:element>

<xsd:element name="AbstractElem" type="xsd:string"
 abstract="true"/>

<xsd:element name="Substitute1" type="xsd:string"
 substitutionGroup="AbstractElem"/>

<xsd:element name="Substitute2" type="xsd:string"
 substitutionGroup="AbstractElem"/>

DTD

<!ELEMENT RootElem (Elem1?|(Substitute1|Substitute2))*>
<!ELEMENT Elem1 (#PCDATA)>
<!ELEMENT Substitute1 (#PCDATA)>
<!ELEMENT Substitute2 (#PCDATA)>

Mixed content models

A mixed content model translates to a multiple occurence of choice between elements in the

content model and #PCDATA. Occurence constraints associated with the elements and content

model are ignored. For example:

Schema

<xsd:element name="RootElem">
<xsd:complexType mixed="true"><xsd:sequence>

<xsd:element name="elem1" type="xsd:string"
 maxOccurs="unbounded"/>

<xsd:element name="elem2" type="xsd:positiveInteger"/>
<xsd:element name="elem3" type="xsd:string"/>
<xsd:element name="elem4" type="xsd:date" minOccurs="0"/>

</xsd:sequence></xsd:complexType>
</xsd:element>

DTD

<!ELEMENT RootElem (#PCDATA|elem1|elem2|elem3|elem4)*>
<!ELEMENT elem1 (#PCDATA)>
<!ELEMENT elem2 (#PCDATA)>
<!ELEMENT elem3 (#PCDATA)>
<!ELEMENT elem4 (#PCDATA)>

XML Schema to DTD Mapping 208

S u p p o r t e d S c h e m a f e a t u r e s

Supported Schema features

Supported element qualification features of Schema are listed below with their mapping into DTD.

Defaults

The Schema attributeFormDefault and elementFormDefault are honored wherever

they occur. For example:

Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="Schema-abstract-elements"
xmlns:abc="Schema-abstract-elements"
elementFormDefault="qualified">

<xsd:element name="RootElem">
<xsd:complexType><xsd:sequence>

<xsd:element name="Elem1" type="xsd:int"/>
</xsd:sequence></xsd:complexType>

</xsd:element>

DTD

<!ELEMENT abc:RootElem (abc:Elem1)>

Any

Any content model containing the Schema <any> element translates to the DTD ANY content

model, regardless of additional content. For example:

Schema

<xsd:element name="AnyElem">
<xsd:complexType><xsd:sequence>

<xsd:element name="Elem1" type="xsd:int"/>
<xsd:any namespace="http://www.w3.org/1999/xhtml"

minOccurs="1" maxOccurs="unbounded"
processContents="skip"/>

</xsd:sequence></xsd:complexType>
</xsd:element>

DTD

<!ELEMENT AnyElem ANY>
<!ELEMENT Elem1 (#PCDATA)>

Notice in this example that the Elem1 element is translated independently, and is not part of

AnyElem in the DTD.

S u p p o r t e d S c h e m a f e a t u r e s

Structured Application Developer Reference 209

Extension and restriction of complex types

Extension and restriction of a complex type in Schema translates directly to the DTD. For example:

Schema

<xsd:element name="ElemA" type="ComplexTypeB"/>
<xsd:complexType name="ComplexTypeA">

<xsd:sequence>
<xsd:element name="elem1" type="xsd:string" maxOccurs="3"/>
<xsd:element name="elem2" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="attr1" type="xsd:NMTOKEN"/>
<xsd:attribute name="attr2" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="ComplexTypeB">
<xsd:complexContent>

<xsd:extension base="ComplexTypeA">
<xsd:attribute name="attr3" type="xsd:date"

use="required"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

DTD

<!ELEMENT ElemA ((elem1,elem1*),elem2)>
<!ATTLIST ElemA attr1 NMTOKEN #IMPLIED
 attr2 CDATA #REQUIRED
 attr3 NMTOKEN #REQUIRED >
<!ELEMENT elem1 (#PCDATA)>
<!ELEMENT elem2 (#PCDATA)>

Include, import, and redefine

The include, import and redefine constructs allow one Schema file to refer to other

Schema files. In converting to DTD, information from such referenced Schema files is included, but

all elements are output to a single DTD. For example, if a Schema file a.xsd with namespace

ns_a imports another Schema, b.xsd with namespace ns_b, the resulting DTD contains

elements from both ns_a and ns_b namespaces.

The following example shows three Schema files; the first, example.xsd, includes the file

named include.xsd, and imports the file named import.xsd. When the file example.xsd

is imported into FrameMaker, the resulting DTD includes definitions for all three files.

XML Schema to DTD Mapping 210

S u p p o r t e d S c h e m a f e a t u r e s

Schema

First file, example.xsd

<schema targetNamespace="Include-Import-Example"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:a="Include-Import-Example"
xmlns:b="Import-schema" elementFormDefault="qualified">

<include schemaLocation="./include.xsd"/>
<import namespace="Import-schema" schemaLocation="./import.xsd"/>
<element name="rootElem1">

<complexType><sequence>
<element name="elem1" type="a:complexTypeA"/>
<element ref="b:importElem1"/>
<element ref="a:includeElem3"/>
</sequence>

</complexType>
</element>
</schema>

Second file, include.xsd

<schema targetNamespace="Include-Import-Example"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:a="Include-Import-Example"
elementFormDefault="qualified">

<complexType name="complexTypeA"><sequence>
<element name="includeElem1" type="string"/>
<element name="includeElem2" type="string"/>

</sequence></complexType>
<element name="includeElem3" type="int"/>
</schema>

Third file, import.xsd

<schema targetNamespace="Import-schema"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:c="Import-schema" elementFormDefault="qualified">

<element name="importElem1" type="int"/>
<element name="importElem2" type="string"/>
</schema>

U n s u p p o r t e d S c h e m a f e a t u r e s

Structured Application Developer Reference 211

DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT c:importElem1 (#PCDATA)>
<!ELEMENT c:importElem2 (#PCDATA)>
<!ELEMENT includeElem1 (#PCDATA)>
<!ELEMENT includeElem2 (#PCDATA)>
<!ELEMENT includeElem3 (#PCDATA)>
<!ELEMENT rootElem1 ((elem1,c:importElem1),includeElem3)>
<!ELEMENT elem1 (includeElem1,includeElem2)>

Unsupported Schema features

Features of Schema listed below cannot be mapped into DTD, and are dropped:

• Abstract types

• key, keyref, and unique

• Annotations

XML Schema to DTD Mapping 212

U n s u p p o r t e d S c h e m a f e a t u r e s

Structured Application Developer Reference 213

7 The CALS/OASIS Table Model 7

The CALS or the related OASIS table model is a specific set of element and attribute declarations

for defining tables, originally defined in “Markup Requirements and Generic Style Specification for

Electronic Printed Output and Exchange of Text,” MIL-M-28001B. The OASIS table model is an XML

expression of the exchange subset of the full CALS Table Model DTD. If your markup documents

use these elements and attributes or some simple variations of them, FrameMaker can translate

them to tables and table parts without the assistance of read/write rules. The CALS model can be

interpreted in various ways. This chapter describes the CALS elements and attributes as they are

interpreted by FrameMaker.

Some attributes are common to several elements in the description of the table. In these cases,

attribute values are inherited in the element hierarchy. The values of attributes associated with

<colspec> and <spanspec> elements act as though they were on the parent element for

inheritance purposes. This is, if a <tgroup> element has two <colspec> child elements and a

<thead> child element, the attributes of the <colspec> elements apply to the <thead>

element unless that element has its own <colspec> elements with attribute values that override

the inherited ones. If you want to change how FrameMaker processes any attribute of a

<colspec> or <spanspec> element, you refer to the attribute as a formatting property.

In the CALS model, the <table> element has an <orient> attribute. This attribute is not

supported in FrameMaker, because there is no way in a FrameMaker table to specify orientation

on the page.

FrameMaker properties that DO NOT have corresponding

CALS attributes

Column widths: Width of successive columns in the table. Each value is either an absolute width

or a width proportional to the size of the entire table. If proportional widths are used, the CALS -

pgwide- attribute determines the table width. For example, to specify that the first two columns

are each one-quarter the size of the table, and the third column is half the size of the table, you

could write a rule to specify your column widths as “25* 25* 50*”. Valid units and abbreviations for

the “column width” formatting property are:

FrameMaker Property For FrameMaker Elements

of Type

Corresponding CALS

Attribute

column widths table (CALS: tgroup) (none)

The CALS/OASIS Table Model 214

E l e m e n t a n d a t t r i b u t e d e f i n i t i o n l i s t d e c l a r a t i o n s

Maximum height of a row in a table.

Minimum height of a row in a table.

Whether the associated table row is a heading, footing, or body row, or the associated table cell

occurs in a row of that type.

