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Abstract. The detection of timing problems in digital networks is of considerable importance. In 
particular it is desirable to have efficient methods for discovering critical races and hazards. 
Unfortunately, commercial simulators rarely provide such facilities; in fact, the simulators usually 
assume that all the gate delays are exactly equal. In contrast to this, binary race analysis frequently 
assumes that gate delays can be arbr;rarily large, though finite. An exception to this is the 
almost-equal-delay race model, where gates have different delays, but the difference between any 
two delays cannot be arbitrary. The difficulty with the use of this model is that it is computationally 
very inefficient. In this paper we define a new ternary model which is very closely related to the 
binary almost-equal-delay model. Moreover, the ternary model is considerably more efficient, as 
efficient as the unit delay model; consequently, it could easily be incorporated in simulators. 

1. Introduction 

The ideas to be presented wi ted by examples; note that these examples 
were chosen for their simplicity and not necessarily their usefulness. Consider the 
circuit of Fig. 1; the behavior of this circuit is governed by the following equations: 

Y, = x’, y2=xyt, h=Y2+y3, 

where, for each gate, yi denotes the present output of gate i and Yi, called the 
excitation of gate i, gives the value of the boolean function computed by gate i. 
When yi = Y;,, the gate has no tendency to change, and we say that it is stable. If 
yi # Yi, then the gate is unstable and the output yi tries to change to Yi. This change 
does not always happen because it is possible that an earlier change in some other 
gate may cause Y;: to become equal to yi. This corresponds to the fact that the delay 

Fig. 1. Network N, . 

* This research was supported by the Natural Sciences and Engineering Research Council of Canada 
under Grant A0871 and by a scholarship from the Institute for Computer Research, University of Waterloo. 

0304-3975/88/$3.50 @ 1988, Elsevier Science Publishers B.V. (North-Holland) 



50 C.-J. Seger, AA. Brzozowski 

associated with gate i is inertial, in the sense that short periods of instability are 
tolerated without any change. Now suppose the circuit of Fig. 1 is started with x = 0 

and y=yl,y2,y3 = 1, 0, 0, which is a stable state. What happens when x is changed 
to l? This is the type of problem that we are concerned with in this paper. 

Any state in which more than one gate is unstable at the same time is called a 
race. The outcome of a race depends very much on the model used. Commercial 
simulators like SILOS [IO] or MOSSIM [Z] use the “unit-delay” (UD) model, in 
which all gates are assumed to have exactly equal delays. In the state x = 1, y = 100 
(commas omitted from 1, 0, 0 for simplicity) gates 1 and 2 are unstable, and will 
both change. Consequently, the next state is 010. Now gates 2 and 3 are unstable, 
and state 001 is reached. This state is stable. In summary, the unit-delay model 
predicts that the final outcome of this transition is the stable state 001; see Fig. 2, 
where unstable gates are indicated by underlining. 

In contrast to this, the General Multiple Winner (GMW) model [7] permits the 
possibility of unequal delays. The model assumes that any nonempty subset of the 
set of unstable gates can change in any race. In Fig. 3 we show the GMW analysis 
of network N1. If gate 1 is faster in state 100, the state 000 may be reached. This 
is also a stable state, and represents a likely outcome. This shows that the UD model 
is inaccurate. In fact, the only justification of the use of the UD model appears to 
be its simplicity. On the other hand, the GMW model is too “pessimistic” as we 
show below. 

Consider the circuit of Fig. 4 started in the stable state x = 0, y = 1010100, and 
let x change to 1. It is reasonable to assume that ys will change to 0 before y4 

100 

Fig. 2. Unit-delay analysis of network N, . Fig. 3. Race analysis of NI according to the 
GMW model. 

Fig. 4. Network N,. 
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changes to 1, and that the only likely final outcome is the stable state 0101000. 
However, the GMW model will allow the possibility that y4 changes before ys and 
that the state OIOlOOl is also reachable. 

The “almost-equal-delay” (AED) model, formally defined later, represents an 
attempt to reduce the above pessimism by assuming that (roughly speaking) no gate 
delay exceeds the sum of any two gate delays. Thus the AED model predicts only 
the state 0101000 as the outcome for the circuit of Fig. 4 because the delay of gate 
5 is assumed to be smaller than the sum of delays of gates 1,2,3 and 4. Note that 
the AED model (extended to multiple winners) is clearly more informative than 
the UD model since it always includes the outcome predicted by the UD model. 

