
QCSPCChart SPC Control Chart
Tools for .Net CF

Contact Information
Company Web Site: http://www.quinn-curtis.com

Electronic mail

General Information: info@quinn-curtis.com
Sales: sales@quinn-curtis.com

Technical Support Forum

http://www.quinn-curtis.com/ForumFrame.htm

 Revision Date 6/1/2009 Rev. 2.0

SPC Control Chart Tools for .Net Compact Framework Documentation and Software
Copyright Quinn-Curtis, Inc. 2009

ii

Quinn-Curtis, Inc. Tools for .Net Compact Framework END-USER LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: This Software End-User License Agreement ("EULA") is a legal
agreement between you (either an individual or a single entity) and Quinn-Curtis, Inc. for the Quinn-Curtis,
Inc. SOFTWARE identified above, which includes all Quinn-Curtis, Inc. .Net Compact Framework
software (on any media) and related documentation (on any media). By installing, copying, or otherwise
using the SOFTWARE, you agree to be bound by the terms of this EULA. If you do not agree to the terms
of this EULA, do not install or use the SOFTWARE. If the SOFTWARE was mailed to you, return the
media envelope, UNOPENED, along with the rest of the package to the location where you obtained it
within 30 days from purchase.

1. The SOFTWARE is licensed, not sold.

2. GRANT OF LICENSE.

(A) Developer License. After you have purchased the license for SOFTWARE, and have received
the file containing the licensed copy, you are licensed to copy the SOFTWARE only into the memory of
the number of computers corresponding to the number of licenses purchased. The primary user of the
computer on which each licensed copy of the SOFTWARE is installed may make a second copy for his or
her exclusive use on a portable computer. Under no other circumstances may the SOFTWARE be operated
at the same time on more than the number of computers for which you have paid a separate license fee.
You may not duplicate the SOFTWARE in whole or in part, except that you may make one copy of the
SOFTWARE for backup or archival purposes. You may terminate this license at any time by destroying
the original and all copies of the SOFTWARE in whatever form.

(B) 30-Day Trial License. You may download and use the SOFTWARE without charge on an
evaluation basis for thirty (30) days from the day that you DOWNLOAD the trial version of the
SOFTWARE. The termination date of the trial SOFTWARE is embedded in the downloaded SOFTWARE
and cannot be changed. You must pay the license fee for a Developer License of the SOFTWARE to
continue to use the SOFTWARE after the thirty (30) days. If you continue to use the SOFTWARE after
the thirty (30) days without paying the license fee you will be using the SOFTWARE on an unlicensed
basis.

Redistribution of 30-Day Trial Copy. Bear in mind that the 30-Day Trial version of the SOFTWARE
becomes invalid 30-days after downloaded from our web site, or one of our sponsor’s web sites. If you
wish to redistribute the 30-day trial version of the SOFTWARE you should arrange to have it redistributed
directly from our web site If you are using SOFTWARE on an evaluation basis you may make copies of the
evaluation SOFTWARE as you wish; give exact copies of the original evaluation SOFTWARE to anyone;
and distribute the evaluation SOFTWARE in its unmodified form via electronic means (Internet, BBS's,
Shareware distribution libraries, CD-ROMs, etc.). You may not charge any fee for the copy or use of the
evaluation SOFTWARE itself. You must not represent in any way that you are selling the SOFTWARE
itself. You must distribute a copy of this EULA with any copy of the SOFTWARE and anyone to whom
you distribute the SOFTWARE is subject to this EULA.

(C) Redistributable License. The standard Developer License permits the programmer to deploy
and/or distribute applications that use the Quinn-Curtis SOFTWARE, royalty free. We cannot allow
developers to use this SOFTWARE to create a graphics toolkit (a library or any type of graphics
component that will be used in combination with a program development environment) for resale to other
developers.

If you utilize the SOFTWARE in an application program, or in a web site deployment, should we ask, you
must supply Quinn-Curtis, Inc. with the name of the application program and/or the URL where the
SOFTWARE is installed and being used.

 3. RESTRICTIONS. You may not reverse engineer, de-compile, or disassemble the SOFTWARE, except
and only to the extent that such activity is expressly permitted by applicable law notwithstanding this
limitation. You may not rent, lease, or lend the SOFTWARE. You may not use the SOFTWARE to
perform any illegal purpose.

 4. SUPPORT SERVICES. Quinn-Curtis, Inc. may provide you with support services related to the
SOFTWARE. Use of Support Services is governed by the Quinn-Curtis, Inc. polices and programs
described in the user manual, in online documentation, and/or other Quinn-Curtis, Inc.-provided materials,
as they may be modified from time to time. Any supplemental SOFTWARE code provided to you as part
of the Support Services shall be considered part of the SOFTWARE and subject to the terms and conditions
of this EULA. With respect to technical information you provide to Quinn-Curtis, Inc. as part of the
Support Services, Quinn-Curtis, Inc. may use such information for its business purposes, including for
product support and development. Quinn-Curtis, Inc. will not utilize such technical information in a form
that personally identifies you.

 5. TERMINATION. Without prejudice to any other rights, Quinn-Curtis, Inc. may terminate this EULA if
you fail to comply with the terms and conditions of this EULA. In such event, you must destroy all copies
of the SOFTWARE.

 6. COPYRIGHT. The SOFTWARE is protected by United States copyright law and international treaty
provisions. You acknowledge that no title to the intellectual property in the SOFTWARE is transferred to
you. You further acknowledge that title and full ownership rights to the SOFTWARE will remain the
exclusive property of Quinn-Curtis, Inc. and you will not acquire any rights to the SOFTWARE except as
expressly set forth in this license. You agree that any copies of the SOFTWARE will contain the same
proprietary notices which appear on and in the SOFTWARE.

 7. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE to any
country, person, entity, or end user subject to U.S.A. export restrictions. Restricted countries currently
include, but are not necessarily limited to Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria. You
warrant and represent that neither the U.S.A. Bureau of Export Administration nor any other federal agency
has suspended, revoked or denied your export privileges.

8. NO WARRANTIES. Quinn-Curtis, Inc. expressly disclaims any warranty for the SOFTWARE. THE
SOFTWARE AND ANY RELATED DOCUMENTATION IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OR MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE
OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU.

9. LIMITATION OF LIABILITY. IN NO EVENT SHALL QUINN-CURTIS, INC. OR ITS SUPPLIERS
BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, OR INDIRECT
DAMAGES OF ANY KIND ARISING OUT OF THE DELIVERY, PERFORMANCE, OR USE OF THE
SUCH DAMAGES. IN ANY EVENT, QUINN-CURTIS’S LIABILITY FOR ANY CLAIM, WHETHER
IN CONTRACT, TORT, OR ANY OTHER THEORY OF LIABILITY WILL NOT EXCEED THE
GREATER OF U.S. $1.00 OR LICENSE FEE PAID BY YOU.

10. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE is provided with RESTRICTED
RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer SOFTWARE clause of DFARS
252.227-7013 or subparagraphs (c)(i) and (2) of the Commercial Computer SOFTWARE- Restricted
Rights at 48 CFR 52.227-19, as applicable. Manufacturer is: Quinn-Curtis, Inc., 18 Hearthstone Dr.,
Medfield MA 02052 USA.

iv

11. MISCELLANEOUS. If you acquired the SOFTWARE in the United States, this EULA is governed by
the laws of the state of Massachusetts. If you acquired the SOFTWARE outside of the United States, then
local laws may apply.

Should you have any questions concerning this EULA, or if you desire to contact Quinn-Curtis, Inc. for any
reason, please contact Quinn-Curtis, Inc. by mail at: Quinn-Curtis, Inc., 18 Hearthstone Dr., Medfield MA
02052 USA, or by telephone at: (508)359-6639, or by electronic mail at: support@Quinn-Curtis.com.

Table of Contents

1. Introduction... 1

New Features found in the 2.0 version of QCSPCChart CF... 1
Tutorials .. 2
Customer Support ... 2
SPC Control Chart Tools for .Net CF Background .. 2
Quinn-Curtis SPC (Statistical Process Control) Software .. 4
.Net Compact Framework Background .. 5
Limitation of the .Net API Compact Framework API.. 6
QCChart2D CF for .Net Compact Framework Dependencies.. 7
Directory Structure of QCSPCChart for .Net ... 8
(*** Critical Note ***) Running the Example Programs.. 10
Chapter Summary ... 11

2. Standard SPC Control Charts.. 13
Variable Control Charts .. 14
Attribute Control Charts ... 27
Attribute Control Charts ... 27
Other Important SPC Charts ... 33

3. Class Architecture of the SPC Control Chart Tools for .Net CF Class Library 39
Major Design Considerations ... 39
SPC Control Chart Tools for .Net CF Class Summary... 41
SPC Control Chart Tools for .Net CF Class Hierarchy .. 42
QCSPCChart Classes .. 43

4. 3. QCChart2D CF for .Net Class Summary.. 56
Chart Window Classes.. 57
Data Classes .. 57
Scale Classes... 58
Coordinate Transform Classes.. 59
Auto-Scaling Classes .. 61
Chart Object Classes ... 62
Mouse Interaction Classes .. 92
Miscellaneous Utility Classes ... 94

5. SPC Control Data and Alarm Classes... 97
Class SPCControlChartData ... 97
Control Limit Alarms.. 129
Control Limit Alarm Event Handling ... 134
SPCSampledValueRecord .. 136
SPCControlLimitRecord... 137
SPCCalculatedValueRecord ... 139
SPCProcessCapabilityRecord... 141
SPCGeneralizedTableDisplay... 143

6. SPC Variable Control Charts .. 147
Time-Based and Batch-Based SPC Charts ... 149
Creating a Batch-Based Variable Control Chart... 225

vi

Changing the Batch Control Chart X-Axis Labeling Mode 230
Changing Default Characteristics of the Chart ... 234

7. SPC Attribute Control Charts ... 243
Time-Based and Batch-Based SPC Charts ... 244
Changing the Batch Control Chart X-Axis Labeling Mode 300

8. Frequency Histogram, Pareto Diagram and Normal-Probability Charts. 311
Frequency Histogram Chart.. 311
Probability Plots.. 322
Pareto Diagrams.. 329

9. Using SPC Control Chart Tools for .Net CF to Create Windows Applications 341
(*** Critical Note ***) Running the Example Programs.. 341
.Net Compact Framework Devices and Emulators... 341
Visual Basic for .Net ... 344
Visual C# for .Net ... 351

Index ... 358

SPC Control Chart Tools for .Net CF

1. Introduction

New Features found in the 2.0 version of QCSPCChart CF
Revision 2.0 follows Revision 1.8. Most new features associated with revision 2.0 are
part of the QCChart2D CF software, on top of which the QCSPCChart CF software is
built. As far this software goes, only a few featues specific to Revision 2.0 of
QCSPCChart CF have been added. These include:

• The batch control chart templates (SPCBatchVariableControlChart,
SPCBatchAttributeControlChart) have new x-axis labeling modes. Label the x-
axis tick marks using a batch number (the original and default mode), a time
stamp, or a user-defined string.

The time stamp of batch control chart does not have to be does not have to have an equal

time spacing between adjacent sample groups.

2 Introduction

Revision 2.0 has added many new to QCChart2D CF. New features include:

• Five new plot types: BoxWiskerPlot, FloatingStackedBarPlot, RingChart,
SimpleVersaPlot and GroupVersaPlot

• Elapsed time scaling to compliment the time/date scaling. Includes a set of classes
specifically for elapsed time charts: ElapsedTimeLabel,
ElapsedTimeAutoScale, ElapsedTimeAxis, ElapsedTimeAxisLabels,
ElapsedTimeCoordinates, ElapsedTimeScale, ElapsedTimeSimpleDataset
and ElapsedTimeGroupDataset.

• Vertical axis scaling for time/date and elapsed time
• A DatasetViewer class for the grid-like display of dataset information in a table.
• A MagniView class: a new way to zoom data
• A CoordinateMove class – used to pan the coordinate system, left, right, up,

down.
• Zoom stack processing is now internal to the ChartZoom class

Refer to the QCChart2D CF manual for information specific to these new features.

Tutorials
Chapter 10 is a tutorial that describes how to get started with the SPC Control Chart
Tools for .Net CF charting software.

Customer Support
Use our forums at http://www.quinn-curtis.com/ForumFrame.htm for customer support.
Please, do not post questions on the forum unless you are familiar with this manual and
have run the examples programs provided. We try to answer most questions by referring
to the manual, or to existing example programs. We will always attempt to answer any
question that you may post, but be prepared that we may ask you to create, and send to
us, a simple example program. The program should reproduce the problem with no, or
minimal interaction, from the user. You should strip out of any code not directly
associated with reproducing the problem. You can either your own example or a modified
version of one of our own examples.

SPC Control Chart Tools for .Net CF Background
In a competitive world environment, where there are many vendors selling products and
services that appear to be the same, quality, both real and perceived, is often the critical
factor determining which product wins in the marketplace. Products that have a
reputation for higher quality command a premium, resulting in greater market share and
profit margins for the manufacturer. Low quality products not only take a big margin hit
at the time of sale, but also taint the manufacturer with a reputation that will hurt future
sales, regardless of the quality of future products. Users have a short memory. A
company’s quality reputation is only as good as the quality of its most recent product.

Introduction 3

The measurement, control and gradual improvement of quality is the goal of all quality
systems, no matter what the name. Some of the more common systems are known as
SCC (Statistical Quality Control) Quality Engineering, Six-Sigma, TQM (Total
Quality Management), TQC (Total Quality Control), TQA (Total Quality Assurance)
and CWQC (Company- Wide Quality Control). These systems work on the principle that
management must integrate quality into the basic structure of the company, and not
relegate it to a Quality Control group within the company. Historically, most of the
innovations in quality systems took place in the 20th century, with pioneering work
carried out by Frederick W. Taylor (Principles of Scientific Management), Henry Ford
(Ford Motor), W. A. Shewhart (Bell Labs), W. E. Deming (Department of Agriculture,
War department, Census Bureau), Dr. Joseph M. Juran (Bell Labs), and Dr. Armand V.
Feigenbaum among others. Most quality control engineers are familiar with the story of
how the statistical quality control pioneer, W. E. Deming, frustrated that US
manufactures only gave lip service to quality, took the quality system he developed to
Japan, where it was embraced with almost religious zeal. Japanese industry considers
Deming a national hero, where his quality system played a major role in the postwar
expansion of the Japanese economy. Twenty to thirty years after Japan embraced his
methods, Deming found a new audience for his ideas at US companies that wanted to
learn Japanese methods of quality control.

All quality systems use Statistical Process Control (SPC) to one degree or another. SPC
is a family of statistical techniques used to track and adjust the manufacturing process in
order to produce gradual improvements in quality. While it is based on sophisticated
mathematical analysis involving sampling theory, probability distributions, and statistical
inferences, SPC results can usually be summarized using simple charts that even
management can understand. SPC charts can show how product quality varies with
respect to critical factors that include things like batch number, time of day, work shift
personal, production machine, and input materials. These charts have odd names like X-
Bar R, Median Range, Individual Range, Fraction Number Non-Conforming, and NP.
The charts plot some critical process variable that is a measurement of product quality
and compares it to predetermined limits that signify whether or not the process is working
properly.

Initially, quality control engineers create all SPC charts by hand. Data points were
painstakingly gathered, massaged, summed, averaged and plotted by hand on graph
paper. It is still done this way in many cases. Often times it is done by the same factory
floor personal who control the process being measured, allowing them to “close the loop”
as quickly as possible, correcting potential problems in the process before it goes out of
control. Just as important, SPC charts tell the operator when to leave the process alone.
Trying to micro-adjust a process, when the process is just exhibiting normal random
fluctuations in quality, will often drive the process out of control faster than leaving it
alone.

The modern tendency is to automate as much of the SPC chart creation process as
possible. Electronic measuring devices can often measure quality in real-time, as items
are coming off the line. Usually some form of sampling will be used, where one of every
N items is measured. The sampled values form the raw the data used in the SPC chart

4 Introduction

making process. The values can be entered by hand into a SPC chart making program, or
they can be entered directly from a file or database connection, removing the potential for
transcription errors. The program displays the sampled data in a SPC chart and/table
where the operator or quality engineer can make a judgment about whether or not the
process is operating in or out of control.

Usually the SPC engineer tasked with automating an existing SPC charting application
has to make a decision about the amount of programming he wants to do. Does he
purchase an application package that implements standard SPC charts and then go about
defining the charts using some sort of menu driven interface or wizard. This is probably
the most expensive in terms of up front costs, and the least flexible, but the cheapest in
development costs since a programmer does not have to get involved creating the
displays. Another choice is to use a general purpose spreadsheet package with charting
capability to record, calculate, and display the charts. This is probably a good choice if
your charting needs are simple, and you are prepared to write complicated formulas as
spreadsheet entries, and your data input is not automated. Another choice is writing the
software from scratch, using a charting toolkit like our QCChart2D CF software as the
base, and creating custom SPC charts using the primitives in the toolkit. This is cheaper
up front, but may be expensive in terms of development costs. Often times the third
option is the only one available because the end-user has some unique requirement that
the pre-packaged software can’t handle, hence everything needs to program from scratch.

Quinn-Curtis SPC (Statistical Process Control) Software

We have created a library of SPC routines that represents an intermediate solution. Our
SPC software still requires an intermediate level programmer, but it does not require
advanced knowledge of SPC or of charting. Built on top our QCChart2D CF, it
implements templates and support classes for the following SPC charts and control limit
calculations.

Variable Control Charts Templates
 Fixed sample size subgroup control charts

X-Bar R – (Mean and Range Chart)
 X-Bar Sigma (Mean and Sigma Chart)
 Median and Range (Median and Range Chart)
 X-R (Individual Range Chart)
 EWMA (Exponentially Weighted Moving Average Chart)
 MA (Moving Average Chart)
 CuSum (Tabular Cumulative Sum Chart)
 Variable sample size subgroup control charts
 X-Bar Sigma (Mean and Sigma Chart)

Attribute Control Charts Templates
 Fixed sample size subgroup control charts
 p Chart (Fraction or Percent of Defective Parts)

Introduction 5

 np Chart (Number of Defective Parts)
c-Chart (Number of Defects)
u-Chart (Number of Defects per Unit)

 Variable sample size subgroup control charts
 p Chart (Fraction or Percent of Defective Parts)

u-Chart (Number of Defects per Unit)

Analysis Chart Templates
 Frequency Histograms
 Probability Charts
 Pareto Charts
SPC Support Calculations
 Array statistics (sum, mean, median, range, standard deviation, variance, sorting)
SPC Control Limit Calculations
 High and low limit control calculations for X-Bar R, X-Bar Sigma, Median and

Range, X-R, p, np, c and u charts
SPC Process Capability Calculations
 Variable Control Charts include Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu, and Ppk

process capability statistics
Western Electric Runtime Rules
 WE Runtime Rules 1, 2, 3 and 4.

The SPC Control Chart Tools for .Net CF is a family of templates that integrate the
QCChart2D CF charting software with tables, data structures and specialized rendering
routines used for the static and dynamic display of SPC charts. The SPC chart templates
are pre-programmed classes that create, manage and display the graphs and tables
corresponding to major SPC control chart types. Each template can be further customized
using method and properties. The programmers can customize the plot objects created in
the template, allowing tremendous flexibility in the look of the SPC charts.

.Net Compact Framework Background
The goal of the Microsoft .Net Compact Framework is, according to Microsoft:

“The .Net Framework and the .Net Compact Framework provide a consistent
programming model across the full range of Windows platforms and expose that
programming model through a single unified tool set, Visual Studio .Net. Together,
Visual Studio . and the .Net Compact Framework enable millions of desktop Visual Basic
developers and the rapidly growing market of C# developers to begin building smart
mobile applications. Features of the .Net Compact Framework and Visual Studio .Net
include support for XML and Web services; the ability to integrate components written in
multiple programming languages; and developer productivity features such as integrated
rich device emulator support, a visual drag-and-drop forms designer, a comprehensive set

6 Introduction

of user interface controls, remote debugging support, and simplified application
deployment. “

Limitation of the .Net API Compact Framework API
Microsoft .Net Compact Framework includes a basic API for writing applications that
make use of GUI’s, data structures, databases, files and streams, networking and web
services. The graphics part of the API is a subset of the standard .Net graphics API,
supporting far fewer classes than are found in that API, and far fewer methods and
properties in the classes that are supported. A few of the limitations of the .Net Compact
Framework API, compared to the regular .Net API are:

• Brushes only support simple color, i.e. no gradients, or textures
• Only simple RGB colors are supported with no alpha blending (no transparency)
• No generalized geometry support for arbitrary shapes because .Net Compact

Framework lacks a Matrix class and a GraphicsPath class
• No 2D coordinate transformation classes, for rotating text and arbitrary geometric

shapes
• Text cannot be rotated, not even 90 degrees for vertical text
• No printer and image output support
• Images imported into a program cannot be rotated
• In general, none of the advanced features found in the

System.Drawing.Drawing2D library are available to the .Net Compact
Framework programmer.

The QCSPCChart CF for the .Net Compact Framework software derives from our
original QCSPCChart for .Net software. The original software makes extensive use of
the advanced graphics features found in the workstation version of .Net. In order to port
the QCSPCChart software to the .Net Compact Framework compromises had to be
made because of the limitations listed above. In some cases, work-arounds were devised
to overcome these limitations. When compared to the original QCSPCChart for .Net
software, the QCQPCChart CF for the .Net Compact Framework has the following
limitations:

• While the Brush class only supports a simple color, i.e. no gradients, or textures,
we were able to implement simple linear gradients for our ChartBackground class

• Only simple RGB colors are supported with no alpha blending (no transparency)
• Because much of the original software was written using the GraphicsPath class,

we created our own simple GraphicsPath class to maintain source compatibility
• A simple Matrix class, along with related 2D coordinate transformation routines,

were added so that we could rotate, scale and translate geometric shapes and
symbols defined using GraphicsPath objects.

• Image objects incorporated in a chart can be scaled and translated, but not rotated.
• Text still cannot be rotated, not even 90 degrees for y-axis titles

Introduction 7

• *We implemented XOR drawing so that we could properly draw zoom rectangles
and data cursor objects.

• No printer and image output support

*The XOR drawing is optional. We implement XOR drawing by calling a .Net CF
PInvoke function that permits calling drawing routines in the underlying oprerating
system. Strickly speaking, this violates the .Net managed memory paradigm, though it
never really mattered in Revisions 1.0, 1.1 and 2.0 of .Net CF. For unknown reasons,
starting with the .Net CF 3.5, found in Visual Studio 2008, it does matter. The VS 2008
Toolbox will not host a UserControl derived object that contains PInvoke calls.
Therefore, we include two versions of the QCChart2DNetCF DLL, one that uses PInvoke
and supports XOR drawing, and one that does not use PInvoke. They are named
QCChart2DNetCF_XOR.DLL.(uses PInvoke and support XOR drawing mode) and
QCChart2DNetCF_NOXOR.DLL .(does not use PInvoke and does not support XOR
drawing mode). The DLL you wish to use must copied and renamed to
QCChart2DNetCF.DLL and placed in the Quinn-Curtis\DotNet\lib folder. The default
QCChart2DNetCF.DLL file is a copy of QCChart2DNetCF_NOXOR.DLL.

QCChart2D CF for .Net Compact Framework Dependencies
The QCChart2D CF for the .Net Compact Framework class library is self-contained.
It uses only standard classes that ship with the Microsoft .Net Compact Framework
API. The software uses the major .Net namespaces listed below.

System.Windows.Forms Namespace

The System.Windows.Forms namespace contains classes for creating .Net Forms,
Controls and Dialog boxes.

System.Drawing Namespace

The System.Drawing namespace provides access to basic graphics functionality.

System.Drawing.Drawing2D Class

The System.Drawing.Drawing2D namespace contains the DashStyle enumerication that
is used by many of the programs. The VS 2003 version of.Net CF SDK did not support
dash styles for line drawing and the System.Drawing.Drawing2D ws not used.

System.Drawing.Imaging Namespace

The System.Drawing.Imaging namespace implements basic imaging functionality.
Basic graphics functionality is provided by the System.Drawing namespace.

8 Introduction

System.Drawing.Color Class

Provides a class to define colors in terms of their individual RGB (Red, Green, Blue)
components.

System.Drawing.Font Class

Defines a particular format for text, including font face, size, and style attributes.

System.IO Namespace

The IO namespace contains types that allow synchronous and asynchronous reading and
writing on data streams and files.

System.Collections Namespace

The System.Collections namespace contains interfaces and classes that define various
collections of objects, such as lists, queues, bit arrays, hash tables and dictionaries.

Directory Structure of QCSPCChart for .Net

The SPC Control Chart Tools for .Net CF class library uses the standard directory
structure also used by the QCChart2D CF and QCRTGraph CF software. It adds the
QCSPCChart directory structure under the Quinn-Curtis\DotNet folder. For a list of the
folders specific to QCChart2D CF, see the manual for QCChart2D CF,
QCChart2DNetCFManual.pdf.

Drive:

 Quinn-Curtis\ - Root directory

DotNet\ - Quinn-Curtis .Net based products directory

 Docs\ - Quinn-Curtis .Net related documentation directory

 Lib\ - Quinn-Curtis .Net related compiled libraries and components directory

 QCChart2D\ - QCChart2D examples for C# and VB – This directory contains
many example programs for C# and VB specific to
the QCChart2D CF charting software, but not
specific to the QCSPCChart CF software

 QCSPCChart\ - QCSPCChart CF examples for C# and VB

 Visual CSharp\ - C# specific directory

Introduction 9

 CF QCSPCChartClassLib\ - contains the source code to the
QCSPCChartNetCF.dll library (installed only if the
source code has been purchased)

 CF Examples\ - C# examples directory

FrequencyHistogram – a simple frequency histogram example
using the FrequencyHistogramChart class

BatchAttributeControlCharts - a collection of batch attribute
control charts, including n, np, c, and u charts using the
SPCBatchAttributeControlChart class.

BatchVariableControlCharts - a collection of batch variable
control charts, including X-Bar R, X-Bar Sigma, Median Range,
and X-R charts using the SPCBatchVariableControlChart class.

TimeAttributeControlCharts - a collection of time attribute
control charts, including n, np, c, and u charts using the
SPCTimeAttributeControlChart class.

TimeVariableControlCharts BatchVariableControlCharts - a
collection of time variable control charts, including X-Bar R, X-
Bar Sigma, Median Range, and X-R charts using the
SPCTimeVariableControlChart class.

MiscTimeBasedControlCharts - a collection of time variable
control charts, including EWMA, MA and CuSum charts using the
SPCTimeVariableControlChart class.

MiscBatchBasedControlCharts - a collection of batch variable
control charts, including EWMA, MA and CuSum charts using the
SPCTimeVariableControlChart class.

ProbabilityPlot - a probability chart using the ProbabilityChart
class.

ParetoDiagram - a Pareto diagram chart using the ParetoChart
class.

SPCApplication1 – Add a SPCTimeVariableControlChart
object directly to a form from the VS Toolbnox and configure it as
an X-Bar R chart. Used in the tutorial.

SPCApplication2 – Add a SPCTimeVariableControlChart
derived user control as a separate module in the project, configure
it as an X-Bar R chart, and add the derived object to the main
form. Used in the tutorial.

10 Introduction

SPCApplication3 – Instantiate a
SPCTimeVariableControlChart without using the Toolbox, and
insert it into Panel control.

SPCTimeVariableControlChart object, configure it as an X-Bar
R chart, and place it directly on a form, bypassing the VS
Toolbox. Used in the tutorial.

WERulesVariableControlCharts - a collection of using the WE
rules with SPCTimeVariableControlChart charts, including X-
Bar R, X-Bar Sigma, Median Range, and X-R

VariableSampleSizeControlCharts - a collection of the variable
control (X-Bar Sigma), and attribute control (p- and u-charts) that
support variable sample subgroup sizes.

 Visual Basic\ - VB specific code

 CF Examples\ - VB examples

Same as the C# examples above

(*** Critical Note ***) Running the Example Programs
The example programs for SPC Control Chart Tools for .Net CF software are supplied
in complete source. In order to save space, they have not been pre-compiled which means
that many of the intermediate object files needed to view the main form are not present.
This means that ChartView derived control will not be visible on the main Form if you
attempt to view the main form before the project has been compiled. The default state for
all of the example projects should be the Start Page. Before you do view any other file or
form, do a build of the project. This will cause the intermediate files to be built. If you
attempt to view the main Form before building the project, Visual Studio sometimes
decides that the ChartView control placed on the main form does not exist and deletes it
from the project.

There are two versions of the for SPC Control Chart Tools for .Net CF class library:
the 30-day trial versions, and the developer version. Each version has different
characteristics that are summarized below:

Introduction 11

30-Day Trial Version

The trial version of SPC Control Chart Tools for .Net CF is downloaded in a file
named Trial_QCSPCChartCFR20x. The 30-day trial version stops working 30 days after
the initial download. The trial version includes a version message in the upper left corner
of the graph window that cannot be removed.

Developer Version

The developer version of SPC Control Chart Tools for .Net CF is downloaded in a file
with a name similar to NETCFSPCDEVR2x0x561x1.zip The developer version does not
time out and you can use it to create application programs that you can distribute royalty
free. You can download free updates for a period of 2-years. When you placed your
order, you were e-mailed download link(s) that will download the software. Those
download links will remain active for at least 2 years and should be used to download
current versions of the software. After 2 years you may have to purchase an upgrade to
continue to download current versions of the software

Chapter Summary
The remaining chapters of this book discuss the SPC Control Chart Tools for .Net CF
package designed to run on any hardware that has a .Net runtime installed on it.

Chapter 2 presents a summary of the standard SPC control charts that can be created
using the software.

Chapter 3 presents the overall class architecture of the SPC Control Chart Tools for
.Net CF and summarizes all of the classes found in the software.

Chapter 4 summarizes the important QCChart2D CF classes that you must be familiar
with in order to customize advanced features of the SPC Control Chart Tools for .Net
CF software.

Chapter 5 describes the classes that hold SPC control chart data and control limit alarms.

Chapter 6 describes how the SPCTimeVariableControlChart and
SPCBatchVariableControlChart classes create common variable control charts: X-Bar
R, Median and Range, X-Bar Sigma, X-R, EWMA, MA and CuSum charts.

Chapter 7 describes how the SPCTimeAttributeControlChart and
SPCBatchAttributeControlChart classes create common attribute control charts: p-,
np-, c- and u-charts.

12 Introduction

Chapter 8 describes how the FrequencyHistogramChart, ParetoChart and
ProbabilityChart classes create ancillary SPC charts.

Chapter 9 is a tutorial that describes how to use SPC Control Chart Tools for .Net CF
to create Windows CE applications using Visual Studio .Net, Visual C# and Visual Basic.

2. Standard SPC Control Charts

There are many different types SPC control charts. Normally they fall into one of two
major classifications: Variable Control Charts, and Attribute Control Charts. Within
each classification, there are many sub variants. Often times the same SPC chart type has
two or even three different names, depending on the software package and/or the industry
the chart is used in. We have provided templates for the following SPC control charts:

Variable Control Charts
Fixed sample size subgroup control charts

 X-Bar R – (Mean and Range) chart
 X-Bar Sigma (Mean and Sigma) chart
 Median and Range (Median and Range) chart
 X-R (Individual Range Chart) chart
 EWMA (Exponentially Weighted Moving Average Chart)
 MA (Moving Average Chart)
 CuSum (Tabular Cumulative Sum Chart)

Variable sample size subgroup control charts
 X-Bar Sigma (Mean and Sigma) chart

Attribute Control Charts
Fixed sample size subgroup control charts

p-Chart (Fraction or Percent of Defective Parts, Fraction or Percent Non-
Conforming)
np Chart (Number of Defective Parts, Number of Non-Conforming)
c-Chart (Number of Defects, Number of Non-Conformities)
u-Chart (Number of Defects per Unit, Number of Non-Conformities Per Unit)

Variable sample size subgroup control charts
p-Chart (Fraction or Percent of Defective Parts, Fraction or Percent Non-
Conforming)
u-Chart (Number of Defects per Unit, Number of Non-Conformities Per Unit)

Time-Based and Batch-Based SPC Charts
We have further categorized Variable Control charts and Attribute Control Charts as
either time- or batch- based. While you may not find this distinction in SPC textbooks
(we didn’t), it makes sense to us as charting experts. Quality engineers use time-based
SPC charts when data is collected using a subgroup interval corresponding to a specific
time interval. They use batch-based SPC charts when the data subgroup interval is a
sequential batch number that does not correspond to a uniform time interval. The major
difference in these two types of SPC charts is the display of the x-axis. Variable control

14 Standard SPC Control Charts

charts that sample using a uniform time interval will generally use a time-based x-axis,
with time/date axis labels. Variable control charts that sample based on batches will
generally use a numeric-based x-axis, with numeric axis labels.

Note: Starting with Revision 2.0, batch control charts can label the x-axis using one of
three options: numeric labeling (the original and default mode), time stamp labeling, and
user defined string labeling. Since this affects batch control charts, time stamps to not
have to be equally spaced, or even sequential.

SPC Analysis Charts
Quality engineers use other, specialized, charts in the analysis of SPC data. We have
added chart classes that implement the following SPC analysis charts:

• Frequency Histograms
• Probability Charts
• Pareto Charts

Variable Control Charts

Variable Control Charts are for use with sampled quality data that can be assigned a
specific numeric value, other than just 0 or 1. This might include, but is not limited to, the
measurement of a critical dimension (height, length, width, radius, etc.), the weight a
specific component, or the measurement of an important voltage. Common types of
Variable Control Charts include X-Bar R (Mean and Range), X-Bar Sigma, Median and
Range, X-R (Individual Range), EWMA, MA and CuSum charts.

Standard SPC Control Charts 15

Typical Time-Base Variable Control Chart (X-Bar R) with basic header information

X-Bar R Chart – Also known as the Mean (or Average) and Range
Chart

The X-Bar R chart monitors the trend of a critical process variable over time using a
statistical sampling method that results in a subgroup of values at each subgroup interval.
The X-Bar part of the chart plots the mean of each sample subgroup and the Range part
of the chart monitors the difference between the minimum and maximum value in the
subgroup.

16 Standard SPC Control Charts

Fixed sample size X-Bar Sigma Control chart with header information

X-Bar Sigma Chart

Very similar to the X-Bar R Chart, the X-Bar Sigma chart replaces the Range plot with a
Sigma plot based on the standard deviation of the measured values within each subgroup.
This is a more accurate way of establishing control limits if the sample size of the
subgroup is moderately large (> 10). Though computationally more complicated, the use
of a computer makes this a non-issue.

Standard SPC Control Charts 17

 X-Bar Sigma Chart with variable sample size

The X-Bar Sigma chart can also be used if the sample subgroup size varies from
sampling interval to sampling interval. In this case, the control chart high and low limits
vary from sample interval to sample interval, depending on the number of samples in the
associated sample subgroup. A low number of samples in the sample subgroup make the
band between the high and low limits wider than if a higher number of samples are
available. The X-Bar Sigma chart is the only variable control chart that can be used with
a variable sample size.

18 Standard SPC Control Charts

Median Range Chart

Median Range – Also known as the Median and Range Chart

Very similar to the X-Bar R Chart, Median Range chart replaces the Mean plot with a
Median plot representing the median of the measured values within each subgroup. The
Median Range chart requires that the process be well behaved, where the variation in
measured variables are (1) known to be distributed normally, (2) are not very often
disturbed by assignable causes, and (3) are easily adjusted.

Standard SPC Control Charts 19

Typical Time-Based Individual Range Chart (X-R) with data table

Individual Range Chart – Also known as the X-R Chart

The Individual Range Chart is used when the sample size for a subgroup is 1. This
happens frequently when the inspection and collection of data for quality control
purposes is automated and 100% of the units manufactured are analyzed. It also happens
when the production rate is low and it is inconvenient to have sample sizes other than 1.
The X part of the control chart plots the actual sampled value (not a mean or median) for
each unit and the R part of the control chart plots a moving range, calculated using the
current value of sampled value minus the previous value.

20 Standard SPC Control Charts

Typical EWMA Chart

EWMA Chart – Exponentially Weighted Moving Average

The EWMA chart is an alternative to the preceding Shewhart type control charts (X-Bar
R and I-R charts in particular) and is most useful for detecting small shifts in the process
mean. It uses a weighted moving average of previous values to “smooth” the incoming
data, minimizing the affect of random noise on the process. It weights the current and
most recent values more heavily than older values, allowing the control line to react
faster than a simple MA (Moving Average) plot to changes in the process. Like the
Shewhart charts, if the EWMA value exceeds the calculated control limits, the process is
considered out of control. While it is usually used where the process uses 100%
inspection and the sample subgroup size is 1 (same is the I-R chart), it can also be used
when sample subgroup sizes are greater than one.

Standard SPC Control Charts 21

EWMA (Exponentially Weighted Moving Average) Chart with Sample Values Plotted

MA Chart – Moving Average

The MA chart is another alternative to the preceding Shewhart type control charts (X-Bar
R and I-R charts in particular) and is most useful for detecting small shifts in the process
mean. It uses a moving average, where the previous (N-1) sample values of the process
variable are averaged together along with the process value to produce the current chart
value. This helps to “smooth” the incoming data, minimizing the affect of random noise
on the process. Unlike the EWMA chart, the MA chart weights the current and previous
(N-1) values equally in the average. While the MA chart can often detect small changes
in the process mean faster than the Shewhart chart types, it is generally considered
inferior to the EWMA chart. Like the Shewhart charts, if the MA value exceeds the
calculated control limits, the process is considered out of control.

22 Standard SPC Control Charts

Tabular CuSum Chart

CuSum Chart – Tabular, one-sided, upper and lower cumulative sum

The CuSum chart is a specialized control chart, which like the EWMA and MA charts, is
considered to be more efficient that the Shewhart charts at detecting small shifts in the
process mean, particularly if the mean shift is less than 2 sigma. There are several types
of CuSum charts, but the easiest to use and the most accurate is considered the tabular
CuSum chart and that is the one implemented in this software. The tabular cusum works
by accumulating deviations that are above the process mean in one statistic (C+) and
accumulating deviations below the process mean in a second statistic (C-). If either
statistic (C+ or C-) falls outside of the calculated limits, the process is considered out of
control.

Measured Data and Calculated Value Tables

Standard worksheets used to gather and plot SPC data consist of three main parts.

• The first part is the header section, identifying the title of the chart, the monitored

process, the machine operator, part number and other important information specific
to the chart.

• The second part is the measurement data recording and calculation section, organized
as a table, recording the sampled and calculated data in a neat, readable fashion.

Standard SPC Control Charts 23

• The third part, the actual SPC chart, plots the calculated SPC values for the sample
group

The Variable Control Chart templates that we have created have options that enable the
programmer to customize and automatically include header information along with a
table of the measurement and calculated data, in the SPC chart. Enable the scrollbar
option and you can display the tabular measurement data and SPC plots for a window of
8-20 subgroups, from a much larger collection of measurement data represented hundreds
or even thousands of subgroups, and use the scrollbar to move through the data, similar to
paging through a spreadsheet.

Scrollable Time-Based XBar-R Chart with frequency histograms and basic header
information

24 Standard SPC Control Charts

Scrollable Time-Based XBar-R Chart with frequency histograms, header, measurement
and calculated value information

Scatter Plots of the Actual Sampled Data

In some cases it useful to plot the actual values of a sample subgroup along with the
sample subgroup mean or median. Plot these samples in the SPC chart using additional
scatter plots.

Standard SPC Control Charts 25

Scrollable Time-Based Median-Range Chart with Scatter Plot of Actual Sampled Data

Alarm Notification

Typically, when a process value exceeds a control limit, an alarm condition exists. In
order to make sure that the program user identifies an alarm you can emphasize the alarm
in several different ways. You can trap the alarm condition using an event delegate, log
the alarm to the notes log, highlight the data point symbol in the chart where the alarm
occurs, display an alarm status line in the data table, or highlight the entire column of the
sample interval where the alarm occurs.

Change the color of a data point that falls outside of alarm limits.

26 Standard SPC Control Charts

Highlight the column of the sample interval where the alarm occurs

An alarm status line highlights an alarm condition, and lets you know when chart the
(primary or secondary) the alarm occurs in.

These alarm highlight features apply to both variable control and attribute control charts.

Standard SPC Control Charts 27

Attribute Control Charts
Attribute Control Charts are a set of control charts specifically designed for tracking
defects (also called non-conformities). These types of defects are binary in nature
(yes/no), where a part has one or more defects, or it doesn’t. Examples of defects are
paint scratches, discolorations, breaks in the weave of a textile, dents, cuts, etc. Think of
the last car that you bought. The defects in each sample group are counted and run
through some statistical calculations. Depending on the type of Attribute Control Chart,
the number of defective parts are tracked (p-chart and np-chart), or alternatively, the
number of defects are tracked (u-chart, c-chart). The difference in terminology “number
of defective parts” and “number of defects” is highly significant, since a single part not
only can have multiple defect categories (scratch, color, dent, etc), it can also have
multiple defects per category. A single part may have 0 – N defects. So keeping track of
the number of defective parts is statistically different from keeping track of the number of
defects. This affects the way the control limits for each chart are calculated.

Attribute Control Charts
Attribute Control Charts are a set of control charts specifically designed for tracking
defects (also called non-conformities). These types of defects are binary in nature
(yes/no), where a part has one or more defects, or it doesn’t. Examples of defects are
paint scratches, discolorations, breaks in the weave of a textile, dents, cuts, etc. Think of
the last car that you bought. The defects in each sample group are counted and run
through some statistical calculations. Depending on the type of Attribute Control Chart,
the number of defective parts are tracked (p-chart and np-chart), or alternatively, the
number of defects are tracked (u-chart, c-chart). The difference in terminology “number
of defective parts” and “number of defects” is highly significant, since a single part not
only can have multiple defect categories (scratch, color, dent, etc), it can also have
multiple defects per category. A single part may have 0 – N defects. So keeping track of
the number of defective parts is statistically different from keeping track of the number of
defects. This affects the way the control limits for each chart are calculated.

28 Standard SPC Control Charts

Typical Time-Based Attribute Control Chart (p-Chart)

p-Chart - Also known as the Percent or Fraction Defective Parts Chart

For a sample subgroup, the number of defective parts is measured and plotted as either a
percentage of the total subgroup sample size, or a fraction of the total subgroup sample
size. Since the plotted value is a fraction or percent of the sample subgroup size, the size
of the sample group can vary without rendering the chart useless.

The p-Chart chart can also be used if the sample subgroup size varies from sampling
interval to sampling interval. In this case, the control chart high and low limits vary from
sample interval to sample interval, depending on the number of samples in the associated
sample subgroup. A low number of samples in the sample subgroup make the band
between the high and low limits wider than if a higher number of samples are available.
Both the Fraction Defective Parts and Percent Defective Parts control charts come in
versions that support variable sample sized for a subgroup.

Standard SPC Control Charts 29

Fraction Defective Parts (p-Chart) with variable sample size

np-Chart – Also known as the Number Defective Parts Chart

For a sample subgroup, the number of defective parts is measured and plotted as a simple
count. Statistically, in order to compare number of defective parts for one subgroup with
the other subgroups, this type of chart requires that the subgroup sample size is fixed
across all subgroups.

30 Standard SPC Control Charts

Typical Number Defective Parts Chart (np)

c-Chart - Also known as the Number of Defects or Number of Non-
Conformities Chart

For a sample subgroup, the number of times a defect occurs is measured and plotted as a
simple count. Statistically, in order to compare number of defects for one subgroup with
the other subgroups, this type of chart requires that the subgroup sample size is fixed
across all subgroups.

Standard SPC Control Charts 31

Typical Number of Defects (c)

u-Chart – Also known as the Number of Defects per Unit or Number of
Non-Conformities per Unit Chart

For a sample subgroup, the number of times a defect occurs is measured and plotted as
either a percentage of the total subgroup sample size, or a fraction of the total subgroup
sample size. Since the plotted value is a fraction or percent of the sample subgroup size,
the size of the sample group can vary without rendering the chart useless.

The u-Chart chart can also be used if the sample subgroup size varies from sampling
interval to sampling interval. In this case, the control chart high and low limits vary from
sample interval to sample interval, depending on the number of samples in the associated
sample subgroup. A low number of samples in the sample subgroup make the band
between the high and low limits wider than if a higher number of samples are available.

