ADOBE® FRAMEMAKER® 12
STRUCTURED APPLICATION DEVELOPER REFERENCE

Al

Adobe

© 2014 Adobe Systems Incorporated and its licensors. All rights reserved.
Structured Application Developer Reference Online Manual

If this guide is distributed with software that includes an end-user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under copyright law
even if it is not distributed with software that includes an end-user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility
or liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under
copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of
the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to
refer to any actual organization.

Adobe, the Adobe logo, Acrobat, Distiller, Flash, FrameMaker, lllustrator, PageMaker, Photoshop, PostScript, Reader,
Garamond, Kozuka Mincho, Kozuka Gothic, MinionPro, and MyriadPro are trademarks of Adobe Systems Incorporated.

Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Solaris is a trademark or registered trademark of Sun Microsystems, Inc. in the
United States and other countries. UNIX is a trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd. SVG is a trademark of the World Wide Web Consortium; marks of the W3C are
registered and held by its host institutions MIT, INRIA, and Keio. All other trademarks are the property of their respective
owners.

This product contains either BISAFE and/or TIPEM software by RSA Data Security, Inc.
This product contains color data and/or the Licensed Trademark of The Focoltone Colour System.

PANTONE® Colors displayed in the software application or in the user documentation may not match PANTONE-
identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE® and other Pantone, Inc.
trademarks are property of Pantone, Inc. © Pantone, Inc. 2003. Pantone, Inc. is the copyright owner of color data and/or
software which are licensed to Adobe Systems Incorporated to distribute for use only in combination with Adobe
[llustrator. PANTONE Color Data and/or Software shall not be copied onto another disk or into memory unless as part of
the execution of Adobe lllustrator software.

Software is produced under Dainippon Ink and Chemicals Inc!s copyrights of color-data-base derived from Sample
Books.

This product contains ImageStream® Graphics and Presentation Filters Copyright ©1991-1996 Inso Corporation and/or
Outside In® Viewer Technology ©1992-1996 Inso Corporation. All Rights Reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Certain Spelling portions of this product is based on Proximity Linguistic Technology. ©Copyright 1990 Merriam-
Webster Inc. ©Copyright 1990 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc.
Burlington, New Jersey USA. ©Copyright 2003 Franklin Electronic Publishers Inc.©Copyright 2003 All rights reserved.
Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. Legal Supplement
©Copyright 1990/1994 Merriam-Webster Inc./Franklin Electronic Publishers Inc. ©Copyright 1994 All rights reserved.
Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990/
1994 Merriam- Webster Inc./Franklin Electronic Publishers Inc. ©Copyright 1997All rights reserved. Proximity
Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA ©Copyright 1990 Merriam-
Webster Inc. ©Copyright 1993 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc.
Burlington, New Jersey USA. ©Copyright 2004 Franklin Electronic Publishers Inc. ©Copyright 2004 All rights reserved.

Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1991 Dr.
Lluis de Yzaguirre | Maura ©Copyright 1991 All rights reserved. Proximity Technology A Division of Franklin Electronic
Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990 Munksgaard International Publishers Ltd. ©Copyright
1990 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey
USA. ©Copyright 1990 Van Dale Lexicografie bv ©Copyright 1990 All rights reserved. Proximity Technology A Division
of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1995 Van Dale Lexicografie bv
©Copyright 1996 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington,
New Jersey USA. ©Copyright 1990 IDE a.s. ©Copyright 1990 All rights reserved. Proximity Technology A Division of
Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1992 Hachette/Franklin Electronic
Publishers Inc. ©Copyright 2004 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers,
Inc. Burlington, New Jersey USA. ©Copyright 1991 Text & Satz Datentechnik ©Copyright 1991 All rights reserved.
Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 2004
Bertelsmann Lexikon Verlag ©Copyright 2004 All rights reserved. Proximity Technology A Division of Franklin Electronic
Publishers, Inc. Burlington, New Jersey USA. ©Copyright 2004 MorphoLogic Inc. ©Copyright 2004 All rights reserved.
Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990
William Collins Sons & Co. Ltd. ©Copyright 1990 All rights reserved. Proximity Technology A Division of Franklin
Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1993-95 Russicon Company Ltd. ©Copyright 1995
All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA.
©Copyright 2004 IDE a.s. ©Copyright 2004 All rights reserved. Proximity Technology A Division of Franklin Electronic
Publishers, Inc. Burlington, New Jersey USA. The Hyphenation portion of this product is based on Proximity Linguistic
Technology. ©Copyright 2003 Franklin Electronic Publishers Inc.©Copyright 2003 All rights reserved. Proximity
Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1984 William
Collins Sons & Co. Ltd. ©Copyright 1988 All rights reserved. Proximity Technology A Division of Franklin Electronic
Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990 Munksgaard International Publishers Ltd. ©Copyright
1990 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey
USA. ©Copyright 1997 Van Dale Lexicografie bv ©Copyright 1997 All rights reserved. Proximity Technology A Division
of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1984 Editions Fernand Nathan
©Copyright 1989 All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington,
New Jersey USA. ©Copyright 1983 S Fischer Verlag ©Copyright 1997 All rights reserved. Proximity Technology A
Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1989 Zanichelli ©Copyright 1989
All rights reserved. Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA.
©Copyright 1989 IDE a.s. ©Copyright 1989 All rights reserved. Proximity Technology A Division of Franklin Electronic
Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1990 Espasa-Calpe ©Copyright 1990 All rights reserved.
Proximity Technology A Division of Franklin Electronic Publishers, Inc. Burlington, New Jersey USA. ©Copyright 1989
C.A. Stromberg AB. ©Copyright 1989 All rights reserved. Proximity Technology A Division of Franklin Electronic
Publishers, Inc. Burlington, New Jersey USA.

Portions of Adobe Acrobat include technology used under license from Autonomy, and are copyrighted.
Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. government end users. The software and documentation are “Commercial Items,” as that term is defined
at 48 C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software
Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48
C.FR.§12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and
Commercial Computer Software Documentation are being licensed to U.S. Government end users (a) only as
Commercial items and (b) with only those rights as are granted to all other end users pursuant to the terms and
conditions herein. Unpublished-rights reserved under the copyright laws of the United States. For U.S. Government End
Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the provisions of
Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38
USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1
through 60-60, 60-250, and 60- 741. The affirmative action clause and regulations contained in the preceding sentence
shall be incorporated by reference.

Contents

Before You Begin 5
Chapter 1 Structure Application Definition Reference 9
Contents of an application definition file . .9 Specifying a search path for included files in rules
) — documents 22
Define an application .9
How FrameMaker searches for rules files. . . 23
Providing default information .1
Specifyinga SchemaforXmML 23
Specifying the character encoding for SGML files . 11
Specifying an SGML declaration 24
Specifying conditional text output . .13
Managing CSS import/export and XSL transformation
Specifying a DOCTYPE element . .13
Specifying a DTD . 14 How the Stylesheets element affects CSS
Specifying entities T generation. . . . coe 2
How the Stylesheets element affects CSS import 25
Specifying entities through an entity catalog . 15
How the Stylesheets element affects XSL
Specifying the location of individual entities . 16 .
transformation 25
Specifying names for external entity files. .17 o
Specifying public identifiers . 18 Specifying a FrameMaker template 26
Specifying a search path for external entity files 19 Specifyingastructure APl client. 27
Specifying external cross reference behavior .20 Specifying the character encoding for XML files . 27
Change file extension to XML . 20 Display encoding 28
Try alternative extensions . 21 Encoding of CSSfiles 29
Specifying filename extensions . .21 ExportingXML 29
Enabling namespaces . . 22 Limiting thelengthofalogfile. 30
Specifying a read/write rules document . . 22 Mapping graphic notations tofile types 30
Chapter 2 Read/Write Rules Summary . 31
All Elements . 31 Footnotes 35
Attributes . . 32 Graphics 35
Books . 33 Markers. 36
Cross-references . . 33 Processing instructions 37
Entities . . 34 Markup documents. 37
Equations . .3 Tables 38

Structured Application Developer Reference

Text .

Text insets .

. 39
. 39

Chapter 3 Read/Write Rules Reference

anchored frame .

attribute

character map.

convert referenced graphics .
do not include dtd

do not include sgml declaration.

do not output book processing instructions.

drop .

drop content .
element.

end vertical straddle
entity.

entity name is.
equation

export dpiis

export to file
external data entity reference
external dtd

facet .

fm attribute

fm element.

fm marker .

fm property

fm variable .

fm version .
generate book
implied value is

include dtd.

.41
. 44
. 47
. 49
. 50
. 51
. 51
. 51
. 53
. 54
. 57
. 59
. 61
. 63
. 64
. 67
. 69
. 70
.72
. 74
. 75
. 76
. 78
. 89
. 90
. 91
. 94
. 9

Variables

include sgml declaration .
insert table part element .
is fm attribute.

isfm char .

is fm cross-reference element
is fm element .

is fm equation element

is fm footnote element.

is fm graphic element .

is fm marker element .

is fm property.

is fm property value.

is fm reference element

is fm rubi element

is fm rubi group element .
is fm system variable element
is fm table element .

is fm table part element

is fm text inset

is fm value .

is fm variable .

is processing instruction .
line break .

marker text is .

notation is .

output book processing instructions .

preserve fm element definition .

preserve line breaks

39

.41

97
98

. 101
. 105
. 107
. 108
. 109
.110
111
112
114
122
125
127
. 128
129
. 130
132
. 133
. 135
137
. 138
. 138
. 140
. 141
. 143
. 144
. 145

processing instruction147
proportional width resolutionis.148
putelement149
reader149
reformatas plaintext150
reformat using target document catalogs . . .151
retain source document formatting152
specify sizein.153
startnewrow155
startvertical straddle156

Chapter 4 Conversion Tables for Adding Structure to Documents

How a conversion tableworks167
Setting up a conversiontable168
Generating an initial conversion table. . . .169
Setting up a conversion table from scratch . . 170
Updating a conversiontable.170

Adding or modifying rules in a conversion table .171

About tagsinaconversiontable171
Specifying the root element for a structured

document172
Identifying a document objecttowrap . . .173
Identifying an elementtowrap174

Chapter 5 CSS to EDD Mapping

CSS Font Properties.185
CSS text properties188
CSS color and backgrounds properties189
CSS FormattingModel190

Chapter 6 XML Schema to DTD Mapping

.199
Namespace and Schema location attributes. .200

Schema location .

Simpletypemapping200

Structured Application Developer Reference

tableruling styleis157

unwrap.158
use processing instructions160
use proportional widths160
value o o o . 0 L L0 161
valueis.163
write structured document163
write structured document instanceonly . . . 163
writer64

.167

Identifying a sequencetowrap.175
Providing an attribute for an element. . . . 177
Using a qualifier with an element177
Handling specialcases.179
Promoting an anchored object179
Flagging format overrides180
Wrapping untagged formatted text 180
Nesting objectelements181

Building table structure from paragraph format tags
182

Testing and correcting a conversion table . . . 182

.185
CSS Pagination Properties . 193

CSS generated content, automatic numbering, and

lists19
CSSTables . . 196
CSS Selectors . . 197
.199

Attributes of simple type elements 201
Complex type mapping202
Group202

3

Sequence .

Choice .

All.

Named complex types .
Named attribute groups
Abstract elements
Mixed content models .

Chapter 7 The CALS/OASIS Table Model.

FrameMaker properties that DO NOT have
corresponding CALS attributes .

.202
.203
.204
.204
.205
. 206
.207

.213

Element and attribute definition list declarations . 214

Element structure

.216

Supported Schema features .
Defaults.
Any .

Extension and restriction of complex types .

Include, import, and redefine

Unsupported Schema features .

Attribute structure .
Inheriting attribute values
Orient attribute .
Straddling attributes

Chapter 8 Read/Write Rules for the CALS/OASIS Table Model .

Chapter 9 SGML Declaration

Text of the default SGML declaration .

SGML concrete syntax variants .

Chapter 10 ISO Public Entities

What you need to use ISO public entities.
Entity declaration files .

Chapter 11 Character Set Mapping

Glossary

Index

.223
.225

.228
.229

Unsupported optional SGML features.

Entity read/write rules files

What happens with the declarations and rules.

. 208
. 208
. 208
. 209
. 209

.21

.213

. 217
. 217
. 217
. 217

.219

.223
. 226

227

. 229
. 232

.235

.243

.251

Before You Begin

This developer reference and its associated developer guide are for anybody who develops
structured FrameMaker® templates and XML or SGML applications. They are not written for end
users who author structured documents that use such templates and applications.

XML and SGML

FrameMaker can read and write XML (Extensible Markup Language) and SGML (Standard
Generalized Markup Language) documents. XML and SGML are both document markup
languages, and FrameMaker handles these markup languages in similar ways. However, there are
differences between the two, and this manual covers these differences whenever necessary.

When discussing the similarities between them, this manual refers to XML and SGML data as
markup data or markup documents. Otherwise, the manual refers to XML and SGML specifically to
draw attention to the differences between these markup languages. The majority of new
structured documentation projects are XML based, therefore XML now takes precedence over
SGML where necessary.

Developing structured FrameMaker templates

End users of FrameMaker can read, edit, format, and write structured documents—the structure
is represented by a hierarchical tree of elements. Each structured document is based on a
template that contains a catalog of element definitions. Each element definition can describe the
valid contexts for an element instance, and the formatting of element instances in various
contexts.

To support these end users, you create the catalog and accompanying structured template.

Developing XML and SGML applications

When FrameMaker reads markup data, it displays that data as a formatted, structured document.
When the software saves a structured FrameMaker document, the software can write the
document as XML or SGML.

For the end user, this process of translation between FrameMaker documents and markup data is
transparent and automatic. However, for most XML or SGML document types the translation

requires an XML or SGML application to manage the translation. You develop this application to
correspond with specific document types. When your end user opens a markup document with a
matching document type, FrameMaker invokes the appropriate structure application. If there is no

Structured Application Developer Reference 5

match for a document type, the user can choose the application to use, or open the markup
document with no structure application.

A structure application primarily consists of:

A structured template

DTD or schema

Read/Write rules (described in this manual)

XSLT style sheets for pre and post process transformations (if necessary)

An XML and SGML API client (if necessary) developed with the Frame® Developer’s Kit (FDK).

Prerequisites

The following topics, which are outside the scope of this manual, are important for you to
understand before you try to create a structured template or structure application:

® Structured document authoring in FrameMaker

® XML or SGML concepts and syntax, including how to work with a document type definition
® FrameMaker end-user concepts and command syntax

® FrameMaker template design.

In creating some XML or SGML applications, you may also need to understand the following:

XSLT 1.0

C programming

FDK API usage.

If your application requires only the special rules described in this manual to modify the default
behavior of FrameMaker, you do not need programming skills. However, if you need to create an
XML and SGML API client to modify this behavior further, you need to program the client in C,
using the FDK. This manual does not discuss the creation of XML and SGML API clients. For this
information, see the Structure Import/Export APl Programmer’s Guide.

Using FrameMaker documentation

FrameMaker comes with a complete set of end-user and developer documentation with which
you should be familiar. You can access the FrameMaker guides from the FrameMaker help and
support page, http://www.adobe.com/support/framemaker/.

If you use the Frame Developer’s Kit in creating your structure application, you'll also need to be
familiar with the FDK documentation set.

Before You Begin 6

Using this manual

This manual provides detailed reference information for application rules and properties. It can be
used in conjunction with the Structure Application Developer Guide. It does not currently include
EDD reference information. All EDD descriptive and reference information will be found in the
Developer Guide.

Typographical conventions

Monospaced font Literal values and code, such as XML, SGML, read/write
rules, filenames, and pathnames.

Italics Variables or placeholders in code. For example, in
name=""myName", the text myName represents a value you
are expected to supply. Also indicates the first occurrence
of a new term.

Blue text A hyperlink you can click to go to a related section in this
book or to a URL in your web browser.

Sans-serif bold The names of FrameMaker User Interface objects (menus,
menu items, and buttons). The > symbol is used as
shorthand notation for navigating to menu items and sub
menus. For example, Element > Validate... refers to the
Validate... item in the Element menu.

Using other FrameMaker documentation

The Using FrameMaker makes up the primary end-user documentation for this product. It explains
how to use the FrameMaker authoring environment for both structured and unstructured
documents. It also explains how to create templates for your documents.

In creating a structured template, you can refer to this manual for information on how your end
user interacts with the product and how to create a formatted template.

New features and changes in release 12(including those for structure applications and structured
documents) are listed and briefly described in the FrameMaker Getting Started Guide.

You will also find a range of other online documents from the FrameMaker help and support page,
http://www.adobe.com/support/framemaker/.

Structured Application Developer Reference 7

Using

FDK manuals

If you create an XML and SGML API client for your XML or SGML application, you'll need to be
familiar with the FDK. FDK documentation is written for developers with C programming
experience.

® FDK Programmer’s Guide is your manual for understanding FDK basics. This manual describes
how to use the FDK to enhance the functionality of FrameMaker and describes how to use the
FDK to work with structured documents. To make advanced modifications to the software’s
default translation behavior, refer to the Structure Import/Export APl Programmer’s Guide.)

® FDK Programmer’s Reference is a reference for the functions and objects described in the FDK
Programmer’s Guide.

e Structure Import/Export APl Programmer’s Guide explains how to use the FDK to make advanced
modifications to the software’s default behavior for translation between markup documents
and FrameMaker documents. This manual contains both descriptive and reference information.

For information on other FDK manuals, see “Using Frame Developer Tools” in the FDK
Programmer’s Guide.

Before You Begin

Structure Application Definition
Reference

This chapter provides a comprehensive reference for all application properties that can be defined
in a structure application definition file.

Contents of an application definition file

The highest-level element in an structapps. fm file is StructuredSetup. That element’s
first child must be Version, to indicate the FrameMaker version. The Version element is
followed by zero or more SGMLApplication or XMLAppl ication elements, each of which
defines the pieces of a structure application. Finally, there can be an optional Defaul ts element,
which specifies information used unless overridden for a particular application.

The following table lists the main elements allowed in structapps.fm as children of the
StructuredSetup element. The table identifies the sections that discuss each of those
elements and the elements they may contain.

Element Discussed in

ApplicationName “Define an application,” next
SGMLApplication “Define an application” on page 9
XMLApplication “Define an application” on page 9
Defaults “Providing default information” on page 11

Define an application

FrameMaker collects all information pertaining to the set-up of a structured application into an
SGMLApplication or XMLAppl ication element. These elements have one required child
element and several optional child elements.

The first child of a parent SGMLApplication or XMLAppl ication element must be
ApplicationName and gives the name of the application. It looks like:

Application name: name

where name is a string used to identify your application in the Set Structure Application and Use
Structure Application dialog boxes. You cannot use the same name for multiple structure
applications.

Structured Application Developer Reference 9

Define an application

If present, the optional child elements can occur in any order and can include the following
elements, discussed in the named sections:

Element Discussed in

DOCTYPE “Specifying a DOCTYPE element” on page 13

DTD “Specifying a DTD" on page 14

CharacterEncoding “Specifying the character encoding for SGML files” on page 11

ConditionalText “Specifying conditional text output” on page 13

Entities “Specifying entities” on page 14

ExternalXRef “Specifying external cross reference behavior” on page 20

FileExtensionOverride “Specifying filename extensions” on page 21

Namespace “Enabling namespaces” on page 22

ReadWriteRules “Specifying a read/write rules document” on page 22

RulesSearchPaths “Specifying a search path for included files in rules documents”
on page 22

Schema “Specifying a Schema for XML" on page 23

SGMLDeclaration “Specifying an SGML declaration” on page 24

Stylesheets “Managing CSS import/export and XSL transformation” on
page 24

Template “Specifying a FrameMaker template” on page 26

UseAPIClient, “Specifying a structure API client” on page 27

UseDefaultAPIClient,

XMLDisplayEncoding “Specifying the character encoding for XML files” on page 27

XMLExportEncoding “Exporting XML" on page 29

XMLCharacterEncoding “XML character encoding from an SGML application” on
page HIDDEN

XMLWriteRules “Write rules for saving XML from an SGML application” on

page HIDDEN

Some elements provide pathnames (for entities and read/write rules files; hence
RulesSearchPaths and EntitySearchPaths elements). If the pathname is absolute, the
software looks there. If it can't find it via the specified path, the log reports an error and the
operation is aborted. If a relative pathname is given, the software looks for the file in several

places:

® The directory containing the file being processed. For example, if you're opening a DTD, the
software first searches the directory in which it found the DTD.

® $STRUCTDIR (for information on what directory this is, see Developer Guide, page 131:

Location of structure files).

® The directory from which you started FrameMaker.

Structure Application Definition Reference

10

Providing default information

If an application definition includes any of these elements, the value in the application definition
overrides any value for that element in the Defaul ts element. The sections following the next
section describe these elements in detail.

Providing default information

Some of the information you provide for individual applications may be common to all your
applications. For such information you can specify defaults that are used whenever an application
does not provide its own version of the information. You use the Defaults element to provide

such information.

If present, the optional child elements of Defaults can occur in any order (with the exception
of the Graphics element, which must be the last child) and can include the following elements,
which are discussed in the named sections:

Element Discussed in

CharacterEncoding “Specifying the character encoding for XML files” on page 27

DTD “Specifying a DTD” on page 14

Entities “Specifying entities” on page 14

FrameDefaultAPIClient, “Specifying a structure API client” on page 27

UseAPIClient

MaxErrorMessages “Limiting the length of a log file” on page 30

Namespace “Enabling namespaces” on page 22

ReadWriteRules “Specifying a read/write rules document” on page 22

RulesSearchPaths “Specifying a search path for included files in rules documents”
on page 22

SGMLDeclaration “Specifying an SGML declaration” on page 24

Stylesheets “Managing CSS import/export and XSL transformation” on
page 24

Template “Specifying a FrameMaker template” on page 26

XMLCharacterEncoding “XML character encoding from an SGML application” on
page HIDDEN

XMLWriteRules “Write rules for saving XML from an SGML application” on
page HIDDEN

Graphics “Mapping graphic notations to file types” on page 30

Specifying the character encoding for SGML files

The CharacterEncoding element tells the software which encoding to use for the SGML text.
Typically, this is only important on non-Western systems, or in SGML applications that encounter
SGML files using double-byte text. It can contain one of the following child elements:

Structured Application Developer Reference

11

Specifying the character encoding for SGML files

ISOLatinl, ASCII, ANSI, MacASCI I, ShiftJIS, KSC8EUC, GBSEUC, CNSEUC, Big5,
JIS8EUC. The CharacterEncoding element looks like this:

SGML character encoding: Iso Latin1

On a non-Western system, the text for an SGML file can contain double-byte text. This text can be
in any one of a number of different text encodings.

FrameMaker can interpret SGML files that contain double-byte text in #PCDATA, RCDATA, and
CDATA. The software expects all other text to be within the 7-bit ASCII range (which is supported
by all Asian fonts). This means that document content can be in double-byte encodings, but the
markup must be in the ASCII range. Typically, for example, the only text in a DTD that will contain
double-byte characters would be text used to specify attribute values.

Important: For SGML documents, you should not use accented characters in element tag
names nor attribute names. If you use such characters, FrameMaker may not be able to
correctly import or export the document.

To import and export SGML that contains double-byte text, you should specify the character
encoding to use, either as a default for all applications, or for a specific SGML application. For a
given SGML application there can only be one encoding. If you don't specify an encoding for your
application, FrameMaker determines the encoding to use by considering the current default user
interface language and the current operating system; for the current language, it uses the
operating system'’s default encoding. The default encodings for Windows® are:

Languages Windows
Roman languages ANSI
Japanese Shift-JIS
Simplified Chinese GB8 EUC
Traditional Chinese Big5
Korean KSC8 EUC

You can have an Asian language for the user interface, but the content of the document files in
Roman fonts. In this case, any exported Roman text that falls outside of the ASCIl range will be
garbled. For this reason, we recommend that you specify an encoding for any application that
might be used on a non-Western system.

The template for your application must use fonts that support the language implied by the
encoding you specify. Otherwise, the text will appear garbled when imported into the template.
You can fix this problem after the fact by specifying different fonts to use in the resulting files.

Structure Application Definition Reference 12

Specifying conditional text output

Specifying conditional text output

Add a ConditionalText child to the XMLAppl ication element to control conditional text
output. Place a single child, OutputTextP1 in this element. Then add one of the four children
listed in the following table to the OutputTextPl element:

Child of OutputTextPi FrameMaker outputs Processing instructions
hidden conditional text delimit conditional text
OutputAlITextWithPIs yes yes
OutputAl ITextWithoutPls yes no
OutputVisibleTextWithPls no yes
OutputVisibleTextWithoutPls no no
OutputAlITextWithPIsFiltered yes yes*
OutputVisibleTextWithPIsFiltered no yes*

*Pls are displayed only if the document settings are different from the template settings.

The Conditional Text element can only be a child of an XMLApplication element.

Specifying a DOCTYPE element

The DOCTYPE element specifies the generic identifier of the DOCTYPE declaration and root
element in markup documents used with this application. If you open a markup document with
the matching document element specified in the DOCTYPE declaration, FrameMaker uses this
application when translating the document. The element looks like:

DOCTYPE: doctype

where doctype identifies a document element.

For example,
DOCTYPE: chapter

matches a markup document with the following declaration:
<IDOCTYPE chapter ...>

If more than one application defined in the structapps. fm file specifies the same document
element, and the end user opens a file with that document element, the software gives the user
a choice of which of these applications to use. If the user opens a markup document for which no
application specifies its document element, the software gives the user the choice of all defined
applications.

Structured Application Developer Reference 13

Specifying a DTD

You can use more than one DOCTYPE element for an application, if that application is applicable
to multiple document elements. For example, if the Book application applies when the document
element is either chapter or appendix, you can use this definition:

Application name: Book
DOCTYPE: chapter
appendix

The DOCTYPE element can be a child of an SGMLApplication or XMLApplication element.

Specifying a DTD
The DTD element specifies a file containing the external DTD subset that FrameMaker uses when
importing and exporting a markup document. It looks like:
DTD: dtd
where dtd is the pathname of a file containing a document type declaration subset.

Note that the file you specify with the DTD element must be an external DTD subset. It cannot be
a complete DTD. That is, the file cannot have the form:

<IDOCTYPE book [
<lelement book . . .>

1>
Instead, it should simply have the form:

<lelement book . . .>

For more information on external DTD subsets, see Developer Guide, page 89: XML and SGML
DTDs.

You can have only one DTD element for each SGMLApplication or XMLApplication.Itcan
also be a child of the Defaul ts element.

Specifying entities
To specify the location of various entities, you use the Entities element. It looks like this:

Entity locations

The possible child elements of a parent Entities element are:

Element Discussed in
EntityCatalogFile “Specifying entities through an entity catalog” on page 15

Structure Application Definition Reference 14

Specifying entities

Element Discussed in

Entity “Specifying the location of individual entities” on page 16
FileNamePattern “Specifying names for external entity files” on page 17
Public “Specifying public identifiers” on page 18
EntitySearchPaths “Specifying a search path for external entity files” on page 19

If you use the EntityCatalogFile element, you cannot use any of the elements Entity,
FilenamePattern, or Public.

You can have only one Entities element for each application, although that Entities
element can have more than one of some of its child elements. The Entities element can also
be a child of the Defaults element.

Specifying entities through an entity catalog

The EntityCatalogFi le element specifies a file containing mappings of an entity’s public
identifier or entity name to a filename. It looks like:

Entity locations
Entity catalog file: fname

where fname is the filename of the entity catalog. Entity catalogs and their specified format are
described below.

You can specify multiple EntityCatalogFi le elements in a single Entities element. If you
use this element, you cannot use any of the Entity, Fi lenamePattern, or Public elements.

You can use the EntityCatalogFile element both in the Entities element of the
Defaults element and in an SGMLApplication or XMLApplication element to specify
information for a particular application. When searching for an external entity, FrameMaker
searches the application’s entity catalogs before searching the default entity catalogs.

If you have an EntityCatalogFile element in an application definition, the software ignores
Entity, FilenamePattern, and Public elements in the Defaul ts element.

Why use entity catalogs

Technical Resolution 9401:1994 published by SGML Open discusses entity management issues
affecting how SGML documents work with each other:

® Interpreting external identifiers in entity declarations so that an SGML document can be
processed by different tools on a single computer system

® Moving SGML documents to different computers in a way that preserves the association of
external identifiers in entity declarations with the correct files or other storage objects.

The technical resolution uses entity catalogs and an interchange packaging scheme to address
these issues. FrameMaker supports such entity catalogs with the EntityCatalogFile
element.

Structured Application Developer Reference 15

Specifying entities

Entity catalog format

Each entry in the entity catalog file associates a filename with information about an external entity
that appears in a markup document. For example, the following are catalog entries that associate
a public identifier with a filename:

PUBLIC "1SO 8879-1986//ENTITIES Added Latin 1//EN" "isolatl.ent”
PUBLIC "*-//USA/AAP//DTD BK-1//EN" 'aapbook.dtd"

In addition to entries mapping public identifiers to filenames, an entry can associate an entity
name with a filename:

ENTITY "chips'™ "graphics\chips.tif"
A single catalog can contain both types of entry.

If the specified filename in a catalog entry is a relative pathname, the path is relative to the
location of the catalog entry file.

For a complete description of the syntax of a catalog entry, see Technical Resolution 9401:1994
Entity Management published by SGML Open.

How FrameMaker searches entity catalogs

A single application may use multiple catalog files. When trying to locate a particular external
entity, FrameMaker searches the files one at a time until it finds the entry it is looking for. In each
file, the software first searches for an entity using the external entity’s public identifier. If the
software finds the identifier, it uses the associated filename to locate the entity. If it does not find
the public identifier, the software searches the file looking for the entity name. If it does not find
the entity name either, the software continues searching in the next catalog file.

In some circumstances, a system identifier specified in an external entity declaration may not be
valid. If so, FrameMaker uses public identifier and entity name mappings.

Specifying the location of individual entities

Instead of using an entity catalog to associate entities with files, you can use the Entity element
as a child of a parent Entities element. This element allows you to directly associate a filename
with an individual entity. It looks like:

Entity locations
Entity name: ename
Filename: fname

where ename is the name of an entity and Fname is a filename.

You can specify multiple child Entity elements for a single Entities element. You use the
FilenamePattern and EntitySearchPaths elements to help the software find these files.

The Entity element can be a child of a parent Entities element in the Defaults element
to set default entity information, and of a parent SGMLApplication or XMLApplication

Structure Application Definition Reference 16

Specifying entities

element to specify information for a particular application. When searching for an external entity,
the software searches the application’s entity locations before searching the default entity
locations.

Specifying names for external entity files

One or more Fi lenamePattern elements can appear as a child of a parent Entities element
to tell the software how to locate an external entity.

A FilenamePattern element does not apply to an entity for which there is an Entity
element. Otherwise, it applies to all external entities except those with an external identifier that
includes a public identifier but no system identifier. The Fi lenamePattern looks like:

Entity locations:
Filename pattern: pattern

where pattern is a string representing a device-dependent filename. The three variables that
can appear within pattern are interpreted as follows:

Variable Interpretation

$(System) The system identifier from the entity declaration
$(Notation) The notation name from the entity declaration of an external data entity
$(Entity) The entity name

Case is not significant in variable names, although it may be significant in the values of the
variables. If a variable is undefined in a particular context, that variable evaluates to the empty
string.

A parent Entities element can contain multiple child Fi lenamePattern elements. The
software assumes the last pattern in the Entities element is:

Filename pattern: $(System)

Thus, if no Fi lenamePattern elements appear or even if no Entities element appears, the
software assumes system identifiers are complete pathnames and will check search paths to
locate the file.

How FrameMaker searches filename patterns

When locating an external entity, FrameMaker tests the value of the pattern arguments in
successive Fi lenamePattern elements that have the same parent Entities element, in the
order they occur, until it finds the name of an existing file. As it tests each pattern, it substitutes
relevant information from the entity’s declaration for variables in pattern.

You can use the Fi lenamePattern element both in the Entities element of the Defaul ts
element and in an SGMLAppl ication element to specify information for a particular
application. When searching for an external entity, FrameMaker tests all the filename patterns
specified for the application before it tests those in default Fi lenamePattern elements.

Structured Application Developer Reference 17

Specifying entities

Example

Suppose the Entities element looks like:

Entity locations:
Filename pattern: $(System).sgm
Filename pattern: $(System).$(Notation)

and the markup document contains:

<IENTITY intro SYSTEM "introduction.xml">
<IENTITY chips SYSTEM "chipsfile" NDATA cgm>

&intro;

<graphic entity=chips>

When processing the reference to intro, the software searches for a file called
introduction.xml. It is an error if the file does not exist.

When processing the entity attribute of the graphic element, FrameMaker searches for a file
named chipsfile.cgm.If one is not found, it then looks for chipsTile.CGM, assuming that
the NAMECASE GENERAL parameter of the associated SGML declaration is NAMECASE
GENERAL YES.

Note: The NAMECASE GENERAL parameter of the SGML declaration determines the
case-sensitivity of notation names. For XML, the implied setting for this parameter is NO,
which means that names are case-sensitive.

For SGML, the value of this parameter in the reference concrete syntax is NAMECASE
GENERAL YES. With this declaration, the SGML parser forces notation names to
uppercase.

Specifying public identifiers

The Publ ic element of an Entities element tells the software how to process an external
identifier that has a public identifier but no system identifier. It looks like:

Entity locations:
PublicID: pid
Filename: fname

where pid is a public identifier and fname is the name of a file to be associated with the entity
using the public identifier.

You can give multiple Publ ic elements in the same parent Entities element. If you want to
give multiple filenames to search for a particular public identifier, you can specify the same public
identifier in multiple Publ ic elements.

Structure Application Definition Reference 18

Specifying entities

You can use the Publ ic element both in the Entities element of the Defaul ts element and
in an Entities element of an SGMLApplication or XMLAppl ication element to specify
information for a particular application. If a Publ ic element occurs as a child of an
SGMLApplication or XMLApplication element, that identifier is used in preference to one
occurring as a child of the Defaul ts element.

Specifying a search path for external entity files

The EntitySearchPaths child of a parent Entities element tells the software what
directories to search for the files indicated by Entity, FilenamePattern, and Public
elements. It looks like:

Entity locations:
Entity search paths
1:directory;

N:directory,

where each directoryj is a device-dependent directory name. The three variables and their
abbreviations that can be used to specify a directory are as follows:

Variable Abbreviation Interpretation

$HOME ~ The user’s home directory

$SRCDIR . The directory containing the document entity being
processed

$STRUCTDIR The structure directory in use (for information on what

directory this is, see Developer Guide, page 131: Location
of structure files)

Each directory; value can be an absolute pathname or relative to $SRCDIR.

How FrameMaker searches for entity files

To locate an external entity, FrameMaker searches the specified directories in the order listed. You
can use the EntitySearchPaths element both in the Entities element of the Defaults
element and in an XMLApplication or SGMLAppl ication element. When searching for an
external entity, FrameMaker searches the directories named in the EntitySearchPaths

element for the application before it searches those in a default EntitySearchPaths element.

An Entities element can contain only one EntitySearchPaths element. The software
assumes the EntitySearchPaths element ends this way:

Entity search paths

N: $SRCDIR

Structured Application Developer Reference 19

Specifying external cross reference behavior

Thus, if there is no EntitySearchPaths element, the software assumes all markup files are in
the same directory.

Example

Assume the Defaul ts element is defined as follows:
Defaults
Entity locations:

Filename pattern: $(System).sgm

Filename pattern: $(System).$(Notation)

Entity search paths
1: SHOME
2: $SRCDIR

and the markup document contains:

<IENTITY intro SYSTEM "introduction.xml">
<IENTITY chips SYSTEM "‘chipsfile”™ NDATA cgm>

&intro;

<graphic entity=chips>

When processing the reference to intro, the software looks for the files:

$HOME/Z introduction.xml
$SRCDIR/introduction.xml

until it finds one of those files. When processing the graphic element, the software searches in
order for:

$HOME/chipsFile.cgm
$SRCDIR/chipsfile.cgm

Specifying external cross reference behavior

To ensure correct resolution of external cross references in XML, use the External XRef
element. ExternalXRef can only be a child of XMLApplication.

Change file extension to . XML

Insert an External XRefT child in the XMLApplication element for the application you are

developing. In this External XRef element, insert a ChangeReferenceToXML child. Finally,

insert an Enable element into the ChangeReferenceToXML element. It will look like this:
External X-Ref:

Change Reference To .XML: Enable

Structure Application Definition Reference 20

Specifying filename extensions

When a document with an external cross-reference is saved to XML, FrameMaker then changes
the extension in the xref’s srcfi le attribute to . xml and exports the cross-reference as:

<xref srcfile=""filepath/filename.xml#elemID">
Where:
e filepath is the absolute path to the saved source XML file
e Tilename is the name of the saved source XML file
@ elemlD is the ID of the referenced element.

You can save the source file to XML before or after saving the original file to XML. In either case,
the file name specified for the XML document must be identical to the filename of the original
FrameMaker document except for the extension.

If you insert a Disable element instead of an Enable element into
ChangeReferenceToXML, FrameMaker retains the default behavior and does not change the
extension in the srcfi le attribute.

Try alternative extensions

TryAlternativeExtensions specifies an option for importing external cross-references
from XML. It looks like this:

External X-Ref:
Try Alternative Extensions: Enable

If its content is Enable, and FrameMaker cannot open the file specified by the srcfile
attribute, it changes the extension and tries to open the resulting file instead. In particular, if the
original extension is .xml, FrameMaker also tries . fm; if the original extension is . ¥m,
FrameMaker also tries . xml. If the content of TryAlternativeExtensions is Disable,
FrameMaker creates an unresolved cross-reference if the specified file cannot be opened.
Disable is the default.

Specifying filename extensions

The FileExtensionOverride element specifies a filename extension to use when saving a
FrameMaker document as markup. This is particularly useful when saving XHTML documents.
Some web browsers that support XHTML can only read files with a _htm or .html extension.
When you save a document as XML (even using the XHTML doctype) FrameMaker gives the file a
-xml extension by default. You can use this element to specify a . htm extension when saving a
document as XHTML. The Fi leExtensionOverride element looks like this:

File Extension Override: extension

where extension is the string for the filename extension, minus the dot character. You can have
only one FileExtensionOverride element for each XML or SGML structure application.

Structured Application Developer Reference 21

Enabling namespaces

Enabling namespaces

The Namespace element specifies whether the current XML structure application supports
namespaces in XML. This element can contain either an Enable or Disable child element. The
Namespace element looks like this with namespaces enabled:

Namespace: Enable

You can have only one Namespace element for each XML structure application. It can also be a
child of the Defaul ts element. It is not applicable for an SGML application.

Note: XML Schema: You must enable namespaces to allow FrameMaker to validate XML
against a Schema definition upon import and export. Schema allows an XML document to
reference multiple Schema locations in different namespaces. When this is the case, only
the first namespace is used. See Developer Guide, page 199: Schema location for
additional information.

Specifying a read/write rules document

The ReadWriteRules element specifies the read/write rules document associated with the
application. It looks like:

Read/write rules: rules
where rules is the pathname of a FrameMaker read/write rules document.

You can have only one ReadWriteRules element for each application. It can also be a child of
the Defaul ts element.

Specifying a search path for included files in rules
documents

The RulesSearchPaths element is analogous to the EntitySearchPaths element, but it
pertains to additional files you include in a read/write rules document rather than to external
entities referenced within a markup document. Its Path child elements indicate individual
directories. It looks like:

Search paths for included read/write rules files:
1:directory;

N:directory,

Structure Application Definition Reference 22

Specifying a Schema for XML

where each directory; is a device-dependent directory name. The two variables and their
abbreviations that can be used to specify a directory are as follows:

Variable Abbreviation Interpretation
$HOME ~ The user’s home directory
$STRUCTDIR The structure directory in use (for information on what

directory thisis, see Developer Guide, page 131: Location of
structure files)

Each directory; value can be an absolute pathname or relative to $SRULESDIR.

How FrameMaker searches for rules files

Only one RulesSearchPaths element can occur as the child of a single parent
XMLApplication or SGMLApplication element or parent Defaults element. When
searching for a file you include in an read/write rules document, FrameMaker searches the
directories named in the RulesSearchPaths element for the application before it searches
those in the RulesSearchPaths element of the Defaults element.

The software assumes RulesSearchPaths ends in this way:

Search paths for included read/write rules files:

N: SRULESDIR

Thus, if there is no RulesSearchPaths element, the software assumes all files you include in
the read/write rules document are in the same directory as your rules document.

Specifying a Schema for XML

The Schema element, a direct child of XMLApp I i cation, specifies the path and filename for an
XML Schema file that contains element declarations for XML. It look like this:

Schema: schema_path
where schema_path is the pathname of a file containing a Schema declaration file.

In order for a structure application to be selectable in the Use Structured Application list while
importing a document that is associated with a Schema, the Schema’s root element must be
included in the application’s DOCTYPE in the XmIApplication element.

Structured Application Developer Reference 23

Specifying an SGML declaration

Specifying an SGML declaration

The SGMLDeclaration element specifies the location of a file containing a valid SGML
declaration. It is used only for SGML applications and cannot be a child of an XMLApplication
element. The SGMLDeclaration element looks like:

SGML declaration: declaration
where declaration is the pathname of the SGML declaration file.

You can have only one SGMLDeclaration element for each SGML application. It can also be a
child of the Defaults element.

Managing CSS import/export and XSL transformation

The Stylesheets element of an XML structure application tells the software how to treat the
use of CSS stylesheets for a given XML document, and how and whether to perform XSL
transformation upon import or export of XML documents.

An XML application can have only one Sty lesheets element. It can also be a child of the
Defaults element.

How the Stylesheets element affects CSS generation

You can specify whether to use an existing stylesheet, or whether FrameMaker should generate a
new one and use that for the exported XML. You can specify any number of stylesheets, and the
exported XML will include references to each one. The Sty lesheets element also contains
instructions concerning the use of attributes and stylesheet processing instructions. The
Stylesheets element for CSS looks like:

CSS2 Preferences:

Generate CSS2: enable/disable

Add Fm CSS Attribute To XML: enable/disable
Retain Stylesheet Information: enable/disable
XML Stylesheet:

Type: stylesheet_type

URI: path

When you save a document to XML, FrameMaker can either use an existing stylesheet, or generate
a new one from the current EDD. How FrameMaker generates a stylesheet is determined by the
values of the children of the Stylesheets element. For more information about how
FrameMaker converts EDD information into a stylesheet, see Developer Guide, page 283: Saving
EDD Formatting Information as a CSS Stylesheet

GenerateCSS2 Specifies whether FrameMaker will generate a CSS when you save the document
as XML. It can be set to enable or disable. When this is set to enable, FrameMaker generates a CSS.
If a path is provided in Sty lesheetURI, FrameMaker saves the stylesheet to that location, with

Structure Application Definition Reference 24

Managing CSS import/export and XSL transformation

that filename. Otherwise, it saves the stylesheet to the same location as the XML document with
a filename xmldoc.css, where xmldoc is the name of the XML document you're saving.

AddFmCSSAttrToXml Specifies whether FrameMaker will write instances of the fmcssattr
attribute to elements in the XML document. It can be set to enable or disable. An EDD can
include context selectors as criteria to assign format rules. CSS has no equivalent to this. When this
is set to enabl e, FrameMaker uses the fmcssattr attribute in certain elements so the CSS can
achieve the same formatting as the EDD.

RetainStylesheetPls Specifies whether FrameMaker will retain the stylesheet declaration for
import and export of XML. It can be set to enable or disable. When this is set to enable,
FrameMaker does the following:

® On import, it stores the XML document’s stylesheet Pl as a marker in the FrameMaker
document.

*® On export, it writes the content of stylesheet Pl marker in the resulting XML document.

StylesheetType Specifies the type of stylesheet. It contains a string for the stylesheet type.
Currently, you can specify CSS (upper or lower case) or XLS (upper or lower case). If you specify
XLS, FrameMaker will not generate a stylesheet.

StylesheetURI Specifies the URI for the stylesheet. It contains a string; for example,
/$STRUCTDIR/xml/xhtml/app/xhtml .css.