In this paper we define a new stepwise AED model and compare it with the 
original AED model. We show that the two models are equivalent with respect to 
their capability of predicting the outcome of a transition. However, the new stepwise 
model has the attractive property of being closely related to a time scale; hence, it 
is possible to obtain some timing information from the analysis. 

A major difficulty with models such as the GMW and AED is that the number 
of steps involved can be exponential in the number of gates. To overcome this, 
ternary simulation has been used [l, 93 to perform the analysis more efficiently. 
However, the ternary simulation algorithm, as suggested by Eichelberger [g], corre- 
sponds to a binary GMW analysis of the network assuming both gate and wire 
delays [3,4], and is therefore even more pessimistic than the GMW analysis. To 
overcome this, we propose a new ternary algorithm, called the ternary almost-equal- 
delay (TAED) model. This is a stepwise algorithm of the same complexity as the 
UD method, but it takes into account possible races. In fact, we show that the 
TAED model is closely related to the stepwise AED model. 

2. The binary almost-equal-delay model 

The “almost-equal-delay” (AED) model was originally defined using the “single- 
winner” concept for simplicity [S, 61. In this paper we consider the more general 
“multiple-winner” version of the model which is described below. This generalization 
is quite straightforward. 

The basic idea is illustrated in Fig. 5. Suppose network A$ of Fig. 1 starts in state 
100 at time 0 with gates 1 and 2 unstable as shown in Fig. 5. Suppose now that gate 

(a) W 

Fig. 5. Illustrating the “AED” idea: (a) possible transition; (b) timing diagram. 
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2 wins the race at time t and that, as a result of that change in gate 2, gate 3 becomes 
unstable. Under the almost-equal-delay assumption, it is unreasonable to let gate 3 
win the new race between gates 1 and 3 since ;&e 1 has already been “waiting” 
for t units of time. The model will remember this fact and will only permit gate 1 

to change in state 110, predicting the next state as 010. Informally, we can consider 
that at time 0 a “race unit” has started involving gates 1 and 2. No other gate can 
“enter” this race unit until all the gates in the original unit are somehow “satisfied”. 
A gate becomes satisfied if it either changes or becomes stable as a result of some 
other change. These ideas will be made precise below. 

Consider a network with n gates whose outputs are given by the vector y= 
!:I,. . . , y,, and with m inputs given by x = x1, . . . , x,. With each gate yi we associate 
its boolean function Yi(q y). In the AED model a certain amount of previous race 
history is necessary to determine the outcome of a race. We therefore define a race 
state to be an ordered pair (y, S), where y E B” denotes a state of the network, and 
S denotes the set of gates that are unstable in that state and are candidates to change 
according to the AED model, as explained below. 

Given any gate state y = y, , . . . , y”, and any subset P of the set (1,. . . , n} of gate 
subscripts, we define ytP) to be the vector obtained from y by complementing all 
the yi such that i is in I? For example, if y = 100 and P = (1,3}, then y(‘) =OOl. 

We now define a set K of race states and a binary relation p on K We begin 
with a stable state X, y”, and change the input to Z The initial race state of the 
network is (y’, U(y’)), where, for any y, U(y) is the set of subscripts of unstable 
gates in state y, i.e., 

(Note that the input will be held constant at the value x’ for the rest of the analysis; 
thus the dependency of U on x” is suppressed.) 

The set K and the relation p are now defined inductively as follows: 
Basis: (y”, U(YO))E K 
Induction Step: Given (y, V) E K, 
(I) if V=0, then (y, V)p(y, W; 
(2) if V# 0, then for each nonempty subset P of V compute WP = ( V- P) n 

U(fP’); 
(a) if Wp =fl, then (y (p), wY’p’)k K and (Y, VP(Y (p) u(y’p’)). 

