
Communication Model for Cooperative Robotics Simulator

User Manual

Version 1.0

1. Introduction
This section will explain how to set up, use and integrate the Communication Model with
other parts in the system. In addition, it provides a brief overview of the Communication
Model and its associated part.

2. Overview
Communication Model for Cooperative Robotics Simulator is a component of
Cooperative Robotics Simulator. It provides communication services to the simulation
system. The Communication Model component mainly interacts with the two parts: the
Environment and the Control Panel. The Environment is the central component of the
system. It starts every service in the system including communication. The Control Panel
is a standalone system that connects to the environment simulator to monitor and control
the current simulation. The Control Panel provides the Communication Model a graphical
user interface to set up communication parameters, which will be delineated in the next
section. The Communication Model uses the Environment as a medium to transfer
messages to a robot. In addition, it also links to the Control Panel via the Environment.
The following diagram shows how these parts link together.

Set parameters

Set parameters

Messages

Messages

Control Panel

Environment

Communication

Robot

3. Set up

3.1 Required Software
• Java 1.4.2 or later (http://java.sun.com/j2se/1.4.2/download.html)

3.2 Recommended Software
Eclipse (http://www.eclipse.org/downloads/index.php)

3.3 Required Files
• All source code and executable files are included in CommunicatonModel.zip. All

files must be installed under folder
“edu/ksu/cis/cooprobot/simulator/communication/”

• Or Using Eclipse to checkout the source code from the CVS as followed
Select Menu File->Import

Select RoboSim and click next (the Communication module is included in RoboSim
project))

4. Using Communication Model
The explanation of Communication Model usage will be classified by main users, which
are the Control Panel and the Robot. The Control Panel uses the Communication Model
to set up parameters while Robot uses it for message passing. Most of the functions are
available in CommunicationsSystem object.

4.1 Initialization

The environment is responsible for initializing the Communication System (4.1.1) and
registering robots to the system (4.1.2).

4.1.1 Start up Communication System

CommunicationsSystem comm = new CommunicationsSystem(new
Environment env);

4.1.2 Register a robot to the system

All robots in the system must register to the communication system before starting
communication session. The registration process happens after each robot connected to
the environment. The environment registers a robot to the communication system after
each robot connected to the environment within this method
“setupNewRobot(EnvironmentObjectRobot robot)” The following sequence diagram
explains how registerRobot method is used by the Environment.

 : Robot Environment

EnvironmentRo
botServer

robot :
EnvironmentObjectRobot

 :
CommunicationsSystem

1: EnvironmentRobotServer(port,env)

2: new socket(server,port)

3: registerRobot(connection)

5: setupNewRobot(robot)

4: EnvironmentObjectRobot()

6: requestMyID()

7: myID

8: registerRobot(myID,commType)

• Register a robot with broadcast and point-to-point capability

String robotname = “robotA”;
Int commType = communicationsSystem.BROADCASTANDP2P;
comm.registerRobot(robotname,commType)

• Register a robot with broadcast capability

String robotname = “robotA”;
int commType = communicationsSystem.BROADCAST;
comm.registerRobot(robotname,commType)

• Register a robot with point-to-point capability

String robotname = “robotA”;
int commType = communicationsSystem.POINT2POINT;
comm.registerRobot(robotname,commType)

4.2 Functions for Control Panel
As stated above, the Control Panel is responsible for setting up communication
parameters. However, the Control Panel have no direct access to the
CommunicationsSystem, it will pass request to the Environment and the Environment
will call CommunicationsSystem method directly. The following sequence diagram
shows how CommunicationsSystem get request and send response back to the
Environment Control Panel. The RequestHandler class in Environment package initiates
a connection between the Environment and the EnvironmentControlPanel. It is
responsible for processing request and returning response back to the Environment
ControlPanel. The RequestHandler will determine what request is and call a
CommunicationsSystem method correspond to that request.

 :
EnvironmentControlPanel

Environment

 :
EnvironmentControlPanelServer

 :
ControlPanelConnection

RequestHandler

 :
CommunicationsSystem

1: EnvironmentControlPanelServer(port,env)

2: new socket(server,port)

3: registerControlPanel(connection)

4: ControlPanelConnection(env,connection)

5: RequestHandler(env,connection)

6: input.read()

7: request()

8: output.write(response)

loop

There are two groups of communication parameters, system parameters and robot
parameters. The following tables will describe each kind of parameters.

Parameter
Name

Possible Value Description

System link
status

• True
• False

This parameter controls all links status. If it is set to
true, the message passing is activated. Otherwise it
is not activated. This means messages cannot be
passed around the system.