How the Stylesheets element affects CSS import

You can specify whether a CSS stylesheet that is referenced in an XML file is used to update the
formatting of the FrameMaker document. The ProcessStylesheetP1 is an optional child of
the CssPreferences element and looks like this:

CSS2 Preferences:
ProcessStylesheetPl: enable/disable

ProcessStylesheetPI can have one of the following values: Enable or Disable. If the
value of the ProcessStylesheetPl element is Enable, then the CSS file referenced in the
XML file is used while opening the XML file. The default value of the ProcessStylesheetPl
element is Disable.

For more information about how the CSS file mentioned in the XML file is used when an XML file
is opened, see Chapter 5, “CSS to EDD Mapping.”’

How the Stylesheets element affects XSL transformation

If an XML structure application specifies an XSL stylesheet, FrameMaker can apply transformations
defined in that stylesheet when importing an XML document, or when exporting a FrameMaker
document to XML. The XSLTPreferences element in the Sty lesheets element allows you
to specify the XSL file to use for transformation upon import (PreProcessing) and/or export

Structured Application Developer Reference 25

Specifying a FrameMaker template

(PostProcessing). Sty lesheetParameters elements allow you to set parameters of an
XSL stylesheet at run time, before the transformation takes place.

XSLT Preferences:
Process Stylesheet PI: enable/disable
Preprocessing:
Stylesheet: path
Stylesheet Parameters
Name: parameter name
Expression: exp
Postprocessing:
Stylesheet: path
Stylesheet Parameters
Name: parameter name
Expression: exp

ProcessStylesheetPl Specifies whether FrameMaker will use the XSL file mentioned in the
xml-stylesheet Pl of an XML file to transform that file. It can be set to enable or disable.
By default it is set to disable, and FrameMaker does not use the PI. Set to enabl e to use the PI.

PreProcessing Contains a Sty lesheet element that specifies the XSL file to be used for
transformation upon import of an XML document. Transformation occurs before read rules are
applied. The XSLTPreferences element can contain 0 or 1 PreProcessing elements.

PreProcessing Contains a Stylesheet element that specifies the XSL file to be used for
transformation upon export of an XML document. Transformation occurs after write rules are
applied. The XSLTPreferences element can contain 0 or 1 PostProcessing elements.

Stylesheet Specifies the URI for the XSL file. It contains a string; for example,
/$STRUCTDIR/xml/xhtml/app/mystyles.xsl.

StylesheetParameters Contains ParameterName and ParameterExpression pairs. Each
pair specifies the name of a parameter used the XSL stylesheet, and an expression that constrains
the value of that parameter for the subsequent transformation.

For more information on XSL transformation of XML, see Developer Guide, Chapter 29, Additional
XSL Transformation for XML.

Specifying a FrameMaker template

The Template element specifies the location of the FrameMaker template. It looks like:
Template: template
where template is the pathname of a FrameMaker template.

The software uses this template to create new FrameMaker documents from markup documents,
which may be single documents resulting from the Open or Import command or documents in
a book created through the Open command.

Structure Application Definition Reference 26

Specifying a structure APl client

If this element is not present, the software creates new portrait documents as needed. When you
import a markup document into an existing document, the software uses the import template
only to access reference elements that are stored on the template’s reference page. (For
information about reference elements, see Developer Reference, page 332: Translating SDATA
entities as FrameMaker reference elements.)

You can have only one Template element for each application. It can also be a child of the
Defaults element.

Specifying a structure API client

In an application definition, the UseDefaul tAPIClient element tells the software that your
application does not use a special client for markup translation. In the defaults section, the
FrameDefaul tAPIClient element serves the same purpose. The default client is named
FmTranslator.

If you do need a structure API client, use the UseAPIClient element in either context. For
information on creating structure API clients for a structure application, see the online manual
Structure Import/Export APl Programmer’s Guide.

Specifying the character encoding for XML files

The XML specification supports UNICODE characters for document content and markup tokens. In
XML the given encoding is specified in the document prolog. The following example shows a
specification for ShiftJIS character encoding:

<?xml version="1.0" encoding="Shift JIS" ?>

The XML specification states that an XML document must either specify an encoding in the prolog,
or it must be UTF-8 or UTF-16. FrameMaker follows this specification by assuming UTF-8 by default
if there is no encoding specified in the XML file.

If you read an XML file with character encoding that does not match either the declared encoding
or the default encoding (if no encoding is declared), it is likely that the import process will
encounter a character that does not match the encoding FrameMaker uses. In that case, you will
get a parsing error that says the document is not well-formed due to a bad token.

FrameMaker uses the encoding statement in the document prolog to determine which encoding
to use. The statement must specify one of the encodings supported by your specific FrameMaker
installation. FrameMaker ships with support for the following encodings:

Big5 KSC_5601
EUC-JP shift_JIS
EUC-KR US-ASCI I
EUC-TW UTF-16
GB2312 UTF-8

Structured Application Developer Reference 27

Specifying the character encoding for XML files

1S0-8859-1 windows-1252

You can add other encodings to your FrameMaker installation—see Developer Guide, page 103:
Unicode and character encodings.

FrameMaker converts the encoding of the XML document to an internal display encoding. In this
way FrameMaker fully supports Unicode characters for text that is in #PCDATA, RCDATA, and
CDATA. For any #PCDATA character that it cannot interpret, FrameMaker uses a marker of type
UNKNOWNCHAR to represent the character. For unknown CDATA characters, FrameMaker uses XML
character references.

The following sections describe how to control the display encoding that FrameMaker uses, and
how to specify an encoding when you save a document as XML.

Display encoding

On import, FrameMaker converts the XML encoding to a display encoding that is appropriate for
a given language. However, FrameMaker cannot automatically determine which conversion to
make. Although the XML document prolog specifies an encoding, the document may contain
elements or other constructs that override the language implied by that encoding. As a result, you
should specify a display encoding for the structure application. The display encodings you can

specify are:

Display encoding: For this language:
FrameRoman Western European languages
J1SX0208.ShiftJIS Japanese

BIGS Traditional Chinese
GB2312-80.EUC Simplified Chinese
KSC5601-1992 Korean

By default, FrameMaker uses the display encoding that matches the locale of your operating
system. To specify a different display encoding, use the XmIDisplayEncoding element.
XmIDisplayEncoding can contain one child element to specify one of the supported display
encodings.

The display encoding also determines how FrameMaker interprets the characters in markup
tokens such as Gls and attribute names. If FrameMaker encounters such a token with an unknown
character, FrameMaker drops the token. For more information, see Developer Guide, page 101:
Supported characters in element and attribute names.

For example, if your operating system locale is French, German, or English FrameMaker uses
FrameRoman by default. This is true, even if the XML prolog specifies an encoding for a different
language, such as ShiftJIS. To import XML encoded as ShiftJIS, you would use the
XmIDisplayEncoding element to specify JISX0208.ShiftJIS, as follows:

XML Display Encoding: JISX0208.ShiftJIS

Structure Application Definition Reference 28

Exporting XML

When you specify such an encoding, FrameMaker uses that encoding as the default for all the
#PCDATA, RCDATA, and CDATA in the imported XML. Markup tokens that include characters in the
upper range of the display encoding are interpreted correctly. If you have fonts installed for the
display encoding, then the text will appear as intended.

For another example, assume you have a version of US English FrameMaker installed on a
Traditional Chinese operating system. By default, FrameMaker uses Big5 as the display encoding.
It also supports any Big5 characters that are used in Gls and attribute names. If you are importing
an XML document that is in English, you would need to specify FrameRoman as the display
encoding.

Note that the XML standard includes the xml - lang attribute. This attribute can specify a change
of language for an element and its content. If that language is one of those listed in the table of
display encodings, a change made by this attribute take precedence over the setting made via
XmIDisplayEncoding.

Finally, the template for your application must use fonts that support the given language.
Otherwise, the text will appear garbled when imported into the template. You can fix this problem
by specifying different fonts to use in the resulting files.

Encoding of CSS files

FrameMaker supports the following encodings for CSS files: utf-8, utf-16, utf-16LE, and utf-16BE.
FrameMaker detects the encoding of a CSS file using the Byte Order Mark (BOM), and not the
“@charset” statement.

Exporting XML

Your XML structure application can include an XmIExportEncoding element to specify the
encoding to use when you save a document as XML. FrameMaker determines which encoding to
use according to the following rules:

If: FrameMaker uses:

1 The structure application specifies a value for The specified encoding
XmIExportEncoding, and that encoding is
supported

2 1lisnottrue, and the original XML source specified an The encoding that was specified in
encoding, and that encoding is supported the original XML source

3 1and2arenottrue UTF-8

The XmIExportEncoding element contains a string for the name of an encoding. The name
you provide must conform with the IANA naming conventions. The standard installation of
FrameMaker supports the encodings that are listed at the beginning of this discussion (see
page 27).

Structured Application Developer Reference 29

Limiting the length of a log file

For example, to export your document as ISOLatin1, use the XmlExportEncoding element as
follows:

XML Export Encoding: ISO-8859-1

Limiting the length of a log file
The MaxErrorMessages child element of the Defaul ts element allows you to limit the
length of structure error reports. It looks like:
Maximum number of error messages: n

where n is the desired limit. If n is less than 10, the software resets it to 10. This must be the last
child of the parent Defaults element.

By default, FrameMaker does not write more than 150 messages (error messages and warnings)
to a single log file.

Messages pertaining to opening and closing book components are not included in this limit.
Messages generated through your own structure API client are also not counted, although if you
wish, you can count them using your own code.

In documents that generate large numbers of messages, the 151st message is replaced with a
note that additional messages have been suppressed.

Note that processing continues, even though further messages are not reported. This message
limit is reset for every file processed and for each component of a book.

Mapping graphic notations to file types

The Graphics child element of the Defaul ts element allows you to provide mappings from
graphic notation to file type by using the file name extension. In the example below the JPEG
notation is mapped to the . jpg extension.

Graphics
Notation: JPEG Filetypehint:jpg

The Graphics element may contain one or more Mapping elements.

Structure Application Definition Reference 30

Read/Write Rules Summary

This chapter lists the available read/write rules by category and briefly describes the purpose of

each rule. The categories, which are arranged alphabetically, are as follows:

“All Elements” on page 31
“Attributes” on page 32

“Books” on page 33
“Cross-references” on page 33
“Entities” on page 34
“Equations” on page 34
“Footnotes” on page 35
“Graphics” on page 35

“Markers” on page 36
“Processing instructions” on page 37
“Markup documents” on page 37
“Tables” on page 38

“Text” on page 39

“Text insets” on page 39

“Variables” on page 39.

All Elements

To Use this rule Page
Translate a markup element element 54
Discard or unwrap a FrameMaker elementon fm element 75
export
Translate a markup element to a FrameMaker is fm element 108
element
Translate a markup attribute within the attribute 44
context of a single markup element

Structured Application Developer Reference 371

Attributes

To Use this rule Page
Inform FrameMaker not to update a preserve fm element 144
FrameMaker element’s definition when definition
updating an existing EDD
Discard a FrameMaker or markup drop 51
element
Discard the content but not the structureofa drop content 53
FrameMaker or markup element
Discard the structure but not the content ofa unwrap 158
markup or FrameMaker element

Attributes
To Use this rule Page
Translate a markup attribute attribute 44
Discard a FrameMaker attribute fm attribute 74
Translate a markup attribute to a FrameMaker s fm attribute 101
attribute
Translate a markup attribute within the element 54
context of a single markup element
Discard a markup or FrameMaker attribute drop 51
Translate a markup attribute to a particular is fm property 114
FrameMaker property
Translate a value for a markup attributetoa is fm property value 122
FrameMaker property value
Translate a value of a markup notation is fm value 135
attribute or name token group to a value for
a FrameMaker choice attribute
Translate a markup attribute value to a value 161
FrameMaker property or a choice attribute
value
Specify the value to use for a markup implied implied value is 94
attribute when a document instance provides
no value

Read/Write Rules Summary 32

Books

Books
To Use this rule Page
Specify whether to use elements or generate book 91
processing instructions to indicate book
components when reading a markup
document
Specify elements to use to indicate book put element 91
components when reading a markup (described with generate book)
document
Specify the use of processing instructions to use processing instructions 91
indicate book components when reading a (described with generate book)
markup document
Specify whether or not to write processing output book processing 143
instructions that indicate book components instructions
in a markup document
Cross-references
To Use this rule Page
Translate markup elements to FrameMaker is fm cross-reference 107
cross-reference elements element
Translate FrameMaker cross-reference fm property 78
properties when no markup attribute exists
Translate FrameMaker cross-reference value is 78
properties when no markup attribute exists ~ (described with fm property)
Translate a markup attribute to a particular is fm property 114
FrameMaker property
Translate a value for a markup attributetoa is fm property value 122
FrameMaker property value
Translate a value of a markup notation is fm value 135
attribute or name token group to a value for
a FrameMaker choice attribute
Translate a FrameMaker cross-reference fm element unwrap 75,
element to text in markup 158
Structured Application Developer Reference 33

Entities

Entities
To Use this rule Page
Translate a markup entity reference to an entity 59
appropriate FrameMaker representation
Determine the form of names of entities entity name is 61
created for exported graphics
Drop references to external data entities external data entity 69
reference
Translate an entity reference to a FrameMaker is fm variable 137
variable
Translate an entity reference to a single is fm char 105
character
Translate an entity reference toan elementon is fm reference element 125
a reference page
Translate an SDATA entity reference to a text is fm text inset 133
inset
Determine the formatting of a text inset reformat as plain text 150
reformat using target 151
document catalogs
retain source document 152
formatting
Discard external data entity references drop 51
Equations
To Use this rule Page
Translate a markup element to a FrameMaker 1s fm equation element 109
equation element
Specify export information for translating equation 63
FrameMaker equations
Specify the filename used for exporting an export to file 67
equation
Determine the form of names of entities entity name is 61
created for exported equations
Specify the data content notation for an notation is 141
exported equation
Read/Write Rules Summary 34

Footnotes

To Use this rule Page
Determine whether FrameMaker uses the specify size in 153
dpi attribute or the impsize attribute for
equations and also the resolution used
Translate FrameMaker cross-reference fm property 78
properties when no markup attribute exists
Translate FrameMaker cross-reference value is 78
properties when no markup attribute exists (described with fm property)
Translate FrameMaker equation propertiesto iIs fm property 114
markup attributes
Translate a value for a markup attributetoa is fm property value 122
FrameMaker property value
Translate a value of a markup notation is fm value 135
attribute or name token group to a value for
a FrameMaker choice attribute
Translate a markup attribute value to a value 161
FrameMaker property or a choice attribute
value

Footnotes
To Use this rule Page
Translate a markup element to a FrameMaker s fm footnote element 110
footnote element

Graphics
To Use this rule Page
Translate a markup element to a FrameMaker s fm graphic element 111
graphic element
Specify export information for translating anchored frame 41
FrameMaker graphics
Specify export information for translating facet 72
FrameMaker graphics that have a single inset
Specify the filename used for exporting a export to file 67
graphic or a facet of a graphic
Force the software to export graphic files that convert referenced graphics 49
were imported by reference

Structured Application Developer Reference 35

Markers

To Use this rule Page
Determine the form of names of entities entity name is 61
created for exported graphics
Specify the data content notation for an notation 1is 141
exported graphic
Determine whether FrameMaker uses the specify size in 153
dpi attribute or the impsize attribute for
imported graphics objects and also the
resolution used
Translate FrameMaker cross-reference fm property 78
properties when no markup attribute exists
Translate FrameMaker cross-reference value is 78
properties when no markup attribute exists (described with fm property)
Translate FrameMaker graphic properties to is fm property 114
markup attributes
Translate a value for a markup attributetoa iIs fm property value 122
FrameMaker property value
Translate a value of a markup notation is fm value 135
attribute or name token group to a value for
a FrameMaker choice attribute
Translate a markup attribute value to a value 161
FrameMaker property or a choice attribute
value
Markers
To Use this rule Page
Discard FrameMaker non-element markers or fm marker 76
translate them to processing instructions
Translate a markup element to a FrameMaker is fm marker element 112
marker element
Determine whether marker text for marker marker text is 140
elements becomes content or an attribute
value in markup
Drop references to external data entities external data entity 69
reference
Drop unrecognized processing instructions processing instruction 147
Translate FrameMaker non-element markers IS processing instruction 138
to processing instructions
Discard non-element markers drop 51
Read/Write Rules Summary 36

Processing instructions

To Use this rule Page
Translate FrameMaker cross-reference fm property 78
properties when no markup attribute exists
Translate FrameMaker cross-reference value is 78
properties when no markup attribute exists (described with fm property)
Translate FrameMaker marker properties to is fm property 114
markup attributes
Translate a value for a markup attributetoa is fm property value 122
FrameMaker property value
Translate a value of a markup notation is fm value 135
attribute or name token group to a value for
a FrameMaker choice attribute
Translate a markup attribute value to a value 161
FrameMaker property or a choice attribute
value
Processing instructions
To Use this rule Page
Specify the treatment of unrecognized processing instruction 147
processing instructions
Specify the use of processing instructions to use processing instructions 91
indicate book components when reading a (described with generate book)
markup document
Specify whether or not to write processing output book processing 143
instructions that indicate book components instructions
in a markup document
Translate FrameMaker non-element markers ~ fm marker 76
to specific markup, or drop them
Translate FrameMaker non-element markers IS processing instruction 138
to processing instructions
Discard processing instructions drop 51
Markup documents
To Use this rule Page
Specify whether or not to use an external DTD include dtd 926
subset to contain the DTD for a markup
document created by FrameMaker
Structured Application Developer Reference 37

Tables

To Use this rule Page
Specify whether or not to include an SGML include sgml declaration 97
declaration in an SGML document created by
FrameMaker
Specify the system and public identifiers for ~external dtd 70
an external DTD subset
Specify whether to create an entire markup ~ write structured document 163
document or just a markup document write structured document 163
instance instance only

Tables
To Use this rule Page
Translate a markup element to a FrameMaker is fm table element 130
table element
Translate a markup element to a FrameMaker is fm table part element 132
element for a particular table part
When creating a FrameMaker table, inserta insert table part element 98
table part even if that part is empty
Specify that a particular element always start new row 155
indicates a new table row
Indicate the start of a vertical straddle start vertical straddle 156
Indicate the end of a vertical straddle end vertical straddle 57
Specify the ruling style used for all tables table ruling style is 157
Specify the resolution used for column widths proportional width 148
with proportional widths resolution is
Specify that the software write the width of use proportional widths 160
table columns using proportional units
Translate FrameMaker table properties to is fm property 114
markup attributes
Translate a value for a markup attributetoa is fm property value 122
FrameMaker property value
Translate a value of a markup notation is fm value 135
attribute or name token group to a value for
a FrameMaker choice attribute
Translate a attribute’s name token valuetoa value 161
FrameMaker property or choice value

Read/Write Rules Summary 38

Text

Text
To Use this rule Page
Translate an entity reference to a single is fm char 105
character
Determine the treatment of line breaks in line break 138
reading and writing markup documents
Define mappings between characters in the character map 47
markup and FrameMaker character sets
Text insets
To Use this rule Page
Translate an SDATA entity reference to a entity 59
FrameMaker text inset is fm text inset 133
Determine the formatting of a text inset reformat as plain text 150
reformat using target 151
document catalogs
retain source document 152
formatting
Variables
To Use this rule Page
Translate a markup element to a FrameMaker s fm system variable 129
system variable element element
Translate an entity reference to a FrameMaker is fm variable 137
variable
Translate a markup entity reference to a entity 59
FrameMaker variable
Determine treatment of FrameMaker non- fm variable 89
element variables
Translate a FrameMaker system variable fm element unwrap 75,
element to text in markup 158
Discard nonelement variables drop 51
Structured Application Developer Reference 39

Text

Read/Write Rules Summary

40

Read/Write Rules Reference

This chapter provides a reference to all read/write rules, listed in alphabetical order. The entry for
each rule starts with a brief explanation of the purpose of the rule and how to use it. The rule’s
description may include the following sections:

Synopsis and contexts The rule’s syntax and the context in which it can be used. If the rule
occurs as a subrule of another rule, the more general rule is shown. If the rule can be used in
multiple contexts, the synopsis shows each context. Each entry in this section shows a valid rule
that has the current rule either at the highest level or as one of its subrules.

Rule synopses use the following conventions:
® Bold portions and nonitalicized portions of a rule are entered by you as shown.

® |[talicized portions of a rule indicate the rule’s arguments or possible subrules; you enter your
values.

* Brackets [] indicate optional parts of a rule; the entire form within the brackets can be included
or omitted.

Arguments The possible arguments to the rule. If an argument is optional, its default value is
provided. Some rules have subrule as one of their arguments. In these cases, a list of possible
subrules is provided. Some rule arguments allow variables. In these cases, a list of possible
variables is provided.

Details Instructions on how to use the rule and on FrameMaker behavior when the rule is not
supplied.

XSLT interaction Useful information about the relationship between FrameMaker’s Read/Write
rules and equivalent XSLT processing.

Examples Various examples of the rule.
See also Cross-references to other relevant information in the manual.

For information on how to create a Read/Write rules file and on the syntax of rules, see Developer
Guide, Chapter 18, Read/Write Rules and Their Syntax

anchored frame

Use the anchored frame rule and its subrules to define how FrameMaker handles the content
of anchored frames when writing to markup and creating a referenced graphic file. Subrules can
specify base entity name, file name construction, graphic file format, notation type and unit of

Structured Application Developer Reference 41

anchored frame

measure. The rule is used when an anchored frame contains FrameMaker graphics, more than one

imported graphic file, o

r a graphic file that has been copied into the document.

Note: Use the facet

rule for anchored frames that contain single graphic files that have

been imported by reference.

Synopsis and contexts

1. element "gi" {
is fm graphic element ["fmtag'];
writer anchored frame subrule;

- - -}

2. element "gi" {
is fm graphic element ["fmtag'];
writer anchored frame {
subrules;

}
- - -}

Arguments
gi
fmtag

subrules

Details

A markup element’s name (generic identifier).
A FrameMaker element tag.

An anchored frame rule can have one or more of the following
subrules:

entity name is, tells the software how to create the base name for
the entity associated with this element type.

export to Tile tells FrameMaker how to write the file name when it
creates a new graphic file, and optionally the graphic format for the file.

notation is specifies the data content notation of the entity file.
specify size in specifies the units to use when writing the file.

export dpi is tells FrameMaker the dpi setting to use for the
exported graphic file.

The anchored frame rule must be a subrule of a writer rule for a graphic element.

On export, if the anchored frame contains only a single imported graphic file, FrameMaker uses

that graphic file for the

resulting markup graphic element by default. If the anchored frame

contains more than one graphic file, or has been modified using FrameMaker graphics tools, the
software writes out a graphic file to be used. The default format for these graphic files is CGM. The
export format can be changed with the export to file rule. For more information about

Read/Write Rules Reference

42

anchored frame

translating anchored frame contents, see Developer Guide, Chapter 23, Translating Graphics and
Equations
Examples

Assume you use the Graphi c element for all graphic elements. If the graphic contains any single
facet, assume the graphic was imported as an entity and you want the default behavior. However,
if the author used FrameMaker graphic tools to create the objects in the graphic element, you
want the file written in QuickDraw PICT format.

To accomplish all this, use this rule:

element ''graphic" {
is fm graphic element;
writer anchored frame export to file "$(docname).pic"
as "PICT";

}

Assume the FrameMaker document is named mydoc . fm. For the first graphic that is not a single
facet, the software writes out a graphic file named mydocl.pic in the PICT format.

If the export DTD declares an entity attribute to identify the graphic file with the graphic
element, the software generates the following entity declaration:

<IENTITY graphicl SYSTEM "mydocl.pic' NDATA PICT>
The corresponding graphic element in the markup could be:
<graphic entity = "graphicl"/>

If the export DTD includes only a Fi le attribute to associate the graphic file with the graphic
element, the software uses this filename as its value:

<graphic file = "mydocl.pic"/>

See also
Related rules “equation” on page 63
“facet” on page 72
Rules mentioned in “element” on page 54
synopses “is fm equation element” on page 109

“is fm graphic element” on page 111

“writer” on page 164

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

Structured Application Developer Reference 43

attribute

attribute

Use the attribute rule to describe how to process a markup attribute. By default, a markup
attribute translates to a FrameMaker attribute of the same name. Usually, this rule occurs as a
subrule of the element rule, to describe treatment of the attribute attr within the element gi.

Synopsis and contexts

1. [mdv] attribute "attr” {. . .
subrule;

- - -}

2. element "gi™ {. . .
[mdv] attribute "attr" {. . .

subrule;
- - -}
- - -}

Arguments

mdv An optional markup declared value, specifying the type of the markup
attribute. Legal values for an XML application are:
® cdata
* nmtoken

* nmtokens
* entity

*® entities
e id

® idref

® idrefs

* notation
® group.
Legal values for an SGML application are:
* cdata

® name

® names

* nmtoken

* nmtokens

Read/Write Rules Reference 44

attribute

attr The name of a markup attribute.
gi A markup element’s name (generic identifier).

subrule An attribute rule can have one of the following subrules:

drop discards the attribute. If this rule is used, no other attribute
subrules may be used.

or:

number
numbers
nutoken
nutokens
entity
entities
notation
id

idref
idrefs

group.

is fm attribute translates a markup attribute into a FrameMaker
attribute.

or:

is fm property translates a markup attribute to a FrameMaker

property such as the width of columns in a table. This subrule is applicable
only to cross-reference, marker, graphic, equation, table, and table part
elements.

An attribute rule can also have the following subrules:

implied value 1is specifies the value to use for an impliable attribute

for which no value is given in a document instance.

value translates one of the possible values of a markup name token,

group or a notation attribute to a specific token of a FrameMaker choice
attribute.

Details

® |In some cases, the same attribute may occur in several markup elements and may require the

same treatment for most of those occurrences. In these situations, you can use the

Structured Application Developer Reference

45

attribute

attribute rule at the highest level to set the default treatment of the attribute. You can then
override the default in individual element rules.

e |f the drop rule is used no other subrules of attribute may be used. The subrules Iis fm
attribute, and is fm property are mutually exclusive. That is, if you use one of these
rules, you cannot use the other rule.

Examples

® The following rule specifies that the sec attribute of the markup 1ist element is in a name
token group and corresponds to the attribute Security on the corresponding FrameMaker
element:

element "list"”
group attribute "sec"
is fm attribute "Security";

® Assume you have several elements that represent graphic objects. Each of them has an
attribute w, representing the width of the object. Use this rule to make the width be 3 inches
unless otherwise specified for a particular element:

attribute "w" {
is fm property width;
implied value is "3in";

}

* Assume you have an element team with an attribute color. The possible values for color
are r, b, and g. To change the names of these values in the corresponding FrameMaker choice
attribute, use this rule:

element "team" {

attribute "color" {
value "r" is fm value "Red";
value "b" is fm value "Blue™;

value "g" is fm value "Green';

3}
See also
Related rules “fm attribute” on page 74
“is fm attribute” on page 101
Rules mentioned in “element” on page 54
synopses

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

Read/Write Rules Reference 46

character map

character map

Use the character map rule to define mappings between characters in the markup and
FrameMaker character sets. Many characters can be expressed using a string; others require using
the appropriate integer character code.

Note: XML: This read/write rule is primarily for SGML. XML can use UNICODE characters
which makes this rule unnecessary.By default FrameMaker assumes UTF-8 encoding for
XML import and export. If you want to use ISOLatin encoding with an XML document,
then you may need to use this rule to map characters.

Synopsis and contexts

1. character map is cmap; [, - - -, cmap,l;

2. reader character map is cmap; [, - - -, cmap,l;

3. writer character map is cmap; [, - - -, cmap,l;

Arguments

cmap; A mapping between the character set used in the markup document and
the FrameMaker character set. Each cmap; has one of the following
forms:

sgmlch = fmch;
sgmlch = trap;
trap = fmch;

sgmlch is either a 1-character string or a character code representing a
character in the markup character set. sgmlch can be a single character
only if that character has the same character code in both the
FrameMaker and markup character sets. Otherwise, you must use the
integer character code.

fmch is either a 1-character string or a character code representing a
character in the FrameMaker character set.

For information on how to represent character codes and special
characters in strings, see Developer Guide, page 278: Strings and
constants.

Details

* Some characters might be defined in only one of the two character sets. The keyword trap is
provided for this situation. By default, FrameMaker discards trapped characters.

® The character map need not be a one-to-one mapping. If a character in the input document is
mapped to multiple characters in the output character set, FrameMaker uses the output
character from the last mapping to appear in the character map rule.

Structured Application Developer Reference 47

character map

* |f you use the character map rule at the highest level, do not also use it inside either a
reader rule orawriter rule. If you use this rule inside a reader rule orawriter rule and
also use it at the highest level, FrameMaker ignores the highest-level character map rule.
You can only have one occurrence of this rule at the highest level.

Similarly, the character map rule can appear in one reader rule and one writer rule at
most. The software ignores any subsequent uses of the character map rule.

e |f you use the character map rule at the highest level, its behavior is bidirectional. For
example, you could have this rule:

character map is 0x20 = 0x12;

This rule specifies that the I1SO Latin-1 space character (character code 0x20) maps to the
FrameMaker thin space character (character code 0x12). With this rule, FrameMaker translates
a thin space to a standard space when it writes a markup document. However, this rule
translates all spaces in a markup document to thin spaces in a corresponding FrameMaker
document. This is unlikely to be the desired behavior. For this reason, instead you should use
this rule:

reader character map is 0x20 = 0x12;

® By default, FrameMaker assumes that the character set your SGML documents use is ISO
Latin-1. It provides a default mapping between those character sets. For details, see Chapter 11,
“Character Set Mapping.” For information on other character sets you can use, see Chapter 10,
“ISO Public Entities.”

* By default, on export FrameMaker produces a character in the SGML document for most
printing characters in the corresponding FrameMaker document. FrameMaker documents
occasionally include unusual characters that serve no purpose outside FrameMaker. For
example, the codes 0x01 and 0x03 are nonprinting characters that represent information
about the insertion point movement. On export FrameMaker traps such characters, so that they
don’t appear in an exported SGML document.

Similarly, on import FrameMaker produces a character in the FrameMaker document for most
printing characters. It traps all control characters other than a tab or newline character.

* FrameMaker has an 8-bit character set. The SGML declaration can specify any character set that
the SGML parser can handle. Part of the character set description in the SGML declaration is
not human-readable and may not be interpretable automatically, therefore, any differences
between the native FrameMaker character set and the character set in the SGML document
must be specified with the character map rule.

e By default, FrameMaker discards trapped characters. You can provide a structure API client to
change the processing of trapped characters. For information on creating a structure API client,
see the Structure Import/Export APl Programmer’s Guide.

Examples

® Both the FrameMaker and default SGML character sets have a character code for the character
6 (lowercase o with an acute accent). In FrameMaker, the character code is 0x97; in the default

Read/Write Rules Reference 48

convert referenced graphics

SGML character set, the character code is OXF3. If you want to trap the SGML character that
looks like 6, you might try using this rule:

character map is "6" = trap;
Hhowever, because you enter your read/write rules in a FrameMaker document, FrameMaker
interprets that rule as:

character map is 0x97 = trap;

which is not the behavior you want. Instead, you should use this rule:
character map is OxF3 = trap;
*® By default, FrameMaker maps the SGML broken bar character to the FrameMaker solid bar
character |. The rule for doing so could be written in the following equivalent ways:

character map is OxA6 B
character map is OxA6 = 0Ox7C;
character map is "\XxA6" = "\x7C";

*® To trap the SGML broken bar character, use this rule:
character map is OxA6 = trap;

See also
® For information on the FrameMaker character set, see the FrameMaker Character Sets guide.

* For details of the default mapping between the FrameMaker and ISO Latin-1 character sets, see
Chapter 11, “Character Set Mapping.”

convert referenced graphics

Use the convert referenced graphics rule to force the software to write out a graphic
file when exporting a graphic element that uses a referenced graphic. By default, FrameMaker
does not write out graphic files in this case. It is usually more advantageous to simply reference
the same graphic file in both the markup and the FrameMaker document. However, you can use
this rule to convert all such graphic files to a specific format.

Synopsis and contexts

element "gi" { . . .
writer facet "facetname™ convert referenced graphics;

- - -}

Arguments

There are no arguments for this rule

Details

* This rule must be a subrule of a facet rule for a graphic element.

Structured Application Developer Reference 49

do not include dtd

* By default, if a graphic or equation element is imported by reference, the software does not
create a new graphic file for the element when exporting a FrameMaker document. You can
change that behavior using this rule.

Examples

® Assume you want to convert imported graphic files in graphic elements which have not
been edited in the FrameMaker document, to the PICT format. With the following example, the
software would create PICT files for each of these graphic elements:

element *graphic™ {
is fm graphic element;

writer {
facet default {
convert referenced graphics;
export to file "$(entity).pic" as "PICT";
3}

® For graphic elements with a single TIFF facet, the following example converts the graphic files
in the graphic element to PICT:

element *‘graphic” {
is fm graphic element;
writer facet "TIFF"{
convert referenced graphics;
export to fTile "$(entity).pic" as

"PICT";
3}
See also
Related rules “facet” on page 72

“export to file” on page 67

“writer” on page 164

General information Developer Guide, page 367: Translating Graphics and Equations
on this topic

do not include dtd

See “include dtd” on page 96.

Read/Write Rules Reference 50

do not include sgml declaration

do not include sgml declaration

See “include sgml declaration” on page 97.

do not output book processing instructions

drop

See “output book processing instructions” on page 143.

Use the drop rule to indicate information that you want discarded. Examples of information you
might discard include a markup element or attribute that has no counterpart in FrameMaker, or a
FrameMaker non-element marker that has no counterpart in markup.

Synopsis and contexts

1. attribute "attr™ drop;

2. element "'gi™ drop;

3. element “gi™ {. . .

attribute "attr" drop;
- - -}

4_ external data entity reference drop;

5. fm attribute "attr" drop;

6. fm element "fmtag" drop;

7. fm marker type; [, - - -, type,] drop;

8. fm variable drop;

9. processing instruction drop;

Arguments

attr The name of a markup or FrameMaker attribute. Note that m
attribute names are case-sensitive and should appear as in the EDD.
The case of SGML attribute names depends on the setting of NAMECASE
in the SGML.dcl file—For XML attribute names are case sensitive.

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

type; A FrameMaker marker type, such as Index or Type 22.

Structured Application Developer Reference 51

drop

Details

® When FrameMaker encounters something to be discarded, it makes no attempt to insert the
corresponding information into the document it is creating. In the case of a dropped element,
it also discards all descendant elements.

® When creating an EDD from a DTD or schema, or a DTD from an EDD, FrameMaker does not
generate an element definition corresponding to a dropped element. It also removes any
references to the specified element in content rules for other elements unless you've specified
apreserve fm element definition rule for those elements.

® You can write a structure API client or XSLT stylesheet to process dropped information. Your
solution must also handle retrieving discarded information if it is needed when the document
is written back to its original format.

* |f you use the drop rule in a rule, you can use no other subrules of the same rule. For example,
you cannot specify that FrameMaker both drop an attribute and translate it to a FrameMaker
property with the is fm property rule.

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop rule. For
consistency and maintainabilty try to avoid mixing the methods used to drop FrameMaker or XML
elements.

Examples

= A markup element used instead of a processing instruction to indicate that a page or line break
is desired may be discarded when the markup document is read. Text formatting rules in the
EDD can be used to indicate a page break in FrameMaker; there is no need to mark the break
with an element. To drop the markup element break, use this rule:

element "break™ drop;
* By default, FrameMaker stores processing instructions that it does not recognize in non-
element markers. In this way, even though FrameMaker does not perform special processing
on the processing instruction, when you save the FrameMaker document back to markup, the

software writes out the processing instruction so that a different application can use it. If you
don’t need to write out the processing instructions, you could use this rule:

processing instruction drop;
See also

Related rules “drop content” on page 53
“unwrap” on page 158

“preserve fm element definition” on page 144

Read/Write Rules Reference 52

drop content

Rules mentioned in “attribute” on page 44
synopses “element” on page 54
“external data entity reference” on page 69
“fm attribute” on page 74
“fm element” on page 75
“fm marker” on page 76
“fm variable” on page 89

“processing instruction” on page 147

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

drop content

Use thedrop content rule to either create a FrameMaker empty element or a markup element
with no content from occurrences of gi.

Synopsis and contexts

1. element "gi" {
is fm element "fmtag";
reader drop content;

}

2. element "gi" {
is fm element "fm tag";
writer drop content;

}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.
Details

® You can use this rule when you have an element whose content is created in a system-specific
way. If you plan to rely on some system to create the content, the existing content at the time
you import or export a document may not be relevant. For example, you may have a markup
element intended to contain a chapter number. In FrameMaker, you use FrameMaker's
formatting capabilities to have the system maintain the value. When reading in the markup
document, you can drop the current content of the number element.

Structured Application Developer Reference 53

element

® Use drop content inside a reader rule when you translate markup documents to
FrameMaker documents. Use it inside a writer rule when you translate FrameMaker
documents to markup.

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop content
rule. For consistency and maintainabilty try to avoid mixing the methods used to drop content.

Examples

® Assume your DTD has a toc element that represents the table of contents for a markup
document. FrameMaker can automatically generate a table of contents, which means that this
markup element can have its contents dropped upon import.

element ""toc" reader drop content;
® Assume the total element’s content is computed by a structure API client. Outside the
FrameMaker environment you will use a different program to perform the computation.

Consequently, you do not want the value that is current when the document is exported. To
discard the current value, use this rule:

element "total™ writer drop content;

See also

Related rules “drop” on page 51
“unwrap” on page 158

Rules mentioned in “element” on page 54

synopses “reader” on page 149

“writer” on page 164

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes

on this topic Structure Import/Export APl Programmer’s Guide

element

You use the element rule as the primary rule for translating between a markup element and its
corresponding FrameMaker representation.

Synopsis and contexts

1. element "gi" {. . .
subrule;

- - -}

Read/Write Rules Reference 54

element

2. element "gi™ {. . .

transform;
subrule;

- - -}

Arguments
gi

transform

subrule

A markup element’s name (generic identifier).

The element rule can include a single transform subrule is used to map
to a FrameMaker object element.

is Tfm colspec specifies that the element represents a CALS table
colspec. This subrule applies only to CALS tables.

is fm cross-reference element specifies that the element
corresponds to a FrameMaker cross-reference element.

is Tm element translates the element to a particular FrameMaker
element. You use this subrule to rename the element.

is fm equation element specifies that the element corresponds
to a FrameMaker equation element.

is fm footnote element specifies that the element corresponds
to a FrameMaker footnote element.

is fm graphic element specifies that the element corresponds to
a FrameMaker graphic element.

is fm marker element specifies that the element corresponds to a
FrameMaker marker element.

is Tm span spec specifies that the element represents a CALS table
spanspec. This subrule applies only to CALS tables.

is fm system variable element specifies that the element
corresponds to a FrameMaker system variable element.

is fm table element specifies that the element corresponds to a
FrameMaker table element.

is fm table part element specifies that the element corresponds
to a FrameMaker element for a particular table part, such as a table title
or cell.

The subrules of element indicate the treatment of the markup element
and its attributes.

attribute specifies what to do with a markup element’s attributes.

drop discards the element.

Structured Application Developer Reference

55

element

fm attribute specifies what to do with attributes present in the
FrameMaker representation of the element but not in the markup
representation of it.

fm property specifies what to do with FrameMaker properties
associated with the element. This subrule applies only to elements that
correspond to graphic, equation, table, table part, cross-reference, or
marker elements.

marker text 1s specifies whether the text of a FrameMaker marker
element should be element content or an attribute value in markup. This
subrule applies only to marker elements.

drop content specifies that the content but not the structure of an
element should be discarded on import of a markup document.

end vertical straddle indicates that the associated table cell or
row element terminates a vertical table straddle. This subrule applies only
to table cell or row elements.

insert table part element indicates that the software should
insert the specified table part (title, heading or footing), even if the
markup element structure does not contain the corresponding element.
This subrule applies only to table elements.

line break determines whether to interpret line breaks in text
segments in elements in the markup document as forced returns or
spaces within the elements.

start new row indicates that the occurrence of the associated table
cell element always starts a new row in the table. This subrule applies only
to table cell elements.

start vertical straddle indicates that the associated table cell
element starts a vertical table straddle. This subrule applies only to table
cell elements.

unwrap indicates that the content of the element, but not the element
itself, should be included in the translated document.

anchored frame tells FrameMaker what to do with graphic elements
other than those with a single non-internal FrameMaker facet. This
subrule applies only to graphic elements.

drop content specifies that the content but not the structure of an
element should be discarded on export of a FrameMaker document.

writer equation tells FrameMaker what to do with equation
elements. This subrule applies only to equation elements.

Read/Write Rules Reference

56

end vertical straddle

writer facet tells FrameMaker what to do with a graphic element that
has a single non-internal FrameMaker facet. This subrule applies only to
graphic elements.

writer line break limits the length of lines the software generates
in the markup document.

writer notation is specifies a notation name when the element is
a graphic or equation.

writer specify size in specifies the units of measure for the size
of a graphic or equation element.
Details

If you use either the drop or unwrap subrule of an element rule, that subrule must be the
element’s only subrule. For example, you cannot both unwrap a markup element and translate it
to a FrameMaker element.

Examples
* To translate the markup element p to the FrameMaker element Paragraph, use this rule:

element "p" is fm element "Paragraph';

* To translate the markup element tab2 to a FrameMaker table element Two Table with two
columns, use this rule:

element "tab2" {
is fm table element "Two Table";
fm property columns value is "2";

}
See also
Related rules “fm element” on page 75

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

end vertical straddle

Use the end vertical straddle rule inside the element rule for a table row or table cell
to specify that the row (or the row containing the cell) indicates the end of a vertical straddle

Structured Application Developer Reference 57

end vertical straddle

started by some earlier table cell element. The straddle can end either before the current row or
at the current row.
Synopsis and contexts

element "gi" {
is fm table row_or_cell element ["fmtag'];

reader end vertical straddle "name;" [, - - - "name,]
[before this row];
- - -}
Arguments
gi A markup element’s name (generic identifier).
row_or_cell One of the keywords: row or cell.
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

namej A name associated with a table straddle. Each name;j must occur in a
corresponding start vertical straddle rule.

Details

* Your DTD may contain elements that you want to format as tables in FrameMaker even though
the element hierarchy does not match that required by FrameMaker for tables. In such a
situation, the nature of the element hierarchy may indicate where vertical straddles begin and
end.The end vertical straddle rule allows you to specify such elements.

* Use this rule in conjunction with the start vertical straddle rule. That rule specifies
a table cell that indicates the first cell in a vertical straddle. In the start vertical
straddle rule, give a name to the particular straddle started by that element. In the end
vertical straddle rule, you must specify by name which vertical straddles started by
earlier cells are ended by the occurrence of gi.

* |f you use this rule for a table cell element, you can end only one vertical straddle. If you use it
for a table row element, you can end more than one vertical straddle.

* |f you use this element without the before this row keyword phrase, the cell or row (gi)
specified in the rule becomes part of the straddle. If you do include that keyword phrase, then
the straddle ends in the row above the one specified.

Examples

For an example of the use of this rule, see “Creating vertical straddles” on page 360.
See also

Related rules “start vertical straddle” on page 156

Read/Write Rules Reference 58

entity

entity

General information Developer Guide, Chapter 22, Translating Tables
on this topic

You use the entity rule to translate an entity to an appropriate FrameMaker representation.
With this rule, you can translate an entity to a particular character or set of characters, a reference
element, a text inset, or a FrameMaker variable. If you choose to translate the entity to a text inset,
you can also specify how to format that text inset in the resulting document.

