
1

ALisp User’s Guide

Tore Risch
Uppsala Database Laboratory

Department of Information Technology
Uppsala University

Sweden
Tore.Risch@it.uu.se

2000-07-09

(Latest revision 2006-01-11)

ALisp is an interpreter for a subset of CommonLisp built on top of the storage manager
of the Amos II database system. The storage manager in scalable end extensible which
allows data structures to grow very large gracefully and dynamically without perform-
ance degradation. Its garbage collector is incremental and based on reference counting
techniques. This means that the system never needs to stop for storage reorganization and
makes the behaviour of ALisp very predictable. ALisp is written in ANSII C and is tightly
connected with C. Thus Lisp data structures can be shared and exchanged with C pro-
grams without data copying and there are primitives to call C functions from ALisp and
vice versa. The storage manager is extensible so that new C or Lisp based data structures
can be introduced to the system. ALisp runs under Windows and Linux. It is delivered as
an executable and a C library which makes it easy to embed ALisp in other systems.

This report documents how to use the ALisp system.

Introduction

2

1. Introduction
ALisp is a small but scalable Lisp interpreter that has been developed with the aim of being embedded in other systems.
It is therefore tightly interfaced with ANSII C and can share data structures and code with C. ALisp supports a subset
of CommonLisp and conforms to the CommonLisp standard when possible. However, it is not a full CommonLisp
implementation, but rather such constructs are not implemented that are felt not being critical and difficult to imple-
ment efficiently. These restrictions make ALisp relatively small and light-weight, which is important when embedding
it in other systems.

ALisp was designed to be embedded in the Amos II object-relational database kernel [2]. However, ALisp is a general
system and can be used for many other applications as well. Since it is used in a database kernel it is very important
that its storage manager is efficient and scales well. Thus all data structures are dynamic and can grow without per-
formance degradation. The data structures grow gracefully so that there are never any significant delays for data reor-
ganization, garbage collection, or data copying. (Except that the OS might sometimes do this, outside the control of
ALisp). There are no limitations on how large the data area can grow, except OS address space limitations and the size
of the virtual memory backing file. The performance is of course dependent on the size of the available main memory
and thrashing may occur when the amount of memory used by ALisp is larger than the main memory.

A critical component in a Lisp system is its garbage collector. Lisp programs often generate large amounts of tempo-
rary data areas that need to be reclaimed by garbage collection. Furthermore, since ALisp was designed to be used in
a DBMS kernel it is essential that the garbage collection is predictable, i.e. it is not acceptable if the system would stop
for garbage collection now and then. The garbage collector must therefore be incremental and continuously reclaim
freed storage. Another requirement for ALisp is that it can share data structures with C, in order to be tightly embed-
ded in other systems. Therefore, unlike many other implementations of Lisp (SmallTalk, Java, etc.) systems, both C
and Lisp data structures are allocated in the same memory area and there is no need for expensive copying of large
data areas between C and Lisp. This is essential for a predictable interface between C and Lisp, in particular if it is
going to be used for managing large database objects as in ALisp’s main application.

Section 2 describes the system functions in ALisp. The differences w.r.t. CommonLisp are documented. Section 3
gives an overview of the debugging facilities, while Section 4 describes the error handling mechanisms. Section 5 de-
scribes the I/O system and Section 6 overviews the storage manager interfaces.

2. Starting ALisp
ALisp is a subsystem to Amos II [2]. Amos II is started with the OS command:

amos2

There has to be a database file with a system Amos II database in the file:

amos2.dmp

in the same directory as where Amos II is started.

When Amos II is started it accepts AMOSQL [2] commands from the console. To enter the ALisp read-eval-print top
loop from the AMOSQL top loop, give the AMOSQL command:

lisp;

To go back to AMOSQL from ALisp mode, enter the keyword:

:osql

Data Types

3

to the ALisp top loop.

All data to be stored in an Amos II database is stored inside a dynamic main memory area called the image. When the
database has been populated the image can be saved on disk with the ALisp function:

(rollout filename)

which is equivalent to the AMOSQL command:

save "filename";

To later connect Amos II to a previously saved image, issue the OS command:

amos2 filename

3. Data Types
Every object in ALisp belongs to exactly one data type. There is a system provided type tag stored with each object
that identifies its data type. Each data type has an associated name. The symbolic name of the data type of an ALisp
object O can be accessed with the ALisp function:

(TYPENAME O)

ALisp provides a set of built-in basic data types. However, through its C-interface ALisp can be in addition extended
with new datatypes implemented in C (Sec. 9.7 Storage types). The system tightly interoperates with C/C++ so that
data structures can be shared between C and ALisp, the ALisp garbage collector is available from C, C and ALisp func-
tions can call each other, etc.

3.1 Symbols

A symbol (data type name SYMBOL) is a unique and capitalized text string with which various system data can be
associated. Symbols are used for representing Lisp functions, Lisp macros, Lisp variables and property lists. Lisp func-
tions and macros represent executable ALisp code (Sec. 4. System Functions and Variables), Lisp variables bind sym-
bols to values, and property lists associate data values with symbols and properties. Symbols are unique and therefore
the system maintains a hash table of all symbols. Symbols are not garbage collected and their location in the image
never change. It is therefore not advisable to make programs that generate unlimited amounts of symbols. Symbols
are mainly used for storing system data (such as programs) while other data structures, e.g. hash tables, arrays, lists,
objects, etc. are used for storing user data. Symbols are always internally represented in upper case and symbols en-
tered in lower case are always internally capitalized by the system.

The special system symbol nil represents both the empty list and the truth value false. All other values are regarded as
having the truth value true.

Each symbol has the following associated data:

1. The print name is the string representing the symbol. The print name of the symbol S can be accessed by the func-
tion:
(MKSTRING S)

2. The function definition is non-nil when the symbol has an associated function definition. Functions can be system
defined or defined in ALisp by the built-in functions DEFUN or DEFMACRO. The function definition of a symbol

Data Types

4

S is accessed with (SYMBOL-FUNCTION S) and updated with (SYMBOL-SETFUNCTION S V). A function
definition can be of various types as explained in Sec. 3.3 Functions.

3. The global value of a variable is bound by the Lisp functions SETQ or SET (Sec. 4.1 Control Structures and Var-
iable Binding).

Notice that, unlike most programming languages, global Lisp variables can be dynamically scoped so that they are
rebound when a code block is entered and restored back to their old values when the code block is exited [1]. In
Alisp such dynamically scoped variables are declared using DEFVAR (Sec. 4.9 Function and Variable Defini-
tions). It is also possible to declare not-scoped global variables (usually constants) with DEFGLOBAL. There are
a number of built-in global variables that stores various system information and system objects.

4. The property list associates property values with the symbol and other symbols called properties. The property list
of a symbol S is accessed with (SYMBOL-PLIST S). A property list is represented as a list with an even number
of elements where every second element are property symbols and every succeeding element represents the corre-
sponding property value. Property lists are often used for associating system information with symbols and can also
be used for storing user data. However, notice that, since atoms are not garbage collected, dynamic databases
should not be represented with property lists. The Lisp functions PUTPROP and GETPROP are used for manipu-
lating property lists (Sec. 4.3 Strings and Symbols).

3.2 Lists

Lists (data type name LIST) are objects having two fields, CAR and CDR (alt. FIRST and REST), pointing to other
Lisp objects. CAR points to the head of the list and CDR points to its tail. There are many system functions for ma-
nipulating lists (see Sec. 3.2 Lists). Programs in Lisp are defined as lambda expressions using mainly lists and symbols.

3.3 Functions
Each symbol nm has an associated function cell where the ALisp function definition for the function named nm is
stored. The function cell of a Lisp symbol nm is retrieved with the function (SYMBOL-FUNCTION nm) (Sec. 4.9
Function and Variable Definitions) that returns the function definition of nm if there is one; otherwise it returns nil
(The function GETD is equivalent to SYMBOL-FUNCTION). A function definition can be one of the following:

A. A LAMBDA function which is an interpreted function. It is defined by the system function DEFUN. A lambda func-
tion definition is represented as a list, (LAMBDA args . body).

B. A Lisp MACRO is defined by the system function DEFMACRO. A MACRO is a Lisp function that takes as its
argument a functional expression (called form or S-expression) and produces a new equivalent functional expression
(form). Many system functions are defined as macros. They are Lisp’s rewrite rules. MACROs are made very efficient
in ALisp since the first time the interpreter encounters a MACRO call it will modify the code and replace the original
form with the macro-expanded one. Thus a macro is normally evaluated only once. The definition of a MACRO is a
regular function definition, but each symbol has a special flag indicating that its definition is a MACRO. The Lisp
function (SYMBOL-MACRO nm) (Sec. 4.9 Function and Variable Definitions) returns the function definition of the
MACRO nm if it is a MACRO; otherwise it returns NIL.

C. A SUBR function is a Lisp function defined in C. A SUBR is represented by special datatype named EXTFN and
printed as #[SUBRn fn], where n is the arity of the function and fn is its name. E.g. the definition of CONS is printed
as #[SUBR2 CONS]. The EXTFN data structure contains a pointer to the C definition.

D. A No-Spread function is a SUBR with varying number of arguments. It definition is printed as #[SUBR-1 fn], e.g.
#[SUBR-1 LIST].

Data Types

5

E. A Special Form is a SUBR with varying number of arguments and where the arguments are not evaluated the stand-
ard way. Special Forms are printed as #[SUBR-2 fn], e.g. #[SUBR-2 COND]

3.4 Numbers

Numbers represent numeric values. Numeric values can either be integers (data type name INTEGER) or floating point
numbers (data type name REAL). Integers are entered to the ALisp reader as an optional sign followed by a sequence
of digits, e.g.

1234 -1234 +1234

Examples of legal floating point numbers:

1.1 1.0 1. -1. -2.1 +2.3 1.2E3 1.E4 -1.2E-20

There are several arithmetic system functions (see Sec. 4.5 Arithmetic Functions).

3.5 Strings

Strings (data type name STRING) represent text strings of arbitrary length. The Lisp print functions PRIN1 and PRINT
print strings enclosed within string delimiter (") characters. Strings containing the characters ’"’ or ’\’ must precede
these with the escape character ’\’. The ALisp reader (function READ) recognizes strings. E.g.

"This is a string" "This is a string containing the string delimiter \""

The Lisp function PRINC strips string delimiters and escape characters from a printed string.

Functions manipulating strings are described in Sec. 4.3 Strings and Symbols.

3.6 Arrays

Arrays (data type name ARRAY) represent 1 dimensional sequences. The elements of an array can be of any type.

Arrays are allocated with
(make-array size)

Array elements are accessible through
(aref array pos)

Array elements are updated through
(setf (aref array pos) value)

The size of an array is obtained by
(array-total-size array) or
(length array)

The record package of ALisp (see DEFSTRUCT in Sec. 4.10 Defining Structures) is implemented using arrays.

Data Types

6

Adjustable arrays are arrays that can be dynamically increased in size. They are allocated with
(make-array size :adjustable t)

Arrays can be enlarged with
(adjustarray array newsize)
Enlargement of adjustable arrays is incremental, and does not copy the original array. Non-adjustable arrays can be
enlarged as well, but the enlarged array may or may not be a copy of the original one depending on its size.

The system functions for manipulating arrays are described in Sec. 4.6 Array Functions.

3.7 Hash Tables

Hash tables (data type name HASHTAB) are unordered dynamic tables that associate values with ALisp objects as
keys.

Hash tables are allocated with
(make-hash-table)
Notice that, unlike standard CommonLisp, no initial size is given when hash tables are allocated. Instead the system
will automatically and incrementally grow (or shrink) hash tables as they evolve.

Notice that comparisons of hash table keys in CommonLisp is by default using EQ and not EQUAL. Thus, e.g., two
strings with the same contents do not match as hash table keys unless they are pointers to the same string. Normally
EQ comparisons are useful only when the keys are symbols. To specify a hash table comparing keys with EQUAL
(e.g. for numeric keys or strings) use
(make-hash-table :test (function equal))

Elements of a hash table are accessed with
(gethash key hashtab)

An element of a hash table is updated with
(setf (gethash key hashtab) value)

An element of a hash table is removed with
(remhash key hashtab)
or
(setf (gethash key hashtab) nil)

Iteration over all elements in a hash table is made with
(maphash (function(lambda (key val) ...)) hashtab)

The ALisp functions to manipulate hash tables are listed in Sec. 4.7 Hash Tables.