How many columns this straddle cell spans

How many rows this straddled cell spans

Element and attribute definition list declarations

The element and attribute declarations as used by FrameMaker are as follows:

<!ENTITY % yesorno "NUMBER">

Unit Abbreviation

centimeter cm

cicero cc

didot dd

inch in (in FrameMaker dialog boxes, “ is also used, but

not for “column width” formatting property)

millimeter mm

pica pc (or pi)

point pt

FrameMaker Property For FrameMaker Elements

of Type

Corresponding CALS

Attribute

maximum height row (none)

minimum height row (none)

row type row (none)

horizontal straddle cell (none)

vertical straddle cell (none)

E l e m e n t a n d a t t r i b u t e d e f i n i t i o n l i s t d e c l a r a t i o n s

Structured Application Developer Reference 215

<!ELEMENT table - - (title?, tgroup+)>
<!ATTLIST table
 colsep %yesorno; #IMPLIED
 frame (all|top|bottom|topbot|sides|none) #IMPLIED
 pgwide %yesorno; #IMPLIED
 rowsep %yesorno; #IMPLIED
 tabstyle NMTOKEN #IMPLIED
>

<!ELEMENT title - - (#PCDATA)>

<!ELEMENT tgroup - O (colspec*, spanspec*, thead?, tfoot?, tbody)>
<!ATTLIST tgroup
 align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED
 charoff NUTOKEN #IMPLIED
 colsep %yesorno; #IMPLIED
 cols NUMBER #REQUIRED
 rowsep %yesorno; #IMPLIED
 tgroupstyle NMTOKEN #IMPLIED
>

<!ELEMENT colspec - O EMPTY>
<!ATTLIST colspec
 align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED
 charoff NUTOKEN #IMPLIED
 colname NMTOKEN #IMPLIED
 colnum NUMBER #IMPLIED
 colsep %yesorno; #IMPLIED
 colwidth CDATA #IMPLIED
 rowsep %yesorno; #IMPLIED
>

<!ELEMENT spanspec - O EMPTY>
<!ATTLIST spanspec
 align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED
 charoff NUTOKEN #IMPLIED
 colsep %yesorno; #IMPLIED
 nameend NMTOKEN #REQUIRED
 namest NMTOKEN #REQUIRED
 rowsep %yesorno; #IMPLIED
 spanname NMTOKEN #REQUIRED
>

The CALS/OASIS Table Model 216

E l e m e n t s t r u c t u r e

<!ELEMENT thead - O (colspec*, row+)>
<!ATTLIST thead
 valign (top|middle|bottom) "bottom"
>

<!ELEMENT tfoot - O (colspec*, row+)>
<!ATTLIST tfoot
 valign (top|middle|bottom) "top"
>

<!ELEMENT tbody - O (row+)>
<!ATTLIST tbody
 valign (top|middle|bottom) "top"
>

<!ELEMENT row - O (entry+)>
<!ATTLIST row
 rowsep %yesorno; #IMPLIED
 valign (top|middle|bottom) "top"
>

<!ELEMENT entry - O (#PCDATA)>
<!ATTLIST entry
 align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED
 charoff NUTOKEN #IMPLIED
 colname NMTOKEN #IMPLIED
 colsep %yesorno; #IMPLIED
 morerows NUMBER #IMPLIED
 nameend NMTOKEN #IMPLIED
 namest NMTOKEN #IMPLIED
 rotate %yesorno; #IMPLIED
 rowsep %yesorno; #IMPLIED
 spanname NMTOKEN #IMPLIED
 valign (top|middle|bottom) #IMPLIED
>

Element structure

A CALS table has an optional title followed by one or more tgroup elements. This allows, for

example, different portions of one table to have different numbers of columns. In practice, most

CALS tables have a single tgroup element. The tgroup element is the major portion of the

table. It has several optional parts: multiple colspec and spanspec elements followed by (at

most) one heading and one footing element. The only required sub-element of a tgroup

element is its body. Unlike the FrameMaker model of table structure, the CALS model has its

tgroup element appearing after the footing element.

A t t r i b u t e s t r u c t u r e

Structured Application Developer Reference 217

The colspec empty element has attributes describing characteristics of a table column. The

spanspec empty element has attributes describing straddling characteristics of a portion of a

table. These elements have no counterpart in FrameMaker. They exist only to have their attribute

values specify information about other elements in the table.

The thead and tfoot heading and footing elements contain their own optional colspec

elements followed by one or more rows.

The tbody element contains one or more rows.

As supported by FrameMaker, a table row consists of a set of cells in entry elements, each of

which can contain only text. Readers familiar with the CALS model may notice that these

declarations do not include the entrytbl element which supports creating tables within tables.

FrameMaker does not allow tables within tables, so does not support this element.

Attribute structure

Elements in the CALS table model use attributes to describe properties of the table such as cell

alignment or straddling behavior. For information on the meaning of the CALS attributes, see

“Formatting properties for tables” on page 345.

Inheriting attribute values

Some attributes are common to several elements in the description of a table. In these cases,

attribute values are inherited in the element hierarchy. The values of attributes associated with

colspec and spanspec elements act as though they were on the parent element for

inheritance purposes. That is, if a tgroup element has two colspec child elements and a

thead child element, the attributes of the colspec elements apply to the thead element

unless that element has its own colspec elements with attribute values that override the

inherited ones.

Orient attribute

In the CALS model, the table element has an orient attribute. This attribute is not supported

in FrameMaker, because there is no way in a FrameMaker table to specify orientation on the page.

Straddling attributes

A spanspec element describes a column range so that a straddle cell can describe which

columns it spans by referencing a spanspec through its spanname attribute.

An entry element specifies which columns it occupies by one of three methods:

• Using the namest and nameend attributes to reference columns explicitly. The namest

attribute indicates the first column in the straddle; the nameend attribute indicates the last

column.

The CALS/OASIS Table Model 218

A t t r i b u t e s t r u c t u r e

• Using the spanname attribute as an indirect reference to the columns.

• Using the colname attribute (for a non-straddled cell).

Structured Application Developer Reference 219

8 Read/Write Rules for the CALS/OASIS
Table Model 8

By default, FrameMaker can read and write CALS (or OASIS) tables without your intervention. For

information on what it does by default and how you can change that behavior with read/write

rules, see Chapter 22, “Translating Tables.” FrameMaker does not use read/write rules to

implement its default interpretation of CALS tables. However, to help your understanding of the

default interpretation, this chapter contains a set of rules that encapsulate the software’s default

behavior for CALS tables.

As described in Chapter 22, “Translating Tables,” the software’s default behavior is different

depending on whether the table element is a container element or a table element in

FrameMaker. The only difference is what type of element table becomes and what happens to

the tgroup element. All other elements and attributes always translate in the same way.

element "table" {
 /* If table is a container element, use this subrule: */
 is fm element;

 /* If table is a table element, use this subrule: */
 is fm table element;

 /* The rest of the subrules for table are always applicable. */
 attribute "tabstyle" is fm property table format;
 attribute "tocentry" is fm attribute;
 attribute "frame"
 {
 is fm property table border ruling;
 value "top" is fm property value top;
 value "bottom" is fm property value bottom;
 value "topbot" is fm property value top and bottom;
 value "all" is fm property value all;
 value "sides" is fm property value sides;
 value "none" is fm property value none;
 }
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
 attribute "orient" is fm attribute;
 attribute "pgwide" is fm property page wide;
}

element "tgroup"
{

Read/Write Rules for the CALS/OASIS Table Model 220

 /* If table is a container element, use this subrule: */
 is fm table element;

 /* If table is a table element, use this subrule: */
 unwrap;

 /*The rest of the subrules for tgroup are always applicable.*/
 attribute "cols" is fm property columns;
 attribute "tgroupstyle" is fm property table format;
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
 attribute "align" is fm attribute;
 attribute "charoff" is fm attribute;
 attribute "char" is fm attribute;
}

element "colspec"
{
 is fm colspec;
 attribute "colnum" is fm property column number;
 attribute "colname" is fm property column name;
 attribute "align" is fm property cell alignment type;
 attribute "charoff" is fm property cell alignment offset;
 attribute "char" is fm property cell alignment character;
 attribute "colwidth" is fm property column width;
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
}

element "spanspec"
{
 is fm spanspec;
 attribute "spanname" is fm property span name;
 attribute "namest" is fm property start column name;
 attribute "nameend" is fm property end column name;
 attribute "align" is fm property cell alignment type;
 attribute "charoff" is fm property cell alignment offset;
 attribute "char" is fm property cell alignment character;
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
}

element "thead"
{
 is fm table heading element;
 attribute "valign" is fm attribute;
}

Structured Application Developer Reference 221

element "tfoot"
{
 is fm table footing element;
 attribute "valign" is fm attribute;
}

element "tbody"
{
 is fm table body element;
 attribute "valign" is fm attribute;
}

element "row"
{
 is fm table row element;
 attribute "valign" is fm attribute;
 attribute "rowsep" is fm property row ruling;
}

element "entry"
{
 is fm table cell element;
 attribute "colname" is fm property column name;
 attribute "namest" is fm property start column name;
 attribute "nameend" is fm property end column name;
 attribute "spanname" is fm property span name;
 attribute "morerows" is fm property more rows;
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
 attribute "rotate" is fm property rotate;
 attribute "valign" is fm attribute;
 attribute "align" is fm attribute;
 attribute "charoff" is fm attribute;
 attribute "char" is fm attribute;
}

Read/Write Rules for the CALS/OASIS Table Model 222

Structured Application Developer Reference 223

9 SGML Declaration 9

To be complete, an SGML document must start with an SGML declaration. This chapter contains

the text of the SGML declaration used by FrameMaker when you do not supply one. It also

describes the variants of the concrete syntax that you can use in your SGML declaration and

unsupported optional SGML features.

When you import an SGML document, FrameMaker first searches for the declaration in the SGML

document. If the software does not find the declaration there, it looks for an SGML declaration

specified by your SGML application definition. If your definition does not specify an SGML

declaration, then the software uses the declaration described below.

When you export a FrameMaker document to SGML, FrameMaker first tries to use an SGML

declaration you specified by your application. If you haven’t specified one, it uses the SGML

declaration described below.

For information on how to specify an SGML declaration as part of an application, see Developer

Guide, page 134: Application definition file.

Text of the default SGML declaration

The SGML declaration provided by FrameMaker uses ISO Latin-1 as the character set, the reference

concrete syntax, and the reference capacity set. The declaration enables the optional features

OMITTAG, SHORTTAG, and FORMAL.

For information on the default translation between the FrameMaker and ISO Latin-1 character

sets, see Chapter 11, “Character Set Mapping.” For information on using other ISO character sets,

see Chapter 10, “ISO Public Entities.”