System Range • -1 (no range
limit)

• Positive
integer

This is a maximum distance limit which all robots
are able to send messages out. All receivers within
this maximum distance from the sender will get the
message.

System Delay • 0 (no delay)
• Positive

integer

This parameter simulates traffic in the system. It
will delay messages to the receivers. Unit of delay
time is in time step, which is set by the
Environment. Time step is about 500 milliseconds.

System
delivery
probability

• 0-100 This parameter simulates a message lost situation.
It applies to all messages traversing in the system.
0 means all messages are lost. 100 means all
messages are delivered.

* Default value
Table 1 System Parameter Description Table.

Parameter
Name

Possible Value Description

Send link
(Outgoing
link)

• True
• False

This parameter controls the outgoing link status of
a robot. If it is set, the robot cannot send any
messages out.

Receive link
(Incoming
link)

• True
• False

This parameter controls the incoming link status of
a robot. If it is set, the robot cannot get any
messages from the other robots.

Range • -1 (no range
limit)

• Positive
integer

The difference between System Range and Robot
Range is that the Robot Range applies to a specific
robot.

Delay • 0 (no delay)
• Positive

integer

It is as same as the system one, but applies to only
messages sent by a specific robot to a particular
robot. Since this parameter will be set for each pair
of robot.

Delivery
probability

• 0-100 It is as same as the system one, but applies to only
messages sent by a specific robot to a particular
robot. Since this parameter will be set for each pair
of robot.

* Default value
Table 2 Robot Parameter Description Table.

In case of both system and robot parameter are set, the value of each parameter will be as
followed

Range = Summation of system range and robot range.
Delay = Summation of system delay and robot delay.
Delivery Probability = Average of system delivery probability and robot delivery
probability.

4.2.1 System Parameter Usage

• Start up all link

comm.startupAllLink();

• Shutdown all link

comm. shutdownAllLink();

• Set system range limit
In this example, the system range is set to 20.

comm.setRange(20);

• Set system delay time
In this example, the system delay is set to 5.

comm.setDelay(5);

• Set system delivery probability
In this example, the system delivery probability is set to 90.

comm.setDeliveryProb(90);

• Get system link status

boolean status = comm.isLinkEnabled();

• Get system range limit

int range = comm.getRange();

• Get system delay time

int delay = comm.getDelay();

• Get system delivery probability

int probability = comm.getDeliveryProb();

4.2.2 Robot Parameter Usage
All these parameters can be set only if the robot has been registered to the
communication system.

• Start up robot’s outgoing link
The outgoing link of “robotA” is activated by the following code.

String robotname = “robotA”;
comm.startUpSendLink(robotname);

• Shutdown robot’s outgoing link
The outgoing link of “robotA” is deactivated by the following code.

String robotname = “robotA”;
comm.shutdownSendLink(robotname);

• Start up robot’s incoming link
The incoming link of “robotA” is activated by the following code.

String robotname = “robotA”;
comm.startUpReceiveLink(robotname);

• Shutdown robot’s incoming link
The incoming link of “robotA” is deactivated by the following code.

String robotname = “robotA”;
comm.shutdownReceiveLink(robotname);

• Set range limit for a robot

String robotname = “robotA”;
int range = 20;
comm.setRobotRange(robotname,range);

• Set delay time between a pair of robot

String robotname1 = “robotA”;
String robotname2 = “robotB”;

int delay = 5;
comm.setRobotRange(robotname1,robotname2,delay);

or

comm.setRobotRange(robotname2,robotname1,delay);

These two statements are the symmetric operations. Both of them will set delay
time between “robotA” and “robotB” to 5. Therefore, using either one of these
operations will give the same result.

• Set delivery probability between a pair of robot

String robotname1 = “robotA”;
String robotname2 = “robotB”;

int probability = 90;
comm.setRobotDeliveryProb(robotname1,robotname2,probability);

or

comm.setRobotDeliveryProb(robotname2,robotname1,probability);

These two statements are the symmetric operations. Both of these operations will
set delivery probability between “robotA” and “robotB” to 90. Hence, using
either one of these operations will give the same result.