3.8 Main memory B-trees

Main memory B-trees (data type name BTREE) are ordered dynamic tables that associate values with Alisp objects as
keys. The interfaces to B-trees are very similar to those of hash tables. The main difference between B-trees and hash
table are that B-tree are ordered by the keys and that there are efficient tree search algorithms for finding all keys in a
given interval. B-trees are slower than hash tables.

B-trees are allocated with

System Functions and Variables

7

(make-btree)

Elements of a B-tree are accessed with
(get-btree key btree)

An element of a B-tree is updated with
(put-btree key btree value)

Iteration over the values in a B-tree whose keys are in a given interval is made with
(map-btree btree lower upper fn)

The key-value pairs of a B-tree are printed on the standard output with
(print-btree btree)

The B-tree manipulating functions are described in Sec. 4.8 B-Trees.

3.9 Streams

Streams (data type name STREAM) are used for reading and writing files.

A new stream is opened with
(openstream filename mode)
where mode can be "r" for reading, "w" for writing, or "a" for appending. The usual Lisp I/O functions (see Sec. 5.
Input and Output) work on streams.

The stream is closed with
(closestream stream)

The standard output for PRINT etc. can be dynamically redirected to a stream by
(stdoutstream stream)
After stdoutstream is called all system messages and all calls to Lisp output functions to the standard output are redi-
rected to the stream. stdoutstream returns the old standard output stream. If stdoustream is called without any argu-
ments the current standard output stream is returned without redirection.

The standard input can be dynamically redirected to read from a stream by
(stdinstream stream)
After stdinstream is called the Lisp toploop will read from the specified stream. The function returns the old standard
input stream. If stdinstream is called without any arguments the current standard input stream is returned without re-
direction.

There are several kinds of streams for reading and writing from files, string buffers, and sockets (See Sec. 5.2 Text
streams).

The storage manager allows the user to define new kinds of streams.

4. System Functions and Variables
This section describes the built-in ALisp system functions, macros and variables. Those functions that are similar or

System Functions and Variables

8

equivalent to standard CommonLisp functions are marked with a ’*’ under Type. The reader should read e.g. [1] for
further details on CommonLisp functions. When there are significant differences between an ALisp function and the
corresponding CommonLisp function these differences are described. The Type of a function can be SUBR (defined
in C), SPECIAL (special form), LAMBDA (interpreted), or MACRO (Lisp macro). A system variable can be either
SPECVAR or GLOBAL. In the descriptions of arguments of functions X... indicates that the expression X can be re-
peated an arbitrary number of times.

The rest of this section contains short descriptions of the available built-in functions, ordered by subject. Notice, how-
ever, that I/O functions are described in Sec. 5. Input and Output, error management functions in Sec. 6. Error handling,
and debugging functions in Sec. 7. Lisp Debugging.

4.1 Control Structures and Variable Binding
This subsection describes system functions, macros, and special forms for handling ALisp’s control structures, varia-
ble binding, and function application.

Function Type Description

(APPLY FN ARGS) *SUBR Apply the function FN on the arguments in the list ARGS.
(APPLYARRAY FN A) SUBR Apply the Lisp function FN on the arguments in the array A.
(BOUNDP VAR) *SUBR Return T if the variable VAR is bound. Unlike CommonLisp BOUNDP

works not only for special and global variables but also for local variables.
(BQUOTE X) MACRO BQUOTE implements ALisp’s variant of the CommonLisp read macro ‘

(back-quote). X is substituted for a new expression where ’,’ (comma) and
’,@’ (at sign) are recognized as special markers. A comma is replaced with
the value of the evaluation of the form following the comma. The form
following an at-sign is evaluated and ’spliced’ into the list.
For example, after evaluating
(setq a ’(1 2 3))
(setq b ’(3 4 5))
then
‘(a (b , a ,@ b))
or equivalently
(bquote(a (b , a ,@ b))
both evaluate to
(a (b (1 2 3) 3 4 5))
Very useful for making Lisp macros.

(CASE TEST (WHEN THEN...)...(OTHERWISE DEFAULT...)
*MACRO For example:

(CASE (+ 1 2)(1 ’HEY)((2 3) ’HALLO) (OTHERWISE ’DEFAULT))
=> HALLO
Evaluate TEST and match the value with each of the WHEN expressions. For
the WHEN expression matching the value, the corresponding forms THEN...
are evaluated, and the last one is returned as the value of CASE. Atomic
WHEN expressions match if they are EQ to the value, while lists match if the
value is member of the list. If no WHEN expression matches the forms
DEFAULT... are evaluated and returned as the value of CASE. If no
OTHERWISE clause is present the default result is NIL.

(CATCH TAG FORM) *SPECIAL Evaluate TAG to a catcher which must be a symbol. Then FORM is
evaluated and if the function (THROW TAG VALUE) is called with the
same catcher then VALUE is returned. If THROW is not called the value of
FORM is returned.

(COND (TEST FORM...)...) *SPECIAL Classical Lisp conditional execution of forms.
(DO INITS ENDTEST FORM...) *MACRO General CommonLisp iterative control structure [1]. Loop can be terminated

System Functions and Variables

9

with (RETURN VAL) in addition to the ENDTEST.
(DO* INITS ENDTEST FORM...) *MACRO As DO but the initializations INIT are done in sequence rather than in

parallel.
(DOLIST (X l) FORM...) *MACRO Evaluate the forms FORM... for each element X in list L.
(DOTIMES (I N) FORM...) *MACRO Evaluate the forms FORM... N times.
(EVAL FORM) *SUBR Evaluate FORM. Unlike CommonLisp, the form is evaluated in the lexical

environment of the EVAL call.
(F/L FN ARGS FORM...) MACRO (F/l (X) FORM...) <=> (FUNCTION(LAMBDA(X) FORM...)) is equivalent

to the CommonLisp read macro
#’(LAMBDA (X) FORM...).

(FLET ((FN DEF)...) FORM...)
*MACRO Bind local function definitions and evaluate the forms FORM...

(FUNCALL FN ARG1...) *SUBR Call function FN with arguments ARG1...
(FUNCTION FN) *SPECIAL Make a closure of the function FN. Do not use QUOTE!
(IF P A B) *SPECIAL If P then evaluate A else evaluate B.
(LET ((VAR INIT...)...) FORM...)

*MACRO Bind local variables in parallel and evaluate the forms FORM...
(LET* ((VAR INIT...)...) FORM...)

*MACRO Bind local variables in sequence and evaluate the forms FORM....
(LOOP FORM...) *MACRO Evaluate the forms FORM... repeatedly. The loop can be terminated, and the

result VAL returned, by calling (RETURN VAL).
(PROG-LET ((VAR INIT...)...) FORM...)

(MACRO) As LET but if (RETURN V) is called in FORM... then PROG-LET will exit
with the value V. The classical PROG and GO are NOT implemented in
ALisp. The most common use of PROG is as a LET with a RETURN, which
is supported by PROG-LET.

(PROG-LET* ((VAR INIT...)...) FORM...)
(MACRO) As PROG-LET but binds the local variables as LET*.

(PROG1 X...) *SUBR Return the value of its first form among the arguments X...
(PROGN X...) *SUBR Return the value of the last form among the arguments X...
(QUOTE X) *SPECIAL Return X unevaluated.
(RESETVAR VAR VAL FORM...) MACRO Temporarily re-bind global value of VAR to VAL while evaluating FORM...

The value of the last evaluated form is returned. After the evaluation VAR is
reset to its old global value. This is similar to declaring VAR being special
with DEFVAR; the main difference being that look up of special variables in
the current ALisp is rather expensive, while global variables are cheap to
look up.

(RETURN VAL) *LAMBDA Return value VAL form the block in which RETURN is called. A block can
be a PROG-LET, PROG-LET*, DOLIST, DOTIMES, DO, DO*, LOOP or
WHILE expression.

(RPTQ N FORM) SPECIAL Evaluate FORM N times. Recommended for timing in combination with
TIMER.

(SELECTQ TEST (WHEN THEN...)... DEFAULT)
SPECIAL For example:

(SELECTQ (+ 1 2)(1 ’HEY)((2 3) ’HALLO) ’DEFAULT)
=> HALLO
Same as
(CASE TEST (WHEN THEN...)... (OTHERWISE DEFAULT))

(SET VAR VAL) *SUBR Bind the value of the variable VAR to VAL.
(SETQ VAR VAL) *SPECIAL Change the value of the unevaluated variable VAR with VAL.
(THROW TAG VAL) *SUBR Return VAL as the value of a call to CATCH with the catcher TAG that has

called THROW directly or indirectly.

System Functions and Variables

10

(WHILE TEST FORM...) MACRO Evaluate the forms FORM... while TEST is true or until RETURN is called.

4.2 List Functions
Function Type Description

(ADJOIN X L) *SUBR Similar to (CONS X L) but does not add X if it is already member of L (tests
with EQUAL).

(ANDIFY L) LAMBDA Make an AND form of the forms in L.
(APPEND L...) *MACRO Make a copy of the concatenated lists L... (APPEND X) copies the top level

elements of the list X.
(APPEND2 X Y) SUBR Append two lists X and Y.
(ASSOC X ALI) *SUBR Search association list ALI for a pair (X .Y). Tests with EQUAL.
(ASSQ X ALI) SUBR Similar to ASSOC but tests with EQ.
(ATOM X) *SUBR True if X is not a list or if it is NIL.
(ATTACH X L) SUBR Similar to (CONS X L) but destructive, i.e. the head of the list L is modified

so that all pointers to L will point to the extended list after the attachment.
This does not work if L is not a list, in which case ATTACH works like
CONS.

(BUILDL L X) LAMBDA Build a list of same length as L whose elements are all the same X.
(BUILDN X N) LAMBDA Build a list of length N whose elements all are all the same X:
(BUTLAST L) *SUBR Return a copy of list L minus its last element.
(CAAAR X) *SUBR (CAR (CAR (CAR X)))
(CAADR X) *SUBR (CAR (CAR (CDR X)))
(CAAR X) *SUBR (CAR (CAR X))
(CADAR X) *SUBR (CAR (CDR (CAR X)))
(CADDR X) *SUBR (CAR (CDR (CDR X))), same as (THIRD X)
(CADR X) *SUBR (CAR (CDR X)), same as (SECOND X)
(CAR X) *SUBR Return the head of the list X, same as (FIRST X).
(CDAAR X) *SUBR (CDR (CAR (CAR X)))
(CDADR X) *SUBR (CDR (CAR (CDR X)))
(CDAR X) *SUBR (CDR (CAR X))
(CDDAR X) *SUBR (CDR (CDR (CAR X)))
(CDDDDR X) *LAMBDA (CDR (CDR (CDR (CDR X))))
(CDDDR X) *SUBR (CDR (CDR (CDR X)))
(CDDR X) *SUBR (CDR (CDR X))
(CDR X) *SUBR Return the tail of the list X, same as (REST X).
(CONS X Y) *SUBR Construct new list cell.
(CONSP X) *SUBR Test if X is a list cell.
(COPY-TREE L) *SUBR Make a copy of all levels in list structure. To copy the top level only, use

(APPEND L).
(DELETE X L) *SUBR Remove destructively the elements in the list L that are EQ to X. Value is the

updated L. If X is the only remaining element in L the operation is not
destructive.

(DMERGE X Y FN) LAMBDA Merge lists X and Y destructively with FN as comparison function.
E.g. (DMERGE ’(1 3 5) ’(2 4 6) #’<) => (1 2 3 4 5 6)

System Functions and Variables

11

The value is the merged list; the merged lists are destroyed.
(EIGHT L) *LAMBDA Get the eight element from list L.
(FIFTH L) *LAMBDA Get fifth element in list L.
(FIRST L) *SUBR Get first element in list L. Same as (CAR L).
(FIRSTN N L) LAMBDA Return a new list consisting of the first N elements in the list L.
(FOURTH L) *LAMBDA Get fourth element in list L.
(GETF L I) *SUBR Get value stored under the indicator I in the property list L.
(ILENGTH L) LAMBDA Compute the length of the list L. Returns 0 if L is atom.
(IN X L) SUBR IN returns T if there is some substructure in L that is EQ to X.
(INTERSECTION X Y) *SUBR Build a list of the elements occurring in both the lists X and Y. Tests with

EQUAL.
(INTERSECTIONL L) LAMBDA Make the intersection of the lists in list L.
(ISOME L FN) SUBR FN is function with two arguments X and TAIL. Apply FN on each element

and its tail in list L. If FN returns true for some element in L then ISOME will
return the corresponding tail of L.
E.g. (ISOME ’(1 2 2 3) #’(LAMBDA (X TL)(EQ X (CADR TL)))) => (2 2 3)

(KWOTE X) SUBR Make X a quoted form. Good for making Lisp macros.
For example,
(KWOTE T) => T
(KWOTE 1) => 1
(KWOTE ’A) => (QUOTE A)
(KWOTE ’(+ 1 2)) => (QUOTE (+ 1 2))

(KWOTED X) SUBR Return T if X is a quoted form. For example:
(KWOTED 1) => T
(KWOTED ’(QUOTE (1))) => T
(KWOTED ’(1)) => NIL

(LAMBDAP X) LAMBDA Return T if X is a lambda expression.
(LAST L) *SUBR Return the last tail of the list L. E.g. (LAST ’(1 2 3)) => (3)
(LENGTH X) *SUBR Compute the number of elements in the list X, or the number of characters in

the string X. See also ILENGTH.
(LIST X...) *SUBR Make a list with the elements X...
(LIST* X...) *SUBR Is similar to LIST except that the last argument is used as the end of the list.