32 Standard SPC Control Charts

Number of Defects per Unit Chart with variable sample size (u-chart)

Defect and Defect Category Data Tables

As discussed under the Variable Control Chart section, standard worksheets used to
gather and plot SPC data consist of three main parts.
• The first part is the header section, identifying the title of the chart, the monitored

process, the machine operator, part number and other important information specific
to the chart.

• The second part records the defect data, organized as a table recording the defect data
and SPC calculations in a neat, readable fashion.

• The third part plots the calculated SPC values in the actual SPC chart.

The Attribute Control Chart templates that we have created have options that enable the
programmer to customize and automatically include header information along with a
table of the defect data, organized by defect category, number of defective parts, or total
number of defects. Enable the scrollbar and you can display the tabular defect data and
SPC plots for a window of 8-20 subgroups, from a much larger collection of
measurement data representing hundreds or even thousands of subgroups, and use the
scrollbar to move through the data, similar to paging through a spreadsheet.

Standard SPC Control Charts 33

Typical Number of Defects (c) Chart with data table

Other Important SPC Charts

Frequency Histogram Chart

An SPC control chart tacks the trend of critical variables in a production environment. It
is important that the production engineer understand whether or not changes or variation
in the critical variables are natural variations due to the tolerances inherent to the
production machinery, or whether or not the variations are due to some systemic,
assignable cause that needs to be addressed. If the changes in critical variables are the
result of natural variations, a frequency histogram of the variations will usually follow
one of the common continuous (normal, exponential, gamma, Weibull) or discrete
(binomial, Poisson, hypergeometric) distributions. It is the job of the SPC engineer to
know what distribution best models his process. Periodically plotting of the variation of
critical variables will give SPC engineer important information about the current state of
the process. A typical frequency histogram looks like:

34 Standard SPC Control Charts

Frequency Histogram Chart

Viewing frequency histograms of both the variation in the primary variable (Mean,
Median, count, or actual value), and the secondary variable (Range, Sigma or Moving
Range) side-by-side with the SPC control chart makes it even easier to find out whether
the variations are the result of natural variations or the result of some systemic change in
the process.

Standard SPC Control Charts 35

XBar-Sigma Chart with Integral Frequency Histograms

Probability Plots

Another important tool the SPC engineer uses to model the process variation is the
probability plot. The probability plot tests whether control chart measurements fit a
normal distribution. Usually, the SPC engineer plots probability plot graphs by hand
using special probability plot graph paper. We added probability scale and axis classes to
the QCSPCChart software that plots probability plots directly on the computer. Control
chart measurements that follow a normal distribution curve plot as a straight line when
plotted in a normal probability plot.

36 Standard SPC Control Charts

Cumulative Normal Probability Chart

Pareto Diagrams

The Pareto diagram is a special type of bar graph combined with a line plot, plotted in a
chart that uses two different y-axis scales. The bar graph scale is a frequency scale that
measures the number of times a specific problem has occurred. The line plot scale is a
cumulative percentage scale.

Standard SPC Control Charts 37

Pareto Chart

The chart is easy to interpret. The tallest bar, the left-most one in a Pareto diagram, is the
problem that has the most frequent occurrence. The shortest bar, the right-most one, is the
problem that has the least frequent occurrence. Time spend on fixing the biggest problem
will have the greatest affect on the overall problem rate. This is a simplistic view of
actual Pareto analysis, which would usually take into account the cost effectiveness of
fixing a specific problem. Never less, it is powerful communication tool that the SPC
engineer can use in trying to identify and solve production problems.

3. Class Architecture of the SPC Control Chart Tools
for .Net CF Class Library

Major Design Considerations

This chapter presents an overview of the SPC Control Chart Tools for .Net CF class
architecture. It discusses the major design considerations of the architecture:

Major design consideration specific to SPC Control Chart Tools for .Net CF are:

• Direct support for the following SPC chart types:

Variable Control Charts
 Fixed sample size subgroup control charts

 X-Bar R – (Mean and Range) chart
 X-Bar Sigma (Mean and Sigma) chart
 Median and Range (Median and Range) chart
 X-R (Individual Range Chart) chart

 EWMA (Exponentially Weighted Moving Average Chart)
 MA (Moving Average Chart)
 CuSum (Tabular Cumulative Sum Chart)

Variable sample size subgroup control charts
 X-Bar Sigma (Mean and Sigma Chart)

Attribute Control Charts
Fixed sample size subgroup control charts

p-Chart (Fraction or Percent of Defective Parts, Fraction or Percent Non-
Conforming)

np Chart (Number of Defective Parts, Number of Non-Conforming)
c-Chart (Number of Defects, Number of Non-Conformities)
u-Chart (Number of Defects per Unit, Number of Non-Conformities Per

Unit)
Variable sample size subgroup control charts

 p Chart (Fraction or Percent of Defective Parts)
u-Chart (Number of Defects per Unit)

SPC Analysis Charts
 Frequency Histograms
 Probability Charts
 Pareto Charts

40 Class Architecture

• Minimal programming required – create SPC charts with a few lines of code using
our SPC chart templates.

• Integrated frequency histograms support – Display frequency histograms of sampled
data, displayed side-by-side, sharing the same y-axis, with the SPC chart.

• Charts Header Information – Customize the chart display with job specific
information, for example: Title, Operator, Part Number, Specification Limits,
Machine, ect.

• Table display of SPC data – Display the sampled and calculated values for a SPC
chart in a table, directly above the associated point in the SPC chart, similar to
standardized SPC worksheets.

• Automatic calculation of SPC control limits – Automatically calculate SPC control
limits using sampled data, using industry standard SPC control limit algorithms
unique to each chart type.

• Automatic y-Axis scaling – Automatically calculated the y-axis scale for SPC charts,
taking into account sampled and calculated data points, and any control limit lines
added to the graph.

• Alarms – When monitored value exceeds a SPC control limit it can trigger an event
that vectors to a user-written alarm processing delegate.

• SPC Process Capability Calculations -Variable Control Charts include Cp, Cpl, Cpu,
Cpk, Cpm, Pp, Ppl, Ppu, and Ppk process capability statistics

• Notes – The operator can view or enter notes specific to a specific sample subgroup
using a special notes tooltip.

• Data tooltips – The operator can view chart data values using a simple drill-down data
tooltip display. The Data tooltips can optionally display sample subgroup data values
and statistics, including process capability calculations (Cp, Cpl, Cpu, Cpk, Cpm, Pp,
Ppl, Ppu, and Ppk) and customized using notes that have been entered for the sample
subgroup.

• Data logging – SPC data (time stamp and/or batch number, sample values, calculated
values, control limit values, and notes can be logged to disk in a CSV (commas
separated value) file format.

• Scrollable view – Enable the scroll bar option and scroll through the chart and table
view of the SPC data for an unlimited number of sample subgroups.

Class Architecture 41

• Other, optional features – There are many optional features that SPC charts often use,
including:

Multiple SPC control limits, corresponding to +-1, 2 and 3 sigma limits.

Scatter plots of all sampled data values on top of calculated means and medians.

Data point annotations

The chapter also summarizes the classes in the SPC Control Chart Tools for .Net CF
library.

SPC Control Chart Tools for .Net CF Class Summary
The SPC Control Chart Tools for .Net CF library is a super set of the QCChart2D CF
library. The classes of the QCChart2D CF library are an integral part of the software. A
summary of the QCChart2D CF classes appears below.

QCChart2D CF Class Summary

Chart view class The chart view class is a UserControl subclass that
manages the graph objects placed in the graph

Data classes There are data classes for simple xy and group data types.
There are also data classes that handle System.DateTime
date/time data and contour data.

Scale transform classes The scale transform classes handle the conversion of
physical coordinate values to working coordinate values for
a single dimension.

Coordinate transform classes

The coordinate transform classes handle the conversion of
physical coordinate values to working coordinate values for
a parametric (2D) coordinate system.

Attribute class The attribute class encapsulates the most common
attributes (line color, fill color, line style, line thickness,
etc.) for a chart object.

Auto-Scale classes The coordinate transform classes use the auto-scale classes
to establish the minimum and maximum values used to
scale a 2D coordinate system. The axis classes also use the
auto-scale classes to establish proper tick mark spacing
values.

42 Class Architecture

Charting object classes The chart object classes includes all objects placeable in a
chart. That includes axes, axes labels, plot objects (line
plots, bar graphs, scatter plots, etc.), grids, titles,
backgrounds, images and arbitrary shapes.

Mouse interaction classes These classes, directly and indirectly System.EventHandler
delegates that trap mouse events and permit the user to
create and move data cursors, move plot objects, display
tooltips and select data points in all types of graphs.

File and printer rendering These classes render the chart image to a printer, to a
variety of file formats including JPEG, and BMP, or to a
.Net Image object.

Miscellaneous utility classes Other classes use these for data storage, file I/O, and data
processing.

For each of these categories see the associated description in the QCChart2D CF
manual (QCChart2DNetCFManual.pdf). The SPC Control Chart Tools for .Net CF
classes are in addition to the ones above. They are summarized below.

SPC Control Chart Tools for .Net CF Class Hierarchy
The QCSPCChart classes are a super set of the QCChart2D CF charting software. No
attempt should be made to utilize the QCSPCChart CF classes without a good
understanding of the QCChart2D CF classes. See the QCChart2DNetCFManual PDF
file for detailed information about the QCChart2D CF classes. The diagram below
depicts the class hierarchy of the SPC Control Chart Tools for .Net CF library without
the additional QCChart2D CF classes

Namespace com.quinncurtis.spcchartnetcf.

com.quinn-curtis.chart2dnetcf.ChartView

FrequencyHistogramChart
ParetoChart
ProbabilityChart
SPCChartBase

 SPCBatchAttributeControlChart
 SPCBatchVariableControlChart
 SPCTimeAttributeControlChart
 SPCTimeVariableControlChart

Class Architecture 43

com.quinncurtis.chart2dnet.AutoScale
 ProbabilityAutoScale
com.quinncurtis.chart2dnet.Axis
 ProbabilityAxis
com.quinncurtis.chart2dnet.LinearAxis
 ProbabilitySigmaAxis
com.quinncurtis.chart2dnet.PhysicalCoordinates
 ProbabilityCoordinates
com.quinncurtis.chart2dnet.Scale
 ProbabilityScale
com.quinncurtis.chart2dnet.StringLabel
 NotesLabel
com.quinncurtis.chart2dnet.MouseListener
 NotesToolTip
com.quinncurtis.chart2dnet.DataToolTip
 SPCDataToolTip

QCSPCChart Classes

SPCControlChartData
SPCControlLimitAlarmArgs
SPCControlLimitRecord
SPCCalculatedValueRecrod
SPCProcessCapabilityRecord
SPCSampledValueRecord
SPCControlParameters
SPCGeneralizedTableDisplay
SPCControlPlotObjects
SPCChartObjects

SPC Control Chart Data

SPCControlChartData

 SPC control chart data is stored in the SPCControlChartData
class. It holds the header information used to customize the chart
table, the raw sample data used to prepare the chart, the calculated
chart values used in the chart, and the SPC control limits. It
contains array lists of SPCSampledValueRecord,

44 Class Architecture

SPCControlLimitRecord and SPCCalculatedValueRecord
objects.

SPCSampledValueRecord

 This class encapsulates a sample data value. It includes a
description for the item, the current value of the sampled value,
and a history of previous values.

SPCControlLimitRecord

 This class holds information specific to a SPC control limit:
including the current value of the control limit, a history of control
limit values, description, and the hysteresis value for alarm
checking.

SPCCalculatedValueRecord

 The record class for a calculated SPC statistic. It holds the
calculated value type (mean, median, sum, variance, standard
deviation, etc.), value, description and historical data.

SPCProcessCapabilityRecord

 The record class for storing and calculating process capability
statistics: Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu and Ppk.

SPC Charts and Related Chart Objects

SPCChartBase The SPCChartBase forms the base object for all SPC

control charts. The variable control chart templates
(SPCBatchVariableControlChart, and
SPCTimeVariableControlChart), and attribute control
charts (SPCBatchAttributeControlChart and
SPCTimeAttributeControlChart) are derived from the
SPCChartBase class.

Class Architecture 45

Typical Batch Variable Control Chart (Mean and Range or X-Bar R)

SPCBatchVariableControlChart

 A Batch Variable Control Chart class that uses a
CartesianCoordinate system with a numeric based X-Axis. This
class creates MEAN_RANGE_CHART,
MEDIAN_RANGE_CHART, INDIVIDUAL_RANGE_CHART,
MEAN_SIGMA_CHART, MEAN_SIGMA_CHART_VSS,
EWMA_CHART, TABCUSUM , and MA_CHART chart types.

46 Class Architecture

Typical Time Variable Control Chart (Individual Range or XR Chart)

SPCTimeVariableControlChart

 A Variable Control Chart class that uses a TimeCoordinate
system with a time based X-Axis. This class creates
MEAN_RANGE_CHART, MEDIAN_RANGE_CHART,
INDIVIDUAL_RANGE_CHART, MEAN_SIGMA_CHART,
MEAN_SIGMA_CHART_VSS, EWMA_CHART, TABCUSUM
and MA_CHART chart types.

Typical SPCBatchCusumControlChart with alarm limits

Class Architecture 47

Typical Batch Attribute Control Chart (Fraction Defective or p-Chart)

SPCBatchAttributeControlChart

 A Batch Attribute Control Chart class that uses a
CartesianCoordinate system with a numeric X-Axis. This class
creates PERCENT_DEFECTIVE_PARTS_CHART,
FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTS_PERUNIT_CHART,
NUMBER_DEFECTS_CHART SPC,
PERCENT_DEFECTIVE_PARTS_CHART_VSS,
FRACTION_DEFECTIVE_PARTS_CHART_VSS,
NUMBER_DEFECTS_PERUNIT_CHART_VSS chart types.

48 Class Architecture

Typical Time Attribute Control Chart (Fraction Defective or p-Chart)

SPCTimeAttributeControlChart

 An Attribute Control Chart class that uses a TimeCoordinate
system with a time based X-Axis. This class creates
PERCENT_DEFECTIVE_PARTS_CHART,
FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTS_PERUNIT_CHART,
NUMBER_DEFECTS_CHART SPC,
PERCENT_DEFECTIVE_PARTS_CHART_VSS,
FRACTION_DEFECTIVE_PARTS_CHART_VSS,
NUMBER_DEFECTS_PERUNIT_CHART_VSS chart types.

Class Architecture 49

Frequency Histograms used in Combination with a SPC Control Chart

FrequencyHistogramChart

A Frequency Histogram checks that the variation in a process
variable follows the predicted distribution function (normal,
Poisson, chi-squared, etc). The class includes all of the objects
needed to draw a complete frequency histogram chart. These
objects include objects for data, a coordinate system, titles, axes,
axes labels, grids and a bar plot.

50 Class Architecture

Pareto Chart

ParetoChart The Pareto Diagram is special type of bar graph combined with a
line plot, plotted in a chart that uses two different y-axis scales.
The bar graph scale is a frequency scale that measures the number
of times a specific problem has occurred. The line plot scale is a
cumulative percentage scale. The class includes all of the objects
needed to draw a complete Pareto chart. These objects include
objects for data, coordinate systems, titles, axes, axes labels, grids,
numeric labels, and a line plot and bar plot.

Class Architecture 51

Cumulative Normal Probability Chart

Probability Plots The ProbabilityChart class is a highly specialized chart template

used to plot cumulative frequency data using a coordinate system
that has a cumulative probability y-scale. The class includes all of
the objects needed to draw a complete Probability chart. These
objects include objects for data, coordinate systems, titles, axes,
axes labels, grids, numeric labels, and scatter plot. New classes
were developed for the QCChart2D CF charting software capable
of rendering of probability chart coordinate systems
(ProbabilityScale, ProbabilityAutoScale,
ProbabilityCoordinates) and probability axes (ProbabilityAxis,
ProbabilitySigmaAxis).

ProbabilityScale The ProbabilityScale class implements a cumulative normal
probability coordinate system for a single coordinate, x or y. Two
such scales provide the scaling routines for x and y in an
PhysicalCoordindates derived class, CartesianCoordinates, for
example. This allows for different x and y scale types (linear,
cumulative normal probability, time) to be installed independently
for x- and y-coordinates.

ProbabilityAutoScale

52 Class Architecture

The ProbabilityAutoScale class is used with cumulative normal
probability coordinates and auto-scales the plotting area of graphs
and to set the minimum and maximum values of the axes displayed
in the graphs.

ProbabilityCoordinates

The ProbabilityCoordinates class extends the
PhysicalCoordinates class to support a y-axis probability scale in
an xy coordinate plane.

ProbabilityAxis The ProbabilityAxis class implements a probability axis where the
major tick marks are placed at intervals appropriate to a cumulative
probability scale.

ProbabilitySigmaAxis

The ProbabilitySigmaAxis class implements a linear axis where
the tick marks are placed at linear intervals on the sigma levels of
the associated probability scale.

NotesLabel The NotesLabel class displays the Notes items in the SPC table.

NotesToolTip The NotesToolTip displays the Notes tooltip for the notes items in
the SPC table.

SPCDataToolTip The SPCDataTooTip displays the data tooltip for SPC Charts..

SPC Calculations

SPCArrayStatistics SPC involves many statistical calculations. The
SPCArrayStatistics class includes routines for the calculation of
sums, means, medians, ranges, minimum values, maximum values,
variances, and standard deviations. It also includes routines for
array sorting and calculating frequency bins for frequency
histograms. It also includes functions that compute cumulative
probability values for normal, Poisson, and chi-squared
distributions.

SPCControlParameters

The SPCControlParameters class contains the factors and
formulas for calculating SPC control chart limits for Variable and
Attribute Control Charts. It includes calculations for the most

Class Architecture 53

common SPC charts: X-Bar R, Median and Range, X-Bar Sigma,
X-R, u-chart, p-chart, np-chart, and c-chart.

Tabular Display

Table Display of Sampled and Calculated SPC Control Chart Value

SPCGeneralizedTableDisplay

 The SPCGeneralizedTableDisplay manages a list of ChartText
objects (NumericLabel, StringLabel and TimeLabel objects),
that encapsulate each unique table entry in the SPC chart table.
This class also manages the spacing between the rows and columns
of the table, and the alternating stripe used as a background for the
table.

SPC Control Alarms

SPCControlLimitAlarmArgs

54 Class Architecture

 This class passes event information to a
SPCControlLimitAlarmEventDelegate alarm processing
delegate.

SPCControlLimitAlarmEventDelegate

 A delegate type for hooking up control limit alarm notifications

Class Architecture 55

4. 3. QCChart2D CF for .Net Class Summary

This chapter is a summary of the information in the QCChart2DNetCFManual PDF
file. It is not meant to replace that information. Refer to that manual for detailed
information concerning these classes.

The following categories of classes form the core of the QCChart2D CF software.

Chart view class The chart view class is a UserControl subclass that
manages the graph objects placed in the graph

Data classes There are data classes for simple xy and group data types.
There are also data classes that handle System.DateTime
date/time data and contour data.

Scale transform classes The scale transform classes handle the conversion of
physical coordinate values to working coordinate values
for a single dimension.

Coordinate transform classes The coordinate transform classes handle the conversion
of physical coordinate values to working coordinate
values for a parametric (2D) coordinate system.

Attribute class The attribute class encapsulates the most common
attributes (line color, fill color, etc.) for a chart object.

Auto-Scale classes The coordinate transform classes use the auto-scale
classes to establish the minimum and maximum values
used to scale a 2D coordinate system. The axis classes
also use the auto-scale classes to establish proper tick
mark spacing values.

Charting object classes The chart object classes includes all objects placeable in a
chart. That includes axes, axes labels, plot objects (line
plots, bar graphs, scatter plots, etc.), grids, titles,
backgrounds, images and arbitrary shapes.

Mouse interaction classes These classes, directly and indirectly
System.EventHandler delegates that trap mouse events
and permit the user to create and move data cursors,
move plot objects, display tooltips and select data points
in all types of graphs.

SPC Control Data and Alarm Classes 57

Miscellaneous utility classes Other classes use these for data storage, file I/O, and data
processing.

A summary of each category appears in the following section.

Chart Window Classes

System.Windows.Forms.UserControl
ChartView

The starting point of a chart is the ChartView class. The ChartView class derives from
the .Net CF System.Windows.Forms.UserControl class, where the Control class is the
base class for the .Net CF collection of standard components such as menus, buttons,
check boxes, etc. The ChartView class manages a collection of chart objects in a chart
and automatically updates the chart objects when the underlying window processes a
paint event. Since the ChartView class is a subclass of the Control class, it acts as a
container for other .Net CF components too.

Data Classes

ChartDataset
SimpleDataset

TimeSimpleDataset
ElapsedTimeSimpleDataset
ContourDataset

 GroupDataset
 TimeGroupDataset
 ElapsedTimeGroupDataset

The dataset classes organize the numeric data associated with a plotting object. There are
two major types of data supported by the ChartDataset class. The first is simple xy data,
where for every x-value there is one y-value. The second data type is group data, where
every x-value can have one or more y-values.

ChartDataset The abstract base class for the other dataset classes. It contains data
common to all of the dataset classes, such as the x-value array, the number of x-values,
the dataset name and the dataset type.

58 SPC Control Data and Alarm Classes

SimpleDataset Represents simple xy data, where for every x-value there is
one y-value.

TimeSimpleDataset A subclass of SimpleDataset, it uses ChartCalendar dates
(a wrapper around the System.DateTime value class) as the
x-values, and floating point numbers as the y-values.

ElapsedTimeSimpleDataset A subclass of SimpleDataset, it is initialized with
TimeSpan objects, or milliseconds, in place of the x- or y-
values.

ContourDataset A subclass of SimpleDataset, it adds a third dimension (z-
values) to the x- and y- values of the simple dataset.

GroupDataset Represents group data, where every x-value can have one
or more y-values.

TimeGroupDataset A subclass of GroupDataset, it uses ChartCalendar dates
(a wrapper around the System.DateTime value class) as the
x-values, and floating point numbers as the y-values.

ElapsedTimeGroupDataset A subclass of GroupDataset, it uses TimeSpan objects, or
milliseconds, as the x-values, and floating point numbers as
the y-values.

Scale Classes
ChartScale
 LinearScale
 LogScale
 TimeScale
 ElapsedTimeScale

The ChartScale abstract base class defines coordinate transformation functions for a
single dimension. It is useful to be able to mix and match different scale transform
functions for x- and y-dimensions of the PhysicalCoordinates class. The job of a
ChartScale derived object is to convert a dimension from the current physical coordinate
system into the current working coordinate system.

LinearScale A concrete implementation of the ChartScale class. It
converts a linear physical coordinate system into the
working coordinate system.

SPC Control Data and Alarm Classes 59

LogScale A concrete implementation of the ChartScale class. It
converts a logarithmic physical coordinate system into the
working coordinate system.

TimeScale A concrete implementation of the ChartScale class.
converts a date/time physical coordinate system into the
working coordinate system.

ElapsedTimeScale A concrete implementation of the ChartScale class.
converts an elapsed time coordinate system into the
working coordinate system.

Coordinate Transform Classes
UserCoordinates

WorldCoordinates
WorkingCoordinates
 PhysicalCoordinates

 CartesianCoordinates
 ElapsedTimeCoordinates
 PolarCoordinates
 AntennaCoordinates

 TimeCoordinates

The coordinate transform classes maintain a 2D coordinate system. Many different
coordinate systems are used to position and draw objects in a graph. Examples of some of
the coordinate systems include the device coordinates of the current window, normalized
coordinates for the current window and plotting area, and scaled physical coordinates of
the plotting area.

UserCoordinates This class manages the interface to the System.Drawing
classes and contains routines for drawing lines, rectangles
and text using .Net CF device coordinates.

WorldCoordinates This class derives from the UserCoordinates class and
maps a device independent world coordinate system on top
of the .Net CF device coordinate system.

WorkingCoordinates

This class derives from the WorldCoordinates class and
extends the physical coordinate system of the plot area (the
area typically bounded by the charts axes) to include the

60 SPC Control Data and Alarm Classes

complete graph area (the area of the chart outside of the
plot area).

PhysicalCoordinates This class is an abstract base class derived from
WorkingCoordinates and defines the routines needed to
map the physical coordinate system of a plot area into a
working coordinate system. Different scale objects
(ChartScale derived) are installed for converting physical
x- and y-coordinate values into working coordinate values.

CartesianCoordinates

This class is a concrete implementation of the
PhysicalCoordinates class and implements a coordinate
system used to plot linear, logarithmic and semi-
logarithmic graphs.

TimeCoordinates This class is a concrete implementation of the
PhysicalCoordinates class and implements a coordinate
system used to plot GregorianCalenar time-based data.

ElapsedTimeCoordinates This class is a subclass of the CartesianCoordinates class
and implements a coordinate system used to plot elapsed
time data.

PolarCoordinates This class is a subclass of the CartesianCoordinates class
and implements a coordinate system used to plot polar
coordinate data.

AntennaCoordinates This class is a subclass of the CartesianCoordinates class
and implements a coordinate system used to plot antenna
coordinate data. The antenna coordinate system differs
from the more common polar coordinate system in that the
radius can have plus/minus values, the angular values are in
degrees, and the angular values increase in the clockwise
direction.

Attribute Class

ChartAttribute

This class consolidates the common line and fill attributes as a single class. Most of the
graph objects have a property of this class that controls the color, fill attributes of the
object.

SPC Control Data and Alarm Classes 61

ChartAttribute This class consolidates the common line and fill attributes
associated with a GraphObj object into a single class.

Auto-Scaling Classes

AutoScale
 LinearAutoScale
 LogAutoScale

TimeAutoScale
ElapsedTimeAutoScale

Usually, programmers do not know in advance the scale for a chart. Normally the
program needs to analyze the current data for minimum and maximum values and create
a chart scale based on those values. Auto-scaling, and the creation of appropriate axes,
with endpoints at even values, and well-rounded major and minor tick mark spacing, is
quite complicated. The AutoScale classes provide tools that make automatic generation
of charts easier.

AutoScale This class is the abstract base class for the auto-scale
classes.

LinearAutoScale This class is a concrete implementation of the AutoScale
class. It calculates scaling values based on the numeric
values in SimpleDataset and GroupDataset objects.
Linear scales and axes use it for auto-scale calculations.

 LogAutoScale This class is a concrete implementation of the AutoScale
class. It calculates scaling values based on the numeric
values in SimpleDataset and GroupDataset objects.
Logarithmic scales and axes use it for auto-scale
calculations.

TimeAutoScale This class is a concrete implementation of the AutoScale
class. It calculates scaling values based on the
ChartCalendar values in TimeSimpleDataset and
TimeGroupDataset objects. Date/time scales and axes use
it for auto-scale calculations.

ElapsedTimeAutoScale This class is a concrete implementation of the AutoScale
class. It calculates scaling values based on the numeric

62 SPC Control Data and Alarm Classes

values in ElapsedTimeSimpleDataset and
ElapsedTimeGroupDataset objects. The elapsed time
classes use it for auto-scale calculations.

Chart Object Classes
Chart objects are graph objects that can be rendered in the current graph window. This is
in comparison to other classes that are purely calculation classes, such as the coordinate
conversion classes. All chart objects have certain information in common. This includes
instances of ChartAttribute and PhysicalCoordinates classes. The ChartAttribute
class contains basic color and line style information for the object, while the
PhysicalCoordinates maintains the coordinate system used by object. The majority of
classes in the library derive from the GraphObj class, each class a specific charting
object such as an axis, an axis label, a simple plot or a group plot. Add GraphObj
derived objects (axes, plots, labels, title, etc.) to a graph using the
ChartView.AddChartObject method.

GraphObj This class is the abstract base class for all drawable graph
objects. It contains information common to all chart
objects. This class includes references to instances of the
ChartAttribute and PhysicalCoordinates classes. The
ChartAttribute class contains basic color and line style
information for the object, while the PhysicalCoordinates
maintains the coordinate system used by object. The
majority of classes in the library derive from the
GraphObj class, each class a specific charting object such
as an axis, an axis label, a simple plot or a group plot

Background This class fills the background of the entire chart, or the
plot area of the chart, using a solid color, or a color or a
gradient.

Axis Classes

Axis
LinearAxis

 PolarAxes
 AntennaAxes

ElapsedTimeAxis
 LogAxis

SPC Control Data and Alarm Classes 63

TimeAxis

Creating a PhysicalCoordinates coordinate system does not automatically create a pair
of x- and y-axes. Axes are separate charting objects drawn with respect to a specific
PhysicalCoordinates object. The coordinate system and the axes do not need to have the
same limits. In general, the limits of the coordinate system should be greater than or
equal to the limits of the axes. The coordinate system may have limits of 0 to 15, while
you may want the axes to extend from 0 to 10.

Axis This class is the abstract base class for the other axis
classes. It contains data and drawing routines common to
all axis classes.

64 SPC Control Data and Alarm Classes

LinearAxis This class implements a linear axis with major and minor
tick marks placed at equally spaced intervals.

SPC Control Data and Alarm Classes 65

LogAxis This class implements a logarithmic axis with major tick
marks placed on logarithmic intervals, for example 1,
10,100 or 30, 300, 3000. The minor tick marks are placed
within the major tick marks using linear intervals, for
example 2, 3, 4, 5, 6, 7, 8, 9, 20, 30, 40, 50,.., 90. An
important feature of the LogAxis class is that the major and
minor tick marks do not have to fall on decade boundaries.
A logarithmic axis must have a positive range exclusive of
0.0, and the tick marks can represent any logarithmic scale.

66 SPC Control Data and Alarm Classes

TimeAxis This class is the most complex of the axis classes. It
supports time scales ranging from 1 millisecond to
hundreds of years. Dates and times are specified using the
.Net CF ChartCalendar class. The major and minor tick
marks can fall on any time base, where a time base
represents seconds, minutes, hours, days, weeks, months or
years. The scale can exclude weekends, for example,
Friday, October 20, 2000 is immediately followed by
Monday, October 23, 2000. A day can also have a custom
range, for example a range of 9:30 AM to 4:00 PM. The
chart time axis excludes time outside of this range. This
makes the class very useful for the inter-day display of
financial market information (stock, bonds, commodities,
options, etc.) across several days, months or years.

ElapsedTimeAxis The elapsed time axis is very similar to the linear axis and
is subclassed from that class. The main difference is the
major and minor tick mark spacing calculated by the
CalcAutoAxis method takes into account the base 60 of
seconds per minute and minutes per hour, and the base 24
of hours per day. It is a continuous linear scale.

SPC Control Data and Alarm Classes 67

PolarAxes This class has three separate axes: two linear and one
circular. The two linear axes, scaled for +- the magnitude of
the polar scale, form a cross with the center of both axes at
the origin (0, 0. The third axis is a circle centered on the
origin with a radius equal to the magnitude of the polar
scale. This circular axis represents 360 degrees (or 2 Pi
radians) of the polar scale and the tick marks that circle this
axis are spaced at equal degree intervals.

68 SPC Control Data and Alarm Classes

AntennaAxes This class has two axes: one linear y-axis and one circular
axis. The linear axis is scaled for the desired range of radius
values. This can extend from minus values to plus values.
The second axis is a circle centered on the origin with a
radius equal to the range of the radius scale. This circular
axis represents 360 degrees of the antenna scale and the
tick marks that circle this axis are spaced at equal degree
intervals.

Axis Label Classes

AxisLabels
NumericAxisLabels
StringAxisLabels
PolarAxesLabels
AntennaAxesLabels

SPC Control Data and Alarm Classes 69

TimeAxisLabels
ElapsedTimeAxisLabels

Axis labels inform the user of the x- and y-scales used in the chart. The labels center on
the major tick marks of the associated axis. Axis labels are usually numbers, times, dates,
or arbitrary strings.

AxisLabels This class is the abstract base class for all axis label objects.
It places numeric labels, date/time labels, or arbitrary text
labels, at the major tick marks of the associated axis object.
In addition to the standard font options (type, size, style,
color, etc)..

NumericAxisLabels This class labels the major tick marks of the LinearAxis,
and LogAxis classes. The class supports many predefined
and user-definable formats, including numeric, exponent,
percentage, business and currency formats.

StringAxisLabels This class labels the major tick marks of the LinearAxis,
and LogAxis classes using user-defined strings.

70 SPC Control Data and Alarm Classes

TimeAxisLabels This class labels the major tick marks of the associated
TimeAxis object. The class supports many time (23:59:59)
and date (5/17/2001) formats. It is also possible to define
custom date/time formats.

ElapsedTimeAxisLabels This class labels the major tick marks of the associated
ElapsedTimeAxis object. The class supports HH:MM:SS
and MM:SS formats, with decimal seconds out to 0.00001,
i.e. “12:22:43.01234”. It also supports a cumulative hour
format (101:51:22), and a couple of day formats (4.5:51:22,
4D 5:51:22).

PolarAxesLabels This class labels the major tick marks of the associated
PolarAxes object. The x-axis is labeled from 0.0 to the
polar scale magnitude, and the circular axis is labeled
counter clockwise from 0 to 360 degrees, starting at 3:00.

AntennaAxesLabels This class labels the major tick marks of the associated
AntennaAxes object. The y-axis is labeled from the radius
minimum to the radius maximum. The circular axis is
labeled clockwise from 0 to 360 degrees, starting at 12:00.

Chart Plot Classes

ChartPlot
ContourPlot

 GroupPlot
PieChart
PolarPlot
AntennaPlot
SimplePlot

Plot objects are objects that display data organized in a ChartDataset class. There are six
main categories: simple, group, polar, antenna, contour and pie plots. Simple plots graph
data organized as a simple set of xy data points. The most common examples of simple
plots are line plots, bar graphs, scatter plots and line-marker plots. Group plots graph data
organized as multiple y-values for each x-value. The most common examples of group
plots are stacked bar graphs, open-high-low-close plots, candlestick plots, floating
stacked bar plots and “box and whisker” plots. Polar charts plot data organized as a
simple set of data points, where each data point represents a polar magnitude and angle
pair, rather than xy Cartesian coordinate values. The most common example of polar

SPC Control Data and Alarm Classes 71

charts is the display of complex numbers (a + bi), and it is used in many engineering
disciplines. Antenna charts plot data organized as a simple set of data points, where each
data point represents a radius value and angle pair, rather than xy Cartesian coordinate
values. The most common example of antenna charts is the display of antenna
performance and specification graphs. The contour plot type displays the iso-lines, or
contours, of a 3D surface using either lines or regions of solid color. The last plot object
category is the pie chart, were a pie wedge represents each data value. The size of the pie
wedge is proportional to the fraction (data value / sum of all data values).

ChartPlot This class is the abstract base class for chart plot objects. It
contains a reference to a ChartDataset derived class
containing the data associated with the plot.

ContourPlot This class is a concrete implementation of the ChartPlot
class and displays a contour plot using either lines, or
regions filled with color.

Group Plot Classes

72 SPC Control Data and Alarm Classes

GroupPlot
 ArrowPlot

BoxWhiskerPlot
 BubblePlot
 CandlestickPlot

CellPlot
 ErrorBarPlot

FloatingBarPlot
FloatingStackedBarPlot
GroupBarPlot
GroupVersaPlot

 HistogramPlot
 LineGapPlot
 MultiLinePlot
 OHLCPlot

StackedBarPlot
 StackedLinePlot

GroupVeraPlot

Group plots use data organized as arrays of x- and y-values, where there is one or more y
for every x.. Group plot types include multi-line plots, stacked line plots, stacked bar
plots, group bar plots, error bar plots, floating bar plots, floating stacked bar plots, open-
high-low-close plots, candlestick plots, arrow plots, histogram plots, cell plots, “box and
whisker” plots, and bubble plots

GroupPlot This class is an abstract base class for all group plot classes.

ArrowPlot This class is a concrete implementation of the GroupPlot
class and it displays a collection of arrows as defined by the
data in a group dataset. The position, size, and rotation of
each arrow in the collection is independently controlled

SPC Control Data and Alarm Classes 73

BubblePlot This class is a concrete implementation of the GroupPlot
class and displays bubble plots. The values in the dataset
specify the position and size of each bubble in a bubble
chart.

BoxWhiskerPlot This class is a concrete implementation of the GroupPlot
class and displays box and whisker plots. The
BoxWhiskerPlot class graphically depicts groups of
numerical data through their five-number summaries (the

74 SPC Control Data and Alarm Classes

smallest observation, lower quartile (Q1), median (Q2),
upper quartile (Q3), and largest observation).

CandlestickPlot This class is a concrete implementation of the GroupPlot
class and displays stock market data in an open-high-low-
close format common in financial technical analysis.

SPC Control Data and Alarm Classes 75

CellPlot This class is a concrete implementation of the GroupPlot
class and displays cell plots. A cell plot is a collection of
rectangular objects with independent positions, widths and
heights, specified using the values of the associated group
dataset.

ErrorBarPlot This class is a concrete implementation of the GroupPlot
class and displays error bars. Error bars are two lines
positioned about a data point that signify the statistical
error associated with the data point

76 SPC Control Data and Alarm Classes

FloatingBarPlot This class is a concrete implementation of the GroupPlot
class and displays free-floating bars in a graph. The bars
are free floating because each bar does not reference a fixed
base value, as do simple bar plots, stacked bar plots and
group bar plots.

FloatingStackedBarPlot This class is a concrete implementation of the GroupPlot
class and displays free-floating stacked bars. The bars are
free floating because each bar does not reference a fixed
base value, as do simple bar plots, stacked bar plots and
group bar plots.

SPC Control Data and Alarm Classes 77

GroupBarPlot This class is a concrete implementation of the GroupPlot
class and displays group data in a group bar format.
Individual bars, the height of which corresponds to the
group y-values of the dataset, display side by side, as a
group, justified with respect to the x-position value for each
group. The group bars share a common base value.

StackedBarPlot This class is a concrete implementation of the GroupPlot
class and displays data as stacked bars. In a stacked bar plot
each group is stacked on top of one another, each group bar
a cumulative sum of the related group items before it.

GroupVeraPlot The GroupVersaPlot is a plot type that can be any of the
eight group plot types: GROUPBAR, STACKEDBAR,
CANDLESTICK, OHLC, MULTILINE, STACKEDLINE,
FLOATINGBAR and FLOATING_STACKED_BAR. Use
it when you want to be able to change from one plot type to
another, without deleting the instance of the old plot object
and creating an instance of the new.

78 SPC Control Data and Alarm Classes

HistogramPlot This class is a concrete implementation of the GroupPlot
class and displays histogram plots. A histogram plot is a
collection of rectangular objects with independent widths
and heights, specified using the values of the associated
group dataset. The histogram bars share a common base
value.

SPC Control Data and Alarm Classes 79

LineGapPlot This class is a concrete implementation of the GroupPlot
class. A line gap chart consists of two lines plots where a
contrasting color fills the area between the two lines,
highlighting the difference.

80 SPC Control Data and Alarm Classes

MultiLinePlot This class is a concrete implementation of the GroupPlot
class and displays group data in multi-line format. A group
dataset with four groups will display four separate line
plots. The y-values for each line of the line plot represent
the y-values for each group of the group dataset. Each line
plot share the same x-values of the group dataset.

OHLCPlot This class is a concrete implementation of the GroupPlot
class and displays stock market data in an open-high-low-
close format common in financial technical analysis. Every
item of the plot is a vertical line, representing High and
Low values, with two small horizontal "flags", one left and
one right extending from the vertical High-Low line and
representing the Open and Close values.

SPC Control Data and Alarm Classes 81

StackedLinePlot This class is a concrete implementation of the GroupPlot
class and displays data in a stacked line format. In a stacked
line plot each group is stacked on top of one another, each
group line a cumulative sum of the related group items
before it.

Polar Plot Classes

PolarPlot
PolarLinePlot
PolarScatterPlot

Polar plots that use data organized as arrays of x- and y-values, where an x-value
represents the magnitude of a point in polar coordinates, and the y-value represents the
angle, in radians, of a point in polar coordinates. Polar plot types include line plots and
scatter plots.

PolarPlot This class is an abstract base class for the polar plot classes.

82 SPC Control Data and Alarm Classes

PolarLinePlot This class is a concrete implementation of the PolarPlot
class and displays data in a simple line plot format. The
lines drawn between adjacent data points use polar
coordinate interpolation.

PolarScatterPlot This class is a concrete implementation of the PolarPlot

class and displays data in a simple scatter plot format.

Antenna Plot Classes

AntennaPlot
AntennaLinePlot
AntennaScatterPlot
AntennaLineMarkerPlot

GraphObj
AntennaAnnotation

Antenna plots that use data organized as arrays of x- and y-values, where an x-value
represents the radial value of a point in antenna coordinates, and the y-value represents
the angle, in degrees, of a point in antenna coordinates. Antenna plot types include line
plots, scatter plots, line marker plots, and an annotation class.

AntennaPlot This class is an abstract base class for the polar plot classes.

SPC Control Data and Alarm Classes 83

AntennaLineMarkerPlot

AntennaLinePlot This class is a concrete implementation of the AntennaPlot

class and displays data in a simple line plot format. The
lines drawn between adjacent data points use antenna
coordinate interpolation.

AntennaScatterPlot This class is a concrete implementation of the AntennaPlot

class and displays data in a simple scatter plot format.

AntennaLineMarkerPlot This class is a concrete implementation of the AntennaPlot

class and displays data in a simple line markder plot
format.

AntennaAnnotation This class is used to highlight, or mark, a specific attribute

of the chart. It can mark a constant radial value using a
circle, or it can mark a constant angular value using a radial
line from the origin to the outer edge of the scale.

84 SPC Control Data and Alarm Classes

Pie and Ring Chart Classes

It uses data organized as arrays of x- and y-values, where an x-value represents the
numeric value of a pie wedge, and a y-value specifies the offset (or “explosion”) of a pie
wedge with respect to the center of the pie.

PieChart This class plots data in a simple pie chart format. It uses
data organized as arrays of x- and y-values, where an x-
value represents the numeric value of a pie wedge, and a y-
value specifies the offset (or “explosion”) of a pie wedge
with respect to the center of the pie.

SPC Control Data and Alarm Classes 85

RingChart The ring chart plots data in a modified pie chart format
known as a ring chartt. It uses data organized as arrays of
x- and y-values, where an x-value represents the numeric
value of a ring segment, and a y-value specifies the offset
(or “explosion”) of a ring segment with respect to the origin
of the ring.

Simple Plot Classes

SimplePlot
SimpleBarPlot
SimpleLineMarkerPlot
SimpleLinePlot
SimpleScatterPlot
SimpleVeraPlot

Simple plots use data organized as a simple array of xy points, where there is one y for
every x. Simple plot types include line plots, scatter plots, bar graphs, and line-marker
plots.

86 SPC Control Data and Alarm Classes

SimplePlot This class is an abstract base class for all simple plot
classes.

SimpleBarPlot This class is a concrete implementation of the SimplePlot
class and displays data in a bar format. Individual bars, the
maximum value of which corresponds to the y-values of
the dataset, are justified with respect to the x-values.

SPC Control Data and Alarm Classes 87

SimpleLineMarkerPlot

This class is a concrete implementation of the SimplePlot
class and it displays simple datasets in a line plot format
where scatter plot symbols highlight individual data points.

88 SPC Control Data and Alarm Classes

SimpleLinePlot This class is a concrete implementation of the SimplePlot
class it displays simple datasets in a line plot format.
Adjacent data points are connected using a straight, or a
step line.

SimpleScatterPlot This class is a concrete implementation of the SimplePlot
class and it displays simple datasets in a scatter plot format
where each data point is represented using a symbol.

SimpleVersaPlot The SimpleVersaPlot is a plot type that can be any of the
four simple plot types: LINE_MARKER_PLOT,
LINE_PLOT, BAR_PLOT, SCATTER_PLOT. It is used
when you want to be able to change from one plot type to
another, without deleting the instance of the old plot object
and creating an instance of the new.

Legend Classes

LegendItem
BubblePlotLegendItem

SPC Control Data and Alarm Classes 89

Legend
StandardLegend
BubblePlotLegend

Legends provide a key for interpreting the various plot objects in a graph. It organizes a
collection of legend items, one for each plot objects in the graph, and displays them in a
rectangular frame.

Legend This class is the abstract base class for chart legends.

LegendItem This class is the legend item class for all plot objects except
for bubble plots. Each legend item manages one symbol
and descriptive text for that symbol. The StandardLegend
class uses objects of this type as legend items.

BubblePlotLegendItem

This class is the legend item class for bubble plots. Each
legend item manages a circle and descriptive text
specifying the value of a bubble of this size. The
BubblePlotLegend class uses objects of this type as legend
items.