The text of the default SGML declaration is as follows:

<!SGML "ISO 8879:1986"

CHARSET

 BASESET "ISO Registration Number 100//CHARSET ECMA-94 Right
Part of Latin Alphabet Nr. 1//ESC 2/13 4/1"

Note: XML: The XML specification states that XML must use a specific SGML declaration.

This chapter pertains only to SGML structure applications. If you are only working with

XML markup, you may skip this chapter.

SGML Declaration 224

T e x t o f t h e d e f a u l t S G M L d e c l a r a t i o n

 DESCSET
 0 9 UNUSED
 9 2 9
 11 2 UNUSED
 13 1 13
 14 18 UNUSED
 32 95 32
 127 1 UNUSED
 128 127 128
 255 1 UNUSED

CAPACITY
 PUBLIC "ISO 8879:1986//CAPACITY Reference//EN"

SCOPE DOCUMENT

SYNTAX

 SHUNCHAR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20
 21 22 23 24 25 26 27 28 29 30 31 127 255

 BASESET "ISO Registration Number 100//CHARSET ECMA-94 Right
Part of Latin Alphabet Nr. 1//ESC 2/13 4/1"

 DESCSET 0 256 0

 FUNCTION RE 13
 RS 10
 SPACE 32
 TAB SEPCHAR 9

 NAMING LCNMSTRT ""
 UCNMSTRT ""
 LCNMCHAR "-."
 UCNMCHAR "-."
 NAMECASE
 GENERAL YES
 ENTITY NO

 DELIM GENERAL SGMLREF
 SHORTREF SGMLREF

 NAMES SGMLREF

 QUANTITY SGMLREF

FEATURES

S G M L c o n c r e t e s y n t a x v a r i a n t s

Structured Application Developer Reference 225

 MINIMIZE DATATAG NO
 OMITTAG YES
 RANK NO
 SHORTTAG YES

 LINK SIMPLE NO
 IMPLICIT NO
 EXPLICIT NO

 OTHER CONCUR NO
 SUBDOC NO
 FORMAL YES

APPINFO NONE

>

SGML concrete syntax variants

The SGML parser used by FrameMaker allows these modifications to the SGML reference concrete

syntax:

• The NAMECASE parameter of the SGML declaration can be changed. The default settings below

specify that general names are not case sensitive (YES), and entity names are case sensitive

(NO):

NAMECASE
GENERAL YES
ENTITY NO

• Reserved names can be changed.

• Short references can, but need not, be used. If they are used, the only possible short reference

delimiter set is that of the reference concrete syntax.

• The value for the NAMELEN quantity can be increased up to 239.

• The values for the following quantities can be increased, but not to more than 30 times their

value in the reference concrete syntax:

ATTCNT
ATTSPLEN
BSEQLEN
ENTLVL
LITLEN
PILEN
TAGLEN
TAGLVL

SGML Declaration 226

U n s u p p o r t e d o p t i o n a l S G M L f e a t u r e s

• The following quantities can be increased up to 253:

GRPCNT
GRPGTCNT
GRPLVL

No SGML read/write rules are needed to provide for variant concrete syntaxes. FrameMaker

obtains the information from the SGML declaration.

The concrete syntax declared in the SGML declaration must be used for the entire document; if a

variant concrete syntax is declared, the reference concrete syntax cannot be used in the prolog.

Thus, the concrete syntax scope parameter must be:

SCOPE DOCUMENT

Unsupported optional SGML features

The SGML standard defines some features as optional, meaning that a specific implementation

does not have to accommodate these features to be considered a conforming SGML system.

The following optional SGML features are not supported by FrameMaker:

• DATATAG

• RANK

• LINK

• SUBDOC

• CONCUR

Your DTD and SGML documents cannot use any of these features. If they do, the FrameMaker

signals an error and terminates processing. You cannot change this behavior by providing an

SGML API client.

Structured Application Developer Reference 227

10 ISO Public Entities 10

Annex D of the SGML standard defines several sets of internal SDATA entities. Each entity

represents a character; each entity set is a logical grouping of these entities. DTDs frequently

include these entity sets by using parameter entity references to external entities accessed with a

public identifier. People in the SGML community frequently interchange DTDs and SGML

documents with such entity references and assume that the recipient can interpret the public

identifiers. FrameMaker includes copies of these entity sets and makes them available using the

default handling of public identifiers.

These entity sets are defined in an ISO standard and are accessed with public identifiers, so they

are commonly known as ISO public entity sets. The public entity sets fall into the following

categories:

If your application uses FrameMaker’s support of ISO entity sets, you may want to create palettes

your end user can use to enter these entities in a FrameMaker document. For information on

creating these palettes, see Developer Guide, page 336: Facilitating entry of special characters that

translate as entities.

Note: XML: The XML specification does not allow SDATA entities, but it does allow

UNICODE and predefined character entities for special characters. This chapter pertains

only to SGML structure applications. If you are only working with XML markup, you may

skip this chapter.

Entity set Description

Latin alphabetic characters Latin alphabetic characters used in Western European

languages

Greek alphabetic characters Letters of the Greek alphabet

Greek symbols Greek character names for use as variable names in technical

applications

Cyrillic alphabetic characters Cyrillic characters used in the Russian language

Numeric and special graphic

characters

Minimum data characters and reference concrete syntax

characters

Diacritical mark characters Diacritical marks

Publishing characters Well-known publishing characters

Technical symbols Technical symbols

Added math symbols Mathematical symbols

ISO Public Entities 228

W h a t y o u n e e d t o u s e I S O p u b l i c e n t i t i e s

What you need to use ISO public entities

For your end users to use characters from the ISO public entity sets, your application needs two

pieces of information for each character entity: the entity’s declaration, and an SGML read/write

rule that tells FrameMaker how to translate a reference to that entity in an SGML document to a

character or variable in a FrameMaker document. FrameMaker provides this information in two

files for each entity set.

All files used for ISO public entity sets are in the directory $STRUCTDIR/isoents. For

information on the location of this directory on your system, see Developer Guide, page 131:

Location of structure files. The files for each entity set are as follows:

Entity set Entity declaration files Read/write rules files

Latin alphabetic characters isolat1.ent
isolat2.ent

isolat1.rw
isolat2.rw

Greek alphabetic characters isogrk1.ent
isogrk2.ent

isogrk1.rw
isogrk2.rw

Greek symbols isogrk3.ent
isogrk4.ent

isogrk3.rw
isogrk4.rw

Cyrillic alphabetic characters isocyr1.ent
isocyr2.ent

isocyr1.rw
isocyr2.rw

Numeric and special graphic

characters

isonum.ent isonum.rw

Diacritical mark characters isodia.ent isodia.rw

Publishing characters isopub.ent isopub.rw

Technical symbols isobox.ent
isotech.ent

isobox.rw
isotech.rw

Added math symbols isoamso.ent
isoamsb.ent
isoamsr.ent
isoamsn.ent
isoamsa.ent
isoamsc.ent

isoamso.rw
isoamsb.rw
isoamsr.rw
isoamsn.rw
isoamsa.rw
isoamsc.rw

W h a t y o u n e e d t o u s e I S O p u b l i c e n t i t i e s

Structured Application Developer Reference 229

Entity declaration files

Each entity declaration file starts with two comment declarations that suggest both the public

identifier and the entity name by which to identify the entity set. For the ISO Latin-1 entity set,

these comments are:

<!-- (C) International Organization for Standardization 1986
 Permission to copy in any form is granted for use with
 conforming SGML systems and applications as defined in
 ISO 8879, provided this notice is included in all copies.
-->
<!-- Character entity set. Typical invocation:
 <!ENTITY % ISOlat1 PUBLIC
 "ISO 8879-1986//ENTITIES Added Latin 1//EN">
 %ISOlat1;
-->

After the initial comments, an entity declaration file consists of a sequence of entity declarations.

For example, the first few entity declarations for ISO Latin-1 are as follows:

<!ENTITY aacute SDATA "[aacute]"--=small a, acute accent-->
<!ENTITY Aacute SDATA "[Aacute]"--=capital A, acute accent-->
<!ENTITY acirc SDATA "[acirc]"--=small a, circumflex accent-->
<!ENTITY Acirc SDATA "[Acirc]"--=capital A, circumflex accent-->
<!ENTITY agrave SDATA "[agrave]"--=small a, grave accent-->
<!ENTITY Agrave SDATA "[Agrave]"--=capital A, grave accent-->
<!ENTITY aring SDATA "[aring]"--=small a, ring-->
<!ENTITY Aring SDATA "[Aring]"--=capital A, ring-->

You should never modify these files, because they provide the standard ISO public entity

declarations.

If your SGML documents use the standard invocations for ISO public entity sets, you do not have

to provide any information in your application definition on where to find these entities;

FrameMaker finds them in the default directory. If necessary, you can provide explicit public

statements to substitute alternative versions of the entity sets. For information on working with

application definitions, see Developer Guide, page 134: Application definition file.

Entity read/write rules files

FrameMaker provides read/write rules for many of the entities in the ISO public entity sets. The

rules are organized in files for each public entity set. These files are not complete rules documents.

Instead, they are simply lists of rules or comments explaining which entities do not have default

correspondences.

ISO Public Entities 230

W h a t y o u n e e d t o u s e I S O p u b l i c e n t i t i e s

You can include individual files in your application’s read/write rules document by using the

#include statement. To include the rules for all of the ISO public entity sets, use this single

statement:

#include isoall.rw

To include only the ISO Latin-1 entity set, use these statements:

#include isolat1.rw
#include isolat2.rw

For more information on read/write rules files, see Developer Guide, Chapter 18, Read/Write Rules

and Their Syntax

Format of entity rules

By default, FrameMaker has rules for each entity that can be represented in FrameMaker using the

standard FrameMaker character set, the Symbol font, or the Zapf Dingbat font and for a few (such

as the fractions in isonum) that can be represented with a FrameMaker user variable. Entities that

cannot be represented in this way do not have a default translation. Users of your application may

have more fonts available. If so, you can modify these rules files to include translations for other

entities.