For example:
(LIST* 1 2 3) => (1 2 . 3)
(LIST* 1 2 ’(A)) => (1 2 A)

(LISTP X) *SUBR This function returns true if X is a list cell or NIL.
(LOCATEPOS L POSL) LAMBDA Select the substructure in L specified by the position chain POSL.

For example: (LOCATEPOS ’(A (B (C))) ’(1 1 0)) => C
(MAPC FN ARGS...) *MACRO Apply FN on each of the elements of the lists ARGS...
(MAPCAN FN ARGS...) *MACRO Apply FN on each of the elements of the lists ARGS... and NCONC together

the results.
(MAPCAR FN &REST ARGS) *MACRO Apply FN on each of the elements of the lists ARGS... and build a list of the

results.
(MAPFILTER FILT LST &OPTIONAL OP)

SUBR If OP=NIL return the subset of the elements for which the filter function
FILT returns true. If OP is specified the result is transformed by applying OP
on each element of the subset. For example:
(MAPFILTER (FUNCTION NUMBERP) ’(A 1 B 2) (F/l (x)(1+ x))) => (2 3)
See also SUBSET!

(MAPL FN ARGS...) *MACRO Apply FN on each tail of the lists ARGS...
(MEMBER X L) *SUBR Tests if element X is member of list L, Tests with EQUAL. Returns the tail

of L where X is found first. For example:

System Functions and Variables

12

(MEMBER 1.2 ’(1 1.2 1.2 3)) => (1.2 1.2 3)
(MEMQ X L) SUBR as MEMBER but tests with EQ instead of EQUAL.
(MERGE A B FN) *LAMBDA Merge the two lists A and B with FN as comparison function.

E.g. (MERGE ’(1 3) ’(2 4) (function <)) => (1 2 3 4)
(MKLIST X) SUBR X is returned if it is NIL or a list. Otherwise (LIST X) is returned.
(NCONC L...) *MACRO Destructively concatenate the lists L... and return the concatenated list.
(NCONC1 L X) SUBR Add X to the end of L destructively, i.e. same as (NCONC L (LIST X))
(NINTH L) *LAMBDA Get ninth element in list L.
(NREVERSE L) *SUBR Destructively reverse the list L. The value is the reversed list. L will be

destroyed.
(NTH N L) *SUBR Get the Nth element of the list L with enumeration starting at 0.
(NTHCDR N L) *SUBR Get the Nth tail of the list L with enumeration starting at 0.
(NULL X) *SUBR True if X is NIL.
(PAIR X Y) SUBR Same as PAIRLIS.
(PAIRLIS X Y) *SUBR Form an association list by pairing the elements of the lists X and Y.
(POP L) *SPECIAL Same as (SETQ L (CDR L)).
(PROGNIFY FORML) LAMBDA Make a single form from a list of forms FORML.
(PUSH X VAR) *MACRO Add X to the front of the list bound to the variable VAR, same as (SETQ

VAR (CONS X VAR)).
(PUTF L I V) SUBR Set the value of the indicator I on the property list L to V.
(RECONS X Y L) LAMBDA Similar to (CONS X Y) but if the result object has the same head and tail as

L then L is returned. Useful for avoiding to copy substructures.
(REMOVE X L) *SUBR Remove all occurrences of X from the list L. Tests with EQUAL.
(REST L) *LAMBDA Same as CDR.
(REVERSE L) *SUBR Return a new list whose elements are the reverse of the top level of L.
(RPLACA L X) *SUBR Destructively replace the head of list L with X.
(RPLACD L X) *SUBR Destructively replace the tail of list L with X.
(SECOND L) *SUBR Get second element in list L. Same as CADR.
(SET-DIFFERENCE X Y) *SUBR Return a list of the elements in X which are not member of the list Y. Tests

with EQ.
(SEVENTH L) *LAMBDA Get the seventh element of the list L.
(SIXTH L) *LAMBDA Get the sixth element of the list L.
(SMASH X Y) LAMBDA Replace destructively the list X with the list Y.
(SORT L FN) *LAMBDA Sort the elements in the list L using FN as comparison function.
(SUBLIS ALI L) *SUBR Substitute elements in the list structure L as specified by the association list

ALI that has the format ((FROM . TO)...).
E.g. (SUBLIS ’((A . 1)(B . 2)) ’((A) B A)) => ((1) 2 1)

(SUBPAIR FROM TO L) SUBR Substitute elements in the list L as specified by the two lists FROM and TO.
Each element in FROM is substituted with the corresponding element in TO.
E.g. (SUBPAIR ’(A B) ’(1 2) ’((A) B A)) => ((1) 2 1)

(SUBSET L FN) LAMBDA Return the subset of the list L for which the function FN returns true.
(SUBSETP X Y) *LAMBDA Return true if every element in the list X also occurs in the list Y.
(SUBST TO FROM L) *SUBR Substitute FROM with TO in the list structure L. Tests with EQUAL.

E.g. (SUBST ’1 ’A ’((A) B A)) => ((1) B 1)
(SWAP A E1 E2) LAMBDA Swap elements E1 and E2 in the array A.
(TENTH L) *LAMBDA Get the tenth element in the list L.
(THIRD L) *SUBR Get the third element of the list L. Same as CADDR.
(UNION X Y) *SUBR Construct a list of the elements occurring in both the lists X and Y. Tests with

EQ.

System Functions and Variables

13

(UNIONL L) LAMBDA Construct a list of the elements occurring in all the elements of the list of lists
L.

(UNIQUE L) SUBR Remove all duplicate elements in the list L. Tests with EQUAL.

4.3 Strings and Symbols
Function Type Description

(ADDPROP S I V FLG) SUBR Add a new value V to the list stored on the property I of the symbol S. If FLG
= NIL the new value is added to the end of the old value, otherwise it is added
to the beginning.

(CONCAT STR...) SUBR Coerce the arguments STR... to strings and concatenate them.
(EXPLODE S) SUBR Unpack a symbol S into a list of single character symbols. Symbols are

exploded into symbols and strings into strings.
E.g. (EXPLODE ’ABC) => (A B C)
(EXPLODE "abc") => ("a" "b" "c"))

(GENSYM) *LAMBDA Generate new symbols named G:1, G:2, etc.
(GET S I) *SUBR Get the property of symbol S having the indicator I.
(GETPROP S I) SUBR Same as GET.
(INT-CHAR X) *SUBR If possible, return the character string with the encoding integer X, otherwise

return NIL. Unlike CommonLisp there is no special data type for characters
in ALisp and instead a string with the character is returned.

(KEYWORDP X) *SUBR Return T if X is a keyword (i.e. symbol starting with ’:’).
(KEYWORD-TO-ATOM X) SUBR Convert a keyword X into a regular symbol without the ’:’.
(LITATOM X) SUBR Return true if X is a symbol. Same as (SYMBOLP X).
(MKSTRING X) SUBR Coerce an atom to a string.
(MKSYMBOL X) SUBR Coerce a string to a symbol. The characters of X will be capitalized.
(NATOM X) *SUBR Return T if X is not an atom and not NIL.
(PACK X...) LAMBDA Pack the arguments X... into a new symbol.
(PACKLIST L) LAMBDA Pack the elements of the list L into a new symbol.
(PUT S I V) *SUBR Set the value stored on the property list of the symbol S under the indicator I

to V.
(PUTPROP S I V) SUBR Same as PUT.
(REMPROP S I) *SUBR Remove property stored for the indicator I in the property list of symbol S.
(STRING-UPCASE STR) *SUBR Change all ASCII characters in the string STR to upper case.
(STRING< S1 S2) *SUBR Return true if the string S1 alphabetically precedes S2.
(STRING= S1 S2) *SUBR Return true if the strings S1 and S2 are the same. EQUAL works too.
(STRINGP X) *SUBR Return true if X is a string.
(SYMBOL-FUNCTION S) *SUBR Get the function definition associated with the symbol S. Same as GETD.
(SYMBOL-PLIST S) *SUBR Get the entire property list of the symbol S.
(SYMBOL-SETFUNCTION S D) SUBR Set the function definition of symbol S to D. Same as DEFC.
(SYMBOL-VALUE S) *SUBR Get the global value of the symbol S. Returns the symbol NOBIND if no

global value is assigned.
(SYMBOLP X) *SUBR Return true if X is a symbol.

System Functions and Variables

14

4.4 Logical Functions
Function Type Description

(AND X...) *SPECIAL Evaluate the forms X... and return NIL when the first form evaluated to NIL
is encountered. If no form evaluates to NIL the value of the last form is
returned.

(COMPARE X Y) SUBR Compare order of two objects. Return 0 if they are equal, -1 if less, and 1 if
greater.

(EQ X Y) *SUBR Test if X and Y have the same address.
(EQUAL X Y) *SUBR Test if objects X and Y are equivalent [1]. Notice that, in difference to

CommonLisp, non- arrays are equal if all their elements are equal.
(NEQ X Y) *SUBR (NOT (EQ X Y))
(OR X...) *SPECIAL Evaluate the forms X... until some form does not evaluate to NIL. Return the

value of that form.
(NOT X) *SUBR True if X is NIL; same as NULL.
(EVERY FN ARG...) *MACRO Return T if FN returns non-nil result when applied on every element in the

lists ARG... in parallel.
(SOME FN L...) *MACRO Apply FN on each of the elements in the lists L... in parallel. If FN returns

non-nil value for some element then SOME will return T, otherwise NIL.

4.5 Arithmetic Functions
Function Type Description

(+ X...) *SUBR Add the numbers X...
(- X Y) *LAMBDA Subtract Y from X.
(1+ X) *MACRO Add one to X which can be both integer and real.
(1++ X) MACRO Increment the variable X.
(1- X) *MACRO Subtract one from X which can be both integer and real.
(1-- X) MACRO Decrement the variable X.
(* X...) *SUBR Multiply the numbers X...
(/ X Y) *SUBR Divide X with Y.
(< X Y) *SUBR True if the number X is less than Y.
(<= X Y) *LAMBDA True if the number X is less than or equal to Y.
(= X Y) *SUBR Tests if two numbers are the same. E.g. (= 1 1.0) => T, while (EQUAL 1 1.0)

=> NIL
(> X Y) *LAMBDA True if the number X is greater than Y.
(>= X Y) *LAMBDA True if the number X is greater than or equal to Y
(INTEGERP X) *SUBR True if X is an integer.
(MAX X Y) *SUBR Return the largest of the numbers X and Y. Exactly two arguments, unlike

CommonLisp standard.
(MIN X Y) *SUBR Return the smallest of the numbers X and Y. Exactly two arguments, unlike

CommonLisp standard.
(MINUS X) *SUBR Negate the number X.
(MOD X Y) *SUBR Return the remainder when dividing X with Y. X and Y can be integers or

floating point numbers.

System Functions and Variables

15

(NUMBERP X) *SUBR True if X is number.
(RANDOM N) *SUBR Generate a random integer between 0 and N.
(SQRT X) *SUBR Compute the square root of the number X.

4.6 Array Functions
Function Type Description

(ADJUST-ARRAY A NEWSIZE) *SUBR Increase the size of the adjustable array A to NEWSIZE. Only one-
dimensional adjustable arrays are supported. If the array is declared to be
adjustable at allocation time it is adjusted in-place, otherwise an array copy
may or may not be returned.

(AREF A I) *MACRO Access element I of the array A. Unlike CommonLisp only one dimensional
arrays are supported. See also SETF.