(b) if W” #0, then (y (‘I, Wp) E K and (y, V)p(y’p), Wi). 
Nothing else is in K or p. 
The set defined above represents the set of all possible race states reachable 

from the initial race state (y’, U(y’)), and the relation p describes the immediate 
successor race states. In particular, given (y, V), if V= 0, then y is a stable state, 
and this is indicated by stating that (y, 0) is the only successor of itself. Next, if 

is definition that V will always represent a subset of the 
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so state y(‘) may be reached. The gates in are considered to have completed the 
race they were involved in. As for the gates in V- P, one of two things can happen. 
Either a gate yi remains unstable in ytP’, i.e., ie Wp, or the instability of yi is 
removed when y changes to y (‘I In the latter case, ie W,. Now, if . =p), al1 the 
instabilities have been remo from V, one way or another. Thus we consider the 
previous race unit as compl , and now start a new one by entering the race state 
(y(‘), U(y(“))) where each unstable gate of y (‘I has an equal chance of winning. If 
W, # 0, then some of the instabilities of V still remain unsatisfied; these a 
all the gates in Wp These gates are given preference over any new instabilities that 
may have been introduced by the change from y to y? 

We illustrate this definition by the following example. Consider the network N, 
of Fig. 1 in state x = 0, y”= 100 which is stable. We now let x’ = 1 and note that 
U(y’) = { 1,2}. Thus the network starts in the race state (100, { 1,2}). The graph of 
the relation p is shown in Fig. 6, where each edge has a label showing the gates 
that change during the transition corresponding to the edge. (For now, ignore the 
*-marking on some edges.) 

The relation graph shown in Fig. 6 describes all the possible states that can be 
reached during the transition from the initial state y” = 100, when the input changes 
from 0 to 1. However, we are normally interested only in the “final” outcome of 
the transition. Thus we will consider only the set of cycles in the relation graph of 

Fig. 6. Race analysis of N, according to the AED method. 
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p. Note that, by the definition of p, there cannot be any transi 
(A cycle is said to be transient if there is a gate that has 
unstable in all the states of the cycle [7].) In this case the netwo 
either one of two possible cycles, namely the stable states 000 
initial race is critical because the final outcome depends on th 
the circuit. 

For technical reasons which will become clearer later, we mark certain edges by 
a * in the graph of p as follows. All edges of the type ((y, a), (y, 0)) are marked. 
Also, every edge ((Y, V), (Y w 9 U(Y’~‘))) added to p by rule (2)(a), i.e. with W, = 0, 
is marked. No other edges are marked. (Note that if an edge is introduced because 
of rule (2)(a), that same edge cannot be also generated by rule (2)(b). This follows 
because y, V, and y(‘) uniquely determine W,.) For example, Fig. 6 shows all the 
marked edges for the previous example. 

In this section we introduce a new binary race model, very closely related to the 
AED model of Section 2. This model, which will be called the stepwise AED model, 
has the advantage of showing more clearly certain timing information. Also the 
stepwise model will be used later to establish a related ternary model. 

To obtain more timing information from p we now define a new relation R derived 
from p as described below. Intuitively, one can interpret this relation R in the 
following way. Suppose that all the gates have approximately the same delay, 6 f E. 
Then any race unit lasts for approximately 6 units of time. Thus a transition between 
two distinct states related by R represents roughly -8 units of time. In contrast to 
this, consider the relation p of Fig. 6 and the sequence (100, { 1,2}), (110, {l}), 
(010, {2,3}) where consecutive race states are related by p. Here the first transition 
takes about 8 units of time, whereas the second one takes only E units of time, 
because gate 1 became unstable in the first state and lagged behind gate 2 by a 
small amount of time. 

Note that the a ove intuitive explanation is adequate as long as 6 is much smaller 
than 6. Note als that the *-marking introduced in Section 2 has the following 
meaning: a transition is marked iff that transition completes a race unit, or it is a 
self-loop on a stable stat 

Formally, the relation is defined on a subset Q of the set K of race states as 
follows: 

Q = {(y”, U(y’))} u {(y, V) : there is a marked edge into 
(y, V) in the graph of p}. 
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To illustrate this, consider the example of Fig. 6. We find 

Q = WR U,2h WO, f&3)), (000, @, (OOI,0k 

and the reader can verify that R is as shown in Fig. 7. 
The reader should note that the knowledge of a race state (y, V) alone does not 

provide sufficient timing information about race units. Consider the network AT’ 
described by the following equations: 

Y, =xy$, Y*=Js, &=Y2 

started in the stable state x = 0, y = 000 and with the new input x^ = 1. (We use some 
strange gates in this network in order to keep the example small; similar phenomena 
occur in more realistic larger circuits.) In Fig. 8 we show the graph of the relation 
p for this transition. It is easy to verify that the states (000, { 1,2}), (010, {3}), and 

Fig. 7. Relation R derived from p of Fig. 6. 