Synopsis and contexts

1. entity "ename" {

type_rule;
[format_rule;]
- - -}
2. reader entity "ename" {
type_rule;
[format_rule;]
- - -}
Arguments
ename An entity name.
type_rule One of the following:

is Tm char translates the entity to a particular character in
FrameMaker.

is fm reference element translates the entity to an element
whose content resides on a reference page in the FrameMaker document.

is fm text inset translates the entity to a FrameMaker text inset.

is Tm variable translates the entity to a FrameMaker non-element
variable.

format_rule One of the following subrules can be specified, but only if type_rule s
is fm text inset

reformat as plain text specifies that the software remove the
internal structure and formatting from the text of the text inset and apply
the formatting used at the insertion point.

reformat using target document catalogs specifies that the
software retain the text inset’s internal structure and apply the containing
document’s formats and element format rules to the text. This rule is

Structured Application Developer Reference 59

entity

applied as if the following three options were checked when a file is
imported through the File>ImportFile menu: 1. Reformat Using Target
Document’s catalog; 2. While importing Remove: Manual Page Breaks; and
3. While Importing Remove: Other Format Overrides. For more
information, see the section “Import text” in Chapter 9 of the Using
FrameMaker guide.

retain source document formatting specifies that the
software remove the internal structure of the text inset and retain the
formatting of the text inset as it appeared in the source document.

Details

* |f you use the entity rule at the highest level, then it applies both on import and export. If
you use it inside a reader rule, then FrameMaker translates the entity as specified when
importing a markup document, but does not create an entity reference on export.

® For SGML, while you can use this rule to translate any entity type to a text inset, we recommend
you convert only SDATA entities to text insets. Note that the source file for such a text inset
must be a format FrameMaker can automatically filter. Also, such a text inset cannot use a
markup document as the source file.

® For XML and SGML, FrameMaker imports external text entities as text insets by default. The
source files for these insets can be markup or text files. The software stores entity information
on the Entity Declarations reference page so it can export the text inset as an external text
entity.

® For XML, SDATA and CDATA entities are not allowed.

Examples

* To translate the text entity mn to the FrameMaker variable Manual Name, use this rule:
entity "mn" is fm variable "Manual Name';

Suppose the text entity mn is declared as <IENTITY mn "Developer’s Guide'>, and
the template for the application does not contain a variable named Manual Name. Then the
software will create a FrameMaker variable named Manual Name defined as Developer’s
Guide and replace the reference in the text with the variable text Developer”s Guide.

However, if a FrameMaker variable named Manual Name, defined for example as My
Favorite Manual, currently exists in the template for the application, when importing
SGML, the software will not create a new variable nor modify the existing one. It will replace
the reference in the text with the variable text My Favorite Manual.When importing XML,
it does modify the variable definition.

Read/Write Rules Reference 60

entity name is

*® To have FrameMaker create a text inset for the legalese entity using the text in the file
legal . m and to have the software format that text inset as it appears in legal .doc, use
this rule:

entity “legalese” {
is fm text inset "legal.fm";
retain source document formatting;

}

See also

General information Developer Guide, Chapter 21, Translating Entities and Processing

on this topic Instructions
Developer Guide, Chapter 25, Translating Variables and System Variable
Elements

entity name is

Use the entity name is rule only in an element rule for a graphic or equation element to
provide information the software needs when writing a document containing graphics or
equations to markup. The entity name is rule determines the name FrameMaker gives an
entity reference it generates for the graphic or equation.

Synopsis and contexts

1. element "gi" {
is fm equation element ["fmtag'];
writer equation entity name is "ename';

- - -}

2. element "gi" {
is fm graphic element ["fmtag'];
writer anchored frame entity name is '‘ename';

- - -}

3. element "gi" {
is fm graphic element ["fmtag'];
writer facet "facetname'™ entity name is '‘ename’;

- - -}}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Structured Application Developer Reference 61

entity name is

facetname A facet name. The string for the facetname must exactly match the string
for the facetname in the FrameMaker document. To determine a graphic
file's facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

ename A string representing the base name for an entity name.

Details

By default, when FrameMaker exports an external data entity for a graphic or equation, it uses the
entity name that is stored with the graphic inset. If there is no such entity name, the software
generates a name for the entity based on the element name. You use the entity name is
rule to change this behavior.

The entity name you specify is a base name FrameMaker uses to generate a unique entity name.
When it needs to create a new entity name, FrameMaker adds an integer to the name specified
by ename to create a unique name.

If the keyword Facet is used, the rule applies to a graphic element that contains only a single
facet with the name specified by facetname. This occurs when the graphic element is an
anchored frame containing only a single imported graphic object whose original file was in the
Tacetname graphic format. You can use this rule multiple times if you want FrameMaker to treat
several file formats differently.

Examples

® Assume you have a markup element graphic that corresponds to graphic elements in
FrameMaker. Suppose further that some of the graphic elements in FrameMaker contain
imported-by-copy graphics, or contain modifications to a graphic inset using FrameMaker
graphic tools, or contain just graphic objects drawn using FrameMaker graphic tools. On
export, the software must create new graphic files for these elements and declare entities for
them. By default, FrameMaker would declare entities for these graphic elements based on the
element name "graphic," for example, graphicl, graphic2, and so on. To specify that the
names of the entities associated with such successive graphic elements have the form carl,
car?2, and so on, use this rule:

element '‘graphic" {
is fm graphic element;
writer anchored frame entity name is "car';

}

* Assume with a single facet graphics in the car element sometimes use the IGES file format and
sometimes use the TIFF file format. Also assume that the DTD for the application does not
currently contain entity declarations for the imported-by-reference graphic files. By default, the
software would declare entities for all such graphics based on the element name "car," for

Read/Write Rules Reference 62

equation

example, carl, car2, and so on. If you want to name the entities for the IGES graphics icar
and the entities for the TIFF graphics tcar, then use this rule:

element "car™ {
is fm graphic element;
writer facet "IGES"™ entity name is "icar';
writer facet "TIFF" entity name is 'tcar';

}
See also
Related rules “export to file” on page 67
“notation is” on page 141
“specify size in” on page 153
Rules mentioned in “element” on page 54
synopses “is fm graphic element” on page 111

“is fm equation element” on page 109
“anchored frame” on page 41
“equation” on page 63

“facet” on page 72

“writer” on page 164

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

equation

Use the equation rule only in an element rule for an equation element, to provide information
the software needs when writing to markup a document containing equations. FrameMaker
creates graphic files to represent equations. Use this rule to specify information about the files
FrameMaker creates for instances of the equation element. By default, the software creates a file
in CGM format for each equation, and the filename is based on the element name. Also, by default,
if the equation element is associated with an external data entity, then the entity name is based
on the element name.

Synopsis and contexts

element "gi" {
is fm equation element ["fmtag'];
writer equation subrule;

- - -}

Arguments

Structured Application Developer Reference 63

export dpi is

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

subrule An equation rule can have the following subrules:

entity name 1is tells the software how to create the base name for
the entity associated with this element type.

export to Tile tells the software to write a new file for the
associated external data entity.

notation 1is specifies the data content notation of the entity file.

specify size in specifies the units to use when writing the file.

Examples

Assume you have an element named math with an attribute of type Entity that is mapped to
the fm property entity for this element. If you want to create TIFF files for the equations in a
document named mytest.doc, you might use this rule:

element "math" {
is fm equation element;
writer equation export to file "$(docname).eqgn' as "TIFF";

}

The software will create graphic files for each equation in mytest.doc named mytestl,
mytest?2,..and will declare entities named mathl, math2, ..for each graphic.

See also
Related rules “anchored frame” on page 41
“facet” on page 72
“is fm graphic element” on page 111
Rules mentioned in “element” on page 54
synopses “is fm equation element” on page 109

“writer” on page 164

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

export dpi is

You use the export dpi rule only in an element rule for a graphic or equation element, to
provide information the software needs when writing a document containing graphics or

Read/Write Rules Reference 64

export dpi is

equations to markup. The export dpi rule tells FrameMaker the dpi setting to use for an
exported graphic file.

Synopsis and contexts

1. element "gi" {
is fm equation element ["fmtag'];
writer equation
export dpi is number;

- - -}

2. element "gi" {
is fm graphic element ["fmtag'];
writer anchored frame
export dpi is number;

- - -}

3. element "gi" {
is fm graphic element ["fmtag'];
writer facet "facetname"
export dpi is number;

- - -}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

facetname A facet name. The string for the facetname must exactly match the string
for the facetname in the FrameMaker document. To determine a graphic
file's facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

number The required dpi value.

Details

* |n the absence of this rule, FrameMaker uses the dpi setting associated with the graphic file. If
there is no setting associated with the graphic, the software assumes a value of 300.

* |In Windows, if the initialization file for a graphics filter specifies a dpi setting that setting
overrides this rule whenever that filter is used to export a graphic file.

e |f the keyword Facet is used, the rule applies to a graphic element that contains only a single
facet with the name specified by facetname. This occurs when the graphic element is an

Structured Application Developer Reference 65

export dpi is

anchored frame containing only a single imported graphic object whose original file was in the
facetname graphic format. You can use this rule multiple times if you want FrameMaker to
treat several file formats differently.

Examples

® Assume you export the FrameMaker file Math.doc and have the following rule:
element "eqgn" {
is fm equation element "Equation';
writer equation
export dpi is 72;
}

When FrameMaker finds an instance of the EQuation element, it exports equations as graphic
files at 72 dpi.

® Assume you have the rule:

element "imp"” {
is fm graphic element;
writer facet “TIFF’{
convert referenced graphics;
export dpi is 1200;
export to file "$(entity). tif";
3}

This rule tells FrameMaker for every graphic element with a single TIFF facet, it should write a
new graphic file with a dpi of 1200, using the entity name as part of the graphic file’s filename.

See also

Related rules “convert referenced graphics” on page 49
“entity name is” on page 61
“notation is” on page 141
“specify size in” on page 153

Rules mentioned in “element” on page 54

synopses

“is fm graphic element” on page 111
“is fm equation element” on page 109
“anchored frame” on page 41
“equation” on page 63

“facet” on page 72

“writer” on page 164

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

Read/Write Rules Reference 66

export to file

export to file

You use the export to fileruleonlyinanelement rule for a graphic or equation element,
to provide information the software needs when writing a document containing graphics or
equations to markup. The export to Tile rule tells FrameMaker how to write the file name
when it creates a new graphic file, and optionally the graphic format for the file.

Synopsis and contexts

1. element "gi" {
is fm equation element ["fmtag'];
writer equation
export to file "fname" [as "format'];

- - -}

2. element "gi" {
is fm graphic element ["fmtag'];
writer anchored frame
export to file "fname" [as "format'];

- - -}

3. element "gi" {
is fm graphic element ["fmtag'];
writer facet "facetname”
export to file "fname"™ [as "format'];

- - -}
Arguments
gi
fmtag
facetname
fname
format

A markup element’s name (generic identifier).

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

A facet name. The string for the facetname must exactly match the string
for the facetname in the FrameMaker document. To determine a graphic
file's facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

A base filename which can be either absolute or relative to the output
directory. Note: If path information is included in fname, use double
backslashes to translate path backslashes correctly. The fname argument
can contain the variables $(docname) and $(entity), described
below.

A file data content format code, such as TIFF or PICT. See Developer Guide,
Chapter 23, Translating Graphics and Equations for a complete list of
graphic format codes. format must be one of these code names.

Structured Application Developer Reference

67

export to file

Details

* By default, if a graphic element has a single facet (other than a FrameMaker internal facet) that

was imported by reference, FrameMaker does not create a new graphic file. On export, the
original file will be associated with a markup graphic element via the Fi le attribute, or via the
entity attribute plus a corresponding entity declaration. You can use the convert
referenced graphics rule to force FrameMaker to export such graphic files.

If the keyword Facet is used, the rule applies to a graphic element that contains only a single
facet with the name specified by facetname. This occurs when the graphic element is an
anchored frame containing only a single imported graphic object whose original file was in the
Tacetname graphic format. In this case, the rule is only executed if the convert
referenced graphics rule is also used. Otherwise, it is ignored.You can use this rule
multiple times if you want FrameMaker to treat several file formats differently.

If your rules specify the software will write a graphic file, if a graphic element has a single facet
(other than a FrameMaker internal facet), FrameMaker writes the graphic file in that format by
default. It writes the graphic file for equation elements and all other graphic elements in CGM
format by default.

If you supply a Format argument, you must first make sure that the format is one known to
FrameMaker. For information on which graphic export filters the software provides and on how
to add new ones, see Developer Guide, Chapter 23, Translating Graphics and Equations.

® The fname argument can use these variables:

Variable Meaning

$(entity) The value of the corresponding markup element’s entity attribute. If the

source of the graphic inset wasn't originally an entity, this variable defaults to
a unique name based on the name of the element. You can change this name
using the entity name isrule.

$(docname) The name of the FrameMaker file, excluding any extension or directory

information.

® The fname argument is used as a template for the actual filename FrameMaker generates for

a particular graphic or equation element. FrameMaker takes the filename specified with the
fname argument and may append an integer to the filename to ensure uniqueness of the
filename. For an example of this behavior, see the first example below.

Examples

® Assume you export the FrameMaker file Math . fm and have the following rule:

element "egn" {
is fm equation element "Equation™;
writer equation
export to File "$(docname).egn™ as "PICT";

Read/Write Rules Reference 68

external data entity reference

When FrameMaker finds an instance of the EQuation element, it generates filenames of the
form MathN.eqn until it finds a name that does not collide with an already existing file. For
example, if you already have files in the specified directory named Mathl.eqgn and
Math2.eqgn, the software writes the first equation to a file named Math3.eqgn. FrameMaker
writes the equation file in PICT format, instead of the default CGM format.

® Assume you have the rule:

element "imp" {
is fm graphic element;
writer facet "TIFF" {
convert referenced graphics;
export to file "$(entity).tif";
3}

This rule tells FrameMaker that if it encounters a graphic element with an imported graphic file
with a single TIFF facet, it should write that graphic to the file specified by $(entity).tif.

See also

Related rules “convert referenced graphics” on page 49
“entity name is” on page 61
“notation is” on page 141
“specify size in” on page 153

Rules mentioned in “element” on page 54

synopses “is fm graphic element” on page 111

“is fm equation element” on page 109
“anchored frame” on page 41
“equation” on page 63

“facet” on page 72

“writer” on page 164

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

external data entity reference

Use the external data entity reference rule to drop references to all external data
entities. By default, FrameMaker stores such references as the marker text in non-element Entity
Reference markers.

Synopsis and contexts

external data entity reference drop;

Structured Application Developer Reference 69

external dtd

ArgumentsNone.

Details

* |n markup, the values of general entity name attributes, such as those used with graphics, are

not considered entity references. This rule does not affect how FrameMaker treats general
entity name attributes. In XML such entity name attributes are the only way to reference no
parsed entities such as graphics.

® When you translate a markup document to FrameMaker, when the software encounters an
external data entity reference such as:

&door ;

it stores the reference as the text of a non-element DOC Entity Reference marker by default,
with the following marker text:

door

When you translate a FrameMaker document to markup, it outputs the marker text of non-
element DOC Entity Reference markers as entity references.

Examples
To discard all external data entity references, use this rule:
external data entity reference drop;

See also

Rules mentioned in “drop” on page 51
synopses

General information Developer Guide, Chapter 21, Translating Entities and Processing
on this topic Instructions

external dtd

Use this rule to specify how an exported markup instance refers to the current structure
application’s DTD. By default, FrameMaker uses the name of the file containing the DTD as the
system identifier in the external identifier for the DTD. The external dtd rule provides the

n-

software with a different external identifier. The different forms of the rule allow specification of a

system identifier, public identifier, or both.

Synopsis and contexts
1. writer external dtd is system;
2. writer external dtd is system 'sysid";

3. writer external dtd is public "pubid";

Read/Write Rules Reference

70

external dtd

4_ writer external dtd is public "pubid"™ *sysid";
Arguments

sysid A system identifier.

pubid A public identifier.

Details

Use this rule when you export FrameMaker documents to markup documents To use this rule,
you must have a DTD specified for the current structure application in the structapps.fm
file.

By default, FrameMaker does not reproduce the DTD in the document type declaration subset.
Instead, it uses the filename of the DTD that was specified in the structure application to write
a document type declaration of the form:

<IDOCTYPE doctype SYSTEM "fname'™ [. . .

where doctype is the document type name and Fname is the DTD filename specified in the
structure application. This rule allows you to specify different system and public identifiers.

To output both external DTD and Schema with an XML document, use this rule and specify a
Schema file for output in the XML structure application (in structapps. fm). This rule
modifies how the external DTD is written.

To output Schema only, with no DTD, specify only the Schema file, not the DTD, in
structapps.-fm. You do not need to use this rule.

You cannot use the external dtd rule in the same read/write rules file as the include
dtd rule.

Examples

To specify a local DTD as an external DTD and include the path with the filename, you could
use this rule:

writer
external dtd is
system "/doc/dtds/manuals.dtd";

Note that the Windows platform requires two backslashes in paths in the rules file in order to
translate as one backslash.

To specify and locate the CALS DTD as an external DTD, you could use this rule:

writer external dtd is
public "-//USA-DOD//DTD MIL-M-38784B//EN"
""/doc/dtds/cals.dtd";

Structured Application Developer Reference 71

facet

facet

* To specify just the CALS DTD as an external DTD using a public identifier, you could use this
rule:

writer external dtd is
public “-//USA-DOD//DTD MIL-M-38784B//EN”;

You could then specify the location of the DTD in the structure application using the
EntitiesLocation element. A DTD is an entity in the strictest sense.

See also
Related rules “include dtd” on page 96
“include sgml declaration” on page 97
“write structured document” on page 163
“write structured document instance only” on page 163
Rules mentioned in “writer” on page 164
synopses

Use the Facet rule only in an element rule for a graphic element, to provide information the
software needs when writing a document containing graphics to markup. The facet rule applies
only when a graphic element is an anchored frame containing only a single imported graphic
object whose original file was in the facetname graphic format. Use this rule to specify
information about the graphic file and/or entity declaration for instances of the graphic element.

Synopsis and contexts

element "gi" {
is fm graphic element ["fmtag'];
writer facet ""facetname' subrule;

- - -}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

facetname The name of the particular facet to which this rule applies, or “defaul t”
for all facets.

subrule A Tacet rule can have the following subrules:

convert referenced graphics tells the software to create new
graphic files for imported graphic files with a single facet.

Read/Write Rules Reference 72

facet

entity name 1is tells the software how to create the base name for
the entity associated with this element type.

export to fTile tells the software the name to use for graphics it
creates, and optionally, the graphic format to which it should convert.

notation is specifies the data content notation of the entity.

specify size in specifies the units to use when writing the file.

Details
To specify all facets, use the keyword default for the facetname argument. For example:

element "pict" {
is fm graphic element "Picture’;
writer {
facet default {
convert referenced graphics;
export to file "$(entity).tif" as "TIFF";

j33;

will convert every imported graphic file in the document to a TIFF file, no matter what its original
facet was.

Examples

By default, FrameMaker does not create a new graphic file for a graphic element that originated
as an external entity, and was not modified by the user in any way. Assume you want the software
to generate a graphic file for every imported TIFF file, whether it was modified or not. Then you
could use this rule:

element "pict"” {
is fm graphic element "Picture';
writer {
facet "TIFF" {
convert referenced graphics;
export to File "$(entity).tif" as "TIFF";

1335

See also

Related rules “anchored frame” on page 41
“convert referenced graphics” on page 49

“equation” on page 63

Structured Application Developer Reference 73

fm attribute

Rules mentioned in “element” on page 54
synopses “is fm equation element” on page 109
“is fm graphic element” on page 111

“writer” on page 164

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

fm attribute

You use the fm attribute rule with the “drop” subrule to discard an attribute that you've
defined for a FrameMaker element but that does not exist on the corresponding markup element.
Read/write rules do not support double-byte characters, so you cannot use this rule to drop
attributes with double-byte characters in their names.

Synopsis and contexts
1. fm attribute "attr' drop;

2. element "gi™ {. . .
fm attribute "attr' drop;

- - -}
Arguments
attr A FrameMaker attribute name.
gi A markup element’s name (generic identifier).
Examples

* Assume the element chapter exists in both the markup and FrameMaker representations of
your documents. In FrameMaker, you use the XRefLabel attribute in formatting cross-
references to this element. Since this attribute exists only for formatting purposes, you don't
want it in the markup document. To drop this attribute on export, use this rule:

element "chapter™ {
is fm element;
fm attribute ""XRefLabel™ drop;

}

e |f you use the XReFfLabel attribute on many elements for the same purpose, you can discard
it from all elements on export with this rule:

fm attribute ""XRefLabel' drop;

Read/Write Rules Reference 74

fm element

* |f you want to keep the XRefLabel attribute on the appendix element, but drop it from all
others, use these rules:

element "appendix™ {
is fm element;
attribute "xreflab" is fm attribute "XReflLabel";

}
fm attribute '"XRefLabel" drop;

Note that the order of these rules is not important. If you reversed them, the XRefLabel
attribute would still be correctly interpreted for the appendix element, since that reference
to the attribute is more specific. Note also that case is sensitive for fm attribute names.

See also
Related rules “attribute” on page 44

“is fm attribute” on page 101
Rules mentioned in “element” on page 54
synopses “drop” on page 51

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

fm element

Use the fm element rule to tell FrameMaker what to do on export with FrameMaker elements
that do not correspond to markup elements. Read/write rules do not support double-byte
characters, so you cannot use this rule to process elements with double-byte characters in their
names.

Synopsis and contexts

1. fm element "fmtag"™ drop;

2. fm element "fmtag" unwrap;

Arguments

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

® Use this rule when you export FrameMaker documents to markup documents.

* |f you use this rule, you may want to write a structure API client to handle the export of the
element or to create it on import.

Structured Application Developer Reference 75

fm marker

* The first version of this rule discards the FrameMaker element on export. The second version
inserts the contents of fmtag in the corresponding markup document, but not fmtag itself.

* |f you use this rule to unwrap FrameMaker cross-reference elements or system variable
elements, those elements become text in the resulting markup document.

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop and unwrap
rules. For consistency and maintainabilty try to avoid mixing the methods used to drop or unwrap
FrameMaker elements.

Examples

e |f Chapter Number is a FrameMaker element that you want to discard on export, use this
rule:
fm element "Chapter Number™ drop;

If you use this rule and want to create this element on import, you need to write a structure
API client.

e |[fModification Date is a FrameMaker system variable element that you wish to translate
to text on export to markup, use this rule:

fm element "Modification Date'"™ unwrap;

See also
Related rules “element” on page 54
“is fm element” on page 108
Rules mentioned in “drop” on page 51
synopses “unwrap” on page 158

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

fm marker

On export, you use the fm marker rule to tell FrameMaker what to do with non-element
markers other than markers of the type reserved for storing processing instructions, Pl entities,
and external data entities. (By default, Structure Pl markers are reserved for processing
instructions, and Entity Reference markers are reserved for external data entities.) In the absence
of a rule to the contrary, the software creates processing instructions for non-element markers.

Read/Write Rules Reference 76

fm marker

You can also choose to discard them. Read/write rules do not support double-byte characters, so
you cannot use this rule to process markers with double-byte characters in their names.

Synopsis and contexts

fm marker [“"type;”, . . ., "type,"] drop;

fm marker [“type;”, . . ., "type,'"] is processing instruction;
Arguments
type;j The name of a FrameMaker marker type.
Details

* |f typej is specified, this rule applies only to markers of that type.

If no typej is specified, this rule applies to all non-element markers other than markers of the
reserved type. For information on what the software does with the reserved marker type, see
Developer Guide, Chapter 26, Translating Markers

* You can have multiple occurrences of this rule in a rules file, to determine different treatment
for different FrameMaker markers. You can have only one occurrence of the rule with no
explicitly listed markers. A given marker type can be explicitly mentioned in only one
occurrence of this rule.

® The order of fm marker rules is not important. A more specific occurrence of the rule always
takes precedence over a more general occurrence. For example, the following rules:
fm marker *"Index™ iIs processing instruction;
fm marker drop;
have the same effect, exporting only index markers as processing instructions, if they occur in
this order:
fm marker drop;
fm marker "Index"™ is processing instruction;
XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop rule. For
consistency and maintainabilty try to avoid mixing the methods used to drop FrameMaker non-
element markers.

Examples
@ To discard all non-element markers, use this rule:
fm marker drop;

* To discard non-element conditional text markers but retain all others as processing
instructions, use this rule:

fm marker ""Conditional Text" drop;

Structured Application Developer Reference 77

fm property

* To retain only Index and Hypertext markers as processing instructions and drop all other non-
element markers, use the following set of rules:

fm marker "Index', "Hypertext'™ is processing instruction;
tm marker drop;

See also

Related rules “is fm marker element” on page 112
Rules mentioned in “drop” on page 51

synopses

“is processing instruction” on page 138

General information Developer Guide, Chapter 26, Translating Markers
on this topic

fm property

You use the fm property rule to determine values for properties defined for certain types of
FrameMaker constructs that you do not want to represent as markup attributes.

Synopsis and contexts
1. Cross-reference elements

element gi" {
is fm cross-reference element [“fmtag'];
fm property cross-reference format value is val;

- - -}

1.1 Arguments

val A valid cross-reference format name. These names are case-sensitive and
must appear in the rule the same as in the structure application’s
template.

2. Graphic elements or equation elements

element "gi" {
is fm graphic_or_equation element ["fmtag'];
fm property prop value is "val';

- - -}

MathML equations

element "mathml™ {
is fm mathmlequation element "RuleML";
attribute "sideways'" is fm property composedpi;

- - -}

2.1 Arguments

Read/Write Rules Reference 78

fm property

prop

e alignment Indicates the anchored frame’s

horizontal alignment on the page.

val

- aleft Align left

- acenter Align center

- aright Align right

- ainside Align inside, or closest to the binding margin.

- aoutside Align ouside, or farthest from the binding margin.
angle Indicates an angle of rotation for the anchored frame that
contains the graphic. You must specify exact multiples of 90 degrees.

Otherwise, the value is ignored and the graphic is imported at 0
degrees (default).

val examples:

— 0 No rotation (default)

- 90 Rotate 90 degrees clockwise

- -90 Rotate 90 degrees anticlockwise

- 180 Rotate 180 degrees

- 270 Rotate 270 degrees.

baseline offset Indicates how far from the baseline of a
paragraph to place an anchored frame. Baseline offset is relevant only
for anchored frames whose position attribute is one of inline, sleft,
sright, snear, or sfar.

"

val A number plus a valid unit of measure, e.g. “12pt”, “10mm”. If not
supplied, the value is 0.

cropped Indicates whether a wide graphic should be allowed to
extend past the margins of the text frame. The cropped property is
relevant only for anchored frames whose position attribute is one
of top, below, or bottom.

val
- 0 The graphic may extend past the margins of the text frame.

- 1 (Default) The graphic is cropped at the margins of the text frame.

dpi Indicates how to scale an imported graphic object.

val The value of the dpi attribute must be an integer greater than 0.
If not supplied, the default value is 72.

entity Provides the entity name of the imported graphic. This rule
limits the graphic import to a single, fixed file for all instances of the
element.

Structured Application Developer Reference

79

fm property

val A valid entity name as defined in an entity declaration in the
markup instance.

File Provides the file name of the imported graphic. This rule limits
the graphic import to a single, fixed file for the element.

val A valid file name for an imported graphic.

floating Indicates whether the graphic should be allowed to float
from the paragraph to which it is attached. The floating property is

relevant only for anchored frames whose position property is one
of top, below, or bottom.

val
- O (Default) No float, the graphic must stay with the paragraph.
- 1 Allow float.

height Indicates the height of the anchored frame.

val The value for a single imported graphic object is the sum of the
height of the object plus twice the value of the vertical offset property.
horizontal offset Indicates how far the graphic object is offset
from the right and left edges of the anchored frame.

val A number with a valid unit of measure. If not supplied, the
delault value is 6.0pt.

import angle Indicates an angle of rotation in degrees for the
graphic inside its anchored frame.

val A real number, if not supplied, the default value is 0.0.

import by reference or copy Indicates whether an

imported graphic object remains in a separate file or is copied into the
FrameMaker document on import from markup.

val

- ref (Default) The object is referenced and will not be copied into
the document.

- copy The object will be copied into the document.

import size indicates the size of the imported graphic object by
specifying a width and height.

val Two numbers, separated by a space, with a valid units of
measure. The first measurement is the width and the second is the
height. If no unit of measure is supplied, points are assumed. Example:
“100mm 50mm”.

near-side offset Indicates how far to set a frame from the text
frame to which the frame is anchored. It is relevant only for anchored

Read/Write Rules Reference

80

fm property

frames whose position attribute is one of sleft, sright, snear, or
sfar.

val A number plus a valid unit of measure, e.g. “12pt”, “10mm”. If not
supplied, the value is 0.

position Indicates where on the page to put the anchored frame.
If not supplied, the value is below.

val Possible anchoring position values are as follows:

- inline Atinsertion point.

- top At top of column.

- below Below current line.

- bottom At bottom of column.

- sleft Outside column - left side.

- sright Outside column - right side.

- snear Outside column - right side.

- sfar Outside column - side closer to the page edge.

- sinside Outside column - side closer to the binding.

- soutside Outside column - side farther from the binding.

- tleft Outside text frame - left side.

- tright Outside text frame - right side.

- tnear Outside text frame - side closer to the page edge.

- tfar Outside text frame - side farther from the page edge.

- tinside Outside text frame - side closer to the binding.

- toutside Outside text frame - side closer to the binding.

- runin Run into paragraph.

sideways Indicates that the imported graphic will be flipped left to
right to give a mirror image.

val

- 0 (Default) No flip.

- 1 Flip left/right.

vertical offset Indicates how far the graphic object is offset
from the top and bottom edges of the anchored frame.

val A number plus a valid unit of measure. If not supplied, the
delault value is 6.0pt.

width Indicates the width of the anchored frame.

val The value for a single imported graphic object is the sum of the
width of the object plus twice the value of the horizontal offset

property.

Structured Application Developer Reference

81

fm property

poster The name of the file displayed as the poster for an imported
media file. For SWF files, FrameMaker displays the first frame of the SWF
file as the poster. For a SWF file whose first frame cannot be read, and
for all other media types, FrameMaker displays the relevant
placeholder image.

val A valid path to the location of the poster file.

graphic name A name assigned to the imported object, for easy
identification when linking to it.

val A string representing the graphic name.

activate in PDF A boolean value indicating whether or not the

graphic element is activated when the PDF file containing it, is opened.
The default value is False.

val

— 0 (Default) Not activated in PDF.

- 1 Activated in PDF.

open In pop-up window A boolean value indicating whether or

not the graphic element in a PDF file is displayed in a new frame, when
clicked.

val

- O (Default) Not opened in pop-up window.

- 1 Opened in pop-up window.

Javascript File The JavaScript file that is attached to the
graphic object with a U3D facet.

val A valid path to the location of the JavaScript file.

U3D view The object perspectives available for a 3D object. The
selected view is rendered when the document is saved. All predefined
views of the 3D object are available when the document is converted

to a PDF file. The last view that you selected in the document, before
saving, becomes the default view in the PDF.

val A valid object perspective available for the 3D object.
background color The color of the background for the anchored
frame containing the 3D file.

val A valid color for the background.

render mode The rendering mode for an imported 3D object. The
default value is Solid.

val A valid rendering mode.

Read/Write Rules Reference

82

fm property

From File.
val A valid lighting scheme for casting the 3D object.

lighting The lighting scheme to cast a 3D object using different
light sources. The default lighting scheme for all 3D objects is Lights

e link to text A 3D objectand a destination marker that links the

object to text in the document.

val Number of links from the 3D object and link name - destination

marker pairs.

For example, Iinktotext="2;Ground_Plane=newl ink
aa;Blue_Sphere=newlink cc;"

® compose Dpi The resolution, in Dpi, of the image composed by the

MathML editor for a MathML object, displayed in FrameMaker.
val A valid resolution for the MathML object.

® alt text The text thatis displayed when a graphic element cannot

be rendered.
val A string for the alternate text.

® font size The size of the font used for MathML objects.
val A valid size for the MathML object fonts.

Marker elements

element gi" {
is fm marker element ["fmtag'];
fm property prop value is valj;.

- - -}

3.1 Arguments
prop * marker text Provides a fixed text string for all instances of the
marker.
val Any valid marker text string.
* marker type Identifies the type of marker if not provided by a
markup attribute.

val A valid marker type name.
Table elements

element "gi" {
is fm table element ["fmtag'];
fm property prop value is valj;.

- - -}

4.1 Arguments

Structured Application Developer Reference

83

fm property

prop

e column ruling Specifies whether all columns should have ruling

on their right side. This property does not specify the style or weight
of the ruling. The default ruling is defined by the relevant table format
in the structured template.

val
- 0 Columns have no ruling.

- 1 Columns have ruling.

column widths The width of successive columns in the table. On
import from markup these widths are reapplied regardless of any
changes made by the user.

val Each value is either an absolute width or a width proportional to
the size of the entire table. If proportional widths are used, the pgwide
attribute or page wide property determines the table overall width.
Example for a three column table:

“22mm 40mm 100mm”.

columns The number of columns in the table. This is essential to the
correct rendering of the table if the markup does not state the number
of columns as an attribute value.

val An integer greater than 0.

page wide This is relevant only to tables whose columns use
proportional widths on pages with more than a single column. In this
case, the attribute indicates whether the entire table should be the

width of the column in which it is anchored, or the width of the overall
text frame.

val

- O (Default) The table is the width of the text column.

- 1 The table is the width of the text frame.

row ruling Specifies whether all rows should have ruling on their
bottom side. This property does not specify the style or weight of the

ruling. The default ruling is defined by the relevant table format in the
structured template.

val

- 0 Rows have no ruling.

- 1 Rows have ruling.

table border ruling Specifies whether the table should have
ruling around its outside borders. This property does not specify the

style or weight of the ruling. The default ruling is defined by the
relevant table format in the structured template.

val

Read/Write Rules Reference

84

fm property

- all Rows have no ruling.
- top Rows have ruling.

e table fTormat Specifies the table format for all instances of the
FrameMaker table element.
val A name of a table format that is present in the application’s
structured template.

Table cell elements

element gi" {
is fm table cell element ["fmtag'];
fm property prop value is valj;.

- - -}

5.1 Arguments

prop ® column name Associates a name with a cell in a given column.
val A valid column name as defined in a colspec.
® column number Indicates the column number that the cell will start
in. This rule is used when the column number is not available in the

markup and requires each cell in a given row to have a unique element
name.

val An integer greater than 0.
e column ruling Specifies whether the cell should have ruling on
its right side. This property does not specify the style or weight of the

ruling. The default ruling is defined by the relevant table format in the
structured template.

val
- 0 Cell has no right side ruling.
- 1 Cell has right side ruling.
® end column name Specifies the name of a column that ends a
straddle.
val A valid column name as defined in a colspec.
e horizontal straddle Specifies the number of columns a
straddled cell spans.
val An integer greater than 1 and no greater than the number of

columns.

® more rows Specifies the number of additional rows a straddled cell
spans.

Structured Application Developer Reference 85

fm property

val An integer greater than 1 and no greater than the number of
rows in the table part. The total number of rows the cell occupies is
more rows+l.

rotate Indicates how much to rotate the contents of a cell.

val The CALS model restricts this property to a boolean value, where
1 indicates a rotation of 90 degrees anti-clockwise. FrameMaker
extends the possible values to allow rotations of 0, 90, 180, and 270
degrees.

row ruling Specifies whether the cell should have ruling on its
bottom side. This property does not specify the style or weight of the
ruling. The default ruling is defined by the relevant table format in the
structured template.

val
- 0 Cell has no bottom side ruling.

- 1 Cell has bottom side ruling.

span name Applies a predefined CALS spanspec, starting at this cell.
val A valid spanspec name.

start column name Specifies the name of a column that begins
a horizontal straddle.

val A valid column name as defined in a colspec.

vertical straddle Specifies the number of rows a straddled cell
spans.

val An integer greater than 1 and no greater than the number of
rows in the section (head, body or foot) of the table that contains the
starting cell.

cell angle Specifies the angle of rotation

val The degrees.

use Ffill override Specifies whether a custom fill percentage
overrides the fill percentage specified in the table format.

val

- 0 Cell has no fill override.

- 1 Cell has fill override.

fill override Specifies the fill percentage for the cell.
val A valid fill percentage.

Read/Write Rules Reference

86

fm property

Table row elements

element gi" {
is fm table row element ["fmtag'];
fm property prop value is valj;.

- - -}

6.1 Arguments

prop e maximum height Specifies the maximum height for each row in
the table.

"
2

val A number plus a valid unit of measure, e.g. “24pt”, “15mm”. If not

supplied, the maximum height of the row is not limited.

* minimum height Specifies the minimum height for each row in the
table.
val A number plus a valid unit of measure, e.g. “12pt”, “9mm”. If not
supplied, the minimum height of the row is not limited.

® row type Sets the row type.
val
- heading
- body
- fTooting

* row ruling Specifies whether the cell should have ruling on its
bottom side. This property does not specify the style or weight of the

ruling. The default ruling is defined by the relevant table format in the
structured template.

val
- 0 Cell has no bottom side ruling.

- 1 Cell has bottom side ruling.

7. For CALS table colspecs:

element "gi" {
is fm colspec;
fm property prop value is val;

- - -}

7.1 Arguments

prop cell alignment character

cell alignment offset

cell alignment type

column name

Structured Application Developer Reference 87

fm property

column number

column ruling

column width

row ruling
e vertical alignment

8. element "gi" {
is fm spanspec;
fm property prop value is val;

- - -}

8.1 Arguments

prop e cell alignment character
e cell alignment offset
e cell alignment type
e column ruling
® end column name
e row ruling
® span name
e start column name
e vertical alignment

9. Used at the top level
fm property prop value is “val”;
9.1 Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

* This rule applies only to an element corresponding to a cross-reference, graphic, equation,
marker, table, or table part element.

® Some FrameMaker properties have no natural markup counterparts. If you choose to not
translate such properties as markup attributes, a markup document will not contain
information on appropriate values for these properties. In this situation, you can use the fm
property rule to explicitly set property values when reading a markup document.

Read/Write Rules Reference 88

fm variable

® This rule can be used either at the highest level to set a default or within an element rule to
specify the translation of a property for a particular element.

* |f you use this rule to set a property value explicitly, you cannot also have a markup attribute
that corresponds to this property. For example, the following rule is erroneous:
element "tab2" {
is fm table element;
attribute "w" is fm property column widths;
fm property column widths value is "1in 2in";

}

Examples

* To translate the markup element table to a FrameMaker table with two columns:

element "table" {
is fm table element;
fm property columns value is "2";

b
On import to FrameMaker, the software creates the table as a 2-column table in FrameMaker.

® Assume you have a markup element hal fpage that holds a 4.5 inch by 6.5 inch graphic
object; it does not use an attribute to store the size information. You can translate this to a
FrameMaker graphic as follows:

element "halfpage™ {
is fm graphic element;
fm property width value is "6.5";
fm property height value is "4.5";
}

See also

Related rules “is fm property” on page 114

“is fm property value” on page 122
General information Developer Guide, Chapter 22, Translating Tables
on this topic Developer Guide, Chapter 23, Translating Graphics and Equations
Developer Guide, Chapter 24, Translating Cross-References

Developer Guide, Chapter 26, Translating Markers

fm variable

On export, use the fm variable rule to tell FrameMaker what to do with certain variables. Use
this rule if you do not want them translated to entities. Read/write rules do not support double-

Structured Application Developer Reference 89

fm variable

byte characters, so you cannot use this rule to process variables with double-byte characters in
their names.

Synopsis and contexts

fm variable ["var;”, . . ., "vary"] drop;
Arguments
var; The name of a FrameMaker variable.
Details

® Use this rule when you export FrameMaker documents to markup documents. It applies only
to non-element variables, not to system variable elements.

* If varj is specified, this rule applies only to that variable. If no varj is specified, this rule
applies to all variables.

* |f you use this rule, you may want to write a structure API client, or use an XSLT transform to
handle the export of variables or to create variables on import.

*® You can have multiple occurrences of this rule in a rules document to determine different
treatment for different FrameMaker variables. You can have only one occurrence of the rule
with no explicitly listed variables. A given variable can be explicitly mentioned in only one
occurrence of this rule.

Examples

To translate the FrameMaker variables Licensor and Product as entities and discard all other
variables, use these rules:

entity "licensor" is fm variable;
entity "product” is fm variable;
fm variable drop;

See also
Related rules “is fm system variable element” on page 129

General information Developer Guide, Chapter 21, Translating Entities and Processing
on this topic Instructions

Developer Guide, Chapter 25, Translating Variables and System Variable
Elements

Structure Import/Export APl Programmer’s Guide

Read/Write Rules Reference 90

fm version

fm version

The fm version rule specifies the version of the product being run. It is required and must be
the first rule in all rules documents. If you create your rules document with the New Read/Write
Rules command, this rule automatically appears in the document.

Synopsis and contexts

fm version is "8.0";
ArgumentsNone.

Details

Note that you would use the string **8.0"" in this rule even though the product version may be
an incremental release above 8.0, such as 8.0.1.

See also

General information
on this topic

Developer Guide, Chapter 18, Read/Write Rules and Their Syntax

generate book

Use the generate book subrule of a highest-level reader rule to specify whether FrameMaker
should use elements or processing instructions to indicate where in a markup document to start
a book and its components in the corresponding FrameMaker book.

Synopsis and contexts

1. reader generate book
use processing instructions;
2. reader generate book
{
put element *gi{" in file [“fname,"];
put element “giy™ in File ["fnamey,'];
}
3. reader generate book [for doctype "dt;" [, . - - "dty"1]
{
put element *“gi{" in file [“fname,"];
put element “giy™ in File ["fnamey,'];
}
Arguments

Structured Application Developer Reference 91

generate book

dt; A document type name.
gij A generic identifier.
fnamej A filename for the book component. FrameMaker adds a counter to the

name (before the suffix if there is one) as needed, to generate a unique
filename. You can use the $(bookname) variable to base the
component’s filename on the book filename (excluding any suffix). If you
do not supply this argument, the filename is gi . doc.

Details

By default, when reading a markup document into FrameMaker, the software uses the <?FM
book ?>and <?FM document ?> processing instructions to indicate the start of a book
and of its components. The following rule confirms this default behavior:

reader generate book
use processing instructions;

Your DTD may be defined so that you can use elements to indicate the start of a book and its
components. When you use the second form of the generate book rule, FrameMaker
creates a book for every markup document you translate. When you use the third form of the
generate book rule, it creates a book only for markup documents whose DTD specifies the
document type you've listed in the rule. If you have a markup document with a different
document type, FrameMaker translates that document as a single FrameMaker document, even
if it contains elements referenced in put element rules. For example, assume you have this
rule:

reader generate book for doctype "manual™
put element *‘chapter™ in file;

If you translate a markup document whose highest-level element is report, that document
becomes a single FrameMaker document, even if it contains chapter descendant elements.

When it encounters one of the gi j elements specified in a put element subrule,
FrameMaker starts a new book component. Since the software does not allow an element to
be broken across files, it places the entire g ij element in the same file, even if another element
appears that you've said should start a new file. To illustrate, assume the section element can
occur either within or outside of a chapter element and you have this rule:

reader generate book {
put element "‘chapter™ in F
put element "'section™ in F
}

When FrameMaker encounters a chapter element, it starts a new file. If it encounters a
section element as a child of that chapter element, it does not start a new file. It continues
with the file started by the chapter element. On the other hand, if the software encounters
a section element outside a chapter element it does start a new file for it.

Consider these points when dividing a markup document into book components:

Read/Write Rules Reference 92

generate book

— Every FrameMaker document must contain exactly one highest-level element. That is, there
cannot be two elements in a single file that do not have an ancestor element in the same
file.

— A book element can contain substructure but cannot directly contain text. That is, child
elements that can contain text must occur in separate files.

Assume you have this rule:

reader generate book
put element '‘chapter™ in file;

And you have a markup document with the following element structure:

<manual>
<chapter>
<head>Introduction</head>
</chapter>
<appendix>
<head>The final word</head>
</appendix>
</manual>

When FrameMaker translates this document, it creates a book with manual as the highest-
level element in the book file. When it encounters the chapter element, the software starts
a new file for that element. When it encounters the appendix element, FrameMaker flags an
error, because your rules have not told it what to do with this element. It cannot put the
element in the same file as the preceding chapter element, because that would create two
highest-level elements in the same file. It also cannot put the appendix element in the book
file, because it contains text.