(ARRAY-TOTAL-SIZE A) *SUBR Return the number of elements in the (one-dimensional) array A.
(ARRAYP X) *SUBR True if X is an array (fixed or adjustable).
(ARRAYTOLIST A) SUBR Convert an array A to a list.
(CONCATVECTOR X Y) LAMBDA Concatenate arrays X and Y.
(COPY-ARRAY A) *SUBR Make a copy of the non-adjustable array A.
(ELT A I) SUBR Retrieve element I from array A. Enumeration starts at 0. Same as (AREF A

I).
(LISTTOARRAY L) SUBR Convert a list to a non-adjustable array.
(MAKE-ARRAY SIZE :INITIAL-ELEMENT V :ADJUSTABLE FLG)

*MACRO Allocate a one-dimensional array of pointers with SIZE elements. :INITIAL-
ELEMENT specifies optional initial element values. If :ADJUSTABLE is
true an adjustable array is created; the default is a non-adjustable array.

(PUSH-VECTOR A X) SUBR Adjusts the array A with one element X at the end.
(SETA A I V) SUBR Set the element I in the array A to V. Returns V.
(VECTOR X...) *SUBR Make an array of X..

4.7 Hash Tables

Function Type Description

(CLRHASH HT) SUBR Clear all entries from hash-table HT and return the empty table.
(GETHASH K HT) *SUBR Get value of element with key K in hash table HT.
(HASH-BUCKET-FIRSTVAL HT) SUBR Return the value for the first key stored in the hash table HT. What is the first

key is undefined and depends on the internal hash function used.
(HASH-BUCKETS HT) SUBR Compute the number of buckets in the hash table HT.
(HASH-TABLE-COUNT HT) *SUBR Compute the number of elements stored in the hash table HT.
(MAKE-HASH-TABLE :SIZE S :TEST EQFN)

*MACRO Allocate a new hash table. The parameter :SIZE is ignored since the hash
tables in ALisp are dynamic and scalable. The keyword parameter :TEST
specifies the function to be used for testing equivalence of hash keys. :TEST
can be (FUNCTION EQ) (default) or (FUNCTION EQUAL).

(MAPHASH FN HT V) *SUBR Apply (FN KEY VAL V) on each key and value of the hash table HT.

System Functions and Variables

16

(PUTHASH K HT V) SUBR Set the value stored in the hash table HT under the key K to V. Same as
(SETF (GETHASH K HT) V).

(REMHASH K HT) SUBR Remove the value stored in the hash table HT under the key K.

4.8 B-Trees
Function Type Description

(GET-BTREE K BT) SUBR Get value of element with key K in B-tree BT. Comparison uses COMPARE.
(MAKE-BTREE) SUBR Allocate a new B-tree.
(MAP-BTREE BT LOWER UPPER FN) SUBR Apply ALisp function (FN KEY VAL) on each key-value pair in B-tree BT

whose key is larger than or equal to LOWER and less than or equal to
UPPER. If any of LOWER or UPPER are the symbol ’*’ it means that the
interval is open in that end. If both LOWER and UPPER are ’*’ the entire B-
tree is scanned.

(PRINT-BTREE BT) SUBR Print all key-value pairs in B-tree BT.
(PUT-BTREE K BT V) SUBR Set the value stored in the B-tree BT under the key K to V. V=NIL =>

marking element as deleted. NOTICE that the elements are not physically
removed when V=NIL; they are just marked as deleted. To physically
remove them you have to copy the B-tree.

4.9 Function and Variable Definitions

The following system functions are used for defining and accessing function, macro, and variable definitions.

Function Type Description

(ADVISE-AROUND FN CODE) LAMBDA Replace the body of function FN with form CODE where each * is
substituted for the original body of FN. (So called aspect-oriented
programming). CODE must be a single form. The variables of FN are
available in CODE. If the function is a SUBR the variable !ARGS is bound
in CODE to a list of the actual arguments.

(DECLARE ...) *MACRO Dummy defined in ALisp for compatibility with CommonLisp.
(DEFC FN DEF) SUBR Associate the function definition DEF with the atom FN. Same as

(SYMBOL-SETFUNCTION FN DEF).
(DEFGLOBAL VAR &OPTIONAL VAL)

MACRO Declare VAR to be a global variable with optional initial value VAL. Global
variables cannot be rebound locally with LET/LET*. They are much faster to
look up than dynamically scoped variables (see DEFVAR).

(DEFMACRO NAME ARGS FORM...
*SPECIAL Define a new MACRO.

(DEFVAR VAR &OPTIONAL VAL) *SPECIAL Declare VAR to be a special variable with optional initial value VAL.
Special variables are dynamically scoped non-local variables [1]. See also
DEFGLOBAL.

(DEFUN FN ARGS FORM...) *SPECIAL Define a new Lisp function.
(EXTFNP X) LAMBDA Return T if X is a function defined in C.
(GETD X) SUBR Get function definition of atom NM. Same as SYMBOL-FUNCTION

System Functions and Variables

17

(MACRO-FUNCTION FN) *SUBR Return the function definition of FN if FN is a macro; otherwise return NIL.
(MACROEXPAND FORM) *SUBR If FORM is a macro return what it rewrites FORM into; otherwise FORM is

returned unchanged.
(MOVD F1 F2) SUBR Make F2 have the same function or macro definition as F1.
(SPECIAL-VARIABLE-P V) *SUBR Return T if the variable V is declared as special with DEFVAR.

4.10 Defining Structures

ALisp includes a subset of the structure definition package of CommonLisp. The structure package is implemented in
ALisp using fixed size arrays. You are recommended to use structures instead of lists when defining data structures
because of their more efficient and compact representation.

Function Type Description

(DEFSTRUCT NAME SLOT...) *MACRO Define a new record type NAME with fields named SLOT...The fields can
only be pointers. DEFSTRUCT generates a number of macros and functions
to create and update instances of the record type:
New instances are created with

(MAKE-NAME :SLOT VALUE ...)
The fields of a record R are accessed using functions

(NAME-SLOT R)
To update a slot of record R with a new value V use

(SETF (NAME-SLOT R) V)
To test if an object O is a record named NAME, use

(NAME-P O)
(SETF PLACE VAL) *MACRO Update the location PLACE to become VAL. The location can be specified

with one of the functions AREF, GETL or GETHASH or access functions for
user defined structures using DEFSTRUCT.
A new SETF macro can be defined for a function call (FOO ...) by putting a
form on the property list of FOO under the indicator SETFMETHOD. The
SETF macro should have the format (LAMBDA (PLACE VAL) ...). It is
executed when (SETF (FOO ...) V) is called and thereby PLACE is bound to
the list (FOO ...) and VAL to V. The form should return the update form with
which to replace (SETF (FOO ...) V).

4.11 Miscellaneous Functions
Function Type Description

(CHECKEQUAL TEXT (FORM VALUE)...)
SPECIAL Regression testing facility. The TEXT is first printed. Then each FORM is

evaluated and its result compared with the value of the evaluation of the
corresponding VALUE. If some evaluation of some FORM is not EQUAL to
the corresponding VALUE an error notice is printed.

(CLOCK) SUBR Compute the number of wall clock seconds spent so far during the run as a
floating point number.

Input and Output

18

(EVALLOOP) SUBR Enter a Lisp top loop. Exit when function (EXIT) is called.
(EXIT) SUBR Return from the Lisp top loop to the program that called it. In a stand-alone

Amos II system EXIT is equivalent to QUIT. When Amos II is embedded in
some other system EXIT will pass the control to the embedding system.

(ID X) LAMBDA ID is the identity function.
(IMAGESIZE SIZE) SUBR Extend the system’s data image size to SIZE. If SIZE = nil the current image

size is returned. The image is normally extended automatically by the system
when memory is exhausted. However, the automatic image expansion may
cause a short halting of the system while the OS is mapping more virtual
memory pages. By using IMAGESIZE these delays can be avoided.

(IN-SYSTEM SYS FORM...) MACRO If the global variable _SYSTEM_ is EQ to atom SYS or member of list SYS
then the forms FORM... are evaluated.

(QUIT) *SUBR Quit Lisp. If ALisp is embedded in another system it will terminate as well.
(ROLLOUT FILE) SUBR Save the ALisp memory area (image) in file FILE. It can be restored by

specifying FILE on the command line the next time ALisp is started.
(SLEEP N) *SUBR Suspend the execution for N seconds.
(TYPENAME X) SUBR Get the name of the datatype of object X.
(UNFUNCTION FORM) LAMBDA Get the function definition of a functional expression.

5. Input and Output
The I/O system of ALisp is stream oriented, but much simpler than the elaborate I/O system of CommonLisp. There
are several kinds of streams: i) for terminal/file I/O, ii) text streams for reading and writing into text buffers, and iii)
socket streams for communicating with other Amos II systems. The same I/O functions normally works for both reg-
ular I/O and text streams. The storage manager allows the programmer to define new kinds of stream.

5.1 File I/O
The following system functions and variables handles file I/O:

Function Type Description

(CLOSESTREAM STR) SUBR Close the I/O stream STR.
DEEP-PRINT GLOBAL (Default T). Normally the contents of fixed size arrays and structures are

printed by PRINT etc. This allows I/O of such data types. However, when
DEEP-PRINT==NIL the contents of arrays and structures are not printed.
Good when debugging large or circular structures.

(DELETE-FILE FILE) *SUBR Delete the file named FILE. Returns T if successful.
(FILE-EXISTS-P NM) *SUBR Return T if file named NM exists.
(FILE-LENGTH NM) *SUBR Return the number of bytes in the file named NM.
(FORMATL FILE FORM...) MACRO Simple replacement of some of the functionality of FORMAT in

CommonLisp. Print the values of the forms FORM... on file FILE. A marker
T among FORM... indicates a line feed while the string "~PP" makes the next
element pretty-printed.

Input and Output

19

E.g. (FORMATL T "One: " 1 T) prints
One: 1

(LOAD FILE) *SUBR Evaluate the forms in the file named FILE.
(OPENSTREAM FILE MODE) SUBR Open a stream against external file. MODE is the file mode i.e. "r", "w", or

"rw". Since errors can happen during the processing of a file causing it not to
be closed properly, you are advised to use macros WITH-INPUT-FILE, and
WITH-OUTPUT-FILE.

(PP FN...) MACRO Pretty-print the functions and variables FN..., e.g. (PP PPS PPF). Notice that
function symbols are not quoted.

(PPF L FILE) LAMBDA Pretty-print the functions and variables in L into the specified file, e.g. (PPF
’(PPS PPF) "pps.lsp")

(PPS S &optional STREAM) LAMBDA Pretty-print expression S.
(PRIN1 S STREAM) *SUBR Print the object S in the stream STREAM with escape characters and string

delimiters inserted so that the object can be read with (READ STREAM)
later to produce a form EQUAL to S.

(PRINC X STREAM) *SUBR Print the object into the stream STREAM without escape characters and
string delimiters.

(PRINT X STR) *SUBR (PRIN1 X STR) followed by a line feed.
(PRINTL X...) LAMBDA Print the objects X... as a list.
(READ &OPTIONAL STR) *SUBR Read expression from stream STR. If STR is T or NIL it reads from primary

input. IF X is a string, the system reads an expression from the string, e.g.
(READ "(A B C)") => (A B C)

(READ-CHARCODE STREAM) SUBR Read one byte from the stream STREAM and return it as an integer.
(SPACES N STREAM) LAMBDA Print N spaces on the stream STREAM.
(TERPRI &OPTIONAL STREAM) *SUBR Print a line feed on the stream STREAM. If STREAM is NIL or T the

standard output is used.
(TYPE-READER TPE FN) SUBR Define the lisp function (FN TPE ARGS STREAM) to be a type reader for

objects printed as #[TPE X...]. The type reader is evaluated by the ALisp
reader when the pattern is encountered in an input stream. TPE is the type tag,
ARGS is the list of argument of the read object (X...), and STREAM is the
input stream.

(WITH-INPUT-FILE STR FILE FORM) MACRO Open stream STR for reading from FILE, evaluate FORM, and always close
stream afterwards.

(WITH-OUTPUT-FILE STR FILE FORM)
MACRO Open stream STR for writing to FILE, evaluate FORM, and always close

stream afterwards.

5.2 Text streams
Text streams allow the I/O routines to work against dynamically expandible string buffers instead of files. This pro-
vides an efficient way to destructively manipulate large strings. Text streams can also be used for implementing large
bit sequences (’blobs’). The following ALisp functions are available for manipulating text streams:

Function Type Description

(MAKETEXTSTREAM SIZE) SUBR Create a new text stream with an initial buffer size. The system
automatically extends the initial size when necessary.