Fig. 8. AED analysis of network I$. 
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(110, {1,3}) are all in Q, and that (000, {1,2})R(OlO, (3)) because the change in gate 
2 completes the race unit started in (000, { 1,2}). When state (010, (3)) is reached in 
this way the instability of gate 3 represents a new race unit. owever, despite the 
fact that the states (110, { 1,3}) and (010, (3)) are both in Q and (110, { ,3})p(OlO, {3}), 
they are not related by R The reason for this is that the transition from (110, { 1,3}) 
to (010, {3}) does not represent the completion of a “race unit”, because gate 3 is 
still unstable, and that condition started in state (110, { 1,‘3}). By requiring that the 
last edge in the p-path be marked, we make sure that the R-relation holds c~rlly 
between states reachable by complete race units. 

We will show that the I? relation contains all the “useful” information of the old 
AED relation p. Assume the network is started in the stable state X, y” and that the 
new input is 2 For convenience, let GP be the directed graph of the relation p, and 
GR be the directed graph of the relation R Note that GP and GR depend not only 
on the network, but also on +he initial state and the input change. 

Proposition 3J. In the grape GR every node (y, V) E Q is reachable from the initial 
race state Go, U(yO)). 

Proof. First note that, by the definition of p, all nodes in GP are reachable from 
the initial race state (y’, U(y’)). Consider (y, V) E Q; either (y, V) is the initial state 
or it has a marked edge (@, v), (x V)) in GP into it. Obviously, if it is the initial 
state, there is nothing to prove. Otherwise, study the state (y, v). Note that (9, v) 
must be reachable from (y’, U(y’)) in GP, and hence there must exist a path in GP 
from (y’, U(y’)) to (y, V) ending with a marked edge. In this path some other edges 
might also be marked, but that will only mean that we can reach (y, V) in GR by 
going through more than one node. Hence the claim follows. Cl 

position 3.2. TOle stable states of GP are the same as the stable states of GR. 

Proof. All stable states of GP are of the form (y, 0}, with an edge ((y, 0), (y, 0)). Note 
that this type of edge in GP is always marked and hence will also exist in GR. 
Conversely, every stable state of GR is a stable state of GP by construction of R 0 

For the next proposition we need a new concept. Given any cycle 

(Y’s V’) , . . . , (y’, V’), (y*, V’) in the graph GPI we call a race state (y’, Vi) initiating 
in this cycle iff the edge ((yi-‘, Vi-‘), (yi, Vi,\) is marked, where (y’, V”) is interpreted 
as (yr, V’). 

33. Every simple cycle C in G,, of length 32 must contain at least two 
distinct initiating states in C. 

such a cycle, eith 

i-’ (Case (2)(b)) 
edge is marked 
from any race 
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state in C we must reach an initiating state in C in a finite number of steps. Starting 
from any initiating state (y, V) in C we eventually must reach another initiating 
state (9, V) in C. We argue that these two race states must be different. This is 
because the edge leaving (y, V) involves changing at least one variable, say yi, from 
V. This variable cannot change again until a new initiating state in C is reached. 
Thus y^ and y differ at least in yi. 0 

We now wish to show that the cyclic behavior predicted by p is in some sense 
preserved in R For any cycle C of race states in the graph G,,, let n(C) be the 
sequence of initiating states of C in the same order as in C. The AED model of 
Section 2 (relation p) and the stepwise model of this section (relation R) are related 
by the following result. Assume that the network is started in the stable state x, y” 
and the input changes to 2. Compute p and R starting from this condition. 

Theorem 3.4. For every cycle C in the graph G,, there exists a cycle lI( C) in the graph 
GR. Conversely, for every cycle D in GR there exists a cycle C in GP such that D = I?(C). 
Furthermore, given two corresponding cycles CP in GP and CR in GR, and any variable 
yi, either yi has the same binary value in all the states of Cp and CR or yi oscillates 
(assumes the values 0 and 1) in both CP and Cp. 

Proof. Consider a cycle C,., in G,,. If the length of the cycle is I, i.e., the state is a 
stable state, then the result follows immediately from Proposition 3.2. Hence, assume 
the length of the cycle is 22. By the definition of an initiating state in a cycle and 
the definition of n(CP), it follows that if (y, V) and (9, 9) are any two consecutive 
race states in n(C,,), then the path in CP from (y, V) to (j7, V) will have only the 
last edge marked. Therefore we can conclude that (y, V)R(y, V). This, together with 
Proposition 3.3 shows that n(C,,) is a cycle in GR of length 32. 