StandardLegend This class is a concrete implementation of the Legend class
and it is the legend class for all plot objects except for
bubble plots. The legend item objects display in a row or
column format. Each legend item contains a symbol and a
descriptive string. The symbol normally associates the
legend item to a particular plot object, and the descriptive
string describes what the plot object represents.

BubblePlotLegend This class is a concrete implementation of the Legend class
and it is a legend class used exclusively with bubble plots.
The legend item objects display as offset, concentric circles
with descriptive text giving the key for the value associated
with a bubble of this size.

Grid Classes

Grid
 PolarGrid
 AntennaGrid

90 SPC Control Data and Alarm Classes

Grid lines are perpendicular to an axis, extending the major and/or minor tick marks of
the axis across the width or height of the plot area of the chart.

Grid This class defines the grid lines associated with an axis.
Grid lines are perpendicular to an axis, extending the major
and/or minor tick marks of the axis across the width or
height of the plot area of the chart. This class works in
conjunction with the LinearAxis, LogAxis and TimeAxis
classes.

PolarGrid This class defines the grid lines associated with a polar
axis. A polar chart grid consists of two sets of lines. The
first set is a group of concentric circles, centered on the
origin and passing through the major and/or minor tick
marks of the polar magnitude horizontal and vertical axes.
The second set is a group of radial lines, starting at the
origin and extending to the outermost edge of the polar plot
circle, passing through the major and minor tick marks of
the polar angle circular axis. This class works in
conjunction with the PolarAxes class.

AntennaGrid Analogous to the PolarGrid, this class draws radial, and
circular grid lines for an Antenna chart.

Chart Text Classes

ChartText
ChartTitle

 AxisTitle
 ChartLabel

NumericLabel
TimeLabel
StringLabel
ElapsedTimeLabel

The chart text classes draw one or more strings in the chart window. Different classes
support different numeric formats, including floating point numbers, date/time values and
multi-line text strings. International formats for floating point numbers and date/time
values are also supported.+

SPC Control Data and Alarm Classes 91

ChartText This class draws a string in the current chart window. It is
the base class for the ChartTitle, AxisTitle and
ChartLabel classes. The ChartText class also creates
independent text objects. Other classes that display text
also use it internally.

ChartTitle This class displays a text string as the title or footer of the
chart.

AxisTitle This class displays a text string as the title for an axis. The
axis title position is outside of the axis label area

ChartLabel This class is the abstract base class of labels that require
special formatting.

NumericLabel This class is a concrete implementation of the ChartLabel
class and it displays formatted numeric values.

TimeLabel This class is a concrete implementation of the ChartLabel
class and it displays formatted ChartCalendar dates.

ElapsedTimeLabel This class is a concrete implementation of the ChartLabel
class and it displays numeric values formatted as elapsed
time strings (12:32:21).

StringLabel This class is a concrete implementation of the ChartLabel
class that formats string values for use as axis labels.

Miscellaneous Chart Classes

Marker
ChartImage
ChartShape
ChartSymbol

Various classes are used to position and draw objects that can be used as standalone
objects in a graph, or as elements of other plot objects.

Marker This class displays one of five marker types in a graph. The
marker is used to create data cursors, or to mark data
points.

92 SPC Control Data and Alarm Classes

ChartImage This class encapsulates a System.Drawing.Image class,
defining a rectangle in chart coordinates that the image is
placed in. JPEG and other image files can be imported
using the System.Drawing.Image class and displayed in a
chart.

ChartShape This class encapsulates a GraphicsPath class, placing the
shape in a chart using a position defined in chart
coordinates. A chart can display any object that can be
defined using.GraphicsPath class.

ChartSymbol This class defines symbols used by the SimplePlot scatter
plot functions. Pre-defined symbols include square,
triangle, diamond, cross, plus, star, line, horizontal bar,
vertical bar, 3D bar and circle.

Mouse Interaction Classes
MouseListener
 MoveObj
 FindObj
 DataToolTip

DataCursor
MoveData

MagniView
MoveCoordinates
MultiMouseListener
ChartZoom

Several classes implement delegates for mouse events. The MouseListener class
implements a generic interface for managing mouse events in a graph window. The
DataCursor, MoveData, MoveObj, ChartZoom, MagniView and MoveCoordinates
classes also implement mouse event delegates that use the mouse to mark, move and
zoom chart objects and data.

MouseListener This class implements .Net CF delegates that trap generic
mouse events (button events and mouse motion events) that
take place in a ChartView window. A programmer can
derive a class from MouseListener and override the
methods for mouse events, creating a custom version of the
class.

SPC Control Data and Alarm Classes 93

MoveObj This class extends the MouseListener class and it can
select chart objects and move them. Moveable chart objects
include axes, axes labels, titles, legends, arbitrary text,
shapes and images. Use the MoveData class to move
objects derived from SimplePlot.

FindObj This class extends the MouseListener class, providing
additional methods that selectively determine what
graphical objects intersect the mouse cursor.

DataCursor This class combines the MouseListener class and Marker
class. Press a mouse button and the selected data cursor
(horizontal and/or vertical line, cross hairs, or a small box)
appears at the point of the mouse cursor. The data cursor
tracks the mouse motion as long as the mouse button is
pressed. Release the button and the data cursor disappears.
This makes it easier to line up the mouse position with the
tick marks of an axis.

MoveData This class selects and moves individual data points of an
object derived from the SimplePlot class.

DataToolTip A data tooltip is a popup box that displays the value of a
data point in a chart. The data value can consist of the x-
value, the y-value, x- and y-values, group values and open-
high-low-close values, for a given point in a chart.

ChartZoom This class implements mouse controlled zooming for one or
more simultaneous axes. The user starts zooming by
holding down a mouse button with the mouse cursor in the
plot area of a graph. The mouse is dragged and then
released. The rectangle established by mouse start and stop
points defines the new, zoomed, scale of the associated
axes. Zooming has many different modes. Some of the
combinations are:

• One x or one y axis
• One x and one y axes
• One x and multiple y axes
• One y and multiple x axes
• Multiple x and y axes
•

MagniView This class implements mouse controlled magnification for
one or more simultaneous axes. This class implements a
chart magnify class based on the MouseListener class. It
uses two charts; the source chart and the target chart. The
source chart displays the chart in its unmagnified state. The

94 SPC Control Data and Alarm Classes

target chart displays the chart in the magnified state. The
mouse positions a MagniView rectangle within the source
chart, and the target chart is re-scaled and redrawn to
match the extents of the MagniView rectangle from the
source chart.

MoveCoordinates This class extends the MouseListener class and it can

move the coordinate system of the underlying chart,
analogous to moving (chaging the coordinates of) an
internet map by “grabbing” it with the mouse and dragging
it.

MultiMouseListener This class is used by the ChartView class to support
multiple mouse listeners at the same time.

Miscellaneous Utility Classes
ChartCalendar
CSV
Dimension
Point2D
GroupPoint2D
DoubleArray
DoubleArray2D
BoolArray
Point3D
NearestPointData
TickMark
Polysurface
Rectangle2D

ChartCalendar This class contains utility routines used to process
ChartCalendar date objects.

CSV This is a utility class for reading and writing CSV (Comma
Separated Values) files.

Dimension This is a utility class for handling dimension (height and
width) information using doubles, rather than the integers
used by the Size class.

Point2D This class encapsulates an xy pair of values as doubles
(more useful in this software than the .Net CF Point class).

SPC Control Data and Alarm Classes 95

GroupPoint2D This class encapsulates an x-value, and an array of y-

values, representing the x and y values of one column of a
group data set.

DoubleArray This class is used as an alternative to the standard .Net CF

Array class, adding routines for resizing of the array, and
the insertion and deletion of double based data elements.

DoubleArray2D This class is used as an alternative to the standard .Net CF

2D Array class, adding routines for resizing of the array,
and the insertion and deletion of double based data
elements.

BoolArray This class is used as an alternative to the standard .Net CF

Array class, adding routines for resizing of the array, and
the insertion and deletion of bool based data elements.

Point3D This class encapsulates an xyz set of double values used to

specify 3D data values.

NearestPointData This is a utility class for returning data that results from

nearest point calculations.

TickMark The axis classes use this class to organize the location of
the individual tick marks of an axis.

Polysurface This is a utility class that defines complex 3D shapes as a
list of simple 3-sided polygons. The contour plotting
routines use it.

Rectangle2D This is a utility class that extends the RectangleF class,
using doubles as internal storage.

96 SPC Control Data and Alarm Classes

5. SPC Control Data and Alarm Classes

SPCControlChartData
SPCControlLimitAlarmArgs
SPCControlLimitRecord
SPCCalculatedValueRecrod
SPCSampledValueRecord
SPCGeneralizedTableDisplay

The Variable and Attribute Control Chart classes share common data and alarm classes.
SPC control chart data is stored in the SPCControlChartData class. It holds the header
information used to customize the chart table, the raw sample data used to prepare the
chart, the calculated chart values used in the chart, and the SPC control limits. It contains
array lists of SPCSampledValueRecord, SPCControlLimitRecord and
SPCCalculatedValueRecord objects. The SPCGeneralizedTableDisplay class
manages ChartText objects used to display data in the table portion of the SPC chart.

Class SPCControlChartData
ChartObj

|
+-- SPCControlChartData

The SPCControlChartData class is the core data storage object for all of SPC Control
Chart classes. It holds all of the data plotted in the SPC chart. That includes the header
information used to customize the chart table,

Header Information

the raw sample data used in the SPC calculations,

Raw Sample Data

98 SPC Control Data and Alarm Classes

the calculated chart values used in the chart, and the SPC control limits,

Calculated Values

and any notes you might want to place in the record.

Notes

It contains array lists of SPCSampledValueRecord, SPCControlLimitRecord and
SPCCalculatedValueRecord objects.

There is an instance of SPCControlChartData in the SPCChartBase class. Since the
SPCChartBase class is the base class for the four major SPC Control Charts
(SPCBatchAttributeConrolChart, SPCBatchVariableControlChart,
SPCTimeAttributeConrolChart, SPCTimeVariableControlChart), it is accessible
from those classes. The data elements of the SPCControlChartData class are accessible
to the programmer.

SPCControlChartData Methods

The SPCControlChartData object is automatically created when the parent
SPCChartBase object is created. The programmer does not need to instantiate it.

Public Static (Shared) Fields

CUSTOM_ATTRIBUTE_CONTROL_CHART

Chart type constant: Custom SPC
Attribute Control Chart (unused)

CUSTOM_VARIABLE_CONTROL_CHART

Chart type constant: Custom SPC
Variable Control Chart (not used)

DATALOG_FILE_ALL
Datalog flag specifying that all
available items should be logged to
the file.

DATALOG_FILE_BATCH_NUMBER
Datalog flag specifying that the
batch number should be logged to
the file.

SPC Control Data and Alarm Classes 99

DATALOG_FILE_CALCULATED_VALUES

Datalog flag specifying that the
calculated values should be logged
to the file.

DATALOG_FILE_COLUMN_HEADS
Datalog flag specifying that the
column heads should be logged to
the file.

DATALOG_FILE_CONTROL_LIMIT_VALUES

Datalog flag specifying that the
control limit values should be logged
to the file.

DATALOG_FILE_NOTES
Datalog flag specifying that the
notes should be logged to the file.

DATALOG_FILE_SAMPLED_VALUES

Datalog flag specifying that the
sampled values should be logged to
the file.

DATALOG_FILE_TIME_STAMP
Datalog flag specifying that the time
stamp should be logged to the file.

DATALOG_USER_STRING
Datalog flag specifying that the file
prefix row ist NOT to be included.
Using this option will make the file
incompatible with the
SPCControlChartData routines that
read data files.

FRACTION_DEFECTIVE_PARTS_CHART

Chart type constant: Fraction
Defective Parts (p-chart) Control
Chart

HEADER_STRINGS_LEVEL0
SPC Chart header level constant:
display no header strings.

HEADER_STRINGS_LEVEL1
SPC Chart header level constant:
display minimal header strings, title,
partNumber, chartNumber,
dateString

HEADER_STRINGS_LEVEL2
SPC Chart header level constant:
display most header strings, title,
partNumber, chartNumber,
partName, operation, operator,
machine, dateString

HEADER_STRINGS_LEVEL3
SPC Chart header level constant:
display all header strings, title,
partNumber, chartNumber,
partName, operation, operator,
machine, specification limits, gage,
unitofMeasure, zeroEqulas and
dateString

INDIVIDUAL_RANGE_CHART
Chart type constant: Individual
Range (Individual X) SPC Variable

100 SPC Control Data and Alarm Classes

Control Chart

MEAN_RANGE_CHART
Chart type constant: Mean and
Range (X-Bar R) SPC Variable
Control Chart (

MEAN_SIGMA_CHART
Chart type constant: Mean and
Sigma (X-Bar Sigma) SPC Variable
Control Chart

MEAN_SIGMA_CHART_VSS
Chart type constant: Mean and
Sigma (X-Bar Sigma) SPC Variable
Control Chart with variable sample
size

MEAN_VARIANCE_CHART
Chart type constant: Mean and
Variance (X-Bar Variance) SPC
Variable Control Chart

MEDIAN_RANGE_CHART
Chart type constant: Median and
Range (Median-Range) SPC
Variable Control Chart

NO_DATALOG_FILE_PREFIX
Datalog flag specifying that the file
prefix row ist NOT to be included.
Using this option will make the file
incompatible with the
SPCControlChartData routines that
read data files.

NUMBER_DEFECTIVE_PARTS_CHART

Chart type constant: Number
Defective Parts (np-chart) Control
Chart

NUMBER_DEFECTS_CHART
Chart type constant: Number Defects
(c-chart) Control Chart

NUMBER_DEFECTS_PERUNIT_CHART

Chart type constant: Number Defects
per Unit (u-chart) Control Chart

PERCENT_DEFECTIVE_PARTS_CHART

Chart type constant: Percent
Defective Parts (p-chart) Control
Chart

SPC_PRIMARY_CONTROL_TARGET
Index of primary chart target control
limit in controlLimitData array.

SPC_PRIMARY_LOWER_CONTROL_LIMIT

Index of primary chart lower control
limit in controlLimitData array.

SPC_PRIMARY_UPPER_CONTROL_LIMIT

Index of primary chart upper control
limit in controlLimitData array.

SPC_SECONDARY_CONTROL_TARGET

Index of secondary chart target
control limit in controlLimitData
array.

SPC Control Data and Alarm Classes 101

SPC_SECONDARY_LOWER_CONTROL_LIMIT

Index of secondary chart lower
control limit in controlLimitData
array.

SPC_SECONDARY_UPPER_CONTROL_LIMIT

Index of secondary chart upper
control limit in controlLimitData
array.

Public Static (Shared) Properties

BatchColumnHeadString
Default string used as the batch number
column head in the log file. The default
value is "Batch #"

DefaultAbsRangeString
Default string used to the y-axis of
secondary chart of I-R charts.

DefaultDataLogFilenameRoot
Default string used as the default file name
for data logging. Only used if data logging
turned on and the
DataLogFileOpenForWrite has not been
initialized with an explicit filename. The
current time is appended to the root to make
it a unique filename.

DefaultHighAlarmMessageString
Default string used as the high alarm
message for a low control limit.

DefaultLowAlarmMessageString
Default string used to the label the target
lower control limit line of the chart.

DefaultLowControlLimitString
Default string used to the label the target
low control limit line of the chart.

DefaultMeanString
Default string used to title the y-axis of
mean graphs.

DefaultMedianString
Default string used to title the y-axis of
median graphs.

DefaultRangeString
Default string used to title the y-axis of
range graphs.

DefaultSampleValueString
Default string used to the y-axis of primary
chart of I-R charts.

DefaultSigmaString
Default string used to title the y-axis of
sigma graphs.

DefaultSumString
Default string used to title the sum table
row.

DefaultTargetString
Default string used to the label the target
control limit line of the chart.

DefaultUpperControlLimitString
Default string used to the label the target
upper control limit line of the chart.

DefaultVarianceString
Default string used to title the y-axis of
variance graphs.

102 SPC Control Data and Alarm Classes

DefaultXBarString
Default string used to title primary chart.

DefaultXString
Default string used to the primary chart of I-
R charts.

NotesColumString
Default string used as the notes column head
in the log file. The default value is "Notes"

SampleValueColumnString
Default string used as the sample value
column head in the log file. The default
value is "Sample #"

TimeStampColumnString
Default string used as the time stamp
column head in the log file. The default
value is "Time Stamp"

Public Static (Shared) Methods

CalcRangeBasedDecimalPos
Calculate the decimal precision used to
display calculated values in the data table.

Public Instance Constructors

SPCControlChartData
Overloaded. Initializes a new instance of the
SPCControlChartData class.

Public Instance Properties

AlarmStateEventEnable
Set to True to signify that any alarm should invoke
the AlarmStateEventHandler.

AlarmTransitionEventEnable
Set to True to signify that any change in an alarm
state should invoke the
AlarmTransitionEventHandler.

ChartNumber
Set/Get data table chart number string.

ChartNumberHeader
Set/Get the header for the chartNumber field.

CurrentNumberRecords
Get the current number of records for the chart.

DatalLogEnable
Set to true to enable data logging. If a data log file
has not been previously opened with
DataLogFileOpenForWrite, a new data log file is
created using the default name, combined with a
time stamp.

DataLogCSV
The CSV (Comma Separated Value) specifyier for
the logging data SPC data to a file.

DataLogFilename
The string used as the file name for data logging.
Set when the DataLogFileOpenForWrite is called.

DataLogFlags
Set/Get the flags that control what items are logged
to the data log file. The default has all of the
optional items logged to the file. "OR" together

SPC Control Data and Alarm Classes 103

individual data log file flags to specify the items
you want logger to the file. For example:
DatalogFlags = DATALOG_FILE_TIME_STAMP
| DATALOG_FILE_SAMPLED_VALUES |
DATALOG_FILE_CALCULATED_VALUES |
DATALOG_FILE_COLUMN_HEADS. Use one
of the SPCControlChartData datalog:
DATALOG_FILE_BATCH_NUMBER,
DATALOG_FILE_TIME_STAMP,
DATALOG_FILE_SAMPLED_VALUES,
DATALOG_FILE_CALCULATED_VALUES,
DATALOG_FILE_CONTROL_LIMIT_VALUES,
DATALOG_FILE_NOTES,
DATALOG_FILE_COLUMN_HEADS.

DataLogUserString
The dataLogUserString is output as the second line
in a datalog file, if the
DATALOG_USER_STRING flag is set in
dataLogFlags.

DateHeader
Set/Get the header for the dateString field.

DateString
Set/Get data table date string.

DefaultDefectRowHeaderPrefix
Set/Get the default symbol used for the row
headers of the sample data items.

DefaultSampleRowHeaderPrefix
Set/Get the default symbol used for the row
headers of the sample data items.

DefectiveDecimalPrecision
Set/Get the default value to use for the decimal
precision used to display defective item counts, -1
= auto.

Gage
Set/Get data table gage string.

GageHeader
Set/Get the header for the gage field.

Machine
Set/Get data table machine string.

MachineHeader
Set/Get the header for the machine field.

NotesHeader
Set/Get the data table notes header string.

NotesMessage
Set/Get data table notes message string.

NotesToolTips
Set/Get the notes tool tip.

NumberSamplesValueRowHeader

Get/Set the data table number of samples row
header.

104 SPC Control Data and Alarm Classes

NumCalculatedValues
Set/Get number of calculated values for each
record in the chart.

NumRecordsPerChart
Set/Get the maximum number of records
displayable at one time in the chart.

NumSampleCategories
Set/Get the number of categories in an Attribute
Control chart. numSampleCategories ==
sampleSubgroupSize for Variable Control Charts

Operation
Set/Get data table operation string.

OperationHeader
Set/Get the header for the operation field.

OperatorHeader
Set/Get the header for the theOperator field.

PartName
Set/Get data table part name string.

PartNameHeader
Set/Get the header for the partName field.

PartNumber
Set/Get data table part number string.

PartNumberHeader
Set/Get the header for the partNumber field.

PrimaryCalculatedVariableIndex
Set/Get index in the calculatedValues array for the
primary calculated value data.

SampleSubgroupSize
Set/Get the number of samples in a sample sub
group for a Variable Control chart.

SecondaryCalculatedVariableIndex

Set/Get index in the calculatedValues array for the
secondary calculated value data.

SPCChartType
Set/Get the control chart type: use one of the
SPCControlChartData chart type constants:
MEAN_RANGE_CHART,
MEDIAN_RANGE_CHART,
MEAN_SIGMA_CHART,
MEAN_SIGMA_CHART_VSS,
MEAN_VARIANCE_CHART,
INDIVIDUAL_RANGE_CHART,
EWMA_CHART, MA_CHART,
TABCUSUM_CHART,
CUSTOM_ATTRIBUTE_CONTROL_CHART,
PERCENT_DEFECTIVE_PARTS_CHART,
FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTS_CHART,
NUMBER_DEFECTS_PERUNIT_CHART .

SpecificationLimits
Set/Get data table specification limits string.

SPC Control Data and Alarm Classes 105

SpecificationLimitsHeader
Set/Get the header for the specificationLimits field.

TheOperator
Set/Get data table operator string.

TimeStamp
Set/Get the time stamp for the most recent sample
data added to the class.

TimeValueRowHeader
The data table time value row header.

Title
Set/Get data table title string.

TitleHeader
Set/Get the header for the title field.

UnitOfMeasure
Set/Get data table unit of measure string.

UnitOfMeasureHeader
Set/Get the header for the unit of measure field.

ZeroEquals
Set/Get data table zero equals string.

ZeroEqualsHeader
Set/Get the header for the zeroEqulas field.

Public Instance Methods

AddNewSampleRecord
Overloaded. Add a new sample record with
notes to a time-based SPC chart that plots
variable control limits.

AppendCurrentRecordValuesToDataLog
This methods will create a text file and
append the current SPC data record to that
file in a CSV (Comma Separated Value)
format. A CSV file can be read by popular
spreadsheet and word processing programs.
Some localization for different operating
systems and locales can be handled by the
modifying the default csv (CSV) object.

Clone
Returns an object that is a clone of this
object.

ControlLimitInitialized
Returns true if the control limit record at the
index is initiated.

Copy
Overloaded. Copies the source object.

Copy (inherited from ChartObj)
Overloaded. Copies the source object.

DataLogFileOpenForWrite
Overloaded. This methods will create a text
file and output the SPC chart data to that
file in a CSV (Comma Separated Value)
format. A CSV file can be read by popular

106 SPC Control Data and Alarm Classes

spreadsheet and word processing programs.
Some localization for different operating
systems and locales can be handled by the
modifying the default csv (CSV) object.
Uses the dataLogFlags property as the
guide to reading the values of the file, so
that property must be properly initialized
for the data file being read.

Equals (inherited from Object)
Determines whether the specified Object is
equal to the current Object.

ErrorCheck (inherited from ChartObj)
Throws an exception if an error exists in the
error chain.

ExcludeRecordFromControlLimitCalculations

Exclude the specified record from the SOC
control limit calculations.

GetBatchNumberValue
Get the group number value at the specified
index.

GetCalculatedValue
Get a calcualted value at a specific row
(index) and column (time).

GetCalculatedValueRecord
Get the calculated value record at the
specified index.

GetChartObjIDCntr (inherited from
ChartObj)

Returns the current value of the
chartObjIDCntr static counter.

GetChartObjType (inherited from
ChartObj)

Returns the chart object type.

GetControlLimit
Get the value of a specific SPC chart limit.

GetControlLimitRecord
Get the control limit record at the specified
index.

GetControlLimitString
Get the text for a specific SPC chart limit.

GetControlLimitText
Get the control limit text at the specified
index.

GetControlLimitValue
Get a control limit value (for charts with
variable control limits) at a specific row
(index) and column (time).

GetHashCode (inherited from Object)
Serves as a hash function for a particular
type, suitable for use in hashing algorithms
and data structures like a hash table.

GetNotesString
Get the notes string at the specified index.

GetNumberOfSamplesPerSubgroup
Get the number of samples per subgroup
value at the specified index.

SPC Control Data and Alarm Classes 107

GetPrimaryControlLimits
Overloaded. Using the current sampled data
values, high, target and low control limits
are calculated for the primary chart using an
algorithm appropriate to the SPC chart type.

GetSampledValue
Get a sampled value at a specific row
(index) and column (time).

GetSampleRowHeaderString
Get data table row header for the sampled
(or category) item.

GetSecondaryControlLimits
Overloaded. Using the current sampled data
values, high, target and low control limits
are calculated for the primary chart using an
algorithm appropriate to the SPC chart type.

GetThisChartObjID (inherited from
ChartObj)

Returns the chartObjID value for this
specific object.

GetTimeValue
Get the time stamp value at the specified
index.

GetType (inherited from Object)
Gets the Type of the current instance.

GetYAxisTitle
Get the y-axis title or a specific index,
based description of the item in the
SPCCalculatedValueRecord or
SPCSampledValueRecord record.

IsControlLimit
Returns true if the control limit record at the
index is initiated.

OutputAllValuesToDataLog
Overloaded. This methods will create a text
file and output all of the current SPC data
records to that file in a CSV (Comma
Separated Value) format. A CSV file can be
read by popular spreadsheet and word
processing programs. Some localization for
different operating systems and locales can
be handled by the modifying the default csv
(CSV) object.

ReadAllValuesFromFile
Overloaded. This methods will read a text
file of SPC data records organized in a CSV
(Comma Separated Value) format. A CSV
file can be read by popular spreadsheet and
word processing programs. Some
localization for different operating systems
and locales can be handled by the
modifying the default csv (CSV) object.

ResetSPCChartData
Reset the history buffers of all of the SPC
data objects.

108 SPC Control Data and Alarm Classes

Save
Overloaded. This methods will create a text
file and output the SPC chart data to that
file in a CSV (Comma Separated Value)
format. A CSV file can be read by popular
spreadsheet and word processing programs.
Some localization for different operating
systems and locales can be handled by the
modifying the default csv (CSV) object.

SetControlLimitString
Set the SPC text for a specific SPC chart
limit.

SetControlLimitStrings
Set the SPC control limit text for an SPC
control chart.

SetControlLimitValue
Set the SPC value of a specific SPC chart
limit.

SetControlLimitValues
Set the SPC control limit values for an SPC
control chart.

SetSampleRowHeaderString
Set data table row header for the sampled
(or category) item.

SimulateDefectRecord
Overloaded. Simulates a defect
measurement for a SPC Attribute Control
chart with a specified mean. Used with
NUMBER_DEFECTS_CHART and
NUMBER_DEFECTS_PERUNIT_CHART
charts.

SimulateMeasurementRecord
Overloaded. Simulates a sample
measurement for a SPC Variable Control
chart with a specified mean value.

SortAlarmObjectsByValue
This method sorts the objects in the
controlLimitValues array in the ascending
value of their alarm value.

ToString (inherited from Object)
Returns a String that represents the current
Object.

TransitionEventCondition
Returns true if an alarm transition has taken
place.

Public Instance Events

AlarmStateEventHandler
Delegate for nodification each time the
check of an process variable produces an
alarm state condition.

AlarmTransitionEventHandler
Delegate for notification each time the
check of an process variable produces a
change of state in alarm state condition.

SPC Control Data and Alarm Classes 109

Initializing the SPCControlChartData Class

The control charts InitSPC… method call initializes the SPCControlChartData object.
This establishes the SPC chart type, how many samples per subgroup there are, and how
many SPCSampledValueRecord objects are stored internal to the
SPCControlChartData to handle the sampled data.

The table strings used to customize the first section of the chart should be set after the
chart InitSPC… call, but before the RebuildChartUsingCurrentData call. The
example below is from the TimeVariableControlCharts.IndividualRangeChart
example program.

[C#]

// SPC variable control chart type

int charttype = SPCControlChartData.INDIVIDUAL_RANGE_CHART;

// Number of samples per sub group

int numsamplespersubgroup = 1;

// Number of data points in the view

int numdatapointsinview = 17;

// The time increment between adjacent subgroups

int sampleincrement = 30;

public IndividualRangeChart()

110 SPC Control Data and Alarm Classes

{

 // This call is required by the Windows.Forms Form Designer.

 InitializeComponent();

 // Have the chart fill parent client area

 this.Dock = DockStyle.Fill;

 // Define and draw chart

 InitializeChart();

}

public void InitializeChart()

{

// if (this.IsDesignMode) return;

 // This call is required by the Windows.Forms Form Designer.

 InitializeComponent();

 // Initialize the SPCTimeVariableControlChart

 this.InitSPCTimeVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, sampleincrement);

 // Set the strings used in the header section of the table

 this.ChartData.Title = "Variable Control Chart (X-Bar & R)";

 this.ChartData.PartNumber = "283501";

 this.ChartData.ChartNumber="17";

 this.ChartData.PartName= "Transmission Casing Bolt";

 this.ChartData.Operation = "Threading";

 this.ChartData.SpecificationLimits="";

 this.ChartData.TheOperator="J. Fenamore";

 this.ChartData.Machine="#11";

 this.ChartData.Gage="#8645";

 this.ChartData.UnitOfMeasure = "0.0001 inch";

 this.ChartData.ZeroEquals="zero";

 this.ChartData.DateString = DateTime.Now.ToString();

 this.ChartData.NotesMessage = "Control limits prepared May 10";

 this.ChartData.NotesHeader = "NOTES"; // row header

 this.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL1;

 .

 .

 .

 // Rebuild the chart using the current data and settings

 this.RebuildChartUsingCurrentData();

}

[VB]

SPC Control Data and Alarm Classes 111

 Private startTime As New ChartCalendar()

 ' SPC variable control chart type

 Private charttype As Integer = SPCControlChartData.INDIVIDUAL_RANGE_CHART

 ' Number of samples per sub group

 Private numsamplespersubgroup As Integer = 1

 ' Number of datapoints in the view

 Private numdatapointsinview As Integer = 17

 ' The time increment between adjacent subgroups

 Private sampleincrement As Integer = 30

 Public Sub InitializeChart()

 ‘ Fill parent container

 Me.Dock = DockStyle.Fill

 ' Initialize the SPCTimeVariableControlChart

 Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup,
numdatapointsinview, sampleincrement)

 ' Change the default horizontal position of the chart

 Me.GraphStartPosX = 0.15

 ' Set the strings used in the header section of the table

 Me.ChartData.Title = "Variable Control Chart (Individual Range)"

 Me.ChartData.PartNumber = "283501"

 Me.ChartData.ChartNumber = "17"

 Me.ChartData.PartName = "Transmission Casing Bolt"

 Me.ChartData.Operation = "Threading"

 Me.ChartData.SpecificationLimits = ""

 Me.ChartData.TheOperator = "J. Fenamore"

 Me.ChartData.Machine = "#11"

 Me.ChartData.Gage = "#8645"

 Me.ChartData.UnitOfMeasure = "0.0001 inch"

 Me.ChartData.ZeroEquals = "zero"

 Me.ChartData.DateString = DateTime.Now.ToString()

 Me.ChartData.NotesMessage = "Control limits prepared May 10"

 Me.ChartData.NotesHeader = "NOTES"

 Me.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL3

 .

 .

 .

112 SPC Control Data and Alarm Classes

 End Sub

Update the sampled data with your measured values using one of the
AddNewSampleRecord methods.

Method AddNewSampleRecord

This method adds a new sample record to the SPC chart. While both variable control
charts and attribute control charts share the same ChartData AddNewSampleRecord
methods, the meaning of the data in the samples array varies, depending on the chart
type. See the sections below: Adding New Sample Records for Variable Control Charts,
and Adding New Sample Records for Attribute Control Charts.

 [VB]
Overloads Public Sub AddNewSampleRecord(_
 ByVal timestamp As ChartCalendar, _
 ByVal samples As DoubleArray, _
 ByVal notes As String _
)

[C#]
public void AddNewSampleRecord(
 ChartCalendar timestamp,
 DoubleArray samples,
 string notes
);

Parameters
timestamp

Time stamp for the current sample record.
samples

Array of new sample values.
notes

A string specifying any notes associated with this sample subgroup

controllimits
Array of control limits, one for each control limits (low, target, and high)

There are many other overloaded versions of AddNewSampleRecord. Use the one most
appropriate to your application.

Adding New Sample Records for Variable Control Charts (Fixed Subgroup Sample
Size).

SPC Control Data and Alarm Classes 113

Applies to variable control charts of type: MEAN_RANGE_CHART,
MEDIAN_RANGE_CHART, INDIVIDUAL_RANGE_CHART,
MEAN_SIGMA_CHART, INDIVIDUAL_RANGE_CHART, EWMA_CHART,
MA_CHART, TABCUSUM_CHART.

In variable control charts, each data value in the samples array represents a specific
sample in the sample subgroup. In X-Bar R, X-Bar Sigma, and Median-Range charts,
where the sample subgroup size is some fraction of the total production level, there is one
value in the samples array for each measurement sample in the sample subgroup interval.
If the production level is sixty items per hour, and the sample size is five items per hour,
then the graph would be updated once an hour with five items in the samples array.

 [C#]

DoubleArray samples = new DoubleArray(5);

// ChartCalendar initialized with current time by default

ChartCalendar timestamp = new ChartCalendar();

// Place sample values in array

samples[0] = 0.121; // First of five samples

samples[1] = 0.212; // Second of five samples

samples[2] = 0.322; // Third of five samples

samples[3] = 0.021; // Fourth of five samples

samples[4] = 0.133; // Fifth of five samples

// Add the new sample subgroup to the chart

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

Dim samples As DoubleArray = New DoubleArray(5)

' ChartCalendar initialized with current time by default

Dim timestamp As ChartCalendar = New ChartCalendar()

' Place sample values in array

samples(0) = 0.121 ' First of five samples

samples(1) = 0.212 ' Second of five samples

samples(2) = 0.322 ' Third of five samples

samples(3) = 0.021 ' Fourth of five samples

samples(4) = 0.133 ' Fifth of five samples

' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

In an Individual-Range chart, which by definition samples 100% of the production level,
the samples array would only have one value for each update. If the production level is

114 SPC Control Data and Alarm Classes

sixty items per hour, with 100% sampling, the graph would be updated once a minute,
with a single value in the samples array.

Adding New Sample Records to a X-Bar Sigma Chart (Variable Subgroup Sample
Size)

Applies to variable control charts of type: MEAN_SIGMA_CHART_VSS

The X-Bar Sigma chart also comes in a version where variable sample sizes are
permitted, As in the standard variable control charts, there is one value in the samples
array for each measurement sample in the sample subgroup interval. The difference is
that the length of the samples array can change from update to update. It is critically
import that the size of the samples array exactly matches the number of samples in the
current subgroup

[C#]

// GetCurrentSampleSubgroupSize is a fictional method that gets the

// current number of samples in the sample subgroup. The value of N

// can vary from sample interval to sample interval. You must have a

// valid sample value for each element.

N = GetCurrentSampleSubgroupSize();

// Size array exactly to a length of N

DoubleArray samples = new DoubleArray(N);

// ChartCalendar initialized with current time by default

ChartCalendar timestamp = new ChartCalendar();

// Place sample values in array

// You must have a valid sample value for each element of the array size 0..N-1

samples[0] = 0.121; // First of five samples

samples[1] = 0.212; // Second of five samples

.

.

.

samples[N-1] = 0.133; // Last of the samples in the sample subgroup

// Add the new sample subgroup to the chart

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

‘ GetCurrentSampleSubgroupSize is a fictional method that gets the

‘ current number of samples in the sample subgroup. The value of N

SPC Control Data and Alarm Classes 115

‘ can vary from sample interval to sample interval. You must have a

‘ valid sample value for each element.

N = GetCurrentSampleSubgroupSize()

‘ Size array exactly to a length of N

Dim samples As DoubleArray = New DoubleArray(N)

' ChartCalendar initialized with current time by default

Dim timestamp As ChartCalendar = New ChartCalendar()

' Place sample values in array

samples(0) = 0.121 ' First of five samples

samples(1) = 0.212 ' Second of five samples

.

.

.

samples(N-1) = 0.133 ' Last of the samples in the sample subgroup

' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

Adding New Sample Records for Attribute Control

Updating p- and np-charts (Fixed Sample Subgroup Size)

p-chart = FRACTION_DEFECTIVE_PARTS_CHART
 or
 PERCENT_DEFECTIVE_PARTS_CHART

np-chart = NUMBER_DEFECTIVE_PARTS_CHART

In attribute control charts, the meaning of the data in the samples array varies, depending
on whether the attribute control chart measures the number of defective parts (p-, and np-
charts), or the total number of defects (u- and c-charts). The major anomaly is that while
the p- and np-charts plot the fraction or number of defective parts, the table portion of the
chart can display defect counts for any number of defect categories (i.e. paint scratches,
dents, burrs, etc.). It is critical to understand that total number of defects, i.e. the sum of
the items in the defect categories for a give sample subgroup, do NOT have to add up to
the number of defective parts for the sample subgroup. Every defective part not only can
have one or more defects, it can have multiple defects of the same defect category. The
total number of defects for a sample subgroup will always be equal to or greater than the
number of defective parts. When using p- and np-charts that display defect category
counts as part of the table, where N is the numcategories parameter in the
InitSPCTimeAttributeControlChart or InitSPCBatchAttributeControlChart

116 SPC Control Data and Alarm Classes

initialization call, the first N (0.. N-1) elements of the samples array holds the defect
count for each category. The (N+1)th (or element N in the array) element of the samples
array holds the total defective parts count. For example, if you initialized the chart with a
numcategories parameter to five, signifying that you had five defect categories, you
would use a samples array sized to six, as in the code below:

[C#]

DoubleArray samples = new DoubleArray(6);

// ChartCalendar initialized with current time by default

ChartCalendar timestamp = new ChartCalendar();

// Place sample values in array

samples[0] = 3; // Number of defects for defect category #1

samples[1] = 0; // Number of defects for defect category #2

samples[2] = 4; // Number of defects for defect category #3

samples[3] = 2; // Number of defects for defect category #4

samples[4] = 3; // Number of defects for defect category #5

samples[5] = 4; // TOTAL number of defective parts in the sample

// Add the new sample subgroup to the chart

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

Dim samples As DoubleArray = New DoubleArray(6)

' ChartCalendar initialized with current time by default

Dim timestamp As ChartCalendar = New ChartCalendar()

' Place sample values in array

samples(0) = 3 ‘ Number of defects for defect category #1

samples(1) = 0 ‘ Number of defects for defect category #2

samples(2) = 4 ‘ Number of defects for defect category #3

samples(3) = 2 ‘ Number of defects for defect category #4

samples(4) = 3 ‘ Number of defects for defect category #5

samples(5) = 4 ‘ TOTAL number of defective parts in the sample

' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

SPC Control Data and Alarm Classes 117

Our example programs obscure this a bit, because we use a special method to simulate
defect data for n- and np-charts. The code below is extracted from our
TimeAttributeControlCharts.NumberDefectivePartsControlChart example program.

[C#]
DoubleArray samples = this.ChartData.SimulateDefectRecord(50 * 0.134,

 SPCControlChartData.NUMBER_DEFECTIVE_PARTS_CHART);

// Add new sample record

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

Dim samples As DoubleArray = Me.ChartData.SimulateDefectRecord(50 * 0.134, _

 SPCControlChartData.NUMBER_DEFECTIVE_PARTS_CHART)

' Add new sample record

Me.ChartData.AddNewSampleRecord(timestamp, samples)

This particular overload for ChartData.SimulateDefectRecord knows that since it is a
NUMBER_DEFECTIVE_PARTS_CHART chart (np-chart), and since the ChartData
object was setup with five categories in the InitSPCTimeAttributeControlChart call,
that is should return a DoubleArray with (5 + 1 = 6) elements. The first five elements
representing simulated defect counts for the five defect categories, and the sixth element
the simulated defective parts count. The defect category count data of the samples array
is only used in the table part of the display; the defect category counts play NO role in the
actual SPC chart. The only value plotted in the SPC chart is the last element in the
samples array, the defective parts count for the sample subgroup.

Updating p-charts (Variable Sample Subgroup Size)

p-chart = FRACTION_DEFECTIVE_PARTS_CHART_VSS
 or
 PERCENT_DEFECTIVE_PARTS_CHART_VSS

First, you must read the previous section (Updating p-charts (Fixed Sample Subgroup
Size) and understand it. Because in the case of the p-chart variable sample subgroup case,
filling out that array is EXACTLY the same as the fixed sample subgroup case. The
number of defects in each defect category go into the first N elements (element 0..N-1) of
the samples array. The total number of defective parts go into last (element N) of the
samples array. Specify the size of the sample subgroup associated with a given update
using the ChartData.SampleSubgroupSize_VSS property.

118 SPC Control Data and Alarm Classes

[C#]
DoubleArray samples = this.ChartData.SimulateDefectRecord(50 * 0.134,

 SPCControlChartData.NUMBER_DEFECTIVE_PARTS_CHART);

// Randomize the sample subgroup size to some value less than the maximum

// value entered in the call to InitSPCTimeAttributeControlChart,

// and set the charts ChartData.SampleSubgroupSize_VSS property with

// this value immediately prior to the AddNewSampleRecord call.

this.ChartData.SampleSubgroupSize_VSS =

 numsamplespersubgroup - (int)(25 * ChartSupport.GetRandomDouble());

// Add new sample record

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

Dim samples As DoubleArray = Me.ChartData.SimulateDefectRecord(50 * 0.134, _

 SPCControlChartData.NUMBER_DEFECTIVE_PARTS_CHART)

‘ Randomize the sample subgroup size to some value less than the maximum

‘ value entered in the call to InitSPCTimeAttributeControlChart,

‘ and set the charts ChartData.SampleSubgroupSize_VSS property with

‘ this value immediately prior to the AddNewSampleRecord call.

Me.ChartData.SampleSubgroupSize_VSS = _

 numsamplespersubgroup - (25 * ChartSupport.GetRandomDouble())

' Add new sample record

Me.ChartData.AddNewSampleRecord(timestamp, samples)

Updating c- and u-charts (Fixed Sample Subgroup Size)
c-chart = NUMBER_DEFECTS_CHART

u-chart = NUMBER_DEFECTS_PERUNIT_CHART

In c- and u-charts the number of defective parts is of no consequence. The only thing
tracked is the number of defects. Therefore, there is no extra array element tacked onto
the end of the samples array. Each element of the samples array represents the total
number of defects for a given defect category. If the numcategories parameter in the
InitSPCTimeAttributeControlChart or InitSPCBatchAttributeControlChart is

SPC Control Data and Alarm Classes 119

initialized to five, the total number of elements in the samples array should be five. For
example:

[C#]

DoubleArray samples = new DoubleArray(5);

// ChartCalendar initialized with current time by default

ChartCalendar timestamp = new ChartCalendar();

// Place sample values in array

samples[0] = 3; // Number of defects for defect category #1

samples[1] = 0; // Number of defects for defect category #2

samples[2] = 4; // Number of defects for defect category #3

samples[3] = 2; // Number of defects for defect category #4

samples[4] = 3; // Number of defects for defect category #5

// Add the new sample subgroup to the chart

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

Dim samples As DoubleArray = New DoubleArray(5)

' ChartCalendar initialized with current time by default

Dim timestamp As ChartCalendar = New ChartCalendar()

' Place sample values in array

samples(0) = 3 ‘ Number of defects for defect category #1

samples(1) = 0 ‘ Number of defects for defect category #2

samples(2) = 4 ‘ Number of defects for defect category #3

samples(3) = 2 ‘ Number of defects for defect category #4

samples(4) = 3 ‘ Number of defects for defect category #5

' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

Updating u-charts (Variable Sample Subgroup Size)

u-chart = NUMBER_DEFECTS_PERUNIT_CHART_VSS

First, you must read the previous section (Updating u-charts Fixed Sample Subgroup
Size) and understand it. Because in the case of the u-chart variable sample subgroup case,
filling out that array is EXACTLY the same as the fixed sample subgroup case. The
number of defects in each defect category go into the first N elements (element 0..N-1) of
the samples array. Specify the size of the sample subgroup associated with a given update
using the ChartData.SampleSubgroupSize_VSS property.