(TEXTSTREAMPOS TXTSTR) SUBR Get the position of the read/print cursor in a text stream TXTSTR.

(TEXTSTREAMPOS TXTSTR POS) SUBR Move the cursor to the specified position. This position is also updated by

Error handling

20

the regular Lisp I/O routines.
(TEXTSTREAMSTRING TXTSTR) SUBR Retrieve the text stream buffer of TXTSTR as a string.
(CLOSESTREAM TXTSTR) SUBR Reset the cursor to position 0, i.e. same as

(TEXTSTREAMPOS TXTSTR 0).

6. Error handling
When the system detects an error it will call the Lisp function

(FAULTEVAL ERRNO MSG O FORM FRAME)

where

ERRNO is an error number (-1 for not numbered errors)

MSG is an error message

O is the failing Lisp object

FORM is the last Lisp form evaluated when the error was detected.

FRAME is the variable stack frame where the error occurred.

The ALisp default behaviour of FAULTEVAL first prints the error message and then calls RESET to reset Lisp.

To reset Lisp means to jump to a pre-specified reset point of the system. By default this reset point is the top level read-
eval-print loop.

The system may be run also in debug mode where assertions are checked and a break loop is entered by FAULTEVAL.
(See Sec. 7. Lisp Debugging). The function (DEBUGGING T) enabled debug mode.

After an interrupt is generated (e.g. CTRL-C) the system calls the Lisp function

(CATCHINTERRUPT)

By default CATCHITERRUPT resets Lisp. In debug mode a break loop is entered when CTRL-C is typed. If ALisp
profiling is turned on with (PROFILE-START) (Sec. 7.3.1 The Statistical Profiler), CATCHINTERRUPT will record
what ALisp function was called when the interrupt occurred and then continue the evaluation.

6.1 Error Management

Below follows short descriptions of system functions and variables for error management.

Function Type Description

(CATCH-AND-REPAIR TAG FORM REPAIRACTION)
MACRO Evaluate FORM and return the result of the evaluation. Should THROW be

called with the catcher TAG within FORM then the evaluation of FORM is
abandoned and instead REPAIRACTION is evaluated and its result returned.

Lisp Debugging

21

(CATCH-ERROR F1 F2) MACRO Evaluate F1 and return the result of the evaluation. Should an error occur
during the evaluation of F1, then F2 is evaluated if supplied and an error
condition is returned which looks like:
(:ERRCOND (ERRNO "errmsg" XX))
where xx could be different things depending on the error. The function
ERROR? can be used for testing if CATCH-ERROR returned an error
condition. The functions ERRCOND-ARG, ERRCOND-NUMBER and
ERRCOND-MSG are used for accessing error conditions.

(CATCHDEMON LOC VAL) LAMBDA See SETDEMON.
(CATCHINTERRUPT) LAMBDA This system function is called whenever the user hits CTRL-C. Different

actions will be taken depending on the state of the system.
(DEBUGGING FLAG) SUBR If FLAG!=NIL the system will start running in debug mode (See. Sec. 7. Lisp

Debugging) where warning messages are printed and the system checks
assertions. Turn off debug mode by calling with FLAG==NIL.

DEBUGGING GLOBAL Global flag indicating that the system runs in debug mode. Set by the
function DEBUGGING.

(ERRCOND-ARG EC) LAMBDA Get the argument of an error condition.
(ERRCOND-MSG EC) LAMBDA Get the error message of an error condition.
(ERRCOND-NUMBER EC) LAMBDA Get the error number of an error condition.
(ERROR MSG X) LAMBDA Print message MSG followed by ’: ’ and X and then generates an error.
(ERROR? X) LAMBDA True if X is an error condition.
(FAULTEVAL ERRNO ERRMSG X FORM ENV)

LAMBDA FAULTEVAL is called whenever the system detects an error. If the system
runs in debug mode FAULTEVAL then enters a break loop (Sec. 7. Lisp
Debugging). If the system is not in debug mode FAULTEVAL prints the
error message and calls (RESET).

(FRAMENO) SUBR Return the frame number of the top frame of the stack.
(HARDRESET) SUBR Does a ’hard’ reset that cannot be caught to the top level reset point (usually

the top loop). Called after fatal errors such as stack overflow.
(RESET) SUBR Return to the current reset point of ALisp. The rest point is either the ALisp

top loop or the previous call to UNWIND-PROTECT.
(UNWIND-PROTECT FORM CL) *SPECIAL UNWIND-PROTECT enables the user to clean up after a local or non-local

exit. For example, a throw form may cause a catcher to be exited leaving a
file open. This is clearly undesirable, so a mechanism is needed to close the
file and do any other essential cleaning up on termination of a construct, no
matter how or when the termination is caused. UNWIND-PROTECT can be
used to achieve this. The FORM is evaluated as usual until it is terminated,
whether naturally or by means of a regular exit or a RESET or THROW call.
The cleanup form CL is then evaluated before control is handed back. Note
that the cleanup form of an UNWIND-PROTECT is not protected by that
UNWIND-PROTECT so errors produced during evaluation of CL can cause
problems. The solution is to nest UNWIND-PROTECT. The function
(HARDRESET) bypasses UNWIND-PROTECT.

7. Lisp Debugging
This sections documents the debugging facilities of ALisp.

To enable run time debugging of ALisp programs the system should be put in debug mode. This is done by calling
(DEBUGGING T). In debug mode the system checks assertions and analyses defined Lisp code for semantic errors,

Lisp Debugging

22

and thus runs slightly slower. Also, in debug mode the system will enter a break loop when an error occurs instead of
resetting Alisp as described next.

7.1 The Break Loop
The break loop is a Lisp READ-EVAL-PRINT loop where some special debugging commands are available:

:help print summary of available debugging commands

?= print arguments of broken function

!value Lisp variable bound to value of the evaluation after :eval or :rapply

:a reset to previous break

(:arg N) get N:th argument in current frame

(:b VAR) continue evaluation until Lisp variable VAR is bound

:bt print a backtrace of functions called

:btv print a more detailed backtrace of the 10 top stack frames

:btv* print a long backtrace including all stack contents

:c continue the broken evaluation (only possible when current frame is where break loop was entered)

:eval evaluate broken function body. Can only be done when current frame is frame where break loop was entered.

Otherwise use :rapply. Variable !VALUE holds result from evaluation.

(:f FN) search stack for call to function FN and set current frame to that frame

:FORM variable bound to the Lisp form that was evaluated when the error occurred.

:fr print current frame

:help print this text

:nx move current frame one step up the stack

:org set current frame to the original current frame where the breakloop was entered

:pr move current frame one step down the stack

:r reset to ALisp top loop

:rapply re-apply current frame (like :eval but can be done also when current frame is not frame where breakloop was

entered. Variable !VALUE holds result from evaluation.

Does not work for special forms or functions with &REST arguments.

(return x)return value x from broken form

:ub unbreak the present broken function

The depth of the backtraces is controlled by the special variable *BACKTRACE-DEPTH* that tells how many func-
tion frames should be printed. Its default is 10. To print the complete variable binding stack use the function

(DUMPSTACK FRAME)

that print everything pushed on the stack starting at frame number FRAME.

Explicit break points can be put on the entry to and exit from Lisp functions by the Lisp macro

(BREAK fn...)

Lisp Debugging

23

For example:

(BREAK FOO FIE FUM)

When such a broken function is called the system will also enter a break loop where the above break commands are
available:

The arguments of the broken function are inspectable in the break loop, since variables in a break loop are evaluated
in the lexical environment where the break loop was called.

You may put breaks around any kind of function, except special forms. Breaks on macros mean testing how they are
expanded. If you break a SUBR the argument list is in the variable !ARGS.

The break points on functions can be removed with:

(UNBREAK FN...)

For example:

(UNBREAK FOO FIE FUM)

To remove all current function breaks do:

(UNBREAK)

It is possible to explicitly insert a break loop around any Lisp form in a program by using the macro:

(HELP FORM)

When HELP is called a break loop is entered where the user can investigate the environment with the usual break com-
mands. The local variables in the environment where HELP was called are also available. The :EVAL command will
evaluate the FORM. Its value is then inspectable through the variable !VALUE. Very good for debugging complex Lisp
functions.

Conditional breaks

ALisp also permits conditional break points where the break loop is entered only when certain conditions are fulfilled.
A conditional break point on a function FN is specified by pairing FN with a precondition function, PRECOND:

(BREAK ...(FN PRECOND) ...)

When FN is called PRECOND is first called with the same parameters. If PRECOND returns NIL no break loop is en-
tered, otherwise it is.

For example:

(BREAK (+ FLOATP))
(BREAK (CREATETYPE (LAMBDA (TP)(EQ TP ’PERSON))))

Then no break loop is entered by the call:

(+ 1 2 3)

However, this calls enters a break loop:

(+ 1.1 2 3)

Lisp Debugging

24

7.2 Tracing ALisp functions

It is possible to trace Lisp functions FN... with the macro:

(TRACE FN...)

When such a traced function is called the system will print its arguments on entry and its result on exit. The tracing is
indented to clarify nested calls.

SPECIAL functions cannot be broken or traced. Macros can be traced or broken to inspect that they expand correctly.

Remove function traces with:

(UNTRACE FN...)

To remove all currently active traces do:

(UNTRACE)

Analogous to conditional break points, conditional tracing is supported by replacing a function name FN in TRACE
with a pair of functions (FN PRECOND), for example:

(TRACE (+ FLOATP))
(TRACE (CREATETYPE (LAMBDA(TP)(EQ TP ’PERSON))))

7.3 Profiling

There are two ways to profile ALisp programs for identifying performance problems:

• The statistical profiler is the easiest way to find performance bottlenecks. It works by collecting statistics on what
ALisp functions were executing when user interrupts occurred. It produces a ranking of the most commonly called
ALisp functions.

• The function profiler is useful when one wants to measure how much real time is spent inside a particular function.
By the function profiler the user can dynamically wrap ALisp functions with code to collect statistics on how much
time is spent inside particular functions.

7.3.1 The Statistical Profiler

The statistical profiler is turned on by:

(START-PROFILE)

After this the system will catch all user interrupts (CTRL-C) and update statistics on what code was executing when
the interrupt occurred. Thus you should start the program you wish to profile and keep the CTRL-C button pushed
down during the sections of the run you wish to profile.

When the statistics is collected a ranking of the most called ALisp functions is printed with:

(PROFILE)

You may collect more statistics to get better statistics by re-running the program and then call PROFILE again.

Statistical profiling is turned off with:

Lisp Debugging

25

(STOP-PROFILE)

STOP-PROFILE also clears the table of call statistics.

Notice that regular interrupts cannot be caught when the statistical profiler is active.

7.3.2 The Function Profiler

To collect statistics on how much real time is spent in the specific ALisp functions FN.. and how many times they are
called use:

(PROFILE-FUNCTIONS FN...)

For example:

(PROFILE-FUNCTIONS SUBSET GETFUNCTION

The calling statistics for the profiled functions are printed (optionally into a file) with:

(PRINT-FUNCTION-PROFILES &OPTIONAL FILE)

The calling statistics are cleared with:

(CLEAR-FUNCTION-PROFILES)

Function profiling can be removed from specific functions with:

(UNPROFILE-FUNCTIONS FN...)

To remove all function profiles do:

(UNPROFILE-FUNCTIONS)

Analogously to conditional break points, conditional function profiling is supported by specifying pairs (FN PRE-
COND) as arguments to PROFILE-FUNCTIONS, e.g.

(PROFILE-FUNCTIONS (CREATETYPE (LAMBDA(X)(EQ X ’PERSON))))

The function profiler does not measure recursive functions calls or the time spent in functions causing error throws.

7.4 Debugging Functions

We conclude this section with a list of all ALisp system functions useful for debugging:

Function Type Description

(BACKTRACE DEPTH FRAME FILTERED)
SUBR Print a backtrace of the contents of the current variable binding stack.

DEPTH indicates how many function frames are printed. If FILTERED is
true then arguments of SUBRs are excluded from the backtrace. FRAME
indicates at what stack frame number the backtrace shall start. Default is top
of stack.

(BREAK FN...) MACRO Put break points on entries to Lisp functions FN... so that an interactive break
loop is entered when any of the broken functions are called (Sec. 7.1 The

Lisp Debugging

26

Break Loop).
(CLEAR-FUNCTION-PROFILES) LAMBDA Clear the statistics for function profiling (Sec. 7.3.2 The Function Profiler).
(DUMPSTACK &OPTIONAL FRAME)SUBR Print all the contents of the variable binding stack. If FRAME is provided it

specifies the starting stack frame; otherwise the printing starts at the current
top of the stack.