Conversely, let DR be a cycle of GR. According to the definition of R, for any 
two consecutive race states (y, V) and (9, V) in DR, there must exist a path in the 
graph G,, from (y, V) to (y, V) with only the last edge marked. Hence there must 
exist in GP a cycle CP corresponding to the cycle DR in GR such that n( C,) = DR- 

The final part of Theorem 3.4 follows immediately from the observation that a 
gate can change at most once between two initiating states. Cl 

4. Race units 

The definition of Q and R as given above can be simplified since it is possible 
to avoid using race states. This follows because, in any state (y, V) in Q, the set V 
is uniquely determined by y ( V = U(y)). Below we give a different algorithm for 
computing Q and R, where we do not explicitly form the g of p. e reader 

can easily verify that the result is equivalent to the previous ition. 
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As before, we consider a gate network defined by X, y, and Y. A sequence, ( zO, So), 
(z’, S’), . . . , (z’, S’), k 2 0, is called a race unit if 

(i) z” E B” is a gate state and So = 

( ) 
ii z’+’ is state z’ with all the gate outputs in the set A’ co emented, where 

A’ is any nonempty subset of S’; also Sif’ = (Si - zi+*), and 
(iii) Sk = 0. 
Note that S”D S’ =) l l l => Sk, where => denotes proper containment. 
We compute the set 2 and also the relation o on 2 inductively as follows: 

Algorithm 4.1. Let X, y” be a stable total state and let the input change to % 
Basis: y%Z 
Induction step: For every y E 2, if there exists a race unit beginning wit 

and ending with (z, @), then z E Z and yoz. 

Now to obtain Q and R, replace each state y E 2! by (y, U(y)) in Q and let 

(Y, WY)uWli WI) iflE Y OZ. From now on we will be working with 2 and 0 rather 
than with Q and R when referring to the stepwise AED model. 

To illustrate these ideas, consider network N, of Fig. 1, as before started in the 
stable state x = 0, y” = 100 and with the new input x’ = 1. Since U(y’) = { 1,2}, there 
are only three possible race units starting with (100, { 1,2}): 

(1) (IOO,U, 2Mm, 01, 
(2) WA {1,2HWO, W~(O10,0), and 
(3) (100, {1,2H(OIO, 0). 

Therefore we add the states 000 and 010 to 2, and add the pairs (100,000) and 
(100,010) to the relation a. It is easy to show that from the state 000 we can only 
go to 000, and from state 010 we can end up in 000 or 001. From 001 we can only 
reach 001. In summary, 2 = {100,000,010, OOl}, and the relation m over 2 is as 
illustrated by the graph of Fig. 9. Note the correspondence between Fig. 9 and Fig. 7. 

It is now convenient to interpret Fig. 9 as a nondeterministic finite-state machine 
with initial state 100, and S as its only input letter. After one race unit (i.e., after 
roughly S units of time), we may nondeterministic:dsly reach the states 000 or 010, 

100 1 
(100) 

0 1 
(000.010) 

1 
000 001 

c 00 

Fig. 9. Stepwise AED analysis of N, . Fig. !O. 6hrrqmRSng kteministic finite-state 
machine ;o Fig. 9. 
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etc. Let Z”= {y’} and let 2’ be the set of states of reachable after i steps, i.e., 
Zi = {z : y’o’z). Note that these sets are the same as the subsets constructed by the 
subset construction when converting the nondeterministic finite state 
deterministic finite state machine. In Fig. 10 we show the deterministic finite-state 
machine corresponding to the non erministic machine of Fig. 9. 

We close this section with a discus&it of some limitations of the stepwise A 
model. One of the basic assumptions in this model is that delays are only associated 
with gates, and that delays are inertial in their nature. In many re 

mptions can be well justified. However, there is also a danger that the model 
may become unrealistic under certain conditions. ‘The model is only accurate as 
long as races from different race units do not get “mixed up”. In general, under 
the assumption that all gates have delays Ai in the interval [ 6 - E, S + c], the following 
condition makes sure that the kth race unit does not get mixed up with the (k - 1)st: 

k(S-s)>(k-l)@+s). 