The default rules for entities available in the default character sets or through variables differ

depending on how FrameMaker translates the entity.

• If the character appears in FrameMaker’s standard character set and requires no special

formatting, the rule has the following form:

entity "ename" is fm char code;

where ename is the entity name and code is the character code. For example, the following

rule is for the small letter “a” with an acute accent:

entity "aacute" is fm char 0x87;

• If the character appears in FrameMaker’s Symbol or Zapf Dingbat character set or appears in

FrameMaker’s standard character set, but requires special formatting, the rule has the following

form:

entity "ename" is fm char code in "fmtag";

where ename is the entity name, code is the character code, and fmtag is one of the

character tags defined below. For example, the following rule is for the plus-or-minus sign:

entity "plusnm" is fm char 0xb1 in "FmSymbol";

• If the character can be represented by an FrameMaker variable, the rule has the following form:

entity "ename" is fm variable "var";

where ename is the entity name and var is one of the FrameMaker variables defined below.

For example, the following rule is for the fraction one-half:

entity "frac12" is fm variable "FmFrac12";

W h a t y o u n e e d t o u s e I S O p u b l i c e n t i t i e s

Structured Application Developer Reference 231

For details on how each entity translates into a FrameMaker document, see the individual rules

files.

Character formats

As mentioned above, the rules for some character entities refer to FrameMaker character formats

or variable names. FrameMaker has default definitions for these character formats:

Variables

FrameMaker also has default definitions for these variables:

Character format Defined as

FmDenominator Default font, subscripted; other characteristics As Is

FmDingbats Zapf Dingbat font; other characteristics As Is

FmNumerator Default font, superscripted; other characteristics As Is

FmSdata Default font, underlined and in green; other characteristics As Is

FmSuperscript Default font superscripted; other characteristics As Is

FmSymbol Symbol font; other characteristics As Is

FmUnderlineSymbol Symbol font, underlined; other characteristics As Is

Variable Defined as

FmCare-of c/o

FmEmsp13 an em space

FmFrac12 1/2

FmFrac13 1/3

FmFrac14 1/4

FmFrac15 1/5

FmFrac16 1/6

FmFrac18 1/8

FmFrac23 2/3

FmFrac25 2/5

FmFrac34 3/4

FmFrac35 3/5

FmFrac38 3/8

FmFrac45 4/5

FmFrac56 5/6

FmFrac58 5/8

FmFrac78 7/8

ISO Public Entities 232

W h a t h a p p e n s w i t h t h e d e c l a r a t i o n s a n d r u l e s

Your end user’s documents may not have these character formats or variables defined. When

FrameMaker imports an SGML document with an entity reference that needs one of these formats

or variables, it checks whether the template defined in the SGML application provides the

definition. If so, it uses the information from the template. If not, it uses its own definitions,

copying the definition to the appropriate catalog of the document being processed and using it

to process the entity.

What happens with the declarations and rules

Your application may use some or all of the entity declarations and read/write rules provided with

FrameMaker. In addition, you may choose to have different declarations or rules for some or all of

the entities.

If you want to use the translations provided by FrameMaker with no changes, you do so in one of

two ways.

• If your application has no other read/write rules, then you do not have to explicitly mention

the rules for these entity sets. That is, if the definition of your application does not include a

read/write rules file, FrameMaker behaves as though it had a rules file that included only the

ISO public entity rules.

• On the other hand, if your application does have a read/write rules file, then that file must

explicitly include the rules for the ISO public entity sets in which you’re interested. If you want

all of them, add the following line to your file:

#include isoall.rw

When you create a new read/write rules file, this line is automatically included.

If you want to use only the rules that FrameMaker provides, be sure that your rules file has no

additional entity rules referring to these entities. However, you may want to have FrameMaker

translate most but not all of these entities in the way it provides, while you change the behavior

for some of them with rules or entity declarations. To do this, include an extra entity declaration

or rule for the appropriate entities.

For example, assume the DTD for your application is called myapp.dtd and includes the

following lines:

<!ENTITY % ISOlat1 PUBLIC
 "ISO 8879-1986//ENTITIES Added Latin 1//EN">
%ISOlat1;

Further, assume the application has no rules or has a rules document that contains the following

lines:

#include "isolat1.rw"
#include "isolat2.rw"

W h a t h a p p e n s w i t h t h e d e c l a r a t i o n s a n d r u l e s

Structured Application Developer Reference 233

The default version of isolat1.rw contains the rule:

entity "aacute" is fm char 0x87;

This translates references to the aacute entity as the small letter a with an acute accent. Suppose,

however, that your application needs this entity, instead, to translate as a particular bitmap that

you store as a reference element in the FrameMaker document template. You can accomplish this

by adding either a new entity declaration or a new rule.

To continue the example, assume you import an SGML document that begins as follows:

<!DOCTYPE myapp SYSTEM "myapp.dtd" [
 <!ENTITY aacute SDATA "fm ref: acute-a">
]>

This SGML document has two declarations for aacute. The parser uses the first one it encounters.

Since the parser processes the external DTD subset after it processes the internal DTD subset, it

finds the declaration that uses the reference element first and this is the entity declaration

FrameMaker uses. Since FrameMaker recognizes the fm ref in the parameter literal, it uses that

parameter literal to process the entity reference and ignores any rules that refer to the entity. The

resulting document includes the reference element for the entity reference.

Instead of including the declaration for aacute that uses the fm ref parameter literal, you can

add the following rule to your rules file:

entity "aacute" is fm reference element "acute-a";

This translates references to the aacute entity as the small letter a with an acute accent. Suppose,

however, that your application needs this entity, instead, to translate as a particular bitmap that

you store as a reference element in the FrameMaker document template. You accomplish this by

adding a rule for that entity before the #include statements, as follows:

entity "aacute" is fm reference element "acute-a";

Remember that FrameMaker uses the first rule in a rules file that applies to a particular situation.

Therefore, if you use this rule, then the line in the example that includes isolat1.rw must occur

after this rule. That is, your rules file must look like:

entity "aacute" is fm reference element "acute-a";
. . .
#include isolat1.rw
. . .

If, instead, it looks like:

#include isolat1.rw
. . .
entity "aacute" is fm reference element "acute-a";
. . .

FrameMaker finds the rule in isolat1.rw before your rule and use that to process references to

the aacute entity.

ISO Public Entities 234

W h a t h a p p e n s w i t h t h e d e c l a r a t i o n s a n d r u l e s

FrameMaker has rules for entities in the ISO public entity sets for which there is a direct

correspondence in one of its standard character sets or which can be created using a character

from those character sets. It does not provide rules for entities that would require a different

character set or a graphic.

If you reference an ISO public entity for which there is not a rule, the software treats it as it does

any other entity that does not have a corresponding rule. You can change this behavior with the

entity rule. For more information on FrameMaker’s translation of entities in the absence of rules

and for information on how you can modify this, see Developer Guide, Chapter 21, Translating

Entities and Processing Instructions

Structured Application Developer Reference 235

11 Character Set Mapping 11

FrameMaker writes SGML documents using the ISO Latin-1 character set. This character set differs

from FrameMaker’s character set. Consequently, the software uses a default character set mapping

to translate between the character sets.

FrameMaker includes copies of other ISO public entity sets and provides rules to handle them for

your application. For information on how FrameMaker supports ISO public entities, see

Chapter 10, “ISO Public Entities.”

This chapter describes the default mapping between the FrameMaker character set and the ISO

Latin-1 character set. You can change this mapping by using the character map rule as

described in “character map” on page 47.

To determine the mapping for a particular character, use the table on the next page as follows:

• For a character in the ISO Latin-1 character set, find the hexadecimal character code for the

character of interest in the leftmost column. Read the mapping in the column labelled

“Mapping from ISO Latin-1 to FrameMaker.” The entry on the left side of the equal sign is the

ISO Latin-1 character code. The entry on the right side of the equal sign is the character’s

translation in FrameMaker. For example, the character code \xA1 has the entry:

\xA1 = \xC1

This means that the ISO Latin-1 character \xA1 translates to the FrameMaker character \xC1.

• For a character in the FrameMaker character set, find the hexadecimal character code for the

character of interest in the leftmost column. Read the mapping in the column labelled

“Mapping from FrameMaker to ISO Latin-1.” The entry on the right side of the equal sign is the

FrameMaker character code. The entry on the left side of the equal sign is the character’s

translation in ISO Latin-1. For example, the character code \x10 has the entry:

\x20 = \x10

This means that the FrameMaker character \x10 translates to the ISO Latin-1 character \x20.

• If there is no row corresponding to a character code, then that character code is the same in

both character sets.

Note: XML: The XML specification allows UNICODE in content and in markup tokens, so

the use of ISO character sets is not necessary. FrameMaker supports the full range of

UNICODE in the content of an XML document, and offers limited support of characters in

markup tokens. For more information, see Developer Guide, page 101: Supported

characters in element and attribute names.

If you are only working with XML markup, you may skip this chapter.