(HELP FORM) MACRO Put a break on FORM so that a break loop is entered when it is to be
evaluated.

(IMAGE-EXPANSION RATE MOVE)
SUBR When the database image if full it is dynamically expanded by the system.

This function controls the expansion. RATE is how much the image is to be
expanded (default 1.25). If MOVE is not NIL the image will always be
copied to a different place in memory after image expansion. If MOVE=NIL
it may or may not be copied. To test system problems related to the moving
of the image the following call will make the image move a lot when data is
loaded:
(IMAGE-EXPANSION 1.0001 T)

(LOC X) SUBR Return the location (handle) of Lisp object X as an integer. The inverse is
(VAG X).

(PRINT-FUNCTION-PROFILES &OPTIONAL FILE)
LAMBDA Print statistics on time spent in profiled functions (Sec. 7.3.2 The Function

Profiler).
(PRINTFRAME FRAMENO) SUBR Print the variable stack frame numbered FRAMENO.
(PRINTSTAT) SUBR Print storage usage since the last time PRINTSTAT was called. Good for

tracing storage leaks and usage.
(PROFILE) LAMBDA Print statistics of time spent in ALisp functions after a statistical profiling

execution (Sec. 7.3.1 The Statistical Profiler).
(PROFILE-FUNCTIONS FN...) MACRO Wrap the ALisp functions FN... with code to collect statistics on how much

real time was spend inside them (Sec. 7.3.2 The Function Profiler).
(REFCNT X) SUBR Return the reference count of X. For debugging of storage leaks.
(SETDEMON LOC VAL) SUBR Set up a system trap so that when the word at image memory location LOC

becomes equal to the integer VAL the system will call the Lisp function
(CATCHDEMON LOC VAL) which by default is defined to enter a break
loop. The trap is immediately turned off when the condition is detected, or
when a regular interrupt occurs.

(START-PROFILE) LAMBDA Start statistical profiling of an ALisp program. See Sec. 7.3.1 The Statistical
Profiler.

(STOP-PROFILE) LAMBDA Stop profiling the ALisp program. See Sec. 7.3.1 The Statistical Profiler.
(STORAGESTAT FLAG) LAMBDA If FLAG is true the top loop prints how much data was allocated and

deallocated for every evaluated ALisp form in the ALisp top loop (or
AmosQL statement in the Amos II top loop).

(STORAGE-USED FORM TAG) SPECIAL Evaluate FORM and print a report on how many data objects of different
types were allocated by the evaluation. TAG is an optional title for the report.

(TIMER FORM) SPECIAL Print the real time spent evaluating FORM. Often used in combination with
RPTQ.

(TRACE FN...) MACRO Put a trace on the functions FN... The arguments and the values will then be
printed when any of these functions are called. Remove the tracing with
UNTRACE.

(TRACEALL FLG) SUBR Trace all function calls if FLG is true. The massive tracing is turned off with
(TRACEALL NIL).

(TRAPDEALLOC X) SUBR Set up a demon so that the break loop is entered when the object X is
deallocated. Good for finding out where objects are deallocated by the
garbage collector.

Time Functions

27

(UNBREAK FN...) MACRO Remove the break points around the specified functions.
(UNPROFILE-FUNCTIONS FN...) MACRO Remove function profiles from the specified functions (Sec. 7.3.2 The

Function Profiler).
(VAG X) SUBR Return the ALisp object at image location X. The inverse is (LOC X).
(VIRGINFN FN) LAMBDA Get the original definition of the function associated with the symbol FN,

even if FN is traced or broken.

8. Time Functions
Time can be represented in ALisp either as absolute time values or relative time values (i.e. differences between time
points).

2.1 Absolute Time Values
The ALisp datatype TIMEVAL represents time points. A TIMEVAL object has two components, sec and usec, repre-
senting seconds and micro seconds, respectively. A TIMEVAL object is printed as #[TIMEVAL sec usec], e.g.
#[TIMEVAL 2 3].

The following Lisp functions operate on time points:

(MKTIMEVAL SEC USEC)creates a new TIMEVAL object.

(TIMEVALP TVAL) returns T if TVAL is a TIMEVAL object, otherwise NIL.

(TIMEVAL-SEC TVAL) returns the number of seconds for a given TIMEVAL object.

(TIMEVAL-USEC TVAL) returns the number of micro seconds for a given TIMEVAL object.

(T< T1 T2) returns T if the TIMEVAL T1 is less than the TIMEVAL T2, otherwise NIL.

(T<= T1 T2) returns T if TIMEVAL T1 is less than or equal to the TIMEVAL T2, otherwise NIL.

(T> T1 T2) returns T if the TIMEVAL T1 is greater than the TIMEVAL T2, otherwise NIL.

(T>= T1 T2) returns T if the TIMEVAL T1 is greater than or equal to the TIMEVAL T2, otherwise NIL.

(GETTIMEOFDAY) returns a TIMEVAL representing the wall time from a system call to C’s gettimeofday. Use-
ful for constructing time stamps.

(TIMEVAL-TO-DATE TVAL) translates a TIMEVAL TVAL into a date. A date is a seven element array where the
first element is the Year, the second Month, the third Date, the fourth Hour, the Minutes, the Seconds, and the seventh
Micro Seconds. All elements in the array are integers.

(DATE-TO-TIMEVAL D) translates a date D to a timeval.

2.2 Relative Time Values
Relative time of day values are represented by the TIME datatype. It has three components, hour, minute, and second.

The following functions operate on relative times:

The Storage Manager

28

(MKTIME HOUR MINUTE SECOND) constructs a new TIME object.

(TIMEP TM) returns T if TM is a TIME otherwise NIL.

(TIME-HOUR TM) returns the number of hours given a TIME TM.

(TIME-MINUTE TM) returns the number of minutes given a TIME TM.

(TIME-SEC TM) returns the number of seconds given a TIME TM.

2.3 Relative Date Values
Relative date values are represented by the DATE datatype. It has three components, year, month, and day.

There are several functions that operates on dates and they are listed below:

(MKDATE YEAR MONTH DAY) constructs a new date.

(DATEP DT) returns T if DT is a date otherwise NIL.

(DATE-YEAR DT) returns the number of years.

(DATE-MONTH DT) Given a date DT, return the number of months given a date DT.

(DATE-DAY DT) returns the number of days given a date DT.

9. The Storage Manager
Amos II is tightly integrated with a storage management subsystem callable from C. The C implementor has the choice
of allocating data persistently inside the database image by using a set of primitives provided by the storage manager.
Alternatively data can be allocated transiently by using the usual C routines malloc, etc. Persistency in this case
means that data allocated in the database image can be saved on disk and later restored. Persistent data is stored on disk
when the user issues the AmosQL statement save (or Lisp’s ROLLOUT) and can be restored when restarting the sys-
tem. By contrast, transient data disappears when the system is exited. The C/C++ programmer can define own persist-
ent data structures by using a set of storage manager primitives. The storage manager is responsible for allocation and
deallocation of physical objects inside the database image. However, while the system is running it is assumed that the
entire database image is in the virtual memory. The system has primitives to save the image on disk or to restore per-
sistent data from the disk.

Another important service of the storage manager is to provide a garbage collection subsystem that automatically deal-
locates persistent memory no longer in use in the database.

The storage manager is actually independent of the ALisp interpreter. Its description is in this document since knowl-
edge of the storage manager is needed for defining foreign ALisp function.

9.1 Handles

All access to physical objects is made through handles which are indirect identifiers for physical data records in C. The

The Storage Manager

29

representation of handles is currently unsigned integers. In order to make the application code both fast an independent
on the internal representation of handles, the handles are always manipulated through a set of C macros and utility
functions. The interface is furthermore connected to an automatic garbage collector so that data no longer used is re-
claimed when using those macros/functions.

Handles to persistent objects must be declared of C type oidtype and must always be initialized to the global C con-
stant nil. oidtype and nil are defined in storage.h. For example:

oidtype myhandle = nil;

This equivalent to the C macro dcloid:

dcloid(myhandle);

9.2 Physical Data Objects

With every handle there is an associated C structure, the physical data object, stored in the database image and holding
the value of the handle. The physical data objects are C structures containing the data to be stored persistently together
with a physical type identifier identifying the type of the object. The layout of the physical data object depends on the
data type. However, the first two bytes of a physical object are always reserved for the system; the succeeding bytes
are used for storing the data. Every persistent data item must be represented as physical objects, including literals such
as integers and strings. For example, integers are represented by this structure:

struct integercell
{
 objtags tags;
 short int filler;
 int integer;
};

The field tags is used by the system, the field integer stores the actual integer value, and filler aligns the in-
teger to a full-word.

Every physical type has an associated unique identification number and a unique name string known to the storage
manager. A number of physical types are predefined, including LIST, SYMBOL, INTEGER, REAL, EXTFN (ALisp
function defined in C), CLOSURE (internal ALisp closures), STRING, ARRAY (1D fixed size arrays), STREAM (I/
O streams), TEXTSTREAM (streams to text buffers), HASHTAB (hash tables), ADJARRAY (dynamically extensible
arrays), and BINARY (bit strings). In storage.h there are structure definitions defined for the physical representa-
tion of most of the built-in types. The convention is used that if the type is named xxx the template has the name xxx-
cell, e.g. REAL has a template named realcell, etc. The type identification numbers for most built-in types are also
defined as C macros in storage.h, with the convention that a type named xxx has a corresponding identification
number XXXTAG.

The C/C++ programmer can extend the built-in set of physical datatypes with new persistent data structures through
the C function a_definetype, explained below. It defines to the storage manager the properties of the new data
type.

9.3 Logical Data Objects

Notice the difference between physical and logical data objects: Physical data objects are C record structures stored
in the database image while logical data objects are object descriptors references through AmosQL. Logical data ob-

The Storage Manager

30

jects are internally represented by one or several physical data objects. For example, Amos II objects of logical data
type INTEGER are directly represented by the above mentioned physical data objects also named INTEGER. Simi-
larly, other simple literal objects (e.g. real numbers and strings) are internally represented as directly corresponding
physical objects. More complex objects, e.g. the logical datatype FUNCTION, are represented by data structures con-
sisting of several physical objects of different types. Surrogate objects in AmosQL are represented as physical objects
of a particular kind named OID describing properties of the logical object identifier of the surrogate. One property of
an OID object is a numeric identifier maintained by the storage manager; another one is a handle referencing the Amos
II type(s) of the logical object. References to OID objects are very common in the database, e.g. to represent arguments
or values of functions, extents of types, etc.

The AmosQL user cannot directly manipulate physical objects; they can only be manipulated in C/C++ or ALisp.

9.4 Dereferencing

In order to access or change the contents a physical object given a handle it has to be converted from a handle into a
C pointer to the corresponding physical object in the database image. This process is called to dereference the handle.
The dereferencing in Amos II is very fast and does not involve any data copying; it involves just an offset computat-
tion.

Once the physical object has been dereferenced its contents can be investigated by system provided C macros and func-
tions or directly by C pointer operations. The header of a physical object (type objtags) is maintained by the storage
manager. It contains the identification of its physical type (1 byte) and a reference counter (1 byte) used by the auto-
matic garbage collector.

The following C macro dereferences a handle:

dr(x,str)

dr returns the address of the record referenced by the handle x casted as a C struct named str.

For example, the following C function prints an integer referenced by the handle x:

void printint(oidtype x)
{
 struct integercell dx = dr(x,integercell);
 printf(“x = %d\n”,dx->integer);
 return;
}

Notice that the parameter x must be a handle referencing an object of type INTEGER, otherwise the system might
crash. To make printint safe it therefore should check that x actually references an integer. The following C macro
can be used for investigating the type of a physical object handle:

a_datatype(x)

a_datatype returns the type identifier of a handle x.

For example, the function printint2 checks that x actually is an integer before printing its value:

void printint2(oidtype x)
{
 if(a_datatype(x) == INTEGERTAG)
 printf(“x = %d\n”,dr(x,integercell)->integer);
 else printf(“X is not an integer\n”);

The Storage Manager

31

 return;
}

WARNING: Storage manager operations may invalidate dereferenced C pointers since the dereferenced objects might
move to other memory locations when the image is expanded. Thus dereferenced pointers may become incorrect once
a system feature that cause the image to expand is called. Object allocation is the only system operation that may cause
this. Thus, if a system function is called that is suspected to do object allocation (most do), the dereferencing must be
redone. It is therefore safer to always dereference through dr as in printint2 rather than saving the C pointer as in
printint.