® By default, when it writes a FrameMaker book to markup, the software writes <?FM book ?>
and <?FM document ?> processing instructions for the book and book components. It does
this even if you use the generate book rule to have particular elements specify book
components when reading a markup document. If you do not want FrameMaker to output
these processing instructions, use writer do notoutput book processing
instructions.

Examples

® |f you know that a markup document should always correspond to a FrameMaker book and
that individual files in the book should start when the document reaches a toc or chapter
element, you can use this rule:

reader generate book {

put element "“toc” in file;
put element "‘chapter™ in file "‘ch.doc™;

}

Structured Application Developer Reference 93

implied value is

With this rule, FrameMaker creates a book for each markup document. In a markup document,
FrameMaker starts a new book component when it encounters a toc or chapter element.
For the first toc element, FrameMaker uses the filename toc1l unless a file of that name
already exists in the directory it is using. It continues that book component until it encounters
either another toc element or a chapter element. At that point, it starts a new book
component. It tries to put the first chapter element in a file called chl.doc.

® Assume that a markup document whose highest-level element is either manual or book
should correspond to a FrameMaker book and any other markup document should correspond
to an individual FrameMaker document. Further assume that the books created from manual
and book elements should have new files for each instance of the elements chapter, front,
or toc. To accomplish all this, you can use this rule:

reader generate book for doctype "‘manual™, "book™

{

put element "‘chapter™ in file "‘ch.doc";

put element "front" in file;

put element "toc" in file "$(bookname).toc";
}

With this rule, FrameMaker asks you for a name for the book file if you open a markup
document with manual as its document type. If you specify myfile.book as its name, and
the document contains two chapter elements, one front element, and one toc element,
FrameMaker creates the following files: myfi le.book, chl.doc, ch2.doc, front, and
myfile.toc.

See also
Related rules “output book processing instructions” on page 143

General information Developer Guide, Chapter 28, Processing Multiple Files as Books
on this topic

implied value is

Use the implied value is rule to specify default attribute values in your EDD to correspond
with imported elements that specify no value for the attribute. For example, assume your DTD
declares an element named list, which has an attribute named style defined as
<IATTLIST list style (bul | num) #IMPLIED>.Forimporting the DTD, you can use
this rule to set up a default value in the EDD for the Sty l e attribute of the List element. Then,
if you import a 1St element that has no value for style, this default attribute value will be used

Read/Write Rules Reference 94

implied value is

for formatting purposes. Also, when you export the EDD, the DTD will declare the sty l e attribute
for the list element as #IMPLIED.

Synopsis and contexts

1. attribute "attr” {. . .
implied value is "val';

- - -}

2. element "gi™ {. . .
attribute "attr” {. . .
is "val;

implied value
- - 3. -3
Arguments
attr The name of an impliable attribute in markup.
val A value to use for the attr attribute.
gi A markup element’s name (generic identifier).

Details

® This rule is for importing DTDs and exporting EDDs. In FrameMaker, a default attribute value
can only be specified in the EDD, so this rule has no effect when importing a markup instance
or exporting a FrameMaker document.

* This rule specifically does not supply an attribute value for an element that has no value in the
markup instance. It only sets up a default attribute value in the EDD. This default value can be
used for formatting by attributes. When you export the document, FrameMaker will not add a
value for the attribute to the element’s start tag.

*® The rule can be used in a highest-level attribute rule to specify the value to use for that
attribute in any element. Alternatively, it can be used in an attribute rule within an
element rule to specify the value for that element only.

Examples

Assume you have these declarations for a markup element used for cross-references:

<IELEMENT xref EMPTY>
<IATTLIST xref
id IDREF #IMPLIED
format CDATA #IMPLIED>

Structured Application Developer Reference 95

include dtd

And you have this rule:

element "xref" {
is fm cross-reference element;
attribute "format™ {
is fm property cross-reference format;
implied value is "Page";

3

When FrameMaker encounters an instance of the xref element in a markup document and that
instance does not have a value for the Format attribute, the software use the Page cross-
reference format for the cross-reference in the FrameMaker document.

See also

Related rules “value” on page 161
Rules mentioned in “attribute” on page 44
synopses “element” on page 54

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes

on this topic “Default value” on page 198

include dtd

By default, when creating a markup document, FrameMaker includes in the document type
definition an external identifier that refers to the DTD file. Therefore, it does not include a copy of
actual declarations in the document type declaration subset. The include dtd rule tells
FrameMaker to do so.

Synopsis and contexts

writer [do not] include dtd;
ArgumentsNone.

Details

® You use this rule when you export FrameMaker documents to markup documents. If this rule
is specified, FrameMaker does not generate an external identifier in the DOCTYPE declaration.

* To confirm the default behavior, you can use the opposite rule:
writer do not include dtd;
® The include dtd rule and the external dtd rule are mutually exclusive. That is, you
cannot use both of these rules in the same read/write rules file. (If you try to put both of these

rules in the same file, you will get an alert.) Also, the include dtd rule and the write
structure document instance only rule are mutually exclusive.

Read/Write Rules Reference 96

include dtd

* To write an entire markup document, including a DTD and (for SGML) an SGML declaration with
the document instance, you must use the following rules:

writer {

include sgml declaration;
include dtd;

}

* This rule uses the DTD that is specified in the current structure application. If that DTD includes
references to external files, this rule does not expand those references as it writes out the DTD.
Instead, it writes out the references as they appear in the parent DTD file.

* You can use this rule to translate the EDD from the current document as an a DTD that is
written in the markup document. To do this, use the include dtd rule, but use a structure
application that does not specify a DTD in its definition. Be warned that if your document uses
the CALS table model, the resulting DTD may be incorrect.

* When you use this rule, no Schema information is included in the output. If you use this rule
to output an internal DTD and the XML structure application specifies a Schema file for export,
that file is converted to internal DTD (see Chapter 6, “XML Schema to DTD Mapping”) and that
DTD is saved with the markup document.

If the XML structure application specifies both a Schema file and a DTD, the DTD is output as
the internal DTD and the Schema is dropped.

If the XML structure application specifies neither a Schema file nor a DTD, an internal DTD is
created from the first of these sources that is available:

- an external DTD for the imported document;
— a DTD that is the result of conversion from a Schema in the imported document;

- the element catalog of the template.

Examples

If your document type declarations are in a file called report.dtd, then by default FrameMaker
includes this document type declaration in the document it creates on export:

<IDOCTYPE report SYSTEM "report.dtd” [
. . . more declarations specific to this document instance . . .

1>
If you specify the include dtd rule, then FrameMaker includes this document type declaration
in the document it creates:

<IDOCTYPE report [
. . . declarations specific to this document instance . . .
- . . contents of the file, report.dtd . . .

1>

Structured Application Developer Reference 97

include sgml declaration

See also

Related rules “external dtd” on page 70
“include sgml declaration,” next
“write structured document” on page 163

“write structured document instance only” on page 163

include sgml declaration

By default, FrameMaker does not include an SGML declaration in a generated SGML document.
The sgml declaration rule tells FrameMaker to include one. The SGML declaration is copied
from the file in the associated application subset. To see the default SGML declaration used by
FrameMaker, see Chapter 9, “SGML Declaration.”

Note: XML: This read/write rule is for SGML-only.

Synopsis and contexts

writer [do not] include sgml declaration;
ArgumentsNone.

Details

* To confirm the default behavior, you can use the opposite rule:
writer do not include sgml declaration;
* You cannot use the include sgml declaration rule in the same read/write rules file as
thewrite sgml document instance only rule. Note that using both rules in the

same rules file does not give an error. Also, “write sgm| document instance only” takes priority,
regardless of order.

*® To write an entire SGML document, including an SGML DTD and SGML declaration with the
document instance, you must use the following rules:

writer {
include sgml declaration;
include dtd;

}

See also

Related rules “external dtd” on page 70
“include dtd,” (the previous section)
“write structured document” on page 163

“write structured document instance only” on page 163

Read/Write Rules Reference 98

insert table part element

insert table part element

You use the insert table part element rule when creating a FrameMaker table element
on import of a markup document. This rule tells FrameMaker to create a table part of the
designated type, even if the markup document does not contain content for that table part.

Synopsis and contexts

element "gi" {. . .
is fm table element ["fmtag,"];
reader insert table part element [“fmtag,'];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag, A FrameMaker element tag for a table element. These names are case-
sensitive and must appear in the rule the same as in the EDD.
part One of the keywords: title, heading, or footing.
fmtag, A FrameMaker element tag for a table part element.

Details

By default, as the last step in creating a table element when reading a markup document,
FrameMaker discards parts of the table that have no content, even if the general rule for the
element requires that table part. (Your EDD may supply the content, for example, by using format
rules that specify a prefix for the element.) If you do not want FrameMaker to remove the table
part element with no content, OR if you want FrameMaker to create a table part element for you
when the markup instance does not contain this element, use the insert table part
element rule.

Examples

Assume you have a markup element statetab, which you represent as a 3-column table in
FrameMaker, with the same table headings everywhere it occurs. You use formatting rules in the
EDD to specify the table headings. In this situation, the markup document does not include
information that corresponds to the table headings, so you want the software to add the table
heading element when reading such a markup instance and drop it when exporting a
FrameMaker document to markup. Suppose your DTD has these declarations:

<IELEMENT statetab ((state, pop, income)+)>
<IELEMENT state (#PCDATA)>

<IELEMENT pop (#PCDATA)>

<IELEMENT income (#PCDATA)>

Structured Application Developer Reference 99

insert table part element

and your EDD has these FrameMaker element definitions:

Element (Table): State Table
General rule: State Head, State Body
Text format rules
1. In all contexts.
Use paragraph format: TableCell

Element (Table Heading): State Head
General rule: State Head Row
Text format rules
1. In all contexts.
Default font properties
Weight: Bold

Element (Table Row): State Head Row
General rule: Label

Element (Table Cell): Label
General rule: <EMPTY>
Text format rules
1. If context is: {first}
Numbering properties
Autonumber format: State
Else if context is: {last}
Numbering properties
Autonumber format: Household Income
Else
Numbering properties
Autonumber format: Population

Element (Table Body): State Body
General rule: State Row+

Element (Table Row): State Row
General rule: State, Income, Population

Element (Table Cell): State
General rule: <TEXT>

Element (Table Cell): Income
General rule: <TEXT>

Element (Table Cell): Population
General rule: <TEXT>

Note that the Label element provides the text for the column headings.

Read/Write Rules Reference 100

insert table part element

You could use these rules:

element *statetab™ {
is fm table element "'State Table™;
fm property columns value is "3";
reader insert table heading element "State Head';

}

element *"state" {
is fm table cell element;
fm property column number value is "1";
fm property row type value is "Body';

}

element

income" is fm table cell element;
element "pop™ is fm table cell element "Population™;

fm element "State Head" drop;
fm element "State Body' unwrap;
fm element "State Row" unwrap;

To convert the following instance to the desired FrameMaker document:

<statetab>
<state>Georgia</state>
<pop>15,000,000</pop>
<income>25,000</income>
<state>Mississippi</state>
<pop>8,000,000</pop>
<income>18,000</income>

</statetab>

® The first rule identifies statetab as a 3-column table element and tells it to always create a
heading element for an occurrence of this statetab.

* The second rule identifies state as a table cell that must always occur in the first column of
a body row. This ensures that FrameMaker starts a new table row whenever it encounters a
state element.

® The other element rules identify other elements used as table cells. The fm element drop
rule causes the software to drop the element that was created by FrameMaker per the insert
element rule so that it does not appear in the markup. Note also that it is necessary for the
software to have a tablerow element and a tablebody element in its table structure.
However, these do not appear in the markup document. FrameMaker creates such necessary
elements by default. Since they do not correspond to markup elements, they are unwrapped
on export to markup—not dropped, because that would lose the contents of the entire table.

Structured Application Developer Reference 101

is fm attribute

See also

General information Developer Guide, Chapter 22, Translating Tables
on this topic

is fm attribute

Use the Is fm attribute rule to specify that a markup attribute translates to a FrameMaker
attribute. The optional parts of this rule allow you to have the software make several changes to
the attribute during translation. Read/write rules do not support double-byte characters, so you
cannot use this rule to process attributes with double-byte characters in their names.

Synopsis and contexts

1. [mdv] attribute "attr" {. . .
is fm [read-only] [fmtype] attribute
[*fmattr"] [range from low to high];

- - -}

2. element "gi™ {. . .
[mdv] attribute "attr"
is fm [read-only] [fmtype] attribute
["fmattr'"] [range from low to high];

- - -}
Arguments
mdv An optional markup declared value, specifying the type of the markup
attribute. Legal values for an XML application are:
® cdata
e nmtoken

* nmtokens
® entity
® entities
* id

* idref

® idrefs

® notation
® group.

Legal values for an SGML application are:

Read/Write Rules Reference 102

is fm attribute

attr

fmtype

fmattr
low
high

Details

® You can use the is

e cdata

® name

® names

* nmtoken
* nmtokens
* number

® numbers
* nutoken
* nutokens
* entity

*® entities
® notation
e id

® idref

® idrefs

® group.

A markup attribute name.

A FrameMaker attribute type. Legal values are: String, Strings, Integer,
Integers, Real, Reals, UniquelD, IDReference, IDReferences, and Choice.

A FrameMaker attribute name.
A number, indicating the low end of a numeric range.

A number, indicating the high end of a numeric range.

fm attribute rule in a highest-level attribute rule to specify the

translation of that attribute in all elements for which it is defined. Or you can use it in an
attribute subrule in an element rule to specify the translation of the attribute in only

that element.

*® You may want some markup attributes to become FrameMaker properties. If so, you cannot
also import them as FrameMaker attributes. For information on the defined FrameMaker
properties, see “is fm property” on page 114.

* To specify only that the attribute is an attribute in both representations, use this version:
attribute "attr is fm attribute;

Structured Application Developer Reference

103

is fm attribute

® To also rename it during translation, use this version:
attribute "attr" is fm attribute "fmattr";
* To specify that the FrameMaker attribute is read-only—that is, that an end user cannot change
the attribute’s value—use this version:
attribute "attr" is fm read-only attribute;
* To specify that an attribute that takes numeric values can have values only in a particular range,
use this version:
attribute "attr" is fm attribute range from low to high;
* To specify that a markup attribute with a particular declared value translates to a FrameMaker
attribute of a type other than the default translation, use this version:
mdv attribute "attr" is fm fmtype attribute;
< Note that you can use more than one of the optional pieces of the is fm attribute rule

at the same time. For example, you can both rename an attribute and state that it is read-only
by using this version:

attribute "attr" is fm read-only attribute "fmattr';

Examples
* To translate the markup sec attribute to the FrameMaker Secur i tyRanking attribute in all
elements in which it occurs, use this rule:
attribute "'sec”™ is fm attribute "SecurityRanking";
* To translate the markup sec attribute to the FrameMaker Secur ityRanking attribute in

most elements in which it occurs, but to change it to the Section attribute in the BookPart
element, use these rules:

element "BookPart"
attribute "sec"™ is fm attribute "Section;
attribute "sec" is fm attribute "'SecurityRanking";

® Assume you have a markup attribute named perc with a declared value of CDATA, and
assume you know that this attribute always has values that are integers in the range from 0 to
100. You can translate the perc attribute to the Percentage attribute with this rule:

cdata attribute *perc”
is fm integer attribute "Percentage'”™ range from O to 100;

Read/Write Rules Reference 104

is fm char

@ Assume that a markup element has an attribute with declared value name and that the
attribute has a defined set of allowable values. You can translate that attribute and some of its
possible values with the following rule:

element "fish” {
name attribute "loc" {
is fm choice attribute "CommonLocation™;
value "micro"” is fm value "Micronesia';
value "galap" is fm value "Galapagos Islands";
value "png"” is fm value "Papua New Guinea';

3}
See also
Related rules “fm attribute” on page 74
Rules mentioned in “attribute” on page 44
Synopses “element” on page 54

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

is fm char

For SGML, use the is fm char rule to translate an SGML SDATA entity to a single character
in FrameMaker. For XML, use this rule to translate an internal entity to a single character in
FrameMaker.

Synopsis and contexts

1. entity "ename'™ is fm char ch [in "fmchartag];

2. reader entity "ename' is fm char ch [in "fmchartag];

Arguments

ename An entity name.

ch A one-character string or a numeric character code (specified using the
syntax for an octal, hexadecimal, or decimal number described in
Developer Guide, page 278: Strings and constants). Note that if the
desired character is a digit or a white-space character, you must enter it
as a numeric character code.

fmchartag A FrameMaker character format tag.

Note that the character format must use a non-standard font family such
as Symbol or Zapf Dingbats for this argument to take effect.

Structured Application Developer Reference 105

is fm char

Details

® For SGML, instead of using this rule to translate an SDATA entity, you can use a parameter
literal of a particular form. For information on how to do so, see Developer Guide, page 328:
Translating SDATA entities as special characters in FrameMaker.

® For XML, SDATA entities are not allowed. This rule translates internal entities to FrameMaker
characters, and it translates FrameMaker to internal entities.

® You can use the is fm char rule within an entity rule at the highest level to have the
translation occur in both directions. Or you can put the entity rule inside a reader rule to
have the translation occur only when reading a markup document into FrameMaker. For
example, your SGML document might use a period entity for entering some instances of the
period character in your SGML document. If you use this rule:

entity “period” is fm char ".";

then the entity references for period in the instance are translated correctly to the period
character in FrameMaker. But on export, all periods in the document become references to the
period entity (which is not likely what you had in mind). To have the period entities read
correctly when importing an instance, but have periods remain the period character on export,
use this version of the rule:

reader
entity "period" is fm char ".";

* Without the in clause, the software translates the entity using the default character format of
the enclosing paragraph element. Frequently, however, special characters require a font
change. In these cases, you use the in clause.

® For SGML, DTDs frequently use the entity sets defined in Annex D of the SGML Standard, often
called ISO public entity sets, for providing commonly used special characters. FrameMaker
includes copies of these entity sets and provides rules to handle them for your application. For
information on how FrameMaker supports ISO public entities, see Chapter 10, “ISO Public
Entities.”

Examples
* To translate the SDATA entity sum as the mathematical summation sign in the Symbol font (X
), you could use either of these rules in your rules document:
entity "sum" is fm char "S" in "Symbol";
entity "sum" is fm char "\x53" in "Symbol";
entity “sum™ is fm char 0x53 in *"Symbol™;

If FrameMaker encounters a reference to the summation entity when importing a markup
document, it replaces the reference with X (assuming your FrameMaker template defines the
Symbol character format appropriately and the entity is declared in the DTD). If the software
encounters ¥ when exporting an document, it generates a reference to the summation entity

Read/Write Rules Reference 106

is fm cross-reference element

(assuming the Symbol character format is defined appropriately and applied to the character,
and that the DTD for your application has an entity declaration for “sum”).

* To translate both the thin and en internal entity references in an XML instance to en spaces
in FrameMaker and to write all en spaces as an en entity reference, use these rules:

entity “en" is fm char 0x13;
reader entity "thin" is fm char 0x13;

See also

Rules mentioned in “entity” on page 59
synopses

General information Developer Guide, Chapter 21, Translating Entities and Processing
on this topic Instructions

is fm cross-reference element

Usethe is fm cross-reference element rule to identify a markup element that
translates to a cross-reference element in FrameMaker. You can choose either to have the same
name in both representations or to change the name during translation. The markup element
should have an attribute of type IDREF and declared content of EMPTY. Read/write rules do not
support double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
is fm cross-reference element [“fmtag'];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use the is fm cross-reference element rule, the other subrules of the element
rule that you can use for that markup element are as follows:

® attribute specifies what to do with a markup element’s attributes.

e fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

* fm property specifies what to do with FrameMaker properties associated with the element.

Structured Application Developer Reference 107

is fm element

® reader drop content specifies that the content but not the structure of an element
should be discarded on import of a markup document.
Examples

* To have the markup element xref become the FrameMaker cross-reference element Xref,
use this rule:

element "xref" is fm cross-reference element;
® To have it become the FrameMaker cross-reference element CrossRefT, use this rule:
element "xref" is fm cross-reference element ""CrossRef';

See also

Rules mentioned in “element” on page 54
synopses

General information Developer Guide, Chapter 24, Translating Cross-References
on this topic

is fm element

If you do not specify a value for fmtag, the is fm element rule specifies only that a markup
element remains an element in FrameMaker. This is the default behavior. With a value for fmtag,
this rule changes the element name when it is translated between markup and FrameMaker.

Synopsis and contexts

element "gi" {. . .
is fm element ["fmtag'];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use the Is fm element rule, the other subrules of the element rule that you can use
for that markup element are as follows:

e attribute specifies what to do with a markup element’s attributes.

e fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

e Tm property specifies what to do with FrameMaker properties associated with the element.

Read/Write Rules Reference 108

is fm equation element

® reader drop content specifies that the content but not the structure of an element
should be discarded on import of a markup document.

e writer drop content specifies that the content but not the structure of an element
should be discarded on export of a FrameMaker document.

XSLT interaction

XSLT allows precise, context based control over element renaming. For consistency and

maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

To translate the markup element par to the FrameMaker element Paragraph, use this rule:

element "par™ is fm element "‘Paragraph™;
See also

Rules mentioned in “element” on page 54
synopses

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

is fm equation element

Usethe Is fm equation element rule to identify a markup element that translates to an
equation element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
is fm equation element ["fmtag"];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup
element are as follows:

Structured Application Developer Reference 109

is fm footnote element

e attribute specifies what to do with a markup element’s attributes.

e fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

* fm property specifies what to do with FrameMaker properties associated with the element.

* writer equation tells FrameMaker what to do with equation elements.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker equation elements. However,
XSLT allows precise, context based control over element renaming. For consistency and
maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples
*® To have FrameMaker equation element EQn become the markup element eqn, use this rule:
element “egn™ is fm equation element;

* To have FrameMaker equation element Equation become the markup element eqn, use this
rule:

element "egn™ is fm equation element "Equation';

See also

Related rules “is fm graphic element” on page 111
Rules mentioned in “element” on page 54

synopses

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

is fm footnote element

Usethe is fm footnote element rule to identify a markup element that translates to a
footnote element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
is fm footnote element ["fmtag'];

- - -}

Arguments

Read/Write Rules Reference 110

is fm graphic element

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the e lement rule that you can use for the same markup
element are as follows:

* attribute specifies what to do with a markup element’s attributes.

e fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker footnote elements. However,
XSLT allows precise, context based control over element renaming. For consistency and
maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

* To translate the markup element fn to the Fn footnote element in FrameMaker, use this rule:
element "fn" is fm footnote element;

® To translate it to the Footnote footnote element, use this rule:
element "fn" is fm footnote element "Footnote';

See also

Rules mentioned in “element” on page 54
synopses

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

is fm graphic element

Usethe is fm graphic element rule to identify a markup element that translates to a
graphic element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support

Structured Application Developer Reference 111

is fm graphic element

double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.
Synopsis and contexts

element "gi" {. . .
is fm graphic element [“fmtag'];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup
element are as follows:

* attribute specifies what to do with a markup element’s attributes.

e fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

* fm property specifies what to do with FrameMaker properties associated with the element.

e writer anchored frame tells FrameMaker what to do with graphic elements other than
those with a single non-internal FrameMaker facet.

e writer facet tells FrameMaker what to do with an imported graphic element that has a
single non-internal FrameMaker facet.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker graphic elements. However,
XSLT allows precise, context based control over element renaming. For consistency and
maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

* To translate the markup element pict to the Pict graphic element in FrameMaker, use this
rule:

element "pict"” is fm graphic element;

* To translate it to the Picture graphic element, use this rule:

element "pict” is fm graphic element "Picture’;
See also
Related rules “is fm equation element” on page 109

Read/Write Rules Reference 112

is fm marker element

Rules mentioned in “element” on page 54
synopses

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

is fm marker element

Use the is fm marker element rule to identify a markup element that translates to a
marker element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi™ {. . .
is fm marker element ["fmtag'];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the e lement rule that you can use for the same markup
element are as follows:

e attribute specifies what to do with a markup element’s attributes.

e fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

* fm property specifies what to do with FrameMaker properties associated with the element.

* marker text is specifies whether the text of a FrameMaker marker element should be
element content or an attribute value in markup.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker marker elements. However,
XSLT allows precise, context based control over element renaming. For consistency and
maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Structured Application Developer Reference 113

is fm property

Examples

*® To translate the markup element m to the M marker element in FrameMaker, use this rule:

element "m" is fm marker element;

@ To translate it to the Marker marker element, use this rule:

element "m" is fm marker element "Marker';

See also

Related rules

Rules mentioned in

synopses

General information
on this topic

is fm property

“marker text is” on page 140

“fm marker” on page 76

“element” on page 54

Developer Guide, Chapter 26, Translating Markers

Use the is fm property rule to translate a markup attribute to a FrameMaker property. This
rule can apply in a highest-level attribute rule to set a default. Or it can apply within an
element rule for a table, table part, marker, cross-reference, graphic, or equation element, to set
the property only for that element. Read/write rules do not support double-byte characters, so
you cannot use this rule to process attributes with double-byte characters in their names.

Synopsis and contexts

1. attribute “attr™ {. . .
is fm property prop;
- - -}

2. element “gi™ {. . .
attribute "attr" {. . .
is fm property prop;

R S

Arguments

attr
gi
prop

The name of a markup attribute.
A markup element’s name (generic identifier).

A FrameMaker property. Possible properties are:

® For cross-reference elements:
- cross-reference format

Read/Write Rules Reference

114

is fm property

cross-reference id

For graphic and equation elements:

alignment Indicates the anchored frame’s horizontal alignment
on the page.

angle Indicates an angle of rotation for the anchored frame that
contains the graphic. The markup must specify exact multiples of 90
degrees. Otherwise, the value is ignored and the graphic is imported
at 0 degrees which is the default. Examples:

— 0 No rotation (default).

- 90 Rotate 90 degrees clockwise.

- -90 Rotate 90 degrees anticlockwise.

- 180 Rotate 180 degrees.

— 270 Rotate 270 degrees.

baseline offset Indicates how far from the baseline of a
paragraph to place an anchored frame. Baseline offset is relevant

only for anchored frames whose position attribute is one of inline,
sleft, sright, snear, or sfar.

cropped Indicates whether a wide graphic should be allowed to
extend past the margins of the text frame. The cropped property
is relevant only for anchored frames whose position attribute is
one of top, below, or bottom.

dpi Indicates how to scale an imported graphic object.
entity Provides the entity name of the imported graphic.
file Provides the file name of the imported graphic.

floating Indicates whether the graphic should be allowed to
float from the paragraph to which it is attached. The floating
property is relevant only for anchored frames whose position
property is one of top, below, or bottom.

height Indicates the height of the anchored frame. The height of
a single imported graphic object is the sum of the height of the
object plus twice the value of the vertical offset property.

horizontal offset Indicates how far the graphic object is
offset from the right and left edges of the anchored frame.
import angle Indicates an angle of rotation in degrees for the
graphic inside its anchored frame.

import by reference or copy Indicates whether an
imported graphic object remains in a separate file or is copied into
the FrameMaker document on import from markup.

import size indicates the size of the imported graphic object
by specifying a width and height.

Structured Application Developer Reference

115

is fm property

near-side offset

anchored frames whose position attribute is one of sleft,
sright, snear, or sfar.

val

not supplied, the value is 0.

position Indicates where on the page to put the anchored
frame. If not supplied, the value is below. Possible anchoring
position values are as follows:

inline Atinsertion point.

top At top of column.

below Below current line.

bottom At bottom of column.

sleft Outside column - left side.

sright Outside column - right side.

snear Outside column - right side.

sfar Outside column - side closer to the page edge.
sinside Outside column - side closer to the binding.

soutside Outside column - side farther from the binding.

tleft Outside text frame - left side.
tright Outside text frame - right side.
tnear Outside text frame - side closer to the page edge.

tfar Outside text frame - side farther from the page edge.

tinside Outside text frame - side closer to the binding.
toutside Outside text frame - side closer to the binding.
runin Run into paragraph.

Indicates how far to set a frame from the
text frame to which the frame is anchored. It is relevant only for

A number plus a valid unit of measure, e.g. “12pt’, “10mm”. If

sideways Indicates that the imported graphic will be flipped left
to right to give a mirror image.

vertical offset Indicates how far the graphic object is offset
from the top and bottom edges of the anchored frame.

width

Indicates the width of the anchored frame. The value for a

single imported graphic object is the sum of the width of the object
plus twice the value of the horizontal offset property.

® For marker elements:

- marker text Provides the text content of the marker.
- marker type Identifies the type of marker.

® For table elements:

Read/Write Rules Reference

116

is fm property

column ruling Specifies whether all columns should have
ruling on their right side. This property does not specify the style or
weight of the ruling. The default ruling is defined by the relevant
table format in the structured template.

column widths The width of successive columns in the table.
On import from markup these widths are reapplied regardless of
any changes made by the user. If proportional widths are used, the
pgwide attribute or page wide property determines the table
overall width.

columns The number of columns in the table. This is essential for
the correct rendering of the table.

page wide This is relevant only to tables whose columns use
proportional widths on pages with more than a single column. In
this case, the attribute indicates whether the entire table should be
the width of the column in which it is anchored, or the width of the
overall text frame.

row ruling Specifies whether all rows should have ruling on
their bottom side. This property does not specify the style or weight
of the ruling. The default ruling is defined by the relevant table
format in the structured template.

Expected markup attribute value:
- 0O Rows have no ruling.
- 1 Rows have ruling.

table border ruling Specifies whether the table should
have ruling around its outside borders. This property does not
specify the style or weight of the ruling. The default ruling is defined
by the relevant table format in the structured template.

Expected markup attribute value:
- all Rows have no ruling.
- top Rows have ruling.

table format Specifies the table format for all instances of the
FrameMaker table element.

Expected markup attribute value: A name of a table format that is
present in the application’s structured template.

® For table cell elements:

column name Associates a name with a cell in a given column.

column number Indicates the column number that the cell will
start in.

column ruling Specifies whether the cell should have ruling
on its right side. This property does not specify the style or weight

Structured Application Developer Reference

117

is fm property

of the ruling. The default ruling is defined by the relevant table
format in the structured template.

Expected markup attribute value:
- 0 Cell has no right side ruling.
- 1 Cell has right side ruling.

end column name Specifies the name of a column that ends a
straddle.

horizontal straddle Specifies the number of columns a
straddled cell spans.

more rows Specifies the number of additional rows a straddled
cell spans.

Expected markup attribute value: An integer greater than 1 and no
greater than the number of rows in the table part. The total number
of rows the cell occupies is more rows+1.

rotate Indicates how much to rotate the contents of a cell.

Expected markup attribute value: The CALS model restricts this
property to a boolean value, where 1 indicates a rotation of 90
degrees anti-clockwise. FrameMaker extends the possible values to
allow rotations of 0, 90, 180, and 270 degrees.

row ruling Specifies whether the cell should have ruling on its
bottom side. This property does not specify the style or weight of

the ruling. The default ruling is defined by the relevant table format
in the structured template.

Expected markup attribute value:

- 0 Cell has no bottom side ruling.

- 1 Cell has bottom side ruling.

span name Applies a predefined CALS spanspec, starting at this
cell.

Expected markup attribute value: A valid spanspec name.

start column name Specifies the name of a column that
begins a horizontal straddle.

Expected markup attribute value: A valid column name as defined in
a colspec.

vertical straddle Specifies the number of rows a straddled
cell spans.

Expected markup attribute value: An integer greater than 1 and no
greater than the number of rows in the section (heading, body or
footing) of the table that contains the starting cell.

Read/Write Rules Reference

118

is fm property

use Till override Specifies whether a custom fill percentage
for the cell shading overrides the fill percentage specified in the
table format.

Expected markup attribute value:
- 0 Cell has no fill override.
- 1 Cell has fill override.

Till override Specifies the fill percentage for the cell shading
that overrides the fill percentage in the table format.

Expected markup attribute value: A valid fill percentage for the cell
shading.

use shading override Specifies whether a custom color for
the cell shading overrides the shading color specified in the table
format.

Expected markup attribute value:
- 0 Cell has no shading override.
- 1 Cell has shading override.

fill override Specifies the color for cell shading that
overrides the shading color in the table format.

Expected markup attribute value: A valid shading color for the cell
shading.

use bottom ruling override Specifies whether the cell
bottom ruling overrides the bottom ruling specified in the table
format.

Expected markup attribute value:
- 0 Cell has no bottom ruling override.
- 1 Cell has bottom ruling override.

bottom ruling override Specifies the style of the cell
bottom ruling that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell bottom
ruling.

use top ruling override Specifies whether the cell top
ruling overrides the top ruling specified in the table format.
Expected markup attribute value:

- 0 Cell has no top ruling override.

- 1 Cell has top ruling override.

top ruling override Specifies the style of the cell top ruling
that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell top ruling.

Structured Application Developer Reference

119

is fm property

- use left ruling override Specifies whether the cell left
ruling overrides the left ruling specified in the table format.

Expected markup attribute value:
- 0 Cell has no left ruling override.
- 1 Cell has left ruling override.

- left ruling override Specifies the style of the cell left
ruling that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell left ruling.

- use right ruling override Specifies whether the cell
right ruling overrides the right ruling specified in the table format.

Expected markup attribute value:
- 0 Cell has no right ruling override.
- 1 Cell has right ruling override.

- right ruling override Specifies the style of the cell right
ruling that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell right ruling.

- angle Specifies the angle of rotation for the cell that overrides the
angle in the table format.

Expected markup attribute value: A valid angle of rotation for the cell.
For table row elements: maximum height, minimum height,
row type, orrow ruling.

- maximum height Specifies the maximum height for each row in
the table.

Expected markup attribute value: A number plus a valid unit of
measure, e.g. “24pt”, “15mm”. If not supplied, the maximum height
of the row is not limited.

- minimum height Specifies the minimum height for each row in
the table.

Expected markup attribute value: A number plus a valid unit of
measure, e.g.“12pt’, “9mm”. If not supplied, the minimum height of
the row is not limited.

- row type Sets the row type as heading, body or footing.

- row rulling Specifies whether the cell should have ruling on its
bottom side. This property does not specify the style or weight of
the ruling. The default ruling is defined by the relevant table format
in the structured template.

Expected markup attribute value:
- 0 Cell has no bottom side ruling.

- 1 Cell has bottom side ruling.

Read/Write Rules Reference

120

is fm property

- row placement Specifies the row placement in the table.

Expected markup attribute value: A valid position for the row in
the table.

- keep with prev Specifies whether the row is always on the
same page as the previous row in the table.

Expected markup attribute value:

- 0 Row need not remain on the same page as the previous
row.

- 1 Row is always on the same page as the previous row in the
table.

- keep with next Specifies whether the row is always on the
same page as the next row in the table.

Expected markup attribute value:
- 0 Row need not remain on the same page as the next row.

- 1 Row is always on the same page as the next row in the
table.

For CALS table colspecs:

cell alignment character
cell alignment offset
cell alignment type
column name
column number
column ruling
width

row ruling

collumn

vertical alignment

For CALS table spanspecs:

cell alignment character
cell alignment offset
cell alignment type
column ruling

end column name

row ruling

span name

start column name
vertical alignment

Structured Application Developer Reference

121

is fm property

Details

® If you use the is fm property rule to translate a markup attribute to a FrameMaker
property, the markup attribute does not also appear as a FrameMaker attribute.

* |f you use this rule in a highest-level attribute rule, it applies only to elements that have
that attribute and are of the appropriate type. For example, if you have these declarations:

<IATTLIST (graphic | table) w CDATA #IMPLIED>

and these rules:
attribute "w" is fm property width;
element *graphic™ is fm graphic element;
element "table"™ is fm table element;

the w attribute becomes the width property of the graphic element but remains an
attribute for the table element, since tables do not have a width property. If you intended
w to be the column width for tables, you should use these rules:

element '‘graphic" {

is fm graphic element;

attribute "w" is fm property width;
}

element "table" {
is fm table element;
attribute "w" is fm property column width;

}

Examples
® The markup attribute w may be used for multiple elements to represent the width of a table’s
columns. To translate it to the FrameMaker property column width:
attribute "w" is fm property column width;
* To translate the attribute Form to the cross-reference formatting property cross-
reference Tormat for the element xref

element "xref" {
is fm cross-reference element;
attribute "form" is fm property cross-reference format;

}
See also
Related rules “fm property” on page 78
“is fm property value,” next
Rules mentioned in “element” on page 54
synopses “attribute” on page 44

Read/Write Rules Reference 122

is fm property value

General information Developer Guide, page 345: Formatting properties for tables

on this topic Developer Guide, page 373: Anchored frame properties
Developer Guide, page 375: Other graphic properties
Developer Guide, Chapter 26, Translating Markers

Developer Guide, Chapter 24, Translating Cross-References

is fm property value

Use the is fm property value rule when a markup attribute has a name token group as
its declared value and you want to rename the individual name tokens when translating to and
from FrameMaker property values. Read/write rules do not support double-byte characters, so
you cannot use this rule to process attributes with double-byte characters in their names.

Synopsis and contexts

1. value "token™ is fm property value propval;

2. attribute "attr” {. . .
value "token™"™ is fm property value propval;

- - -}

3. element "gi™ {. . .
attribute "attr” {. . .
value ""token™ is fm property value propval;

SRS S |
Arguments
token A token in a name token group.
propval A defined FrameMaker property value.
attr The name of a markup attribute.
gi A markup element’s name (generic identifier).

Details
* This rule can be used at the highest level to set a default, or within an attribute rule.

® Use this rule when the corresponding markup attribute translates to a property in FrameMaker.
If the markup attribute translates to a choice attribute instead, you need to use the is fm
value rule to specify the correspondence between markup tokens and FrameMaker attribute
choices.

Structured Application Developer Reference 123

is fm property value

® When using this rule, remember that markup does not permit a token to appear in the declared
value of more than one attribute of an element. For example, the following rule:

element "picture" {
is fm graphic element;
attribute "place” {
is fm property position;
value "left" is fm property value subcol left;
}
attribute "just" {
is fm property alignment;
value "left"” is Tfm property value align left;

3}
<IATTLIST picture
place (left, sright, snear, . . .)
Just (left, aright, acenter, . . .)
>

® FrameMaker defines the table border ruling property for working with tables and the
alignment and vertical alignment properties for working with colspecs and
spanspecs.

If you use the CALS table model for your tables, you should use read/write rules to translate
these properties to the Frame, al ign, and val ign attributes on appropriate elements. There
is also a default correspondence between the FrameMaker property values and the defined
value in markup.

If you do not use the CALS table model, you may still choose to translate these FrameMaker
formatting properties to markup attributes. In this case, you must also determine the
translation from property value to defined value.

* |f you use the CALS table model, the Frame attribute has the following defined values: al |,
top, bottom, topbot, sides, and none.The values for the corresponding table border
rul ing property are the same as the defined values, except that the topbot defined value
is the top and bottom property value.

The al ign attribute and the corresponding cell alignment type property have the
following values: left, center, right, Justify, and char.

The val ign attribute and the corresponding vertical alignment property have the
following values: top, middle, and bottom.

Read/Write Rules Reference 124

is fm reference element

Examples

® To use the table border ruling property for a non-CALS table and to set its name
tokens, use this rule:

element "tab™ {

is fm table element;

attribute "frame" {
is fm property table border ruling;
value "all" is fm property value all;
value "top" is fm property value top;
value "bottom" is fm property value bottom;
value "topbot™ is fm property value top and bottom;
value "sides™ is fm property value sides;
value "none" is fm property value none;

b3

* To rename the FrameMaker import by reference or copy property as the refcopy
attribute, and to also change the name tokens, use this rule:

attribute "refcopy" {
is fm property import by reference or copy;
value "r" is fm property value reference;
value "c" i1s fm property value copy;

}
See also
Related rules “fm property” on page 78
“is fm property” on page 114
Rules mentioned in “attribute” on page 44
synopses “element” on page 54

“value” on page 161

is fm reference element

For SGML, use the is fm reference element rule to translate an entity in markup to an
element defined on a reference page in a FrameMaker document (a reference element). For XML,
use this rule to translate an internal entity to a reference element. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts
1. entity "ename" is fm reference element ["fmtag];

2. reader entity "ename' is fm reference element ["fmtag'];

Structured Application Developer Reference 125

is fm reference element

Arguments

ename An entity name.

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

® For SGML, instead of using this rule to translate an SDATA entity, you can use a parameter
literal of a particular form. For information on how to do so, see Developer Guide, page 332:
Translating SDATA entities as FrameMaker reference elements.

® For XML, SDATA entities are not allowed—this rule translates internal entities.

® You can use the is fm reference element rule within an entity rule at the highest
level to have the translation occur in both directions. Or you can put the entity rule inside a
reader rule to have the translation occur only when reading an SGML document into
FrameMaker. Remember that the SDATA entity must be declared in the DTD in order to use this
rule.

® The FrameMaker element must occur in a flow named Reference Elements. That flow
must be on a reference page of the application’s template file with a name that starts with
SGML Utilities Page—for example, SGML Utilities Page 1 or SGML
Utilities Page Logos. Forinformation on working with reference pages, see the
FrameMaker user guide.

® When FrameMaker encounters references to the specified entity while translating an markup
document to FrameMaker, it copies the appropriate element from its reference page in the
FrameMaker template associated with the structure application. When it encounters an
instance of an element associated with one of the reference pages while writing a FrameMaker
document to markup, it generates an entity reference.

* When you use this rule, the fmtag element must be defined for your FrameMaker documents
and valid in the contexts in which ename occurs. If it is not, the resulting FrameMaker
document is invalid.

Examples

Assume you have an entity named legalese which contains text you need to include in many
places. The entity is too long to be a FrameMaker variable, and you don’t want to treat it as an
entire paragraph. Instead, you can choose to have the entity correspond to a text range element
called LegaleseFragment.

To do so, add the following rule to your rules document:

entity "legalese" is fm reference element "'LegaleseFragment™;
The entity declaration in your DTD looks like this for XML:

<IENTITY legalese ""'>

Read/Write Rules Reference 126

is fm rubi element

The entity declaration in your DTD looks like this for SGML:
<IENTITY legalese SDATA "[]''>

Create a reference frame on the reference page of your application which contains the element
“LegaleseFragment” with your boilerplate text. In order for the element to be treated as a “text
range” use the appropriate TextFormatRules for this element in the EDD.

When FrameMaker translates a markup document that contains the following markup:
<para>The rules are &legalese; for this situation.</para>

It produces the following element structure:

----------------------------------- The rules are

—[LegaleseFragment | ------------- <some lengthy text . . .>

----------------------------------- for this situation.

See also

Rules mentioned in “entity” on page 59
synopses

General information Developer Guide, Chapter 21, Translating Entities and Processing
on this topic Instructions

is fm rubi element

Use the is Tm rubi element rule to identify a markup element that translates to a Rubi
element in FrameMaker. You can choose either to have the same name in both representations or
to change the name during translation. Read/write rules do not support double-byte characters,
so you cannot use this rule to process elements with double-byte characters in their names.

Synopsis and contexts

element "gi" {. . .
is fm rubi element ["fmtag"];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Structured Application Developer Reference 127

is fm rubi group element

Details

If you use this rule, the other subrules of the e lement rule that you can use for the same markup
element are as follows:

e attribute specifies what to do with a markup element’s attributes.

e fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

Examples

* To translate the markup element rubitext to the Rubitext element in FrameMaker, use
this rule:

element "rubitext" is fm rubi element;

* To translate it to the MyRubiTextp element, use this rule:
element "rubitext” is fm rubi element “MyRubiText";

See also

Rules mentioned in “element” on page 54
synopses

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

is fm rubi group element

Usethe is fm rubi group element rule to identify a markup element that translates to
a Rubi group element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi™ {. . .
is fm rubi group element ["fmtag"];:

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Read/Write Rules Reference 128

is fm system variable element

Details

If you use this rule, the other subrules of the e lement rule that you can use for the same markup
element are as follows:

e attribute specifies what to do with a markup element’s attributes.

e fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

Examples

* To translate the markup element rubigroup to the Rubigroup element in FrameMaker, use
this rule:

element "rubigroup™ is fm rubi group element;

* To translate it to the MyRubiGroup element, use this rule:
element “rubigroup'™ is fm rubi group element "MyRubiGroup;

See also

Rules mentioned in “element” on page 54
synopses

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

is fm system variable element

Usethe is Tfm system variable element rule to identify a markup element that
translates to a system variable element in FrameMaker. You can choose either to have the same
name in both representations or to change the name during translation. Read/write rules do not
support double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi™ {. . .
is fm system variable element ["fmtag'];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Structured Application Developer Reference 129

is fm table element

Details

* |f you use this rule, the other subrules of the element rule that you can use for the same
markup element are:

attribute specifies what to do with a markup element’s attributes.

fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

® This rule does not apply to translating non-element FrameMaker variables.