The condition states that the time to complete k changes in the fastest gates (each 
with delay 6 - E) should be greater than the time required for k - 1 slowest gates 
(each with delay 6 + 8). What can happen, if the above condition is not satisfied, 
is that the model may omit certain races that potentially could exist. 
a sufficient condition for the stepwise AED model to be accurate for at least k steps, 
is that 

1 z<- 
6 2k-1’ 

For example, if the uncertainty of the delays in the gates is lo%, the stepwise AED 
model is accurate for at least five steps. However, the reader should note that the 
above condition is only a sufficient condition; in many cases the AED model is 
accurate for more than k steps. 

5. The TAED mdel 

In this section we describe a ternary simulation method which is related to the 
stepwise AED model. For more details about ternary simulation in general, the 
reader should refer to [T]. Let T = (0, 1, $}. The values 0 and 1 represent the usual 
logic levels and i represents an unknown value. We will use the following convention. 
Variables like yi etc., which take values from = (0, l), will have corresponding 
variable:; yi etc. taking values from T The partial order s on T is defined by 

rat forall tE T, 

0 < 5 ! and 1s;. 

V4e extend the partial order s to T” in the usual way: 

tSt iff fiGPi foralli=l,...,m. 



The statement TV c means that whenever ri is 
value as ri, but c may contain more unknown 
value 4). Thus r has more **uncertainty” 

For any vector of boolean functions f: 
defined by 

f(r)=lub(f(a):aEB’and a+. 

It follows that, for t E B’, f(f) = f( t) 
agrees with the ori 
monotonicity property [7]: 

t< I implies f(t)e 

The underlying idea behind the TAED method, formally de ed below, is to 
all the unstable gates in a state y9 and then d ne which of these unstable gates 
must change in this race unit. Consider ne N4 of Fig. II(a) started in the 
stable state x = 0, y = 11 and with the new input x” = 1. The first step of the TAED 
algorithm is to calculate the lub of the ent state, and the excitation of 
network. In this interm t iq the algorithm, a 
value 5 if it is unstable. In network both gate 1 and gate 2 are unstable and 
hence t = if. In order to determine f the unstable gates must change in the 
present race unit, the excitations of the unstable gates (i.e., the gates for which 9 = f) 
are re-evaluated. However, this re-evaluation is done assuming t is the total state 
of the network. If the excitation of an unstable gate j is still binary, then, indepen- 
dently of changes in the other unstable gates, this gate has to change before the 
present race unit can finish. On the other hand, if the “new” excitation of an unstable 
gate j is i, then that instability “depends” on some gates that are also unstable. 
Wence it is possible to change these other table gates first and thereby remove 
the instability of gate j. In network N’ we get l,#= l’=Oand Y,(l,$f)=(lf)‘=~, 
so the new state we reach is O& It is easy to see that gate 1 must change in any race 
unit since the excitation of the gate depends only on the new input value. an the 
other hand, the instability of gate 2 depends on gate 1 which is unstable; if gate 1 
changes first, gate 2 becomes stable. Hence in the step AED model we can 
reach in one race unit the states 00 or 01. Note that in 

in be “unstable” (=f), but, when re-evaluated, 
binary value 0. This is also consistent with the stepwise AED model. 

In the description above we simplified the re-evaluation of the excitation of the 
unstable gates slightly. As the following example shows, it is not correct to use the 

(b) 

Fig. 11. (a) Network 



TAED method. 
We define the function 

be any ternary state. 

-first calculate the intermediate st 

5 = lub(y,, q(g Y)) 
1 
forj=l to n do -re-evaluate the excitation 
{ 

The TAED algorithm consists of repeatedly appfyin next* Note that this wilf 
either lead to a stable ternary state, or an oscillation. n this respect the TAED 
method is similar to the unit-delay method used by most commercial simulators. 

To illustrate the algorithm, consider network Nt of stafled in the st&Jle 

state x = 0, y” = 100 and with the new input Z = I. The fi 
the following intermediate values: ? 

(:, y”)} = iub{ t, -r’} = lub{ 1,Q) = f , 

(?, y”)} = lub(O, (Zy;,, = I 

Hence, t = f@. In the second step of 
state are re-evaluated using the inte 

5 
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itself for which we use the “old” vs!ue. For network IV, we re-evaluate gates 1 and 
2, and we get the following values: 

j71 t y& t(‘)) = #” = 0, 

$2 = Y& #(*I) = (3,) = (19) = $. 