9.5 Assigning handles to locations

In order for the storage manager and garbage collector to function correctly, assignments of C locations (variables or
fields) of type oidtype must use the C macro

a_setf(location,value);

a_setf corresponds to an assignment, location=value, but, unlike an assignment, it also updates the reference
counter of value so it is increased after the assignment. The reference counter increment indicates to the system that
the C location x holds a reference to the physical object and it therefore cannot be deallocated until the handle location
is released. A handle location x is released with the C macro:

a_free(x)

If the reference counter of a physical object reaches 0 the physical object is passed to the garbage collector for deallo-
cation. Thus, unlike the C function free, a_free will deallocate x only when there is no other location holding a ref-
erence to it.

To handle reassignments of locations correctly, a_setf releases the handle previously referenced from the handle x;
thus it decreases the reference counter of handles previously referenced from the handle x.

Lisp symbols (e.g. nil) are not garbage collected and thus not reference counted.

Notice that locations must be assigned to some handle before a_setf can be used, otherwise the system is likely to
crash when trying to release a non-existing handle. It is therefore necessary to always initialize C handle locations to
the constant nil (referencing the symbol NIL) when declaring them. An alternative it to use the macro a_let the
first time a location is assigned a handle. It assumes the old value of x was uninitialized:

a_let(location,value)

9.6 Allocating physical objects.

Physical objects is allowed to be allocated only through a number of storage manager primitives (not through e.g.
malloc). When a physical object is allocated it initializes the reference counter to 0. Some built-in datatypes have
allocation macros defined in storage.h:

mkinteger(xx) allocates a new integer object.
mkreal(xx) allocates a new double precision real number object.
mkstring(xx) allocates a new string object.

The Storage Manager

32

mksymbol(xx) allocates or gets the symbol named capitalized xx.
cons(x,y) allocates a new list cell.

For example, the following C function adds two integers:

oidtype add(oidtype x, oidtype y)
{
 int sum;

 if(a_datatype(x) != INTEGERTAG ||
 a_datatype(y) != INTEGERTAG)
 {
 printf(“Cannot add non-integers\n”);
 exit(1);
 }
 sum = dr(x,integercell)->integer + dr(y,integercell)->integer;
 return mkinteger(sum);
}

The following code fragment allocates two integers, calls add, and prints the sum.

{
 oidtype x=nil, y=nil, s=nil; // handles must be initialized to nil!

 a_setf(x,mkinteger(1)); // assign x to new integer 1
 a_setf(y,mkinteger(2)); // assign y to new integer 2
 a_setf(s,add(x,y)); // assign s to new integer being sum of a x and y
 printf(“The sum is %d\n”,dr(s,integercell)->integer);
 a_free(s); // release locations s, x, y
 a_free(x);
 a_free(y);
}

In storage.h, for each built-in storage type there is a C constant (upper case) or a variable (lower case) containing
the identifier for the type.

Type-name constant/variable Short description

LISTP LISTTYPE Lists
SYMBOL SYMBOLTYPE Symbols
INTEGER INTEGERTYPE Integers
REAL REALTYPE Double precision reals
EXTFN EXTFNTYPE ALisp function in C
CLOSURE CLOSURETYPE ALisp function closure
STRING STRINGTYPE Strings
ARRAY ARRAYTYPE 1D Arrays
STREAM STREAMTYPE File streams
PIPE PIPETYPE Internal
TEXTSTREAM TEXTSTREAMTYPE String streams
HASHTAB HASHTYPE Hash tables
HASHBUCKET HASHBUCKETTYPE Internal to hash tables
OID objecttag Object identifiers
HISTEVENT histeventtype Update events

The Storage Manager

33

For most built-in datatypes there are C macros or functions for construction and access. For example, to allocate a new
handle of type STRING with the content “Hello world” you can use the macro mkstring that returns a handle to the
new string:

{
dcloid(mystring);
...
a_setf(mystring,mkstring("Hello world"))
...
a_free(mystring);

};

To dereference a handle referencing a STRING object the macro getstring can be used:

{
dcloid(mystring};
char *mystringcont;

a_setf(mystring,mkstring("Hello world"));
mystringcont = getstring(mystring);
printf("%s\n",mystringcont);
a_free(mystring);

};

The following C library functions and macros are used for manipulating the built-in data types.

oidtype mkinteger(int x) (macro) Construct handle for a new integer
int integerp(oidtype x) (macro) TRUE if X is a handle for an integer
int getinteger(oidtype x) (macro) Dereference a handle for an integer

oidtype mkreal(double x) (macro) Construct handle for a new real
int realp(oidtype x) (macro) TRUE if X is a handle for a real
double getreal(oidtype x) Dereference a handle for a real

oidtype mkstring(char *x) (macro) Create handle for a new string
int stringp(oidtype x) (macro) TRUE if X is a handle for a string
char *getstring(oidtype x) (macro) Dereference a handle for a string

oidtype new_array(int size,oidtype init)Construct handle for a new array with elements init
int arrayp(oidtype x) TRUE if X is a handle for an array
int a_arraysize(oidtype arr) return the array size
oidtype a_seta(oidtype arr,int pos,oidtype val) Set an array element
oidtype a_elt(oidtype arr,int pos) Retrieve array element
oidtype a_vector(oidtype x1,...,xn,NULL)

Create a new array and its elements x1 ... nn.

oidtype cons(oidtype x,oidtype y) Create handle for a new list cell
int listp(oidtype x) (macro) TRUE if X is a list cell
oidtype car(oidtype x) (macro) Head of list cell
oidtype cdr(oidtype x) (macro) Tail of list cell
oidtype a_list(oidtype x1,...,xn,NULL) Create new list of x1 ... xn

oidtype mksymbol(char *x) (macro) Create a new symbol
int symbolp(oidtype x) (macro) TRUE if X symbol
char *getpname(oidtype x) (macro) Get print name of symbol

a_print(oidtype x) Print object of any type

Interfacing ALisp with C

34

oidtype t Symbol T representing TRUE
oidtype nil Symbol NIL representing empty list and FALSE

9.7 Storage types

This subsection describes how to introduce new physical storage types into Amos II. This is required when new C data
structures need to be defined for Amos II.

In storage.h the basic built-in physical storage type tags are declared as macros. The include file also contains the
record templates for each storage type.

There is a global type table which associates a number of optional C functions with each physical object type. A new
storage type is introduced into the system (thus expanding the type table) with a call to the C function
a_definetype:

int a_definetype(char *name,
void (*dealloc_function) (oidtype),
void (*print_function) (oidtype,oidtype,int))

a_definetype adds a new type named name to the type table and returns the new type identifier as an integer.

deallocfn is a required C function taking an object of the new type as argument. It is a
destructor called by the garbage collector when the object is deallocated. It
should then release all locations referenced by the object and call storage
manager primitives to deallocate the storage occupied by the object.

printfn is an optional print function called by PRINT to provide a custoimized print
function for every pysical object type.

10. Interfacing ALisp with C
An ALisp function can be implemented as a C function and C functions can call ALisp functions. ALisp and C can
also share data structures without data copying or transformations. The error management in ALisp can be utilized in
C as well for uniform and efficient error management.

In order to interface ALisp with C/C++ you need to download the Amos II development version. You must include
the file alisp.h in your C program. In the development version, the file democpp.cpp contains a simple C pro-
gram that calls ALisp and where ALisp also calls C.

This section describes how to call C functions from ALisp, and how to call ALisp functions from C.

10.1 A simple foreign function

As a very simple example of a foreign ALisp function we define an ALisp function HELLO which prints the string
‘Hello world’ on the standard output. It has the C implementation:

Interfacing ALisp with C

35

#include "alisp.h"
oidtype hellofn(bindtype env)
{
 printf(“Hello world\n”);
 return nil;
}

The include file alisp.h contains all necessary declarations for making foreign ALisp functions in C; Foreign func-
tion definitions must always return ALisp objects of type oidtype. Do not forget the return statement!

In order to be called from Lisp, a foreign function implementation has to be assigned a symbolic ALisp name, in this
case the symbol HELLO, by calling:

extfunction0(“HELLO”,hellofn);

A system convention is that a foreign ALisp function named XXX is named xxxfn in C, as for HELLO.

The call to register a foreign ALisp function should be done in a main C program, the driver program, after the system
has been initialized (i.e. after init_amos or a_initialize is called). The following driver program initializes
the system, registers HELLO, and calls the ALisp read-eval-print loop with prompter string ‘Lisp>’.

#include "alisp.h"

oidtype hellofn(bindtype env)
{
 printf(“Hello world\n”);
 return nil;
}

void main(int argc, char **argc)
{
 init_amos(argc,argv);
 extfunction0(“HELLO”,hellofn);
 evalloop(“Lisp>”);
}

When the above program is run the user can call HELLO from the read-eval-print loop by typing

(hello)

10.2 Defining foreign ALisp Functions

ALisp functions can be implemented as foreign ALisp functions in C. A foreign Alisp function fn with optional argu-
ments x1, x2,..., xn must have the following signature in C:

oidtype fn(bindtype env,oidtype x1,oidtype x2,..,oidtype xn)

The first argument env is the error binding environment to be used by the system for error handling, memory man-
agement, and other things.

For example, the following function implements an ALisp function to add two numbers:

oidtype addfn(bindtype env, oidtype x, oidtype y)
{

Interfacing ALisp with C

36

 int ix, iy, r; // will hold integer values of x, y and result

 IntoInteger(x,ix,env); // Retrieves value of integer x into ix and raises
 // ALisp error if x is not an integer object
 IntoInteger(y,iy,env);
 r = ix + iy;
 return mkinteger(r);
}

addfn is registered with

exfunction2(“add”,addfn);

The number ’2’ after ’extfunction’ indicates that this ALisp function takes two arguments.

Foreign ALisp functions need to be very careful to check the legality of the handles they receive. To check that a handle
is of an expected type use the C macro:

OfType(x,tpe,env)

A standard error will be generated if x does not have the type tag tpe. (For integers the above used macro Into-
Integer is a convenient alternative).

Foreign Alisp functions are registered (assigned to ALisp symbols) by calling a system C function:

extfunctionX(char *name, Cfunction fn);

name is the ALisp name for the foreign ALisp function
fn is the address of the C function.

Different versions of extfunctionX are available depending on the arity X of the foreign ALisp function. For ex-
ample,

extfunction2(“add”,addfn);

There are corresponding ALisp registration functions for functions with arity 0, 1, 2, 3, 4, 5 named extfunction0,
extfunction1, etc.

When a physical object handle whose reference counter has been managed by a_setf is to be returned from a C-
function the following C-macro should be used:

a_return(x);

a_return returns x from the C-function after the reference counter of value has been decreased without deallocat-
ing x if the counter reaches 0.

For example, the following foreign ALisp function calls addfn twice to sum three integers:

oidtype add3fn(bindtype env, oidtype x, oidtype y, oidtype z)
{
 oidtype s=nil;

 a_setf(s,addfn(env,x,y));
 a_setf(s,addfn(env,s,z));
 a_return(s);
}

Interfacing ALisp with C

37

The variable s holds the result from add3fn. If it had been returned by the usual statement

 return(s);

the result object would never be released from the location s and would therefore never be deallocated.

Many list manipulation functions are available as C functions and macros. For common list manipulations there are
also simplifying macros defined in storage.h, e.g. the macros:

cons(x,y) Lisp function CONS
hd(x) The tail of a list.
kar(x) Lisp function CAR
tl(x) The head of a list.
kdr(x) Lisp function CDR
listp(x) TRUE if x is a list cell.

For example, the following function reverses a list:

oidtype reversefn(bindtype env, oidtype l)
{
 oidtype lst=nil, res = nil;

a_setf(lst,l);
 while(listp(lst))
 {
 a_setf(res,cons(hd(lst),res));
 a_setf(lst,tl(lst));
 }

a_free(lst);
 a_return(res);
}

Register REVERSE with:

extfunction1(“REVERSE”,reversefn);

WARNING: Never try to assign C function parameters (such as l in the example) with a_setf; it will clobber the
garbage collector. Instead the parameter l is assigned to the local variable lst in order to subsequently use a_setf.

WARNING: The C implementation of a foreign ALisp function must always return a legal handle, otherwise the sys-
tem might crash. It is therefore recommended to run the system in ’debug mode’ while testing foreign ALisp function
where the system always checks the legality of data passed to ALisp from C. The debug mode is turned on with the
ALisp call (DEBUGMODE T).