120 SPC Control Data and Alarm Classes

[C#]

DoubleArray samples = new DoubleArray(5);

// ChartCalendar initialized with current time by default

ChartCalendar timestamp = new ChartCalendar();

// Place sample values in array

samples[0] = 3; // Number of defects for defect category #1

samples[1] = 0; // Number of defects for defect category #2

samples[2] = 4; // Number of defects for defect category #3

samples[3] = 2; // Number of defects for defect category #4

samples[4] = 3; // Number of defects for defect category #5

// Randomize the sample subgroup size to some value less than the maximum

// value entered in the call to InitSPCTimeAttributeControlChart,

// and set the charts ChartData.SampleSubgroupSize_VSS property with

// this value immediately prior to the AddNewSampleRecord call.

this.ChartData.SampleSubgroupSize_VSS =

 numsamplespersubgroup - (int)(25 * ChartSupport.GetRandomDouble());

// Add the new sample subgroup to the chart

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

Dim samples As DoubleArray = New DoubleArray(5)

' ChartCalendar initialized with current time by default

Dim timestamp As ChartCalendar = New ChartCalendar()

' Place sample values in array

samples(0) = 3 ‘ Number of defects for defect category #1

samples(1) = 0 ‘ Number of defects for defect category #2

samples(2) = 4 ‘ Number of defects for defect category #3

samples(3) = 2 ‘ Number of defects for defect category #4

samples(4) = 3 ‘ Number of defects for defect category #5

‘ Randomize the sample subgroup size to some value less than the maximum

‘ value entered in the call to InitSPCTimeAttributeControlChart,

‘ and set the charts ChartData.SampleSubgroupSize_VSS property with

‘ this value immediately prior to the AddNewSampleRecord call.

Me.ChartData.SampleSubgroupSize_VSS = _

 numsamplespersubgroup - (25 * ChartSupport.GetRandomDouble())

' Add the new sample subgroup to the chart

SPC Control Data and Alarm Classes 121

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

While the table portion of the display can display defect data broken down into
categories, only the sum of the defects for a given sample subgroup is used in creating the
actual SPC chart. Note that the code below, extracted from the
TimeAttributeControlCharts.NumberDefectsControlChart example, uses a different
ChartData.SimulateDefectRecord method to simulate the defect data.

[C#]
// Simulate sample record

DoubleArray samples = this.ChartData.SimulateDefectRecord(19.85/5);

// Add a sample record

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]
' Simulate sample record

 Dim samples As DoubleArray = Me.ChartData.SimulateDefectRecord((19.85 / 5))

 ' Add a sample record

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

Other AddNewSampleRecord Methods

Add a new sample record to a time-based SPC chart.

public void AddNewSampleRecord(ChartCalendar,DoubleArray);

Add a new sample record with notes to a time-based SPC chart.

public void AddNewSampleRecord(ChartCalendar,DoubleArray,string);

Add a new sample record to a batch-based SPC chart.

public void AddNewSampleRecord(DoubleArray);

Add a new sample record, with notes, to a batch-based SPC chart.

public void AddNewSampleRecord(DoubleArray,string);

Add a new sample record to a numeric-based SPC chart.

public void AddNewSampleRecord(double,ChartCalendar,DoubleArray,DoubleArray,stri
ng);

Add a new sample record, with notes, to a numeric-based SPC chart .

122 SPC Control Data and Alarm Classes

public void AddNewSampleRecord(double,ChartCalendar,DoubleArray,string);

Add a new sample record, with notes, to a batch-based SPC chart.

public void AddNewSampleRecord(double,DoubleArray);

Add a new sample record, with notes, to a batch-based SPC chart.

public void AddNewSampleRecord(double,DoubleArray,string);
In addition to these, there are versions that pass in an additional DoubleArray that pass
in the current value of variable control limits, if used. See the
QCSPCChartNetCFCompiledHelpFile.chm compiled help file, under
com.quinncurtis.spcchartnet | SPCControlChartData.AddNewSampleRecord.

If the AddNewSampleRecord overload does not have an explicit ChartCalendar time
stamp parameter, as in the case several of the overloaded methods, the current time as
stored in the system clock is used as the time stamp.

Question - How do you initialize the ChartCalendar object with your own time.
Answer - Just use one of the many ChartCalendar constructors. See the
QCChart2DNetCompiledHelpFile.chm compiled help file.

This constructor creates a new ChartCalendar object using the specified
DateTime value.

public ChartCalendar(DateTime);

This constructor creates a new ChartCalendar object using the specified year,
month and day.

public ChartCalendar(int,int,int);

This constructor creates a new ChartCalendar object using the specified year,
month, day, hour, minute and second.

public ChartCalendar(int,int,int,int,int,int);

This constructor creates a new ChartCalendar object using the specified year,
month, day, hour, minute, second and milliseconds.

public ChartCalendar(int,int,int,int,int,int,int);

This constructor creates a new ChartCalendar object using the designated
number of ticks.

public ChartCalendar(long);

SPC Control Data and Alarm Classes 123

This constructor creates a new ChartCalendar object using the designated
number of milliseconds, or seconds.

public ChartCalendar(long,bool);

The sampled values initialize the chart after the InitSPC… call, but before the
RebuildChartUsingCurrentData call. The example below is from the
TimeVariableControlCharts.XBarRChart example program. The
AddNewSampleRecord routine is called in the SimulateData method.

[C#]

public void InitializeChart()

{

 this.InitSPCTimeVariableControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

 .

 .

 .

 SimulateData();

 this.AutoCalculateControlLimits();

 this.AutoScalePrimaryChartYRange();

 this.AutoScaleSecondaryChartYRange();

 this.RebuildChartUsingCurrentData();

124 SPC Control Data and Alarm Classes

}

private void SimulateData()

{ String notesstring = "";

 for (int i=0; i < 200; i++)

 {

 ChartCalendar timestamp = (ChartCalendar) startTime.Clone();

 // Use the ChartData sample simulator to make an array of sample data

 DoubleArray samples = this.ChartData.SimulateMeasurementRecord(30, 10);

 .

 .

 .

 // Add the new sample subgroup to the chart

 this.ChartData.AddNewSampleRecord(timestamp, samples, notesstring);

 // increment simulated time by timeincrementminutes minutes

 startTime.Add(ChartObj.MINUTE, timeincrementminutes);

 }

}

[VB]

Public Sub InitializeChart()

 ‘ Fill parent container

Me.Dock = DockStyle.Fill

 ' Initialize the SPCTimeVariableControlChart

 Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup, _

 numdatapointsinview, timeincrementminutes)

 .

 .

 .

 ' Must have data loaded before any of the Auto.. methods are called

 SimulateData()

 ‘ Calculate the SPC control limits for both graphs of the current SPC chart

 Me.AutoCalculateControlLimits()

 ' Scale the y-axis of the X-Bar chart to display all data and control limits

 Me.AutoScalePrimaryChartYRange()

 ' Scale the y-axis of the Range chart to display all data and control limits

 Me.AutoScaleSecondaryChartYRange()

 ' Rebuild the chart using the current data and settings

 Me.RebuildChartUsingCurrentData()

End Sub 'InitializeChart

SPC Control Data and Alarm Classes 125

Private Sub SimulateData()

 Dim notesstring As [String] = ""

 Dim i As Integer

 For i = 0 To 199

 Dim timestamp As ChartCalendar = CType(startTime.Clone(), ChartCalendar)

 ' Use the ChartData sample simulator to make an array of sample data

 Dim samples As DoubleArray =

 Me.ChartData.SimulateMeasurementRecord(30, 10)

 .

 .

 .

 Me.ChartData.AddNewSampleRecord(timestamp, samples, notesstring)

 ' increment simulated time by timeincrementminutes minutes

 startTime.Add(ChartObj.MINUTE, timeincrementminutes)

 Next i

End Sub 'SimulateData

Logging SPC Data to a File

The SPCControlChartData method contains routines that log SPC data to a file in a
CSV (comma separated value) format. The first row of the file is a prefix of data that
defines options and the number of columns associated with sample data, calculated data
and control limit data. The second row of data are the column heads for each item in the
data log. Starting with the third row, SPC data is output, record by record. If the data
logging feature is turned on, every call to the AddNewSampleRecord method will result
in the output of that record, and calculated values, to the data log.

A typical datalog file (both the width and length of the data file are truncated) appears
below.

File prefix: 62,5,3,6
Column Heads: Time Stamp,Sample #0,Sample #1,Sample #2,…
Record #1: 1/24/2006 12:03:40,22.946081345643,30.6379105980219,…
Record #2: 1/24/2006 12:18:40,23.8902424375481,33.7523682840412,…
Record #3: 1/24/2006 12:33:40,33.1602680593078,28.2172109399537,…

The values in the file prefix have the following meaning

63 Data log options = SPCControlChartData.DATALOG_FILE_TIME_STAMP |

SPCControlChartData.DATALOG_FILE_SAMPLED_VALUES |

SPCControlChartData.DATALOG_FILE_CALCULATED_VALUES |

126 SPC Control Data and Alarm Classes

SPCControlChartData.DATALOG_FILE_COLUMN_HEADS |

SPCControlChartData.DATALOG_FILE_NOTES

5 There are five sampled values per record
3 There are three calculated values per record (MEAN, RANGE, SUM for

example)
6 There are six control limit values per record (XBAR,LCL,UCL,RBAR,LCL,UCL)

for example

If you want to view a complete datalog file, run the TimeVariableControlCharts example
program and after you terminate the program, view the Datalogfile1.text file in the [C#]
TimeVariableControlCharts\Bin\Debug folder, or [VB] TimeVariableControlCharts\Bin
folder. The following steps, extracted from the
TimeVariableControlChart.VariableControlLimitsCharts example program, turn on data
logging:

[C#]

int datalogflags = SPCControlChartData.DATALOG_FILE_TIME_STAMP |

 SPCControlChartData.DATALOG_FILE_SAMPLED_VALUES |

 SPCControlChartData.DATALOG_FILE_CALCULATED_VALUES |

 SPCControlChartData.DATALOG_FILE_COLUMN_HEADS |

 SPCControlChartData.DATALOG_FILE_NOTES;

 this.ChartData.DataLogFileOpenForWrite("DatalogFile1.txt", datalogflags);

 this.ChartData.DatalLogEnable = true;

.

.

.

 this.ChartData.AddNewSampleRecord(timestamp, samples, notesstring);

[VB]

Dim datalogflags As Integer = SPCControlChartData.DATALOG_FILE_TIME_STAMP Or _

 SPCControlChartData.DATALOG_FILE_SAMPLED_VALUES Or _

 SPCControlChartData.DATALOG_FILE_CALCULATED_VALUES Or _

 SPCControlChartData.DATALOG_FILE_COLUMN_HEADS Or _

 SPCControlChartData.DATALOG_FILE_NOTES

 Me.ChartData.DataLogFileOpenForWrite("DatalogFile1.txt", datalogflags)

 Me.ChartData.DatalLogEnable = True

SPC Control Data and Alarm Classes 127

.

.

.

 Me.ChartData.AddNewSampleRecord(timestamp, samples, notesstring)

Every call to the AddNewSampleRecord method will append a new SPC record to the
file specified in the DataLogFileOpenForWrite call.

Specify what items are logged to the datalog file using the DataLogFlag property. OR
the datalog flags constants together to form the final DataLogFlags value.

DATALOG_FILE_ALL Datalog flag specifying that all available items

should be logged to the file.

DATALOG_FILE_BATCH_NUMBER Datalog flag specifying that the batch number

should be logged to the file.

DATALOG_FILE_CALCULATED_VALUES

Datalog flag specifying that the calculated
values should be logged to the file.

DATALOG_FILE_COLUMN_HEADS Datalog flag specifying that the column heads

should be logged to the file.

DATALOG_FILE_CONTROL_LIMIT_VALUES

Datalog flag specifying that the control limit
values should be logged to the file.

DATALOG_FILE_NOTES Datalog flag specifying that the notes should be

logged to the file.

DATALOG_FILE_SAMPLED_VALUES

Datalog flag specifying that the sampled values
should be logged to the file.

DATALOG_FILE_TIME_STAMP Datalog flag specifying that the time stamp

should be logged to the file.

[C#]

this.ChartData.DataLogFlags = SPCControlChartData.DATALOG_FILE_TIME_STAMP |

 SPCControlChartData.DATALOG_FILE_SAMPLED_VALUES |

 SPCControlChartData.DATALOG_FILE_CALCULATED_VALUES |

 SPCControlChartData.DATALOG_FILE_COLUMN_HEADS |

128 SPC Control Data and Alarm Classes

 SPCControlChartData.DATALOG_FILE_NOTES;

[VB]

Me.ChartData.DataLogFlags = SPCControlChartData.DATALOG_FILE_TIME_STAMP Or _

 SPCControlChartData.DATALOG_FILE_SAMPLED_VALUES Or _

 SPCControlChartData.DATALOG_FILE_CALCULATED_VALUES Or _

 SPCControlChartData.DATALOG_FILE_COLUMN_HEADS Or _

 SPCControlChartData.DATALOG_FILE_NOTES

It is also possible to read a previously saved datalog file and initialize the ChartData
object with previously collected data. While the data can be initialized, it is still important
that the originating SPCChartBase object is initialized properly for the data it is to
receive. Use the ChartData.ReadAllValuesFromFile method to read previously saved
values. The example below is extracted from the
TimeVariableControlChart.VariableControlLimitsCharts example program.

[VB]

Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup, _

 numdatapointsinview, timeincrementminutes)

.

.

.

If (File.Exists("DatalogFile1.txt")) Then

 Me.ChartData.ReadAllValuesFromFile("DatalogFile1.txt")

[C#]

this.InitSPCTimeVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

.

.

.

if (File.Exists("DatalogFile1.txt"))

{

 this.ChartData.ReadAllValuesFromFile("DatalogFile1.txt");

}

It is important that the charttype parameter matches the chart type used to save the
original data, and that the numberofsamplepersubgroup value matches the number of
samples in the original data.

SPC Control Data and Alarm Classes 129

Control Limit Alarms

Class SPCControlLimitRecord

ChartObj
 |

+-- SPCControlLimitRecord

The SPCControlLimitRecord stores control limit alarm information for the
SPCControlChartData class. The SPCControlLimitRecord class specifies the type of
the alarm, the alarm limit value, alarm text messages and alarm hysteresis value. The
SPCControlChartData classes store the SPCControlLimitRecord objects in the
SPCControlChartData.ControlLimitValues array list

SPCControlLimitRecord constructors

 This constructor creates a new instance of a SPCControlLimitRecord object, using the
specified spc data object, calculated value object, alarm type, alarm limit value and alarm
message.

[VB]
Overloads Public Sub New(_
 ByVal processvar As SPCControlChartData, _
 ByVal clr As SPCCalculatedValueRecord, _
 ByVal parametertype As Integer, _
 ByVal alarmlimitvalue As Double, _
 ByVal normalmessage As String, _
 ByVal alarmmessage As String _
)

[C#]
public SPCControlLimitRecord(
 SPCControlChartData processvar,
 SPCCalculatedValueRecord clr,
 int parametertype,
 double alarmlimitvalue,
 string normalmessage,
 string alarmmessage
);

Parameters
processvar

Specifies the process variable that the alarm is attached to.
clr

Specifies the calculated value record the alarm is attached to.
parametertype

Specifies the alarm type: SPC_NOTA_LIMIT, SPC_LOWERTHAN_LIMIT, or
SPC_GREATERTHAN_LIMIT.

alarmlimitvalue

130 SPC Control Data and Alarm Classes

Specifies the alarm limit value.
normalmessage

Specifies display message when no alarm present.
alarmmessage

Specifies the alarm message.

The most commonly used SPCControlLimitRecord properties are:

Public Static (Shared) Fields

SPC_GREATERTHAN_LIMIT
Specifies the alarm is a greater than alarm.

SPC_LOWERTHAN_LIMIT
Specifies the alarm is a lower than alarm.

SPC_NOTA_LIMIT
Specifies the limit is not an alarm, just a
value.

Public Instance Constructors

SPCControlLimitRecord
Overloaded. Initializes a new instance of the
SPCControlLimitRecord class.

Public Instance Properties

AlarmDisplay
Get/Set the alarm display flag.

AlarmEnable
Get/Set the alarm enable flag.

AlarmMessage
Get/Set the current alarm message.

AlarmState
Get/Set the alarm state, true if the last call to
CheckAlarm show that the process variable
currently in alarm.

CalculatedValueSrc
Set/Get a reference to the
SPCCalculatedValueRecord object
associated with the control limit.

ControlLimitText
Get/Set the Normal alarm message;

ControlLimitType
Get/Set the alarm type:
SPC_NOTA_LIMIT,
SPC_LOWERTHAN_LIMIT, or
SPC_GREATERTHAN_LIMIT.

ControlLimitValue
Get/Set the alarm limit value.

ControlLimitValues
Get/Set the controlLimitValues array.

SPC Control Data and Alarm Classes 131

HysteresisValue
Get/Set the alarm hysteresis value.

PrevAlarmState
Get/Set the previous alarm state.

SPCProcessVar
Get/Set the spcDataVar object.

SymbolColor
Get/Set the alarm symbol color.

TextColor
Get/Set the alarm text color.

Public Instance Methods

CheckAlarm
Overloaded. Check the current value against
the parameterValue.

Clone
Returns an object that is a Clone of this
SPCControlLimitRecord object.

Copy
Overloaded. Copies the source
SPCControlLimitRecord object.

ErrorCheck
Checks the SPCControlLimitRecord
object for common errors. Current error
state. Returns an error code.

GetAlarm
Returns the current alarm state based on the
passed in value.

GetControlLimitHistoryValue
Get a values for the controlLimitsValues
historical buffer.

SetControlLimitValue
Set current value of the control limit and
adds that value to the controlLimitValues
historical array.

The SPCControlLimitRecord properties are documented in the
QCSPCChartNetCFCompiledHelpFile.chm documentation file, located in the \doc
subdirectory.

Example of trapping SPCControlLimitRecord alarm using an event delegate

The example below specifies an alarm event delegate for the control limit alarms. The
example was extracted from the TimeVariableControlCharts.DynamicXBarRChart
example program.

[C#]

public void InitializeChart()

{

132 SPC Control Data and Alarm Classes

 // TODO: Add any initialization after the InitForm call

 // Initialize the SPCTimeVariableControlChart

 this.InitSPCTimeVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

 // Set the strings used in the header section of the table

 this.ChartData.Title = "Variable Control Chart (X-Bar & R)";

 .

 .

 .

 this.ChartData.AlarmStateEventHandler +=

 new SPCControlLimitAlarmEventDelegate(this.SPCControlLimitAlarm);

 // don't generate alarms in initial data simulation

 this.ChartData.AlarmStateEventEnable = false;

 SimulateData();

 .

 .

 .

 // generate alarms starting now

 this.ChartData.AlarmStateEventEnable = true;

}

private void SPCControlLimitAlarm(object sender, SPCControlLimitAlarmArgs e)

 {

 SPCControlLimitRecord alarm = e.EventAlarm;

 double alarmlimitvalue = alarm.ControlLimitValue;

 String alarmlimitvaluestring = alarmlimitvalue.ToString();

 SPCControlChartData spcData = alarm.SPCProcessVar;

 SPCCalculatedValueRecord spcSource = e.SPCSource;

 String calculatedvaluestring = spcSource.CalculatedValue.ToString();

 String message = alarm.AlarmMessage;

 ChartCalendar timestamp = spcData.TimeStamp;

 String timestampstring = timestamp.ToString();

 if (alarm.AlarmState)

 Console.Out.WriteLine(timestampstring + " " + message + "=" +

 alarmlimitvaluestring + " Current Value" + "=" +

 calculatedvaluestring);

SPC Control Data and Alarm Classes 133

 }

}

[VB]

Public Sub InitializeChart()

 .

 .

 .

 ' Initialize the SPCTimeVariableControlChart

 Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup, _

 numdatapointsinview, timeincrementminutes)

 .

 .

 .

 AddHandler Me.ChartData.AlarmStateEventHandler, _

 AddressOf Me.SPCControlLimitAlarm

 ' don't generate alarms in initial data simulation

 Me.ChartData.AlarmStateEventEnable = False

 SimulateData()

 .

 .

 .

 Me.RebuildChartUsingCurrentData()

End Sub 'InitializeChart

Private Sub SPCControlLimitAlarm(ByVal sender As Object, _

 ByVal e As SPCControlLimitAlarmArgs)

 Dim alarm As SPCControlLimitRecord = e.EventAlarm

 Dim alarmlimitvalue As Double = alarm.ControlLimitValue

 Dim alarmlimitvaluestring As [String] = alarmlimitvalue.ToString()

 Dim spcData As SPCControlChartData = alarm.SPCProcessVar

 Dim spcSource As SPCCalculatedValueRecord = e.SPCSource

 Dim calculatedvaluestring As [String] = spcSource.CalculatedValue.ToString()

 Dim message As [String] = alarm.AlarmMessage

 Dim timestamp As ChartCalendar = spcData.TimeStamp

 Dim timestampstring As [String] = timestamp.ToString()

134 SPC Control Data and Alarm Classes

 If alarm.AlarmState Then

 Console.Out.WriteLine((timestampstring + " " + message + "=" +

 alarmlimitvaluestring + " Current Value" + "=" +

 calculatedvaluestring))

 End If

End Sub 'SPCControlLimitAlarm

Control Limit Alarm Event Handling

Class SPCControlLimitAlarmArgs

ChartObj
|
+-- SPCControlLimitAlarmArgs

The SPCControlChartData class can throw an alarm event based on either the current
alarm state, or an alarm transition from one alarm state to another. The
SPCControlLimitAlarmArgs passes alarm data to the event handler. If you want the
alarm event triggered only on the initial transition from the no-alarm state to the alarm
state, set the SPCControlChartData.AlarmTransitionEventEnable to true and the
SPCControlChartData.AlarmStateEventEnable to false. In this case, you will get one
event when the process variable goes into alarm, and one when it comes out of alarm. If
you want a continuous stream of alarm events, as long as the SPCControlLimitRecord
object is in alarm, set the SPCControlChartData.AlarmTransitionEventEnable to
false and the SPCControlChartData.AlarmStateEventEnable to true. The alarm
events will be generated at the same rate as the
SPCControlChartData.AddNewSampleRecord() method is called.

SPCControlLimitAlarmArgs constructors
You don’t really need the constructors since SPCControlLimitAlarmArgs objects are
created inside the SPCControlChartData class when an alarm event needs to be
generated.

The most commonly used SPCControlLimitAlarmArgs properties are:

Selected Public Instance Properties

Public Instance Properties

AlarmChannel
Get/Set the alarm channel associated with
the alarm.

SPC Control Data and Alarm Classes 135

EventAlarm
Get/Set the SPCControlLimitRecord
object.

SPCSource
Get/Set the SPCCalculatedValueRecord
object associated with the alarm.

A complete listing of SPCControlLimitAlarmArgs properties are documented in the
QCSPCChartNetCFCompiledHelpFile.chm documentation file, located in the \doc
subdirectory.

Example
Setup and enable an alarm transition event handler in the following manner:
[C#]

 this.ChartData.AlarmTransitionEventHandler+=

 new SPCControlLimitAlarmEventDelegate(this.SPCControlLimitAlarm);

 this.ChartData.AlarmTransitionEventEnable = true;

[VB]
 AddHandler Me.ChartData.AlarmTransitionEventHandler, _

 AddressOf Me.SPCControlLimitAlarm

 Me.ChartData.AlarmTransitionEventEnable = true

where the handler method is this.SPCControlLimitAlarm

[C#]

private void SPCControlLimitAlarm(object sender, SPCControlLimitAlarmArgs e)

{

 .

 .

 .

}

[VB]
Private Sub SPCControlLimitAlarm(ByVal sender As Object, _

 ByVal e As SPCControlLimitAlarmArgs)

.

.

.

.

End Sub 'SPCControlLimitAlarm

136 SPC Control Data and Alarm Classes

Setup and enable an alarm state event handler in an identical manner:
[C#]

this.ChartData.AlarmStateEventHandler +=

 new SPCControlLimitAlarmEventDelegate(this.SPCControlLimitAlarm);

this.ChartData.AlarmStateEventEnable = true;

[VB]
 AddHandler Me.ChartData.AlarmStateEventHandler, _

 AddressOf Me.SPCControlLimitAlarm

 Me.ChartData.AlarmStateEventEnable = True

where the handler method is this SPCControlLimitAlarm.

[C#]
private void SPCControlLimitAlarm(object sender, SPCControlLimitAlarmArgs e)

{

 .

 .

 .

}

[VB]

Private Sub SPCControlLimitAlarm(ByVal sender As Object, _

 ByVal e As SPCControlLimitAlarmArgs)

.

.

.

.

End Sub 'SPCControlLimitAlarm

SPCSampledValueRecord
This class encapsulates a sample data value. It includes a description for the item, the
current value of the sampled value, and a history of previous values.

SPC Control Data and Alarm Classes 137

An array list of SPCSampledValueRecord objects, one for each sample category, is
automatically created when the parent SPCChartBase object is created. The programmer
does not need to instantiate it.

Public Instance Constructors

SPCSampledValueRecord
Overloaded. Initializes a new instance of the
SPCSampledValueRecord class.

Public Instance Properties

SampledValue
Get/Set the current value for this record.

SampledValues
Get/Set the historical array of the sampled
value record.

ValueDescription
Get/Set the description of sampled value
record.

Public Instance Methods

Copy
Copies the source object.

GetCalculatedValueStatistic
Calculate a statistic for the historical data
associated with the sample item.

SetSampledValue
Set the current value of the record, and adds
the value to the historical array of the
sampled value record.

SPCControlLimitRecord
This class holds information specific to a SPC control limit: including the current value
of the control limit, a history of control limit values, description, and the hysteresis value
for alarm checking.

Public Static (Shared) Fields

SPC_GREATERTHAN_LIMIT
Specifies the alarm is a greater than alarm.

SPC_LOWERTHAN_LIMIT
Specifies the alarm is a lower than alarm.

SPC_NOTA_LIMIT
Specifies the limit is not an alarm, just a
value.

Public Instance Constructors

SPCControlLimitRecord
Overloaded. Initializes a new instance of the
SPCControlLimitRecord class.

Public Instance Fields

138 SPC Control Data and Alarm Classes

controlLimitValues
A historical record of the control limit
values.

Public Instance Properties

AlarmDisplay
Get/Set the alarm display flag.

AlarmEnable
Get/Set the alarm enable flag.

AlarmMessage
Get/Set the current alarm message.

AlarmState
Get/Set the alarm state, true if the last call to
CheckAlarm show that the process variable
currently in alarm.

ControlLimitText
Get/Set the Normal alarm message;

ControlLimitType
Get/Set the alarm type:
SPC_NOTA_LIMIT,
SPC_LOWERTHAN_LIMIT, or
SPC_GREATERTHAN_LIMIT.

ControlLimitValue
Get/Set the alarm limit value.

ControlLimitValues
Get/Set the controlLimitValues array.

HysteresisValue
Get/Set the alarm hysteresis value.

PrevAlarmState
Get/Set the previous alarm state.

SPCProcessVar
Get/Set the spcDataVar object.

SymbolColor
Get/Set the alarm symbol color.

TextColor
Get/Set the alarm text color.

Public Instance Methods

CheckAlarm
Check the current value against the
parameterValue.

Clone
Returns an object that is a Clone of this
SPCControlLimitRecord object.

Copy
Overloaded. Copies the source
SPCControlLimitRecord object.

Copy (inherited from ChartObj)
Overloaded. Copies the source object.

ErrorCheck
Checks the SPCControlLimitRecord
object for common errors. Current error

SPC Control Data and Alarm Classes 139

state. Returns an error code.

GetAlarm
Returns the current alarm state based on the
passed in value.

GetControlLimitHistoryValue
Get a values for the controlLimitsValues
historical buffer.

SetControlLimitValue
Set current value of the control limit and
adds that value to the controlLimitValues
historical array.

SPCCalculatedValueRecord
This is the record class for a calculated SPC statistic. It holds the calculated value type
(mean, median, sum, variance, standard deviation, etc.), value, description and historical
data.

Public Static (Shared) Fields

SPC_CUSTOM_CALC
Constant value for a custom SPC
calculation (unused).

SPC_FRACTION_DEFECTIVE_PARTS_CALC

Constant value for a percent defective
parts SPC calculation.

SPC_FRACTION_DEFECTS_CALC
Constant value for a fraction defects
SPC calculation.

SPC_INDIVIDUAL_ABS_RANGE_CALC

Constant value for a ABS individual
range SPC calculation.

SPC_INDIVIDUAL_COPY_VALUE
Constant value for INDIVIDUAL
RANGE .

SPC_INDIVIDUAL_RANGE_CALC
Constant value for a individual range
SPC calculation.

SPC_MAX_CALC
Constant value for a maximum SPC
calculation.

SPC_MEAN_CALC
Constant value for a mean SPC
calculation.

SPC_MEAN_N_MINUS_1_CALC
Constant value for a mean SPC
calculation using N-1, rather than N.

SPC_MEDIAN_CALC
Constant value for a median SPC
calculation.

SPC_MIN_CALC
Constant value for a minimum SPC
calculation.
Constant value for a percent defective
parts calculation.

140 SPC Control Data and Alarm Classes

SPC_PERCENT_DEFECTIVE_PARTS_CALC

SPC_PERCENT_DEFECTS_CALC
Constant value for a percent defects
SPC calculation.

SPC_RANGE_CALC
Constant value for a range SPC
calculation.

SPC_STD_DEVIATION_CALC
Constant value for a standar deviation
SPC calculation.

SPC_SUM_CALC
Constant value for a sum SPC
calculation.

SPC_TOTAL_DEFECTIVE_PARTS_CALC

Constant value for a total defective
parts SPC calculation.

SPC_TOTAL_DEFECTS_CALC
Constant value for a total defects SPC
calculation.

SPC_VARIANCE_CALC
Constant value for a variance SPC
calculation.

Public Static (Shared) Methods

CalculateHistoryStatistic
Calculate the calculated value value based
on the data in the source array and the
specified calculation type.

Public Instance Constructors

SPCCalculatedValueRecord
Overloaded. Initializes a new instance of the
SPCCalculatedValueRecord class.

Public Instance Properties

CalculatedValue
Get the current calculation value for this
record.

CalculatedValues
Get the reference to the calculatedValue
array.

CalculationType
Set/Get the calculation type for this
calculation value record. Use one of the
SPCCalculatedValueRecord calculation
type constants.

MostRecentSampledValues
Get/Set an array holding the values of the
most recent sampled, or measured values
used in calculating the records
calculateValue value.

ValidValueFlags
Get the reference to the validValueFlags
array.

ValueDescription
Get/Set the description of calculation value
record.

Public Instance Methods

SPC Control Data and Alarm Classes 141

Copy
Copies the source object.

GetCalculatedValueStatistic
Returns the calculated value value based on
the data in the calculated historical data
array, calculatedValues. Excludes values
that are marked invalid in the
validValueFlags array.

IsValueValid
Checks to the validValueFlags to see if a
value in the calculated historical data array,
calculatedValues, is valid.

SetCalculatedValue
Overloaded. Calculate the calculated value
value based on the data in the source array.
Sets the calculatedValue property of the
class to the result.

SPCProcessCapabilityRecord
This is the record class for calculating and storing SPC process capability statistics. It
supports calculating the Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu, and Ppk statistics.

Public Static (Shared) Fields

SPC_CP_CALC
Constant value CP calculation.

SPC_CPK_CALC
Constant value CPK calculation.

SPC_CPL_CALC
Constant value CPL calculation.

SPC_CPM_CALC
Constant value CPM calculation.

SPC_CPU_CALC
Constant value CPU calculation.

SPC_CUSTOM_PC_CALC
Constant value for a custom SPC calculation
(unused).

SPC_PP_CALC
Constant value for a sum SPC calculation.

SPC_PPK_CALC
Constant value PPK calculation.

SPC_PPL_CALC
Constant value PPL calculation.

SPC_PPU_CALC
Constant value PPU calculation.

Public Static (Shared) Properties

142 SPC Control Data and Alarm Classes

DefaultProcessCapabilityStrings
Default descriptors for the process
capability strings: "", "Cp", "Cpl",
"Cpu","Cpk","Pp", "Pl","Pu","Ppk".

Public Instance Constructors

SPCProcessCapabilityRecord
Overloaded. Initializes a new instance of the
SPCProcessCapabilityRecord class.

Public Instance Properties

CalculationType
Set/Get the calculation type for this
calculation value record. Use one of the
SPCProcessCapabilityRecord calculation
type constants.

CurrentValue
Get the current calculation value for this
record.

CurrentValues
Get the reference to the currentValue array.

LSLValue
Get the LSL value for this record.

USLValue
Get the USL value for this record.

ValidValueFlags
Get the reference to the validValueFlags
array.

ValueDescription
Get/Set the description of calculation value
record.

Public Instance Methods

CalculateProcessCapabilityValue
Calculate the process capability value..

CalculateProcessCapabilityValues
Calculate the process capability value..

Clone
Returns an object that is a clone of this
object.

Copy
Overloaded. Copies the source object.

IsValueValid
Checks to the validValueFlags to see if a
value in the calculated historical data array,
currentValues, is valid.

Reset
Reset the history buffer of the
SPCProcessCapabilityRecord class.

SetProcessCapabilityValue
Calculate the process capability value. Sets
the currentValue property of the class to the
result.

SPC Control Data and Alarm Classes 143

SPCGeneralizedTableDisplay
This class manages a list of ChartText objects (NumericLabel, StringLabel and
TimeLabel objects), that encapsulate each unique table entry in the SPC chart table. This
class also manages the spacing between the rows and columns of the table, and the
alternating stripe used as a background for the table.

Public Static (Shared) Fields

NUMERIC_ROW_SPACING
Constant specifies that the next
row to the table should user
numeric row spacing.

TABLE_NO_COLOR_BACKGROUND
Constant specifies that the table
does not use a background color.

TABLE_SINGLE_COLOR_BACKGROUND

Constant specifies that the table
uses a single color for the
background (backgroundColor1).

TABLE_SINGLE_COLOR_BACKGROUND_GRID

Constant specifies that the table
uses horizontal stripes of color for
the background
(backgroundColor1 and
backgroundColor2).

TABLE_STRIPED_COLOR_BACKGROUND

Constant specifies that the table
uses horizontal stripes of color for
the background
(backgroundColor1 and
backgroundColor2).

TEXT_ROW_SPACING
Constant specifies that the next
row to the table should user text
row spacing.

Public Static (Shared) Properties

DefaultTableFont
Set/Get the default font used in the table
display.

Public Instance Constructors

SPCGeneralizedTableDisplay
Overloaded. Initializes a new instance of the
SPCGeneralizedTableDisplay class.

Public Instance Properties

BackgroundBarXOffset
Set/Get the background bar left offset, in
normalized coordinates.

BackgroundColor1
Set/Get the first of two colors used in the
alternating background colors used to
delineate the table rows.

144 SPC Control Data and Alarm Classes

BackgroundColor2
Set/Get the second of two colors used in the
alternating background colors used to
delineate the table rows.

CalculatedItemTemplate
Get/Set the CalculatedItemTemplate object
used as a template for displaying calculated
numeric values in the table.

CalculatedLabelFont
Get/Set the font used in the display of
calculated numeric values in the table.

CurrentColumnPosition
Get/Set the current column position.

CurrentRowPosition
Get/Set the current column position.

NotesItemTemplate
Get/Set the StringItemTemplate object used
as a template for displaying string values in
the table.

NotesLabelFont
Get/Set the font used in the display of string
values in the table.

NumericColumnSpacing
Get/Set the numeric column spacing.

NumericRowSpacing
Get/Set the numeric row spacing.

SampleItemTemplate
Get/Set the SampleItemTemplate object
used as a template for displaying numeric
values in the table.

SampleLabelFont
Get/Set the font used in the display of
sample numeric values in the table.

StartColumnPosition
Get/Set the starting x-position, in
normalized coordinates, of the left-most
column of the table.

StartRowPosition
Get/Set the starting y-position, in
normalized coordinates, of the first row of
the table.

StringItemTemplate
Get/Set the StringItemTemplate object used
as a template for displaying string values in
the table.

StringLabelFont
Get/Set the font used in the display of string
values in the table.

TableBackgroundMode
Set/Get the first of two colors used in the
alternating background colors used to
delineate the table rows.

TextColumnSpacing
Get/Set the text column spacing.

TextRowOffset
Set/Get the offset between the start of the
row and the top of the text, in normalized
coordinates.

SPC Control Data and Alarm Classes 145

TextRowSpacing
Get/Set the text row spacing.

TimeColumnSpacing
Get/Set the time column spacing.

TimeItemTemplate
Get/Set the TimeLabel object used as a
template for displaying time values in the
table.

TimeLabelFont
Get/Set the font used in the display of time
values in the table.

TimeRowSpacing
Get/Set the time row spacing.

Public Instance Methods

AddCalculatedItem
Overloaded. Add a calculated numeric item
to the table, using the specified column
spacing increment.

AddHorizontalBar
Add a horizontal bar as a row background
for the table.

AddNotesItem
Overloaded. Add a string item to the table,
using the specified column spacing
increment.

AddNumericItem
Overloaded. Add a numeric item to the
table, using the specified column spacing
increment.

AddStringItem
Overloaded. Add a string item to the table,
using the specified column spacing
increment.

AddTimeItem
Overloaded. Add a time item to the table,
using the specified column spacing
increment.

Clone
Returns an object that is a clone of this
object.

Copy
Overloaded. Copies the source object.

GetChartLabel
Get a specific ChartLabel object in the
chartLabelArray array list.

IncrementRow
Overloaded. Add another row to the table,
using the specified row spacing increment.

InitDefaults
Initialize default values for the class.

6. SPC Variable Control Charts

SPCTimeVariableControlChart
SPCBatchVariableControlChart

Variable Control Charts are used with sampled quality data that can be assigned a
specific numeric value, other than just 0 or 1. This includes, but is not limited to, the
measurement of a critical dimension (height, length, width, radius, etc.), the weight a
specific component, or the measurement of an important voltage. The variable control
charts supported by this software include X-Bar R (Mean and Range), X-Bar Sigma,
Median and Range, and X-R (Individual Range) charts.

X-Bar R Chart – Also known as the Mean (or Average) and Range Chart
The X-Bar R chart monitors the trend of a critical process variable over time using a
statistical sampling method that results in a subgroup of values at each sample interval.
The X-Bar part of the chart plots the mean of each sample subgroup and the Range part
of the chart monitors the difference between the minimum and maximum value in the
subgroup. X-Bar R charts are created using the SPCTimeVariableControlChart and
SPCBatchVariableControlChart classes.

X-Bar Sigma – Also known as the X-Bar S Chart
Very similar to the X-Bar R chart, the X-Bar Sigma chart replaces the Range plot with a
Sigma plot based on the standard deviation of the measured values within each subgroup.
This is a more accurate way of establishing control limits if the sample size of the
subgroup is moderately large (> 10). Though computationally more complicated, the use
of a computer makes this a non-issue. The X-Bar Sigma chart comes in fixed sample
subgroup size, and variable sample subgroup size, versions. . X-Bar Sigma charts are
created using the SPCTimeVariableControlChart and
SPCBatchVariableControlChart classes.

Median Range – Also known as the Median and Range Chart
Very similar to the X-Bar R Chart, Median Range chart replaces the Mean plot with a
Median plot representing the median of the measured values within each subgroup. In
order to use a Median Range chart the process needs to be well behaved, where the
variation in measured variables are (1) known to be distributed normally, (2) are not very
often disturbed by assignable causes, and (3) are easily adjusted. . Median Range charts
are created using the SPCTimeVariableControlChart and
SPCBatchVariableControlChart classes.

148 SPC Variable Control Charts

Individual Range Chart – Also known as the X-R Chart
The Individual Range Chart is used when the sample size for a subgroup is 1. This
happens frequently when the inspection and collection of data for quality control
purposes is automated and 100% of the units manufactured are analyzed. It also happens
when the production rate is low and it is inconvenient to have sample sizes other than 1.
The X part of the control chart plots the actual sampled value (not a mean or median) for
each unit and the R part of the control chart plots a moving range that is calculated using
the current value of sampled value minus the previous value. . Individual Range charts
are created using the SPCTimeVariableControlChart and
SPCBatchVariableControlChart classes.

EWMA Chart – Exponentially Weighted Moving Average
The EWMA chart is an alternative to the preceding Shewhart type control charts (X-Bar
R and I-R charts in particular) and is most useful for detecting small shifts in the process
mean. It uses a weighted moving average of previous values to “smooth” the incoming
data, minimizing the affect of random noise on the process. It weights the current and
most recent values more heavily than older values, allowing the control line to react
faster than a simple MA (Moving Average) plot to changes in the process. Like the
Shewhart charts, if the EWMA value exceeds the calculated control limits, the process is
considered out of control. While it is usually used where the process uses 100%
inspection and the sample subgroup size is 1 (same is the X-R chart), it can also be used
when sample subgroup sizes are greater than one. EWMA charts are created using the
SPCTimeVariableControlChart and SPCBatchVariableControlChart classes.

MA Chart – Moving Average
The MA chart is another alternative to the preceding Shewhart type control charts (X-Bar
R and I-R charts in particular) and is most useful for detecting small shifts in the process
mean. It uses a moving average, where the previous (N-1) sample values of the process
variable are averaged together along with the current value to produce the current chart
value. This helps to “smooth” the incoming data, minimizing the affect of random noise
on the process. Unlike the EWMA chart, the MA chart weights the current and previous
(N-1) values equally in the average. While the MA chart can often detect small changes
in the process mean faster than the Shewhart chart types, it is generally less effective than
either the EWMA chart, or the CuSum chart. MA charts are created using the
SPCTimeVariableControlChart and SPCBatchVariableControlChart classes.

CuSum Chart – Tabular, one-sided, upper and lower cumulative sum
The CuSum chart is a specialized control chart, which like the EWMA and MA charts, is
considered to be more efficient that the Shewhart charts at detecting small shifts in the
process mean, particularly if the mean shift is less than 2 sigma. There are several types
of CuSum charts, but the easiest to use and the most accurate is considered the tabular
CuSum chart and that is the one implemented in this software. The tabular cusum works

SPC Variable Control Charts 149

by accumulating deviations that are above the process mean in one statistic (C+) and
accumulating deviations below the process mean in a second statistic (C-). If either
statistic (C+ or C-) falls outside of the calculated limits, the process is considered out of
control.

Time-Based and Batch-Based SPC Charts
The QCSPCChart software further categorizes Variable Control as either time- or
batch- based. Time-based SPC charts are used when data is collected using a subgroup
interval corresponding to a specific time interval. Batch-based SPC charts are used when
the data subgroup interval is a sequential batch number that does not correspond to a
uniform time interval. The major difference in these two types of SPC charts is the
display of the x-axis. Variable control charts that sample using a uniform time interval
will generally use a time-based x-axis, with time/date axis labels. Variable control charts
that sample based on batches will generally use a numeric-based x-axis, with numeric
axis labels.

Note: Starting with Revision 2.0, batch control charts can label the x-axis using one of
three options: numeric labeling (the original and default mode), time stamp labeling, and
user defined string labeling. Since this affects batch control charts, time stamps to not
have to be equally spaced, or even sequential

Time-Based Variable Control Chart

Note the time-based x-axis for both charts.

Batch-Based Variable Control Chart

150 SPC Variable Control Charts

Note the numeric based x-axis for both graphs
Batch-Based Variable Control Chart with time stamp x-axis

Note that even though the time stamp values do not have consistent time interval, the data
points are spaced evenly by batch number.

Creating a Variable Control Chart

First, select whether you want to use a time-based variable control chart (use
SPCTimeVariableControlChart) or a batch-based variable control chart (use
SPCBatchVariableControlChart). Use that class as the base class for your chart. Since
the two classes are so similar and share 95% of all properties in common, only the
SPCTimeVariableControlChart is discussed in detail, with the differences between the
two classes discussed at the end of the chapter. The example below is extracted from the
TimeVariableControlCharts.XBarRChart example program.

SPC Variable Control Charts 151

[C#]

public class XBarRChart : SPCTimeVariableControlChart

{

 ChartCalendar startTime = new ChartCalendar();

 // SPC variable control chart type

 int charttype = SPCControlChartData.MEAN_RANGE_CHART;

 // Number of samples per sub group

 int numsamplespersubgroup = 5;

 // Number of data points in the view

 int numdatapointsinview = 17;

 // The time increment between adjacent subgroups

 int timeincrementminutes = 15;

 public XBarRChart()

 {

 // This call is required by the Windows.Forms Form Designer.