Examples

To translate the markup element date to the Date system variable element in FrameMaker, use
this rule:

element "date" is fm system variable element;

You specify which system variable to use by adding a rule to the Date element’s definition in the
FrameMaker EDD. For example:

Element (System Variable):Date
System variable format rule

In all contexts.
Use system variable:Current Date (Long)

See also

Related rules “is fm variable” on page 137
“fm variable” on page 89

Rules mentioned in “element” on page 54

synopses

General information Developer Guide, Chapter 25, Translating Variables and System Variable
on this topic Elements

is fm table element

Usethe is fm table element rule to identify a markup element that translates to a table
element in FrameMaker. You can choose either to have the same name in both representations or

Read/Write Rules Reference 130

is fm table element

to change the name during translation. Read/write rules do not support double-byte characters,
so you cannot use this rule to process elements with double-byte characters in their names.
Synopsis and contexts

element "gi" {. . .
is fm table element ["fmtag™];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

* |f you use the CALS table model, you do not need to use this rule to translate the CALS table
element properly.

* |f your markup element declarations for a table element do not include an attribute that
corresponds to the columns property, you must use the fm property rule to specify a
number of columns for the table.

* |f you use this rule, the other subrules of the element rule that you can use for the same
markup element are as follows:
- attribute specifies what to do with a markup element’s attributes.

- fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

- Tm property specifies what to do with FrameMaker properties associated with the
element.

- reader insert table part element indicates that the software should insert the
indicated table part (table title, table heading, or table footing), even if the markup element
structure or instance does not contain the corresponding element.

Examples

* To translate the markup element gloss to the Gloss table element in FrameMaker, use this
rule:

element "gloss™ is fm table element;

* To translate it to the Glossary table element, use this rule:
element "'gloss™ is fm table element “Glossary';

See also

Rules mentioned in “element” on page 54
synopses

Structured Application Developer Reference 131

is fm table part element

General information Developer Guide, Chapter 22, Translating Tables
on this topic

is fm table part element

Usethe Is fm table part element rule to identify a markup element that translates to
a table part element in FrameMaker, such as a table title element. You can choose either to have
the same name in both representations or to change the name during translation. Read/write
rules do not support double-byte characters, so you cannot use this rule to process elements with
double-byte characters in their names.

Synopsis and contexts

element "gi" {. . .
is fm table part element [“fmtag™];

- - -}
Arguments
gi A markup element’s name (generic identifier).
part A FrameMaker table part. One of the keywords: title, body, heading,
footing, row, cell.
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Details

® |f you use the CALS table model, you do not need to use this rule to translate elements
representing parts of tables in CALS properly.

* |f you map a markup element to a FrameMaker table part element, then the element cannot
be used anywhere in the instance except as that table part. For example, if you have a
“title” element and you use the following rule:

element “title” is fm table title element;”
Then you would not be able to insert a “title” element in a Chapter element.
* |f you use this rule, the other subrules of the element rule that you can use for the same

markup element are as follows:

- attribute specifies what to do with a markup element’s attributes.

- fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

- Tm property specifies what to do with FrameMaker properties associated with the
element.

Read/Write Rules Reference 132

is fm text inset

- reader end vertical straddle indicates that the associated table row or cell
element terminates a vertical table straddle. This subrule applies only if part is row or
cell.

- reader start new row indicates that the associated table cell element indicates the
start of a new row in the table. This subrule applies only if partis cell.

- reader start vertical straddle indicates that the associated table cell element
starts a vertical table straddle. This subrule applies only if partis cell.

Examples
* To translate the markup element head as the FrameMaker table heading element Head, use
this rule:
element "head" is fm table heading element;

* To translate the markup element dfn as the FrameMaker table cell element Definition, use
this rule:
element "dfn" is fm table cell element;

See also

Rules mentioned in “element” on page 54
synopses

General information Developer Guide, Chapter 22, Translating Tables
on this topic

is fm text inset

Use the is fm text inset rule to translate a declared entity to a text inset in FrameMaker.
While you can translate any entity to a text inset, we suggest you only do this with SDATA entities
when working with SGML. Read/write rules do not support double-byte characters, so you cannot
use this rule to process elements with double-byte characters in their names.

Note: XML: The XML standard does not allow SDATA entities, so you cannot use this
rule for that purpose. FrameMaker translates external text entities as text insets by default,
so this rule is not necessary for that type of entity.

Synopsis and contexts

1. entity "ename™ is fm text inset "fnhame"
[in body or_ref flow "flowname™];

2. reader entity "ename'™ is fm text inset "fname"
[in body or_ref flow "flowname'];

Arguments

Structured Application Developer Reference 133

is fm text inset

ename An entity name.

fname A filename containing the text to include. This file must be a FrameMaker
document or a file of a type for which FrameMaker has a filter, for
example, a MS-Word document.

body or_ref One of the keywords: body or reference, indicating the type of text
flow in which to find the text to include. You can specify this option only
if fname is a FrameMaker document.

flowname The name of the FrameMaker text flow.

Details

* By default, external text entities in markup are imported as text insets. For the markup to be
valid, the external text entities must be text, XML, or SGML files. In the FrameMaker document,
the text insets use these files as their sources. It is probably most advantageous to retain these
files for the text insets; you do not need to use the is fm text inset rule to import
external text entities as text insets.

* The source file for the text inset must either be a FrameMaker file or a file of a format
FrameMaker can filter automatically. You cannot use an SGML file as the source of the text inset.

® |nstead of using this rule to translate an SGML SDATA entity to a text inset, you can use a
parameter literal of a particular form. For information on how to do so, see Developer Guide,
page 330: Translating SDATA entities as FrameMaker text insets.

® You can use the is fm text inset rule within an entity rule at the highest level to
have the translation occur in both directions. Or you can put the entity rule inside a reader
rule to have the translation occur only when reading an SGML document into FrameMaker.

e |f fname is not a FrameMaker document, you cannot specify the in body flowor in
reference flow options. In this case, FrameMaker uses all of the text in the file specified
by fname for the text inset.

If fname is a FrameMaker document and you do not specify a flow to use, FrameMaker use the
contents of the main body flow of the specified document.

* Important: Flowname must exactly match the name of a flow in the document. If there is
no match for the type of flow you specify (body or reference), then a crash will result. If there
is more than one matching flow, FrameMaker uses the first matching flow.

* By default, the software reformats the text inset to conform to the format rules of the
document containing the text inset. If the source for the text inset has element structure,
FrameMaker also retains that element structure.

You can confirm this behavior with the reformat using target document catalogs
rule. You can change this behavior using the subrules reformat as plain textor
retain source document formatting.

Read/Write Rules Reference 134

is fm value

® FrameMaker requires that a structured flow have exactly one highest-level element. For this
reason, you cannot use a single text inset to include multiple elements at the top level of the

inset. You must use multiple text insets for this purpose.

* FrameMaker puts an end-of-paragraph symbol after a text inset. For this reason, you cannot use
a text inset to insert a range of text inside a single paragraph. To do so, you can translate the
entity either as a FrameMaker variable (with the is fm variable rule) or as a reference

element (with the is fm reference element rule).

Examples

Assume you have declared an SGML SDATA entity. You also have a single paragraph of boilerplate
text to be used in your documents. You can place this text on a reference page in a text column
with a flow called Boi lerPlate in the FrameMaker template for your SGML application. If that

template is the file template.doc, you could use this rule to translate occurrences of the

boi ler entity to a text inset in corresponding FrameMaker documents:

entity "boiler”
is fm text inset "template.doc"
in reference flow "BoilerPlate™;

See also
Related rules “reformat as plain text” on page 150
“reformat using target document catalogs” on page 151
“retain source document formatting” on page 152
“is fm reference element” on page 125
“is fm variable” on page 137
Rules mentioned in “entity” on page 59
synopses “reader” on page 149

General information Developer Guide, Chapter 21, Translating Entities and Processing

on this topic Instructions

is fm value

Use the is Tfm value rule to translate the value of a markup attribute to a particular choice for

a FrameMaker choice attribute. The attribute’s declared value must be a name token group or

NOTATION.

Synopsis and contexts

1. value "token" is fm value "val';

Structured Application Developer Reference

135

is fm value

2. attribute "attr” {. . .
value "token" is fm value "val';

- - -}

3. element “gi™ {. . .
attribute "attr" {. . .
value "token"™ is fm value "val';

S B
Arguments
token A token in a name token group.
val An allowed value for a FrameMaker choice attribute.
attr The name of a markup attribute.
gi A markup element’s name (generic identifier).

Details

Use this rule when the corresponding markup attribute translates to a choice attribute in
FrameMaker. If the markup attribute translates to a FrameMaker property, you need to use the is
fm property value rule to specify the correspondence between markup tokens and
FrameMaker property values.

Examples

e [fthetokenlist (r | b | @) isused by multiple attributes, you can use these rules to
translate the individual tokens consistently:

value "r" is fm value "Red";
value "b" is fm value "Blue"';
value "g" is fm value "Green';

* |fthetokenlist (r | b | Q) isused by several attributes as above but by the bird element
differently, you can add this rule to the above rules:

element "bird" {is fm element;
] attribute "species" {
value "r" is fm value "Robin™;
value "b" is fm value "Blue Jay";

value "g" is fm value "Goldfinch";

i34

See also

Related rules “is fm property value” on page 122

Read/Write Rules Reference 136

is fm variable

Rules mentioned in “attribute” on page 44
synopses “element” on page 54

“value” on page 161

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

is fm variable

Use the Iis fm variable rule to translate a declared markup text entity to a FrameMaker non-
element variable.

Synopsis and contexts
1. entity "ename™ is fm variable [“var'];

2. reader entity "ename" is fm variable [“var'];

Arguments

ename An entity name.

var A FrameMaker variable name.
Details

You can use the is Tm variable rule within an entity rule at the highest level to have the
translation occur in both directions. Or you can put the entity rule inside a reader rule to have
the translation occur only when reading a markup document into FrameMaker.

Examples

* To translate the markup element v to a non-element FrameMaker variable of the same name:

entity v is fm variable;

* To translate the FrameMaker variable Licensor to the markup element 11ic, use this rule:

entity "lic" is fm variable "Licensor";

See also
Related rules “fm variable” on page 89
“is fm system variable element” on page 129
Rules mentioned in “entity” on page 59
synopses

General information Developer Guide, Chapter 25, Translating Variables and System Variable
on this topic Elements

Structured Application Developer Reference 137

is processing instruction

is processing instruction

On export, you use the IS processing instruction rule to tell FrameMaker to create
processing instructions for all non-element markers or for non-element markers of a particular
type. By default, FrameMaker creates processing instructions for all non-element markers. You
have the option of discarding non-element markers; you might use this rule in conjunction with
the drop rule when you want to discard some but not all non-element markers.

Synopsis and contexts

fm marker [“type;”, . . ., "type,'] is processing instruction;
Arguments
type;j A FrameMaker marker type, such as Index or Type 22.
Details

If you do not supply any type; arguments, this rule applies to all non-element markers other
than markers of the type reserved by FrameMaker for storing processing instructions, Pl entities,
and external data entities. (By default, the reserved marker types are DOC PI1,DOC Entity
Reference, and DOC Comment.)

Examples
To discard all nonelement markers other than Index markers, use these rules:

fm marker "Index"™ is processing instruction;
fm marker drop;

See also

Rules mentioned in “fm marker” on page 76
synopses

General information Developer Guide, Chapter 26, Translating Markers
on this topic

line break

Use the Iine break rule to tell FrameMaker about any limits on the length of lines in a markup
file it generates. You also use it to tell the software whether or not to interpret line breaks in a
markup document as FrameMaker paragraph breaks within elements.

Synopsis and contexts
1. reader line break is mode;

2. writer line break is mode;

Read/Write Rules Reference 138

line break

3. element "gi™ {. . .

reader {. . .
line break is mode;
- - 3 -3
4. element "gi" {. . .
writer {. . .
line break is mode;
- - - - -3
Arguments
mode For writer: n characters (where n is a positive integer in C syntax).
For reader: one of forced return or space
gi A markup element’s name (generic identifier).

Details

® This rule can be used at the highest level to set a default or within an element rule to set line
breaks for only that element.

® On export, FrameMaker behaves as follows:

When exporting the text of a paragraph, it ignores line breaks. It includes a space separating
the two words on either side of a line break and attempts to avoid generating lines longer than
n characters (the default is 80). It maintains a counter indicating how many characters it has
placed on a single line. After this counter reaches n-10, it changes the next data character
space to a record end.

It generates a markup record end at the end of every paragraph and flow in the FrameMaker
document.

If you want a start-tag for an element and its contents to appear on the same line in the markup
document, you must write aa structure API client.

® On import you have control over record ends not ignored by the underlying parser. Within a
reader rule, node can be one of the following:

forced return informs FrameMaker that a line break within a text segment should be
converted to a forced return.

space informs FrameMaker that a line break within a text segment should be treated as a
space. This is the default.

Examples

Line breaks may need to be treated differently within different elements. For example, a line break
within an examp I e element may need to be preserved on import, while a line break within a par
element may be a word break:

element "example™ reader line break is forced return;
element "par' reader line break is space;

Structured Application Developer Reference 139

marker text is

marker text is

Use the marker text isruletoindicate whether the text of a marker element should become
an attribute value or the content of the corresponding markup element. Note that the markup
element must not be declared as empty if you want the marker text to be translated as content.

Synopsis and contexts

element "gi" {. . .
is fm marker element ["fmtag™];
marker text is attr_or_content;

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.
attr_or_content One of the keywords: attribute or content

Details

® By default, FrameMaker translates a marker element in FrameMaker to a markup empty
element. It writes the marker text as the value of the markup element’s text attribute.

® |nstead of the default, you can have FrameMaker translate a marker element to a markup
element whose content model is #PCDATA. The marker text becomes the element’s content.

Examples

* To state that the markup element mkr corresponds to the FrameMaker element Marker and
to confirm the default behavior, you can use this rule:
element "mkr™ {
is fm marker element "Marker';
marker text is attribute;

b
With this rule, the FrameMaker element definition:

Element (Marker): Marker

corresponds to the DTD declarations:

<VELEMENT mkr EMPTY>
<IATTLIST mkr
text CDATA #IMPLIED
type CDATA #IMPLIED>

Read/Write Rules Reference 140

notation is

In this case, if the FrameMaker document contains an instance of the Marker element whose
marker text is “Some marker text” and whose type is Type 22, the markup output includes:

<mkr text=""Some marker text" type="Type 22'/>
® To state that the markup element mkr corresponds to the FrameMaker element Marker but
that the marker text should become element content in markup, you can use this rule:

element "mkr™ {
is fm marker element "Marker';
marker text iIs content;

3
With this rule, the FrameMaker element definition:

Element (Marker): Marker

corresponds to the DTD declarations:

<IELEMENT mkr (#PCDATA)>
<IATTLIST mkr type CDATA #IMPLIED>

In this case, if the FrameMaker document contains an instance of the Marker element whose
marker text is “Some marker text” and whose type is Type 22, the output includes:

<mkr type=""Type 22''>
Some marker text

</mkr>
See also
Rules mentioned in “element” on page 54
synopses “is fm marker element” on page 112

General information Developer Guide, Chapter 26, Translating Markers
on this topic

notation is

Use the notation 1is rule only in an element rule for a graphic or equation element, to
provide information the software needs when writing a document containing graphics and
equations to markup. FrameMaker uses this rule to determine the data content notation name to
include in entity declarations it generates.

Synopsis and contexts

1. element "gi" {
is fm equation element ["fmtag'];
writer equation notation is ''notation';

- - -}

Structured Application Developer Reference 141

notation is

2. element "gi"” {
is fm graphic element ["fmtag'];
writer anchored frame notation is '"‘notation';

- - -}

3. element "gi" {
is fm graphic element ["fmtag'];
writer facet "facetname' notation is '"notation’;

- - -1}

Arguments
gi
fmtag

type

facetname

notation

Details

A markup element’s name (generic identifier).

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

One of the rules anchored frame, facet, or equation. If facet,
you must also supply the Facetname argument.

If type is equation, the rule applies to equation elements.

If type is Facet, the rule applies to a graphic element that contains only
a single facet with the name specified by facetname. This occurs when
the graphic element is an anchored frame containing only a single
imported graphic object whose original file was in the facetname
graphic format. You can use this rule with type set to facet multiple
times if you want the software to treat several file formats differently.

If type is anchored frame, the rule applies to a graphic element
under all other circumstances.

A facet name. The string for the facetname must exactly match the string
for the facetname in the FrameMaker document. To determine a graphic
file's facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

A string representing a data content notation name.

By default, FrameMaker uses the first eight characters of the name of the facet it exports as the
data content notation. If the graphic or equation has only internal FrameMaker facets, the
software uses CGM as the data content notation.

Examples

Assume your end users use the af graphic element within FrameMaker, creating the graphics
using FrameMaker tools, but want to store them in TIFF format on export. Furthermore, you want

Read/Write Rules Reference

142

output book processing instructions

to name the files based on the FrameMaker document’s name, but with an extension of .gr. You
can accomplish this with the following rule:

element "af" {
is fm graphic element;
writer anchored frame {
notation is "TIFF";
export to file "$(docname).gr';

i3

If you export the FrameMaker file intro.doc, the software writes the following entity
declaration for the first instance of the af element that it finds:

<IENTITY afl SYSTEM "introl.gr™ NDATA TIFF>

See also

Related rules “convert referenced graphics” on page 49
“entity name is” on page 61
“export to file” on page 67
“specify size in” on page 153

Rules mentioned in “element” on page 54

synopses “is fm graphic element” on page 111

“is fm equation element” on page 109
“anchored frame” on page 41
“equation” on page 63

“facet” on page 72

“writer” on page 164

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

output book processing instructions

By default, when FrameMaker converts a FrameMaker book to markup, it puts ?FM book? and
?FM document? processing instructions in the markup document to indicate where the
individual files in the FrameMaker documents began. You use the output book processing
instructions rule to confirm or change this behavior.

Synopsis and contexts

writer [do not] output book processing instructions;

ArgumentsNone.

Structured Application Developer Reference 143

preserve fm element definition

Details

If you use the generate book rule to tell FrameMaker to use elements to identify book
components when reading a markup document, you might choose to not have it output
processing instructions when writing the book to markup. In this case, use this rule:

writer do not output book processing instructions;
See also
Related rules “generate book” on page 91

General information Chapter 28, “Processing Multiple Files as Books”
on this topic

preserve fm element definition

Use the preserve Tm element definition rule to tell FrameMaker, when it is updating
an EDD from a revised DTD, not to update the definition of a set of FrameMaker elements and
their attributes on the basis of the DTD and other rules.

Synopsis and contexts

reader {. . .
preserve fm element definition "fmtag,"[, - - ., "fmtagy"]l;
- - -}
Arguments
fmtag; A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.
Details

FrameMaker uses the preserve fTm element definition rule only when updating an
EDD from a DTD. By default, when it updates an existing EDD, the software changes the definitions
of FrameMaker elements to reflect the new DTD and all read/write rules. You may not want the
definition of the FrameMaker element to change. For example, if one of your rules is to unwrap
the element body, then any element with a definition that includes body will be modified
directly include the contents of body instead of including body.

Examples
® Assume you have the rule:
fm element ""Body" unwrap;

and the element definitions:

Element (Container): Figurel
General rule: Caption, Body

Read/Write Rules Reference 144

preserve line breaks

Element (Container): Figure2
General rule: Body, Footer

Element (Container): Body
General rule: Header, Line+

The corresponding declarations are:

<IELEMENT figurel (caption, header, line+)>

<IELEMENT figure2 (header, line+, footer)>
If you update the EDD containing the preceding definitions and use as input the DTD with the
preceding declarations, FrameMaker replaces the definitions of Figurel and Figure2 with:

Element (Container): Figurel

General rule: Caption, Header, Line+

Element (Container): Figure2
General rule: Header, Line+, Footer

If you wish to retain the original definitions of Figurel and Figure2 in the revised EDD,
include this rule:
reader preserve fm element definition “Figurel™, "Figure2';
® Suppose you want to use a structure API client to reverse the order of child elements in

corresponding markup and FrameMaker elements. For example, assume you have the
declaration:

<IELEMENT ex (a, b)>

and the FrameMaker element definition:
Element (Container): Ex
General rule: B, A
If you have no rules and update the EDD in this situation, FrameMaker updates the definition
of EX to correspond to the markup declaration. To suppress this change, use this rule:
reader preserve fm element definition "EX';

See also

Related rules “drop” on page 51

“unwrap” on page 158

preserve line breaks

Use the preserve line breaks rule to tell FrameMaker to keep line breaks for an element
when importing and exporting markup documents. When importing markup, it translates every
RE in the element as a forced return. When exporting markup, it translates forced returns as RE

characters, and the line ends FrameMaker creates when automatically wrapping the text as non-

Structured Application Developer Reference 145

preserve line breaks

RE line breaks in the markup file. This is useful for elements that use RE characters to insert white
space in an element’s content.

Synopsis and contexts

element {. . .
preserve line breaks ;

- - -}
ArgumentsNone

Details

® For an element using this rule, the software writes a an RE (line break) immediately after the
open tag and immediately before the close tag.

* For an element using this rule, on export, FrameMaker writes a space character entity reference
and an RE (line break) for each necessary line break in the markup file. See the “line break” rule
for information on how FrameMaker determines where to put these line breaks by default.
Forced returns (shift-return) translate as RE characters (line breaks) in the markup file.

® For SGML, the space character entity uses the I1SO entities reference (&#SPACE).
*® For XML, no entity reference is written for the space character.

® For XML, this rule adds the xml : space attribute to the affected elements, with a value of
preserved. This attribute directs XML applications to respect the whitespace characters in
the element’s content. On import this attribute is retained—if the EDD for your template does
not specify an xml Zspace attribute for the given element, then that attribute will be invalid.
You can either define this attribute in your EDD, or use read/write rules to drop the attribute
on import.

*® For export and import to have the same results, preserve line breaks must be specified
for the same elements. For example, assume you use preserve line breaks on export
for an element named Code. FrameMaker writes a space character entity reference and an RE
(line break) when a line approaches the maximum line length, and it writes RE characters (line
breaks) for forced returns. Now assume you remove preserve line breaks from the rules for the
Code element. On import, FrameMaker will translate as spaces the space character entity
reference/RE pairs, and as spaces any RE characters (line breaks) not removed by the parser
(default behavior). Thus the forced returns (shift-return) are lost and the imported file is not the
same as the exported file.

® When importing markup, preserve line breaks overrides the Iine break is
space rule, if that rule is set. On import, preserve line breaks has the same effect for
the specified element as the line break is forced return rule.

Read/Write Rules Reference 146

processing instruction

Examples

The following rule preserves line breaks on import and export for the element named code:

fm element ""code™ {
is fm element "'Code";
preserve line breaks;

}
See also
Rules mentioned in “element” on page 54
synopses
Related rules “line break” on page 138

processing instruction

Use the processing instruction rule to drop processing instructions that are not
recognized by FrameMaker. By default, the software stores such processing instructions as the
marker text in non-element markers of type DOC PI1 and DOC Comment.

Synopsis and contexts

processing instruction drop;
ArgumentsNone

Details

® When you translate a markup document to FrameMaker and the software encounters an
unrecognized processing instruction such as:

<?mypi?>

it stores the processing instruction as the text of a non-element DOC P 1 marker by default,
with the following as the marker text:

mypi

When you translate a FrameMaker document to markup, it outputs the corresponding
processing instruction if it finds a non-element DOC P 1 marker with text in that format.

® This rule does not affect how FrameMaker treats the processing instructions it does recognize
for books, book components, and other non-element markers.

Examples
To discard all unrecognized processing instructions, use this rule:

processing instruction drop;

Structured Application Developer Reference 147

proportional width resolution is

See also

Rules mentioned in “drop” on page 51
synopses

General information Developer Guide, Chapter 21, Translating Entities and Processing
on this topic Instructions

proportional width resolution is

Use the proportional width resolution is ruleto change the number used as the
total for proportional column widths in tables. By default, if FrameMaker writes proportional
columns widths, those widths add to 100.

Synopsis and contexts

writer proportional width resolution is "value';

Arguments

value An integer indicating the total for proportional column width values.

Details

Using this rule does not indicate that FrameMaker uses proportional widths, only that if
FrameMaker writes proportional widths, then those widths add to value instead of 100. To tell
FrameMaker to use proportional widths, you must include the use proportional widths
rule.

Examples
* Assume you do not use the proportional width resolution is rule but have this
rule:

writer use proportional widths;

Further assume you have a 5-column table whose first two columns are 1 inch wide and whose
last three columns are 2 inches wide. If the column widths are written to the colwidth
attribute of the markup table element, then FrameMaker creates this start-tag for that table:

<table colwidth="12.5* 12_5* 25* 25* 25*">

® Assume you have the same table as in the last example and you use this rule:

writer {
use proportional widths;
proportional width resolution is "8";

}
FrameMaker writes this start-tag for the table:
<table colwidth="1* 1* 2* 2* 2*">

Read/Write Rules Reference 148

put element

® Assume you have the same table as in the previous examples and you use this rule:
writer proportional width resolution is "8";

That is, you do not also have the use proportional widths rule. In this case,
FrameMaker ignores the “proportional width resolution” rule and writes this start-tag for the
table:

<table colwidth="1in 1lin 2in 2in 2in">
See also
Related rules “use proportional widths” on page 160

General information Developer Guide, Chapter 22, Translating Tables
on this topic

put element

reader

See “generate book” on page 91.

The reader rule indicates a rule that applies only on import to FrameMaker. It can be used at the
highest level to set a default, or within an element rule to specify information particular to that
element.

Synopsis and contexts

1. element "gi™ {. . .
reader {. . .
subrule;

- - -} - - -}

2. reader {. . .
subrule;

- - -}

Arguments

gi A markup element’s name (generic identifier).

subrule Valid subrules:

character map changes how FrameMaker translates between
individual characters in the markup and FrameMaker character sets.
Allowed only at the highest level.

drop content imports only the element itself, not its contents.
Allowed only within an element rule.

Structured Application Developer Reference 149

reformat as plain text

Examples

end vertical straddle specifies the end of a vertical straddle in a
table. Allowed only within an element rule for a table cell or row
element.

entity specifies the treatment of an entity in FrameMaker. Allowed only
at the highest level.

generate book specifies how to identify book components in a
markup document. Allowed only at the highest level.

insert table part element specifies that FrameMaker should
generate a table part (table title, table heading, or table footing) even if
there is no content for that part. Allowed only within an e lement rule for
a table element.

line break changes the treatment of line breaks in the markup
instance which are not handled by the parser on import. Allowed at the
highest level or within an element rule.

preserve fm element definition instructs the software not to
modify a FrameMaker element definition when updating an existing EDD.
Allowed only at the highest level.

start new row specifies that this table cell element starts a new row
in the table. Allowed only within an element rule for a table row
element.

start vertical straddle specifies the start of a vertical straddle
in a table. Allowed only within an element rule for a table cell element.

table ruling style is specifies the ruling style to apply to all
tables. Allowed only at the highest level.

To change the default ruling style for tables:

reader table ruling style is "thick";

reformat as plain text

Use the reformat as plain textruleinanentity rule for an entity you want to translate
as a text inset in FrameMaker. This specifies that the software should remove any element
structure from the text inset and reformat the text using the format rules of the document into
which the text inset is placed. You specify the other choices for formatting text insets with the

Read/Write Rules Reference

150

reformat using target document catalogs

rules reformat using target document catalogs and retain source
document formatting

Synopsis and contexts

1. entity "ename" {
is fm text inset “fname”;
reformat as plain text;

- - -}

2. reader entity "ename" {
is fm text inset “fname”;
reformat as plain text;

- - -}
Arguments
ename An entity name.
See also
Related rules “reformat using target document catalogs,” next
“retain source document formatting” on page 152
Rules mentioned in “entity” on page 59
synopses “is fm text inset” on page 133

General information Developer Guide, Chapter 21, Translating Entities and Processing
on this topic Instructions

reformat using target document catalogs

Use the reformat using target document catalogs rulein an entity rule for an
entity you want to translate as a text inset in FrameMaker. This specifies that the software should
retain any element structure from the text inset and reformat the text using the format rules of

the document into which the text inset is placed. This is the default behavior for entities treated
as text insets. You specify the other choices for formatting text insets with the rules reformat

as plain textand retain source document formatting.

Synopsis and contexts

1. entity "ename" {
is fm text inset “fname”;
reformat using target document catalogs;

- - -}

Structured Application Developer Reference 151

retain source document formatting

2. reader entity "ename" {
is fm text inset “fname”;
reformat using target document catalogs;

- - -}
Arguments
ename An entity name.
See also
Related rules “reformat as plain text,” (the previous section)
“retain source document formatting” on page 152
Rules mentioned in “entity” on page 59
synopses “is fm text inset” on page 133

General information Developer Guide, Chapter 21, Translating Entities and Processing
on this topic Instructions

retain source document formatting

Use the retain source document formattingruleinan entity rule for an entity you
want to translate as a text inset in FrameMaker. This specifies that the software should remove any
element structure from the text inset, but keep the formatting of the source document, rather
than reformatting it according to the rules of the document that contains the text inset. You
specify the other choices for formatting text insets with the rules reformat as plain text
and reformat using target document catalogs.

Synopsis and contexts

1. entity "ename" {
is fm text inset “fname”;
retain source document formatting;

- - -}

2. reader entity "ename" {
is fm text inset “fname”;
retain source document formatting;

- - -}

Arguments

ename An entity name.

Read/Write Rules Reference 152

specify size in

See also
Related rules “reformat as plain text” on page 150
“reformat using target document catalogs,” (the previous section)
Rules mentioned in “entity” on page 59
synopses “is fm text inset” on page 133

General information Developer Guide, Chapter 21, Translating Entities and Processing
on this topic Instructions

specify size in

Use the specify size inruleonlyin an element rule for a graphic or equation element,
to provide information the software needs when writing a document containing graphics and
equations to markup. This rule determines which of the dpi or the impsize attribute
FrameMaker uses to indicate the size of a graphic or equation. The rule also indicates what units
are used for impsize and the resolution in which sizes are reported is always 0.001. If there is no
specify size inrule, FrameMaker uses the dpi attribute.

Synopsis and contexts

1. element "gi" {
is fm equation element ["fmtag'];
writer equation specify size in units

- - -}

2. element "gi" {
is fm graphic element ["fmtag'];
writer anchored frame specify size in units

- - -}

3. element "gi" {
is fm graphic element ["fmtag'];
writer facet "facetname' specify size in units

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.
facetname A facet name. The string for the facetname must exactly match the string

for the facetname in the FrameMaker document. To determine a graphic

Structured Application Developer Reference 153

specify size in

file's facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

units The units in which the size of the element is coded. Valid values: cm, cc,
dd, in, mm, pc, pi, or pt.

Details
® Use this rule when you export FrameMaker documents to markup documents.

* FrameMaker reports the size of the elements in the indicated units, at a fixed resolution of
0.001.

Examples

® Suppose your document has a graphic element, graph, containing an Anchored Frame sized
to fit a FrameMaker-drawn circle with a diameter of 3.15 centimeters. Given the rule:

element *graph” {

is fm graphic element;
writer anchored frame specify size in cm;

}

FrameMaker generates the attribute height=""3.150cm" and attribute
width="3.150cm".

® With the same graphic, if the rule is:

element "graph” {
is fm graphic element;
writer anchored frame specify size in mm;

}
FrameMaker generates height=""31.500mm"™ and attribute width="31.500mm".
See also
Related rules “convert referenced graphics” on page 49

“entity name is” on page 61
“export to file” on page 67

“specify size in” on page 153

Read/Write Rules Reference 154

start new row

Rules mentioned in “element” on page 54

synopses “is fm graphic element” on page 111
“is fm equation element” on page 109
“anchored frame” on page 41
“equation” on page 63
“facet” on page 72

“writer” on page 164

General information Developer Guide, Chapter 23, Translating Graphics and Equations
on this topic

start new row

Use the start new row rule in the element rule for a table cell element to specify that an
occurrence of the table cell element indicates that FrameMaker should start a new table row to
contain that cell.

Synopsis and contexts

element "gi™ {. . .
is fm table cell element [“fmtag'];
reader start new row [''name'];

- - -}
Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.
name An optional name to identify this row

Details

*® Your DTD may contain elements that you want to format as tables in FrameMaker even though
the element hierarchy does not match that required by FrameMaker for tables. In such a
situation, the nature of the element hierarchy may indicate where new rows should begin.

® |n some cases, you can use a rule such as the following to indicate that a table cell starts a new
row:
element "gi" {
is fm table cell element;
fm property column number value is "1";

}

Structured Application Developer Reference 155

start vertical straddle

With this rule, when FrameMaker encounters a gi element, it tries to place that element in the
first column of the current table row. If there is already a cell in the first column of the current
row, the software automatically creates a new row for gi. In this situation, you would not also
need the start new row rule

However, if there is not already a cell in the first column of the current row when the software
encounters a gi element, it puts the gi cell in the current row and does not create a new row
for it. This can happen if the table has a vertical straddle in the first column. When FrameMaker
encounters a gi element on a row that should have a vertical straddle in the first column, with
only the rule above, the software puts the gi element in the same row (because that cell isn't
occupied). To guarantee a new row starts with the occurrence of gi instead, you should use
this rule:

element "gi" {
is fm table cell element;
fm property column number value is "1";
reader start new row;

}

Examples

For a complete example using the start new row rule, see Developer Guide, page 354:
Omitting explicit representation of table parts.

See also

Related rules “start vertical straddle,” next

Rules mentioned in “element” on page 54

synopses “is fm table part element” on page 132

“reader” on page 149

General information Developer Guide, Chapter 22, Translating Tables
on this topic

start vertical straddle

Use the start vertical straddle ruleinside the element rule for a table cell to specify
that an occurrence of the cell element indicates the start of a vertical straddle.

Synopsis and contexts

element "gi" {. . .
is fm table cell element [“fmtag'];
reader start vertical straddle "‘name’;

- - -}

Arguments

Read/Write Rules Reference 156

table ruling style is

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

name A name associated with a table straddle. This name must occur in at least
one corresponding end vertical straddle rule.

Details

* Your DTD may contain elements that you want to format as tables in FrameMaker even though
the element hierarchy does not match that required by FrameMaker for tables. In such a
situation, the nature of the element hierarchy may indicate where vertical straddles should
begin and end. The start vertical straddle rule allows you to specify such elements.

® Use this rule in conjunction with the end vertical straddle rule. That rule specifies a
table cell or row that indicates the end of the vertical straddle started by this rule.

*® You give a name to the particular straddle started by gi. In the corresponding end
vertical straddle rule orrules, you use the same name to specify that the element ends
this vertical straddle.

Examples

For an example of the use of this rule, see Developer Guide, page 357: Creating parts of a table
even when those parts have no content.

See also

Related rules “start new row,” (the previous section)
Rules mentioned in “element” on page 54

synopses “is fm table part element” on page 132

“reader” on page 149

General information Developer Guide, Chapter 22, Translating Tables
on this topic

table ruling style is

You use the table ruling style is rule to specify the ruling style for all tables.

Synopsis and contexts

reader table ruling style is "style";

Arguments

Structured Application Developer Reference 157

unwrap

style A ruling style for all tables. One of the keywords: None, Double, Medium,
Thick, Thin, or Very Thin.

Details

* This rule specifies the ruling style applied to all tables. When working with the CALS table
model, you can use the frame, colsep, and rowsep attributes to determine whether or not
portions of a table have rulings. However, these attributes have boolean values. Consequently,
you can only use them to say whether or not a table has a ruling, not what type of ruling to
use if it does have one. In this situation, you could use the table ruling style isrule
to set the ruling style for all tables.

® FrameMaker considers the ruling style set with this rule as custom ruling. If you re-import
formats to the FrameMaker document and remove overrides, the ruling style set with this rule
will remain. If possible, therefore, you should use table formats to specify ruling styles.

Examples
To specify that all tables should use the Thick ruling style, use this rule:

reader table ruling style is "Thick™;

See also

General information Developer Guide, Chapter 22, Translating Tables
on this topic

unwrap

Use the unwrap rule when you do not want to preserve an element on translation from one
representation to another. If you specify that FrameMaker should unwrap an element (gi or
Tmtag), the software places the element’s content as part of the content of the element’s parent
element, but does not make an element for gi or fmtag itself.

Synopsis and contexts

1. element "gi" unwrap;

2. fm element "fmtag" unwrap;

Arguments
gi A markup element’s name (generic identifier).
fmtag A FrameMaker element tag. These names are case-sensitive and must

appear in the rule the same as in the EDD.

Read/Write Rules Reference 158

unwrap

Details

® When FrameMaker encounters an element to be unwrapped, it does not insert a corresponding

element into the document it is creating. Instead, it inserts the content of an unwrapped
element.

If you use this rule to unwrap FrameMaker cross-reference elements or system variable
elements, those elements become text in the resulting markup document.

When importing a DTD or exporting an EDD, FrameMaker does not generate an element
definition or declaration corresponding to an element that is unwrapped. Furthermore, when
an element uses the unwrapped element in its definition, the software replaces the name of
the unwrapped element with its content model or general rule in the general rule or content
model of the element that used it or replaces it with the list of its children in an exception. You
can change this behavior by using the preserve fm element definition rule.

You cannot use the unwrap rule with any other subrule of the element or fm element
rules. For example, you cannot specify that a markup element both be unwrapped and be
translated to a FrameMaker element.

Examples

® A markup document used to produce both the student’s and teacher’s edition of a textbook

might include an ANSWER element used for answers to exercises. In producing the teacher’s
edition of the textbook, this element might be unwrapped into FrameMaker as text. A structure
API client could associate this element with the condition tag Answer.

® Suppose a DTD contains the following declarations:

<IELEMENT wrapper - - (a, b)>
<IELEMENT x - - (p, g, wrapper, r)>
<IELEMENT y - - (#PCDATA) +(wrapper)>

and you have this rule:
element "wrapper' unwrap;

FrameMaker would generate the following element definitions:

Element (Container): X
Generalrule: P, Q, A, B,R

Element (Container): Y
General rule: <TEXT>
Inclusions: A, B

See also

Related rules “preserve fm element definition” on page 144

“drop” on page 51

Structured Application Developer Reference 159

use processing instructions

Rules mentioned in “element” on page 54

Synopses “fm element” on page 75

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

use processing instructions

See “generate book” on page 91.

use proportional widths

Use the use proportional widths rule to indicate that when FrameMaker writes the width
of table columns, it should use proportional measurements. By default, if the software writes the
width of table columns, it uses absolute measurements.

Synopsis and contexts

writer use proportional widths;
ArgumentsNone.

Details

* |f you use this rule when writing an attribute indicating the width of one or more columns in
a table, FrameMaker writes values such as ""25*"", where the asterisk * indicates a proportional
measurement, instead of values such as "'0.25in" which are absolute measurements.

* |f you use this rule, you can also use the proportional width resolution isruleto
determine what number the values add to. Without the proportional width
resolution is rule, the proportional measurements add to 100.

Examples
® Assume you do not use the proportional width resolution is rule, but have this
rule:
writer use proportional widths;
Further assume you have a 5-column table whose first two columns are 1 inch wide and whose

last three columns are 2 inches wide. If the column widths are written to the colwidth
attribute of the markup table element, then FrameMaker creates this start-tag for that table:

<table colwidth="12_.5* 12.5* 25* 25* 25*'>

Read/Write Rules Reference 160

value

® Assume you have the same table as in the last example and you use this rule:

writer {
use proportional widths;
proportional width resolution is "8";

}
FrameMaker writes this start-tag for the table:
<table colwidth="1* 1* 2* 2* 2*'>
See also

Related rules “proportional width resolution is” on page 148

General information Developer Guide, Chapter 22, Translating Tables
on this topic

value

Use the value rule to translate the value of a markup attribute to the value of a particular
FrameMaker property or to a particular choice for a FrameMaker choice attribute. The attribute’s
declared value must be a name token group or NOTATION and a name token group.

Synopsis and contexts
1. value "token"™ subrule;

2. attribute "attr" {. . .
value "token" subrule;

- - -}

3. element “gi™ {. . .
attribute "attr” {. . .
value "token" subrule;

- - 3. -3
Arguments
token A token in a name token group.
attr The name of a markup attribute.
gi A markup element’s name (generic identifier).
subrule One of the following:

is Tm value translates a markup value to a particular choice for a
FrameMaker choice attribute.

Structured Application Developer Reference 161

value

is Tm property value translates a markup value to the value of a
particular FrameMaker property.

Details

The rule can be used at the highest level to set a default, within a highest-level attribute rule to
set the default for all attributes that use that token, or within an element rule to set the default
for a particular token within a particular attribute in that element.

Examples

< To rename the FrameMaker import by reference or copy property as the refcopy
attribute, and to also change the name tokens, use this rule:

attribute "refcopy" {
is fm property import by reference or copy;
value "r" is fm property value reference;
value "c" is fm property value copy;

}

e [fthetokenlist (r | b | @) isused by multiple attributes, you can use these rules to
translate the individual tokens consistently:

value "r" is fm value ""Red";
value "b" is fm value "Blue"';
value "g" is fm value "Green';

® |fthetokenlist (r | b | @) isused by several attributes as above, but by the bird element
differently, you can add this rule to the above rules:

element "bird" {is fm element;

] attribute "species" {
value "r" is fm value "Robin™;
value "b"™ is fm value "Blue Jay";
value "g" is fm value "Goldfinch";

had
See also
Related rules “is fm value” on page 135
“is fm element” on page 108
Rules mentioned in “attribute” on page 44
synopses

“element” on page 54

General information Developer Guide, Chapter 20, Translating Elements and Their Attributes
on this topic

Read/Write Rules Reference 162

value is

value is

See “fm property” on page 78.

write structured document

By default, when you save a FrameMaker document to markup, the software writes out the
document instance, any declarations for the internal DTD subset, and a DOCTYPE statement
which references the external DTD subset, but (for SGML) not an SGML declaration nor the
declarations within the external DTD subset. If an XML structure application (in structapp - fm)
specifies a Schema file for output, that file is also written with the XML document. You can use
this rule to confirm the default behavior.

Synopsis and contexts

writer write structured document;

ArgumentsNone.

Details
You cannot use the write structure document rule andthewrite sgml document
instance only rulein the same read/write rules file.

See also

Related rules “external dtd” on page 70
“include dtd” on page 96
“include sgml declaration” on page 97

“write structured document instance only,” next

write structured document instance only

By default, when you save a FrameMaker document to markup, the software writes out the
document instance, any declarations for the internal DTD subset, and a DOCTYPE statement
which references a file for the external DTD subset. For SGML, it does not write an SGML
declaration. This rule causes the software to write the document instance only--no external or
internal DTD, no Schema, and no SGML declarations.

Synopsis and contexts

writer write structured document instance only;

ArgumentsNone.

Structured Application Developer Reference 163

writer

Details

* By default, when you translate a FrameMaker document to markup, as its last step the software
runs the parser on the markup document to check its validity. If you use this rule, FrameMaker
does not write a complete markup document and so does not send the result through the
parser.

*® You cannot use the write structure document instance only rulein the same
read/write rules file as any of the write structure document, include dtd, or
include sgml declaration rules.

See also

Related rules “external dtd” on page 70
“include dtd” on page 96
“include sgml declaration” on page 97

“write structured document,” (the previous section)

writer

The writer rule indicates a rule that applies only on export of a FrameMaker document to
markup. It can be used at the highest level to set a default or within an element rule to specify
a subrule for that element.