• Get Robot Outgoing Link Status

String robotname = “robotA”;
boolean status = comm.isRobotSendEnabled(robotname);

• Get Robot Incoming Link Status

String robotname = “robotA”;
boolean status = comm.isRobotReceiveEnabled(robotname);

• Get robot broadcast capability status

String robotname = “robotA”;
boolean status = comm.isRobotBroadcastEnabled(robotname);

• Get robot point-to-point capability status

String robotname = “robotA”;
boolean status = comm.isRobotP2PEnabled(robotname);

• Get robot range limit

String robotname = “robotA”;
int range = comm.getRobotRange(robotname);

• Get robot delay time

String robotname1 = “robotA”;
String robotname2 = “robotB”;

int delay = comm.getRobotDelay(robotname1,robotname2);

or

int delay = comm.getRobotDelay(robotname2,robotname1);

These two statements are the symmetric operations. Both of these operations will
return the delay time between “robotA” and “robotB”. As a result, using either
one of these operations will return the same result.

• Get robot delivery probability

String robotname1 = “robotA”;
String robotname2 = “robotB”;

int probability =
comm.getRobotDeliveryProb(robotname1,robotname2);

or

int probability =
comm.getRobotDeliveryProb(robotname2,robotname1);

These two statements are the symmetric operations. Both of these operations will
return delivery probability between “robotA” and “robotB”. Therefore, using
either one of these operations will return the same result.

4.3 Functions for Robot
Sending and Receiving messages are core functions provided for Robot. Since messages
are passed to the Robot via the Environment, all these functions will be used by the
Environment. This sequence diagram describes how to send and receive message within
the Environment package.

 : Robot Environment :
EnvironmentObjectRobot

 :
CommunicationsSystem

1: output.write(message)

2: prepGetEvents()

3: queueEvents()

4: processMessageEventQueue(timestep)

5: myMessageEvent.remove(0)

6: action

7: sendMessage(action.message,timestep)

8: sendoutAllTheMessages(timestep)

9: getMyID()

10: ID

11: getMessage(ID,timestep)

12: messages[]

13: sendMessage(message)

14: output.write(message)

loop until messages is
empty

loop until
myMessageEvent
is empty

loop

EnvironmentObjectRobot is the class that establishes TCP/IP connection to Robot. Each
EnvironmentObjectRobot has a queue to keep incoming message from robot. In every
time step the Environment will read messages in this queue and forward to the
CommunicationsSystem by processMessageEventQueue method. The process of
receiving message is done by sendOutAllMessages method. The Environment calls
getMessage method from the CommunicationsSystem and forward these messages to the
EnvironmentObjectRobot to write out to the socket that connects to the robot.

The Environment will process sending and receiving messages in every time step. It will
process sending message (processMessageEventQueue) and receiving message
(sendOutAllMessages) respectively, since receivers should get the message without delay
at the same time step as sending time. The following method gets messages at current
time step from every robot and forwards to the communication system

// get message from robot forward to communication system
processMessageEventQueue(currentTime);

private void processMessageEventQueue(long timestep)
{
 for (int i=0; i < robots.size(); i++)
 {
 EnvironmentObjectRobot robot = (EnvironmentObjectRobot)robots.get(i);
 while(!robot.myMessageEvents.isEmpty())
 {
 RobotRequest action =
(RobotRequest)robot.myMessageEvents.remove(0);
 commSystem.sendMessage(action.message, timestep);
 }
 }
}

The following method retrieves each robot’s messages from the communication system
and forwards to the owner robot message by message.

//get message from communication system and forward to robot.
sendOutAllTheMessages(currentTime);

private void sendOutAllTheMessages(long timestep)
{
 for (int i=0; i < robots.size(); i++)
 {
 EnvironmentObjectRobot robot = (EnvironmentObjectRobot)robots.get(i);
 Vector messages = commSystem.getMessage(robot.myID, timestep);
 while(!messages.isEmpty())
 {
 Message mess = (Message) messages.remove(0);
 robot.sendMessage(mess);
 }
 robot.sendMessage(Message.NULL_MESSAGE);
 }
}

4.3.1 Send Message
• Send Broadcast Message
In case of sending broadcast message, the receiver name within Message object
must be “broadcast”.

// create a broadcast message
// robotA is the sender
String sender = “robotA”;
String receiver = “broadcast”;

String content = new String(“broadcast message from A”);
Message msg = new Message(sender,receiver,content);

// set current time step
long timeStep = 1;
comm.sendMessage(msg,timeStep);

• Send point-to-point message

// create a message
// robotA is the sender
String sender = “robotA”;
// robotB is the receiver
String receiver = “robotB”;
String content = new String(“sending a message to B from A”);
Message msg = new Message(sender,receiver,content);

// set current time step
long timeStep = 1;
comm.sendMessage(msg,timeStep);

4.3.2 Receive Message

// Get all messages with time step = 1 for “robotA”
String robotname = “robotA”;
long timeStep = 1;
Vector msgAVector = comm.getMessage(robotname,timeStep);