 InitializeComponent();

 // Have the chart fill parent client area

 this.Dock = DockStyle.Fill;

 // Define and draw chart

 InitializeChart();

 }

 public void InitializeChart()

 {

 // Initialize the SPCTimeVariableControlChart

 this.InitSPCTimeVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

 .

 .

 .

 this.RebuildChartUsingCurrentData();

 }

}

[VB]

Public Class XBarRChart

 Inherits com.quinncurtis.spcchartnet.SPCTimeVariableControlChart

152 SPC Variable Control Charts

 Private startTime As ChartCalendar = New ChartCalendar()

 ' SPC variable control chart type

 Private charttype As Integer = SPCControlChartData.MEAN_RANGE_CHART

 ' Number of samples per sub group

 Private numsamplespersubgroup As Integer = 5

 ' Number of data points in the view

 Private numdatapointsinview As Integer = 17

 ' The time increment between adjacent subgroups

 Private timeincrementminutes As Integer = 15

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 Me.Dock = DockStyle.Fill

 ' Define and draw chart

 InitializeChart()

 End Sub

 .

 .

 .

#End Region

Public Sub InitializeChart()

 ' Initialize the SPCTimeVariableControlChart

 Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup, _

 numdatapointsinview, timeincrementminutes)

 ' Rebuild the chart using the current data and settings

 Me.RebuildChartUsingCurrentData()

End Sub 'InitializeChart

SPCTimeVariableControlChart Members

Public Instance Constructors

SPC Variable Control Charts 153

SPCTimeVariableControlChart
Overloaded. Initializes a new instance of the
SPCTimeVariableControlChart class.

Public Instance Methods

InitSPCTimeVariableControlChart
Overloaded. Initialize the class for a specific
SPC chart type.

InitSPCTimeCusumControlChart
Overloaded. Initialize the class a cusum
chart type.

The control chart type (X-Bar R, Median Range, X-Bar Sigma, Individual Range,
EWMA, MA) establishes the variable control charts
InitSPCTimeVariableControlChart initialization routine. Note that the X-Bar Sigma
chart, with a variable subgroup sample size, is initialized using
InitSPCTimeVariableControlChart with a charttype value of
MEAN_SIGMA_CHART_VSS. X-Bar Sigma charts with sub groups that use a variable
sample size must be updated properly. See the section “Adding New Sample Records to a
X-Bar Sigma Chart (Variable Subgroup Sample Size)” in the “SPC Control Data and
Alarm Classes” chapter.

SPCTimeVariableControlChart.InitSPCTimeVariableControlChart Method
This initialization method initializes the most important values in the creation of a SPC
chart. If you are using the creating a cusum chart (type TABCUSUM_CHART), your
can use the similar InitSPCTimeCusumControlChart method instead. That version of
the Init routine has added parameters for the H and K value of the tabular cusum chart.

[VB]
Overloads Public Sub InitSPCTimeVariableControlChart(_
 ByVal charttype As Integer, _
 ByVal numsamplespersubgroup As Integer, _
 ByVal numdatapointsinview As Integer, _
 ByVal timeincrementminutes As Integer _
)

[C#]
public void InitSPCTimeVariableControlChart(
 int charttype,
 int numsamplespersubgroup,
 int numdatapointsinview,
 int timeincrementminutes

);

Parameters
charttype

The SPC chart type parameter. Use one of the SPCControlChartData SPC chart
types: MEAN_RANGE_CHART, MEDIAN_RANGE_CHART,
MEAN_SIGMA_CHART, MEAN_SIGMA_CHART_VSS,

154 SPC Variable Control Charts

INDIVIDUAL_RANGE_CHART, EWMA_CHART, MA_CHART, and
TABCUSUM_CHART.

numsamplespersubgroup
Specifies the number of samples that make up a sample subgroup.

numdatapointsinview
Specifies the number of sample subgroups displayed in the graph at one time.

timeincrementminutes
Specifies the normal time increment between adjacent subgroup samples.

The image below further clarifies how these parameters affect the variable control chart.

Once the Init routine is called, the chart can be further customized using properties
inherited from SPCBaseChart, described below.

Public Static (Shared) Properties

DefaultChartFontString
Set/Get the default font used in the table
display.

Public Instance Constructors

SPCChartBase
Overloaded. Initializes a new instance of the
SPCChartBase class.

Public Instance Properties

SPC Variable Control Charts 155

AutoLogAlarmsAsNotes
Set to true to automatically log alarms in the notes log.

BottomLabelMargin
Get/Set an additional margin, in normalized
coordinates, if only the primary graphs is displayed,
allowing for the x-axis labels

ChartAlarmEmphasisMode
Set to
SPCChartBaseALARM_HIGHLIGHT_SYMBOL to
highlight the process variable symbol if an alarm
condition exists. Set to Set to
SPCChartBase.ALARM_NO_HIGHLIGHT_SYMBOL
to turn off alarm highlighting.

ChartData
Get the object that holds the descriptive text, sampled
and calculated values associated with the control chart.

ChartInitialized
Returns true if the control chart has been initialized at
least once.

ChartTable
Get the object that holds the data table information
needed to display the data table along with the chart

DefaultControlLimitSigma
Set/Get that SPC control limits are to be calculated
using the 3 sigma level standard.

EnableAlarmStatusValues
If set true enables the alarm status row of the chart
table.

EnableCategoryValues
If set true enables the category or sample values rows
of the data table

EnableDataToolTip
If set true enables data tooltips

EnableInputStringsDisplay
If set true enables the input string rows of the data table

EnableNotes
If set true enables the notes row of the data table

EnableNotesToolTip
If set true enables data tooltips

EnableScrollBar
If set true the scroll bar is added to the bottom of the
chart.

EnableTimeValues
If set true enables the time row of the data table

EnableTotalSamplesValues
If set true enables the total of sampled values row of the
data table

GraphBottomPos
Get/Set the bottom edge, using normalized coordinates,
of the plotting area for the secondary chart

GraphStartPosX
Get/Set the left edge, using normalized coordinates, of
the plotting area for both primary and secondary charts

GraphStartPosY1
Get the top edge, using normalized coordinates, of the
plotting area for the primary chart

156 SPC Variable Control Charts

GraphStartPosY2
Get the top edge, using normalized coordinates, of the
plotting area for the secondary chart

GraphStopPosX
Get/Set the right edge, using normalized coordinates, of
the plotting area for both primary and secondary charts

GraphStopPosY1
Get the bottom edge, using normalized coordinates, of
the plotting area for the primary chart

GraphStopPosY2
Get the bottom edge, using normalized coordinates, of
the plotting area for the secondary chart

GraphTopTableOffset
Get/Set the offset of the top of the primary chart from
the bottom of the data table, using normalized
coordinates

HeaderStringsLevel
Set/Get the level of header strings to include in the
chart. Use one of the SPCControlChartData header
strings constants: HEADER_STRINGS_LEVEL0,
HEADER_STRINGS_LEVEL1,
HEADER_STRINGS_LEVEL2, or
HEADER_STRINGS_LEVEL3

InterGraphMargin
Get/Set the margin, in normalized coordinates, between
the primary and secondary charts

MultipleMouseListener
Set/Get the MultiMouseListener.

PrimaryChart
Get the object that holds he the chart objects needed to
display the primary chart

ScrollBarBottomPosition
Get/Set the bottom edge, using normalized coordinates,
of the optional scroll bar

ScrollBarPixelHeight
Get/Set the height of the scrollbar in pixels

SecondaryChart
Get the object that holds he the chart objects needed to
display the secondary chart

SPCChartType
Specifies the control chart type: use one of the
SPCControlChartData chart type constants:
MEAN_RANGE_CHART,
MEDIAN_RANGE_CHART,
MEAN_SIGMA_CHART,
MEAN_SIGMA_CHART_VSS,
INDIVIDUAL_RANGE_CHART,
EWMA_CHART, MA_CHART,
TABCUSUM_CHART,
CUSTOM_ATTRIBUTE_CONTROL_CHART,
PERCENT_DEFECTIVE_PARTS_CHART,
FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTS_CHART,
NUMBER_DEFECTS_PERUNIT_CHART.

SPC Variable Control Charts 157

TableAlarmEmphasisMode
Set the table alarm highlighting to one of the
SPCChartBase table highlight constants:
ALARM_HIGHLIGHT_NONE,
ALARM_HIGHLIGHT_TEXT,
ALARM_HIGHLIGHT_OUTLINE,
ALARM_HIGHLIGHT_BAR

TableStartPosY
Get the top edge, using normalized coordinates, of the
SPC chart table

XScaleMode
Set/Get whether the x-axis is time based, or numeric
based.

Public Instance Methods

AddAnnotation
Overloaded. Add a simple annotation to a
data point in the specified SPC chart.

AutoCalculateControlLimits
Using the current sampled data values, high,
target and low control limits are calculated
for both primary and secondary charts using
an algorithm appropriate to the SPC chart
type.

AutoCalculatePrimaryControlLimits
Using the current sampled data values, high,
target and low control limits are calculated
for the primary chart using an algorithm
appropriate to the SPC chart type.

AutoCalculateSecondaryControlLimits
Using the current sampled data values, high,
target and low control limits are calculated
for the primary chart using an algorithm
appropriate to the SPC chart type.

AutoScaleChartYRange
Auto-scale the y-range of the SPC chart so
that all of the sampled data and chart control
limits are within the bounds of the y-axis.

AutoScalePrimaryChartYRange
Auto-scale the y-range of the primary SPC
chart so that all of the sampled data and
chart control limits are within the bounds of
the y-axis.

AutoScaleSecondaryChartYRange
Auto-scale the y-range of the SPC chart so
that all of the sampled data and chart control
limits are within the bounds of the y-axis.

Copy
Overloaded. Copies the source object.

Draw
Overrides the Draw method of the
underlying ChartView class, so that the
scroll bar can be properly repositioned if the
size of the window changes. The graphics
context the chart is drawn to.

158 SPC Variable Control Charts

InitSPCChartBase
This initialization method initializes the
most important values in the creation of a
SPC chart.

IsTimeScale
Returns true if the coordinate system has a
time based x-axis. The coordinate system of
the chart.

MakeControlLinePlot
Draw a control line, either a simple straight
line, or a variable control line, for the
specified chart.

RebuildChartUsingCurrentData
Rebuild the graph taking into account the
most recent data values.

RescaleGraphsToScrollbar
Rescale primary and secondary charts based
on the position of the value of the scroll bar.
The thumb position of the scroll bar.

ResetSPCChartData
Reset the history buffers of all of the SPC
data objects.

UpdateControlLimitLabel

Creates a numeric label of the control limit,
and adds the numeric label to the spc chart.

UseNoTable

Specifies to create the primary and
secondary charts without a table. Just the
charts, chart title and optional histograms.

Adding New Sample Records for Variable Control Charts.

In variable control charts, each data value in the samples array represents a specific
sample in the sample subgroup. In X-Bar R, X-Bar Sigma, and Median-Range charts,
where the sample subgroup size is some fraction of the total production level, there is one
value in the samples array for each measurement sample in the sample subgroup interval.
If the production level is sixty items per hour, and the sample size is five items per hour,
then the graph would be updated once an hour with five items in the samples array.

[C#]

DoubleArray samples = new DoubleArray(5);

// ChartCalendar initialized with current time by default

ChartCalendar timestamp = new ChartCalendar();

// Place sample values in array

samples[0] = 0.121; // First of five samples

samples[1] = 0.212; // Second of five samples

samples[2] = 0.322; // Third of five samples

samples[3] = 0.021; // Fourth of five samples

SPC Variable Control Charts 159

samples[4] = 0.133; // Fifth of five samples

// Add the new sample subgroup to the chart

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

Dim samples As DoubleArray = New DoubleArray(5)

' ChartCalendar initialized with current time by default

Dim timestamp As ChartCalendar = New ChartCalendar()

' Place sample values in array

samples(0) = 0.121 ' First of five samples

samples(1) = 0.212 ' Second of five samples

samples(2) = 0.322 ' Third of five samples

samples(3) = 0.021 ' Fourth of five samples

samples(4) = 0.133 ' Fifth of five samples

' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

In an Individual-Range chart, and EWMA and MA charts that uses rational subgroup
sizes of 1, the samples array would only have one value for each update. If the
production level is sixty items per hour, with 100% sampling, the graph would be
updated once a minute, with a single value in the samples array.

Updating MEAN_SIGMA_CHART_VSS with a variable number of samples per
subgroup

The X-Bar Sigma chart also comes in a version where variable sample sizes are
permitted, As in the standard variable control charts, there is one value in the samples
array for each measurement sample in the sample subgroup interval. The difference is
that the length of the samples array can change from update to update. It is critically
import that the size of the samples array exactly matches the number of samples in the
current subgroup

160 SPC Variable Control Charts

X-Bar Sigma Chart with variable sample size

In this case, the control chart high and low limits vary from sample interval to sample
interval, depending on the number of samples in the associated sample subgroup. You
can read the sample sizes along the NO.INSP row in the data table above the chart. A low
number of samples in the sample subgroup make the band between the high and low
limits wider than if a higher number of samples are available. The X-Bar Sigma chart is
the only variable control chart that can be used with a variable sample size.

[C#]

// GetCurrentSampleSubgroupSize is a fictional method that gets the

// current number of samples in the sample subgroup. The value of N

// can vary from sample interval to sample interval. You must have a

// valid sample value for each element.

N = GetCurrentSampleSubgroupSize();

// Size array exactly to a length of N

DoubleArray samples = new DoubleArray(N);

// ChartCalendar initialized with current time by default

ChartCalendar timestamp = new ChartCalendar();

// Place sample values in array

// You must have a valid sample value for each element of the array size 0..N-1

samples[0] = 0.121; // First of five samples

SPC Variable Control Charts 161

samples[1] = 0.212; // Second of five samples

.

.

.

samples[N-1] = 0.133; // Last of the samples in the sample subgroup

// Add the new sample subgroup to the chart

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

‘ GetCurrentSampleSubgroupSize is a fictional method that gets the

‘ current number of samples in the sample subgroup. The value of N

‘ can vary from sample interval to sample interval. You must have a

‘ valid sample value for each element.

N = GetCurrentSampleSubgroupSize()

‘ Size array exactly to a length of N

Dim samples As DoubleArray = New DoubleArray(N)

' ChartCalendar initialized with current time by default

Dim timestamp As ChartCalendar = New ChartCalendar()

' Place sample values in array

samples(0) = 0.121 ' First of five samples

samples(1) = 0.212 ' Second of five samples

.

.

.

samples(N-1) = 0.133 ' Last of the samples in the sample subgroup

' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

Measured Data and Calculated Value Tables

Standard worksheets used to gather and plot SPC data consist of three main parts.

• The first part is the header section, identifying the title of the chart, the monitored

process, the machine operator, part number and other important information specific
to the chart.

• The second part is the measurement data recording and calculation section, organized
as a table where the sample data and calculated values are recorded in a neat, readable
fashion.

162 SPC Variable Control Charts

• The third part plots the calculated SPC values for the sample group variables as a SPC
chart.

The chart includes options that enable the programmer to customize and automatically
include header information along with a table of the measurement and calculated data, in
the SPC chart.

The following properties enable sections of the chart header and table:
:
 EnableInputStringsDisplay

EnableCategoryValues
 EnableCalculatedValues
 EnableTotalSamplesValues
 EnableNotes

EnableTotalSamplesValues
 EnableTimeValues
 EnableProcessCapabilityValues

In the program the code looks like the following code extracted from the
TimeVariableControlCharts.XBarRChart example program

[C#]

SPC Variable Control Charts 163

// Change the default horizontal position and width of the chart

this.GraphStartPosX = 0.1; // start here

this.GraphStopPosX = 0.875; // end here

// Set the strings used in the header section of the table

this.ChartData.Title = "Variable Control Chart (X-Bar & R)";

this.ChartData.PartNumber = "283501";

this.ChartData.ChartNumber="17";

this.ChartData.PartName= "Transmission Casing Bolt";

this.ChartData.Operation = "Threading";

this.ChartData.SpecificationLimits="";

this.ChartData.TheOperator="J. Fenamore";

this.ChartData.Machine="#11";

this.ChartData.Gage="#8645";

this.ChartData.UnitOfMeasure = "0.0001 inch";

this.ChartData.ZeroEquals="zero";

this.ChartData.DateString = DateTime.Now.ToString();

this.ChartData.NotesMessage = "Control limits prepared May 10";

this.ChartData.NotesHeader = "NOTES"; // row header

 // Set initial scale of the y-axis of the mean chart

// If you are calling AutoScalePrimaryChartYRange this isn't really needed

this.PrimaryChart.MinY = 0;

this.PrimaryChart.MaxY = 40;

// Set initial scale of the y-axis of the range chart

// If you are calling AutoScaleSecondaryChartYRange this isn't really needed

this.SecondaryChart.MinY = 0;

this.SecondaryChart.MaxY = 40;

// Display the Sampled value rows of the table

this.EnableInputStringsDisplay= true;

// Display the Sampled value rows of the table

this.EnableCategoryValues= true;

// Display the Calculated value rows of the table

this.EnableCalculatedValues= true;

// Display the total samples per subgroup value row

this.EnableTotalSamplesValues= true;

// Display the Notes row of the table

this.EnableNotes= true;

// Display the time stamp row of the table

this.EnableTimeValues = true;

[VB]

164 SPC Variable Control Charts

' Change the default horizontal position and width of the chart

Me.GraphStartPosX = 0.1 ' start here

Me.GraphStopPosX = 0.875 ' end here

' Set the strings used in the header section of the table

Me.ChartData.Title = "Variable Control Chart (X-Bar & R)"

Me.ChartData.PartNumber = "283501"

Me.ChartData.ChartNumber = "17"

Me.ChartData.PartName = "Transmission Casing Bolt"

Me.ChartData.Operation = "Threading"

Me.ChartData.SpecificationLimits = ""

Me.ChartData.TheOperator = "J. Fenamore"

Me.ChartData.Machine = "#11"

Me.ChartData.Gage = "#8645"

Me.ChartData.UnitOfMeasure = "0.0001 inch"

Me.ChartData.ZeroEquals = "zero"

Me.ChartData.DateString = DateTime.Now.ToString()

Me.ChartData.NotesMessage = "Control limits prepared May 10"

Me.ChartData.NotesHeader = "NOTES" ' row header

' Set initial scale of the y-axis of the mean chart

' If you are calling AutoScalePrimaryChartYRange this isn't really needed

Me.PrimaryChart.MinY = 0

Me.PrimaryChart.MaxY = 40

' Set initial scale of the y-axis of the range chart

' If you are calling AutoScaleSecondaryChartYRange this isn't really needed

Me.SecondaryChart.MinY = 0

Me.SecondaryChart.MaxY = 40

' Display the Sampled value rows of the table

Me.EnableInputStringsDisplay = True

' Display the Sampled value rows of the table

Me.EnableCategoryValues = True

' Display the Calculated value rows of the table

Me.EnableCalculatedValues = True

' Display the total samples per subgroup value row

Me.EnableTotalSamplesValues = True

‘ Display the Notes row of the table

Me.EnableNotes = True

' Display the time stamp row of the table

Me.EnableTimeValues = True

SPC Variable Control Charts 165

Process Capability Ratios and Process Performance Indices

The data table also displays any process capability statistics that you want to see. The
software supports the calculation and display of the Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppu,
Ppl, and Ppk process capability statistics.

In order to display process capability statistics you must first specify the process
specification limits that you want the calculations based on. These are not the high and
low SPC control limits calculate by this software; rather they externally calculated limits
based on the acceptable tolerances allowed for the process under measure. Set the lower
specification limit (LSL) and upper specification limit (USL) using the
ChartData.ProcessCapabilityLSLValue and
ChartData.ProcessCapabilityUSLValue properties of the chart. The code below is
from the TimeVariableControlCharts.XBarRChart example.

this.ChartData.ProcessCapabilityLSLValue = 27;

this.ChartData.ProcessCapabilityUSLValue = 35;

Use the ChartData.addProcessCapabilityValue method to specify exactly which
process capability statistics you want to see in the table. Use one of the
SPCProcessCapabilityRecord constants below to specify the statistics that you want
displayed.

SPC_CP_CALC Constant value Cp calculation
SPC_CPL_CALC Constant value Cpl calculation.
SPC_CPU_CALC Constant value Cpu calculation.
SPC_CPK_CALC Constant value Cpk calculation.
SPC_CPM_CALC Constant value Cpm calculation.
SPC_PP_CALC Constant value Pp calculation.
SPC_PPL_CALC Constant value Ppl calculation.
SPC_PPU_CALC Constant value Ppu calculation.
SPC_PPK_CALC Constant value PPK calculation.

The code below is from the TimeVariableControlCharts.XBarRChart example.

this.ChartData.AddProcessCapabilityValue(SPCProcessCapabilityRecord.SPC_CPK_CALC);

this.ChartData.AddProcessCapabilityValue(SPCProcessCapabilityRecord.SPC_CPM_CALC);

this.ChartData.AddProcessCapabilityValue(SPCProcessCapabilityRecord.SPC_PPK_CALC);

This selection will add three rows to the data table, one row each for the Cpk, Cpm and
Ppk process capability statistics. Once these steps are carried out, the calculation and
display of the statistics is automatic.

166 SPC Variable Control Charts

Formulas Used in Calculating the Process Capability Ratios
The formulas used in calculating the process capability statistics vary. We use the
formulas found in the textbook. “Introduction to Statistical Quality Control” by Douglas
C. Montgomery, John Wiley and Sons, Inc. 2001.

SPC Control Chart Nomenclature

USL = Upper Specification Limit

LSL = Lower Specification Limit

Tau = Midpoint between USL and LSL = ½ * (LSL + USL)

=
X = XDoubleBar - Mean of sample subgroup means (also called the grand average)
_
R = RBar – Mean of sample subgroup ranges

S = Sigma – sample standard deviation – all samples from all subgroups are used to
calculate the standard deviation S.

SPC Variable Control Charts 167

_
S = SigmaBar – Average of sample subgroup sigma’s. Each sample subgroup has a
calculated standard deviation and the SigmaBar value is the mean of those subgroup
standard deviations.

d2 = a constant tabulated in every SPC textbook for various sample sizes.

By convention, the quantity RBar/d2 is used to estimate the process sigma for the Cp, Cpl
and Cpu calculations

MINIMUM – a function that returns the lesser of two arguments

SQRT – a function returning the square root of the argument.

Process Capability Ratios (Cp, Cpl, Cpu, Cpk and Cpm)

Cp = (USL – LSL) / (6 * RBar/d2)

Cpl = (XDoubleBar – LSL) / (3 * RBar/d2)

Cpu = (USL - XDoubleBar) / (3 * RBar/d2)

Cpk = MINIMUM (Cpl, Cpu)

Cpm = Cp / (SQRT(1 + V2)

where

V = (XDoubleBar – Tau) / S

Process Performance Indices (Pp, Ppl, Ppu, Ppk)

Pp = (USL – LSL) / (6 * S)

168 SPC Variable Control Charts

Ppl = (XDoubleBar – LSL) / (3 * S)

Ppu = (USL - XDoubleBar) / (3 *S)

Ppk = MINIMUM (Ppl, Ppu)

The major difference between the Process Capability Ratios (Cp, Cpl, Cpu, Cpk) and the
Process Performance Indices (Pp, Ppl, Ppu, Ppk) is the estimate used for the process
sigma. The Process Capability Ratios use the estimate (RBar/d2) and the Process
Performance Indices uses the sample standard deviation S. If the process is in control,
then Cp vs Pp and Cpk vs Ppk should returns approximately the same values, since both
(RBar/d2) and the sample sigma S will be good estimates of the overall process sigma. If
the process is NOT in control, then ANSI (American National Standards Institute)
recommends that the Process Performance Indices (Pp, Ppl, Ppu, Ppk) be used.

Table Strings

The input header strings display has four sub-levels that display increasing levels of
information. The input header strings display level is set using the charts
HeaderStringsLevel property. Strings that can be displayed are: Title, PartNumber,
ChartNumber, DateString, PartName, Operation, Machine, SpecificationLimits, Gage,
UnitOfMeasure, ZeroEquals and DateString. The four levels and the information
displayed is listed below:

HEADER_STRINGS_LEVEL0 Display no header information
HEADER_STRINGS_LEVEL1 Display minimal header information: Title,

PartNumber, ChartNumber, DateString
HEADER_STRINGS_LEVEL2 Display most header strings: Title, PartNumber,

ChartNumber, PartName, Operation, Operator,
Machine, DateString

HEADER_STRINGS_LEVEL3 Display all header strings: Title, PartNumber,
ChartNumber, DateString, PartName, Operation,
Machine, SpecificationLimits, Gage, UnitOfMeasure,
ZeroEquals and DateString

The example program TimeVariableControlCharts.XBarRChart demonstrates the use of
the HeaderStringsLevel property. The example below displays a minimum set of header
strings (HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL1).

SPC Variable Control Charts 169

[C#]
// Set the strings used in the header section of the table

this.ChartData.Title = "Variable Control Chart (X-Bar & R)";

this.ChartData.PartNumber = "283501";

this.ChartData.ChartNumber="17";

this.ChartData.DateString = DateTime.Now.ToString();

this.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL1;

[VB]
' Set the strings used in the header section of the table

Me.ChartData.Title = "Variable Control Chart (X-Bar & R)"

Me.ChartData.PartNumber = "283501"

Me.ChartData.ChartNumber = "17"

Me.ChartData.DateString = DateTime.Now.ToString()

Me.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL1

The example below displays a maximum set of header strings (HeaderStringsLevel =
SPCControlChartData.HEADER_STRINGS_LEVEL3).

[C#]
// Set the strings used in the header section of the table

this.ChartData.Title = "Variable Control Chart (X-Bar & R)";

this.ChartData.PartNumber = "283501";

this.ChartData.ChartNumber="17";

this.ChartData.PartName= "Transmission Casing Bolt";

this.ChartData.Operation = "Threading";

this.ChartData.SpecificationLimits="";

this.ChartData.TheOperator="J. Fenamore";

this.ChartData.Machine="#11";

this.ChartData.Gage="#8645";

this.ChartData.UnitOfMeasure = "0.0001 inch";

this.ChartData.ZeroEquals="zero";

this.ChartData.DateString = DateTime.Now.ToString();

this.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL3;

[VB]
' Set the strings used in the header section of the table

Me.ChartData.Title = "Variable Control Chart (X-Bar & R)"

170 SPC Variable Control Charts

Me.ChartData.PartNumber = "283501"

Me.ChartData.ChartNumber = "17"

Me.ChartData.PartName = "Transmission Casing Bolt"

Me.ChartData.Operation = "Threading"

Me.ChartData.SpecificationLimits = ""

Me.ChartData.TheOperator = "J. Fenamore"

Me.ChartData.Machine = "#11"

Me.ChartData.Gage = "#8645"

Me.ChartData.UnitOfMeasure = "0.0001 inch"

Me.ChartData.ZeroEquals = "zero"

Me.ChartData.DateString = DateTime.Now.ToString()

Me.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL3

The identifying string displayed in front of the input header string can be any string that
you want, including non-English language strings. For example, if you want the input
header string for the Title to represent a project name:

Project Name: Project XKYZ for PerQuet

Set the properties:

[C#]
this.ChartData.Title = "Project XKYZ for PerQuet";

this.ChartData.TitleHeader = "Project Name:";

[VB]
Me.ChartData.Title = "Project XKYZ for PerQuet"

Me.ChartData.TitleHeader = "Project Name:"

Change other header strings using the ChartData properties listed below.

• TitleHeader
• PartNumberHeader
• ChartNumberHeader
• PartNameHeader
• OperationHeader
• OperatorHeader
• MachineHeader
• DateHeader
• SpecificationLimitsHeader
• GageHeader

SPC Variable Control Charts 171

• UnitOfMeasureHeader
• ZeroEqualsHeader
• NotesHeader

Even though the input header string properties have names like Title, PartNumber,
ChartNumber, etc., those names are arbitrary. They are really just placeholders for the
strings that are placed at the respective position in the table. You can display any
combination of strings that you want, rather than the ones we have selected by default,
based on commonly used standardized SPC Control Charts.

Table Background Colors

The ChartTable property of the chart has some properties that can further customize the
chart. The default table background uses the accounting style green-bar striped
background. You can change this using the ChartTable.TableBackgroundMode
property. Set the value to one of the TableBackgroundMode constants in the class
SPCGeneralizedTableDisplay:

TABLE_NO_COLOR_BACKGROUND Constant specifies that the table does not

use a background color.
TABLE_SINGLE_COLOR_BACKGROUND Constant specifies that the table uses a

single color for the background
(backgroundColor1)

TABLE_STRIPED_COLOR_BACKGROUND Constant specifies that the table uses
horizontal stripes of color for the
background (backgroundColor1 and
backgroundColor2)

TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL
Constant specifies that the table uses a
grid background, with
backgroundColor1 the overall
background color and backgroundColor2
the color of the grid lines.

Extracted from the TimeVariableControlCharts.IndividualRangeChart example program

[C#]
this.ChartTable.TableBackgroundMode =

 SPCGeneralizedTableDisplay.TABLE_STRIPED_COLOR_BACKGROUND;

this.ChartTable.BackgroundColor1 = Color.Bisque;

172 SPC Variable Control Charts

this.ChartTable.BackgroundColor2 = Color.LightGoldenrodYellow;

[VB]
Me.ChartTable.TableBackgroundMode = _

 SPCGeneralizedTableDisplay.TABLE_STRIPED_COLOR_BACKGROUND

Me.ChartTable.BackgroundColor1 = Color.Bisque

Me.ChartTable.BackgroundColor2 = Color.LightGoldenrodYellow

Extracted from the TimeVariableControlCharts.MedianRangeChart example program

[C#]
this.ChartTable.TableBackgroundMode =

 SPCGeneralizedTableDisplay.TABLE_SINGLE_COLOR_BACKGROUND;

this.ChartTable.BackgroundColor1 = Color.LightGray;

[VB]
Me.ChartTable.TableBackgroundMode = _

 SPCGeneralizedTableDisplay.TABLE_SINGLE_COLOR_BACKGROUND

Me.ChartTable.BackgroundColor1 = Color.LightGray

Extracted from the TimeVariableControlCharts.XBarSigma example program

[C#]
this.ChartTable.TableBackgroundMode =

 SPCGeneralizedTableDisplay.TABLE_NO_COLOR_BACKGROUND;

[VB]
Me.ChartTable.TableBackgroundMode = _

 SPCGeneralizedTableDisplay.TABLE_NO_COLOR_BACKGROUND

SPC Variable Control Charts 173

[C#]
this.ChartTable.TableBackgroundMode =

 SPCGeneralizedTableDisplay.TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL;

this.ChartTable.BackgroundColor1 = Color.White;

this.ChartTable.BackgroundColor2 = Color.Gray;

[VB]
Me.ChartTable.TableBackgroundMode =
SPCGeneralizedTableDisplay.TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL

Me.ChartTable.BackgroundColor1 = Color.White

Me.ChartTable.BackgroundColor2 = Color.Gray

Table and Chart Fonts

There are a large number of fonts that you have control over, both the fonts in the table
and the fonts in the chart. The programmer can select a default font (as in the case of non-
US character set), or select individual fonts for different elements of the table and charts.

Table Fonts
The table fonts are accessed through the charts ChartTable property. Below is a list of
accessible table fonts:

Property Name Description
TimeLabelFont The font used in the display of time values in the table.
SampleLabelFont The font used in the display of sample numeric values in the table.
CalculatedLabelFont The font used in the display of calculated values in the table.
StringLabelFont The font used in the display of header string values in the table.
NotesLabelFont The font used in the display of notes values in the table.

Extracted from the example BatchVariableControlCharts.BatchIndividualRangeChart

[C#]
this.ChartTable.SampleLabelFont = new Font("Times", 12, FontStyle.Regular);

[VB]

174 SPC Variable Control Charts

Me.ChartTable.SampleLabelFont = new Font("Times", 12, FontStyle.Regular)

The ChartTable class has a static property,
SPCGeneralizedTableDisplay.DefaultTableFont,that sets the default Font. Use this if
you want to establish a default font for all of the text in a table. This static property must
be set BEFORE the charts Init routine.

Extracted from the example BatchVariableControlCharts.BatchIndividualRangeChart

[C#]
SPCGeneralizedTableDisplay.DefaultTableFont =

 new Font("Microsoft Sans Serif", 10, FontStyle.Regular);

// Initialize the SPCBatchVariableControlChart

this.InitSPCBatchVariableControlChart(charttype, numsamplespersubgroup,

 numdatapointsinview);

.

.

.

[VB]
SPCGeneralizedTableDisplay.DefaultTableFont = _

 new Font("Microsoft Sans Serif", 10, FontStyle.Regular)

‘ Initialize the SPCBatchVariableControlChart

Me.InitSPCBatchVariableControlChart(charttype, numsamplespersubgroup, _

 numdatapointsinview)

.

.

.

Chart Fonts
There are default chart fonts that are static objects in the SPCChartObjects class. They
establish the default fonts for related chart objects and if you change them they need to be
set before the first charts Init.. call. Since these properties are static, any changes to them
will apply to the program as a whole, not just the immediate class.

AxisLabelFont The font used to label the x- and y- axes.
AxisTitleFont The font used for the axes titles.
HeaderFont The font used for the chart title.
SubheadFont The font used for the chart subhead.
ToolTipFont The tool tip font.
AnnotationFont The annotation font.
ControlLimitLabelFont The font used to label the control limits

SPC Variable Control Charts 175

Extracted from the example TimeVariableControlCharts.DynamicXBarRChart

[C#]
SPCChartObjects.AxisTitleFont = new Font("Times", 12, FontStyle.Regular);

SPCChartObjects.ControlLimitLabelFont = new Font("Times", 10, FontStyle.Regular);

this.InitSPCTimeVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

[VB]
SPCChartObjects.AxisTitleFont = new Font("Times", 12, FontStyle.Regular)

SPCChartObjects.ControlLimitLabelFont = new Font("Times", 10, FontStyle.Regular)

Me.InitSPCTimeVariableControlChart(charttype, _

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes)

The chart class has a static property, DefaultTableFont, that sets the default Font string.
Since the chart fonts all default to different sizes, the default font is defined using a string
specifying the name of the font. This static property must be set BEFORE the charts Init
routine.

Extracted from the example Extracted from the example
TimeVariableControlCharts.DynamicXBarRChart

[C#]

SPCTimeVariableControlChart.DefaultChartFontString = "Times";

this.InitSPCTimeVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);.

.

.

[VB]
SPCTimeVariableControlChart.DefaultChartFontString = "Times"

Me.InitSPCTimeVariableControlChart(charttype, _

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes).

Table and Chart Templates

All of the strings displayed in the table and charts use a template unique to the string
type. Numeric strings use a NumericLabel template, time/date strings use a time
TimeLabel template, and so on. These templates permit the programmer to customize the
display of the strings. Listed below are the various templates.

176 SPC Variable Control Charts

SPCChartObjects (Accessed in the charts PrimaryChart and SecondaryChart
properties)
Property Type Description
XValueTemplate NumericLabel The x-value template for the data tooltip.
YValueTemplate NumericLabel The y-value template for the data tooltip.
XTimeValueTemplate TimeLabel x-value template for the data tooltip.
TextTemplate ChartText The text template for the data tooltip.

SPCGeneralizedTableDisplay (Accessed in the charts ChartTable property)
Property Type Description
TimeItemTemplate TimeLabel The TimeLabel object used as a template for

displaying time values in the table.
SampleItemTemplate NumericLabel The NumericLabel object used as a template

for displaying the sample values in the table.
CalculatedItemTemplate NumericLabel The NumericLabel object used as a template

for displaying calculated values in the table.
StringItemTemplate StringLabel The StringLabel object used as a template

for displaying string values in the table.
NotesItemTemplate NotesLabel The NotesLabel object used as a template

for displaying string values in the table.

The most common use for these templates is to set the color attributes of a class of
objects, or decimal precision of a numeric string.

this.ChartTable.SampleItemTemplate.LineColor = Color.Red;

SPC Charts without a Table

If you don’t want any of the items we have designated table itmes, just call the
UseNoTable method. That method removes all of the table items, and displays the
primary and/or secondary charts with a simple title and optional histograms.

This initialization method initializes the most important values in the creation of a SPC
chart.

[VB]
Overloads Public Sub UseNoTable (_
 ByVal primarychart As Boolean, _
 ByVal secondarychart As Boolean, _
 ByVal histograms As Boolean, _
 ByVal title As String, _
)

[C#]
public void UseNoTable (
 bool primarychart,
 bool secondarychart,
 bool histograms,

SPC Variable Control Charts 177

 String title
);

Parameters
primarychart

Set to true to display primary chart.
secondarychart

Set to true to display secondary chart.
histograms

Set to true to display chart histograms
title

Specifies the title for the charts

Extracted from the exaple program SPCApplication1.

[C#]
public void InitializeChart()

{

 // SPC variable control chart type

 int charttype = SPCControlChartData.MEAN_RANGE_CHART;

// Number of datapoints in the view

 int numdatapointsinview = 17;

178 SPC Variable Control Charts

 // Initialize the SPCTimeVariableControlChart

 this.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup,

 numdatapointsinview, timeincrementminutes);

 this.UseNoTable(true,true,true, "Place your chart title here");

 this.EnableScrollBar = true;

 this.ChartAlarmEmphasisMode= SPCChartBase.ALARM_HIGHLIGHT_SYMBOL;

 // training data

 SimulateData(50, 30, 10);

// Calculate the SPC control limits for both graphs of the current SPC chart (X-
Bar R)

 this.AutoCalculateControlLimits();

 // New data added after limits calculated

 SimulateData(150, 30, 15);

 // Scale the y-axis of the X-Bar chart to display all data and control limits

 this.AutoScalePrimaryChartYRange();

 // Scale the y-axis of the Range chart to display all data and control limits

 this.AutoScaleSecondaryChartYRange();

 // Rebuild the chart using the current data and settings

 this.RebuildChartUsingCurrentData();

}

[VB]
Public Sub InitializeChart()

 ‘ Fill parent container

Me.Dock = DockStyle.Fill

 ' SPC variable control chart type

 Dim charttype As Integer = SPCControlChartData.MEAN_RANGE_CHART

 ' Number of datapoints in the view

 Dim numdatapointsinview As Integer = 17

 ' Initialize the SPCTimeVariableControlChart

 Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup,
numdatapointsinview, timeincrementminutes)

SPC Variable Control Charts 179

 Me.UseNoTable(True, True, True, "Place your chart title here")

 Me.EnableScrollBar = True

 Me.ChartAlarmEmphasisMode = SPCChartBase.ALARM_HIGHLIGHT_SYMBOL

 ' Training data to establish limits

 SimulateData(50, 30, 10)

 Me.AutoCalculateControlLimits()

 ' New data

 SimulateData(50, 30, 15)

 ' Scale the y-axis of the X-Bar chart to display all data and control limits

 Me.AutoScalePrimaryChartYRange()

 ' Scale the y-axis of the Range chart to display all data and control limits

 Me.AutoScaleSecondaryChartYRange()

 ' Rebuild the chart using the current data and settings

 Me.RebuildChartUsingCurrentData()

End Sub 'InitializeChart

Chart Position

If the SPC chart does not include frequency histograms on the left (they take up about
20% of the available chart width), you may want to adjust the left and right edges of the
chart using the GraphStartPosX and GraphStopPlotX properties to allow for more
room in the display of the data. This also affects the table layout, because the table
columns must line up with the chart data points.

[C#]
this.GraphStartPosX = 0.1; // start here

this.GraphStopPosX = 0.875; // end here

[VB]
Me.GraphStartPosX = 0.1 ' start here

Me.GraphStopPosX = 0.875 ' end here

There is not much flexibility positioning the top and bottom of the chart. Depending on
the table items enabled, the table starts at the position defined the TableStartPosY

180 SPC Variable Control Charts

property, and continues until all of the table items are displayed. It then offsets the top of
the primary chart with respect to the bottom of the table by the value of the property
GraphTopTableOffset. The top of the secondary chart offsets from the bottom of the
primary chart by the amount of the property InterGraphMargin. The value of the
property GraphBottomPos defines the bottom of the graph. The default values for these
properties are:

[C#]
this.TableStartPosY = 0.00;

this.GraphTopTableOffset = 0.02;

this.InterGraphMargin = 0.075;

this.GraphBottomPos = 0.925;

[VB]
Me.TableStartPosY = 0.00

Me.GraphTopTableOffset = 0.02

Me.InterGraphMargin = 0.075

Me.GraphBottomPos = 0.925

The picture below uses different values for these properties in order to emphasize the
affect that these properties have on the resulting chart.

SPC Variable Control Charts 181

SPC Control Limits

There are two ways to set the SPC control limit for a chart. The first explicitly sets the
limits to values that you calculate on your own, because of some analysis that a quality
engineer does on previously collected data. The second auto-calculates the limits using
the algorithms supplied in this software.

The quick way to set the limit values and limit strings is to use the charts
ChartData.SetControlLimitValues and ChartData.SetControlLimitStrings methods.
This method only works for the default +-3-sigma level control limits, and not any others
you may have added using the charts AddAdditionalControlLimit method discussed in
the Multiple Control Limits section. The data values in the controllimitvalues and
controllimitstrings arrays used to pass the control limit information must be sorted in the
following order:

[SPC_PRIMARY_CONTROL_TARGET,
SPC_PRIMARY_LOWER_CONTROL_LIMIT,
SPC_PRIMARY_UPPER_CONTROL_LIMIT,
SPC_SECONDARY_CONTROL_TARGET,
SPC_SECONDARY_LOWER_CONTROL_LIMIT,
SPC_SECONDARY_UPPER_CONTROL_LIMIT]

Example code extracted from the TimeVariableControlsCharts.MedianRangeChart
example program.
[C#]
double [] controllimitvalues = {42, 30, 53, 10, 0, 22};

this.ChartData.SetControlLimitValues(controllimitvalues);

string [] controllimitstrings = {"XBAR","LCL", "UCL","RBAR","LCL","UCL"};

this.ChartData.SetControlLimitStrings(controllimitstrings);

[VB]
Dim controllimitvalues() As Double = {30, 24, 36, 10, 0, 22}

Me.ChartData.SetControlLimitValues(controllimitvalues)

Dim controllimitstrings() As String = {"XBAR", "LCL", "UCL",

"RBAR", "LCL", "UCL"}

Me.ChartData.SetControlLimitStrings(controllimitstrings)

You can also set the control limit values and control limit text one value at a time using
the ChartData.SetControlLimitValue and ChartData.SetControlLimitString
methods.

A more complicated way to set the control limits explicitly is to first grab a reference to
the SPCControlLimitRecord for a given control limit, and then change the value of that
control limit, and the control limit text, if desired. The example below sets the control

182 SPC Variable Control Charts

limit values and text for the three control limits (target value, upper control limit, and
lower control limit) of the primary chart, and the three control limit values for the
secondary chart.