Synopsis and contexts

1. writer {. . .
subrule;

- - -}

2. element "gi™ {. . .
writer {. . .
subrule;

- - - - -}

Arguments

gi A markup element’s name (generic identifier).

subrule Valid subrules:

anchored frame tells FrameMaker what to do with graphic elements
other than those with a single non-internal FrameMaker facet. Allowed
only within an element rule for a graphic element.

character map determines the correspondence between individual
characters in the FrameMaker and markup character sets. Allowed only at
the highest level.

Read/Write Rules Reference 164

writer

convert referenced graphics tells the software to create new
files for graphic files that were imported by reference. drop content
exports a FrameMaker element without its contents. Allowed only within
an element rule.

equation tells FrameMaker what to do with equation elements. Allowed
only with an element rule for an equation element.

external dtd specifies an external DTD to use. Allowed only at the
highest level.

Tacet tells FrameMaker what to do with a graphic element that has a
single non-internal FrameMaker facet. Allowed only with an element
rule for a graphic element.

[do not] include dtd specifies information to exclude or include
in the written document. Allowed only at the highest level.

[do not] include sgml declaration specifies information to
exclude or include in the written document. Allowed only at the highest
level.

line break specifies treatment of line breaks not handled by the
parser on export. Allowed at the highest level or within an element rule.

[do not] output book processing instructions specifies
whether or not to create processing instructions that identify book
components when writing a FrameMaker book as a markup document.
Allowed only at the highest level.

proportional width resolution is specifiesthe total value to
which proportional widths for table columns add up. Allowed only at the
highest level.

use proportional widths specifies that the software should use
proportional values in describing the widths of table columns. Allowed
only at the highest level.

write structured document specifies that an entire SGML
document should be written, not just the document instance. This is the
default. Note that the external DTD subset is not written to the file.
Instead, a DOCTYPE statement with a reference to the external DTD file is
written. Allowed only at the highest level.

write structured document instance only specifies that
only the document instance should be written, not the DTD and SGML
declaration. Allowed only at the highest level.

Structured Application Developer Reference

165

writer

Examples

* To tell FrameMaker not to use processing instructions to identify book components when
writing a FrameMaker book as a markup document, use this rule:

writer do not output book processing instructions;

® Assume you want all graphics to be exported in TIFF format. Further assume that some of your
graphic elements were imported from the TIFF format. For these elements you don't want to
create a new external data entity. To accomplish this, use these rules:

element *"graphic™ {
is fm graphic element;
writer facet default{
convert referenced graphics;
export to File “$(entity) .tif as “TIFF”’;
writer anchored frame
export to file "$(entity).tif" as "TIFF";

Read/Write Rules Reference 166

Conversion Tables for Adding Structure
to Documents

You can set up a conversion table to help end users automate the task of adding structure to
documents. The conversion table uses paragraph and character formats to identify which
unstructured document objects to wrap in elements, and element tags to identify which child
elements to wrap in parent elements. A user wraps all of a document’s contents in one move by
applying a structure command to the document and referring to one of your conversion tables.

This chapter describes how to set up a conversion table and define object and element mapping
in it. For information on the commands for adding structure to documents, see the FrameMaker
user’s manual

How a conversion table works

A conversion table contains rules for mapping between document objects and elements and
between child elements and parent elements. The table is a regular FrameMaker table, with at
least three columns and one body row. Each body row holds one rule.

The first column in a conversion table specifies a document object, a child element, or a sequence
of child elements or paragraphs to wrap in an element. A document object is a paragraph, text
range, table, table part (such as heading or row), equation, variable, footnote, Rubi group, Rubi
text, marker, cross-reference, text inset, or graphic (anchored frame or imported graphic object).

The second column in the table specifies the element in which you want to wrap the object, child
element, or sequence. The third column can specify an optional qualifier to use as a temporary
label for the element in rules that are applied later. For example:

Wrap this object In this element With this
gualifier

P:Bulletltem ltem Bullet

E:ltem[Bullet]+ BulletList
The first column uses a The second column The third column can
one-letter code and specifies the element in provide a label for the
usually a tag to identify which to wrap the object new element to be used
an object or element. or element. in later rules.

Structured Application Developer Reference 167

Setting up a conversion table

To add structure to a document or book, an end user chooses the Structure Current
Document..., Structure Documents..., or Structure Current Book... command from the
StructureTools > Utilities submenu and refers to one of the conversion tables.

When you add structure to a document manually, you typically begin with the lowest-level
components and work up to the highest level. For example, to add structure to a chapter you
might start by wrapping sub-paragraph objects like text ranges and tables, then wrap the
contents of paragraphs together in Paragraph elements, then wrap sequences of Head and
Paragraph elements in Section elements, and so on until the entire document is wrapped in
a single highest-level Chapter element.

The process of adding structure with a conversion table is similar to adding structure manually.
FrameMaker begins by applying rules to document objects below the paragraph level, then
applies rules at the paragraph level, and proceeds through successively higher levels. The process
stops when FrameMaker reaches a single highest-level element or when no more rules can be
applied. To understand this process, it helps to have manually structured a document.

Using the sample table above, FrameMaker first wraps each paragraph with the paragraph format
Bulletltemin an element called 1tem and gives the element a qualifier called Bul let. Then
it wraps each Item element with the qualifier Bul Iet in a parent element called Bul letList.

FrameMaker tries to order the rules as much as possible. If a rule needs a building block that is
generated by a later rule, the later rule is run first so that all of the building blocks in the first rule
are available. To make a conversion table easy to interpret for a human reader, you may want to
write the rules in the order they should be applied.

Setting up a conversion table

You can have FrameMaker generate an initial conversion table for you from an unstructured
document or book, or you can create a conversion table entirely from scratch. If you already have
a document that end users need to add structure to, or a document that is similar to one users
will add structure to, you'll probably want to let FrameMaker generate the initial table. You can
modify the rules in the table as necessary.

After creating a conversion table, you can update it from other unstructured documents. Updating
a table adds rules for any objects in the document that are not yet in the table.

A conversion table document can include the conversion table itself (which may be split up into
several tables) and text or graphics you want to include for documenting the rules. It cannot have
any tables other than conversion tables. You need to save the document before it can be used for
adding structure to other documents or books.

Each body row in a conversion table holds one mapping rule. FrameMaker reads only the
information in the first thee columns of the body rows, so you can use additional columns and
headings and footings for comments about rules.

Conversion Tables for Adding Structure to Documents 168

Setting up a conversion table

For information on defining and modifying the rules in a table, see “Adding or modifying rules in
a conversion table” on page 171.

Generating an initial conversion table

You can have FrameMaker generate a conversion table from an unstructured document. This is
the easiest way to begin a new conversion table.

To generate an initial conversion table, choose Generate Conversion Table from the
StructureTools menu in a document with objects you want to structure. Select Generate New
Conversion Table in the dialog box and click Generate.

The software looks through the flows on body pages in the document and compiles a list of every
object that can be structured. For each object, it gives the object type and the format tag used in
the document (if the object has a format), and maps the object to an element. The element tag is
the same as the format tag, or if the object does not have a format, the element tag is a default
name such as CELL or BODY. If necessary, FrameMaker removes parentheses and other characters
to create an element tag that is valid.

The initial conversion table gives you a first pass through the document, identifying objects to
wrap in elements. It does not identify child elements to wrap in parent elements—you need to
add those rules to the table yourself.

This is an example of an initial conversion table:

Wrap this object In this element With this
qualifier

P:Head1 Head1

P:Head2 Head2

P:Body Body

P:Code Code

SV:Current Date \(Long\) CurrentDatelLong

C:Code cCode

TC CELL

TR: ROW

For details on the object type identifiers used in the table (such as P: and TC:), see “Identifying
a document object to wrap” on page 173.

Note that if there are conflicts in a format tag from the unstructured document, an object type
identifier in lowercase is prepended to any duplicate element tag. In the example above, the

Structured Application Developer Reference 169

Setting up a conversion table

element tag for text ranges with the Code character format is cCode because the document also
has a paragraph format called Code.

When you create an initial table, FrameMaker does not examine the document’s format catalogs—
it looks only at objects actually used in the document. For this reason, the table may not be as

complete as you need. You may want to update the table from a set of documents that together
provide all or most of the objects you need rules for. You can also add and modify rules manually.

The initial convertion table does not contain a root element for the structure hierarchy, but you

can add one manually, using the tag RE-RootElement, so that documents you convert using

the table will have a“well formed” structure in which all elements are children of the root element.
See “Specifying the root element for a structured document” on page 172.

The initial conversion table does contain elements for all defined paragraph and character formats
that are used in the unstructured document, and for all objects, including cross references,
markers, footnotes, equations, graphics, system variables, and tables. Formatting is retained in the
structured document created from the table, and carried forward into the EDD in
ParagraphFormattingTag elements.

If the original document contains format overrides or unnamed formats applied directly to text,
you can create named formats from them before conversion, or flag them for manual update in
the conversion table. See “Flagging format overrides” on page 180 and “Wrapping untagged
formatted text” on page 180.

Setting up a conversion table from scratch

You can set up a regular FrameMaker table to serve as a conversion table. The table must appear
on a body page in its own document. The document and table can be structured or unstructured.
Begin a conversion table this way if you do not yet have an unstructured document to use for
generating the table.

To set up a conversion table from scratch, create a new document and insert a table with at least
three columns and one body row. The table can have any number of heading or footing rows.

You can divide a conversion table into several smaller tables. This is helpful when you have many
rules and want to organize the rules in groups. Each table must have at least three columns and
one body row. You can add explanatory heads and paragraphs between the tables to document
the rules. Do not include tables that are not conversion tables.

Updating a conversion table

After creating a conversion table, you may want to update the table from at least one other
unstructured document to get a more complete list of objects. FrameMaker adds a rule for each
object from the document that is not already listed in the table.

To update a conversion table, choose Generate Conversion Table... from the StructureTools
menu in a document with the objects you want to structure. Select the name of the conversion
table document in the Update Conversion Table popup menu and click Generate.

Conversion Tables for Adding Structure to Documents 170

Adding or modifying rules in a conversion table

When you update a conversion table, the process that FrameMaker goes through is similar to the
process of generating an initial table. The software does not examine the document’s format
catalogs—it looks only at objects actually used in the document.

Adding or modifying rules in a conversion table

Each body row in a conversion table holds one mapping rule. Follow these steps to define a
mapping rule:

1.

In the first column, identify a document object, a child element, or a sequence of child
elements or paragraphs to wrap.

You use a one- or two-letter code to identify the type of item and, in most cases, a format or
element tag to narrow the definition. See “Identifying a document object to wrap” on

page 173, “Identifying an element to wrap” on page 174, or “Identifying a sequence to wrap”
on page 175.

In the second column, specify an element in which to wrap the object, child element, or
sequence.

Type one valid element tag. If you are writing rules for a document that already has element
definitions, use tags from the document’s Element Catalog.

If you are wrapping a table part, graphic, or inset, FrameMaker always wraps all instances of
the object in the same kind of element. The element has a default tag, such as CELL, BODY,
GRAPHIC, or INSET. Type a different tag in the second column only if you want to override
the default tag.

You can also give an element an attribute with a value. For details, see “Providing an attribute
for an element” on page 177.
(Optional) In the third column, add a qualifier for the new element tag.

A qualifier is a temporary label that you can attach to an element tag for the structuring
process. If you wrap the element in a parent element in a later rule, you include the qualifier
tag with the element tag. For details, see “Using a qualifier with an element” on page 177.

To make a conversion table easy to read and to help you think through the process, we
recommend that you put the rules in order from the lowest level to the highest. In the first rows
of the table, write rules that wrap individual document objects such as text ranges, tables, and
paragraphs; next add rules that wrap child elements in parent elements; then add rules that wrap
sequences in elements; and finally add rules that wrap elements in one root element.

Every flow in a document must have a highest-level element, and the element can be different for
each flow.

About tags in a conversion table

Format and element tags in a conversion table are case-sensitive and must be specified the way
they are defined in their catalogs. Qualifier tags are also case-sensitive, and two occurrences of

Structured Application Developer Reference 171

Adding or modifying rules in a conversion table

one qualifier must match exactly. The following characters are not allowed in an element tag, but
can appear in a format or qualifier tag if you precede them with a backslash (\) in the table:

)&l ,*+?2% L[] :\

A space character does not need to be preceded with a backslash. For example, you can write the
tag Format A.

You can use a percentage sign (%) as a wildcard character in a format or element tag to match
zero, one, or more characters. For example, P:%Body matches paragraphs with the format tag
Body, FirstBody, or Bul letBody.

Specifying the root element for a structured document

FrameMaker now allows you to specify a root element, the highest valid element in a document,
so that the converted document adheres to structured document convention.

To do so, specify the optional RE:RootElement after conversion. You must add it manually to
the conversion table, specifying the tag itself, RE:RootElement, in the first column, and the
element name that you choose in the second column.

When you generate a structured document using this manually modified conversion table, the
resulting document contains a well-formed hierarchy with a valid root element. If you convert an
entire book using the table, each document contains a valid root element.

The root element name that you choose should be unique within the document. If you specify a
name that its being already defined for some other object, the root element is ignored. You can
still generate a structured document with the table, but it will not have a valid root element, and
a message is added to the FrameMaker Log window: “Element name defined in second column

of conversion table for root element is not unique. Root element ignored.”

The root element tag should appear only once in the conversion table. If it appears anywhere else
with a different name, it is ignored and a generated document does get a root element, but if it
appears twice with the same name, both elements are ignored and a generated document will
have no root element.

If no root element is generated for a document (either because the conversion table contains no
RE:-RootElement tag or because it is not specified correctly), the ‘NoName’ element appears at
the top of the element hierarchy. The rest of the elements are its children, and the hierarchy is
shown to have an invalid structure.

The RE:RootElement is particularly useful for unstructured documents that do not easily
conform to the required structure rules, maybe due to poor adherance to tagging rules or too
many manual style overrides. In these cases it may be uneconomic to tailor your conversion table
for every possible formatting variation.

Conversion Tables for Adding Structure to Documents 172

Adding or modifying rules in a conversion table

Identifying a document object to wrap

To identify a document object to wrap in an element, type an object type identifier and
(optionally) a format tag in the first column of the table. Separate the identifier and format tag

with a colon.

FrameMaker finds all the objects with that type and format and wraps them in the element you
specify in the second column of the table. If you leave the format tag out of the rule, FrameMaker
finds all the objects with the specified type that are not identified in other conversion rules.

This rule wraps all tables

not named in other rules,
regardless of format tag.

For example:
Wrap this In this element
object
P:Body Para
T:RulesTbl RulesTbl
T: StandardTbl
Q:Small SmallEgns

These are the object type identifiers and format tags you can use:

Object type Identifier Format tag
Paragraph : Paragraph format tag
Textrange C: Character format tag
Table T: Table format tag
Table title TT: (none)

Table heading TH: (none)

Table body TB: (none)

Table row TR: (none)

Table cell TC: (none)

System variable SV: Variable format name
User variable uv: Variable format name
Graphic (anchored frameor G: (none)

imported object)

Footnote F: Location of footnote: Table or Flow
Rubi group RG: (none)

Rubi text R: (none)

Marker : Marker type

Structured Application Developer Reference

173

Adding or modifying rules in a conversion table

Object type Identifier Format tag

Cross-reference X: Cross-reference format name

Text Inset TI: (none)

Equation Q: Size of equation: Smal I, Medium, or Large

Table parts, graphics, and text insets do not have any formatting information, so FrameMaker
wraps all instances of those objects in the same kind of element. The element has a default tag,
such as CELL, BODY, GRAPHIC, or INSET. (Specify a different tag in the second column to
override the default tag.)

You can write identifiers and the keywords for footnote location or equation size in any
combination of uppercase and lowercase letters. The names of formats and marker types are case-
sensitive, however, and must be typed the way they are specified in their catalogs.

A system variable can be wrapped in a variable element but a user variable cannot. If you identify
a user variable, FrameMaker wraps it in a container element with the tag specified in the second
column.

FrameMaker wraps a text inset in a container.

Identifying an element to wrap

To identify a child element to wrap in a parent element, type the object type identifier E = followed
by an element tag and (optionally) a qualifier in brackets in the first column of the table. The
qualifier must already be defined for the element in a rule applied earlier.

FrameMaker finds all instances of the element and wraps them in the element you specify in the
second column of the table. You can omit the element tag if you include a qualifier.

For example:
Wrgp this In this element This rule wraps all elements
object with the qualifier THead not
E:ltem[Bullet] Bulletltem named in other rules.
E:[1Head] ChapHead

You can type the E: identifier in either uppercase or lowercase. The element tags are case-
sensitive, however, and must be typed the way they are specified in their catalog. You can even
omit the E - identifier—when FrameMaker reads an object name with no identifier, it assumes the
object is an element.

To identify a table child element to wrap in a table parent element, type the object identifier TE:
followed by E:, an element tag, and (optionally) a qualifier in brackets in the first column of the

Conversion Tables for Adding Structure to Documents 174

Adding or modifying rules in a conversion table

table. This allows you to name a table element from one or more child elements, rather than
naming it from a table format tag (with the T: identifier).

For example:
Wrap this In this element
obi epC ¢ This rule wraps RulesBody table
J child elements in a RulesTbl
TB:RulesBody RulesBody table element.
TE:E:RulesBody RulesTbl

Most often, you wrap multiple elements together in one parent. You can use E: or TE: to identify
a sequence of elements for this. For more information, see “Identifying a sequence to wrap,” next.
For more information on qualifiers, see “Using a qualifier with an element” on page 177.

Identifying a sequence to wrap

You can wrap a sequence of child elements in a parent element. For example, you might wrap a
Head element followed by one or more Paragraph and List elements in a higher-level
Section.

You can also wrap a sequence of unwrapped paragraphs in an element. For example, you might
wrap a sequence of paragraphs with the format tag Body all in one Note element. (With other
unwrapped document objects such as tables, graphics, and text ranges, you can wrap only one
object in an element.)

To identify a sequence to wrap, specify object type identifiers and element tags or paragraph
format tags, and use symbols to further describe the sequence. You can mix elements and
unwrapped paragraphs together in one specification.

These are the symbols you can use:

Symbol Meaning

Plus sign (+) Item is required and can occur more than once.

Question mark (?) Item is optional and can occur once.

Asterisk (*) (SGML only) Item is optional and can occur more than once.
Comma (,) [tems must occur in the order given.

Ampersand (&) Items can occur in any order.

Vertical bar (]) Any one of the items in the sequence can occur.
Parentheses Beginning and end of a sequence.

Structured Application Developer Reference 175

Adding or modifying rules in a conversion table

The symbols available are the same connectors, occurrence indicators, and parentheses used in
general rules in an EDD. For more information on the symbols, see “Writing an EDD general rule”
on page 177.

For example:

To identify this sequence Use this specification
One or more I'tem elements Item+
An element tagged I'tem[Bullet] E:ltem[Bullet], P:Bullet+

followed by one or more unwrapped
paragraphs tagged Bul let

A ChapNum element followed by a ChapNum, ChapName
ChapName element

A Head element followed by zero ormore Head, (Paragraph|BulletList]

Paragraph,BulletList, or NumberList)*

NumberList elements

An Item[FirstNItem] element Item[FirstNItem], (ltem[Nltem])+
followed by one or more I'tem[NItem] or

elements [FirstNItem], ([NIltem])+

ARulesTitletabletitleelementfollowed TE:E:RulesTitle, E:RulesBody
by a RulesBody table body element

Strict or loose sequence specification

If you already have a well defined or standard based application structure, you may try to use the
general rule specification as it is defined in your EDD. In many cases, with well formatted
unstructured documents, you will achieve excellent conversion results. However, in practice
unstructured documents often break the rules. You will find incorrect tagging, manual formatting
overrides and other non-standard features.

Your strict conversion table will not cope well with these souce documents. It will fail to wrap
sequences that do not match a strict specification. You can avoid these problems by providing a
less restrictive sequence specification.

The revised sequence specification must be compatible with the required structure for example if
the EDD specified this general rule:

Head, Para+, Table?, Graphic?, Section*®

The strict sequence specification could be identical. However, if the conversion table encountered
a document whith no Head element or a Para between Table and Section, the entire
sequence will not be wrapped. The revised sequence specification could be:

Head?, (Para | Table| Graphic)*, Section*

This will give the correct conversion when the source document is well tagged but will also cope
with a wide range of variations.

Conversion Tables for Adding Structure to Documents 176

Adding or modifying rules in a conversion table

Providing an attribute for an element

When you specify an element in the second column of the table, you can provide an attribute for
the element. In the structured document, all the element instances will have the attribute name
and value.

To provide an attribute for an element, type the attribute name and value in brackets after the
element tag in the second column of the table. Separate the name and value with an equal sign,
and enclose the value in double quotation marks.

For example:

Wrap this object In this element
P:Intro Para[Security="Unclassified"]
P:Important Note[Label="Important"]
E:ltem+ List[Type="Numbered"]

If the unstructured document has an Element Catalog with an element and attribute matching the
one you're providing, the attribute is the type specified in the catalog. If the attribute does not
match an attribute already defined, the type is string.

If you need to use a double quotation mark in an attribute value, escape the quotation mark with
a backslash (\). Other restrictions on characters are determined by the attribute’s type. (The string
type allows any arbitrary text string.) For information on these restrictions, see “Attribute type” on
page 194.

To give an element more than one attribute, separate the attribute definitions with an ampersand
(&). For example, this specification gives the element a Type attribute with the value Numbered
and a Content attribute with the value Procedure:

List [Type="Numbered" & Content="Procedure"]

For an example of an attribute that maintains formatting information from a qualifier, see “Using
a qualifier with an element,” next.

Using a qualifier with an element

Qualifiers act as temporary labels that preserve formatting information from the unstructured
document until all elements have been wrapped. Qualifiers are used only in the conversion
table—they do not show up in a final structured document.

To use a qualifier with an element specified in the second column of the table, type the qualifier
tag in the third column. Then when you wrap the element in a later rule, type the qualifier tag in
brackets after the element tag in the first column. Spell and capitalize the qualifier the same way

Structured Application Developer Reference 177

Adding or modifying rules in a conversion table

in the two places. FrameMaker keeps track of qualifiers separately from elements, so you can use
the same tag for an element and its qualifier.

For example:

Wrap this object In this element With this
qualifier

P:Bulletltem [tem bulleted

P:Numberltem [tem numbered

E:ltem[bulleted]+ BulletList

E:ltem[numbered]+ NumberList

First specify the qualifier for the element.

— Then include the qualifier with the element in later rules.

In the example above, an unstructured document has both bulleted items and numbered items,
with paragraph formats called Bul letltem and Number I'tem. When adding structure to the
document, you want to wrap all the items in an 1tem element with a parent element of either

BulletList or NumberList. To do this, you need to keep the Bul letltem and

Number I tem formatting designations long enough to determine in which list to wrap the items.
The conversion table first associates qualifiers called bul leted and numbered with new Item

elements. Then it wraps each Item element in either a Bul letList or a NumberList, as

specified by its qualifier.

Note that if you specify an attribute for formatting information in the second column, you cannot
use the attribute as a label for preserving formatting during the conversion process. You still need
to use the qualifier. For example:

Wrap this object In this element With this
qualifier

P:Bulletltem ltem bulleted

P:Numberltem [tem numbered

E:ltem[bulleted]+

List[Type="Bulleted"]

E:ltem[numbered]+

List[Type="Numbered"]

Conversion Tables for Adding Structure to Documents

178

Handling special cases

Handling special cases

You may need to accommodate a few special circumstances or requirements in a conversion table.

Promoting an anchored object

In an unstructured FrameMaker document, a table or an anchored graphic must be anchored in
a paragraph. The anchor specifies which paragraph to keep the object with as an author continues
to edit the document. When a user adds structure to the document, the table or graphic normally
becomes a child of the paragraph with the anchor, like this:

In a structured document, you often want a table or graphic element to be at the same level as
its surrounding paragraph elements. FrameMaker can break the table or graphic out of its
paragraph and promote the element to be a sibling of the paragraphs, like this:

ara
ara
able

ara

FFEE

To break a table or graphic out of its paragraph and promote it one level, add the keyword
promote in parentheses after the element tag for the table or graphic. (The keyword is not case-
sensitive.) For example:

‘Wrap this object In this element
‘ T:Table Table (promote)

Structured Application Developer Reference 179

Handling special cases

Note that FrameMaker promotes the object at the location of the anchor symbol in the paragraph.
If the symbol is in the middle of the paragraph, the structured document will have half of the
paragraph, then the table, and then the other half of the paragraph. Typically, you want the
symbol to be at the end of the paragraph.

Flagging format overrides

An unstructured document may have format overrides. This happens when someone uses the
Paragraph or Character Designer to make formatting changes to a paragraph or text range but
does not save the changes in the catalog format.

When an end user adds structure to a document, FrameMaker does not normally identify format
overrides. You can have FrameMaker flag all element instances in the document that have
overrides so that the user can find the overrides and decide how to handle them in a structured
context.

To flag format overrides, add the rule flag paragraph format overrides or flag
character format overrides to the first column of the table. (The rule is case-insensitive.)
This is a general instruction for the table, so you do not add anything to the second and third
columns. For example:

Wrap this object In this
element

flag paragraph format overrides

flag character format overrides

At each element instance that has an override in the document, FrameMaker adds an attribute
called Override with the value Yes.

Note: Use the FrameMaker utility "Create and Apply Formats" before conversion to turn
format overrides and untagged formatted text into named paragraph and character
formats, which can be carried forward automatically into the structured document and
EDD.

Wrapping untagged formatted text

It is possible for someone to format a text range by applying commands from the Font, Size, and
Style submenus in the Format menu—and not use a character format at all. This leaves the text
formatted but without a tag that you can refer to in your conversion table.

You can have FrameMaker find text that has been formatted with the submenu commands and
wrap it in a “catch-all” element. After adding structure to a document, the end user will probably

Conversion Tables for Adding Structure to Documents 180

Handling special cases

want to look at these instances and change them to other elements (such as Emphasis) that
more specifically describe the type of formatting.

To wrap untagged formatted text, add the rule untagged character formatting to the
first column of the table and add an element to the second column. (The rule is case-insensitive.)
For example:

‘Wrap this object In this element
‘untagged character formatting | UntaggedText ‘

This might also be useful while you are developing a conversion table. You can add structure to a
sample document with this rule to see if the document has any untagged formatting.

Note: Use the FrameMaker utility "Create and Apply Formats" before conversion to turn
format overrides and untagged formatted text into named paragraph and character
formats, which can be carried forward automatically into the structured document and
EDD.

Nesting object elements

Typically, a non-paragraph object such as a table or graphic is wrapped in an object element and
then wrapped in a paragraph element. You can also wrap the object in more than one level below
the paragraph. Sometimes you need to do this to conform to a DTD that requires more hierarchy,
or you may just want to be able to use two objects together.

To nest object elements in a paragraph, define each mapping in a separate rule in the table. For
example:

Wrap this object In this element
M:Index Index

G: Graphic

E:Index & E:Graphic Figure

In the example above, the rules wrap an index marker in an Index element and a graphic anchor
in a Graphic element, and then they wrap the two elements together in a Figure text range
element. This way, the graphics in a structured document will automatically have a marker
identifying a location to be included in an index.

Structured Application Developer Reference 181

Testing and correcting a conversion table

Building table structure from paragraph format tags

When FrameMaker adds structure to tables, it normally wraps all instances of a table part in the
same kind of element and uses a default name for the element, such as CELL, ROW, HEAD ING, or
BODY. You can override the default name by providing a different element tag in the second
column of the conversion table.

If you want to have more than one kind of element for a particular table part, you can build the
structure up from the format tags used in the cells or titles. This allows you to distinguish between
different formatting used in different instances of a single table part. For example, a table may
have a few special body rows with italicized text that marks divisions in the table. Or a table may
have two titles, one of them a subtitle in a different font size.

To build table structure from paragraph format tags, for each cell or title rule use the TC: or TT:
type identifier followed by the P: identifier and a format tag in the first column of the table. For
example:

Wrap this object In this element
TC: P:DividerCell DividerCell

TC: P:BodyCell BodyCell
TR:DividerCell+ ROW

TR:BodyCell+ ROW

TB:Row+ BODY

In the example above, the rules map cells that use a DividerCell paragraph format in an
element called DividerCell and map cells that use a BodyCel I paragraph format in an
element called BodyCel 1. Then they wrap both kinds of cell elements in the same default ROW
element and continue the wrapping normally.

Testing and correcting a conversion table

You should test and correct a conversion table as you develop it. To do this, prepare a sample
document that represents the type of documents the table will apply to, and use the conversion
table to add structure to the sample. Make sure your sample document has all of the document
objects that the final documents may contain.

When a structure command reads a conversion table, it identifies any syntax errors in the rules
and displays the errors in a log file. Correct the table and test it again until no more errors are
found.

You may find it helpful to wrap only document objects for your first testing pass, without
wrapping in higher levels of hierarchy. When you're sure that the rules for wrapping individual

Conversion Tables for Adding Structure to Documents 182

Testing and correcting a conversion table

objects are correct, start writing and testing the rules to wrap elements and sequences in parent
elements.

Structured Application Developer Reference 183

Testing and correcting a conversion table

Conversion Tables for Adding Structure to Documents 184

CSS to EDD Mapping

This chapter provides a reference for the CSS to EDD mapping feature, grouped by CSS property
category. Each property’s description includes the following headings.

CSS property The CSS 2.0 property name
CSS Property Values A simple list of the available property values.

Mapped to EDD property Shows the element name of the equivalent EDD formatting property.
For table parts it shows the mapping for EDD table parts.

Comments/Values Addtional information about the mapping includes EDD element property
values.

While importing a Cascading Style Sheet (CSS) into an EDD, any property or selector in the CSS
that cannot be mapped to an equivalent EDD rule is ignored by FrameMaker. No error log is
displayed and errors in the CSS file are not reported.

The EDD does not support all properties and selectors defined in CSS 2.0. While importing a CSS
into an EDD, FrameMaker will ignore any unsuported properties or selectors.

CSS Font Properties

Fonts are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values

font- font-family PropertiesFont < Family Font Setis not supported.

family family-name | element. e Generic-Family can't be
generic-family supported.

® Onlyone font-familycan
be specified using the EDD
Fami ly element.

Structured Application Developer Reference 185

CSS Font Properties

CSS property CSS Property Values Mapped to EDD property Comments/Values
font-size length in units PropertiesFont < Size Only font-size with a length in
e cm (centimeters) element. points is recognised, all other
length types are ignored and the
® eX (exs)
@ in(inches)
* mm (millimeters)
® pc (picas)
® pt (points)
® px (pixels)
% (percentage) % values are not mapped as
FrameMaker does not calculate
relative values proportionally.
Relative size with these Not supported
values:
e larger
* smaller
Absolutesizewithvalue PropertiesFont < Size The corresponding absolute
of: element. values in FrameMaker are
e xx—small mapped as follows:
e x—small ® xx-small =7.0pt
e small e x-small =8.4pt
e medium e small =10pt
- large * medium= 12pt (Default)
- x-large ® large = 14.4pt
- xx-large ® x-large=17.3pt
* xx-large =20.8pt
font-style normal|italic| PropertiesFont < Angle
oblique with Regular or I'talic child
elements.
CSSobliqueismappedto EDD
Italic.
font- normal | small- CSS smal I-capsis mapped to
variant caps EDD PropertiesFont <

CSS to EDD Mapping

Case < SmallCaps.
No action for normal.

186

CSS Font Properties

CSS property CSS Property Values

Mapped to EDD property

Comments/Values

font- normal | bold |

weight bolder | lighter |
100|200 |300|400|
500|600 | 700|800 |
900

font font-style | font-
variant | font-
weight | font-size
line-height|
font-family |
caption|icon|
menu|message-box
| small-caption|
status-bar

font- normal |ultra-

stretch condensed |
condensed | semi-
condensed | semi-
expanded |
expanded | extra-
expanded |ultra-
expanded

wider | narrower

font-size- number |none
adjust

PropertiesFont <
Weight.
CSSnormal and bold are
mapped to Regular and Bold
All weights <= 400 are mapped
to Regular, and > 400 are
mapped to Bold.

As listed for the individual CSS
properties above.

PropertiesFont <
Stretch.

PropertiesFont <
StretchChange

Relative values bolder and

lighter cannot be mapped as

FrameMaker does not calculate
relative values.

caption, icon, menu,
message-box, small-
captionand status-bar
fonts are not supported.

The mappings from CSS to
FrameMaker EDD are:

e ultra-condensed =50
® extra-condensed =60
® condensed=72

® semi-condensed =86
* normal =100

® semi-expanded =120
® expanded =144

® extra-expanded =173
® ultra-expanded =207
® wider =+20

® narrower =-20

@font-face is not supported

Structured Application Developer Reference

187

CSS text properties

CSS text properties

The CSS text properties are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values
text- underline PropertiesFont <
decoration Underline element.
overline PropertiesFont <
Overline element.
line-through PropertiesFont <
Strikethrough element.
blink Blinkis not supported.
text- uppercase PropertiesFont < Case < Both text-transformand
transform Uppercase element. font-variant map to the
I p tiesFont < C < Case element of EDD. If both
owercase Lroper Iesl on ase these properties are used for an
owercase element. element context, then only the
capitalize capitalizeisnotsupported. text-transformvalueis
used.
text-align left|right| PropertiesBasic <
center | justify| PgfAlignment.
string Css left, right, center and
Justify are mapped to EDD
Left, Right, Center, and
Justified respectively.
CSS stringis not supported.
text- length| PropertiesBasic <
indent percentage Indents < Firstindent
percentage value is not
supported.
line- number | length | Not supported
height percentage
word- normal | length | PropertiesAdvanced < In the EDD, WordSpacing
spacing inherit WordSpacing. accepts percentage values of the

The CSS Iength value maps to
the EDD minimum value.

font's em space. Therefore, only
an em value of CSSword-
spacing can be mapped to
EDD.

CSS to EDD Mapping

188

CSS color and backgrounds properties

CSS property CSS Property Values Mapped to EDD property Comments/Values
letter- normal | length | PropertiesAdvanced < In the EDD, LetterSpacing
spacing inherit LetterSpacing. can have a value of “yes" or

“no”. A positive value for CSS
length maps to “yes” in the

EDD.
text- Not supported
shadow
white- Not supported
space

CSS color and backgrounds properties

The CSS color and background properties are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values

color name | rgb PropertiesFont < Color < Ifthe name of coloris
specified and that color is not
defined in FrameMaker (CSS
includes 16 predefined color
names), a new coloris created
with that name and is
assigned the value, rgb.

e |fthe rgb value of the coloris
specified, a new color nameis
created with that value.

background-color background color
background-image Not supported
background-attachment Not supported
background-position Not Supported
background-repeat Not Supported

Structured Application Developer Reference 189

CSS Formatting Model

CSS property CSS Property Values Mapped to EDD property Comments/Values

background background-
color™|
background-image
| background-
repeat|
background-
attachment|
background-
position
*Mapped to EDD
property,
background color.

CSS Formatting Model

The CSS Box Model and Formatting Model are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values
margin- length | PropertiesBasic <
right percentage | auto Indents < Rightlndent.
The percentage value is not
supported.
margin- length | PropertiesBasic <
left percentage | auto Indents < Firstindent

and LeftIndent
The percentage value is not

supported.
margin-top length| PropertiesBasic <
percentage | auto Indents < SpaceAbove.
The percentage value is not
supported.
margin- length | PropertiesBasic <
bottom percentage | auto Indents < SpaceBelow.
The percentage value is not
supported.
margin margin-right| As listed for the individual CSS
margin-left| properties above.

margin-top |
margin-bottom

CSS to EDD Mapping

190

CSS Formatting Model

CSS property CSS Property Values Mapped to EDD property Comments/Values

border, Not supported

border*

padding, Not supported

padding*

width Not supported

height Not supported

min-width Not supported

min-height Not supported

max-width Not supported

max-height Not supported

float left PropertiesPagination < The main flow in the target
Placement < SideHead < structured document must have
Left “room for side head” enabled to

acheive the expected result.
right Not supported
clear Not supported

Structured Application Developer Reference

191

CSS Formatting Model

CSS property CSS Property Values

Mapped to EDD property

Comments/Values

display

inline

block

run-in

compact

list-item

CSS inline elements are
supported by using the
TextRangeFormatting
element.

CSS block elements are
supported by using the
ParagraphFormatting
element.

PropertiesPagination <
Placement < RunlnHead
element

PropertiesPagination <
Placement < SideHead
element

PropertiesNumbering <
AutoNumFormat

® WhenCSSinlineis
specified all CSS properties
that map to EDD
PropertiesFont child
elements are retained. All
other CSS properties are
ignored.

* The default behaviour of CSS
inlineisequivalenttoa
FrameMaker text range.

* The default behaviour of CSS
bock is equivalent to a
FrameMaker paragraph.

* |[fthere are two different rules
for a single element in which
one of the selectors is more
specific than the other, and
both rules specify the display
property with a different
value, then in FrameMaker
the final value of the display
property is undefined, and
the corresponding element
type in the EDD is also
undefined.

The main flow in the target
structured document must have
“room for side head” enabled to
acheive the expected result.

An appropriate
AutoNumFormat must be
created based on the list-
style-type property.

CSS to EDD Mapping

192

CSS Pagination Properties

CSS Pagination Properties

The CSS Pagination properties are mapped as in the following table:

CSS property CSS Property Values

EDD property

Comments/Values

page- auto | always |
break- avoid| left|right
before | inherit

page-break-after

page-break-inside

widows/ integer|inherit

orphans

marks crop|cross

@page

page

size length|auto |
portrait|
landscape |
inherit

PropertiesPagination <
StartPosition

CSS to EDD element mapping:
* always =TopOfpage
e left=TopOfLeftPage

® right=
TopOfRightPage

The avoid property is not
supported.

Not supported
Not supported

PropertiesPagination <
WidowOrphanLines

Not supported

Not supported

Not supported

In CSS, widows and orphans are
different properties and hence
they can have different values.
But,inthe EDD, a single element,
WidowOrphanLines, controls
both values, and hence they
have the same value.

An EDD has no control over the
page layout. In FrameMaker
page layout is designed into the
structured template.

To acheive the required result
set up a suitable
ApplyMasterPages command.
See the Using Adobe®
FrameMaker® guide.

An EDD has no control over the
page layout. In FrameMaker
page layout is designed into the
structured template.

Structured Application Developer Reference

193

CSS generated content, automatic numbering, and lists

CSS generated content, automatic numbering, and lists

The CSS generated content, automatic numbering, and lists are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property

Comments/Values

list- * disc Not supported
style-type circle

® square

® decimal

® decimal-leading-
zero

® |ower-roman
® upper-roman
® |ower-alpha
® upper-alpha
® |ower-latin

® upper-latin
® |ower-greek
® hebrew

® armenian

® georgian

® cjk-ideograph
® hiragana

® katakana

® hiragana-iroha

® katakana-iroha

® none
list-style-image Not supported
list-style-position Not supported

list-style list-style-type, Notsupported
list-style-image,
list-style-
position

This CSS property is not
supported in EDD. We have to
enhance EDD for this.

CSS to EDD Mapping

194

CSS generated content, automatic numbering, and lists

CSS property CSS Property Values

Mapped to EDD property

Comments/Values

content string

attr(attname)
open-quote

close-quote

counter
uri,quotes

counter-
increment

counter-
reset

counter
counters
marker

marker
offset

White-
space

position
z-index

visibility

The text content of the Prefix
or SuFFix element.

<Sattribute[attname]>

Not supported
Not supported

Not supported

Not supported

Not supported
Not supported
Not supported

Not supported

Not supported

Not supported
Not supported

Not supported

string, attr(attname),
open-quote and close-
quote may be used in any
combination as required.
Separate each item with
whitespace.

® To create a Prefix use the CSS
:before psuedo element
selector

® To create a Suffix use the CSS
:after psuedo element
selector

® |n CSS, the string generated
by the content property
can have any CSS style. In
contrast, EDD Prefix and
Suffixrules can have only
use font formatting (through
the PropertiesFont
element).

Structured Application Developer Reference

195

CSS Tables

CSS Tables

Container is the default element type in an EDD. An element can be specified in CSS as a
table componentor table component group using the display property. If an
element is a Container in the EDD but the CSS specifies the element as Table/table-Tow, then
the element type in EDD is changed from Container to the corresponding table element type.

CSS property CSS Property Values

Mapped to EDD property

Comments/Values

display

table

table-inline
table-row
table-row-group

table-header-
group

table-footer-
group

table-cell

table-caption

Element < Table

Not supported
Element < TableRow
Element < TableBody

Element < TableHeading

Element < TableFooting

Element < TableCell
Element < TableTittle

® FrameMaker table part
elements cannot have
PrefixRulesor
SuffixRules. So, arule
with the -after or
:before pseudo element
selector, is ignored.

* FrameMaker table part
elements cannot have
TextRangeFormatting
element in the EDD. So, the
inline value of the
display property is
ignored.

colspan Straddling in FrameMaker core The New element needs to be

rowspan added in EDD.

border FM core supports border in The New element needs to be
Table and Table cell. added in EDD.

background FM core supports backgroundin The New element needs to be

Table and Table cell.

added in EDD.

CSS to EDD Mapping

196

CSS Selectors

CSS property CSS Property Values

Mapped to EDD property

Comments/Values

table-column Not supported. Column

table-column-group

selectors are also not supported

as they are applied in table-
column and table-column-

group only.
caption- top |bottom| left| Notsupported
side right
empty- show | hide Not supported
cells
table- auto | fixed Not supported
layout

CSS Selectors

The CSS selectors are mapped as in the following table:

CSS selector Matches EDD selector
* any element The * selector matches any single
element of the document tree. So,
properties specified using * are applied
to all elements in EDD.
E Any element Elem Element(Container): E
FE Any element E that is descendent of If contextis: * <F
element F
F>E Any E element that is child of F Element (Container): E
If context is: F
F+E Any E element that immediately follows {after F}
F * + Emapsto{notfirst}.
.class any element with class “class” Not supported
#id element with ID id Element (Container): E

First-child Any element that is the first child of its

parent
link
cvisited

Hyperlink visited or not

If context is: [[Dname="id"]

{fTirst}

Ignored as it does not apply to
FrameMaker.

Structured Application Developer Reference

197

CSS Selectors

CSS selector

Matches

EDD selector

active
-hover
:focus

:lang(c)

[att]
[att=val]

[att~=val]

[att |= “val’]

E:first-letter
E:first-line

E:before
E:after

Any element that is activated by the user
using the mouse, etc.

Any element whose content is in the 'C’
language

Any element with attribute att

Any element with attribute att and
value val.

Any element that includes the word
“val” in its value.

Any element with an att attribute value
“val-.."

The first letter of any element E
The first line of any element E

The text to be inserted at the start/end of
any element E

Ignored as it is for an interactive browser

Element (Container):E
General Rule: <ANY>
If context is: [xml:lang="c"]

Not supported

Element (Container):E
General Rule: <ANY>
If context is: [att="val"]

Not supported

Not supported

Not supported
Not supported

Maps to Prefix and Suffix rules in EDD. For
more details, see the “content”

property.

CSS to EDD Mapping

198

XML Schema to DTD Mapping

When XML documents are associated with an XML Schema declaration, FrameMaker can convert
the Schema to a DTD declaration, from which you can create or modify an EDD. The content
models of Schema and DTD are not identical. This chapter shows how Schema definitions are
mapped into DTD definitions.

For details of how special objects are handled when converting Schema to DTD, see the individual
object discussions in Developer Guide, Part IV, Translating Between Markup Data and FrameMaker

Note: The DTD generated from Schema always uses UTF8 encoding, regardless of the
encoding used in the Schema file.

If you wish to modify the DTD that is generated automatically, you can do so. If you do this,
reference the modified DTD from the original XML document. When FrameMaker imports an XML
document that references both a Schema and DTD, it uses the DTD to create the FrameMaker
elements, although it still validates the contents against the Schema.

Schema location

You can import an XML document that references a Schema file, and you can specify a Schema
file in your structure application, to use for validating a document upon export to XML.