Character Set Mapping 236

Character code Mapping from ISO Latin-1 to

FrameMaker

Mapping from FrameMaker to

ISO Latin-1

\x00 \x00 = trap trap = \x00

\x01 \x01 = trap trap = \x01

\x02 \x02 = trap trap = \x02

\x03 \x03 = trap trap = \x03

\x04 \x04 = trap trap = \x04

\x05 \x05 = trap trap = \x05

\x06 \x06 = trap trap = \x06

\x07 \x07 = trap trap = \x07

\x08 \x08 = trap \x09 = \x08

\x09 \x09 = \x08 \x0A = \x09

\x0A \x0A = \x0A \x0A = \x0A

\x0B \x0B = trap trap = \x0B

\x0C \x0C = trap trap = \x0C

\x0D \x0D = trap trap = \x0D

\x0E \x0E = trap trap = \x0E

\x0F \x0F = trap trap = \x0F

\x10 \x10 = trap \x20 = \x10

\x11 \x11 = trap \x20 = \x11

\x12 \x12 = trap \x20 = \x12

\x13 \x13 = trap \x20 = \x13

\x14 \x14 = trap \x20 = \x14

\x15 \x15 = trap \x2D = \x15

\x16 \x16 = trap trap = \x16

\x17 \x17 = trap trap = \x17

\x18 \x18 = trap trap = \x18

\x19 \x19 = trap trap = \x19

\x1A \x1A = trap trap = \x1A

\x1B \x1B = trap trap = \x1B

\x1C \x1C = trap trap = \x1C

\x1D \x1D = trap trap = \x1D

\x1E \x1E = trap trap = \x1E

\x1F \x1F = trap trap = \x1F

Structured Application Developer Reference 237

\x7F \x7F = trap trap = \x7F

\x80 \x80 = trap \xC4 = \x80

\x81 \x81 = trap \xC5 = \x81

\x82 \x82 = trap \xC7 = \x82

\x83 \x83 = trap \xC9 = \x83

\x84 \x84 = trap \xD1 = \x84

\x85 \x85 = trap \xD6 = \x85

\x86 \x86 = trap \xDC = \x86

\x87 \x87 = trap \xE1 = \x87

\x88 \x88 = trap \xE0 = \x88

\x89 \x89 = trap \xE2 = \x89

\x8A \x8A = trap \xE4 = \x8A

\x8B \x8B = trap \xE3 = \x8B

\x8C \x8C = trap \xE5 = \x8C

\x8D \x8D = trap \xE7 = \x8D

\x8E \x8E = trap \xE9 = \x8E

\x8F \x8F = trap \xE8 = \x8F

\x90 \x90 = trap \xEA = \x90

\x91 \x91 = trap \xEB = \x91

\x92 \x92 = trap \xED = \x92

\x93 \x93 = trap \xEC = \x93

\x94 \x94 = trap \xEE = \x94

\x95 \x95 = trap \xEF = \x95

\x96 \x96 = trap \xF1 = \x96

\x97 \x97 = trap \xF3 = \x97

\x98 \x98 = trap \xF2 = \x98

\x99 \x99 = trap \xF4 = \x99

\x9A \x9A = trap \xF6 = \x9A

\x9B \x9B = trap \xF5 = \x9B

\x9C \x9C = trap \xFA = \x9C

\x9D \x9D = trap \xF9 = \x9D

Character code Mapping from ISO Latin-1 to

FrameMaker

Mapping from FrameMaker to

ISO Latin-1

Character Set Mapping 238

\x9E \x9E = trap \xFB = \x9E

\x9F \x9F = trap \xFC = \x9F

\xA0 \xA0 = trap trap = \xA0

\xA1 \xA1 = \xC1 trap = \xA1

\xA2 \xA2 = \xA2 \xA2 = \xA2

\xA3 \xA3 = \xA3 \xA3 = \xA3

\xA4 \xA4 = \xDB \xA7 = \xA4

\xA5 \xA5 = \xB4 \xB7 = \xA5

\xA6 \xA6 = \x7C \xB6 = \xA6

\xA7 \xA7 = \xA4 \xDF = \xA7

\xA8 \xA8 = \xAC \xAE = \xA8

\xA9 \xA9 = \xA9 \xA9 = \xA9

\xAA \xAA = \xBB trap = \xAA

\xAB \xAB = \xC7 \xB4 = \xAB

\xAC \xAC = \xC2 \xA8 = \xAC

\xAD \xAD = \x2D trap = \xAD

\xAE \xAE = \xA8 \xC6 = \xAE

\xAF \xAF = \xF8 \xD8 = \xAF

\xB0 \xB0 = \xFB trap = \xB0

\xB1 \xB1 = trap trap = \xB1

\xB2 \xB2 = trap trap = \xB2

\xB3 \xB3 = trap trap = \xB3

\xB4 \xB4 = \xAB \xA5 = \xB4

\xB5 \xB5 = trap trap = \xB5

\xB6 \xB6 = \xA6 trap = \xB6

\xB7 \xB7 = \xA5 trap = \xB7

\xB8 \xB8 = \xFC trap = \xB8

\xB9 \xB9 = trap trap = \xB9

\xBA \xBA = \xBC trap = \xBA

\xBB \xBB = \xC8 \xAA = \xBB

\xBC \xBC = trap \xBA = \xBC

\xBD \xBD = trap trap = \xBD

Character code Mapping from ISO Latin-1 to

FrameMaker

Mapping from FrameMaker to

ISO Latin-1

Structured Application Developer Reference 239

\xBE \xBE = trap \xE6 = \xBE

\xBF \xBF = \xC0 \xF8 = \xBF

\xC0 \xC0 = \xCB \xBF = \xC0

\xC1 \xC1 = \xE7 \xA1 = \xC1

\xC2 \xC2 = \xE5 \xAC = \xC2

\xC3 \xC3 = \xCC trap = \xC3

\xC4 \xC4 = \x80 trap = \xC4

\xC5 \xC5 = \x81 trap = \xC5

\xC6 \xC6 = \xAE trap = \xC6

\xC7 \xC7 = \x82 \xAB = \xC7

\xC8 \xC8 = \xE9 \xBB = \xC8

\xC9 \xC9 = \x83 trap = \xC9

\xCA \xCA = \xE6 trap = \xCA

\xCB \xCB = \xE8 \xC0 = \xCB

\xCC \xCC = \xED \xC3 = \xCC

\xCD \xCD = \xEA \xD5 = \xCD

\xCE \xCE = \xEB trap = \xCE

\xCF \xCF = \xEC trap = \xCF

\xD0 \xD0 = trap \x2D = \xD0

\xD1 \xD1 = \x84 \x2D = \xD1

\xD2 \xD2 = \xF1 \x22 = \xD2

\xD3 \xD3 = \xEE \x22 = \xD3

\xD4 \xD4 = \xEF \x60 = \xD4

\xD5 \xD5 = \xCD \x27 = \xD5

\xD6 \xD6 = \x85 trap = \xD6

\xD7 \xD7 = trap trap = \xD7

\xD8 \xD8 = \xAF \xFF = \xD8

\xD9 \xD9 = \xF4 trap = \xD9

\xDA \xDA = \xF2 \x2F = \xDA

\xDB \xDB = \xF3 \xA4 = \xDB

\xDC \xDC = \x86 trap = \xDC

\xDD \xDD = trap trap = \xDD

Character code Mapping from ISO Latin-1 to

FrameMaker

Mapping from FrameMaker to

ISO Latin-1

Character Set Mapping 240

\xDE \xDE = trap trap = \xDE

\xDF \xDF = \xA7 trap = \xDF

\xE0 \xE0 = \x88 trap = \xE0

\xE1 \xE1 = \x87 \xB7 = \xE1

\xE2 \xE2 = \x89 \x2C = \xE2

\xE3 \xE3 = \x8B trap = \xE3

\xE4 \xE4 = \x8A trap = \xE4

\xE5 \xE5 = \x8C \xC2 = \xE5

\xE6 \xE6 = \xBE \xCA = \xE6

\xE7 \xE7 = \x8D \xC1 = \xE7

\xE8 \xE8 = \x8F \xCB = \xE8

\xE9 \xE9 = \x8E \xC8 = \xE9

\xEA \xEA = \x90 \xCD = \xEA

\xEB \xEB = \x91 \xCE = \xEB

\xEC \xEC = \x93 \xCF = \xEC

\xED \xED = \x92 \xCC = \xED

\xEE \xEE = \x94 \xD3 = \xEE

\xEF \xEF = \x95 \xD4 = \xEF

\xF0 \xF0 = trap trap = \xF0

\xF1 \xF1 = \x96 \xD2 = \xF1

\xF2 \xF2 = \x98 \xDA = \xF2

\xF3 \xF3 = \x97 \xDB = \xF3

\xF4 \xF4 = \x99 \xD9 = \xF4

\xF5 \xF5 = \x9B trap = \xF5

\xF6 \xF6 = \x9A \x5E = \xF6

\xF7 \xF7 = trap \x7E = \xF7

\xF8 \xF8 = \xBF \xAF = \xF8

\xF9 \xF9 = \x9D trap = \xF9

\xFA \xFA = \x9C trap = \xFA

\xFB \xFB = \x9E \xB0 = \xFB

\xFC \xFC = \x9F \xB8 = \xFC

\xFD \xFD = trap trap = \xFD

Character code Mapping from ISO Latin-1 to

FrameMaker

Mapping from FrameMaker to

ISO Latin-1

Structured Application Developer Reference 241

\xFE \xFE = trap trap = \xFE

\xFF \xFF = \xD8 trap = \xFF

Character code Mapping from ISO Latin-1 to

FrameMaker

Mapping from FrameMaker to

ISO Latin-1

Character Set Mapping 242

Structured Application Developer Reference 243

Glossary

This glossary contains common terms used by FrameMaker, XML, and SGML. For

references to more information about the terms, see the index.

ancestor An element that contains a given element in a document’s structure. For

example, if a Section element contains a Head element followed by a

Paragraph element, and the Paragraph contains a Variable element, the

Paragraph and Section elements are both ancestors of the Variable

element, but the Head element is not an ancestor of the Variable element. See

also descendant, child element, parent element, and sibling.