[C#]
//target control limit primary chart

SPCControlLimitRecord primarytarget =

 ChartData.GetControlLimitRecord(SPCChartObjects.SPC_PRIMARY_CONTROL_TARGET);

primarytarget.ControlLimitValue = 30;

primarytarget.ControlLimitText = "XBAR";

//lower control limit primary chart

SPCControlLimitRecord primarylowercontrollimit =

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_LOWER_CONTROL_LIMI
T);

primarylowercontrollimit.ControlLimitValue = 24;

primarylowercontrollimit.ControlLimitText = "LCL";

//upper control limit primary chart

SPCControlLimitRecord primaryuppercontrollimit =

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_UPPER_CONTROL_LIMI
T);

primaryuppercontrollimit.ControlLimitValue = 36;

primaryuppercontrollimit.ControlLimitText = "UCL";

// Set control limits for secondary chart

//target control limit secondary chart

SPCControlLimitRecord secondarytarget =

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_SECONDARY_CONTROL_TARGET);

secondarytarget.ControlLimitValue = 10;

secondarytarget.ControlLimitText = "RBAR";

//lower control limit secondary chart

SPCControlLimitRecord secondarylowercontrollimit =

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_SECONDARY_LOWER_CONTROL_LI
MIT);

secondarylowercontrollimit.ControlLimitValue = 0;

secondarylowercontrollimit.ControlLimitText = "LCL";

//upper control limit secondary chart

SPCControlLimitRecord secondaryuppercontrollimit =

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_SECONDARY_UPPER_CONTROL_LI
MIT);

secondaryuppercontrollimit.ControlLimitValue = 22;

SPC Variable Control Charts 183

secondaryuppercontrollimit.ControlLimitText = "UCL";

[VB]
'target control limit primary chart

Dim primarytarget As SPCControlLimitRecord = _

 ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_CONTROL_TARGET)

primarytarget.ControlLimitValue = 30

primarytarget.ControlLimitText = "XBAR"

'lower control limit primary chart

Dim primarylowercontrollimit As SPCControlLimitRecord = _

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_LOWER_CONTROL_LIMI
T)

primarylowercontrollimit.ControlLimitValue = 24

primarylowercontrollimit.ControlLimitText = "LCL"

'upper control limit primary chart

Dim primaryuppercontrollimit As SPCControlLimitRecord = _

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_UPPER_CONTROL_LIMI
T)

primaryuppercontrollimit.ControlLimitValue = 36

primaryuppercontrollimit.ControlLimitText = "UCL"

' Set control limits for secondary chart

'target control limit secondary chart

Dim secondarytarget As SPCControlLimitRecord = _

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_SECONDARY_CONTROL_TARGET)

secondarytarget.ControlLimitValue = 10

secondarytarget.ControlLimitText = "RBAR"

‘lower control limit secondary chart

Dim secondarylowercontrollimit As SPCControlLimitRecord = _

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_SECONDARY_LOWER_CONTROL_LI
MIT)

secondarylowercontrollimit.ControlLimitValue = 0

secondarylowercontrollimit.ControlLimitText = "LCL"

'upper control limit secondary chart

Dim secondaryuppercontrollimit As SPCControlLimitRecord = _

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_SECONDARY_UPPER_CONTROL_LI
MIT)

secondaryuppercontrollimit.ControlLimitValue = 22

secondaryuppercontrollimit.ControlLimitText = "UCL"

184 SPC Variable Control Charts

The second way to set the control limits is to call the AutoCalculateControlLimits
method. You must have already added a collection of sampled data values to the charts
ChartData SPC data object before you can call this method, since the method uses the
internal ChartData object to provide the historical values needed in the calculation.

[C#]
// Must have data loaded before any of the Auto.. methods are called

SimulateData();

// Calculate the SPC control limits for both graphs of the current SPC

this.AutoCalculateControlLimits();

[VB]
‘ Must have data loaded before any of the Auto.. methods are called

SimulateData()

‘ Calculate the SPC control limits for both graphs of the current SPC

Me.AutoCalculateControlLimits()

You can add data to the ChartData object, auto-calculate the control limits to establish
the SPC control limits, and continue to add new data values. Alternatively, you can set
the SPC control limits explicitly, as the result of previous runs, using the previously
described ChartData.SetControlLimitValues method, add new sampled data values to
the ChartData object, and after a certain number of updates call the
AutoCalculateControlLimits method to establish new control limits.

[C#]
updateCount++;

this.ChartData.AddNewSampleRecord(timestamp, samples);

if (updateCount > 50) // After 50 sample groups and calculate limits on the fly

{

// Calculate the SPC control limits for the X-Bar part of the current SPC chart

 this.AutoCalculateControlLimits();

 // Scale the y-axis of the X-Bar chart to display all data and control limits

 this.AutoScalePrimaryChartYRange();

 // Scale the y-axis of the Range chart to display all data and control limits

 this.AutoScaleSecondaryChartYRange();

}

[VB]

updateCount += 1

SPC Variable Control Charts 185

Me.ChartData.AddNewSampleRecord(timestamp, samples)

If updateCount > 50 Then ' After 50 sample groups and calculate limits on the fly

 ' Calculate the SPC control limits for the X-Bar part of the current SPC chart

 Me.AutoCalculateControlLimits()

 ' Scale the y-axis of the X-Bar chart to display all data and control limits

 Me.AutoScalePrimaryChartYRange()

 ' Scale the y-axis of the Range chart to display all data and control limits

 Me.AutoScaleSecondaryChartYRange()

End If

The AutoCalculateControlLimits method calculates the control limits for both the
primary and secondary charts. If you want to auto-calculate the control limits for just one
of the charts, call the AutoCalculatePrimaryControlLimits or
AutoCalculateSecondaryControlLimits method.

Need to exclude records from the control limit calculation? Call the
ChartData.ExcludeRecordFromControlLimitCalculations method, passing in true to
exclude the record.

[C#]

for (int i=0; i < 10; i++)

 this.ChartData.ExcludeRecordFromControlLimitCalculations(i,true);

[VB]

Dim i As Integer
For i = 0 To 9
 Me.ChartData.ExcludeRecordFromControlLimitCalculations(i, True)
Next i

Formulas Used in Calculating Control Limits for Variable Control
Charts

The SPC control limit formulas used by AutoCalculateControlLimits in the software
derive from the following sources:

X-Bar R, X-Bar Sigma, EWMA, MA and CuSum - “Introduction to Statistical Quality
Control” by Douglas C. Montgomery, John Wiley and Sons, Inc. 2001.

Median-Range, Individual-Range - “SPC Simplified – Practical Steps to Quality” by
Robert T. Amsden, Productivity Inc., 1998.

SPC Control Chart Nomenclature

186 SPC Variable Control Charts

UCL = Upper Control Limit

LCL = Lower Control Limit

Center line = The target value for the process

=
X = X double-bar - Mean of sample subgroup means (also called the grand average)
_
R = R-bar – Mean of sample subgroup ranges

~
R = R-Median – Median of sample subgroup ranges

S = Sigma – sample standard deviation
_
S = Sigma-bar – Average of sample subgroup sigma’s

M = sample Median
~
M = Median of sample subgroup medians

X-Bar R Chart – Also known as the Mean (or Average) and Range Chart

Control Limits for the X-Bar Chart
 = _
UCL = X + A2 * R

 =
Center line = X

 = _
LCL = X – A2 * R

Control Limits for the R-Chart
 _ _
UCL = R + D4 * R

 _
Center line = R

 _ _

SPC Variable Control Charts 187

LCL = R – D3 * R

Where the constants A2 , D3 and D4 are tabulated in every SPC textbook for various
sample sizes.

X-Bar Sigma – Also known as the X-Bar S Chart

Control Limits for the X-Bar Chart
 = _
UCL = X + A3 * S

 =
Center line = X

 = _
LCL = X – A3 * S

Control Limits for the Sigma-Chart
 _ _
UCL = B4 * S

 _
Center line = S

 _ _
LCL = B3 * S

Where the constants A3 , B3 and B4 are tabulated in every SPC textbook for various
sample sizes.

Median Range – Also known as the Median and Range Chart
Control Limits for the Median Chart
 ~ ~ ~
UCL = M + A2 * R

 ~
Center line = M

 ~ ~ ~
LCL = M – A2 * R

188 SPC Variable Control Charts

Control Limits for the R-Chart
 ~ ~ ~
UCL = R + D4 * R

 ~
Center line = R

 ~ ~ ~
LCL = R – D3 * R

The constants A2 , D3 and D4 for median-range charts are different than those for mean-
range charts. A brief tabulation of the median-range chart specific values appears below

Size A2 D3 D4
2 2.22 0.0 3.87
3 1.26 0.0 2.75
4 0.83 0.0 2.38
5 0.71 0.0 2.18

Individual Range Chart – Also known as the X-R Chart
Control Limits for the X-Bar Chart
 _ _
UCL = X + E2 * R

 =
Center line = X

 _ _
LCL = X – E2 * R

Control Limits for the R-Chart
 _ _
UCL = R + D4 * R

 _
Center line = R

LCL = 0

_
R in this case is the average of the moving ranges.

SPC Variable Control Charts 189

_
X in this case is the mean of the samples

Where the constants E2 and D4 are tabulated in every SPC textbook for various sample
sizes.

EWMA Chart – Exponentially Weighted Moving Average

A EWMA chart showing the variable control limits, actual values and EWMA values

The current value (z) for an EWMA chart is calculated as an exponentially weighted
moving average of all previous samples.

zi = λ * xi + (1 – λ)zi-1

where xi is the sample value for time interval i, the smoothing value λ has the
permissible range of 0 < λ <= 1 and the starting value (required with the first sample at i
= 0) is the process target value, µ0 .

Control Limits for the EWMA Chart

UCL = µ0 + L * σ * Sqrt(((λ /(2- λ)) * (1- (1- λ)2i))

Center line = µ0

190 SPC Variable Control Charts

LCL = µ0 - L * σ * Sqrt(((λ /(2- λ)) * (1- (1- λ)2i))

µ0 is the process mean

σ is the process standard deviation, also known as sigma

λ is the user specified smoothing value. A typical value for λ is 0.05, 0.1 or 0.2

L is the width of the control limits. The typical value for L is in the range of 2.7 to 3.0
(corresponding to the usual three-sigma control limits).

The software does not calculate optimal λ and L values; that is up to you, the
programmer to supply, based on your experience with EWMA charts.
Note that the term (1- (1- λ)2i) approaches unity as i increases. The implies that the
control limits of an EWMA chart will reach approximate steady state values defined by:

UCL = µ0 + L * σ * Sqrt(λ /(2-λ))

LCL = µ0 - L * σ * Sqrt(λ /(2-λ))

It is best if you use the exact equations that take into account the sample period, so that
an out of control process can be detected using the tighter control limits that are
calculated for small i.

If the EWMA chart is used with subgroup sample sizes greater than 1, the value of xi is
replaced by the mean of the corresponding sample subgroup, and the value of σ is
replaced by the value σ/sqrt(n), where in is the sample subgroup size.

You specify λ and L immediately after the initialization call
InitSPCTimeVaraibleControlChart (for a time-based variable control chart), or
InitSPCBatchVariableControlChart (for a batch-based variable control chart). See
the examples MiscTimeBasedControlCharts.EWMAChart, and
MiscBatchBasedControlCharts.EWMAChart. Specify L using the
DefaultControlLimitSigma property, and λ using the EWMA_Lambda property. You
can optionally set the EWMA starting value (EWMA_StartingValue), normally set to the
process mean value, and whether or not to use the steady-state EWMA control limits
(UseSSLimits).

Extracted from the MiscTimeBasedControlCharts.EWMAChart example.

SPC Variable Control Charts 191

[C#]
// SPC variable control chart type

int charttype = SPCControlChartData.EWMA_CHART;

.

.

.

// Initialize the SPCTimeVariableControlChart

this.InitSPCTimeVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, sampleincrement);

this.ChartData.EWMA_StartingValue = 10; // Set to estimate of mean of process
variable.

this.ChartData.EWMA_Lambda = 0.1;

this.DefaultControlLimitSigma = 2.7; // Specifies L value

this.ChartData.EWMA_UseSSLimits = false;

[VB]
' SPC variable control chart type

Private charttype As Integer = SPCControlChartData.EWMA_CHART

.

.

.

' Initialize the SPCTimeVariableControlChart

Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup, _

 numdatapointsinview, timeincrementminutes)

Me.ChartData.EWMA_StartingValue = 10 ' Set to estimate of mean of process
variable.

Me.ChartData.EWMA_Lambda = 0.1

Me.DefaultControlLimitSigma = 2.7

Me.ChartData.EWMA_UseSSLimits = False

192 SPC Variable Control Charts

MA Chart – Moving Average
A MA chart showing the variable control limits, actual values and moving average
values

The current value (z) for a MA chart is calculated as a weighted moving average of the N
most recent samples.

zi = (xi + xi-1 + xi-2 + … xi-N+1)/N

where xi is the sample value for time interval i, and N is the length of the moving
average.

Control Limits for the MA Chart

UCL = µ0 + 3 * σ / sqrt(N)

Center line = µ0

LCL = µ0 - 3 * σ / sqrt(N)

µ0 is the process mean

σ is the process standard deviation, also known as sigma

SPC Variable Control Charts 193

N is the length of the moving average used to calculate the current chart value

The software does not calculate an optimal N value; that is up to you, the programmer to
supply, based on your past experience with MA charts.

For the values of zi where i < N-1, the weighted average and control limits are calculated
using the actual number of samples used in the average, rather than N. This results in
expanded values for the control limits for small i < N-1.

You specify N, the length of the moving average, immediately after the initialization call
InitSPCTimeVaraibleControlChart (for a time-based variable control chart), or
InitSPCBatchVariableControlChart (for a batch-based variable control chart). Set the
process mean and process sigma used in the control limit calculations using the
ProcessMean and ProcessSigma properties.
See the examples MiscTimeBasedControlCharts.MAChart, and
MiscBatchBasedControlCharts.MAChart. Specify N using the MA_w property.

Extracted from the MiscTimeBasedControlCharts.MAChart example.

[C#]
// SPC variable control chart type

int charttype = SPCControlChartData.MA_CHART;

.

.

.

// Initialize the SPCTimeVariableControlChart

this.InitSPCTimeVariableControlChart(charttype,

numsamplespersubgroup, numdatapointsinview, sampleincrement);

// Number of time periods in moving average

this.ChartData.MA_w = 9;

[VB]
' SPC variable control chart type

Private charttype As Integer = SPCControlChartData.MA_CHART

.

.

.

' Initialize the SPCTimeVariableControlChart

Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup, _

 numdatapointsinview, timeincrementminutes)

' Number of time periods in moving average

Me.ChartData.MA_w = 7

Me.ChartData.ProcessMean = 10.0

Me.ChartData.ProcessSigma = 1.0

194 SPC Variable Control Charts

CuSum Chart – Tabular, one-sided, upper and lower cumulative sum
A batch CuSum chart exceeding the H value

The tabular cusum works by accumulating deviations from the process mean, µ0. Positive
deviations are accumulated in the one sided upper cusum statistic, C+, and negative
deviations are accumulated in the one sided lower cusum statistic, C-. The statistics are
calculated using the following equations:

C+

i = max[0, xi - (µ0 + K) + C+ i-1]

C-

i = max[0, (µ0 - K) - xi + C+ i-1]

 where the starting values are C+
0 = C-

0 = 0

µ0 is the process mean

K is the reference (or slack value) that is usually selected to be one-half the magnitude of
the difference between the target value, µ0 , and the out of control process mean value, µ1,
that you are trying to detect.

K = ABS(µ1 - µ0)/2

SPC Variable Control Charts 195

The control limits used by the chart are +-H. If the value of either C+ or C- exceed +- H,
the process is considered out of control.

The software does not calculate an optimal H or K value; that is up to you, the
programmer to supply, based on your past experience with CuSum charts. Typically H is
set equal to 5 times the process standard deviation, σ. Typically K is selected to be one-
half the magnitude of the difference between the target value, µ0 , and the out of control
process mean value, µ1, that you are trying to detect. You specify H and K in the
initialization call InitSPCTimeCusumControlChart (for a time-based variable control
chart), or InitSPCBatchCusumControlChart (for a batch-based variable control
chart). See the examples MiscTimeBasedControlCharts.CUSumChart,
MiscTimeBasedControlCharts.CUSumChart2,
MiscBatchBasedControlCharts.CUSumChart, and
MiscBatchBasedControlCharts.CUSumChart2.

Extracted from MiscTimeBasedControlCharts.CUSumChart

[C#]
int charttype = SPCControlChartData.TABCUSUM_CHART;

double processMean = 10;

double kValue = 0.5;

double hValue = 5;

.

.

// Initialize the SPCTimeVariableControlChart

this.InitSPCTimeCusumControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, sampleincrement,

 processMean, kValue, hValue);

[VB]
Private charttype As Integer = SPCControlChartData.TABCUSUM_CHART

Private processMean As Double = 10

Private kValue As Double = 0.5

Private hValue As Double = 5

.

.

' Initialize the SPCTimeVariableControlChart

Me.InitSPCTimeCusumControlChart(charttype, numsamplespersubgroup, _

 numdatapointsinview, timeincrementminutes, processMean, kValue, hValue)

Or, you can call the InitSPCTimeCusumControlChart method and specify H and K
using immediately afterwards using simple property calls.

196 SPC Variable Control Charts

Extracted from MiscTimeBasedControlCharts.CUSumChart2

[C#]
int charttype = SPCControlChartData.TABCUSUM_CHART;

double processMean = 10;

double kValue = 0.5;

double hValue = 5;

.

.

.

// Initialize the SPCTimeVariableControlChart

this.InitSPCTimeVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, sampleincrement);

this.ChartData.CusumHValue = hValue;

this.ChartData.CusumKValue = kValue;

this.ChartData.ProcessMean = processMean;

[VB]

Private charttype As Integer = SPCControlChartData.TABCUSUM_CHART

Private processMean As Double = 10

Private kValue As Double = 0.5

Private hValue As Double = 5

.

.

.

‘ Initialize the SPCTimeVariableControlChart

Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup, _

 numdatapointsinview, timeincrementminutes)

Me.ChartData.CusumHValue = hValue

Me.ChartData.CusumKValue = kValue

Me.ChartData.ProcessMean = processMean

Variable SPC Control Limits

There can be situations where SPC control limits change in a chart. If the control limits
change, you need to set the following ControlLineMode property to
SPCChartObjects.CONTROL_LINE_VARIABLE, as in the example below. The default
value is SPCChartObjects.CONTROL_LINE_FIXED.

[C#]
this.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

this.SecondaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

SPC Variable Control Charts 197

[VB]
Me.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE

Me.SecondaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE

In the SPCChartObjects.CONTROL_LINE_FIXED case, the current SPC control limit
plots as a horizontal straight line for the entire width of the chart, regardless if the control
limit changes, either explicitly, or using the AutoCalculateControlLimits method. If the
ControlLineMode property is SPCChartObjects.CONTROL_LINE_VARIABLE, the
SPC limit value plots at the value it had when the sample subgroup values updated. If you
change a control limit value, the control limit line will no longer be a straight horizontal
line, instead it will be jagged, or stepped, depending on the changes made.

There are three ways to enter new SPC limit values. See the example program
TimeVaraibleControlCharts.VariableControlLimits for an example of all three methods.
First, you can use the method ChartData.SetControlLimitValues method.

[C#]

double [] initialControlLimits = {30, 25, 35, 10, 0, 20};

double [] changeControlLimits = {28, 23, 33, 9, 0, 18};

.

.

this.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

.

.

// Change limits at sample subgroup 10

if (i== 10)

{

 this.ChartData.SetControlLimitValues(changeControlLimits);

}

this.ChartData.AddNewSampleRecord(timestamp, samples, notesstring);

198 SPC Variable Control Charts

[VB]

Dim initialControlLimits() As Double = {30, 25, 35, 10, 0, 20}

Dim changeControlLimits() As Double = {28, 23, 33, 9, 0, 18}

.

.

Me.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE

.

.

' Change limits at sample subgroup 10

If i = 10 Then

 Me.ChartData.SetControlLimitValues(changeControlLimits)

End If

Me.ChartData.AddNewSampleRecord(timestamp, samples, notesstring)

Second, you can use the AutoCalculateControlLimits method. You must have already
added a collection of sampled data values to the charts ChartData SPC data object
before you can call this method, since the method uses the internal ChartData object to
provide the historical values needed in the calculation.

[C#]

.

.

this.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

.

.

// Variable Control Limits re-calculated every update after 10 using

// AutoCalculateControlLimits

 if (i > 10)

 this.AutoCalculateControlLimits();

 this.ChartData.AddNewSampleRecord(timestamp, samples, notesstring);

[VB]

.

.

Me.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE

.

.

SPC Variable Control Charts 199

' Variable Control Limits re-calculated every update after 10 using

‘ AutoCalculateControlLimits

If i > 10 Then

 Me.AutoCalculateControlLimits()

End If

Me.ChartData.AddNewSampleRecord(timestamp, samples, notesstring)

Last, you can enter the SPC control limits with every new sample subgroup record, using
one of the methods that include a control limits array parameter.

[C#]

double [] initialControlLimits = {30, 25, 35, 10, 0, 20};

double [] changeControlLimits = {28, 23, 33, 9, 0, 18};

DoubleArray variableControlLimits;

.

.

this.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

.

.

// Variable Control Limits updated using AddNewSampleRecord

 if (i== 10) // need to convert changeControlLimits to a DoubleArray

 variableControlLimits = new DoubleArray(changeControlLimits);

 this.ChartData.AddNewSampleRecord(timestamp, samples,

 variableControlLimits, notesstring);

[VB]

Dim initialControlLimits() As Double = {30, 25, 35, 10, 0, 20}

Dim changeControlLimits() As Double = {28, 23, 33, 9, 0, 18}

Dim variableControlLimits As DoubleArray

.

.

Me.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE

.

.

‘ Variable Control Limits updated using AddNewSampleRecord

 If i = 10 Then ' need to convert changeControlLimits to a DoubleArray

 variableControlLimits = New DoubleArray(changeControlLimits)

 End If

 Me.ChartData.AddNewSampleRecord(timestamp, samples, variableControlLimits, _

 notesstring)

200 SPC Variable Control Charts

Multiple SPC Control Limits

The normal SPC control limit displays at the 3-sigma level, both high and low. A
common standard is that if the process variable under observation falls outside of the +-3-
sigma limits the process is out of control. The default setup of our variable control charts
have a high limit at the +3-sigma level, a low limit at the -3-sigma level, and a target
value. There are situations where the quality engineer also wants to display control limits
at the 1-sigma and 2-sigma level. The operator might receive some sort of preliminary
warning if the process variable exceeds a 2-sigma limit.

You are able to add additional control limit lines to a variable control chart, as in the
example program TimeVariableControlCharts.MultiLimitXBarRChart.

There are two steps to adding additional control limits: creating a
SPCControlLimitRecord object for the new control limit, and adding the control limit
to the chart using the charts AddAdditionalControlLimit method.

[C#]

double sigma2 = 2.0;

double sigma1 = 1.0;

// Create multiple limits

// For PrimaryChart

SPC Variable Control Charts 201

SPCControlLimitRecord lcl2 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_LOWERTHAN_LIMIT, 0.0,"LCLR2", "LCLR2");

SPCControlLimitRecord ucl2 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0.0,"UCLR2", "UCLR2");

this.PrimaryChart.AddAdditionalControlLimit(lcl2,

 SPCChartObjects.SPC_LOWER_CONTROL_LIMIT_2, sigma2);

this.PrimaryChart.AddAdditionalControlLimit(ucl2,

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_2, sigma2);

SPCControlLimitRecord lcl3 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_LOWERTHAN_LIMIT, 0.0,"LCLR1", "LCLR1");

SPCControlLimitRecord ucl3 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0.0,"UCLR1", "UCLR1");

this.PrimaryChart.AddAdditionalControlLimit(lcl3,

 SPCChartObjects.SPC_LOWER_CONTROL_LIMIT_1, sigma1);

this.PrimaryChart.AddAdditionalControlLimit(ucl3,

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_1, sigma1);

// For SecondaryChart (high limits only)

SPCControlLimitRecord ucl4 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0,"UCLR2", "UCLR2");

SPCControlLimitRecord ucl5 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0,"UCLR1", "UCLR1");

this.SecondaryChart.AddAdditionalControlLimit(ucl4,

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_2, sigma2);

this.SecondaryChart.AddAdditionalControlLimit(ucl5,

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_1, sigma1);

[VB]

Dim sigma2 As Double = 2.0

Dim sigma1 As Double = 1.0

' Create multiple limits

' For PrimaryChart

Dim lcl2 As New SPCControlLimitRecord(Me.ChartData, _

 SPCControlLimitRecord.SPC_LOWERTHAN_LIMIT, 0.0, "LCLR2", "LCLR2") '

Dim ucl2 As New SPCControlLimitRecord(Me.ChartData, _

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0.0, "UCLR2", "UCLR2")

Me.PrimaryChart.AddAdditionalControlLimit(lcl2, _

202 SPC Variable Control Charts

 SPCChartObjects.SPC_LOWER_CONTROL_LIMIT_2, sigma2)

Me.PrimaryChart.AddAdditionalControlLimit(ucl2, _

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_2, sigma2)

Dim lcl3 As New SPCControlLimitRecord(Me.ChartData, _

 SPCControlLimitRecord.SPC_LOWERTHAN_LIMIT, 0, "LCLR1", "LCLR1")

Dim ucl3 As New SPCControlLimitRecord(Me.ChartData, _

SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0, "UCLR1", "UCLR1")

Me.PrimaryChart.AddAdditionalControlLimit(lcl3, _

 SPCChartObjects.SPC_LOWER_CONTROL_LIMIT_1, sigma1)

Me.PrimaryChart.AddAdditionalControlLimit(ucl3, _

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_1, sigma1)

' For SecondaryChart (high limits only)

Dim ucl4 As New SPCControlLimitRecord(Me.ChartData, _

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0.0, "UCLR2", "UCLR2")

Dim ucl5 As New SPCControlLimitRecord(Me.ChartData, _

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0.0, "UCLR1", "UCLR1")

Me.SecondaryChart.AddAdditionalControlLimit(ucl4, _

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_2, sigma2)

Me.SecondaryChart.AddAdditionalControlLimit(ucl5, _

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_1, sigma1)

Special Note – When you create a SPCControlLimitRecord object, you can specify an
actual limit level. If you do not call the charts AutoCalculateControlLimits method, the
control limit will be displayed at that value. If you do call AutoCalculateControlLimits
method, the auto-calculated value overrides the initial value (0.0 in the examples above).
When you call the charts AddAdditionalControlLimits method, you specify the sigma
level that is used by the AutoCalculateControlLimits to calculate the control limit level.

Western Electric (WE) Runtime Rules

The normal SPC control limit rules display at the 3-sigma level, both high and low. In
this case, a simple threshold test determines if a process is in, or out of control. Other,
more complex tests rely on more complicated decision-making criteria. The most popular
of these are the Western Electric Rules, also know as the WE Rules, or WE Runtime
Rules. These rules utilize historical data for the eight most recent sample intervals and
look for a non-random pattern that can signify that the process is out of control, before
reaching the normal +-3 sigma limits. A processed is considered out of control if any of
the following criteria are met:

SPC Variable Control Charts 203

1. The most recent point plots outside one of the 3-sigma control limits.
2. Two of the three most recent points plot outside and on the same side as one of the 2-
sigma control limits.
3. Four of the five most recent points plot outside and on the same side as one of the 1-
sigma control limits.
4. Eight out of the last eight points plot on the same side of the center line, or target
value. Sometimes you see this as 9 out of 9, or 7 out of 7.

These rules apply to both sides of the center line at a time. Therefore, there are eight
actual alarm conditions: four for the above center line sigma levels and four for the below
center line sigma levels.

While the techniques in the previous section can be used to draw multiple SPC control
limit lines on the graph, at the +-1, 2, 3 sigma levels for example, they do not provide for
the (x out of y) control criteria used in evaluating the WE rules. The software can be
explicitly flagged to evaluate out of control alarm conditions according to the WE Rules,
instead of the default +-3 sigma control criteria. It will create alarm lines at the +-1, 2,
and 3-sigma control limits and the center line. It will also automatically establish the
eight alarm conditions associated with the WE rules. Set the WE rules flag using the
PrimaryChart (or SecondaryChart) UseWERuntimeRules method. When the variable
control charts AutoCalculatedControlLimits method is called, the software
automatically calculates all of the appropriated control limits, based on the current data.
The example below is extracted from the WERulesVariableControlChart.XBarRCharts
example program.

[C#]
this.ChartData.AlarmStateEventHandler +=

 new SPCControlLimitAlarmEventDelegate(this.SPCControlLimitAlarm);

// don't generate alarms in initial data simulation

this.ChartData.AlarmStateEventEnable = false;

this.PrimaryChart.UseWERuntimeRules();

// Must have data loaded before any of the Auto.. methods are called

 SimulateData(100, 20);

// Calculate the SPC control limits for both graphs of the current SPC chart (X-
Bar R)

this.AutoCalculateControlLimits();

// throw out values used to calculate limits

this.ChartData.ResetSPCChartData();

// generate alarms now

this.ChartData.AlarmStateEventEnable = true;

204 SPC Variable Control Charts

// Must have data loaded before any of the Auto.. methods are called

// Check this data against rules

SimulateData(100, 23);

[VB]

AddHandler Me.ChartData.AlarmStateEventHandler, AddressOf Me.SPCControlLimitAlarm

' don't generate alarms in initial data simulation

Me.ChartData.AlarmStateEventEnable = False

Me.PrimaryChart.UseWERuntimeRules()

SimulateData()

' Calculate the SPC control limits for the X-Bar part of the current SPC chart (X-
Bar R)

Me.AutoCalculateControlLimits()

' Scale the y-axis of the X-Bar chart to display all data and control limits

Me.AutoScalePrimaryChartYRange()

' Scale the y-axis of the Range chart to display all data and control limits

Me.AutoScaleSecondaryChartYRange()

' Rebuild the chart using the current data and settings

Me.RebuildChartUsingCurrentData()

' generate alarms starting now

Me.ChartData.AlarmStateEventEnable = True

If you have setup a method for processing alarm events, the software will call the classes
alarm processing method, where you can take appropriate action. If a time interval has
multiple alarms, i.e. more than one of the four WR Runtime rules are broken, only the
one with the lowest WE rule number is vectored to the alarm event processing routine.

[C#]

 this.ChartData.AlarmStateEventHandler +=

 new SPCControlLimitAlarmEventDelegate(this.SPCControlLimitAlarm);

 // don't generate alarms in initial data simulation

 this.ChartData.AlarmStateEventEnable = false;

 this.PrimaryChart.UseWERuntimeRules();

 // Must have data loaded before any of the Auto.. methods are called

 SimulateData(100, 20);

SPC Variable Control Charts 205

 // Calculate the SPC control limits

 this.AutoCalculateControlLimits();

 // throw out values used to calculate limits

 this.ChartData.ResetSPCChartData();

 // generate alarms now

 this.ChartData.AlarmStateEventEnable = true;

 // Must have data loaded before any of the Auto.. methods are called

 // Check this data against rules

 SimulateData(100, 23);

}

private void SPCControlLimitAlarm(object sender, SPCControlLimitAlarmArgs e)

{

 SPCControlLimitRecord alarm = e.EventAlarm;

 double alarmlimitvalue = alarm.ControlLimitValue;

 String alarmlimitvaluestring = alarmlimitvalue.ToString();

 SPCControlChartData spcData = alarm.SPCProcessVar;

 SPCCalculatedValueRecord spcSource = e.SPCSource;

 String calculatedvaluestring = spcSource.CalculatedValue.ToString();

 String message = alarm.AlarmMessage;

 ChartCalendar timestamp = spcData.TimeStamp;

 String timestampstring = timestamp.ToString();

 String notesstring = "\n" + timestampstring + " " + message + "=" + "\n" +

 alarmlimitvaluestring + " Current Value" + "=" + calculatedvaluestring;

 if (alarm.AlarmState)

 // Console.Out.WriteLine(notesstring);

 this.ChartData.AppendNotesString(notesstring, true);

}

[VB]

 AddHandler Me.ChartData.AlarmStateEventHandler, AddressOf Me.SPCControlLimitAlarm

' don't generate alarms in initial data simulation

 Me.ChartData.AlarmStateEventEnable = False

 Me.PrimaryChart.UseWERuntimeRules()

206 SPC Variable Control Charts

 SimulateData()

 ' Calculate the SPC control limits for the X-Bar part of the current SPC chart
(X-Bar R)

 Me.AutoCalculateControlLimits()

 ' Scale the y-axis of the X-Bar chart to display all data and control limits

 Me.AutoScalePrimaryChartYRange()

 ' Scale the y-axis of the Range chart to display all data and control limits

 Me.AutoScaleSecondaryChartYRange()

 ' Rebuild the chart using the current data and settings

 Me.RebuildChartUsingCurrentData()

 ' generate alarms starting now

 Me.ChartData.AlarmStateEventEnable = True

 End Sub 'SPCControlLimitAlarm

 .
 .
 .

Private Sub SPCControlLimitAlarm(ByVal sender As Object, ByVal e As
SPCControlLimitAlarmArgs)

 Dim alarm As SPCControlLimitRecord = e.EventAlarm

 Dim alarmlimitvalue As Double = alarm.ControlLimitValue

 Dim alarmlimitvaluestring As [String] = alarmlimitvalue.ToString()

 Dim spcData As SPCControlChartData = alarm.SPCProcessVar

 Dim spcSource As SPCCalculatedValueRecord = e.SPCSource

 Dim calculatedvaluestring As [String] = spcSource.CalculatedValue.ToString()

 Dim message As [String] = alarm.AlarmMessage

 Dim timestamp As ChartCalendar = spcData.TimeStamp

 Dim timestampstring As [String] = timestamp.ToString()

 Dim notesstring As String =

 "\n" + timestampstring + " " + message + "=" + "\n" + _

 alarmlimitvaluestring + " Current Value" + "=" + calculatedvaluestring

 If alarm.AlarmState Then

 ' Console.Out.WriteLine((timestampstring + " " + message + "=" +
alarmlimitvaluestring + " Current Value" + "=" + calculatedvaluestring))

 Me.ChartData.AppendNotesString(notesstring, True)

 End If

End Sub 'SPCControlLimitAlarm

SPC Variable Control Charts 207

If you want multiple alarms for a time interval vectored to the alarm processing routine
(i.e. it is possible that a time period has WE1, WE2, WE3 and WE4 alarms), set the
SPCControlChartData property to SPCControlChartData.REPORT_ALL_ALARMS.

this.ChartData.AlarmReportMode = SPCControlChartData.REPORT_ALL_ALARMS

The resulting X-Bar R SPC Chart with WE Runtime Rules looks something like this. In
this example, the WR Rules violations are processed by the SPCControlLimitAlarm
method, where the alarm condition is added to the Notes record for the appropriate
sample interval. The Y in the Notes line indicates that an alarm record has been saved for
that time interval, and you can click on the Y to see the note describing the alarm
condition.

Chart Y-Scale

You can set the minimum and maximum values of the two charts y-scales manually using
the PrimaryChart.MinY, PrimaryChart.MaxY, SecondaryChartMinY and
SecondaryChartMaxY properties.

208 SPC Variable Control Charts

[C#]
// Set initial scale of the y-axis of the mean chart

// If you are calling AutoScalePrimaryChartYRange this isn't really needed

 this.PrimaryChart.MinY = 0;

 this.PrimaryChart.MaxY = 40;

// Set initial scale of the y-axis of the range chart

// If you are calling AutoScaleSecondaryChartYRange this isn't really needed

 this.SecondaryChart.MinY = 0;

 this.SecondaryChart.MaxY = 40;

[VB]
' Set initial scale of the y-axis of the mean chart

' If you are calling AutoScalePrimaryChartYRange this isn't really needed

Me.PrimaryChart.MinY = 0

Me.PrimaryChart.MaxY = 40

' Set initial scale of the y-axis of the range chart

' If you are calling AutoScaleSecondaryChartYRange this isn't really needed

Me.SecondaryChart.MinY = 0

Me.SecondaryChart.MaxY = 40

It is easiest to just call the auto-scale routines after the chart has been initialized with
data, and any control limits calculated.

[C#]

// Must have data loaded before any of the Auto.. methods are called

 SimulateData();

// Calculate the SPC control limits for both graphs of the current SPC chart

 this.AutoCalculateControlLimits();

// Scale the y-axis of the X-Bar chart to display all data and control limits

 this.AutoScalePrimaryChartYRange();

// Scale the y-axis of the Range chart to display all data and control limits

 this.AutoScaleSecondaryChartYRange();

[VB]

' Must have data loaded before any of the Auto.. methods are called

SimulateData()

' Calculate the SPC control limits for both graphs of the current SPC chart

SPC Variable Control Charts 209

Me.AutoCalculateControlLimits()

' Scale the y-axis of the X-Bar chart to display all data and control limits

Me.AutoScalePrimaryChartYRange()

' Scale the y-axis of the Range chart to display all data and control limits

Me.AutoScaleSecondaryChartYRange()

Once all of the graph parameters are set, call the method
RebuildChartUsingCurrentData.

[C#]

// Rebuild the chart using the current data and settings

this.RebuildChartUsingCurrentData();

[VB]

// Rebuild the chart using the current data and settings

Me.RebuildChartUsingCurrentData

If, at any future time you change any of the chart properties, you will need to call
RebuildChartUsingCurrentData to force a rebuild of the chart, taking into account the
current properties. RebuildChartUsingCurrentData also invalidates the chart and
forces a redraw. Our examples that update dynamically demonstrate this technique. The
chart is setup with some initial settings and data values. As data is added in real-time to
the graph, the chart SPC limits, and y-scales are constantly recalculated to take into
account new data values. The following code is extracted from the
TimeVariableControlCharts.DynamicXBarRChart example.

[C#]

private void timer1_Tick(object sender, System.EventArgs e)

{

 if (this.IsDesignMode) return;

 ChartCalendar timestamp = (ChartCalendar) startTime.Clone();

 // Use the ChartData sample simulator to make an array of sample data

 DoubleArray samples = this.ChartData.SimulateMeasurementRecord(30);

 // Add the new sample subgroup to the chart

 this.ChartData.AddNewSampleRecord(timestamp, samples);

// Calculate the SPC control limits for the X-Bar part of the current SPC chart

 this.AutoCalculateControlLimits();

210 SPC Variable Control Charts

// Scale the y-axis of the X-Bar chart to display all data and control limits

 this.AutoScalePrimaryChartYRange();

 // Scale the y-axis of the Range chart to display all data and control limits

 this.AutoScaleSecondaryChartYRange();

 // Rebuild and draw the chart using the current data and settings

 this.RebuildChartUsingCurrentData();

 // Simulate timeincrementminutes minute passing

 startTime.Add(ChartObj.MINUTE, timeincrementminutes);

}

[VB]

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick

 If Me.IsDesignMode Then

 Return

 End If

 Dim timestamp As ChartCalendar = CType(startTime.Clone(), ChartCalendar)

 ' Use the ChartData sample simulator to make an array of sample data

 Dim samples As DoubleArray = Me.ChartData.SimulateMeasurementRecord(30)

 ' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

' Calculate the SPC control limits for the X-Bar part of the current SPC chart

 Me.AutoCalculateControlLimits()

 ' Scale the y-axis of the X-Bar chart to display all data and control limits

 Me.AutoScalePrimaryChartYRange()

 ' Scale the y-axis of the Range chart to display all data and control limits

 Me.AutoScaleSecondaryChartYRange()

 ' Rebuild and draw the chart using the current data and settings

 Me.RebuildChartUsingCurrentData()

 ' Simulate timeincrementminutes minute passing

 startTime.Add(ChartObj.MINUTE, timeincrementminutes)

End Sub

Updating Chart Data

The real-time example above demonstrates how the SPC chart data is updated, using the
ChartData.AddNewSampleRecord method. In this case, the chart data updates with
each timer tick event, though it could just as easily be any other type of event. If you have
already collected all of your data and just want to plot it all at once, use a simple loop like
most of our examples do to update the data.

SPC Variable Control Charts 211

[C#]
private void SimulateData()

{

 for (int i=0; i < 200; i++)

 {

 ChartCalendar timestamp =

 (ChartCalendar) startTime.Clone(); // use this for time row, not graphs

 // Use the ChartData sample simulator to make an array of sample data

 DoubleArray samples = this.ChartData.SimulateMeasurementRecord(33, 9);

 // Add the new sample subgroup to the chart

 this.ChartData.AddNewSampleRecord(timestamp, samples);

 // increment simulated time by timeincrementminutes minutes

 startTime.Add(ChartObj.MINUTE, sampleincrement);

 }

}

[VB]
Private Sub SimulateData()

 Dim i As Integer

 For i = 0 To 199

 Dim timestamp As ChartCalendar = CType(startTime.Clone(), ChartCalendar)

 ' use this for time row, not graphs

 ' Use the ChartData sample simulator to make an array of sample data

 Dim samples As DoubleArray = Me.ChartData.SimulateMeasurementRecord(33, 9)

 ' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

 ' increment simulated time by timeincrementminutes minutes

 startTime.Add(ChartObj.MINUTE, sampleincrement)

 Next i

End Sub 'SimulateData

In this example the sample data and the time stamp for each sample record is simulated.
In your application, you will probably be reading the sample record values from some
sort of database or file, along with the actual time stamp for that data.

If you want to include a text note in the sample record, use one of the
ChartData.AddNewSampleRecord overrides that have a notes parameter.

[C#]
private void SimulateData()

{ String notesstring = "";

 for (int i=0; i < 200; i++)

212 SPC Variable Control Charts

 {

 ChartCalendar timestamp = (ChartCalendar) startTime.Clone();

 // Use the ChartData sample simulator to make an array of sample data

 DoubleArray samples = this.ChartData.SimulateMeasurementRecord(30, 10);

 double r = ChartSupport.GetRandomDouble();

 if (r < 0.1) // make a note on every tenth item, on average

 notesstring = "Note for sample subgroup #" +

 i.ToString() +

 ". This sample is flagged as having some sort of problem";

 else

 notesstring = "";

 // Add the new sample subgroup to the chart

 this.ChartData.AddNewSampleRecord(timestamp, samples, notesstring);

 // increment simulated time by timeincrementminutes minutes

 startTime.Add(ChartObj.MINUTE, timeincrementminutes);

 }

}

[VB]
Private Sub SimulateData()

 Dim notesstring As [String] = ""

 Dim i As Integer

 For i = 0 To 199

 Dim timestamp As ChartCalendar = CType(startTime.Clone(), ChartCalendar)

 ' Use the ChartData sample simulator to make an array of sample data

 Dim samples As DoubleArray = Me.ChartData.SimulateMeasurementRecord(30, 10)

 Dim r As Double = ChartSupport.GetRandomDouble()

 If r < 0.1 Then ' make a note on every tenth item, on average

 notesstring = "Note for sample subgroup #" + i.ToString() + _

 ". This sample is flagged as having some sort of problem"

 Else

 notesstring = ""

 End If ' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples, notesstring)

 ' increment simulated time by timeincrementminutes minutes

 startTime.Add(ChartObj.MINUTE, timeincrementminutes)

 Next i

End Sub 'SimulateData

There are situations where you might want to add, change, modify, or append a note for a
sample subgroup after the AddNewSampleRecord method has already been called for
the sample subgroup. This can happen if the AddNewSampleRecord method call

SPC Variable Control Charts 213

generates an alarm event. In the alarm event processing routine, you can add code that
adds a special note to the sample subgroup that generated the alarm. Use the
ChartData.SetNotesString or ChartData.AppendNotesString methods to add notes to
the current record, separate from the AddNewSampleRecord method.

Extracted from the VariableControlCharts.DynamicXBarRChart example program.

[C#]
private void SPCControlLimitAlarm(object sender, SPCControlLimitAlarmArgs e)

{

 SPCControlLimitRecord alarm = e.EventAlarm;

 double alarmlimitvalue = alarm.ControlLimitValue;

 String alarmlimitvaluestring = alarmlimitvalue.ToString();

 SPCControlChartData spcData = alarm.SPCProcessVar;

 SPCCalculatedValueRecord spcSource = e.SPCSource;

 String calculatedvaluestring = spcSource.CalculatedValue.ToString();

 String message = alarm.AlarmMessage;

 ChartCalendar timestamp = spcData.TimeStamp;

 String timestampstring = timestamp.ToString();

 String notesstring = "\n" + timestampstring + " " + message + "=" +

 "\n" + alarmlimitvaluestring + " Current Value" + "=" +

 calculatedvaluestring;

// Append a notes string to the current record.

 if (alarm.AlarmState)

 this.ChartData.AppnedNotesString(notesstring, true);

}

[VB]
Private Sub SPCControlLimitAlarm(ByVal sender As Object, ByVal e As
SPCControlLimitAlarmArgs)

 Dim alarm As SPCControlLimitRecord = e.EventAlarm

 Dim alarmlimitvalue As Double = alarm.ControlLimitValue

 Dim alarmlimitvaluestring As [String] = alarmlimitvalue.ToString()

 Dim spcData As SPCControlChartData = alarm.SPCProcessVar

 Dim spcSource As SPCCalculatedValueRecord = e.SPCSource

 Dim calculatedvaluestring As [String] = spcSource.CalculatedValue.ToString()

 Dim message As [String] = alarm.AlarmMessage

214 SPC Variable Control Charts

 Dim timestamp As ChartCalendar = spcData.TimeStamp

 Dim timestampstring As [String] = timestamp.ToString()

 Dim notesstring As String = "\n" + timestampstring + " " + message _

 + "=" + "\n" + alarmlimitvaluestring + " Current Value" + "=" + _

 calculatedvaluestring

 If alarm.AlarmState Then

 Me.ChartData.AppendNotesString(notesstring, True)

 End If

End Sub 'SPCControlLimitAlarm

Scatter Plots of the Actual Sampled Data

If you want the actual sample data plotted along with the mean or median of the sample
data, set the PrimaryChart.PlotMeasurementValues to true.