To specify a Schema file for use in exporting to XML, modify the structapps. fm file. The
element Schema, a child of the XmIAppl ication element, specifies the Schema file path for
export. The property Namespace in XmIAppl ication must be set to true if instance
documents use namespaces. See “Specifying a Schema for XML” on page 23

For importing an XML document, include the path of the Schema file in the XML using
attributes—noNamespaceSchemalLocation or schemalLocation depending on whether
your schema includes a target namespace or not. A DTD is generated automatically when you
import the XML, and the EDD is generated from the DTD.

Schema allows an XML document to reference multiple Schema locations in different namespaces
using the root-element attribute Xsi :schemalLocation, which can have multiple values. This
feature has no equivalent in DTD. If an XML document references multiple Schema locations,
FrameMaker uses only the first one for generating a DTD and for validation.

You can load XML documents that use noNamespaceSchemalLocation. For example:

<RootElementName id="RootElementID"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:noNamespaceSchemalLocation="MySchema.xsd">

Structured Application Developer Reference 199

Simple type mapping

If an imported document references both a valid DTD location and a Schema location, the
document is validated against the Schema. If there is no Schema location value, it is validated
against the DTD. If neither location is specified, the load shows a warning similar to the one for a
document that has no DOCTYPE statement.

If an imported document references both a DTD location and a Schema location, but the
referenced DTD location is not valid, the load fails with the error “invalid external entity.”
FrameMaker does not, in this case, generate a new DTD from the referenced Schema.

Namespace and Schema location attributes

The root element is not created automatically, therefore, the conversion process adds attributes
for namespace definitions and schema location in all global elements specified in the Schema,
which are then copied into the EDD that is created from the DTD. If you do add a root element,
as recommended, these attributes are not needed, although they are not harmful.

If you wish, you can remove these extra attributes in two ways:

* After you generate an EDD from Schema, remove the extra attributes from the non-root
elements in the EDD, and create a template. In this case, you do not need to provide an external
DTD in the instance XML document.

® Remove the extra attributes from the non-root elements in the generated DTD, and save the
modified DTD as an external DTD in the instance document. This is the technique to use if you
want to modify the default mapping to DTD. In this case, you do not need a template. If you
do wish to create a template, you can remove the attributes from the EDD as well.

Simple type mapping

All simple types in Schema translate to #PCDATA in DTD, and the Schema type anyType
translates to the DTD type ANY. For example:

Schema

<xsd:element name="AString" type="'xsd:string"'/>
<xsd:element name="AnUnsignedInt” type="xsd:unsignedInt'/>
<xsd:element name="ABoolean" type="xsd:boolean"/>
<xsd:element name="'AgYearMonth" type=''xsd:gYearMonth"/>
<xsd:element name="‘AgMonthDay' type="'xsd:gMonthDay"/>
<xsd:element name="AnyTypeElem" type=''xsd:anyType'/>

XML Schema to DTD Mapping 200

Simple type mapping

DTD

<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT

AString(#PCDATA)>
AnUnsigned Int(#PCDATA)>
ABoolean (#PCDATA)>
AgYearMonth (#PCDATA)>
AgMonthDay (#PCDATA)>
AnyTypeElem (ANY)>

Attributes of simple type elements

Attribute of simple types translate to CDATA, NMTOKEN, NMTOKENS, ID, IDREFS, ENTITY, and
so on. Enumeration facets in attributes are exported to DTD. Other simple type facets, xsd: list

facets, and xsd

Note the translation of use, fixed and default attribute combinations in the following

example:
Schema

<xsd:attr
<xsd:attr

sunion facets are dropped.

ibute name=""ReqdAttr" type="Xxsd:int" use="required'/>
ibute name="OptAttr" type="'xsd:int" use="optional"/>

<xsd:attribute name="ProhAttr" type="xsd:int" use="prohibited"/>
<xsd:attribute name="FixedReqdAttr" type="'xsd:int" use="required”

fixed=""23"/>

<xsd:attribute name="OptDefAttr" type=""xsd:int" use="optional"

default="12"/>

<xsd:attribute name="FixedOptAttr" type="xsd:int" use="optional”

fixed="25"/>

<xsd:attribute name="EnumAttr' use="optional' default="Male">
<xsd:simpleType><xsd:restriction base=""xsd:string'>
<xsd:enumeration value="Male"/>
<xsd:enumeration value="Female"/>
</xsd:restriction></xsd:simpleType>

</xsd:attribute>
DTD

<IATTLIST ElemName
FixedOptAttr

EnumAttr (Male|Female)
OptDefAttr NMTOKEN
ReqdAttr NMTOKEN

FixedReqdAttr

OptAttr NMTOKEN

#FIXED ""25"

#REQUIRED
#FIXED "23"
#IMPLIED>

Structured Application Developer Reference

201

Complex type mapping

Complex type mapping

Complex content models in Schema translate to similar constructs in DTD, insofar as possible. If
there are any errors in the Schema that result in a content model ambiguity, the content model is
translated to ANY in DTD.

Group

The group content model in Schema translates to a group in DTD. For example:
Schema

<xsd:element name="GroupElem">
<xsd:complexType><xsd:sequence><xsd:choice>
<xsd:group ref="IntStr"/>
<xsd:element name="MMIncl" type=''xsd:string"/>
</xsd:choice></xsd:sequence></xsd:complexType>
</xsd:element>

<xsd:group name="IntStr" id="Groupl">
<xsd:sequence>
<xsd:element name="Int" type="xsd:int" minOccurs="2"
maxOccurs=""2""/>
<xsd:element name=""Str" type="xsd:string'/>
</xsd:sequence>
</xsd:group>

DTD
<IELEMENT GroupElem (((abc:Int,abc:Int),abc:Str)|abc:MMIncl)>

Sequence

A Schema sequence content model translates to a sequence in DTD. Note the translation of
minOccurs and maxOccurs attribute value combinations in the following example.

XML Schema to DTD Mapping 202

Complex type mapping

Schema

<xsd:element name="TestOccurence'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Min0" type="'xsd:int" minOccurs="0"/>
<xsd:element name="Maxl" type="'xsd:int" maxOccurs="1"/>
<xsd:element name="MinOMax1"™ type="xsd:int"” minOccurs="0"
maxOccurs=""1"/>
<xsd:element name=""MinlMax1l' type="'xsd:int"” minOccurs=""1"
maxOccurs=""1"/>
<xsd:element name="Min2Maxl" type="xsd:int" minOccurs="2"
maxOccurs=""unbounded" />
<xsd:element name="MinOMax2" type="xsd:int"” minOccurs="0"
maxOccurs=""2"/>
<xsd:element name=""Min2Max10" type=""xsd:int' minOccurs="2"
maxOccurs=""10"/>
<xsd:element name="Min2Max3" type="'xsd:int" minOccurs="2"
maxOccurs=""3"/>
</xsd:sequence>
</xsd:complexType>

DTD

<IELEMENT TestOccurence
((Min0? ,Max1,MinOMax1? ,Min1Max1, (Min2Max1 ,Min2Maxl ,Min2Max1*),
(MinOMax2*) , (Min2Max10,Min2Max10,Min2Max10%),
(Min2Max3, Min2Max3, Min2Max37?))>

Choice

A Schema choice content model translates to a choice in DTD. For example:
Schema

<xsd:element name="ChoiceElem">
<xsd:complexType>
<xsd:sequence>
<xsd:choice>
<xsd:element name="Int" type="xsd:int'"/>
<xsd:element name=""Str" type="xsd:string'/>
<xsd:element name="MMIncl" type='xsd:int'/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Structured Application Developer Reference 203

Complex type mapping

DTD
<IELEMENT ChoiceElem ((Int]Str)|MMIncl)>
<IELEMENT Int (#PCDATA)>
<IELEMENT Str (#PCDATA)>
<IELEMENT MMIncl (#PCDATA)>
All
A Schema al I content model translates to a choice of elements with multiple occurrences in DTD.
For example:
Schema

<xsd:element name="DataType'>

<xsd:complexType>

<xsd:all>
<xsd:element name="'AName' type="'xsd:Name'/>
<xsd:element name="AQName"' type=''xsd:QName'/>
<xsd:element name="ANCName" type=""xsd:NCName'/>
<xsd:element name="AnyURI" type="xsd:anyURI"/>
<xsd:element name="AlLanguage' type="'xsd:language"/>
<xsd:element name=""AnID" type="'xsd:I1D"/>
<xsd:element name=""AnIDRef" type="'xsd:IDREF"/>
<xsd:element name="AIDREFS" type="'xsd: IDREFS"/>

</xsd:all></xsd:complexType></xsd:element>

DTD

<IELEMENT DataType
(AName | AQName | ANCName | AnyURI |ALanguage JAnID]JAn1DReT]AIDREFS) *>

Named complex types

Named complex types in Schema are dropped, and their content model is substituted into the
corresponding DTD elements. For example:

XML Schema to DTD Mapping 204

Complex type mapping

Schema

<xsd:element name="AddressDetails">
<xsd:complexType><xsd:sequence>
<xsd:element name="ToAddress" type="'USAddress'/>
<xsd:element name="FromAddress" type="USAddress'/>
</xsd:sequence></xsd:complexType>
</xsd:element>

<xsd:complexType name=""USAddress''>
<xsd:sequence>
<xsd:element name="hame" type="'xsd:string'/>
<xsd:element name="'street" type=''xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type=''xsd:string'/>
<xsd:element name="zip" type='xsd:int'/>
</xsd:sequence>
<xsd:attribute name="'country' type="'xsd:NMTOKEN" fixed="US"/>
<xsd:attribute name=""headquarter" type="xsd:string"
use=""required"/>
</xsd:complexType>

DTD

<IELEMENT AddressDetails (ToAddress,FromAddress)>
<IELEMENT ToAddress ((name,street,city,state),zip)>
<IATTLIST ToAddress country NMTOKEN #FIXED 'US"

headquarter CDATA #REQUIRED >
<IELEMENT FromAddress

((name,street,city,state),zip)>
<IATTLIST FromAddress

country NMTOKEN #FIXED ''US"

headquarter CDATA #REQUIRED >
<IELEMENT name (#PCDATA)>
<IELEMENT street (#PCDATA)>
<IELEMENT city (#PCDATA)>
<IELEMENT state (#PCDATA)>
<IELEMENT zip (#PCDATA)>

Named attribute groups

Named attribute groups in Schema are dropped, and the attributes are put into the corresponding
DTD attribute list. For example:

Structured Application Developer Reference 205

Complex type mapping

Schema

<xsd:element name="PersonalDetails'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="'xsd:string'/>
</xsd:sequence>
<xsd:attributeGroup ref="PersonalData'/>
</xsd:complexType>
</xsd:element>

<xsd:attributeGroup name=""PersonalData">
<xsd:attribute name=""Age" type="'xsd:int" use="required'/>
<xsd:attribute name="Gender'>
<xsd:simpleType><xsd:restriction base=""xsd:string'>
<xsd:enumeration value="Male"/>
<xsd:enumeration value="Female"/>
</xsd:restriction></xsd:simpleType>
</xsd:attribute>
</xsd:attributeGroup>

DTD

<IELEMENT PersonalDetails (Name)>
<IATTLIST PersonalDetails

Age NMTOKEN #REQUIRED

Gender (Male|Female) #IMPLIED>
<IELEMENT Name (#PCDATA)>

Abstract elements

For an abstract element in Schema is substituted into DTD elements using its own substitution
group, if one is defined. Otherwise, the element maps directly to a DTD element. For example:

XML Schema to DTD Mapping 206

Complex type mapping

Schema

<xsd:element name=""RootElem">
<xsd:complexType><xsd:all>
<xsd:element name="Eleml" type="'xsd:int" minOccurs="0"/>
<xsd:element ref="AbstractElem"/>
</xsd:all></xsd:complexType>
</xsd:element>

<xsd:element name="AbstractElem" type="'xsd:string"
abstract=""true"/>

<xsd:element name="'Substitutel” type=''xsd:string"
substitutionGroup=""AbstractElem"/>

<xsd:element name="Substitute2" type='xsd:string”
substitutionGroup=""AbstractElem"/>

DTD

<IELEMENT RootElem (Eleml?](Substitutel]Substitute2))*>
<IELEMENT Eleml (#PCDATA)>

<IELEMENT Substitutel (#PCDATA)>

<IELEMENT Substitute2 (#PCDATA)>

Mixed content models

A mixed content model translates to a multiple occurence of choice between elements in the
content model and #PCDATA. Occurence constraints associated with the elements and content
model are ignored. For example:

Schema

<xsd:element name="'RootElem'>
<xsd:complexType mixed=""true''><xsd:sequence>
<xsd:element name="eleml" type="'Xxsd:string"
maxOccurs=""unbounded/>
<xsd:element name="elem2" type=''xsd:positivelnteger”/>
<xsd:element name="elem3" type=""xsd:string"/>
<xsd:element name="elem4" type="'xsd:date'™ minOccurs="0"/>
</xsd:sequence></xsd:complexType>
</xsd:element>

DTD
<IELEMENT RootElem (#PCDATAeleml]elem2]elem3|elemd)*>
<IELEMENT eleml (#PCDATA)>
<IELEMENT elem2 (#PCDATA)>
<IELEMENT elem3 (#PCDATA)>
<IELEMENT elem4 (#PCDATA)>

Structured Application Developer Reference 207

Supported Schema features

Supported Schema features

Supported element qualification features of Schema are listed below with their mapping into DTD.

Defaults

The Schema attributeFormDefaul t and elementFormDefault are honored wherever
they occur. For example:

Schema

<xsd:schema xmlns:xsd=""http://www.w3.0rg/2001/XMLSchema*
targetNamespace=""Schema-abstract-elements"
xmlns:abc=""Schema-abstract-elements"
elementFormbDefault="qualified'">

<xsd:element name=""RootElem">
<xsd:complexType><xsd:sequence>
<xsd:element name="Eleml" type=''xsd:int"/>
</xsd:sequence></xsd:complexType>
</xsd:element>

DTD
<IELEMENT abc:RootElem (abc:Eleml)>

Any

Any content model containing the Schema <any> element translates to the DTD ANY content
model, regardless of additional content. For example:

Schema

<xsd:element name=""AnyElem">
<xsd:complexType><xsd:sequence>
<xsd:element name="Eleml" type="'xsd:int"'/>
<xsd:any namespace="http://www.w3.0rg/1999/xhtml"
minOccurs="1" maxOccurs="unbounded"
processContents="skip"/>
</xsd:sequence></xsd:complexType>
</xsd:element>

DTD

<IELEMENT AnyElem ANY>
<IELEMENT Eleml (#PCDATA)>

Notice in this example that the Eleml element is translated independently, and is not part of
AnyElem in the DTD.

XML Schema to DTD Mapping 208

Supported Schema features

Extension and restriction of complex types

Extension and restriction of a complex type in Schema translates directly to the DTD. For example:
Schema

<xsd:element name="ElemA" type=""ComplexTypeB"/>
<xsd:complexType name=""ComplexTypeA">
<xsd:sequence>
<xsd:element name="eleml” type="'xsd:string” maxOccurs="3"/>
<xsd:element name="elem2" type="xsd:string'/>
</xsd:sequence>
<xsd:attribute name="attrl" type=""xsd:NMTOKEN"/>
<xsd:attribute name="attr2" type="'xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name=""ComplexTypeB">
<xsd:complexContent>
<xsd:extension base="ComplexTypeA">
<xsd:attribute name=""attr3" type=''xsd:date"
use=""required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

DTD
<IELEMENT ElemA ((eleml,eleml™),elem2)>
<IATTLIST ElemA attrl NMTOKEN #IMPLIED
attr2 CDATA #REQUIRED
attr3 NMTOKEN #REQUIRED >
<IELEMENT eleml (#PCDATA)>
<IELEMENT elem2 (#PCDATA)>

Include, import, and redefine

The include, import and redefine constructs allow one Schema file to refer to other
Schema files. In converting to DTD, information from such referenced Schema files is included, but
all elements are output to a single DTD. For example, if a Schema file a.xsd with namespace
Nns_a imports another Schema, b . xsd with namespace ns_b, the resulting DTD contains
elements from both ns_a and ns_b namespaces.

The following example shows three Schema files; the first, example . xsd, includes the file
named include.xsd, and imports the file named import.xsd. When the file example . xsd
is imported into FrameMaker, the resulting DTD includes definitions for all three files.

Structured Application Developer Reference 209

Supported Schema features

Schema

First file, example._.xsd
<schema targetNamespace=""Include-Import-Example"
xmIns=""http://www.w3.0rg/2001/XMLSchema"
xmIns:a=""Include-Import-Example"
xmIns:b=""Import-schema™ elementFormDefault=""qualified">
<include schemalLocation="_/include.xsd"/>
<import namespace=""Import-schema"™ schemalLocation="_/import.xsd"/>
<element name="rootEleml'>
<complexType><sequence>
<element name="eleml" type="'a:complexTypeA"/>
<element ref="b:importEleml™/>
<element ref="a:includeElem3"/>
</sequence>
</complexType>
</element>
</schema>

Second file, include.xsd

<schema targetNamespace=""Include-Import-Example"
xmIns=""http://www.w3.0rg/2001/XMLSchema"
xmIns:a=""Include-Import-Example"
elementFormDefault="qualified">
<complexType name="‘complexTypeA'><sequence>
<element name="includeEleml" type="'string'/>
<element name="includeElem2" type="'string'/>
</sequence></complexType>
<element name=""includeElem3" type="int"/>
</schema>

Third file, import._xsd

<schema targetNamespace=""Import-schema"
xmIns=""http://www.w3.0rg/2001/XMLSchema"
xmIns:c="Import-schema™ elementFormDefault=""qualified">

<element name="importEleml"” type=""int"/>

<element name="importElem2" type="string'/>

</schema>

XML Schema to DTD Mapping 210

Unsupported Schema features

DTD

<?xml version="1.0" encoding="UTF-8"7>

<IELEMENT c:importEleml (#PCDATA)>

<IELEMENT c:importElem2 (#PCDATA)>

<IELEMENT includeEleml (#PCDATA)>

<IELEMENT includeElem2 (#PCDATA)>

<IELEMENT includeElem3 (#PCDATA)>

<IELEMENT rootEleml ((eleml,c:importEleml),includeElem3)>
<IELEMENT eleml (includeEleml, includeElem2)>

Unsupported Schema features

Features of Schema listed below cannot be mapped into DTD, and are dropped:
*® Abstract types
e key, keyref, and unique

® Annotations

Structured Application Developer Reference

211

Unsupported Schema features

XML Schema to DTD Mapping 212

The CALS/OASIS Table Model

The CALS or the related OASIS table model is a specific set of element and attribute declarations
for defining tables, originally defined in “Markup Requirements and Generic Style Specification for
Electronic Printed Output and Exchange of Text,” MIL-M-28001B. The OASIS table model is an XML
expression of the exchange subset of the full CALS Table Model DTD. If your markup documents
use these elements and attributes or some simple variations of them, FrameMaker can translate
them to tables and table parts without the assistance of read/write rules. The CALS model can be
interpreted in various ways. This chapter describes the CALS elements and attributes as they are
interpreted by FrameMaker.

Some attributes are common to several elements in the description of the table. In these cases,
attribute values are inherited in the element hierarchy. The values of attributes associated with
<colspec> and <spanspec> elements act as though they were on the parent element for
inheritance purposes. This is, if a <tgroup> element has two <colspec> child elements and a
<thead> child element, the attributes of the <colspec> elements apply to the <thead>
element unless that element has its own <colspec> elements with attribute values that override
the inherited ones. If you want to change how FrameMaker processes any attribute of a
<colspec> or <spanspec> element, you refer to the attribute as a formatting property.

In the CALS model, the <table> element has an <orient> attribute. This attribute is not
supported in FrameMaker, because there is no way in a FrameMaker table to specify orientation
on the page.

FrameMaker properties that DO NOT have corresponding
CALS attributes

FrameMaker Property For FrameMaker Elements Corresponding CALS
of Type Attribute
column widths table (CALS: tgroup) (none)

Column widths: Width of successive columns in the table. Each value is either an absolute width

or a width proportional to the size of the entire table. If proportional widths are used, the CALS -
pgwide- attribute determines the table width. For example, to specify that the first two columns
are each one-quarter the size of the table, and the third column is half the size of the table, you

could write a rule to specify your column widths as “25* 25* 50*". Valid units and abbreviations for
the “column width” formatting property are:

Structured Application Developer Reference 213

Element and attribute definition list declarations

Unit Abbreviation

centimeter cm

cicero cc

didot dd

inch in (in FrameMaker dialog boxes, “ is also used, but
not for “column width” formatting property)

millimeter mm

pica pc (or pi)

point pt

FrameMaker Property For FrameMaker Elements Corresponding CALS

of Type Attribute
maximum height row (none)

Maximum height of a row in a table.
minimum height row (none)
Minimum height of a row in a table.
row type row (none)

Whether the associated table row is a heading, footing, or body row, or the associated table cell
occurs in a row of that type.

horizontal straddle cell (none)
How many columns this straddle cell spans
vertical straddle cell (none)

How many rows this straddled cell spans

Element and attribute definition list declarations

The element and attribute declarations as used by FrameMaker are as follows:

<IENTITY % yesorno "NUMBER''>

The CALS/OASIS Table Model 214

Element and attribute definition list declarations

<IELEMENT table - - (title?, tgroup+)>
<IATTLIST table
colsep %yesorno; #IMPLIED
frame (all]top|bottom] topbot]sides|none) #IMPLIED
pgwide %yesorno; #IMPLIED
rowsep %yesorno; #IMPLIED
tabstyle NMTOKEN #IMPLIED
>

<IELEMENT title - - (#PCDATA)>

<IELEMENT tgroup - O (colspec*, spanspec*, thead?, tfoot?, tbody)>
<IATTLIST tgroup

align (left]center|right]justify]char) #IMPLIED
char CDATA #IMPLIED
charoff NUTOKEN #IMPLIED
colsep %yesorno; #IMPLIED
cols NUMBER #REQUIRED
rowsep %yesorno; #IMPLIED

tgroupstyle NMTOKEN #IMPLIED
>

<IELEMENT colspec - O EMPTY>
<IATTLIST colspec
align (left]center|right]justify]char) #IMPLIED
char CDATA #IMPLIED
charoff NUTOKEN #IMPLIED
colname NMTOKEN #IMPLIED
colnum NUMBER #IMPLIED
colsep %yesorno; #IMPLIED
colwidth CDATA #IMPLIED

rowsep %yesorno; #IMPLIED
>

<IELEMENT spanspec - O EMPTY>
<IATTLIST spanspec
align (left]center|right]justify]char) #IMPLIED
char CDATA #IMPLIED
charoff NUTOKEN #IMPLIED
colsep %yesorno; #IMPLIED
nameend NMTOKEN #REQUIRED
namest NMTOKEN #REQUIRED
rowsep %yesorno; #IMPLIED
spanname NMTOKEN #REQUIRED

Structured Application Developer Reference 215

Element structure

<IELEMENT thead - O (colspec*, row+)>
<IATTLIST thead

valign (top|middle]|bottom) "bottom"
>

<IELEMENT tfoot - O (colspec*, row+)>
<IATTLIST tfoot

valign (top|middle]bottom) *top™
>

<IELEMENT tbody - O (row+)>
<IATTLIST tbody

valign (top|middle|bottom) 'top"
>

<IELEMENT row - O (entry+)>

<IATTLIST row
rowsep %yesorno; #IMPLIED
valign (top|middle]bottom) "top"

>

<IELEMENT entry - O (#PCDATA)>
<IATTLIST entry
align (left]center|right]justify|char) #IMPLIED
char CDATA #IMPLIED
charoff NUTOKEN #IMPLIED
colname NMTOKEN #IMPLIED
colsep %yesorno; #IMPLIED
morerows NUMBER #IMPLIED
nameend NMTOKEN #IMPLIED
namest NMTOKEN #IMPLIED
rotate %yesorno; #IMPLIED
rowsep %yesorno; #IMPLIED
spanname NMTOKEN #IMPLIED
valign (top|middle]|bottom) #IMPLIED

Element structure

A CALS table has an optional title followed by one or more tgroup elements. This allows, for
example, different portions of one table to have different numbers of columns. In practice, most
CALS tables have a single tgroup element. The tgroup element is the major portion of the
table. It has several optional parts: multiple colspec and spanspec elements followed by (at
most) one heading and one footing element. The only required sub-element of a tgroup
element is its body. Unlike the FrameMaker model of table structure, the CALS model has its
tgroup element appearing after the footing element.

The CALS/OASIS Table Model 216

Attribute structure

The colspec empty element has attributes describing characteristics of a table column. The
spanspec empty element has attributes describing straddling characteristics of a portion of a
table. These elements have no counterpart in FrameMaker. They exist only to have their attribute
values specify information about other elements in the table.

The thead and tfoot heading and footing elements contain their own optional colspec
elements followed by one or more rows.

The tbody element contains one or more rows.

As supported by FrameMaker, a table row consists of a set of cells in entry elements, each of
which can contain only text. Readers familiar with the CALS model may notice that these
declarations do not include the entrytbl element which supports creating tables within tables.
FrameMaker does not allow tables within tables, so does not support this element.

Attribute structure

Elements in the CALS table model use attributes to describe properties of the table such as cell
alignment or straddling behavior. For information on the meaning of the CALS attributes, see
“Formatting properties for tables” on page 345.

Inheriting attribute values

Some attributes are common to several elements in the description of a table. In these cases,
attribute values are inherited in the element hierarchy. The values of attributes associated with
colspec and spanspec elements act as though they were on the parent element for
inheritance purposes. That is, if a tgroup element has two colspec child elements and a
thead child element, the attributes of the colspec elements apply to the thead element
unless that element has its own colspec elements with attribute values that override the
inherited ones.

Orient attribute

In the CALS model, the table element has an orient attribute. This attribute is not supported
in FrameMaker, because there is no way in a FrameMaker table to specify orientation on the page.

Straddling attributes

A spanspec element describes a column range so that a straddle cell can describe which
columns it spans by referencing a spanspec through its spanname attribute.

An entry element specifies which columns it occupies by one of three methods:

* Using the namest and nameend attributes to reference columns explicitly. The namest
attribute indicates the first column in the straddle; the nameend attribute indicates the last
column.

Structured Application Developer Reference 217

Attribute structure

® Using the spanname attribute as an indirect reference to the columns.

® Using the colname attribute (for a non-straddled cell).

The CALS/OASIS Table Model 218

Read/Write Rules for the CALS/OASIS
Table Model

By default, FrameMaker can read and write CALS (or OASIS) tables without your intervention. For
information on what it does by default and how you can change that behavior with read/write

rules, see Chapter 22, “Translating Tables” FrameMaker does not use read/write rules to

implement its default interpretation of CALS tables. However, to help your understanding of the
default interpretation, this chapter contains a set of rules that encapsulate the software’s default
behavior for CALS tables.

As described in Chapter 22, “Translating Tables,” the software’s default behavior is different
depending on whether the table element is a container element or a table element in

FrameMaker. The only difference is what type of element table becomes and what happens to

the tgroup element. All other elements and attributes always translate in the same way.

element ""tab

/* 1T table is a container element, use this subrule: */

is fm ele

le" {

ment;

/* 1T table is a table element, use this subrule: */
is fm table element;

/* The rest
attribute
attribute
attribute
{

is fm
value
value
value
value
value
value
3
attribute
attribute
attribute
attribute

}

of the subrules for table are always applicable. */
"tabstyle" is fm property table format;
"tocentry" is fm attribute;

"frame"'

property table

“top"
"bottom"
""topbot™
"all"
"sides"
“none*’

"colsep™
""rowsep"’
"orient"
"pgwide™

element *"tgroup”

{

is fm
is fm
is fm
is fm
is fm
is fm

fm
fm
fm
m

s
s
s

is

border ruling;

property value top;

property value bottom;
property value top and bottom;
property value all;

property value sides;

property value none;

property column ruling;
property row ruling;
attribute;

property page wide;

Structured Application Developer Reference

219

/* ITf table is a container element, use this subrule: */

is fm table element;

/* If table is a table element, use this subrule: */
unwrap;

/*The rest of the subrules for tgroup are always applicable.*/

attribute "cols" is fm property columns;
attribute "“tgroupstyle™ is fm property table format;
attribute "colsep™ is fm property column ruling;
attribute "rowsep" is fm property row ruling;
attribute "align" is fm attribute;
attribute "charoff" is fm attribute;
attribute "‘char™ is fm attribute;

}

element *colspec”

{
is fm colspec;
attribute "colnum” is fm property column number;
attribute "colname"™ 1is fm property column name;
attribute "align™ is fm property cell alignment type;
attribute “charoff" 1is fm property cell alignment offset;
attribute "char" is fm property cell alignment character;
attribute "colwidth" is fm property column width;
attribute "colsep” is fm property column ruling;
attribute "rowsep" is fm property row ruling;

}

element *spanspec™

{
is fm spanspec;
attribute "spanname' is fm property span name;
attribute "namest™ is fm property start column name;
attribute "nameend” 1is fm property end column name;
attribute "align” is fm property cell alignment type;
attribute "charoff" 1is fm property cell alignment offset;
attribute "char" is fm property cell alignment character;
attribute "colsep” is fm property column ruling;
attribute "rowsep™ is fm property row ruling;

}

element *"thead”

{
is fm table heading element;
attribute "valign" is fm attribute;

}

Read/Write Rules for the CALS/OASIS Table Model 220

element "tfoot"

{
is fm table footing element;
attribute "valign"” is fm attribute;

}

element "tbody"

{
is fm table body element;
attribute "valign"” is fm attribute;

}

element "row"

{
is fm table row element;
attribute "valign™ is fm attribute;
attribute "rowsep™ is fm property row ruling;

}

element "entry"

{
is tm table cell element;
attribute "colname™ 1is fm property column name;
attribute "namest™ is fm property start column name;
attribute "nameend" 1is fm property end column name;
attribute "spanname' is fm property span name;
attribute "morerows'" is fm property more rows;
attribute colsep™ is fm property column ruling;
attribute “rowsep™ is fm property row ruling;
attribute "rotate™ is fm property rotate;
attribute "valign"” is fm attribute;
attribute "align” is fm attribute;
attribute "charoff"” 1is fm attribute;
attribute *char™ is fm attribute;

}

Structured Application Developer Reference

221

Read/Write Rules for the CALS/OASIS Table Model 222

SGML Declaration

To be complete, an SGML document must start with an SGML declaration. This chapter contains
the text of the SGML declaration used by FrameMaker when you do not supply one. It also
describes the variants of the concrete syntax that you can use in your SGML declaration and
unsupported optional SGML features.

Note: XML: The XML specification states that XML must use a specific SGML declaration.
This chapter pertains only to SGML structure applications. If you are only working with
XML markup, you may skip this chapter.

When you import an SGML document, FrameMaker first searches for the declaration in the SGML
document. If the software does not find the declaration there, it looks for an SGML declaration
specified by your SGML application definition. If your definition does not specify an SGML
declaration, then the software uses the declaration described below.

When you export a FrameMaker document to SGML, FrameMaker first tries to use an SGML
declaration you specified by your application. If you haven't specified one, it uses the SGML
declaration described below.

For information on how to specify an SGML declaration as part of an application, see Developer
Guide, page 134: Application definition file.

Text of the default SGML declaration

The SGML declaration provided by FrameMaker uses ISO Latin-1 as the character set, the reference
concrete syntax, and the reference capacity set. The declaration enables the optional features
OMITTAG, SHORTTAG, and FORMAL.

For information on the default translation between the FrameMaker and ISO Latin-1 character
sets, see Chapter 11, “Character Set Mapping.” For information on using other ISO character sets,
see Chapter 10, “ISO Public Entities.”

The text of the default SGML declaration is as follows:
<ISGML "ISO 8879:1986"
CHARSET

BASESET "1SO Registration Number 100//CHARSET ECMA-94 Right
Part of Latin Alphabet Nr. 1//ESC 2/13 4/1"

Structured Application Developer Reference 223

Text of the default SGML declaration

DESCSET
0 9 UNUSED
929
11 2 UNUSED
13 1 13
14 18 UNUSED
32 95 32
127 1 UNUSED
128 127 128
255 1 UNUSED

CAPACITY
PUBLIC "1SO 8879:1986//CAPACITY Reference//EN"

SCOPE DOCUMENT
SYNTAX

SHUNCHAR 0123456789 10 11 12 13 14 15 16 17 18
19 20
21 22 23 24 25 26 27 28 29 30 31 127 255

BASESET "ISO Registration Number 100//CHARSET ECMA-94 Right
Part of Latin Alphabet Nr. 1//ESC 2/13 4/1"

DESCSET 0 256 O

FUNCTION RE 13
RS 10
SPACE 32
TAB SEPCHAR 9

NAMING LCNMSTRT ****
UCNMSTRT ****
LCNMCHAR "'-."
UCNMCHAR "'-."
NAMECASE
GENERAL YES
ENTITY NO

DELIM GENERAL SGMLREF
SHORTREF SGMLREF

NAMES SGMLREF
QUANTITY SGMLREF
FEATURES

SGML Declaration 224

SGML concrete syntax variants

SGML concrete syntax variants

MINIMIZE DATATAG NO

LINK

OMITTAG YES

RANK NO
SHORTTAG YES
SIMPLE NO

IMPLICIT NO
EXPLICIT NO

OTHER CONCUR NO

SUBDOC NO
FORMAL YES

APPINFO NONE

>

The SGML parser used by FrameMaker allows these modifications to the SGML reference concrete
syntax:

® The NAMECASE parameter of the SGML declaration can be changed. The default settings below
specify that general names are not case sensitive (YES), and entity names are case sensitive

(NO):

NAMECASE

GENERAL YES
ENTITY NO

Reserved names can be changed.

Short references can, but need not, be used. If they are used, the only possible short reference

delimiter set is that of the reference concrete syntax.

The value for the NAMELEN quantity can be increased up to 239.

The values for the following quantities can be increased, but not to more than 30 times their

value in the reference concrete syntax:

ATTCNT
ATTSPLEN
BSEQLEN
ENTLVL
LITLEN
PILEN
TAGLEN
TAGLVL

Structured Application Developer Reference

225

Unsupported optional SGML features

® The following quantities can be increased up to 253:

GRPCNT
GRPGTCNT
GRPLVL

No SGML read/write rules are needed to provide for variant concrete syntaxes. FrameMaker
obtains the information from the SGML declaration.

The concrete syntax declared in the SGML declaration must be used for the entire document; if a
variant concrete syntax is declared, the reference concrete syntax cannot be used in the prolog.
Thus, the concrete syntax scope parameter must be:

SCOPE DOCUMENT

Unsupported optional SGML features

The SGML standard defines some features as optional, meaning that a specific implementation
does not have to accommodate these features to be considered a conforming SGML system.

The following optional SGML features are not supported by FrameMaker:
e DATATAG

* RANK

e LINK

SUBDOC
CONCUR

Your DTD and SGML documents cannot use any of these features. If they do, the FrameMaker
signals an error and terminates processing. You cannot change this behavior by providing an
SGML API client.

SGML Declaration 226

ISO Public Entities

Annex D of the SGML standard defines several sets of internal SDATA entities. Each entity
represents a character; each entity set is a logical grouping of these entities. DTDs frequently
include these entity sets by using parameter entity references to external entities accessed with a
public identifier. People in the SGML community frequently interchange DTDs and SGML
documents with such entity references and assume that the recipient can interpret the public
identifiers. FrameMaker includes copies of these entity sets and makes them available using the
default handling of public identifiers.

Note: XML: The XML specification does not allow SDATA entities, but it does allow
UNICODE and predefined character entities for special characters. This chapter pertains
only to SGML structure applications. If you are only working with XML markup, you may

skip this chapter.

These entity sets are defined in an ISO standard and are accessed with public identifiers, so they
are commonly known as /SO public entity sets. The public entity sets fall into the following

categories:

Entity set

Description

Latin alphabetic characters

Greek alphabetic characters

Greek symbols

Cyrillic alphabetic characters

Numeric and special graphic
characters

Diacritical mark characters
Publishing characters
Technical symbols

Added math symbols

Latin alphabetic characters used in Western European
languages

Letters of the Greek alphabet

Greek character names for use as variable names in technical
applications

Cyrillic characters used in the Russian language

Minimum data characters and reference concrete syntax
characters

Diacritical marks
Well-known publishing characters
Technical symbols

Mathematical symbols

If your application uses FrameMaker’s support of ISO entity sets, you may want to create palettes
your end user can use to enter these entities in a FrameMaker document. For information on
creating these palettes, see Developer Guide, page 336: Facilitating entry of special characters that

translate as entities.

Structured Application Developer Reference

227

What you need to use ISO public entities

What you need to use ISO public entities

For your end users to use characters from the I1SO public entity sets, your application needs two
pieces of information for each character entity: the entity’s declaration, and an SGML read/write
rule that tells FrameMaker how to translate a reference to that entity in an SGML document to a
character or variable in a FrameMaker document. FrameMaker provides this information in two

files for each entity set.

All files used for ISO public entity sets are in the directory $STRUCTDIR/ isoents. For
information on the location of this directory on your system, see Developer Guide, page 131:
Location of structure files. The files for each entity set are as follows:

Entity set

Entity declaration files

Read/write rules files

Latin alphabetic characters
Greek alphabetic characters
Greek symbols

Cyrillic alphabetic characters
Numeric and special graphic
characters

Diacritical mark characters

Publishing characters

Technical symbols

Added math symbols

isolatl.ent
isolat2.ent

isogrkl.ent
isogrk2.ent

isogrk3.ent
isogrk4.ent

isocyrl._ent
isocyr2.ent

isonum.ent

isodia.ent
isopub.ent

isobox.ent
isotech.ent

isoamso.ent
isoamsb.ent
isoamsr.ent
isoamsn.ent
isoamsa.ent
isoamsc.ent

isolatl.rw
isolat2.rw

isogrkl.rw
isogrk2.rw

isogrk3.rw
isogrk4.rw

isocyrl.rw
isocyr2.rw

isonum.rw

isodia.rw
isopub.rw

isobox.rw
isotech.rw

isoamso.rw
isoamsb.rw
isoamsr.rw
isoamsn.rw
isoamsa.rw
isoamsc.rw

ISO Public Entities

228

What you need to use ISO public entities

Entity declaration files

Each entity declaration file starts with two comment declarations that suggest both the public
identifier and the entity name by which to identify the entity set. For the ISO Latin-1 entity set,
these comments are:

<I-—- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
1SO 8879, provided this notice is included in all copies.

-——>

<I-- Character entity set. Typical invocation:
<IENTITY % 1SOlatl PUBLIC

"1SO 8879-1986//ENTITIES Added Latin 1//EN'>
%I1SOlatl;
-—>

After the initial comments, an entity declaration file consists of a sequence of entity declarations.
For example, the first few entity declarations for ISO Latin-1 are as follows:

<IENTITY aacute SDATA "[aacute]'--=small a, acute accent-->
<IENTITY Aacute SDATA "[Aacute]'--=capital A, acute accent-->
<IENTITY acirc SDATA *"[acirc]"--=small a, circumflex accent-->
<IENTITY Acirc SDATA "[Acirc]"--=capital A, circumflex accent-->
<IENTITY agrave SDATA "[agrave]'--=small a, grave accent-->
<IENTITY Agrave SDATA "[Agrave]''--=capital A, grave accent-->
<IENTITY aring SDATA "[aring]"--=small a, ring-->

<IENTITY Aring SDATA "[Aring]"--=capital A, ring-->

You should never modify these files, because they provide the standard ISO public entity
declarations.

If your SGML documents use the standard invocations for ISO public entity sets, you do not have
to provide any information in your application definition on where to find these entities;
FrameMaker finds them in the default directory. If necessary, you can provide explicit public
statements to substitute alternative versions of the entity sets. For information on working with
application definitions, see Developer Guide, page 134: Application definition file.

Entity read/write rules files

FrameMaker provides read/write rules for many of the entities in the ISO public entity sets. The
rules are organized in files for each public entity set. These files are not complete rules documents.
Instead, they are simply lists of rules or comments explaining which entities do not have default
correspondences.

Structured Application Developer Reference 229

What you need to use ISO public entities

You can include individual files in your application’s read/write rules document by using the
#include statement. To include the rules for all of the ISO public entity sets, use this single
statement:

#include isoall.rw
To include only the ISO Latin-1 entity set, use these statements:

#include isolatl.rw
#include isolat2.rw

For more information on read/write rules files, see Developer Guide, Chapter 18, Read/Write Rules
and Their Syntax

Format of entity rules

By default, FrameMaker has rules for each entity that can be represented in FrameMaker using the
standard FrameMaker character set, the Symbol font, or the Zapf Dingbat font and for a few (such
as the fractions in 1 sonum) that can be represented with a FrameMaker user variable. Entities that
cannot be represented in this way do not have a default translation. Users of your application may
have more fonts available. If so, you can modify these rules files to include translations for other
entities.

The default rules for entities available in the default character sets or through variables differ
depending on how FrameMaker translates the entity.

® |f the character appears in FrameMaker's standard character set and requires no special
formatting, the rule has the following form:
entity “ename" is fm char code;
where ename is the entity name and code is the character code. For example, the following
rule is for the small letter “a” with an acute accent:
entity "aacute" is fm char 0x87;
® |f the character appears in FrameMaker’s Symbol or Zapf Dingbat character set or appears in

FrameMaker's standard character set, but requires special formatting, the rule has the following
form:

entity "ename" is fm char code in "fmtag";
where ename is the entity name, code is the character code, and fmtag is one of the
character tags defined below. For example, the following rule is for the plus-or-minus sign:
entity "plusnm™ is fm char Oxbl in "FmSymbol";
* |f the character can be represented by an FrameMaker variable, the rule has the following form:

entity “ename" is fm variable "var';

where ename is the entity name and var is one of the FrameMaker variables defined below.
For example, the following rule is for the fraction one-half:

entity "fracl2" is fm variable "FmFracl2";

ISO Public Entities 230

What you need to use ISO public entities

For details on how each entity translates into a FrameMaker document, see the individual rules
files.

Character formats

As mentioned above, the rules for some character entities refer to FrameMaker character formats
or variable names. FrameMaker has default definitions for these character formats:

Character format Defined as

FmDenominator Default font, subscripted; other characteristics As Is

FmDingbats Zapf Dingbat font; other characteristics As Is

FmNumerator Default font, superscripted; other characteristics As s

FmSdata Default font, underlined and in green; other characteristics As Is

FmSuperscript Default font superscripted; other characteristics As Is

FmSymbol Symbol font; other characteristics As Is

FmUnderlineSymbol Symbol font, underlined; other characteristics As Is
Variables

FrameMaker also has default definitions for these variables:

Variable Defined as
FmCare-of /s
FmEmsp13 an em space
FmFrac12 Y,
FmFrac13 1/3
FmFrac14 l/4
FmFrac15 Y
FmFrac16 1/6
FmFrac18 l/8
FmFrac23 A
FmFrac25 2/5
FmFrac34 3/4
FmFrac35 3/
FmFrac38 3/8
FmFrac45 4/5
FmFrac56 A
FmFrac58 5/8
FmFrac78 7/8

Structured Application Developer Reference 231

What happens with the declarations and rules

Your end user’s documents may not have these character formats or variables defined. When
FrameMaker imports an SGML document with an entity reference that needs one of these formats
or variables, it checks whether the template defined in the SGML application provides the
definition. If so, it uses the information from the template. If not, it uses its own definitions,
copying the definition to the appropriate catalog of the document being processed and using it
to process the entity.

What happens with the declarations and rules

Your application may use some or all of the entity declarations and read/write rules provided with
FrameMaker. In addition, you may choose to have different declarations or rules for some or all of
the entities.

If you want to use the translations provided by FrameMaker with no changes, you do so in one of
two ways.

* |f your application has no other read/write rules, then you do not have to explicitly mention
the rules for these entity sets. That is, if the definition of your application does not include a
read/write rules file, FrameMaker behaves as though it had a rules file that included only the
ISO public entity rules.

® On the other hand, if your application does have a read/write rules file, then that file must
explicitly include the rules for the ISO public entity sets in which you're interested. If you want
all of them, add the following line to your file:

#include isoall.rw
When you create a new read/write rules file, this line is automatically included.