Hence, we obtain the new state 5 = O@. In Fig. 12(a) we give the complete TAED 
analysis of network N,. 

y*= _loo I0 * {too) 

I 
?'=&a0 

I I 
y’= Oh0 z’s {ooo. 010) 

c ta= Ok% 

I I 
y== 00% z” @oo. 001) 

0 0 
(a) (b) 

Fig. 12. Analysis of IV,: (a) TAED model; (b) states reachable in stepwise AED model. 

It is interesting to note that the lub of the states reachable after i race units in 
the stepwise AED model corresponds exactly to the outcome of the TAED method 
after i steps; see Fig. 12(a) and (b). In the next section we explore the relationship 
between the two models. 

6. A partial characterization of the TAED method 

In this section we show a partial correspondence between the binary stepwise 
AED model and the results of the TAED algorithm described above. The main 
result is the following theorem. 

mre.rn~ 6.1. Let x, y* be a stable total state, and let x’ denote a new input uector. Let 
yi denote the results of the TAED method after ib0 steps starting in y*= y*. Then, 
yi 2 lub(Z’), where Z’ is the set of states reachable in i steps in the stepwise AED model. 

efore proving the theorem we will establish Lemma 6.2 below. The following 
servation is useful in proving the lemma. If y is the input to ext, then t(j) > y. 

ence, by the monotonicity property of the ternary extension, 

0) 
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.2. Let YE T” and let 3 be t(y). 7hen 

w <y and wuz implies z s 5. 

Proof. If j;i = 4, then for any such z we will trivially have fi a 3. Hence, study the 
cases when fi E D. Note that, by the definition of G it follows that ~3 = 4 implies 5 = f . 
Therefore there are only four cases to consider. 

1234 

Yj = bbbi 
p b” 

2 2 d 
(II 

Yj = b b b’ b 

Here b stands for some binary value (0 or I), and b’ denotes the complement of b. 
Case 1: a = b, 5 = b, and jii = b. By the definition of 4,~ = b implies that 

b. Furthermore, by the definition of ternary extension, we must also have yi($ w) = b 
for every w 6 y. Since Wj S yi = b, gate j is stable in any such state w. Consequently, 
gate j remains unchanged in any race sequence beginning in state w. Therefore, if 
waz, we must have 3 = 6. By assumption, jii = b and fi > z; holds. 

&se 2: yi=b, ti=f, and j$=b. If $= n q(gy) is either $ or 6’. By (l), 
I$(% t(j)) 2 Y,(g y). Thus 6, as computed , must have the value 3 or b’. But 
we have assumed ii, = b. Hence this case is impossible. 

Case 3: y,=b, $=$, and&= b’. We first prove that, in any state w G y, gate j is 
unstable. Since $ = $, we know that fi = Yj(Z, t(j)). Also, by assumption, fi = b’. 
Altogether we have Y# t(j)) = b’. By (l), we know that q(g t(j)) 2 q(g y), so 
b’= q(g y). Furthermore, by the definition of ternary extension, it follows that 
q($ w) 6 q(<y) when w by. Hence b’= ts_(S, w) for w my. Since w by, andyi = b, 
we must have wj = b. Together, this shows that gate j is unstable in any state w s y. 

Secondly, we show that for any race sequence starting in state w, gate j must 
change, and therefore, for any z such that wmz, we will have Zj = b’. We prove this 
by contradiction. Assume there exists a race sequence (z’, So), (z’, S’), . . . , (z”, Sk) 
(ka0) with z”= w, So= U(w), and Sk = 0, such that z; = 6. Since, according to the 
first part above, gate j is unstable in any state w 6 y, we can conclude that k 2 1. 
Furthermore, since w s y, and, by assumption, fi = b, we must have zy = h 
by the definition of a race sequence, it follows that a gate can change at 
during a race sequence; since zy - - b and z; is assumed to be b, it follows 
for p=O,..., k Since t = lub(y, (2, y)), it follows by the definition of ternary 
eT;:Gnsion that t 3 lub( w, Y( 2, w)) for w < y. Furthermore, by the definition of a race 
Ianit, it follows that for j = 1, . . . , n, and p = 0, . . . , k, we have that zip is either equal 
to Wj or q(?, w). We can therefore c ub(w, Y(% w)), and hen 
t2zp :orp=O,..., 
shows that t(j)3zp for p=O,..., 