API Application Programming Interface. Enables developers to create API clients with

other applications, such as databases, document management systems, CAD

tools, and user interfaces, for automation, database publishing, HTML conversion

and other purposes.

application

definition

A data structure (and the associated files) describing part of a complete XML or

SGML application assembled with FrameMaker. You store application definitions

in the structapps.fm file.

attribute A place to supply information about an element other than its hierarchical

position and structure. An attribute value does not add content to a document.

attribute definition The construct used to define a single attribute in a FrameMaker EDD or a DTD.

attribute definition

list declaration

In markup, the declaration that provides the list of attribute definitions for one or

more elements. Also called an ATTLIST. See also element declaration.

book A grouping of FrameMaker documents that lets you work with them as a single

unit. Lets you generate a single table of contents or other file from the

documents, and simplifies printing, numbering, cross-referencing, and

formatting.

CALS Continuous Acquisition and Life Cycle Support. The US Department of Defense

standard for the electronic delivery of documents.

catalog A floating palette that stores predefined paragraph, character, or table formats.

CDATA In markup, character data. In character data, no markup is recognized, other than

the delimiters that end the character data. See also NDATA, #PCDATA, RCDATA,

and SDATA.

child element An element that is contained in a given element and that is one level below the

given element. For example, if a Section element contains a Head element

followed by a Paragraph element, and the Paragraph element contains a

Glossary 244

Variable element, the Head and Paragraph elements are both child

elements of the Section element, but the Variable element is not. See also

parent element, ancestor, descendant, and sibling.

concrete syntax In SGML, a set of choices on the markup a document will use. Since SGML does

not require any particular values for these choices, an SGML document requires

a concrete syntax so a parser can correctly interpret it. See also reference concrete

syntax.

container element In FrameMaker, an element that can contain text, other elements, or both.

Contrasts with certain specific element types—for example, a cross-reference

element, which can contain nothing other than the cross-reference.

content model In markup, the part of an element declaration that specifies both a model group

and exceptions that define the allowed content of the element. Each markup

element declaration has either a content model or declared content. See also

content rules, declared content, general rule, and model group.

content rules In FrameMaker, the part of an element declaration that specifies both the

element’s type and the kind of contents the element can have. See also format

rules, content model, and general rule.

conversion table In FrameMaker, a table associating parts of an unstructured document with their

structured counterparts, used in converting an unstructured document to a

structured document.

cross-reference A passage in one place in a document that refers to another place, its cross-

reference source, in the same or a different document.

cross-reference

source

The place referred to by a cross-reference.

data In markup, the characters of a document that represent the inherent information

content. Such characters are not recognized as markup. See also markup.

data content

notation

In markup, an application-specific interpretation of an element’s data content, or

of a data entity, that usually extends or differs from the normal meaning of the

document character set. Frequently used to identify the format of an external

entity containing a graphic.

declaration In markup, markup that controls how other markup of a document is to be

interpreted.

declared content In an markup element declaration, specifies that the defined element’s content is

one of the reserved types CDATA, RCDATA, or EMPTY.

declared value In an markup attribute definition, determines the type of attribute value, such as

ID or NUTOKEN, that is valid when the attribute is specified. Although markup

does not define the term attribute type, you can loosely think of an attribute’s

declared value as its type.

Structured Application Developer Reference 245

default value In markup, the portion of an attribute definition that indicates whether an

attribute is required and what value to use if the user does not specify one. In

FrameMaker, refers only to the value to use if a user does not supply a value for

an attribute.

delimiter In markup, a character string used to identify a piece of markup or to distinguish

markup from data. For example, > (greater-than sign) is the default closing

delimiter for element tags.

descendant Any element that is below a given element in a document’s structure. For

example, if a Section element contains a Head element followed by a

Paragraph element, and the Paragraph element contains a Variable

element, the Variable element is a descendant of both the Paragraph and

the Section elements, but not of the Head element. See also ancestor, child

element, parent element, and sibling.

DOCTYPE In markup, the reserved name that follows the opening delimiter of a DTD.

Informally used to refer to the document element.

document A collection of information that is processed as a unit. A FrameMaker document

is any file in FrameMaker format. A markup document includes an SGML

declaration (for SGML), prologue, and document instance set.

document element In markup, the highest-level element in a document. The generic identifier of this

element is specified immediately after the DOCTYPE reserved name in the DTD.

document instance In markup, the portion of a document that contains markup and data for a

particular project such as a memo or book.

document type A class of documents having similar characteristics, such as technical manual or

internal memo.

document type

declaration

In markup, a document type declaration (DTD) associates a document element

with a set of declarations (the document type declaration subset).

document type

declaration subset

In markup, a set of declarations determining such things as the markup to allow

in a document and the elements and attributes for a document set. See also

external DTD subset and internal DTD subset.

DTD See document type declaration subset.

EDD See element definition document.

element A structural unit of a document. Holds and organizes the contents of the

document.

Element Catalog In FrameMaker, the information extracted from an EDD and stored within each

structured FrameMaker document. Makes an external element definition

document unnecessary. See also element definition document.

Glossary 246

element declaration In markup, information describing a particular element. Includes both a name

(generic identifier) for the element and content rules. A markup document has an

element declaration for each allowed element.

element definition In FrameMaker, a set of rules describing an element. Includes a name (tag) for the

element, content rules, and (optionally) context-sensitive format rules. A

structured document has an element definition for each element allowed. See

also content rules and format rules.

element definition

document

A FrameMaker document that contains a set of element definitions for a class of

documents. Can also include information on system defaults and on a structure

application with which to associate this information. Also called an EDD.

element tag In FrameMaker, the name assigned to an element and stored in the Element

Catalog. See also generic identifier.

EMPTY Keyword in an element definition indicating that the element cannot have

content. In markup, EMPTY is a declared content.

end-tag In markup, the markup that indicates the end of an element.

entity In markup, a collection of characters that can be referenced as a unit. Used for

many purposes in markup, such as graphics or frequently used sets of characters.

exclusion An exception to the general rule or content model of an element. Specifies other

elements that cannot appear anywhere in the element or in its descendants.

Exclusions are not allowed in XML.

external cross-

reference

In FrameMaker, a cross-reference to a source in a different file. Markup does not

define this concept.

external DTD subset In markup, an informal term for an external entity for which an external identifier

appears at the beginning of a document type declaration and that is

automatically referenced at the end of the document type declaration subset.

external entity In markup, an entity that specifies an external object, such as a file.

facet A pictorial representation of graphical data.

FDK client In FrameMaker, any application created using the Frame Developer’s Kit. See also

Structure API client.

flow See , “text flow.”

format rules In FrameMaker, the part of an element definition that specifies which predefined

format to apply to an element. Format rules can use different formats for different

contexts in a document. See also content rules.

general entity In markup, an entity that can be referenced from within the content of an

element or an attribute value literal.

general rule In FrameMaker, a rule that specifies valid contents for an element and the order

in which the contents can appear. Equivalent to the declared content of an

Structured Application Developer Reference 247

element or the model group part of the content model of an element in markup.

See also content rules.

generic identifier In markup, the name identifying an element. See also element definition and

element tag.

highest-level rule In FrameMaker, a read/write rule that is not a subrule of another read/write rule.

HTML Hypertext Markup Language. An encoding system used to describe the content

and organization of an electronic document published on the World Wide Web.

ID attribute An attribute of type ID, frequently used as an identifier to mark the source of a

cross-reference. In a single document, a particular value for an ID attribute can

be used only once.

IDREF attribute An attribute whose value must be that of an ID attribute in the same markup

document or FrameMaker document or book. Frequently used for cross-

references.

impliable attribute In markup, an attribute whose value does not have to be supplied. If a document

does not supply a value, it is up to the processing software to correctly interpret

the attribute. Such attributes use the default value #IMPLIED.

inclusion An exception to the general rule or content model of an element. Specifies other

elements that can appear anywhere in the element or in its descendants.

Inclusions are not allowed in XML DTDs

invalid element An element with contents that do not conform to content rules. May be missing

required child elements, may not have a definition in the EDD or DTD, or may

have text or child elements in a position not allowed by its content rules or by

the exclusion and inclusion rules of its ancestors.

internal cross-

reference

In FrameMaker, a cross-reference to a source in the same file.

internal DTD subset In markup, an informal term for the declarations in a document type declaration

that occur within brackets (dso and dsc delimiters) in the markup document

entity, rather than being in an external entity.

internal entity In markup, an entity whose replacement text is determined solely by information

in its declaration.

ISO public entity In SGML, an entity that occurs in one of the entity sets defined in Annex D of the

SGML Standard. These entities provide commonly used special characters.

marker In FrameMaker, a nonprinting character an end user inserts (such as an index

entry) to indicate various types of information.

markup Text added to the data of a document in order to convey information about it,

such as hierarchical structure or formatting. This document also uses markup to

generally refer to XML and SGML.

Glossary 248

markup

minimization

In SGML, any of various conventions for omitting markup in a document,

including shortening or omitting tags and shortening entity references.

model group In markup, an ordered list that specifies valid contents for an element (such as

child elements) and the order in which the contents can appear. A model group

is similar to a FrameMaker general rule.

NAMECASE

parameter

In SGML, the part of the SGML declaration that determines case-sensitivity of

markup.

NDATA In SGML (and implicitly XML), non-SGML data. NDATA is data that needs special

processing by the markup application. NDATA is typically used, for example,

when representing graphics—in XML the graphic data would be non-parsed

data. See also CDATA, #PCDATA, RCDATA, and SDATA.

parameter entity In markup, an entity that can be referenced only within a DTD.

parent element An element that contains a given element and is one level above it in the

hierarchy. For example, if a Section element contains a Head element followed

by a Paragraph element, the Section element is the parent element of the

Head and Paragraph elements, but not of the Variable element. See also

child element, ancestor, descendant, and sibling.

parser See validating parser.