[C#]
// Plot individual sampled values as a scatter plot

this.PrimaryChart.PlotMeasurementValues = true;

[VB]
‘ Plot individual sampled values as a scatter plot

Me.PrimaryChart.PlotMeasurementValues = True

Enable the Chart ScrollBar

SPC Variable Control Charts 215

Set the EnableScrollBar property true to enable the chart scrollbar. You will then be
able to window in on 8-20 sample subgroups at a time, from a much larger collection of
measurement data representing hundreds or even thousands of subgroups, and use the
scrollbar to move through the data, similar to paging through a spreadsheet.

[C#]
// enable scroll bar

this.EnableScrollBar = true;

[VB]
‘ enable scroll bar

Me.EnableScrollBar = True

Once you have initialized the chart with data, and the scrollbar has a range associated
with it, you can access the scrollbar using the charts HScrollBar1 property.

SPC Chart Histograms

216 SPC Variable Control Charts

Viewing frequency histograms of both the variation in the primary variable (Mean,
Median, count, or actual value), and the secondary variable (Range, Sigma or Moving
Range) side-by-side with the SPC control chart makes it even easier to find out whether
the variations are the result of natural variations or the result of some systemic change in
the process. You can turn on integrated frequency histograms for either chart using the
PrimaryChart.DisplayFrequencyHistogram and
SecondaryChart.DisplayFrequencyHistogram properties of the chart.

[C#]
// frequency histogram for both charts

this.PrimaryChart.DisplayFrequencyHistogram = true;

this.SecondaryChart.DisplayFrequencyHistogram = true;

[VB]
‘ frequency histogram for both charts

Me.PrimaryChart.DisplayFrequencyHistogram = True

Me.SecondaryChart.DisplayFrequencyHistogram = True

SPC Chart Data and Notes Tooltips

SPC Variable Control Charts 217

You can invoke two types of tooltips using the mouse. The first is a data tooltip. When
you hold the mouse button down over one of the data points, in the primary or secondary
chart, the x and y values for that data point display in a popup tooltip.

Data Tooltip

In the default mode, the data tooltip displays the x,y value of the data point nearest the
mouse click. If the x-axis is a time axis then the x-value is displayed as a time stamp;
otherwise, it is displayed as a simple numeric value, as is the y-value. You can optionally
display subgroup information (sample values, calculated values, process capability values
and notes) in the data tooltip window, under the x,y value, using enable flags in the
primary charts tooltip property.

Extracted from the TimeVariableControlCharts.XBarRChart example.

[C#]
this.PrimaryChart.Datatooltip.EnableCategoryValues = true;

this.PrimaryChart.Datatooltip.EnableProcessCapabilityValues = true;

this.PrimaryChart.Datatooltip.EnableCalculatedValues = true;

this.PrimaryChart.Datatooltip.EnableNotesString = true;

[VB]
Me.PrimaryChart.Datatooltip.EnableCategoryValues = True

Me.PrimaryChart.Datatooltip.EnableProcessCapabilityValues = True

Me.PrimaryChart.Datatooltip.EnableCalculatedValues = True

Me.PrimaryChart.Datatooltip.EnableNotesString = True

218 SPC Variable Control Charts

where

The following properties enable sections of the chart header and table:
PrimaryChart.Datatooltip.EnableCategoryValues
PrimaryChart.Datatooltip.EnableProcessCapabilityValues
PrimaryChart.Datatooltip.EnableCalculatedValues
PrimaryChart.Datatooltip.EnableNotesStrings

Display the category (subgroup sample values) in the data tooltip.
PrimaryChart.Datatooltip.EnableCategoryValues = true

Display the calculated values used in the chart (Mean, range and sum for an Mean-Range
chart).
PrimaryChart.Datatooltip.EnableCalculatedValues = true

Display the process capability (Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu and Ppk) statistics
currently being calculated for the chart.
PrimaryChart.Datatooltip.EnableProcessCapabilityValues = true

Display the current notes string for the sample subgroup.
PrimaryChart.Datatooltip.EnableNotesString = true

The variable control chart below displays a tooltip with all of the enable options above
set true.

SPC Variable Control Charts 219

Data Tooltip with optional display items

If you are displaying the Notes line in the table portion of the chart, the Notes entry for a
sample subgroup will display “Y” if a note was recorded for that sample subgroup, or
“N” if no note was recorded. Notes are recorded using one of the
ChartData.AddNewSampleRecord overrides that include a notes parameter, or by
using the ChartData.SetNotes, or ChartData.AppendNotes methods. See the section
Updating Chart Data. If you click on a “Y” in the Notes row for a sample subgroup, the
complete text of the note for that sample subgroup will display in a RichTextBox,
immediately above the “Y”. You can actually edit the notes in the RichTextBox.

Notes Tooltip

220 SPC Variable Control Charts

[C#]

private void SimulateData()

{ String notesstring = "";

 for (int i=0; i < 200; i++)

 {

 .

 .

 .

 this.ChartData.AddNewSampleRecord(timestamp, samples, notesstring);

 // increment simulated time by timeincrementminutes minutes

 startTime.Add(ChartObj.MINUTE, timeincrementminutes);

 }

}

[VB]

Private Sub SimulateData()

 Dim notesstring As [String] = ""

 Dim i As Integer

 For i = 0 To 199

 .

 .

 .

 Me.ChartData.AddNewSampleRecord(timestamp, samples, notesstring)

 ' increment simulated time by timeincrementminutes minutes

SPC Variable Control Charts 221

 startTime.Add(ChartObj.MINUTE, timeincrementminutes)

 Next i

End Sub 'SimulateData

Both kinds of tooltips are on by default. Turn the tooltips on or off in the program using
the EnableDataToolTip and EnableNotesToolTip flags.

[C#]

// Enable data and notes tooltips

this.EnableDataToolTip = true;

this.EnableNotesToolTip = true;

[VB]

‘ Enable data and notes tooltips

Me.EnableDataToolTip = True

Me.EnableNotesToolTip = True

The notes tooltip has an additional option. In order to make the notes tooltip “editable”,
the tooltip, which is .Net RichEditBox, displays on the first click, and goes away on the
second click. You can click inside the RichTextBox and not worry the tooltip suddenly
disappearing. The notes tooltip works this way by default. If you wish to explicitly set it,
or change it so that the tooltip only displays while the mouse button is held down, as the
data tooltips do, set the ChartData.NotesToolTips.ToolTipMode property to
NotesToolTip.MOUSEDOWN_TOOLTIP, as in the example below.

[C#]
// Enable data and notes tooltips

this.EnableDataToolTip = true;

this.EnableNotesToolTip = true;

this.ChartData.NotesToolTips.ButtonMask = MouseButtons.Right;

// default is MOUSETOGGLE_TOOLTIP

this.ChartData.NotesToolTips.ToolTipMode= NotesToolTip.MOUSEDOWN_TOOLTIP;

[VB]
' Enable data and notes tooltips

Me.EnableDataToolTip = True

Me.EnableNotesToolTip = True

Me.ChartData.NotesToolTips.ButtonMask = MouseButtons.Right

' default is MOUSETOGGLE_TOOLTIP

Me.ChartData.NotesToolTips.ToolTipMode = NotesToolTip.MOUSEDOWN_TOOLTIP

222 SPC Variable Control Charts

Enable Alarm Highlighting

EnableAlarmStatusValues

There are several alarm highlighting options you can turn on and off. The alarm status
line above is turned on/off using the EnableAlarmStatusValues property. We have set it
on by default, so you will have to turn it off if you don’t want it. Each sample interval has
two small boxes that are labeled using one of three different characters. An “H” signifies
a high alarm, a “L” signifies a low alarm, and a “-“ signifies that there is no alarm.

[C#]
// Alarm status line

this.EnableAlarmStatusValues = false;

[VB]
‘Alarm status line

Me.EnableAlarmStatusValues = False

SPC Variable Control Charts 223

ChartAlarmEmphasisMode

[C#]
// Chart alarm emphasis mode

this.ChartAlarmEmphasisMode = SPCChartBase.ALARM_HIGHLIGHT_SYMBOL;

 [VB]
‘ Chart alarm emphasis mode

Me.ChartAlarmEmphasisMode = SPCChartBase.ALARM_HIGHLIGHT_SYMBOL

The scatter plot symbol used to plot a data point in the primary and secondary charts is
normally a fixed color circle. If you turn on the alarm highlighting for chart symbols the
symbol color for a sample interval that is in an alarm condition will change to reflect the
color of the associated alarm line. In the example above, a low alarm (blue circle) occurs
at the beginning of the chart and a high alarm (red circle) occurs at the end of the chart.
Alarm symbol highlighting is turned on by default. To turn it off use the
SPCChartBase.ALARM_NO_HIGHLIGHT_SYMBOL constants.

224 SPC Variable Control Charts

TableAlarmEmphasisMode -

C#]
// Table alarm emphasis mode

this.TableAlarmEmphasisMode = SPCChartBase.ALARM_HIGHLIGHT_BAR;

 [VB]
‘ Table alarm emphasis mode

Me.TableAlarmEmphasisMode = SPCChartBase.ALARM_HIGHLIGHT_BAR

The entire column of the data table can be highlighted when an alarm occurs. There are
four modes associated with this property:

ALARM_HIGHLIGHT_NONE No alarm highlight
ALARM_HIGHLIGHT_TEXT Text alarm highlight
ALARM_HIGHLIGHT_OUTLINE Outline alarm highlight
ALARM_HIGHLIGHT_BAR Bar alarm highlight

The example above uses the ALARM_HIGHLIGHT_BAR mode.

SPC Variable Control Charts 225

The example above uses the ALARM_HIGHLIGHT_TEXT mode

The example above uses the ALARM_HIGHLIGHT_OUTLINE mode. In the table
above, the column outlines in blue and red reflect what is actually displayed in the chart,
whereas in the other TableAlarmEmphasisMode examples the outline just shows where
the alarm highlighting occurs.

The default mode is ALARM_HIGHLIGHT_NONE mode.

AutoLogAlarmsAsNotes

When an alarm occurs, details of the alarm can be automatically logged as a Notes
record. Just set the AutoLogAlarmsAsNotes property to true.

[C#]
this.AutoLogAlarmsAsNotes = true;

[VB]
Me.AutoLogAlarmsAsNotes = True

Creating a Batch-Based Variable Control Chart
Both the SPCTimeVariableContolChart and SPCBatchVariableControlChart derive
from the SPCChartBase and as a result, the two classes are very similar and share 95%
of the same properties. Creating and initializing a batch-based SPC chart is much the
same as that of a time-based SPC chart. See the example program
BatchVariableControlCharts for a variety of batch SPC charts. Derive your base class
from the SPCBatchVariableControlChart class.

[C#]
public class BatchXBarRChart : SPCBatchVariableControlChart

{

 ChartCalendar startTime = new ChartCalendar();

 // SPC variable control chart type

226 SPC Variable Control Charts

 int charttype = SPCControlChartData.MEAN_RANGE_CHART;

 // Number of samples per sub group

 int numsamplespersubgroup = 3;

 // Number of data points in the view

 int numdatapointsinview = 17;

 // The time increment between adjacent subgroups

 int timeincrementminutes = 15;

 public BatchXBarRChart()

 {

 // This call is required by the Windows.Forms Form Designer.

 InitializeComponent();

 this.Dock = DockStyle.Fill;

 DrawChart();

 }

 public void DrawChart()

 {

 // Initialize the SPCBatchVariableControlChart

 this.InitSPCBatchVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview);

 // Change the default horizontal position and width of the chart

 .

 .

 .

 this.RebuildChartUsingCurrentData();

 }

}

[VB]
Public Class BatchXBarRChart

 Inherits com.quinncurtis.spcchartnet.SPCBatchVariableControlChart

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 Me.Dock = DockStyle.Fill

SPC Variable Control Charts 227

 DrawChart()

 End Sub

 .

 .

 .

#End Region

Dim startTime As New ChartCalendar()

' SPC variable control chart type

Dim charttype As Integer = SPCControlChartData.MEAN_RANGE_CHART

' Number of samples per sub group

Dim numsamplespersubgroup As Integer = 3

' Number of data points in the view

Dim numdatapointsinview As Integer = 17

' The time increment between adjacent subgroups

Dim timeincrementminutes As Integer = 15

Public Sub DrawChart()

 ' Initialize the SPCBatchVariableControlChart

 Me.InitSPCBatchVariableControlChart(charttype, _

 numsamplespersubgroup, numdatapointsinview)

 .

 .

 .

 Me.RebuildChartUsingCurrentData()

End Sub 'DrawChart

Establish the control chart type (Mean Range (X-Bar R), Median Range, X-Bar Sigma
(Mean Sigma), Individual Range, EWMA, MA, or CuSum) using the variable control
charts InitSPCBatchVariableControlChart (or InitSPCBatchCusumControlChart if
you are creating a cusum chart) initialization routine. Note that the X-Bar Sigma chart,
with a variable subgroup sample size, is initialized using
InitSPCBatchVariableControlChart with a charttype value of
MEAN_SIGMA_CHART_VSS. X-Bar Sigma charts with sub groups that use a variable
sample size must be updated properly.

SPCBatchVariableControlChart.InitSPCBatchVariableControlChart Method

This initialization method initializes the most important values in the creation of a SPC
chart.

228 SPC Variable Control Charts

[VB]
Overloads Public Sub InitSPCBatchVariableControlChart(_
 ByVal charttype As Integer, _
 ByVal numsamplespersubgroup As Integer, _
 ByVal numdatapointsinview As Integer, _
)

[C#]
public void InitSPCBatchVariableControlChart(
 int charttype,
 int numsamplespersubgroup,
 int numdatapointsinview,
);

Parameters
charttype

The SPC chart type parameter. Use one of the SPCControlChartData SPC chart
types: MEAN_RANGE_CHART, MEDIAN_RANGE_CHART,
MEAN_SIGMA_CHART, MEAN_SIGMA_CHART_VSS,
INDIVIDUAL_RANGE_CHART, EWMA_CHART, MA_CHART or
TABCUSUM_CHART.

numsamplespersubgroup
Specifies the number of samples that make up a sample subgroup.

numdatapointsinview
Specifies the number of sample subgroups displayed in the graph at one time.

Update the chart data using a ChartData.AddNewSampleRecord override that has the
batch number (batchCounter below) as the first parameter. Even though a time stamp
value is also used in the AddNewSampleRecord method, it is not used in the actual
graph. Instead, it is used as the time stamp for the batch in the table portion of the chart.
The following code is extracted from the BatchVariableControlChart.
BatchDynXBarSigmaChart example program.

SPC Variable Control Charts 229

[C#]
private void SimulateData()

{

 // batch number for a given sample subgroup

 int batchCounter = 0;

 for (int i=0; i < 200; i++)

 {

 // Important to make a new ChartCalendar object each time

 ChartCalendar timestamp = (ChartCalendar) startTime.Clone();

 // Simulate a sample subgroup record

 DoubleArray samples = this.ChartData.SimulateMeasurementRecord(30, 10);

 // Update chart data using i as the batch number

 batchCounter = i;

 // Add a new sample record to the chart data

 this.ChartData.AddNewSampleRecord(batchCounter, timestamp, samples);

 // Simulate passage of timeincrementminutes minutes

 startTime.Add(ChartObj.MINUTE, timeincrementminutes);
 }

}

[VB]
Private Sub SimulateData()

 ' batch number for a given sample subgroup

 Dim batchCounter As Integer = 0

230 SPC Variable Control Charts

 Dim i As Integer

 For i = 0 To 199

 ' Important to make a new ChartCalendar object each time

 Dim timestamp As ChartCalendar = CType(startTime.Clone(), ChartCalendar)

 ' Simulate a sample subgroup record

 Dim samples As DoubleArray = Me.ChartData.SimulateMeasurementRecord(30, 10)

 ' Update chart data using i as the batch number

 batchCounter = i

 ' Add a new sample record to the chart data

 Me.ChartData.AddNewSampleRecord(batchCounter, timestamp, samples)

 ' Simulate passage of timeincrementminutes minutes

 startTime.Add(ChartObj.MINUTE, timeincrementminutes)

 Next i

End Sub 'SimulateData

Changing the Batch Control Chart X-Axis Labeling Mode

In revisions prior to 2.0, the x-axis tick marks of a batch control chart could only be
labeled with the numeric batch number of the sample subgroup. While batch number
labeling is still the default mode, it is now possible to label the sample subgroup tick
marks using the time stamp of the sample subgroup, or a user-defined string unique to
each sample subgroup.

You may find that labeling every subgroup tick mark with a time stamp, or a user-defined
string, causes the axis labels to stagger because there is not enough room to display the
tick mark label without overlapping its neighbor. In these cases you may wish to reduce
the number of sample subgroups you show on the page using the numdatapointsinview
variable found in all of the example programs.

// Number of datapoints in the view
int numdatapointsinview = 13;

You can rotate the x-axis labels using the charts XAxisLabelRotation property.

C#

this.XAxisLabelRotation = 90;

VB

Me.XAxisLabelRotation = 90

If you rotate the x-axis labels you may need to leave more room between the primary and
secondary graphs, and at the bottom, to allow for the increased height of the labels.

C#

SPC Variable Control Charts 231

this.XAxisLabelRotation = 90;

this.InterGraphMargin = 0.1;

this.GraphBottomPos = 0.85;

VB

Me.XAxisLabelRotation = 90

Me.InterGraphMargin = 0.1

Me.GraphBottomPos = 0.85

Batch Control Chart X-Axis Time Stamp Labeling

Batch X-Bar R Chart using time stamp labeling of the x-axis

Set the x-axis labeling mode using the overall charts XAxisStringLabelMode property,
setting it SPCChartObjects.AXIS_LABEL_MODE_TIME.

[C#]
// enable scroll bar

this.EnableScrollBar = true;

this.EnableCategoryValues = false;

// Label the tick mark with time stamp of sample group

this.XAxisStringLabelMode = SPCChartObjects.AXIS_LABEL_MODE_TIME;

232 SPC Variable Control Charts

[VB]
‘ enable scroll bar

Me.EnableScrollBar = True

Me.EnableCategoryValues = False

‘ Label the tick mark with time stamp of sample group

Me.XAxisStringLabelMode = SPCChartObjects.AXIS_LABEL_MODE_TIME

When updating the chart with sample data, use AddNewSampleRecord overload that has
batch number and a time stamp parameters.

[C#]
this.ChartData.AddNewSampleRecord(batchCounter, timestamp, samples);

[VB]
Me.ChartData.AddNewSampleRecord(batchCounter, timestamp, samples)

See the example program BatchVariableControlCharts.BatchXBarRChart for a complete
example. Reset the axis labeling mode back to batch number labeling by assigning the
XAxisStringLabelMode property to
SPCChartObjects.AXIS_LABEL_MODE_DEFAULT.

SPC Variable Control Charts 233

Batch Control Chart X-Axis User-Defined String Labeling

Batch X-Bar R Chart user-defined string labeling of the x-axis

Set the x-axis labeling mode using the overall charts XAxisStringLabelMode property,
setting it SPCChartObjects.AXIS_LABEL_MODE_STRING.

[C#]
// enable scroll bar

this.EnableScrollBar = true;

this.EnableCategoryValues = false;

// Label the tick mark with user-defined strings

this.XAxisStringLabelMode = SPCChartObjects.AXIS_LABEL_MODE_STRING;

[VB]
‘ enable scroll bar

Me.EnableScrollBar = True

Me.EnableCategoryValues = False

‘ Label the tick mark with user-defined strings

Me.XAxisStringLabelMode = SPCChartObjects. AXIS_LABEL_MODE_STRING

234 SPC Variable Control Charts

Use the AddAxisUserDefinedString method to supply a new string for every new sample
subgroup. It must be called every time the AddNewSampleRecord method is called, or
the user-defined strings will get out of sync with their respective sample subgroup. Reset
the axis labeling mode back to batch number labeling by assigning the
XAxisStringLabelMode property to
SPCChartObjects.AXIS_LABEL_MODE_DEFAULT.

[C#]
this.ChartData.AddNewSampleRecord(batchCounter, timestamp, samples,
variableControlLimits);

// Make a random string to simulate some sort of batch sample group ID

int randomnum= (int) (1000 * ChartSupport.GetRandomDouble());

String batchidstring = "EC" + randomnum.ToString();

this.ChartData.AddAxisUserDefinedString(batchidstring);

[VB]
Me.ChartData.AddNewSampleRecord(batchCounter, timestamp, samples,
variableControlLimits)

Dim randomnum As Integer = CInt((1000 * ChartSupport.GetRandomDouble()))

Dim batchidstring As String = "EC" & randomnum.ToString()

Me.ChartData.AddAxisUserDefinedString(batchidstring)

See the example program BatchVariableControlCharts.VariableControlLimits for a
complete example.

Changing Default Characteristics of the Chart

All Variable Control Charts have two distinct graphs, each with its own set of properties.
The top graph is the Primary Chart, and the bottom graph is the Secondary Chart.

SPC Variable Control Charts 235

Logically enough, the properties of the objects that make up each of these graphs are
stored in properties named PrimaryChart and SecondaryChart. Once the graph is
initialized (using the InitSPCTimeVariableControlChart, or
InitSPCBatchVariableControlChart method), you can modify the default
characteristics of each graph using these properties.

[C#]

// Initialize the SPCTimeVariableControlChart

this.InitSPCTimeVariableControlChart(charttype,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

 .

 .

 .

this.PrimaryChart.XAxis.LineColor = Color.Blue;

this.PrimaryChart.XAxis.LineWidth = 3;

this.SecondaryChart.YAxis1.LineColor = Color.Green;

this.SecondaryChart.YAxis2.LineColor = Color.Red;

this.SecondaryChart.YAxis1.LineWidth = 3;

this.SecondaryChart.YAxis2.LineWidth = 3;

this.PrimaryChart.ProcessVariableData.LineMarkerPlot.LineColor = Color.Black;

this.PrimaryChart.ProcessVariableData.LineMarkerPlot.SymbolAttributes.PrimaryColor
= Color.BlueViolet;

236 SPC Variable Control Charts

this.PrimaryChart.ProcessVariableData.LineMarkerPlot.SymbolAttributes.FillColor =
Color.Beige;

this.PrimaryChart.GraphBackground.FillColor = Color.LightGray;

this.PrimaryChart.PlotBackground.FillColor = Color.LightGoldenrodYellow;

[VB]

' Initialize the SPCTimeVariableControlChart

Me.InitSPCTimeVariableControlChart(charttype, numsamplespersubgroup,
numdatapointsinview, timeincrementminutes)

.

.

.

Me.PrimaryChart.XAxis.LineColor = Color.Blue

Me.PrimaryChart.XAxis.LineWidth = 3

Me.SecondaryChart.YAxis1.LineColor = Color.Green

Me.SecondaryChart.YAxis2.LineColor = Color.Red

Me.SecondaryChart.YAxis1.LineWidth = 3

Me.SecondaryChart.YAxis2.LineWidth = 3

Me.PrimaryChart.ProcessVariableData.LineMarkerPlot.LineColor = Color.Black

Me.PrimaryChart.ProcessVariableData.LineMarkerPlot.SymbolAttributes.PrimaryColor =
Color.BlueViolet

Me.PrimaryChart.ProcessVariableData.LineMarkerPlot.SymbolAttributes.FillColor =
Color.Beige

Me.PrimaryChart.GraphBackground.FillColor = Color.LightGray

The PrimaryChart and SecondaryChart objects are both instances of the
SPCChartObjects class. The SPCChartObjects class contains the objects needed to
display a single graph. Below you will find a summary of the class properties.

Public Instance Properties

AnnotationArray
Get the array of TextObject objects,
representing the annotations of the chart.

AnnotationFont
Set/Get annotation font.

AnnotationNudge
Set/Get the x and y-values use to offset a
data points annotation with respect to the
actual data point.

AxisLabelFont
Set/Get the font used to label the x- and y-
axes.

SPC Variable Control Charts 237

AxisTitleFont
Set/Get the font used for the axes titles.

ControlLabelPosition
Set/Get that numeric label for a control limit
is placed inside, or outside the plot area
INSIDE_PLOTAREA.

ControlLimitData
Get the array of the plot objects associated
with control limits.

Datatooltip
Get a reference to the charts tooltip.

DefaultChartBackgroundColor
Get/Set the default background color for the
graph area.

DefaultNumberControlLimits
Set/Get the number of control limits in the
chart.

DefaultPlotBackgroundColor
Get/Set the default background color for the
plot area.

DisplayChart
Set to true to enable the drawing of this
chart.

DisplayFrequencyHistogram
Set to true to enable the drawing of the
frequency histogram attached to the chart.

FrequencyHistogramChart
Get a reference to the optional frequency
histogram attached to the chart.

GraphBackground
Get a reference to the charts graph
background object.

BatchIncrement
Set/Get increment between adjacent samples
of Batch type charts that use a numeric x-
scale.

BatchStartValue
Set/Get the starting numeric value of the x-
scale for Batch type charts that use a
numeric x-scale.

BatchStopValue
Set/Get the ending numeric value of the x-
scale for Batch type charts that use a
numeric x-scale.

Header
Get a reference to the charts header.

HeaderFont
Set/Get the font used for the chart title.

HistogramStartPos
Set/Get the left edge, using normalized
coordinates, of the frequency histogram
plotting area.

HistogramOffset
Set/Get the offset with respect to the
GraphStartPosX value, using normalized
coordinates, of the frequency histogram
plotting area.

MaxY
Set/Get the maximum value used to scale
the y-axis of the chart.

238 SPC Variable Control Charts

MinY
Set/Get the minimum value used to scale the
y-axis of the chart.

ParentSPCChartBase
Set/Get that parent SPCChartBase object.

PlotBackground
Get a reference to the charts plot
background object.

PlotMeasurementValues
Set to true to enable the plotting of all
sampled values, as a scatter plot, in addition
to the mean or median values.

PPhysTransform1
Gets a reference to the charts physical
coordinate system.

ProcessVariableData
Holds a reference to an object encapsulating
the plot object data associated with the main
variable of the chart.

SampledDataData
Get the array of the sample data.

SubHead
Get a reference to the charts subhead.

SubheadFont
Set/Get the font used for the chart subhead.

TableFont
Set/Get the font used for the data table.

TextTemplate
Get/Set the text template for the data tooltip.

TimeIncrementMinutes
Get/Set the increment between adjacent
samples of charts that use a numeric x-scale.

ToolTipFont
Set/Get tooltip font.

ToolTipSymbol
Get a reference to the charts tooltip symbol.

XAxis
Get a reference to the charts x-axis.

XAxisLab
Get a reference to the charts x-axis labels.

XGrid
Get a reference to the charts x-axis grid.

XValueTemplate
Get/Set the x-value template for the data
tooltip.

YAxis1
Get a reference to the charts left y-axis.

YAxis2
Get a reference to the charts right y-axis.

YAxisLab
Get a reference to the charts left y-axis
labels.

SPC Variable Control Charts 239

YAxisTitle
Get a reference to the charts left y-axis title.

YGrid
Get a reference to the charts y-axis grid.

YValueTemplate
Get/Set the y-value template for the data
tooltip.

The main objects of the graph are labeled in the graph below.

SPC Variable Control Charts 241

7. SPC Attribute Control Charts

SPCTimeAttributeControlChart
SPCBatchAttributeControlChart

Attribute Control Charts are a set of control charts specifically designed for tracking
product defects (also called non-conformities). These types of defects are binary in nature
(yes/no), where a part has one or more defects, or it doesn’t. Examples of defects are
paint scratches, discolorations, breaks in the weave of a textile, dents, cuts, etc. Think of
the last car that you bought. The defects in each sample group are counted and run
through some statistical calculations. Depending on the type of Attribute Control Chart,
the number of defective parts are tracked (p-chart and np-chart), or alternatively, the
number of defects are tracked (u-chart, c-chart). The difference in terminology “number
of defective parts” and “number of defects” is highly significant, since a single part not
only can have multiple defect categories (scratch, color, dent, etc), it can also have
multiple defects per category. A single part may have 0 – N defects. So keeping track of
the number of defective parts is statistically different from keeping track of the number of
defects. This affects the way the control limits for each chart are calculated.

p-Chart - Also known as the Percent or Fraction Defective Parts Chart
For a sample subgroup, the number of defective parts is measured and plotted as either a
percentage of the total subgroup sample size, or a fraction of the total subgroup sample
size. Since the plotted value is a fraction or percent of the sample subgroup size, the size
of the sample group can vary without rendering the chart useless.

np-Chart – Also known as the Number Defective Parts Chart
For a sample subgroup, the number of defective parts is measured and plotted as a simple
count. Statistically, in order to compare number of defective parts for one subgroup with
the other subgroups, this type of chart requires that the subgroup sample size is fixed
across all subgroups.

c-Chart - Also known as the Number of Defects or Number of Non-Conformities
Chart
For a sample subgroup, the number of times a defect occurs is measured and plotted as a
simple count. Statistically, in order to compare number of defects for one subgroup with
the other subgroups, this type of chart requires that the subgroup sample size is fixed
across all subgroups.

u-Chart – Also known as the Number of Defects per Unit or Number of Non-
Conformities per Unit Chart
For a sample subgroup, the number of times a defect occurs is measured and plotted as
either a percentage of the total subgroup sample size, or a fraction of the total subgroup

244 SPC Attribute Control Charts

sample size. Since the plotted value is a fraction or percent of the sample subgroup size,
the size of the sample group can vary without rendering the chart useless.

Time-Based and Batch-Based SPC Charts
Attribute Control Charts are further categorized as either time- or batch- based. Use time-
based SPC charts when data is collected using a subgroup interval corresponding to a
specific time interval. Use batch-based SPC charts when the data subgroup interval is a
sequential batch number that does not correspond to a uniform time interval. The major
difference in these two types of SPC charts is the display of the x-axis. Control charts that
sample using a uniform time interval will generally use a time-based x-axis, with
time/date axis labels. Control charts that sample based on batches will generally use a
numeric-based x-axis, with numeric axis labels.

Time-Based Attribute Control Chart

Note the time-based x-axis.

Batch-Based Attribute Control Chart

Note the numeric based x-axis.

Attribute Control Charts Consist of Only One Graph

SPC Attribute Control Charts 245

Whereas the Variable Control Charts contain two different graphs, which we refer to
generically as the primary and secondary graphs of the chart, Attribute Control Charts
only have a single graph, which we refer to generically as the primary graph of the chart.

Creating an Attribute Control Chart

First, select whether you want to use a time-based attribute control chart (use
SPCTimeAttributeControlChart) or a batch-based attribute control chart (use
SPCBatchAttributeControlChart). Use that class as the base class for your chart. Since
the two classes are very similar and share 95% of all properties in common, only the
SPCTimeAttributeControlChart is discussed in detail, with the differences between the
two classes discussed at the end of the chapter.

[C#]

public class FractionDefectivePartsControlChart :

 com.quinncurtis.spcchartnet.SPCTimeAttributeControlChart

{

 private System.ComponentModel.IContainer components;

 ChartCalendar startTime = new ChartCalendar();

 // SPC attribute control chart type

 int charttype = SPCControlChartData.FRACTION_DEFECTIVE_PARTS_CHART;

 // Number of samples per sub group

 int numsamplespersubgroup = 50;

 // Number of defect categories

 int numcategories = 6;

 // Number of data points in the view

 int numdatapointsinview = 17;

 // The time increment between adjacent subgroups

 int timeincrementminutes = 30;

 public FractionDefectivePartsControlChart()

 {

 // This call is required by the Windows.Forms Form Designer.

 InitializeComponent();

 // Have the chart fill parent client area

 this.Dock = DockStyle.Fill;

 // Define and draw chart

 InitializeChart();

 }

 void InitializeChart ()

 {

246 SPC Attribute Control Charts

 // Initialize the SPCTimeAttributeControlChart

 this.InitSPCTimeAttributeControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

 .

 .

 .

 this.RebuildChartUsingCurrentData();

 }

}

[VB]

Public Class SimpleAttributeControlChart

 Inherits com.quinncurtis.spcchartnet.SPCTimeAttributeControlChart

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 ' Have the chart fill parent client area

 Me.Dock = DockStyle.Fill

 ' Define and draw chart

 InitializeChart ()

 End Sub

.

.

.

#End Region

Dim startTime As New ChartCalendar()

' SPC attribute control chart type

Dim charttype As Integer = SPCControlChartData.FRACTION_DEFECTIVE_PARTS_CHART

' Number of samples per sub group

Dim numsamplespersubgroup As Integer = 50

' Number of defect categories

Dim numcategories As Integer = 5

' Number of data points in the view

SPC Attribute Control Charts 247

 Dim numdatapointsinview As Integer = 17

 ' The time increment between adjacent subgroups

 Dim timeincrementminutes As Integer = 30

 Sub InitializeChart ()

 ' Initialize the SPCTimeAttributeControlChart

 Me.InitSPCTimeAttributeControlChart(charttype, numcategories, _

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes)

 .

 .

 .

 Me.RebuildChartUsingCurrentData()

 End Sub 'DrawChart

 .

 .

 .

End Class

SPCTimeAttributeControlChart Members

SPCTimeAttributeControlChart overview

Public Instance Constructors

SPCTimeAttributeControlChart
Overloaded. Initializes a new instance of the
SPCTimeAttributeControlChart class.

Public Instance Methods

InitSPCTimeAttributeControlChart
Overloaded. Initialize the class for a specific
SPC chart type.

The control chart type (p-, np-, c- and u-charts) is established in the attribute control
charts InitSPCTimeAttributeControlChart initialization routine.

SPCTimeAttributeControlChart.InitSPCTimeAttributeControlChart Method

This initialization method initializes the most important values in the creation of a SPC
chart.

[VB]
Overloads Public Sub InitSPCTimeAttributeControlChart(_
 ByVal charttype As Integer, _
 ByVal numcategories As Integer, _
 ByVal numsamplespersubgroup As Integer, _
 ByVal numdatapointsinview As Integer, _
 ByVal timeincremenminutest As Integer _
)

248 SPC Attribute Control Charts

[C#]
public void InitSPCTimeAttributeControlChart(
 int charttype,
 int numcategories,
 int numsamplespersubgroup,
 int numdatapointsinview,
 int timeincrementminutes
);

Parameters
charttype

Specifies the chart type. Use one of the SPC Attribute Control chart types:
PERCENT_DEFECTIVE_PARTS_CHART,
FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTS_PERUNIT_CHART, NUMBER_DEFECTS_CHART.

numcategories
In Attribute Control Charts this value represents the number of defect categories
used to determine defect counts.

numsamplespersubgroup
In an Attribute Control chart it represents the total sample size per sample
subgroup from which the defect data is counted.

numdatapointsinview
Specifies the number of sample subgroups displayed in the graph at one time.

timeincremenminutes
Specifies the normal time increment between adjacent subgroup samples.

The image below further clarifies how these parameters affect the attribute control chart.

SPC Attribute Control Charts 249

Once the Init routine is called, the chart can be further customized using properties
inherited from SPCBaseChart, described below.

Public Static (Shared) Properties

DefaultChartFontString
Set/Get the default font used in the table
display.

Public Instance Constructors

SPCChartBase
Overloaded. Initializes a new instance of the
SPCChartBase class.

Public Instance Properties

AutoLogAlarmsAsNotes
Set to true to automatically log alarm details in the
sample interval Notes record.

BottomLabelMargin
Get/Set an additional margin, in normalized
coordinates, if only the primary graphs is displayed,
allowing for the x-axis labels

ChartData
Get the object that holds the descriptive text, sampled
and calculated values associated with the control chart.

250 SPC Attribute Control Charts

ChartAlarmEmphasisMode
Set to
SPCChartBaseALARM_HIGHLIGHT_SYMBOL to
highlight the process variable symbol if an alarm
condition exists. Set to Set to
SPCChartBase.ALARM_NO_HIGHLIGHT_SYMBOL
to turn off alarm highlighting.

ChartTable
Get the object that holds the data table information
needed to display the data table along with the chart

DefaultControlLimitSigma
Set/Get that SPC control limits are to be calculated
using the 3 sigma level standard.

EnableAlarmStatusValues
If set true enables the alarm status row of the chart
table.

EnableCalculatedValues
If set true enables the calculated values rows of the data
table

EnableCategoryValues
If set true enables the category or sample values rows
of the data table

EnableDataToolTip
If set true enables data tooltips

EnableInputStringsDisplay
If set true enables the input string rows of the data table

EnableNotes
If set true enables the notes row of the data table

EnableNotesToolTip
If set true enables data tooltips

EnableScrollBar
If set true the scroll bar is added to the bottom of the
chart.

EnableTimeValues
If set true enables the time row of the data table

EnableTotalSamplesValues
If set true enables the total of sampled values row of the
data table

GraphBottomPos
Get/Set the bottom edge, using normalized coordinates,
of the plotting area for the secondary chart

GraphStartPosX
Get/Set the left edge, using normalized coordinates, of
the plotting area for both primary and secondary charts

GraphStartPosY1
Get the top edge, using normalized coordinates, of the
plotting area for the primary chart

GraphStartPosY2
Get the top edge, using normalized coordinates, of the
plotting area for the secondary chart

GraphStopPosX
Get/Set the right edge, using normalized coordinates, of
the plotting area for both primary and secondary charts

GraphStopPosY1
Get the bottom edge, using normalized coordinates, of
the plotting area for the primary chart

SPC Attribute Control Charts 251

GraphStopPosY2
Get the bottom edge, using normalized coordinates, of
the plotting area for the secondary chart

GraphTopTableOffset
Get/Set the offset of the top of the primary chart from
the bottom of the data table, using normalized
coordinates

HeaderStringsLevel
Set/Get the level of header strings to include in the
chart. Use one of the SPCControlChartData header
strings constants: HEADER_STRINGS_LEVEL0,
HEADER_STRINGS_LEVEL1,
HEADER_STRINGS_LEVEL2, or
HEADER_STRINGS_LEVEL3

InterGraphMargin
Get/Set the margin, in normalized coordinates, between
the primary and secondary charts

MultipleMouseListener
Set/Get the MultiMouseListener.

PrimaryChart
Get the object that holds he the chart objects needed to
display the primary chart

ScrollBarBottomPosition
Get/Set the bottom edge, using normalized coordinates,
of the optional scroll bar

ScrollBarPixelHeight
Get/Set the height of the scrollbar in pixels

SecondaryChart
Get the object that holds he the chart objects needed to
display the secondary chart

SPCChartType
Specifies the control chart type: use one of the
SPCControlChartData chart type constants:
MEAN_RANGE_CHART,
MEDIAN_RANGE_CHART,
MEAN_SIGMA_CHART,
MEAN_SIGMA_CHART_VSS,
INDIVIDUAL_RANGE_CHART,
CUSTOM_ATTRIBUTE_CONTROL_CHART,
PERCENT_DEFECTIVE_PARTS_CHART,
FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTS_CHART,
NUMBER_DEFECTS_PERUNIT_CHART .

TableAlarmEmphasisMode
Set the table alarm highlighting to one of the
SPCChartBase table highlight constants:
ALARM_HIGHLIGHT_NONE,
ALARM_HIGHLIGHT_TEXT,
ALARM_HIGHLIGHT_OUTLINE,
ALARM_HIGHLIGHT_BAR

252 SPC Attribute Control Charts

XScaleMode
Set/Get whether the x-axis is time based, or numeric
based.

Public Instance Methods

AddAnnotation
Overloaded. Add a simple annotation to a
data point in the specified SPC chart.

AutoCalculateControlLimits
Using the current sampled data values, high,
target and low control limits are calculated
for both primary and secondary charts using
an algorithm appropriate to the SPC chart
type.

AutoCalculatePrimaryControlLimits
Using the current sampled data values, high,
target and low control limits are calculated
for the primary chart using an algorithm
appropriate to the SPC chart type.

AutoCalculateSecondaryControlLimits
Using the current sampled data values, high,
target and low control limits are calculated
for the primary chart using an algorithm
appropriate to the SPC chart type.

AutoScaleChartYRange
Auto-scale the y-range of the SPC chart so
that all of the sampled data and chart control
limits are within the bounds of the y-axis.

AutoScalePrimaryChartYRange
Auto-scale the y-range of the primary SPC
chart so that all of the sampled data and
chart control limits are within the bounds of
the y-axis.

AutoScaleSecondaryChartYRange
Auto-scale the y-range of the SPC chart so
that all of the sampled data and chart control
limits are within the bounds of the y-axis.

Copy
Overloaded. Copies the source object.

Draw
Overrides the Draw method of the
underlying ChartView class, so that the
scroll bar can be properly repositioned if the
size of the window changes. The graphics
context the chart is drawn to.

InitSPCChartBase
This initialization method initializes the
most important values in the creation of a
SPC chart.

IsTimeScale
Returns true if the coordinate system has a
time based x-axis. The coordinate system of
the chart.

MakeControlLinePlot
Draw a control line, either a simple straight
line, or a variable control line, for the
specified chart.

SPC Attribute Control Charts 253

RebuildChartUsingCurrentData
Rebuild the graph taking into account the
most recent data values.

RescaleGraphsToScrollbar
Rescale primary and secondary charts based
on the position of the value of the scroll bar.
The thumb position of the scroll bar.

ResetSPCChartData
Reset the history buffers of all of the SPC
data objects.

UpdateControlLimitLabel
Creates a numeric label of the control limit,
and adds the numeric label to the spc chart.

Adding New Sample Records for Attribute Control Charts.

Attribute Control Chart Cross Reference
p-chart = FRACTION_DEFECTIVE_PARTS_CHART
 or
 PERCENT_DEFECTIVE_PARTS_CHART

np-chart = NUMBER_DEFECTIVE_PARTS_CHART

c-chart = NUMBER_DEFECTS_CHART

u-chart = NUMBER_DEFECTS_PERUNIT_CHART

Updating p- and np-charts
In attribute control charts, the meaning of the data in the samples array varies, depending
on whether the attribute control chart measures the number of defective parts (p-, and np-
charts), or the total number of defects (u- and c-charts). The major anomaly is that while
the p- and np-charts plot the fraction or number of defective parts, the table portion of the
chart can display defect counts for any number of defect categories (i.e. paint scratches,
dents, burrs, etc.). It is critical to understand that total number of defects, i.e. the sum of
the items in the defect categories for a give sample subgroup, do NOT have to add up to
the number of defective parts for the sample subgroup. Every defective part not only can
have one or more defects, it can have multiple defects of the same defect category. The
total number of defects for a sample subgroup will always be equal to or greater than the
number of defective parts. When using p- and np-charts that display defect category
counts as part of the table, where N is the numcategories parameter in the
InitSPCTimeAttributeControlChart or InitSPCBatchAttributeControlChart
initialization call, the first N elements of the samples array holds the defect count for each
category. The N+1 element of the samples array holds the total defective parts count. For
example, if you initialized the chart with a numcategories parameter to five, signifying
that you had five defect categories, you would use a samples array sized to six, as in the
code below:

[C#]

254 SPC Attribute Control Charts

DoubleArray samples = new DoubleArray(6);

// ChartCalendar initialized with current time by default

ChartCalendar timestamp = new ChartCalendar();

// Place sample values in array

samples[0] = 3; // Number of defects for defect category #1

samples[1] = 0; // Number of defects for defect category #2

samples[2] = 4; // Number of defects for defect category #3

samples[3] = 2; // Number of defects for defect category #4

samples[4] = 3; // Number of defects for defect category #5

samples[5] = 4; // TOTAL number of defective parts in the sample

// Add the new sample subgroup to the chart

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

Dim samples As DoubleArray = New DoubleArray(6)

' ChartCalendar initialized with current time by default

Dim timestamp As ChartCalendar = New ChartCalendar()

' Place sample values in array

samples(0) = 3 ‘ Number of defects for defect category #1

samples(1) = 0 ‘ Number of defects for defect category #2

samples(2) = 4 ‘ Number of defects for defect category #3

samples(3) = 2 ‘ Number of defects for defect category #4

samples(4) = 3 ‘ Number of defects for defect category #5

samples(5) = 4 ‘ TOTAL number of defective parts in the sample

' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

This is obscured in our example programs a bit because we use a special method to
simulate defect data for n- and np-charts. The code below is extracted from our
TimeAttributeControlCharts.NumberDefectivePartsControlChart example program.