10.2.1 No-spread foreign Lisp functions

No-spread foreign ALisp functions accept a variable number of arguments. Foreign ALisp functions with more than
5 arguments also need to be defined as no-spread functions. No-spread foreign functions always have the signature:

oidtype fn(bindtype args,bindtype env)

where env is the binding environment for errors, and args is a binding environment representing the actual argu-
ments of the function call. To access argument number i use the C macro:

nthargval(args,i)

Interfacing ALisp with C

38

The arguments are enumerated from 1 and up.

The C function

int envarity(bindenv args)

returns the actual arity of the function call.

For example, the following ALisp function sumfn adds an arbitrary number of integer arguments:

oidtype sumfn(bindtype args,bindtype env)
{
 int sum=0, arity = envarity(args), i, v;

 for(i=1;i<=arity;i++)
 {
 IntoInteger(nthargval(args,i),v,env);
 sum = sum + v;
 }
 return mkinteger(sum);
}

No-spread functions are the registered to the system with extfunctionn:

 extfunctionn("SUM",sumfn);

The Lisp function LIST has the following implementation:

oidtype listfn(bindtype args,bindtype env)
{
 oidtype res=nil;
 int arity=envarity(args), i;

 for(i=arity;i>=1;i--)
 {
 a_setf(res,cons(nthargval(args,i),res));
 }
 a_return(res);
}

Notice how the iteration over the arguments is done in reverse order to get the correct list element order.

10.2.2 Special forms

Special forms are foreign Lisp functions whose arguments are not evaluated by the ALisp interpreter when the C im-
plementation function is called.

C functions implementing special forms always have the signature:

oidtype fn(bindtype args,bindtype env)

Analogous to no spread functions the macros envarity and nthargval can be used to investigate the actual ar-
guments. The difference is that nthargval here returns the unevaluated value, unlike for no-spread functions where
evaluated values are returned.

Interfacing ALisp with C

39

For example, the following C function implements the ALisp special form QUOTE:

oidtype quotefn(bindtype args, bindtype env)
{
 return nthargval(args,1);
}

Special forms are registered using extfunctionq:

extfunctionq("QUOTE",quotefn);

For evaluating unevaluated forms this system function can be used:

oidtype evalfn(bindtype env, oidtype form)

For example, the following C function implements the special form (WHILEA PRED FORM1 FORM2 ...) that
iteratively executes FORM1 etc. while PRED is non-nil:

oidtype whileafn(bindtype args, bindtype env)
{
 oidtype cond = nil, v = nil;
 int arity = envarity(args), i;

 a_setf(cond,nthargval(args,1));
 for(;;)
 {
 a_setf(v,evalfn(env,cond)); /* Evaluate condition */
 if(v == nil) /* Condition false */
 {
 a_free(v); /* Release v and cond before returning */
 a_free(cond);
 return nil;
 }
 for(i=2;i<=arity;i++)
 {

a_setf(v,evalfn(env,nthargval(args,i)));
}

 }
}

Notice that v and cond must be released before the function is exited. Furthermore, the above definition is not fully
correct since if evalfn fails, because of some logical error in the evaluated form, the error management system will
make evalfn never return. Thus, in case of an error in the evaluation, the storage referenced by v and cond will
never be deallocated. Another version of while which also manages this memory deallocation correctly will be pre-
sented in the next section.

10.3 Error management in C

ALisp has its own error management system integrated with the storage manager. In order for the storage manager to
correctly release data after failures abnormal function exits should always used the system error management, rather
than e.g. directly calling C’s longjmp or C++ error management.

Interfacing ALisp with C

40

10.3.1 Unwind Protection

To unconditionally catch failed operation the unwind protect mechanism is used. This is necessary sometimes to guar-
antee that certain actions are performed even if some called function terminates abnormally. For example, space may
need to be deallocated or files be closed. For this purpose ALisp provides an unwind-protect feature in C, similar to
what is provided in CommonLisp [1]. Unwind protection is provided through the following three macros:

{unwind_protect_begin; /* Always new block */
 main code
 unwind_protect_catch; /* This statement MUST ALWAYS be executed */
 unwind code
 unwind_protect_end;} /* Will continue abnormal evaluation */

The main code is the code to be unwind protected. The unwind code is always executed both if the main code
fails or succeeds. In the unwind code, a flag, unwind_reset, is set to TRUE if the code is executed as the result of
an exception. The unwind code is executed outside the scope of the current unwind protection. Thus, exceptions oc-
curring during the execution of unwind code is unwound by the next higher unwind protection.

WARNING: The unwind_protect_end code must be executed; never return directly out of the main code block.
If unwind_protect_end is not executed after an exception, then the exception is not continued. Always execute
unwind_protect_end, unless you want to catch all possible exceptions.

For example, a correct version of while that releases memory also in case of an error in the evaluation can be defined
as follows:

oidtype whilebfn(bindtype args, bindtype env)
{
 oidtype cond = nil, v = nil;
 int arity = envarity(args), i;

 {unwind_protect_begin
 a_setf(cond,nthargval(args,1));
 for(;;)
 {
 a_setf(v,evalfn(env,cond)); /* Evaluate condition */
 if(v == nil) /* Condition false => exit for loop */
 break;
 for(i=2;i<=arity;i++)
 {

 a_setf(v,evalfn(env,nthargval(args,i)));
 }
 }
 unwind_protect_catch;
 a_free(v); /* Release v and cond before exiting function */
 a_free(cond);
 unwind_protect_end;
 return nil; /* This statement not executed in case of an error */
 }
}

10.3.2 Raising errors.

Every kind of error has an error number and an associated error message. There are predefined error numbers for com-

Interfacing ALisp with C

41

mon errors defined in storage.h. To raise an ALisp error condition use the system function:

oidtype lerror(int no, oidtype form, bindtype env);
no is the error number.
form is the failed expression.
env is the binding environment for the error.

For example, the following code implements the Lisp function CAR:

oidtype carfn(bindtype env, oidtype x)
{
 if(x==nil) return nil; // (CAR NIL) = NIL
 if(a_datatype(x) != LISTTYPE) return lerror(ARG_NOT_LIST,x,env);
 return hd(x);
}

A few convenience macros for common error checks are defined in storage.h:

OfType(x,tpe,env) Raise a standard error if x is not of type tpe.
IntoString(x,into,env) Dereference a symbol or string object x into a pointer to the C

string in the image representing the object. Notice that the
storage manager might invalidate this pointer as for other
dereferences if the image moves.

IntoString0(x,into,env) Dereference a string object x into C string.
IntoInteger(x,into,env) Convert integer object x into C integer.
IntoDouble(x,into,env) Convert real object x into C double.

To register a new error to the system use:

int a_register_error(char *msg);

a_register_error gets a unique error number for the error string msg. If msg has been registered
before its previous error number is returned.

10.4 Calling Lisp from C

An ALisp function can be called from C by using the following C function:

oidtype call_lisp(oidtype lfn, bindtype env, int arity,
 oidtype a1, oidtype a2,...)
lfn is the ALisp functional expression to call.
env is the error binding environment.
arity is the actual arity in the call.
a1,a2,... are the actual arguments in the call.

For example, the following code implements an ALisp function (MYMAP L FN) which applies
FN on each element in L:

oidtype mymapfn(bindtype env, oidtype l, oidtype fn)
{
 oidtype res = nil, lst=nil;

Interfacing ALisp with C

42

 {unwind_protect_begin;
 a_setf(lst,l);
 while(listp(lst))
 {
 a_setf(res,call_lisp(fn,env,1,hd(lst)));
 a_setf(lst,tl(lst));
 }
 unwind_protect_catch;
 a_free(res);
 a_free(lst);
 unwind_protect_end;
 }
 return nil;
}

Notice that unwind-protection has to be used here to guarantee that the temporary memory locations are always re-
leased even if the call to fn causes an ALisp error.

Also notice that the called ALisp function might allocate new data objects and these have to be freed correctly.

Symbols are convenient for calling named ALisp functions from C. For example, the following function prints each
element in a list:

oidtype mapprintfn(bindtype env, oidtype l)
{
 oidtype printsymbol = mksymbol("print"), lst = nil;

 a_setf(lst,l);
 while(listp(lst))
 {
 call_lisp(printsymbol,env,1,hd(lst));
 a_setf(lst,tl(lst));
 }
 return nil;
}

Notice that symbols like PRINT are permanent and when a symbol is referenced from a location (here printsym-
bol) it need not be reference counted. Also the call to PRINT is here guaranteed to not generate any new objects and
need not be released.

10.4.1 Varying number of actual arguments

The following system function is used when calling an ALisp function with a dynamic number of arguments:

oidtype applyarrayfn(oidtype lfn, bindtype env, int arity, oidtype args[])
lfn is the ALisp function to call.
env is the error binding environment.
arity is the actual arity.
args is an array containing the actual arguments.

call_lisp is used when the exact number of arguments is known and the applyarrayfn when the number of
arguments is dynamic and saved in the array args[].

Interfacing ALisp with C

43

10.4.2 Direct C calls

If the name of a C function implementing an ALisp function is known, it is more efficient to directly call the C function.
However, arguments and results of direct C calls must be handled carefully to avoid storage leaks or system crashes.
The automatic deallocation of temporary storage is NOT performed with direct C function calls. For example, the fol-
lowing correctly defined foreign ALisp function prints ‘hello world’ by directly calling the ALisp function PRINT:

oidtype hellofn(bindtype env)
{
 oidtype msg = nil;

 a_setf(msg, mkstring(“hello world”));
 printfn(env, msg, nil); // PRINT has two arguments
 a_free(msg);
 return nil;
}

 By contrast, the following incorrect implementation would cause a storage leak since the ‘hello world’ string is not
deallocated:

oidtype hellofn(bindtype env)
{
 printfn(env, mkstring(“Hello world”), nil);
 return nil;
}

Notice that call_lisp automatically garbage collects its arguments upon return; thus temporary objects among
the arguments are automatically freed. For example, the following definition of myhello would be correct but slower
than the previous definitions:

oidtype hellofn(bindtype env)
{
 call_lisp(mksymbol(“print”),2,env, mkstring(“Hello world”), nil);
 return nil;

}

10.5 Debugging functions

The reference counter of a physical storage object referenced by a handle is obtained with:

int refcnt(oidtype x)

Any ALisp object can be printed on the standard output with:

oidtype a_print(oidtype x);

When defining new physical storage type it is important to make sure that object allocation and deallocation works

Interfacing ALisp with C

44

OK. Therefore there is a hook to the Amos II and Alisp top loops to trace how many objects are allocated, or deallo-
cated, respectively. Turn on that hook by evaluating the form

(STORAGESTAT T)

The system will then make a report of how many objects have been (de)allocated for each physical storage type. Make
sure that the same number of objects are deallocated as allocated if that is expected. Notice that object references might
be saved in the database log and therefore you should rollback database updates when necessary to get the balance
between allocated and deallocated objects.

Turn off storage usage tracing with:

(STORAGESTAT NIL)

In C memory leaks can be traced also by calling the system function:

void a_printstat(void)

It prints a report on how much storage was allocated since the previous time it was called.

10.6 Input/Output

AMOS II has two special datatypes for I/O streams:

stream is for referencing C data streams.

textstream is for streams over ALisp string buffers.

The following system functions and constants operate on streams:

oidtype stdinstream for C’s standard input stream

oidtype stdoutstream for C’s standard output stream

oidtype stderrstream for C’s standard error stream

10.7 Interrupt handling

The interrupt handling system is managed by the ALisp function (CATCHINTERRUPT). This function is called
whenever an interrupt has occurred. It either prints a message or catches the interrupt. The following C macro checks
if an error has occurred and calls CATCHINTERRUPT if that is the case:

CheckInterrupt;

 An interrupt is indicated when the global C variable InterruptHasOccurred is set to TRUE. CheckInter-
rupt is called by the ALisp interpreter after every function call. If you write long-running C code you should insert
calls to CheckInterrupt to allow interrupts to be managed.

Interfacing ALisp with C

45

References

1 Guy L.Steele Jr.: Common LISP, the language, Digital Press,
http://www.ida.liu.se/imported/cltl/cltl2.html

2 Staffan Flodin, Martin Hansson, Vanja Josifovski, Timour Katchaounov, Tore Risch, and Martin Sköld,
Amos II Release 7 User’s Manual,
http://www.it.uu.se/~udbl/amos/doc/amos_users_guide.html