If you want to use only the rules that FrameMaker provides, be sure that your rules file has no
additional entity rules referring to these entities. However, you may want to have FrameMaker
translate most but not all of these entities in the way it provides, while you change the behavior
for some of them with rules or entity declarations. To do this, include an extra entity declaration
or rule for the appropriate entities.

For example, assume the DTD for your application is called myapp.dtd and includes the
following lines:

<IENTITY % ISOlatl PUBLIC
"1SO 8879-1986//ENTITIES Added Latin 1//EN">
%ISOlatl;

Further, assume the application has no rules or has a rules document that contains the following
lines:

#include "isolatl.rw"
#include "isolat2.rw"

ISO Public Entities 232

What happens with the declarations and rules

The default version of isolatl. rw contains the rule:
entity "aacute" is fm char 0x87;

This translates references to the aacute entity as the small letter a with an acute accent. Suppose,
however, that your application needs this entity, instead, to translate as a particular bitmap that
you store as a reference element in the FrameMaker document template. You can accomplish this
by adding either a new entity declaration or a new rule.

To continue the example, assume you import an SGML document that begins as follows:

<IDOCTYPE myapp SYSTEM *‘myapp.dtd™ [
<IENTITY aacute SDATA "fm ref: acute-a'>
1>

This SGML document has two declarations for aacute. The parser uses the first one it encounters.
Since the parser processes the external DTD subset after it processes the internal DTD subset, it
finds the declaration that uses the reference element first and this is the entity declaration
FrameMaker uses. Since FrameMaker recognizes the fm ref in the parameter literal, it uses that
parameter literal to process the entity reference and ignores any rules that refer to the entity. The
resulting document includes the reference element for the entity reference.

Instead of including the declaration for aacute that uses the fm ref parameter literal, you can
add the following rule to your rules file:

entity "aacute™ is fm reference element "acute-a';

This translates references to the aacute entity as the small letter a with an acute accent. Suppose,
however, that your application needs this entity, instead, to translate as a particular bitmap that
you store as a reference element in the FrameMaker document template. You accomplish this by
adding a rule for that entity before the #include statements, as follows:

entity "aacute" is fm reference element "acute-a';

Remember that FrameMaker uses the first rule in a rules file that applies to a particular situation.
Therefore, if you use this rule, then the line in the example that includes isolatl . rw must occur
after this rule. That is, your rules file must look like:

entity "aacute”™ is fm reference element "acute-a";

#include isolatl.rw

If, instead, it looks like:

#include isolatl.rw

entity "aacute" is fm reference element "acute-a';

FrameMaker finds the rule in isolatl. rw before your rule and use that to process references to
the aacute entity.

Structured Application Developer Reference 233

What happens with the declarations and rules

FrameMaker has rules for entities in the ISO public entity sets for which there is a direct
correspondence in one of its standard character sets or which can be created using a character
from those character sets. It does not provide rules for entities that would require a different
character set or a graphic.

If you reference an ISO public entity for which there is not a rule, the software treats it as it does
any other entity that does not have a corresponding rule. You can change this behavior with the
entity rule. For more information on FrameMaker’s translation of entities in the absence of rules
and for information on how you can modify this, see Developer Guide, Chapter 21, Translating
Entities and Processing Instructions

ISO Public Entities 234

Character Set Mapping

FrameMaker writes SGML documents using the ISO Latin-1 character set. This character set differs
from FrameMaker’s character set. Consequently, the software uses a default character set mapping
to translate between the character sets.

Note: XML: The XML specification allows UNICODE in content and in markup tokens, so
the use of ISO character sets is not necessary. FrameMaker supports the full range of
UNICODE in the content of an XML document, and offers limited support of characters in
markup tokens. For more information, see Developer Guide, page 101: Supported
characters in element and attribute names.

If you are only working with XML markup, you may skip this chapter.

FrameMaker includes copies of other ISO public entity sets and provides rules to handle them for
your application. For information on how FrameMaker supports ISO public entities, see
Chapter 10, “ISO Public Entities.”

This chapter describes the default mapping between the FrameMaker character set and the ISO
Latin-1 character set. You can change this mapping by using the character map rule as
described in “character map” on page 47.

To determine the mapping for a particular character, use the table on the next page as follows:

® For a character in the ISO Latin-1 character set, find the hexadecimal character code for the
character of interest in the leftmost column. Read the mapping in the column labelled
“Mapping from ISO Latin-1 to FrameMaker” The entry on the left side of the equal sign is the
ISO Latin-1 character code. The entry on the right side of the equal sign is the character’s
translation in FrameMaker. For example, the character code \XA1 has the entry:

\XAl = \xC1
This means that the I1SO Latin-1 character \XA1 translates to the FrameMaker character \xC1.

® For a character in the FrameMaker character set, find the hexadecimal character code for the
character of interest in the leftmost column. Read the mapping in the column labelled
“Mapping from FrameMaker to ISO Latin-1." The entry on the right side of the equal sign is the
FrameMaker character code. The entry on the left side of the equal sign is the character’s
translation in ISO Latin-1. For example, the character code \x10 has the entry:

\x20 = \x10
This means that the FrameMaker character \x10 translates to the ISO Latin-1 character \x20.

* |f there is no row corresponding to a character code, then that character code is the same in
both character sets.

Structured Application Developer Reference 235

Character code

Mapping from ISO Latin-1 to

Mapping from FrameMaker to

FrameMaker ISO Latin-1
\x00 \x00 = trap trap = \x00
\x01 \x01 trap trap = \x01
\x02 \x02 = trap trap = \x02
\x03 \x03 = trap trap = \x03
\x04 \x04 = trap trap = \x04
\x05 \x05 = trap trap = \x05
\x06 \x06 = trap trap = \x06
\x07 \xQ7 trap trap = \x07
\x08 \x08 = trap \x09 = \x08
\x09 \x09 \x08 \x0A = \x09
\x0A \X0A = \xO0A \X0A = \xO0A
\x0B \XOB = trap trap = \x0B
\x0C \x0C = trap trap = \x0C
\x0D \x0D = trap trap = \x0D
\xOE \XOE = trap trap = \xOE
\xOF \xOF = trap trap = \xOF
\x10 \x10 = trap \x20 = \x10
\x11 \x11 trap \x20 = \x11
\x12 \x12 trap \x20 = \x12
\x13 \x13 = trap \x20 = \x13
\x14 \x14 = trap \x20 = \x14
\x15 \x15 = trap \x2D = \x15
\x16 \x16 = trap trap = \x16
\x17 \x17 trap trap = \x17
\x18 \x18 = trap trap = \x18
\x19 \x19 = trap trap = \x19
\x1A \x1A = trap trap = \x1A
\x1B \x1B = trap trap = \x1B
\x1C \x1C = trap trap = \x1C
\x1D \x1D = trap trap = \x1D
\Xx1E \x1E = trap trap = \x1E
\Xx1F \X1F = trap trap = \x1F

Character Set Mapping

236

Character code Mapping from ISO Latin-1 to Mapping from FrameMaker to
FrameMaker ISO Latin-1
\X7F \X7F = trap trap = \x7F
\x80 \x80 = trap \xC4 = \x80
\x81 \x81 trap \xC5 = \x81
\x82 \x82 trap \XxC7 = \x82
\x83 \x83 = trap \xC9 = \x83
\x84 \x84 = trap \xD1 = \x84
\x85 \x85 = trap \xD6 = \x85
\x86 \x86 = trap \xDC = \x86
\x87 \x87 trap \xE1l = \x87
\x88 \x88 = trap \xXEO = \x88
\x89 \x89 = trap \xE2 = \x89
\x8A \x8A = trap \xE4 = \x8A
\x8B \x8B = trap \XE3 = \x8B
\x8C \x8C = trap \XE5 = \x8C
\x8D \x8D = trap \XE7 = \x8D
\x8E \X8E = trap \XE9 = \x8E
\x8F \x8F = trap \XE8 = \x8F
\x90 \x90 = trap \XEA = \x90
\x91 \x91 trap \xEB = \x91
\x92 \x92 trap \XED = \x92
\x93 \x93 = trap \XEC = \x93
\x94 \x94 = trap \XEE = \x94
\x95 \x95 = trap \XEF = \x95
\x96 \x96 = trap \xF1 = \x96
\x97 \x97 trap \xF3 = \x97
\x98 \x98 = trap \xF2 = \x98
\x99 \x99 = trap \xF4 = \x99
\x9A \x9A = trap \XF6 = \Xx9A
\x9B \x9B = trap \xF5 = \x9B
\x9C \x9C = trap \xFA = \x9C
\x9D \x9D = trap \xF9 = \x9D

Structured Application Developer Reference

237

Character code Mapping from ISO Latin-1 to Mapping from FrameMaker to
FrameMaker ISO Latin-1
\x9E \X9E = trap \xFB = \x9E
\x9F \x9F = trap \XFC = \x9F
\xAO0 \xAO = trap trap = \xAO0
\xA1l \xAl = \xC1 trap = \xAl
\xA2 \xA2 \xA2 \xA2 = \xA2
\xA3 \xA3 = \XxA3 \xA3 = \XxA3
\xA4 \xA4 = \xDB \XA7 = \xA4
\xA5 \xA5 = \xB4 \xB7 = \XxA5
\xA6 \xA6 = \x7C \xB6 = \XA6
\XxA7 \XA7 = \xA4 \XDF = \XxA7
\XxA8 \xA8 = \XAC \XAE = \XxAS8
\xA9 \xA9 = \xA9 \xA9 = \xA9
\xAA \xAA = \xBB trap = \xAA
\xAB \xAB = \xC7 \xB4 = \XAB
\xAC \XAC = \xC2 \xA8 = \XAC
\xAD \xAD = \x2D trap = \xAD
\XAE \XAE = \XxAS8 \xC6 = \XAE
\XAF \xAF = \xF8 \xD8 = \XAF
\xBO \xBO = \xFB trap = \xBO
\xB1 \xB1 trap trap = \xB1
\xB2 \xB2 trap trap = \xB2
\xB3 \xB3 = trap trap = \xB3
\xB4 \xB4 = \XxAB \xA5 = \xB4
\xB5 \xB5 = trap trap = \xB5
\xB6 \XxB6 = \XxA6 trap = \xB6
\xB7 \xB7 = \XxA5 trap = \xB7
\xB8 \xB8 = \xFC trap = \xB8
\xB9 \xB9 = trap trap = \xB9
\xBA \xBA = \xBC trap = \xBA
\xBB \XxBB = \xC8 \XAA = \xBB
\xBC \xBC = trap \XBA = \xBC
\xBD \xBD = trap trap = \xBD

Character Set Mapping

238

Character code Mapping from ISO Latin-1 to Mapping from FrameMaker to
FrameMaker ISO Latin-1
\xBE \xBE = trap \XE6 = \XBE
\xBF \XxBF = \xCO \XF8 = \xBF
\xCO \xCO = \xCB \xBF = \xCO
\xC1 \XC1 = \xE7 \xAl = \xC1
\xC2 \xC2 = \xE5 \XAC = \xC2
\xC3 \xC3 = \xCC trap = \xC3
\xC4 \xC4 = \x80 trap = \xC4
\xC5 \xC5 = \x81 trap = \xC5
\xC6 \xC6 = \XAE trap = \xC6
\xC7 \XC7 = \x82 \XAB = \xC7
\xC8 \XxC8 = \xE9 \xBB = \xC8
\xC9 \xC9 = \x83 trap = \xC9
\xCA \XCA = \XE6 trap = \xCA
\xCB \XCB = \XxE8 \XCO = \xCB
\xCC \xCC = \xED \xC3 = \xCC
\xCD \XCD = \XEA \xD5 = \xCD
\xCE \XCE = \XEB trap = \xCE
\XxCF \XCF = \xEC trap = \xCF
\xDO \xDO = trap \x2D = \xDO
\xD1 \xD1 \x84 \x2D = \xD1
\xD2 \xD2 = \xF1 \x22 = \xD2
\xD3 \xD3 = \XEE \x22 = \xD3
\xD4 \xD4 = \XxEF \x60 = \xD4
\xD5 \XxD5 = \xCD \x27 = \xD5
\xD6 \xD6 = \x85 trap = \xD6
\xD7 \xD7 trap trap = \xD7
\xD8 \XxD8 = \XAF \XFF = \xD8
\xD9 \xD9 = \xF4 trap = \xD9
\xDA \xDA = \xF2 \x2F = \xDA
\xDB \XDB = \xF3 \xA4 = \xDB
\xDC \XDC = \x86 trap = \xDC
\xDD \xDD = trap trap = \xDD

Structured Application Developer Reference

239

Character code Mapping from ISO Latin-1 to Mapping from FrameMaker to
FrameMaker ISO Latin-1
\xDE \xDE = trap trap = \xDE
\xDF \xDF = \XxA7 trap = \xDF
\xEO \XEO = \x88 trap = \xEO
\xE1 \XE1 = \x87 \xB7 = \xE1
\XE2 \xE2 \x89 \x2C = \xE2
\XE3 \XE3 = \x8B trap = \xE3
\xE4 \xE4 = \x8A trap = \xE4
\XE5 \XE5 = \x8C \xC2 = \xE5
\XE6 \XE6 \xBE \XCA = \XxE6
\XE7 \XE7 = \x8D \xC1 = \xE7
\XE8 \XE8 = \x8F \XCB = \XxE8
\xE9 \xE9 \Xx8E \xC8 = \xE9
\XEA \XEA = \x90 \XCD = \XEA
\xEB \xEB \x91 \xCE = \XxEB
\XEC \XEC \x93 \xCF = \xEC
\XED \XED = \x92 \XCC = \xED
\XEE \XEE \x94 \xD3 = \XxEE
\XEF \XEF \x95 \xD4 = \XxEF
\xFO \xFO trap trap = \xFO
\xF1 \xF1 \x96 \xD2 = \xF1
\xF2 \XxF2 = \x98 \XDA = \xF2
\xF3 \xF3 = \x97 \xDB = \xF3
\xF4 \xF4 \x99 \xD9 = \xF4
\xF5 \xF5 = \x9B trap = \xF5
\xF6 \XF6 = \x9A \X5E = \xF6
\xF7 \xF7 trap \X7E = \xF7
\xF8 \XF8 = \xBF \XAF = \xF8
\xF9 \xF9 = \x9D trap = \xF9
\XFA \xFA = \x9C trap = \xFA
\xFB \XFB = \Xx9E \xBO = \xFB
\XxFC \XFC = \x9F \xB8 = \xFC
\xFD \xFD = trap trap = \xFD

Character Set Mapping

240

Character code Mapping from ISO Latin-1 to Mapping from FrameMaker to

FrameMaker ISO Latin-1
\XFE \XFE = trap trap = \xFE
\xFF \xFF = \xD8 trap = \xFF

Structured Application Developer Reference 241

Character Set Mapping 242

Glossary

ancestor

API

application
definition

attribute
attribute definition

attribute definition
list declaration

book

CALS

catalog

CDATA

child element

This glossary contains common terms used by FrameMaker, XML, and SGML. For
references to more information about the terms, see the index.

An element that contains a given element in a document’s structure. For
example, if a Section element contains a Head element followed by a
Paragraph element, and the Paragraph contains a Variable element, the
Paragraph and Section elements are both ancestors of the Variable
element, but the Head element is not an ancestor of the Variabl e element. See
also descendant, child element, parent element, and sibling.

Application Programming Interface. Enables developers to create API clients with
other applications, such as databases, document management systems, CAD
tools, and user interfaces, for automation, database publishing, HTML conversion
and other purposes.

A data structure (and the associated files) describing part of a complete XML or
SGML application assembled with FrameMaker. You store application definitions
in the structapps. fm file.

A place to supply information about an element other than its hierarchical
position and structure. An attribute value does not add content to a document.

The construct used to define a single attribute in a FrameMaker EDD or a DTD.

In markup, the declaration that provides the list of attribute definitions for one or
more elements. Also called an ATTLIST. See also element declaration.

A grouping of FrameMaker documents that lets you work with them as a single
unit. Lets you generate a single table of contents or other file from the
documents, and simplifies printing, numbering, cross-referencing, and
formatting.

Continuous Acquisition and Life Cycle Support. The US Department of Defense
standard for the electronic delivery of documents.

A floating palette that stores predefined paragraph, character, or table formats.

In markup, character data. In character data, no markup is recognized, other than
the delimiters that end the character data. See also NDATA, #PCDATA, RCDATA,
and SDATA.

An element that is contained in a given element and that is one level below the
given element. For example, if a Section element contains a Head element
followed by a Paragraph element, and the Paragraph element contains a

Structured Application Developer Reference 243

concrete syntax

container element

content model

content rules

conversion table

cross-reference
cross-reference
source

data

data content
notation

declaration

declared content

declared value

Variable element, the Head and Paragraph elements are both child
elements of the Section element, but the Variable element is not. See also
parent element, ancestor, descendant, and sibling.

In SGML, a set of choices on the markup a document will use. Since SGML does
not require any particular values for these choices, an SGML document requires
a concrete syntax so a parser can correctly interpret it. See also reference concrete
syntax.

In FrameMaker, an element that can contain text, other elements, or both.
Contrasts with certain specific element types—for example, a cross-reference
element, which can contain nothing other than the cross-reference.

In markup, the part of an element declaration that specifies both a model group
and exceptions that define the allowed content of the element. Each markup
element declaration has either a content model or declared content. See also
content rules, declared content, general rule, and model group.

In FrameMaker, the part of an element declaration that specifies both the
element’s type and the kind of contents the element can have. See also format
rules, content model, and general rule.

In FrameMaker, a table associating parts of an unstructured document with their
structured counterparts, used in converting an unstructured document to a
structured document.

A passage in one place in a document that refers to another place, its cross-
reference source, in the same or a different document.

The place referred to by a cross-reference.

In markup, the characters of a document that represent the inherent information
content. Such characters are not recognized as markup. See also markup.

In markup, an application-specific interpretation of an element’s data content, or
of a data entity, that usually extends or differs from the normal meaning of the
document character set. Frequently used to identify the format of an external
entity containing a graphic.

In markup, markup that controls how other markup of a document is to be
interpreted.

In an markup element declaration, specifies that the defined element’s content is
one of the reserved types CDATA, RCDATA, or EMPTY.

In an markup attribute definition, determines the type of attribute value, such as
1D or NUTOKEN, that is valid when the attribute is specified. Although markup
does not define the term attribute type, you can loosely think of an attribute’s
declared value as its type.

Glossary

244

default value

delimiter

descendant

DOCTYPE

document

document element
document instance
document type
document type
declaration
document type

declaration subset

DTD
EDD

element

Element Catalog

In markup, the portion of an attribute definition that indicates whether an
attribute is required and what value to use if the user does not specify one. In
FrameMaker, refers only to the value to use if a user does not supply a value for
an attribute.

In markup, a character string used to identify a piece of markup or to distinguish
markup from data. For example, > (greater-than sign) is the default closing
delimiter for element tags.

Any element that is below a given element in a document’s structure. For
example, if a Section element contains a Head element followed by a
Paragraph element, and the Paragraph element contains a Variable
element, the Variable element is a descendant of both the Paragraph and
the Section elements, but not of the Head element. See also ancestor, child
element, parent element, and sibling.

In markup, the reserved name that follows the opening delimiter of a DTD.
Informally used to refer to the document element.

A collection of information that is processed as a unit. A FrameMaker document
is any file in FrameMaker format. A markup document includes an SGML
declaration (for SGML), prologue, and document instance set.

In markup, the highest-level element in a document. The generic identifier of this
element is specified immediately after the DOCTYPE reserved name in the DTD.

In markup, the portion of a document that contains markup and data for a
particular project such as a memo or book.

A class of documents having similar characteristics, such as technical manual or
internal memo.

In markup, a document type declaration (DTD) associates a document element
with a set of declarations (the document type declaration subset).

In markup, a set of declarations determining such things as the markup to allow
in a document and the elements and attributes for a document set. See also
external DTD subset and internal DTD subset.

See document type declaration subset.
See element definition document.

A structural unit of a document. Holds and organizes the contents of the
document.

In FrameMaker, the information extracted from an EDD and stored within each
structured FrameMaker document. Makes an external element definition
document unnecessary. See also element definition document.

Structured Application Developer Reference 245

element declaration

element definition

element definition
document

element tag

EMPTY

end-tag

entity

exclusion

external cross-
reference

external DTD subset

external entity
facet

FDK client

flow

format rules

general entity

general rule

In markup, information describing a particular element. Includes both a name
(generic identifier) for the element and content rules. A markup document has an
element declaration for each allowed element.

In FrameMaker, a set of rules describing an element. Includes a name (tag) for the
element, content rules, and (optionally) context-sensitive format rules. A
structured document has an element definition for each element allowed. See
also content rules and format rules.

A FrameMaker document that contains a set of element definitions for a class of
documents. Can also include information on system defaults and on a structure
application with which to associate this information. Also called an EDD.

In FrameMaker, the name assigned to an element and stored in the Element
Catalog. See also generic identifier.

Keyword in an element definition indicating that the element cannot have
content. In markup, EMPTY is a declared content.

In markup, the markup that indicates the end of an element.

In markup, a collection of characters that can be referenced as a unit. Used for
many purposes in markup, such as graphics or frequently used sets of characters.

An exception to the general rule or content model of an element. Specifies other
elements that cannot appear anywhere in the element or in its descendants.
Exclusions are not allowed in XML.

In FrameMaker, a cross-reference to a source in a different file. Markup does not
define this concept.

In markup, an informal term for an external entity for which an external identifier
appears at the beginning of a document type declaration and that is
automatically referenced at the end of the document type declaration subset.

In markup, an entity that specifies an external object, such as a file.
A pictorial representation of graphical data.

In FrameMaker, any application created using the Frame Developer’s Kit. See also
Structure API client.

See , "text flow!”

In FrameMaker, the part of an element definition that specifies which predefined
format to apply to an element. Format rules can use different formats for different
contexts in a document. See also content rules.

In markup, an entity that can be referenced from within the content of an
element or an attribute value literal.

In FrameMaker, a rule that specifies valid contents for an element and the order
in which the contents can appear. Equivalent to the declared content of an

Glossary

246

generic identifier

highest-level rule

HTML

ID attribute

IDREF attribute

impliable attribute

inclusion

invalid element

internal cross-
reference

internal DTD subset

internal entity

ISO public entity

marker

markup

element or the model group part of the content model of an element in markup.
See also content rules.

In markup, the name identifying an element. See also element definition and
element tag.

In FrameMaker, a read/write rule that is not a subrule of another read/write rule.

Hypertext Markup Language. An encoding system used to describe the content
and organization of an electronic document published on the World Wide Web.

An attribute of type ID, frequently used as an identifier to mark the source of a
cross-reference. In a single document, a particular value for an ID attribute can
be used only once.

An attribute whose value must be that of an 1D attribute in the same markup
document or FrameMaker document or book. Frequently used for cross-
references.

In markup, an attribute whose value does not have to be supplied. If a document
does not supply a value, it is up to the processing software to correctly interpret
the attribute. Such attributes use the default value # IMPL1ED.

An exception to the general rule or content model of an element. Specifies other
elements that can appear anywhere in the element or in its descendants.
Inclusions are not allowed in XML DTDs

An element with contents that do not conform to content rules. May be missing
required child elements, may not have a definition in the EDD or DTD, or may
have text or child elements in a position not allowed by its content rules or by
the exclusion and inclusion rules of its ancestors.

In FrameMaker, a cross-reference to a source in the same file.

In markup, an informal term for the declarations in a document type declaration
that occur within brackets (dso and dsc delimiters) in the markup document
entity, rather than being in an external entity.

In markup, an entity whose replacement text is determined solely by information
in its declaration.

In SGML, an entity that occurs in one of the entity sets defined in Annex D of the
SGML Standard. These entities provide commonly used special characters.

In FrameMaker, a nonprinting character an end user inserts (such as an index
entry) to indicate various types of information.

Text added to the data of a document in order to convey information about it,
such as hierarchical structure or formatting. This document also uses markup to
generally refer to XML and SGML.

Structured Application Developer Reference 247

markup
minimization

model group

NAMECASE
parameter

NDATA

parameter entity

parent element

parser

#PCDATA

prefix

processing

instruction

public identifier

In SGML, any of various conventions for omitting markup in a document,
including shortening or omitting tags and shortening entity references.

In markup, an ordered list that specifies valid contents for an element (such as
child elements) and the order in which the contents can appear. A model group
is similar to a FrameMaker general rule.

In SGML, the part of the SGML declaration that determines case-sensitivity of
markup.

In SGML (and implicitly XML), non-SGML data. NDATA is data that needs special
processing by the markup application. NDATA is typically used, for example,
when representing graphics—in XML the graphic data would be non-parsed
data. See also CDATA, #PCDATA, RCDATA, and SDATA.

In markup, an entity that can be referenced only within a DTD.

An element that contains a given element and is one level above it in the
hierarchy. For example, if a Section element contains a Head element followed
by a Paragraph element, the Section element is the parent element of the
Head and Paragraph elements, but not of the Variable element. See also
child element, ancestor, descendant, and sibling.

See validating parser.

In markup, parsed character data. This is normal text that can include markup to
be parsed. Occurs in an markup element’s model group and corresponds to
<TEXT> in a FrameMaker element’s general rule. See also CDATA, NDATA,
RCDATA, and SDATA.

Text that is automatically placed before the content of an element. In
FrameMaker, defined as part of the formatting of an element. For example, a
Quote text range element might have an open quotation mark as its prefix and
a close quotation mark as its suffix. See also suffix.

In an markup document, a way of indicating that the application needs to
perform some special processing. For example, you can use a processing
instruction to indicate a location in an markup document that should have a
page break.

In markup, a way of identifying an external entity. Formal public identifiers have
a specified syntax that includes an identifier of the owner of the entity and an
indication of the markup construct it provides. Formal public identifiers are
typically available to any user of markup, not just the users at a particular
company. Informal public identifiers may be available more widely than a single
document or system, but perhaps no more widely than within a single company.
See also system identifier

Glossary

248

RCDATA

read/write rule
reference concrete
syntax

reference page
Rubi text

rule

SDATA

SGML

SGML application

SGML declaration

SGML read/write
rule

sibling

source

start-tag

Structure API client

subrule

suffix

In markup, replaceable character data. In replaceable character data, no markup
is recognized, other than character and entity references. RCDATA is valid only in
SGML. See also CDATA, NDATA, #PCDATA, and SDATA.

In FrameMaker, interpreted commands you supply to modify how the software
translates between FrameMaker and markup documents.

In SGML, a particular concrete syntax defined by the SGML standard. See also
concrete syntax.

An underlying page that stores repeatedly-used graphics and formatting
information.

Small characters that appear above Japanese-language characters to indicate
pronunciation.

See SGML read/write rule.

In SGML, specific character data. One common use is for specific characters that
might not be in the standard character set. See also CDATA, NDATA, #PCDATA, and
RCDATA.

An acronym for Standard Generalized Markup Language.

Rules that apply SGML to a text processing application. Includes a formal
specification of the markup constructs used in the application, expressed in
SGML. Can also include non-SGML definitions of semantics, application,
conventions, and processing.

In SGML, the part of a document that tells a parser how to interpret markup in
the document.

See read/write rule.

Elements at the same level in the structure and with the same parent element.
For example, if a Section element contains a Head element followed by a
Paragraph element, the Head and Paragraph elements are siblings. See also
ancestor, descendant, child element, and parent element.

See cross-reference source.
In markup, the markup that indicates the beginning of an element.

In FrameMaker, an FDK client created to change the translation between
FrameMaker and markup documents. See also FDK client.

In FrameMaker, an read/write rule that is part of another rule.

Text that is automatically placed after the content of an element. In FrameMaker,
a prefix is defined as part of the formatting of an element. See also prefix.

Structured Application Developer Reference 249

system identifier

template

<TEXT>

Text entity

text flow

text inset

<TEXTONLY>

valid document

valid element

validating parser

variable

XML

XSLT

In markup, a way of identifying an external entity that’s specific to the particular
document or system. See also public identifier.

In FrameMaker, a document used to create new documents. A template can
include all the formats, structure descriptions, and other information you need to
create a document.

In a FrameMaker element’s general rule, indicates that the element can directly
contain text characters and elements included by itself or its ancestors. <TEXT>
corresponds to #PCDATA in a markup element’s model group.

An entity whose replacement text can contain both data and markup.

The text in a series of connected text frames. A text flow can also be contained
in a single text frame, not connected to any other frame. A text flow with
elements is a structured text flow.

Text imported by reference.

In a FrameMaker element’s general rule, indicates that the element can directly
contain text characters and cannot contain elements included by an ancestor. By
default, on export <TEXTONLY> corresponds to a declared content of RCDATA
in an SGML element’s definition, or PCDATA in XML. On import FrameMaker
translates declared content of RCDATA or CDATA to <TEXTONLY>.

A structured document that conforms to all its content rules. Every element in the
document must be valid. In FrameMaker, every structured flow must have a
highest-level element that is allowed at the highest level.

An element with contents that conform to its own content rules and to the
inclusion and exclusion rules of all of its ancestors.

In markup, a software module that parses the markup of an XML or SGML
document and determines that the document structure conforms to a provided
DTD.

In FrameMaker, text that is defined once but can be used several times. Similar to
some varieties of XML or SGML entity.

An acronym for Extensible Markup Language. By definition, XML is a subset of
SGML.

An acronym for eXtensible Stylesheet Language: Transformations. It is a W3C
language for transforming one XML document into another XML document. It
can also transform an XML document into other text based formats including

MIF

Glossary

250

Index

A

abstract types Schema mapping 211
all element Schema mapping 204
ampersand (&)

in conversion tables 175
anchored frame (rule) 41
any element Schema mapping 208
anyType Schema mapping 200
application definition files 7?-30

contents of 9

default information 11

defining applications in 9

document elements 13

DTDs for import and export 14

entity catalogs 15-16

external entities 17-18

filename extensions, specifying 21

files for rules documents 22

individual entities 16

length of log files 30

namespaces, enabling 22

public identifiers 18

read/write rules documents 22

search path for external entities 19-20

SGML declarations 24

structure API clients 27

templates for import 26
application files

managing CSS 24

Schema, specifying 23

XSL transformation, specifying 25
asterisk (¥)

in conversion tables 175
attribute (rule) 44
attributes

defaults in Schema 208

for identifying overrides 180

in conversion tables 177

mapping of Schema to DTD 205
attributes, read/write rules for 32

attribute 44

drop 51

fm attribute 74

fm element 75

implied value is 94

is fm attribute 101

is fm property 114

is fm property value 122
is fm value 135

value 161

B

books, read/write rules for 33
generate book 91
output book processing instructions 143
put element 91
use processing instructions 91

C

CALS table model 213-218
attribute structure 217
colspec elements 216,217
element and attribute declarations 214
element structure 216
spanspec elements 216,217
CALS tables
read/write rules for 219-221
character formats
wrapping text formatted without 180
character map (rule) 47
character set mapping 235-241
characters allowed
in conversion tables 172
choice element Schema mapping 203
comma (,)
in conversion tables 175
complex type Schema mapping 202, 209
named 204
conversion tables 167-183
adding rules to 171-178
attributes in 177
building tables from format tags with 182
columns and rows in 167,171
documents for holding 168
flagging format overrides with 180
format and element tags in 169, 171,173
generating initial 169
nesting graphics or tables with 181
object type identifiersin 173
order of rules in 168
promoting graphics or tables with 179

Structured Application Developer Reference

251

qualifiers for element tags in 171,177 encoding 29

root element 172 of CSS files 29
setting up from scratch 170 end vertical straddle (rule) 57
testing and correcting 182 entities
updating 170 external files for 17-18
wrapping elements with 174 ISO public 227-234
wrapping objects with 173 searching for external files 19
wrapping sequences with 175 searching for filename patterns 17
wrapping untagged text with 180 specifying location of 16
cross-references, read/write rules for 33 specifying search path for 19-20
fm element unwrap 75 entities, read/write rules for 34
fm property 78 drop 51
is fm cross-reference element 107 entity 59
is fm property 114 entity nameis 61
is fm property value 122 external data entity reference 69
is fm value 135 is fm char 105
valueis 78 is fm reference element 125
CSS is fm variable 137
managing generation 24 reformat as plain text 150
CSS files 29 reformat using target document catalogs 151
CSSimport 25 retain source document formatting 152
entity (rule) 59
entity catalogs
D format of entriesin 16
default searching for 16
SGML declaration 223-225 specifying location of 15-16
defaults uses for 15
mapping of Schema to DTD 208 entity name is (rule) 61
DOCTYPE elements 13 equation (rule) 63
document type declarations (DTDs) equations
specifying location of 14 in conversion tables 174
drop (rule) 51 equations, read/write rules for 34
drop content (rule) 53 entity nameis 61
DTD 200 equation 63
export dpi 64
E export to file 67
fm property 78
element (rule) 54 is fm equation element 109
element tags is fm property 114
in conversion tables 169, 171,173 is fm property value 122
elements is fm value 135
defaults in Schema 208 notation is 141
mapping of Schema to DTD 206 specify size in 153
elements, read/write rules for all 31 value 161
attribute 44 valueis 78
drop 51 export dpi (rule) 64
drop content 53 export to file (rule) 67
element 54 exporting XML
fm element 75 XSL transformation 26
is fm element 108 external data entity reference (rule) 69
preserve fm element definition 144, 145 external dtd (rule) 70
unwrap 158

252

F

facet (rule) 72

fm attribute (rule) 74

fm element (rule) 75

fm element unwrap (rule) 75

fm marker (rule) 76

fm property (rule) 78

fm variable (rule) 89

fm version (rule) 90

footnotes
in conversion tables 174

footnotes, read/write rules for 35
is fm footnote element 110

format overrides, flagging in conversion tables 180

format tags
in conversion tables 169,171,173

G

generate book (rule) 91
graphics
nesting in conversion tables 181
promoting in conversion tables 179
graphics, read/write rules for 35
anchored frame 41
entity nameis 61
export dpi 64
export to file 67
facet 72
fm property 78
is fm graphic element 111
is fm property 114
is fm property value 122
is fm value 135
notationis 141
specify size in 153
value 161
valueis 78
group element Schema mapping 202

impact of stylesheet element 25
implied value is (rule) 94
import

Schema mapping 209
importing XML

XSL transformation 26
include

Schema mapping 209
include dtd (rule) 96
include sgml declaration (rule) 97

initial conversion tables 169

insert table part element (rule) 98

is fm attribute (rule) 101

is fm char (rule) 105

is fm cross-reference element (rule) 107

is fm element (rule) 108

is fm equation element (rule) 109

is fm footnote element (rule) 110

is fm graphic element (rule) 111

is fm marker element (rule) 112

is fm property (rule) 114

is fm property value (rule) 122

is fm reference element (rule) 125

is fm rubi element (rule) 127

is fm rubi group element (rule) 128

is fm system variable element (rule) 129

is fm table element (rule) 130

is fm table part element (rule) 132

is fm value (rule) 135

is fm variable (rule) 137

is processing instruction (rule) 138

ISO Latin-1 character set 235-241

ISO public entities 227-234
declarations and rules 232-234
default character formats 231
default variable definitions 231
entity declaration files 229
entity read/write rules files 229
format of entity rules 230

K

key element Schema mapping 211

L

line break (rule) 138
log files
limiting length of 30

M

mapping of Schema elements 200
marker text is (rule) 140
markers, read/write rules for 36
drop 51
external data entity reference 69
fm marker 76
fm property 78
is fm marker element 112
is fm property 114
is fm property value 122

Structured Application Developer Reference

253

is fm value 135
is processing instruction 138
marker text is 140
processing instruction 147
value 161
valueis 78
markup language documents, read/write rules for 37
external dtd 70
include dtd 96
write structured document instance only 163
markup languages, translation to and from
cross-references 77-21

N

named attribute group Schema mapping 205
named complex type Schema mapping 204
namespaces

and Schema 199

extra attributes from Schema mapping 200
notation is (rule) 141

(o)

object type identifiers, in conversion tables 173
output book processing instructions (rule) 143

P

paragraph formats
building table structure from 182
parentheses
in conversion tables 175
plus sign (+)
in conversion tables 175
PostProcessing element 26
PreProcessing element 26
preserve fm element definition (rule) 144, 145
processing instruction (rule) 147
processing instructions (Pls), read/write rules for 37
drop 51
fm marker 76
is processing instruction 138
output book processing instructions 143
processing instruction 147
use processing instructions 91
PROMOTE keyword 179
proportional width resolution is (rule) 148
public identifiers 18
put element (rule) 91

Q

qualifiers, in conversion tables 167,171,177
question mark (?)

in conversion tables 175
quotation marks ("), in attribute values 177

R

read/write rules
documents for 22
for CALS tables 219-221
including files with 22
summary of 31-39
reader (rule) 149
redefine Schema mapping 209
reformat as plain text (rule) 150
reformat using target document catalogs (rule) 151
retain source document formatting (rule) 152
root element 172
Rubi groups, read/write rules for
is fm rubi element 127
is fm rubi group element 128

S

Schema
and namespaces 199
extra namespace attributes 200
mapping to DTD 200
mixed content models 207
specifying file location 199
structure application element 23
types not mapped 211
sequence element Schema mapping 202
SGML
defining an application 9
optional unsupported features 226
SGML declarations
default for FrameMaker 223-225
specifying location of 24
SGML documents, read/write rules for
include sgml declaration 97
SGML parser
concrete syntax variants 225
simple type Schema mapping 200
specify size in (rule) 153
start new row (rule) 155
start vertical straddle (rule) 156
structure API clients
specifying location of 27
structure applications
defining 9

254

structure, adding to documents. See conversion tables

stylesheet element

impact on CSS import feature 25
stylesheets

XSL 25
system variables

in conversion tables 174

T

table ruling style is (rule) 157
tables
building structure from format tags 182
CALS attribute usage 213
nesting in conversion tables 181
promoting in conversion tables 179
tables, read/write rules for 38
end vertical straddle 57
fm property 78
insert table part element 98
is fm property 114
is fm property value 122
is fm table element 130
is fm table part element 132
is fm value 135
proportional width resolution is 148
start new row 155
start vertical straddle 156
table ruling styleis 157
use proportional widths 160
value 161
valueis 78
templates
specifying location of 26
text insets, read/write rules for 39
entity 59
reformat as plain text 150

reformat using target document catalogs 151

retain source document formatting 152
text, read/write rules for

character map 47

entity 59

is fm char 105

line break 138

U

unique element Schema mapping 211
untagged formatted text, wrapping 180
unwrap (rule) 158

use processing instructions (rule) 91

use proportional widths (rule) 160

user

Vv

variables
in conversion tables 174

value (rule) 161
valueis (rule) 78
variables, read/write rules for 39

drop 51

entity 59

fm element unwrap 75

fm variable 89

is fm system variable element 129
is fm variable 137

vertical bar (|)

w

in conversion tables 175

wildcard characters

in conversion tables 172

wrapping with conversion tables

write structured document instance only (rule) 163

document objects 173

elements 174

sequences of elements or paragraphs 175
untagged formatted text 180

writer (rule) 164

X
XML

XML

defining an application 9
specifying Schema location 199
using CSS stylesheets 24

XSL transformations 25
Schema, See Schema

XSL files

associating with XML applications 25

XSL transformation (XSLT) 25

Structured Application Developer Reference

255

256

	Before You Begin
	Structure Application Definition Reference
	Structure Application Definition Reference
	Contents of an application definition file
	Define an application
	Providing default information
	Specifying the character encoding for SGML files
	Specifying conditional text output
	Specifying a DOCTYPE element
	Specifying a DTD
	Specifying entities
	Specifying entities through an entity catalog
	Why use entity catalogs
	Entity catalog format
	How FrameMaker searches entity catalogs

	Specifying the location of individual entities
	Specifying names for external entity files
	How FrameMaker searches filename patterns
	Example

	Specifying public identifiers
	Specifying a search path for external entity files
	How FrameMaker searches for entity files
	Example

	Specifying external cross reference behavior
	Change file extension to .XML
	Try alternative extensions

	Specifying filename extensions
	Enabling namespaces
	Specifying a read/write rules document
	Specifying a search path for included files in rules documents
	How FrameMaker searches for rules files

	Specifying a Schema for XML
	Specifying an SGML declaration
	Managing CSS import/export and XSL transformation
	How the Stylesheets element affects CSS generation
	How the Stylesheets element affects CSS import
	How the Stylesheets element affects XSL transformation

	Specifying a FrameMaker template
	Specifying a structure API client
	Specifying the character encoding for XML files
	Display encoding
	Encoding of CSS files

	Exporting XML
	Limiting the length of a log file
	Mapping graphic notations to file types

	Read/Write Rules Summary
	Read/Write Rules Summary

	Read/Write Rules Reference
	Read/Write Rules Reference
	anchored frame
	attribute
	character map
	convert referenced graphics
	do not include dtd
	do not include sgml declaration
	do not output book processing instructions
	drop
	drop content
	element
	end vertical straddle
	entity
	entity name is
	equation
	export dpi is
	export to file
	external data entity reference
	external dtd
	facet
	fm attribute
	fm element
	fm marker
	fm property
	fm variable
	fm version
	generate book
	implied value is
	include dtd
	include sgml declaration
	insert table part element
	is fm attribute
	is fm char
	is fm cross-reference element
	is fm element
	is fm equation element
	is fm footnote element
	is fm graphic element
	is fm marker element
	is fm property
	is fm property value
	is fm reference element
	is fm rubi element
	is fm rubi group element
	is fm system variable element
	is fm table element
	is fm table part element
	is fm text inset
	is fm value
	is fm variable
	is processing instruction
	line break
	marker text is
	notation is
	output book processing instructions
	preserve fm element definition
	preserve line breaks
	processing instruction
	proportional width resolution is
	put element
	reader
	reformat as plain text
	reformat using target document catalogs
	retain source document formatting
	specify size in
	start new row
	start vertical straddle
	table ruling style is
	unwrap
	use processing instructions
	use proportional widths
	value
	value is
	write structured document
	write structured document instance only
	writer

	Conversion Tables for Adding Structure to Documents
	Conversion Tables for Adding Structure to Documents
	How a conversion table works
	Setting up a conversion table
	Generating an initial conversion table
	Setting up a conversion table from scratch
	Updating a conversion table

	Adding or modifying rules in a conversion table
	About tags in a conversion table
	Specifying the root element for a structured document
	Identifying a document object to wrap
	Identifying an element to wrap
	Identifying a sequence to wrap
	Strict or loose sequence specification

	Providing an attribute for an element
	Using a qualifier with an element

	Handling special cases
	Promoting an anchored object
	Flagging format overrides
	Wrapping untagged formatted text
	Nesting object elements
	Building table structure from paragraph format tags

	Testing and correcting a conversion table

	CSS to EDD Mapping
	CSS to EDD Mapping
	CSS Font Properties
	CSS text properties
	CSS color and backgrounds properties
	CSS Formatting Model
	CSS Pagination Properties
	CSS generated content, automatic numbering, and lists
	CSS Tables
	CSS Selectors

	XML Schema to DTD Mapping
	XML Schema to DTD Mapping
	Schema location
	Namespace and Schema location attributes

	Simple type mapping
	Attributes of simple type elements

	Complex type mapping
	Group
	Sequence
	Choice
	All
	Named complex types
	Named attribute groups
	Abstract elements
	Mixed content models

	Supported Schema features
	Defaults
	Any
	Extension and restriction of complex types
	Include, import, and redefine

	Unsupported Schema features

	The CALS/OASIS Table Model
	The CALS/OASIS Table Model
	FrameMaker properties that DO NOT have corresponding CALS attributes
	Element and attribute definition list declarations
	Element structure
	Attribute structure
	Inheriting attribute values
	Orient attribute
	Straddling attributes

	Read/Write Rules for the CALS/OASIS Table Model
	Read/Write Rules for the CALS/OASIS Table Model

	SGML Declaration
	SGML Declaration
	Text of the default SGML declaration
	SGML concrete syntax variants
	Unsupported optional SGML features

	ISO Public Entities
	ISO Public Entities
	What you need to use ISO public entities
	Entity declaration files
	Entity read/write rules files
	Format of entity rules
	Character formats
	Variables

	What happens with the declarations and rules

	Character Set Mapping
	Character Set Mapping

	Glossary
	Glossary

	Index