#PCDATA In markup, parsed character data. This is normal text that can include markup to

be parsed. Occurs in an markup element’s model group and corresponds to

<TEXT> in a FrameMaker element’s general rule. See also CDATA, NDATA,

RCDATA, and SDATA.

prefix Text that is automatically placed before the content of an element. In

FrameMaker, defined as part of the formatting of an element. For example, a

Quote text range element might have an open quotation mark as its prefix and

a close quotation mark as its suffix. See also suffix.

processing

instruction

In an markup document, a way of indicating that the application needs to

perform some special processing. For example, you can use a processing

instruction to indicate a location in an markup document that should have a

page break.

public identifier In markup, a way of identifying an external entity. Formal public identifiers have

a specified syntax that includes an identifier of the owner of the entity and an

indication of the markup construct it provides. Formal public identifiers are

typically available to any user of markup, not just the users at a particular

company. Informal public identifiers may be available more widely than a single

document or system, but perhaps no more widely than within a single company.

See also system identifier

Structured Application Developer Reference 249

RCDATA In markup, replaceable character data. In replaceable character data, no markup

is recognized, other than character and entity references. RCDATA is valid only in

SGML. See also CDATA, NDATA, #PCDATA, and SDATA.

read/write rule In FrameMaker, interpreted commands you supply to modify how the software

translates between FrameMaker and markup documents.

reference concrete

syntax

In SGML, a particular concrete syntax defined by the SGML standard. See also

concrete syntax.

reference page An underlying page that stores repeatedly-used graphics and formatting

information.

Rubi text Small characters that appear above Japanese-language characters to indicate

pronunciation.

rule See SGML read/write rule.

SDATA In SGML, specific character data. One common use is for specific characters that

might not be in the standard character set. See also CDATA, NDATA, #PCDATA, and

RCDATA.

SGML An acronym for Standard Generalized Markup Language.

SGML application Rules that apply SGML to a text processing application. Includes a formal

specification of the markup constructs used in the application, expressed in

SGML. Can also include non-SGML definitions of semantics, application,

conventions, and processing.

SGML declaration In SGML, the part of a document that tells a parser how to interpret markup in

the document.

SGML read/write

rule

See read/write rule.

sibling Elements at the same level in the structure and with the same parent element.

For example, if a Section element contains a Head element followed by a

Paragraph element, the Head and Paragraph elements are siblings. See also

ancestor, descendant, child element, and parent element.

source See cross-reference source.

start-tag In markup, the markup that indicates the beginning of an element.

Structure API client In FrameMaker, an FDK client created to change the translation between

FrameMaker and markup documents. See also FDK client.

subrule In FrameMaker, an read/write rule that is part of another rule.

suffix Text that is automatically placed after the content of an element. In FrameMaker,

a prefix is defined as part of the formatting of an element. See also prefix.

Glossary 250

system identifier In markup, a way of identifying an external entity that’s specific to the particular

document or system. See also public identifier.

template In FrameMaker, a document used to create new documents. A template can

include all the formats, structure descriptions, and other information you need to

create a document.

<TEXT> In a FrameMaker element’s general rule, indicates that the element can directly

contain text characters and elements included by itself or its ancestors. <TEXT>

corresponds to #PCDATA in a markup element’s model group.

Text entity An entity whose replacement text can contain both data and markup.

text flow The text in a series of connected text frames. A text flow can also be contained

in a single text frame, not connected to any other frame. A text flow with

elements is a structured text flow.

text inset Text imported by reference.

<TEXTONLY> In a FrameMaker element’s general rule, indicates that the element can directly

contain text characters and cannot contain elements included by an ancestor. By

default, on export <TEXTONLY> corresponds to a declared content of RCDATA

in an SGML element’s definition, or PCDATA in XML. On import FrameMaker

translates declared content of RCDATA or CDATA to <TEXTONLY>.

valid document A structured document that conforms to all its content rules. Every element in the

document must be valid. In FrameMaker, every structured flow must have a

highest-level element that is allowed at the highest level.

valid element An element with contents that conform to its own content rules and to the

inclusion and exclusion rules of all of its ancestors.

validating parser In markup, a software module that parses the markup of an XML or SGML

document and determines that the document structure conforms to a provided

DTD.

variable In FrameMaker, text that is defined once but can be used several times. Similar to

some varieties of XML or SGML entity.

XML An acronym for Extensible Markup Language. By definition, XML is a subset of

SGML.

XSLT An acronym for eXtensible Stylesheet Language: Transformations. It is a W3C

language for transforming one XML document into another XML document. It

can also transform an XML document into other text based formats including

MIF

.

Structured Application Developer Reference 251

Index

A
abstract types Schema mapping 211

all element Schema mapping 204

ampersand (&)

in conversion tables 175

anchored frame (rule) 41

any element Schema mapping 208

anyType Schema mapping 200

application definition files ??–30

contents of 9

default information 11

defining applications in 9

document elements 13

DTDs for import and export 14

entity catalogs 15–16

external entities 17–18

filename extensions, specifying 21

files for rules documents 22

individual entities 16

length of log files 30

namespaces, enabling 22

public identifiers 18

read/write rules documents 22

search path for external entities 19–20

SGML declarations 24

structure API clients 27

templates for import 26

application files

managing CSS 24

Schema, specifying 23

XSL transformation, specifying 25

asterisk (*)

in conversion tables 175

attribute (rule) 44

attributes

defaults in Schema 208

for identifying overrides 180

in conversion tables 177

mapping of Schema to DTD 205

attributes, read/write rules for 32

attribute 44

drop 51

fm attribute 74

fm element 75

implied value is 94

is fm attribute 101

is fm property 114

is fm property value 122

is fm value 135

value 161

B
books, read/write rules for 33

generate book 91

output book processing instructions 143

put element 91

use processing instructions 91

C
CALS table model 213–218

attribute structure 217

colspec elements 216, 217

element and attribute declarations 214

element structure 216

spanspec elements 216, 217

CALS tables

read/write rules for 219–221

character formats

wrapping text formatted without 180

character map (rule) 47

character set mapping 235–241

characters allowed

in conversion tables 172

choice element Schema mapping 203

comma (,)

in conversion tables 175

complex type Schema mapping 202, 209

named 204

conversion tables 167–183

adding rules to 171–178

attributes in 177

building tables from format tags with 182

columns and rows in 167, 171

documents for holding 168

flagging format overrides with 180

format and element tags in 169, 171, 173

generating initial 169

nesting graphics or tables with 181

object type identifiers in 173

order of rules in 168

promoting graphics or tables with 179

252

qualifiers for element tags in 171, 177

root element 172

setting up from scratch 170

testing and correcting 182

updating 170

wrapping elements with 174

wrapping objects with 173

wrapping sequences with 175

wrapping untagged text with 180

cross-references, read/write rules for 33

fm element unwrap 75

fm property 78

is fm cross-reference element 107

is fm property 114

is fm property value 122

is fm value 135

value is 78

CSS

managing generation 24

CSS files 29

CSS import 25

D
default

SGML declaration 223–225

defaults

mapping of Schema to DTD 208

DOCTYPE elements 13

document type declarations (DTDs)

specifying location of 14

drop (rule) 51

drop content (rule) 53

DTD 200

E
element (rule) 54

element tags

in conversion tables 169, 171, 173

elements

defaults in Schema 208

mapping of Schema to DTD 206

elements, read/write rules for all 31

attribute 44

drop 51

drop content 53

element 54

fm element 75

is fm element 108

preserve fm element definition 144, 145

unwrap 158

encoding 29

of CSS files 29

end vertical straddle (rule) 57

entities

external files for 17–18

ISO public 227–234

searching for external files 19

searching for filename patterns 17

specifying location of 16

specifying search path for 19–20

entities, read/write rules for 34

drop 51

entity 59

entity name is 61

external data entity reference 69

is fm char 105

is fm reference element 125

is fm variable 137

reformat as plain text 150

reformat using target document catalogs 151

retain source document formatting 152

entity (rule) 59

entity catalogs

format of entries in 16

searching for 16

specifying location of 15–16

uses for 15

entity name is (rule) 61

equation (rule) 63

equations

in conversion tables 174

equations, read/write rules for 34

entity name is 61

equation 63

export dpi 64

export to file 67

fm property 78

is fm equation element 109

is fm property 114

is fm property value 122

is fm value 135

notation is 141

specify size in 153

value 161

value is 78

export dpi (rule) 64

export to file (rule) 67

exporting XML

XSL transformation 26

external data entity reference (rule) 69

external dtd (rule) 70

Structured Application Developer Reference 253

F
facet (rule) 72

fm attribute (rule) 74

fm element (rule) 75

fm element unwrap (rule) 75

fm marker (rule) 76

fm property (rule) 78

fm variable (rule) 89

fm version (rule) 90

footnotes

in conversion tables 174

footnotes, read/write rules for 35

is fm footnote element 110

format overrides, flagging in conversion tables 180

format tags

in conversion tables 169, 171, 173

G
generate book (rule) 91

graphics

nesting in conversion tables 181

promoting in conversion tables 179

graphics, read/write rules for 35

anchored frame 41

entity name is 61

export dpi 64

export to file 67

facet 72

fm property 78

is fm graphic element 111

is fm property 114

is fm property value 122

is fm value 135

notation is 141

specify size in 153

value 161

value is 78

group element Schema mapping 202

I
impact of stylesheet element 25

implied value is (rule) 94

import

Schema mapping 209

importing XML

XSL transformation 26

include

Schema mapping 209

include dtd (rule) 96

include sgml declaration (rule) 97

initial conversion tables 169

insert table part element (rule) 98

is fm attribute (rule) 101

is fm char (rule) 105

is fm cross-reference element (rule) 107

is fm element (rule) 108

is fm equation element (rule) 109

is fm footnote element (rule) 110

is fm graphic element (rule) 111

is fm marker element (rule) 112

is fm property (rule) 114

is fm property value (rule) 122

is fm reference element (rule) 125

is fm rubi element (rule) 127

is fm rubi group element (rule) 128

is fm system variable element (rule) 129

is fm table element (rule) 130

is fm table part element (rule) 132

is fm value (rule) 135

is fm variable (rule) 137

is processing instruction (rule) 138

ISO Latin-1 character set 235–241

ISO public entities 227–234

declarations and rules 232–234

default character formats 231

default variable definitions 231

entity declaration files 229

entity read/write rules files 229

format of entity rules 230

K
key element Schema mapping 211

L
line break (rule) 138

log files

limiting length of 30

M
mapping of Schema elements 200

marker text is (rule) 140

markers, read/write rules for 36

drop 51

external data entity reference 69

fm marker 76

fm property 78

is fm marker element 112

is fm property 114

is fm property value 122

254

is fm value 135

is processing instruction 138

marker text is 140

processing instruction 147

value 161

value is 78

markup language documents, read/write rules for 37

external dtd 70

include dtd 96

write structured document instance only 163

markup languages, translation to and from

cross-references ??–21

N
named attribute group Schema mapping 205

named complex type Schema mapping 204

namespaces

and Schema 199

extra attributes from Schema mapping 200

notation is (rule) 141

O
object type identifiers, in conversion tables 173

output book processing instructions (rule) 143

P
paragraph formats

building table structure from 182

parentheses

in conversion tables 175

plus sign (+)