Z,zp) for p=O,... 
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the above two facts imply that yi(s, z p, = b’ for p = 0, . . 
that j is in U(zp) forp = 0, - l l , k contradicting the assum 
the assumption must have been false, and we can con 
that w(rz must have 3 = b’. Hence, fi 2 3 holds. 

case& a=#,%=$,andj?i Since 5 = f , it follows that 
sumed iij = b, it follows q(Js, t(j)) = b. By (l), 

5, y), so we can conclude th &(g y) = b. By the definition of ternary extension, 
ows that x(5, w) = b for any w s y. Study any state w E B”, w G y. We have 

0 i wj = b. Since wj = b and U,(?, w) = b, we have that gate j is stable, and, as in 
Case 1 above, we can conclude that, for any state z such that woz, we have zj = b. 
Hence, ij 2 3 holds. 

(ii) wj = b’. Since wj = b’ and q(g w) = b, we have that gate j is unstable. Using 
similar arguments as in the second part of Case 3 above, we can conclude that, for 
any race sequence from the state w, gate j must change and thus we have that if 
WOZ, then zj = b. Hence, jii 3 zj holds. 

We have shown that iiJ r all possible cases, and hence that y’ 2 z for any 
state z, such that woz, where 

We are now in position to prove Theorem 6.1. 

of eorellh 6.1. We want to show that if J$ E B, then lub(zj : y” a’~} = J$. We 
will prove this by induction on i 

Basis: i = 0. Trivially true. 
Induction Hypothesis: Assume that, for all k G & we have that 

Induction Step: We need to show that, for any z such that ~‘u’~‘z, we have 
Y i+l az. But yooi+’ z implies there exists a w such that y’a’w and woz. By the 
induction hypothesis, w G yi, and Lemma 6.2 applies. Thus, y’+’ a z. Cl 

e following example shows that the inequality of the theorem can not be 
replaced by equality, i.e., that the TAED model is sometimes overly pessimistic. 
Study network J’+& of Fig. 13, started in the stable state x = 0, y = yi . . . y6 = 111000 
and with the new input x’ = 1. In Fig. 14 we show the binary stepwise AED analysis 
of the face and in Fig. 15 we show the TAED analysis. Note that the f for gate 5 
in state y2 is incorrect. The reason for this discrepancy between the ternary simulation 
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Fig. 14. Stepwise AED analysis of N6. 

l.u.b.(Z”) = 111000 

1.u.b.Q’) = Ol%OOO 

I.u.b.(Z”) = 010000 

w (b) 

Fig. 15. (a) TAED analysis of N,; (b) Iub of the stepwise AED analysis. 

and the binary race analysis is that in the state y’ not all binary states by’ are 
reachable, and in particular, the state y = 011100 is not reachable from the initial 
state. It is this state that causes gate 5 to be unstable in the ternary simulation. and 
eventually leads to the 4 in yg. In general, the discrepancy occurs because of the 
loss of information in the ternary simulation where we only use the “average” of 
the states reachable. It appears that this pessimism occurs only in pathological 
examples, and that for most practical circuits, the ternary and the binary AED 
analysis correspond exactly. However, the problem of characteriing the class of 
networks for which the two models agree remains open. 

7. Summary 

In this paper we have presented a new ternary simulation algorithm that can 
easily replace the unit-delay algorithm in simulators. The algorithm is very closely 
related to the binary almost-equal-delay model, a ce is capable of detectin 
critical races under the assumption that all delays are a 
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evaluations). A major disadvantage with both this ternary algorithm and with the 
unit-delay method is that the algorithms are not guaranteed to h 
test whether a ternary stable state is reached by comparing y a 
is binary, we know the circuit reliably reaches a unique stable st 
critical race or an oscillation is likely, and further analysis is required. Since there 
are at most 3” reachable ternary states, it is decidable whether the analysis predicts 
a unit binary stable state. However, for large networks this decision may involve 
an excessive amount of computation. For such reasons commercial simulatars simply 
terminate the computation when the number of steps exceeds some arbitrarily chosen 
relatively small limit. The same approach can be used here. One can argue that a 
practical circuit that does not stabilize in (say) ten race units is not very well designed. 
Consequently, the method can be made practical and should produce useful results. 
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