in conversion tables 175

PostProcessing element 26

PreProcessing element 26

preserve fm element definition (rule) 144, 145

processing instruction (rule) 147

processing instructions (PIs), read/write rules for 37

drop 51

fm marker 76

is processing instruction 138

output book processing instructions 143

processing instruction 147

use processing instructions 91

PROMOTE keyword 179

proportional width resolution is (rule) 148

public identifiers 18

put element (rule) 91

Q
qualifiers, in conversion tables 167, 171, 177

question mark (?)

in conversion tables 175

quotation marks ("), in attribute values 177

R
read/write rules

documents for 22

for CALS tables 219–221

including files with 22

summary of 31–39

reader (rule) 149

redefine Schema mapping 209

reformat as plain text (rule) 150

reformat using target document catalogs (rule) 151

retain source document formatting (rule) 152

root element 172

Rubi groups, read/write rules for

is fm rubi element 127

is fm rubi group element 128

S
Schema

and namespaces 199

extra namespace attributes 200

mapping to DTD 200

mixed content models 207

specifying file location 199

structure application element 23

types not mapped 211

sequence element Schema mapping 202

SGML

defining an application 9

optional unsupported features 226

SGML declarations

default for FrameMaker 223–225

specifying location of 24

SGML documents, read/write rules for

include sgml declaration 97

SGML parser

concrete syntax variants 225

simple type Schema mapping 200

specify size in (rule) 153

start new row (rule) 155

start vertical straddle (rule) 156

structure API clients

specifying location of 27

structure applications

defining 9

Structured Application Developer Reference 255

structure, adding to documents. See conversion tables

stylesheet element

impact on CSS import feature 25

stylesheets

XSL 25

system variables

in conversion tables 174

T
table ruling style is (rule) 157

tables

building structure from format tags 182

CALS attribute usage 213

nesting in conversion tables 181

promoting in conversion tables 179

tables, read/write rules for 38

end vertical straddle 57

fm property 78

insert table part element 98

is fm property 114

is fm property value 122

is fm table element 130

is fm table part element 132

is fm value 135

proportional width resolution is 148

start new row 155

start vertical straddle 156

table ruling style is 157

use proportional widths 160

value 161

value is 78

templates

specifying location of 26

text insets, read/write rules for 39

entity 59

reformat as plain text 150

reformat using target document catalogs 151

retain source document formatting 152

text, read/write rules for

character map 47

entity 59

is fm char 105

line break 138

U
unique element Schema mapping 211

untagged formatted text, wrapping 180

unwrap (rule) 158

use processing instructions (rule) 91

use proportional widths (rule) 160

user variables

in conversion tables 174

V
value (rule) 161

value is (rule) 78

variables, read/write rules for 39

drop 51

entity 59

fm element unwrap 75

fm variable 89

is fm system variable element 129

is fm variable 137

vertical bar (|)

in conversion tables 175

W
wildcard characters

in conversion tables 172

wrapping with conversion tables

document objects 173

elements 174

sequences of elements or paragraphs 175

untagged formatted text 180

write structured document instance only (rule) 163

writer (rule) 164

X
XML

defining an application 9

specifying Schema location 199

using CSS stylesheets 24

XSL transformations 25

XML Schema, See Schema

XSL files

associating with XML applications 25

XSL transformation (XSLT) 25

256

	Before You Begin
	Structure Application Definition Reference
	Structure Application Definition Reference
	Contents of an application definition file
	Define an application
	Providing default information
	Specifying the character encoding for SGML files
	Specifying conditional text output
	Specifying a DOCTYPE element
	Specifying a DTD
	Specifying entities
	Specifying entities through an entity catalog
	Why use entity catalogs
	Entity catalog format
	How FrameMaker searches entity catalogs

	Specifying the location of individual entities
	Specifying names for external entity files
	How FrameMaker searches filename patterns
	Example

	Specifying public identifiers
	Specifying a search path for external entity files
	How FrameMaker searches for entity files
	Example

	Specifying external cross reference behavior
	Change file extension to .XML
	Try alternative extensions

	Specifying filename extensions
	Enabling namespaces
	Specifying a read/write rules document
	Specifying a search path for included files in rules documents
	How FrameMaker searches for rules files

	Specifying a Schema for XML
	Specifying an SGML declaration
	Managing CSS import/export and XSL transformation
	How the Stylesheets element affects CSS generation
	How the Stylesheets element affects CSS import
	How the Stylesheets element affects XSL transformation

	Specifying a FrameMaker template
	Specifying a structure API client
	Specifying the character encoding for XML files
	Display encoding
	Encoding of CSS files

	Exporting XML
	Limiting the length of a log file
	Mapping graphic notations to file types

	Read/Write Rules Summary
	Read/Write Rules Summary

	Read/Write Rules Reference
	Read/Write Rules Reference
	anchored frame
	attribute
	character map
	convert referenced graphics
	do not include dtd
	do not include sgml declaration
	do not output book processing instructions
	drop
	drop content
	element
	end vertical straddle
	entity
	entity name is
	equation
	export dpi is
	export to file
	external data entity reference
	external dtd
	facet
	fm attribute
	fm element
	fm marker
	fm property
	fm variable
	fm version
	generate book
	implied value is
	include dtd
	include sgml declaration
	insert table part element
	is fm attribute
	is fm char
	is fm cross-reference element
	is fm element
	is fm equation element
	is fm footnote element
	is fm graphic element
	is fm marker element
	is fm property
	is fm property value
	is fm reference element
	is fm rubi element
	is fm rubi group element
	is fm system variable element
	is fm table element
	is fm table part element
	is fm text inset
	is fm value
	is fm variable
	is processing instruction
	line break
	marker text is
	notation is
	output book processing instructions
	preserve fm element definition
	preserve line breaks
	processing instruction
	proportional width resolution is
	put element
	reader
	reformat as plain text
	reformat using target document catalogs
	retain source document formatting
	specify size in
	start new row
	start vertical straddle
	table ruling style is
	unwrap
	use processing instructions
	use proportional widths
	value
	value is
	write structured document
	write structured document instance only
	writer

	Conversion Tables for Adding Structure to Documents
	Conversion Tables for Adding Structure to Documents
	How a conversion table works
	Setting up a conversion table
	Generating an initial conversion table
	Setting up a conversion table from scratch
	Updating a conversion table

	Adding or modifying rules in a conversion table
	About tags in a conversion table
	Specifying the root element for a structured document
	Identifying a document object to wrap
	Identifying an element to wrap
	Identifying a sequence to wrap
	Strict or loose sequence specification

	Providing an attribute for an element
	Using a qualifier with an element

	Handling special cases
	Promoting an anchored object
	Flagging format overrides
	Wrapping untagged formatted text
	Nesting object elements
	Building table structure from paragraph format tags

	Testing and correcting a conversion table

	CSS to EDD Mapping
	CSS to EDD Mapping
	CSS Font Properties
	CSS text properties
	CSS color and backgrounds properties
	CSS Formatting Model
	CSS Pagination Properties
	CSS generated content, automatic numbering, and lists
	CSS Tables
	CSS Selectors

	XML Schema to DTD Mapping
	XML Schema to DTD Mapping
	Schema location
	Namespace and Schema location attributes

	Simple type mapping
	Attributes of simple type elements

	Complex type mapping
	Group
	Sequence
	Choice
	All
	Named complex types
	Named attribute groups
	Abstract elements
	Mixed content models

	Supported Schema features
	Defaults
	Any
	Extension and restriction of complex types
	Include, import, and redefine

	Unsupported Schema features

	The CALS/OASIS Table Model
	The CALS/OASIS Table Model
	FrameMaker properties that DO NOT have corresponding CALS attributes
	Element and attribute definition list declarations
	Element structure
	Attribute structure
	Inheriting attribute values
	Orient attribute
	Straddling attributes

	Read/Write Rules for the CALS/OASIS Table Model
	Read/Write Rules for the CALS/OASIS Table Model

	SGML Declaration
	SGML Declaration
	Text of the default SGML declaration
	SGML concrete syntax variants
	Unsupported optional SGML features

	ISO Public Entities
	ISO Public Entities
	What you need to use ISO public entities
	Entity declaration files
	Entity read/write rules files
	Format of entity rules
	Character formats
	Variables

	What happens with the declarations and rules

	Character Set Mapping
	Character Set Mapping

	Glossary
	Glossary

	Index