[C#]
DoubleArray samples = this.ChartData.SimulateDefectRecord(50 * 0.134,

 SPCControlChartData.NUMBER_DEFECTIVE_PARTS_CHART);

// Add new sample record

this.ChartData.AddNewSampleRecord(timestamp, samples);

SPC Attribute Control Charts 255

[VB]

Dim samples As DoubleArray = Me.ChartData.SimulateDefectRecord(50 * 0.134, _

 SPCControlChartData.NUMBER_DEFECTIVE_PARTS_CHART)

' Add new sample record

Me.ChartData.AddNewSampleRecord(timestamp, samples)

This particular overload for ChartData.SimulateDefectRecord knows that since it is a
NUMBER_DEFECTIVE_PARTS_CHART chart (np-chart), and that since the
ChartData object was setup with five categories in the
InitSPCTimeAttributeControlChart call, that is should return a DoubleArray with (5
+ 1 = 6) elements, the first five elements representing simulated defect counts for the
five defect categories, and the sixth element the simulated defective parts count. The
defect category count data of the samples array is only used in the table part of the
display; the defect category counts play NO role in the actual SPC chart. The only value
that is used in plotting the SPC chart is the last element in the samples array, the defective
parts count for the sample subgroup.

Updating c- and u-charts
In c- and u-charts the number of defective parts is of no consequence. The only thing that
is tracked is the number of defects. Therefore, there is no extra array element tacked onto
the end of the samples array. Each element of the samples array corresponds to the total
number of defects for a given defect category. If the numcategories parameter in the
InitSPCTimeAttributeControlChart or InitSPCBatchAttributeControlChart is
initialized to five, the total number of elements in the samples array should be five. For
example:

[C#]

DoubleArray samples = new DoubleArray(5);

// ChartCalendar initialized with current time by default

ChartCalendar timestamp = new ChartCalendar();

// Place sample values in array

samples[0] = 3; // Number of defects for defect category #1

samples[1] = 0; // Number of defects for defect category #2

samples[2] = 4; // Number of defects for defect category #3

samples[3] = 2; // Number of defects for defect category #4

samples[4] = 3; // Number of defects for defect category #5

// Add the new sample subgroup to the chart

this.ChartData.AddNewSampleRecord(timestamp, samples);

256 SPC Attribute Control Charts

[VB]

Dim samples As DoubleArray = New DoubleArray(5)

' ChartCalendar initialized with current time by default

Dim timestamp As ChartCalendar = New ChartCalendar()

' Place sample values in array

samples(0) = 3 ‘ Number of defects for defect category #1

samples(1) = 0 ‘ Number of defects for defect category #2

samples(2) = 4 ‘ Number of defects for defect category #3

samples(3) = 2 ‘ Number of defects for defect category #4

samples(4) = 3 ‘ Number of defects for defect category #5

' Add the new sample subgroup to the chart

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

While the table portion of the display can display defect data broken down into
categories, only the sum of the defects for a given sample subgroup is used in creating the
actual SPC chart. Note that the code below, extracted from the
TimeAttributeControlCharts.NumberDefectsControlChart example, uses a different
ChartData.SimulateDefectRecord method to simulate the defect data.

Chart Header Information, Measured Data and Calculated Value Table

Standard worksheets used to gather and plot SPC data consist of three main parts.

• The first part is the header section, identifying the title of the chart, the monitored

process, the machine operator, part number and other important information specific
to the chart.

• The second part is the measurement data recording and calculation section, organized
as a table recording the sample data and calculated values in a neat, readable fashion.

• The third part plots the calculated SPC values as a SPC chart.

The chart includes options that enable the programmer to customize and automatically
include header information along with a table of the measurement and calculated data, in
the SPC chart.

The following properties enable sections of the chart header and table:

 EnableInputStringsDisplay

EnableCategoryValues
 EnableCalculatedValues
 EnableTotalSamplesValues
 EnableNotes

SPC Attribute Control Charts 257

 EnableTimeValues

The example code below is extracted from the
TimeAttributeControlCharts.SimpleAttributeControlChart example program.

[C#]

void InitializeChart()

{

 // Initialize the SPCTimeAttributeControlChart

 this.InitSPCTimeAttributeControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

 // Set the strings used in the header section of the table

 this.ChartData.Title = "Fraction Defective (p) Chart";

 this.ChartData.PartNumber = "321";

 this.ChartData.ChartNumber="19";

 this.ChartData.PartName= "Pre-paint touchup";

 this.ChartData.TheOperator="S. Kafka";

 // Display the Sampled value rows of the table

 this.EnableInputStringsDisplay= true;

 // Display the Sampled value rows of the table

 this.EnableCategoryValues= true;

258 SPC Attribute Control Charts

 // Display the Calculated value rows of the table

 this.EnableCalculatedValues= true;

 // Display the total samples per subgroup value row

 this.EnableTotalSamplesValues= true;

 // Display the Notes row of the table

 this.EnableNotes= true;

 // Display the time stamp row of the table

 this.EnableTimeValues = true;

 .

 .

 .

 this.RebuildChartUsingCurrentData();

}

[VB]

Sub InitializeChart()

 ' Initialize the SPCTimeAttributeControlChart

 Me.InitSPCTimeAttributeControlChart(charttype, numcategories, _

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes)

 ' Set the strings used in the header section of the table

 Me.ChartData.Title = "Fraction Defective (p) Chart"

 Me.ChartData.PartNumber = "321"

 Me.ChartData.ChartNumber = "19"

 Me.ChartData.PartName = "Pre-paint touchup"

 Me.ChartData.TheOperator = "S. Kafka"

 ' Display the Sampled value rows of the table

 Me.EnableInputStringsDisplay = True

 ' Display the Sampled value rows of the table

 Me.EnableCategoryValues = True

 ' Display the Calculated value rows of the table

 Me.EnableCalculatedValues = True

 ' Display the total samples per subgroup value row

 Me.EnableTotalSamplesValues = True

 ' Display the Notes row of the table

 Me.EnableNotes = True

 ' Display the time stamp row of the table

 Me.EnableTimeValues = True

SPC Attribute Control Charts 259

 Me.RebuildChartUsingCurrentData()

End Sub 'InitializeChart

The input header strings display has four sub-levels that display increasing levels of
information. The input header strings display level is set using the charts
HeaderStringsLevel property. Strings that can be displayed are: Title, PartNumber,
ChartNumber, DateString, PartName, Operation, Machine, SpecificationLimits, Gage,
UnitOfMeasure, ZeroEquals and DateString. The four levels and the information
displayed is listed below:

HEADER_STRINGS_LEVEL0 Display no header information
HEADER_STRINGS_LEVEL1 Display minimal header information: Title,

PartNumber, ChartNumber, DateString
HEADER_STRINGS_LEVEL2 Display most header strings: Title, PartNumber,

ChartNumber, PartName, Operation, Operator,
Machine, DateString

HEADER_STRINGS_LEVEL3 Display all header strings: Title, PartNumber,
ChartNumber, DateString, PartName, Operation,
Machine, SpecificationLimits, Gage, UnitOfMeasure,
ZeroEquals and DateString

The example program TimeAttributeControlCharts.SimpleAttributeControlChart
demonstrates the use of the HeaderStringsLevel property. The example below displays a
minimum set of header strings (HeaderStringsLevel =
SPCControlChartData.HEADER_STRINGS_LEVEL1).

[C#]
// Set the strings used in the header section of the table

this.ChartData.Title = "Fraction Defective (p) Chart";

this.ChartData.PartNumber = "321";

this.ChartData.ChartNumber="19";

this.ChartData.DateString = DateTime.Now.ToString();

this.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL1;

[VB]
' Set the strings used in the header section of the table

Me.ChartData.Title = "Fraction Defective (p) Chart"

Me.ChartData.PartNumber = "321"

Me.ChartData.ChartNumber = "19"

Me.ChartData.DateString = DateTime.Now.ToString()

Me.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL1

260 SPC Attribute Control Charts

The example below displays a maximum set of header strings (HeaderStringsLevel =
SPCControlChartData.HEADER_STRINGS_LEVEL3).

[C#]
// Set the strings used in the header section of the table

this.ChartData.Title = "Fraction Defective (p) Chart";

this.ChartData.PartNumber = "283501";

this.ChartData.ChartNumber="17";

this.ChartData.TheOperator="B. Cornwall";

this.ChartData.PartName= "Left Front Fender";

this.ChartData.Operation = "Painting";

this.ChartData.SpecificationLimits="";

this.ChartData.Machine="#11";

this.ChartData.Gage="";

this.ChartData.UnitOfMeasure = "";

this.ChartData.ZeroEquals="";

this.ChartData.DateString = DateTime.Now.ToString();

this.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL3;

[VB]
' Set the strings used in the header section of the table

Me.ChartData.Title = "Fraction Defective (p) Chart"

Me.ChartData.PartNumber = "283501"

Me.ChartData.ChartNumber = "17"

Me.ChartData.TheOperator = "B. Cornwall"

Me.ChartData.PartName = "Left Front Fender"

Me.ChartData.Operation = "Painting"

Me.ChartData.SpecificationLimits = ""

Me.ChartData.Machine = "#11"

Me.ChartData.Gage = ""

Me.ChartData.UnitOfMeasure = ""

Me.ChartData.ZeroEquals = ""

Me.ChartData.DateString = DateTime.Now.ToString()

Me.HeaderStringsLevel = SPCControlChartData.HEADER_STRINGS_LEVEL3

The identifying string displayed in front of the input header string can be any string that
you want, including non-English language string. For example, if you want the input
header string for the Title to represent a project name:

SPC Attribute Control Charts 261

Project Name: Project XKYZ for PerQuet

Set the properties:

[C#]
this.ChartData.Title = "Project XKYZ for PerQuet";

this.ChartData.TitleHeader = "Project Name:";

[VB]
Me.ChartData.Title = "Project XKYZ for PerQuet"

Me.ChartData.TitleHeader = "Project Name:"

Change other headers using the ChartData properties listed below.

• TitleHeader
• PartNumberHeader
• ChartNumberHeader
• PartNameHeader
• OperationHeader
• OperatorHeader
• MachineHeader
• DateHeader
• SpecificationLimitsHeader
• GageHeader
• UnitOfMeasureHeader
• ZeroEqualsHeader
• NotesHeader

Even though the input header string properties have names like Title, PartNumber,
ChartNumber, etc., those names are arbitrary. They are really just placeholders for the
strings that are placed at the respective position in the table. You can display any
combination of strings that you want, rather than the ones we have selected by default,
based on commonly used standardized SPC Control Charts.

Depending on the control chart type, you may want to customize the category header
strings. In most of our examples, we use the category header strings: Scratch, Burr, Dent,
Seam, and Other, to represent common defect categories. You can change these strings to
anything that you want using the ChartData.SetSampleRowHeaderString method. See
the example program TimeAttributeControlCharts.NumberDefectsControlChart.

262 SPC Attribute Control Charts

[C#]
// Set the table row headers strings for defect categories

this.ChartData.SetSampleRowHeaderString(0, " Scratch");

this.ChartData.SetSampleRowHeaderString(1, " Burr");

this.ChartData.SetSampleRowHeaderString(2, " Dent");

this.ChartData.SetSampleRowHeaderString(3, " Seam");

this.ChartData.SetSampleRowHeaderString(4, " Other");

[VB]
‘ Set the table row headers strings for defect categories

Me.ChartData.SetSampleRowHeaderString(0, " Scratch")

Me.ChartData.SetSampleRowHeaderString(1, " Burr")

Me.ChartData.SetSampleRowHeaderString(2, " Dent")

Me.ChartData.SetSampleRowHeaderString(3, " Seam")

Me.ChartData.SetSampleRowHeaderString(4, " Other")

The ChartTable property of the chart has properties that further customize the chart. The
default table background uses the accounting style green-bar striped background. You
can change this using the ChartTable.TableBackgroundMode property. Set the value
to one of the TableBackgroundMode constants:

TABLE_NO_COLOR_BACKGROUND Constant specifies that the table does not

use a background color.

TABLE_SINGLE_COLOR_BACKGROUND Constant specifies that the table uses a

single color for the background
(backgroundColor1)

TABLE_STRIPED_COLOR_BACKGROUND Constant specifies that the table uses

horizontal stripes of color for the
background (backgroundColor1 and
backgroundColor2)

SPC Attribute Control Charts 263

TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL

Constant specifies that the table uses a
grid background, with
backgroundColor1 the overall
background color and backgroundColor2
the color of the grid lines.

Extracted from the TimeAttributeControlCharts.PercentDefectivePartsControlChart
example program

[C#]
this.ChartTable.TableBackgroundMode =

 SPCGeneralizedTableDisplay.TABLE_STRIPED_COLOR_BACKGROUND;

this.ChartTable.BackgroundColor1 = Color.Bisque;

this.ChartTable.BackgroundColor2 = Color.LightGoldenrodYellow;

[VB]
Me.ChartTable.TableBackgroundMode = _

 SPCGeneralizedTableDisplay.TABLE_STRIPED_COLOR_BACKGROUND

Me.ChartTable.BackgroundColor1 = Color.Bisque

Me.ChartTable.BackgroundColor2 = Color.LightGoldenrodYellow

Extracted from the TimeAttributeControlCharts.NumberDefectivePartsControlChart
example program

264 SPC Attribute Control Charts

[C#]
this.ChartTable.TableBackgroundMode =

 SPCGeneralizedTableDisplay.TABLE_SINGLE_COLOR_BACKGROUND;

this.ChartTable.BackgroundColor1 = Color.LightBlue;

[VB]
Me.ChartTable.TableBackgroundMode = _

 SPCGeneralizedTableDisplay.TABLE_SINGLE_COLOR_BACKGROUND

Me.ChartTable.BackgroundColor1 = Color.LightBlue

Extracted from the TimeAttributeControlCharts.NumberDefectivePartsControlChart
example program

[C#]
this.ChartTable.TableBackgroundMode =

 SPCGeneralizedTableDisplay.TABLE_NO_COLOR_BACKGROUND;

[VB]
Me.ChartTable.TableBackgroundMode = _

SPCGeneralizedTableDisplay.TABLE_NO_COLOR_BACKGROUND

SPC Attribute Control Charts 265

[C#]
this.ChartTable.TableBackgroundMode =

 SPCGeneralizedTableDisplay.TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL;

this.ChartTable.BackgroundColor1 = Color.White;

this.ChartTable.BackgroundColor2 = Color.Gray;

[VB]
Me.ChartTable.TableBackgroundMode =
SPCGeneralizedTableDisplay.TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL

Me.ChartTable.BackgroundColor1 = Color.White

Me.ChartTable.BackgroundColor2 = Color.Gray

Table and Chart Fonts

There are a large number of fonts that you have control over, both the fonts in the table
and the fonts in the chart. The programmer can select a default font (as in the case of non-
US character set), or select individual fonts for different elements of the table and charts.

Table Fonts
The table fonts are accessed through the charts ChartTable property. Below is a list of
accessible table fonts:

TimeLabelFont The font used in the display of time values in the table.
SampleLabelFont The font used in the display of sample numeric values in the table.
CalculatedLabelFont The font used in the display of calculated values in the table.
StringLabelFont The font used in the display of header string values in the table.
NotesLabelFont The font used in the display of notes values in the table.

Extracted from the example
BatchAttributeControlCharts.PercentDefectivePartsControlChart

[C#]
this.ChartTable.SampleLabelFont = new Font("Times", 12, FontStyle.Regular);

[VB]
Me.ChartTable.SampleLabelFont = new Font("Times", 12, FontStyle.Regular)

266 SPC Attribute Control Charts

The ChartTable class has a static property,
SPCGeneralizedTableDisplay.DefaultTableFont, that sets the default Font. Use this
if you want to establish a default font for all of the text in a table. This static property
must be set BEFORE the charts Init routine.

Extracted from the example
BatchAttributeControlCharts.PercentDefectivePartsControlChart

[C#]
SPCGeneralizedTableDisplay.DefaultTableFont =

 new Font("Microsoft Sans Serif", 11, FontStyle.Regular);

// Initialize the SPCBatchVariableControlChart

this.InitSPCBatchAttributeControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview);

.

.

.

[VB]
SPCGeneralizedTableDisplay.DefaultTableFont = _

 new Font("Microsoft Sans Serif", 11, FontStyle.Regular)

‘ Initialize the SPCBatchAttrbiuteControlChart

Me.InitSPCBatchAttributeControlChart(charttype, numcategories, _

 numsamplespersubgroup, numdatapointsinview);

.

.

.

Chart Fonts
There are default chart fonts that are static objects in the SPCChartObjects class. They
establish the default fonts for related chart objects and if you change them they need to be
set before the first charts Init.. call. Since these properties are static, any changes to them
will apply to the program as a whole, not just the immediate class.

AxisLabelFont The font used to label the x- and y- axes.
AxisTitleFont The font used for the axes titles.
HeaderFont The font used for the chart title.
SubheadFont The font used for the chart subhead.
ToolTipFont The tool tip font.
AnnotationFont The annotation font.
ControlLimitLabelFont The font used to label the control limits

SPC Attribute Control Charts 267

Extracted from the example TimeAttributeControlCharts.PercentDefectiveChart

[C#]
SPCChartObjects.AxisTitleFont = new Font("Times", 12, FontStyle.Regular);

SPCChartObjects.ControlLimitLabelFont = new Font("Times", 10, FontStyle.Regular);

this.InitSPCTimeAttributeControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

[VB]
SPCChartObjects.AxisTitleFont = new Font("Times", 12, FontStyle.Regular)

SPCChartObjects.ControlLimitLabelFont = new Font("Times", 10, FontStyle.Regular)

Me.InitSPCTimeAttributeControlChart(charttype, numcategories, _

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes)

The chart class static property, DefaultTableFont, sets the default Font string. Since
the chart fonts all default to different sizes, the default font is defined using a string
specifying the name of the font. This static property must be set BEFORE the charts Init
routine.

Extracted from the example Extracted from the example
TimeAttributeControlCharts.PercentDefectiveChart

[C#]
PercentDefectivePartsControlChart.DefaultChartFontString = "Times";

this.InitSPCTimeAttributeControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

.

.

.

[VB]
PercentDefectivePartsControlChart.DefaultChartFontString = "Times"

Me.InitSPCTimeAttributeControlChart(charttype, numcategories, _

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes)

.

.

These static properties establish the default fonts for a group of objects as a whole. For
example, all charts will have the same x- and y-axis label fonts. You can still change the
individual fonts for an individual object in a specific chart. For example, if in the Primary

268 SPC Attribute Control Charts

Chart you want the x-axis label font to be size 10, and the y-axis label font to be size 14,
you can set them individually after the charts Init.. method has been called.

[C#]
this.InitSPCTimeAttributeControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

.

.

this.PrimaryChart.XAxisLab.TextFont = new Font("Times", 10, FontStyle.Regular);

this.PrimaryChart.YAxisLab.TextFont = new Font("Times", 14, FontStyle.Regular);

[VB]

Me.InitSPCTimeAttributeControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes)

.

.

Me.PrimaryChart.XAxisLab.TextFont = new Font("Times", 10, FontStyle.Regular)

Me.PrimaryChart.YAxisLab.TextFont = new Font("Times", 14, FontStyle.Regular)

Table and Chart Templates

All of the strings displayed in the table and charts use a template unique to the string
type. Numeric strings use a NumericLabel template, time/date strings use a time
TimeLabel template, and so on. These templates permit the programmer to customize the
display of the strings. The various templates are listed below:

SPCChartObjects (Accessed in the charts PrimaryChart and SecondaryChart
properties)
Property Type Description
XValueTemplate NumericLabel The x-value template for the data tooltip.
YValueTemplate NumericLabel The y-value template for the data tooltip.
XTimeValueTemplate TimeLabel x-value template for the data tooltip.
TextTemplate ChartText The text template for the data tooltip.

SPCGeneralizedTableDisplay (Accessed in the charts ChartTable property)
Property Type Description
TimeItemTemplate TimeLabel The TimeLabel object used as a template for

displaying time values in the table.

SampleItemTemplate NumericLabel The NumericLabel object used as a template

for displaying the sample values in the table.

SPC Attribute Control Charts 269

CalculatedItemTemplate NumericLabel The NumericLabel object used as a template
for displaying calculated values in the table.

StringItemTemplate StringLabel The StringLabel object used as a template
for displaying string values in the table.

NotesItemTemplate NotesLabel The NotesLabel object used as a template
for displaying string values in the table.

The most common use for these templates is to set the color attributes of a class of
objects, or the decimal precision of a numeric string.

this.ChartTable.SampleItemTemplate.LineColor = Color.Red;

Chart Position

If the SPC chart does not include frequency histograms on the left (they take up about
20% of the available chart width), you can adjust the left and right edges of the chart
using the GraphStartPosX and GraphStopPlotX properties to allow for more room in
the display of the data. This also affects the table layout, because the table columns must
line up with the chart data points.

[C#]
this.GraphStartPosX = 0.1; // start here

this.GraphStopPosX = 0.875; // end here

[VB]
Me.GraphStartPosX = 0.1 ‘ start here

Me.GraphStopPosX = 0.875 ‘ end here

There is not much flexibility positioning the top and bottom of the chart. Depending on
the table items enabled, the table starts at the position defined by the TableStartPosY
property, and continues until all of the table items are displayed. It then offsets the top of
the primary chart with respect to the bottom of the table by the value of the property
GraphTopTableOffset. The value of the property GraphBottomPos defines the bottom
of the graph. The default values for these properties are:

TableStartPosY = 0.00

GraphTopTableOffset = 0.02

GraphBottomPos = 0.925

The picture below uses different values for these properties in order to emphasize the
affect that these properties have on the resulting chart.

270 SPC Attribute Control Charts

SPC Control Limits

There are two methods you can use to set the SPC control limit for a chart. The first
method explicitly sets the limits to values that you calculate on your own, because of
some analysis that a quality engineer does on previously collected data. The second
method auto-calculates the limits using the algorithms supplied in this software.

The quick way to set the limit values and limit strings is to use the charts
ChartData.SetControlLimitValues and ChartData.SetControlLimitStrings methods.
This method only works for the default +-3-sigma level control limits, and not any others
you may have added using the charts AddAdditionalControlLimit method discussed in
the Multiple Control Limits section. The data values in the controllimitvalues and
controllimitstrings arrays used to pass the control limit information must be sorted in the
following order:

[SPC_PRIMARY_CONTROL_TARGET,
SPC_PRIMARY_LOWER_CONTROL_LIMIT,
SPC_PRIMARY_UPPER_CONTROL_LIMIT]

[C#]
double [] controllimitvalues = {0.13, 0.0, 0.25};

this.ChartData.SetControlLimitValues(controllimitvalues);

string [] controllimitstrings = {"PBAR","LCL", "UCL”};

SPC Attribute Control Charts 271

this.ChartData.SetControlLimitStrings(controllimitstrings);

[VB]
Dim controllimitvalues() As Double = {0.13, 0.0, 0.25}

Me.ChartData.SetControlLimitValues(controllimitvalues)

Dim controllimitstrings() As String = {"PBAR", "LCL", "UCL"}

Me.ChartData.SetControlLimitStrings(controllimitstrings)

You can also set the control limit values and control limit text one value at a time using
the ChartData.SetControlLimitValue and ChartData.SetControlLimitString
methods.

A more complicated way to set the control limits explicitly is to first grab a reference to
the SPCControlLimitRecord for a given control limit, and then change the value of that
control limit, and the control limit text, if desired. The example below sets the control
limit values and text for the three control limits (target value, upper control limit, and
lower control limit) of the primary chart, and the three control limit values for the
secondary chart.

[C#]
// Set control limits for primary chart

//target control limit primary chart

SPCControlLimitRecord primarytarget =

 ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_CONTROL_TARGET);

primarytarget.ControlLimitValue = 0.13;

primarytarget.ControlLimitText = "PBAR";

//lower control limit primary chart

SPCControlLimitRecord primarylowercontrollimit =

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_LOWER_CONTROL_LIMIT);

primarylowercontrollimit.ControlLimitValue = 0.0;

primarylowercontrollimit.ControlLimitText = "LCL";

//upper control limit primary chart

SPCControlLimitRecord primaryuppercontrollimit =

 ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_UPPER_CONTROL_LIMIT);

primaryuppercontrollimit.ControlLimitValue = 0.25;

primaryuppercontrollimit.ControlLimitText = "UCL";

[VB]
' Set control limits for primary chart

272 SPC Attribute Control Charts

'target control limit primary chart

Dim primarytarget As SPCControlLimitRecord = _

 ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_CONTROL_TARGET)

primarytarget.ControlLimitValue = 0.13

primarytarget.ControlLimitText = "PBAR"

'lower control limit primary chart

Dim primarylowercontrollimit As SPCControlLimitRecord = _

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_LOWER_CONTROL_LIMI
T)

primarylowercontrollimit.ControlLimitValue = 0.0

primarylowercontrollimit.ControlLimitText = "LCL"

'upper control limit primary chart

Dim primaryuppercontrollimit As SPCControlLimitRecord = _

ChartData.GetControlLimitRecord(SPCControlChartData.SPC_PRIMARY_UPPER_CONTROL_LIMI
T)

primaryuppercontrollimit.ControlLimitValue = 0.25

primaryuppercontrollimit.ControlLimitText = "UCL"

The second way to set the control limits is to call the AutoCalculateControlLimits
method. You must have already added a collection of sampled data values to the charts
ChartData SPC data object before you can call this method, since the method uses the
internal ChartData object to provide the historical values needed in the calculation.

[C#]
// Must have data loaded before any of the Auto.. methods are called

SimulateData();

// Calculate the SPC control limits for both graphs of the current SPC

this.AutoCalculateControlLimits();

[VB]
‘ Must have data loaded before any of the Auto.. methods are called

SimulateData()

‘ Calculate the SPC control limits for both graphs of the current SPC

Me.AutoCalculateControlLimits()

SPC Attribute Control Charts 273

You can add data to the ChartData object, auto-calculate the control limits to establish
the SPC control limits, and then continue to add new data values. Alternatively, you can
set the SPC control limits explicitly as the result of previous runs, using the previously
described ChartData.SetControlLimitValues method, and add new sampled data values
to the ChartData object, and after a certain number of updates call the
AutoCalculateControlLimits method to establish new control limits.

[C#]
updateCount++;

this.ChartData.AddNewSampleRecord(timestamp, samples);

if (updateCount > 50) // After 50 sample groups and calculate limits on the fly

{

// Calculate the SPC control limits for the X-Bar part of the current SPC chart

 this.AutoCalculateControlLimits();

 // Scale the y-axis of the X-Bar chart to display all data and control limits

 this.AutoScalePrimaryChartYRange();

}

[VB]
updateCount += 1

Me.ChartData.AddNewSampleRecord(timestamp, samples)

If updateCount > 50 Then ' After 50 sample groups and calculate limits on the fly

 ' Calculate the SPC control limits for the X-Bar part of the current SPC chart

 Me.AutoCalculateControlLimits()

 ' Scale the y-axis of the X-Bar chart to display all data and control limits

 Me.AutoScalePrimaryChartYRange()

End If

Need to exclude records from the control limit calculation? Call the
ChartData.ExcludeRecordFromControlLimitCalculations method, passing in true to
exclude the record.

[C#]
for (int i=0; i < 10; i++)

 this.ChartData.ExcludeRecordFromControlLimitCalculations(i,true);

[VB]
Dim i As Integer
For i = 0 To 9
 Me.ChartData.ExcludeRecordFromControlLimitCalculations(i, True)
Next i

Formulas Used in Calculating Control Limits for Attribute Control
Charts

The SPC control limit formulas used in the software derive from the following source:

274 SPC Attribute Control Charts

Fraction Defective Parts, Number Defective Parts, Number Defects, Number Defects
Per Unit - “Introduction to Statistical Quality Control” by Douglas C. Montgomery, John
Wiley and Sons, Inc. 2001.

Percent Defective Parts - “SPC Simplified – Practical Steps to Quality” by Robert T.
Amsden, Productivity Inc., 1998.

SPC Control Chart Nomenclature

UCL = Upper Control Limit

LCL = Lower Control Limit

Center line = The target value for the process

p = estimate (or average) of the fraction defective (or non-conforming) parts

P = estimate (or average) of the percent defective (or non-conforming) parts

c = estimate (or average) of the number of defects (or nonconformities)

u = estimate (or average) of the number of defects (or nonconformities) per unit

n = number of samples per subgroup

Fraction Defective Parts – Also known as Fraction Non-Conforming or p-chart

UCL = p + 3 * Sqrt (p * (1- p) / n)

Center line = p

LCL = p - 3 * Sqrt (p * (1- p) / n)

Percent Defective Parts – Also known as Percent Non-Conforming or p-chart

SPC Attribute Control Charts 275

UCL = P + 3 * Sqrt (P * (100% - P) / n)

Center line = P

LCL = P - 3 * Sqrt (P * (100% - P) / n)

Number of Defective Parts – Also known as the Number Nonconforming or np-
chart

UCL = (n * p) + 3 * Sqrt ((n * p) * (1- p) / n)

Center line = (n * p)

LCL = (n * p) - 3 * Sqrt ((n * p) * (1- p) / n)

In this case the value (n * p) represents the average number of defective parts per sample
subgroup. Since p is the estimate (or average) of the fraction defective per sample
subgroup, n * p is the average number of defective per sample subgroup. Or you can add
up all the number defective parts in all subgroups and divide by the number of subgroups,
that to will reduce to the average number of defective per sample subgroup

Number of Defects Control Chart – Also known as Number Nonconformities or c-
chart

UCL = c + 3 * Sqrt (c)

Center line = c

LCL = c - 3 * Sqrt (c)

276 SPC Attribute Control Charts

Number of Defects per Unit Control Chart – Also known as Number
Nonconformities per Unit or u-chart

UCL = u + 3 * Sqrt (u / n)

Center line = u

LCL = u - 3 * Sqrt (u / n)

Variable SPC Control Limits

There can be situations where the SPC control limit changes in a chart. If your control
limits change, you need to set the following ControlLineMode property to
SPCChartObjects.CONTROL_LINE_VARIABLE, as in the example below. The default
value is SPCChartObjects.CONTROL_LINE_FIXED.

this.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

In the SPCChartObjects.CONTROL_LINE_FIXED case, the current SPC control limit
plots as a horizontal straight line for the entire width of the chart, regardless if the control
limit changes, either explicitly, or using the AutoCalculateControlLimits method. If the
ControlLineMode property is SPCChartObjects.CONTROL_LINE_VARIABLE, the
SPC limit value plots at the value it had when the sample subgroup values updated. If you
change a control limit value, the control limit line will no longer be a straight horizontal
line, instead it will be jagged, or stepped, depending on the changes made.

SPC Attribute Control Charts 277

There are three ways to enter new SPC limit values. See the example program
TimeAttributeControlCharts.VariableControlLimits for an example of all three methods.
First, you can use the method ChartData.SetControlLimitValues method.

[C#]

double [] initialControlLimits = {0.13, 0.0, 0.27};

double [] changeControlLimits = {0.11, 0.0, 0.25};

.

.

this.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

.

.

// Change limits at sample subgroup 10

if (i== 10)

{

 this.ChartData.SetControlLimitValues(changeControlLimits);

}

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

Dim initialControlLimits As Double() = {0.13, 0.0, 0.27}

Dim changeControlLimits As Double() = {0.11, 0.0, 0.25}

.

.

Me.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE

.

.

' Change limits at sample subgroup 10

If i = 10 Then

 Me.ChartData.SetControlLimitValues(changeControlLimits)

End If

Me.ChartData.AddNewSampleRecord(timestamp, samples)

Second, you can use the AutoCalculateControlLimits method. You must have already
added a collection of sampled data values to the charts ChartData SPC data object
before you can call this method, since the method uses the internal ChartData object to
provide the historical values needed in the calculation.

[C#]

278 SPC Attribute Control Charts

.

.

this.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

.

.

// Variable Control Limits re-calculated every update after 10 using

// AutoCalculateControlLimits

if (i > 10)

 this.AutoCalculateControlLimits();

this.ChartData.AddNewSampleRecord(timestamp, samples);

[VB]

.

.

Me.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE

.

.

' Variable Control Limits re-calculated every update after 10 using

‘ AutoCalculateControlLimits

If i > 10 Then

 Me.AutoCalculateControlLimits()

End If

Me.ChartData.AddNewSampleRecord(timestamp, samples)

Last, you can enter the SPC control limits with every new sample subgroup record, using
one of the methods that include a control limits array parameter.

[C#]

double [] initialControlLimits = {0.13, 0.0, 0.27};

double [] changeControlLimits = {0.11, 0.0, 0.25};

DoubleArray variableControlLimits;.

.

.

this.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

.

.

// Variable Control Limits updated using AddNewSampleRecord

 if (i== 10) // need to convert changeControlLimits to a DoubleArray

SPC Attribute Control Charts 279

 variableControlLimits = new DoubleArray(changeControlLimits);

 this.ChartData.AddNewSampleRecord(timestamp, samples,

 variableControlLimits, notesstring);

[VB]

Dim initialControlLimits As Double() = {0.13, 0.0, 0.27}

Dim changeControlLimits As Double() = {0.11, 0.0, 0.25}

Dim variableControlLimits As DoubleArray

.

.

this.PrimaryChart.ControlLineMode = SPCChartObjects.CONTROL_LINE_VARIABLE;

.

.

' Variable Control Limits updated using AddNewSampleRecord

If i = 10 Then ' need to convert changeControlLimits to a DoubleArray

 variableControlLimits = New DoubleArray(changeControlLimits)

End If

Me.ChartData.AddNewSampleRecord(timestamp, samples, variableControlLimits)

Multiple SPC Control Limits

The normal SPC control limit displays at the 3-sigma level, both high and low.A common
standard is that if the process variable under observation falls outside of the +-3-sigma
limits the process is out of control. The default setup of our variable control charts have a
high limit at the +3-sigma level, a low limit at the -3-sigma level, and a target value.
There are situations where the quality engineer also wants to display control limits at the
1-sigma and 2-sigma level. The operator might receive some sort of preliminary warning
if the process variable exceeds a 2-sigma limit.
.

You are able to add additional control limit lines to an attribute control chart, as in the
example program TimeAttributeControlCharts.MultipleControlLimitsChart.

280 SPC Attribute Control Charts

There are two steps to adding additional control limits: creating a
SPCControlLimitRecord object for the new control limit, and adding the control limit
to the chart using the charts AddAdditionalControlLimit method.

[C#]

double sigma2 = 2.0;

double sigma1 = 1.0;

// Create multiple limits

SPCControlLimitRecord lcl2 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_LOWERTHAN_LIMIT, 0,"LCLR2", "LCLR2");

SPCControlLimitRecord ucl2 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0,"UCLR2", "UCLR2");

this.PrimaryChart.AddAdditionalControlLimit(lcl2,

 SPCChartObjects.SPC_LOWER_CONTROL_LIMIT_2, sigma2);

this.PrimaryChart.AddAdditionalControlLimit(ucl2,

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_2, sigma2);

SPCControlLimitRecord lcl3 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_LOWERTHAN_LIMIT, 5,"LCLR1", "LCLR1");

SPCControlLimitRecord ucl3 = new SPCControlLimitRecord(this.ChartData,

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 35,"UCLR1", "UCLR1");

SPC Attribute Control Charts 281

this.PrimaryChart.AddAdditionalControlLimit(lcl3,

 SPCChartObjects.SPC_LOWER_CONTROL_LIMIT_1, sigma1);

this.PrimaryChart.AddAdditionalControlLimit(ucl3,

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_1, sigma1);

[VB]

Dim sigma2 As Double = 2.0

Dim sigma1 As Double = 1.0

' Create multiple limits

' For PrimaryChart

Dim lcl2 As New SPCControlLimitRecord(Me.ChartData, _

 SPCControlLimitRecord.SPC_LOWERTHAN_LIMIT, 0, "LCLR2", "LCLR2") '

Dim ucl2 As New SPCControlLimitRecord(Me.ChartData, _

 SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0, "UCLR2", "UCLR2")

Me.PrimaryChart.AddAdditionalControlLimit(lcl2, _

 SPCChartObjects.SPC_LOWER_CONTROL_LIMIT_2, sigma2)

Me.PrimaryChart.AddAdditionalControlLimit(ucl2, _

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_2, sigma2)

Dim lcl3 As New SPCControlLimitRecord(Me.ChartData, _

 SPCControlLimitRecord.SPC_LOWERTHAN_LIMIT, 0, "LCLR1", "LCLR1")

Dim ucl3 As New SPCControlLimitRecord(Me.ChartData, _

SPCControlLimitRecord.SPC_GREATERTHAN_LIMIT, 0, "UCLR1", "UCLR1")

Me.PrimaryChart.AddAdditionalControlLimit(lcl3, _

 SPCChartObjects.SPC_LOWER_CONTROL_LIMIT_1, sigma1)

Me.PrimaryChart.AddAdditionalControlLimit(ucl3, _

 SPCChartObjects.SPC_UPPER_CONTROL_LIMIT_1, sigma1)

Special Note – When you create a SPCControlLimitRecord object, you can specify an
actual limit level. If you do not call the charts AutoCalculateControlLimits method, the
control limit will be displayed at that value. If you do call AutoCalculateControlLimits
method, the auto-calculated value overrides the initial value (0.0 in the examples above).
When you call the charts AddAdditionalControlLimits method, you specify the sigma
level that is used by the AutoCalculateControlLimits to calculate the control limit level.
.

Chart Y-Scale

282 SPC Attribute Control Charts

You can set the minimum and maximum values of the two charts y-scales manually using
the PrimaryChart.MinY, PrimaryChart.MaxY, SecondaryChartMinY and
SecondaryChartMaxY properties.

[C#]

// Set initial scale of the y-axis of the mean chart

// If you are calling AutoScalePrimaryChartYRange this isn't really needed

this.PrimaryChart.MinY = 0;

this.PrimaryChart.MaxY = 40;

[VB]

' Set initial scale of the y-axis of the mean chart

' If you are calling AutoScalePrimaryChartYRange this isn't really needed

Me.PrimaryChart.MinY = 0

Me.PrimaryChart.MaxY = 40

It is easiest to just call the auto-scale routines after the chart has been initialized with
data, and any control limits calculated.

[C#]
// Must have data loaded before any of the Auto.. methods are called

 SimulateData();

// Calculate the SPC control limits for both graphs of the current SPC chart

 this.AutoCalculateControlLimits();

// Scale the y-axis of the X-Bar chart to display all data and control limits

 this.AutoScalePrimaryChartYRange();

[VB]
' Must have data loaded before any of the Auto.. methods are called

SimulateData()

' Calculate the SPC control limits for both graphs of the current SPC chart

Me.AutoCalculateControlLimits()

' Scale the y-axis of the X-Bar chart to display all data and control limits

Me.AutoScalePrimaryChartYRange()

Once all of the graph parameters are set, call the method
RebuildChartUsingCurrentData.

SPC Attribute Control Charts 283

[C#]

// Rebuild the chart using the current data and settings

this.RebuildChartUsingCurrentData();

 [VB]

' Rebuild the chart using the current data and settings

Me.RebuildChartUsingCurrentData()

If, at any future time you change any of the chart properties, you will need to call
RebuildChartUsingCurrentData to force a rebuild of the chart, taking into account the
current properties. RebuildChartUsingCurrentData invalidates the chart and forces a
redraw. Our examples that update dynamically demonstrate this technique. The chart is
setup with some initial settings and data values. As data is added in real-time to the
graph, the chart SPC limits, and y-scales are constantly recalculated to take into account
new data values. The code below is extracted from the
TimeAttributeControlCharts.DynamicAttributeControlChart example program.

[C#]

private void timer1_Tick(object sender, System.EventArgs e)

{

 ChartCalendar timestamp = (ChartCalendar) startTime.Clone();

 // This simulates an assignable defect for each category, the last category

 // is assigned the total number of defective parts, not defects.

 DoubleArray samples = this.ChartData.SimulateDefectRecord(50 * 0.134,

 SPCControlChartData.PERCENT_DEFECTIVE_PARTS_CHART);

 // Add new sample record

 this.ChartData.AddNewSampleRecord(timestamp, samples);

 // Simulate 30 minute passing

 startTime.Add(ChartObj.MINUTE, 30);

 // Calculate the SPC control limits

 this.AutoCalculatePrimaryControlLimits();

 // Scale the y-axis of the SPC chart to display all data and control limits

 this.AutoScalePrimaryChartYRange();

 // Rebuild the chart using the current data and settings

 this.RebuildChartUsingCurrentData();

}

[VB]

284 SPC Attribute Control Charts

Private Sub Timer1_Tick(ByVal sender As System.Object,

 ByVal e As System.EventArgs) Handles Timer1.Tick

 Dim timestamp As ChartCalendar = CType(startTime.Clone(), ChartCalendar)

 ' This simulates an assignable defect for each category, the last category

 ' is assigned the total number of defective parts, not defects.

 Dim samples As DoubleArray = _

 Me.ChartData.SimulateDefectRecord(50 * 0.134, _

 SPCControlChartData.PERCENT_DEFECTIVE_PARTS_CHART)

 ' Add new sample record

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

 ' Simulate 30 minute passing

 startTime.Add(ChartObj.MINUTE, 30)

 ' Calculate the SPC control limits

 Me.AutoCalculatePrimaryControlLimits()

 ' Scale the y-axis of the SPC chart to display all data and control limits

 Me.AutoScalePrimaryChartYRange()

 ' Rebuild the chart using the current data and settings

 Me.RebuildChartUsingCurrentData()

 Me.UpdateDraw()

End Sub 'timer1_Tick

Updating Chart Data

The real-time example above demonstrates how the SPC chart data is updated, using the
ChartData.AddNewSampleRecord method. In this case, the chart data updates with
each timer tick event, though it could just as easily be any other type of event. If you have
already collected all of your data and just want to plot it all at once, use a simple loop like
most of our examples do to update the data.

[C#]

private void SimulateData()

{

 if (this.IsDesignMode) return;

 for (int i=0; i < 200; i++)

 {

 ChartCalendar timestamp = (ChartCalendar) startTime.Clone();

 // This simulates an assignable defect for each category, the last category

 // is assigned the total number of defective parts, not defects.

 DoubleArray samples = this.ChartData.SimulateDefectRecord(50 * 0.134,

 SPCControlChartData.PERCENT_DEFECTIVE_PARTS_CHART);

SPC Attribute Control Charts 285

 // Add new sample record

 this.ChartData.AddNewSampleRecord(timestamp, samples);

 // Simulate 30 minute passing

 startTime.Add(ChartObj.MINUTE, 30);

 }

}

[VB]

Private Sub SimulateData()

 If Me.IsDesignMode Then

 Return

 End If

 Dim i As Integer

 For i = 0 To 199

 Dim timestamp As ChartCalendar = CType(startTime.Clone(), ChartCalendar)

 ' This simulates an assignable defect for each category, the last category

 ' is assigned the total number of defective parts, not defects.

 Dim samples As DoubleArray = _

 Me.ChartData.SimulateDefectRecord(50 * 0.134, _

 SPCControlChartData.PERCENT_DEFECTIVE_PARTS_CHART)

 ' Add new sample record

 Me.ChartData.AddNewSampleRecord(timestamp, samples)

 ' Simulate 30 minute passing

 startTime.Add(ChartObj.MINUTE, 30)

 Next i

End Sub 'SimulateData

In this example the sample data and the time stamp for each sample record is simulated.
In your application, you will probably be reading the sample record values from some
sort of database or file, along with the actual time stamp for that data.

If you want to append a text note to a sample record, use one of the
ChartData.AddNewSampleRecord overrides that have a notes parameter. The code
below is extracted from the
TimeAttributeControlCharts.SimpleAttributeControlChart example.

[C#]
private void SimulateData()

{ String notesstring = "";

 if (this.IsDesignMode) return;

 for (int i=0; i < 200; i++)

 {

286 SPC Attribute Control Charts

 ChartCalendar timestamp = (ChartCalendar) startTime.Clone();

 // This simulates an assignable defect for each category, the last category

 // is assigned the total number of defective parts, not defects.

 DoubleArray samples = this.ChartData.SimulateDefectRecord(50 * 0.134,

 SPCControlChartData.PERCENT_DEFECTIVE_PARTS_CHART);

 double r = ChartSupport.GetRandomDouble();

 if (r < 0.1) // make a note on every tenth item, on average

 notesstring = "Note for sample subgroup #" + i.ToString() +

 ". Spray paint nozzel clogged. Replaced with new, Enois nozzle.";

 else

 notesstring = "";

 // Add new sample record

 this.ChartData.AddNewSampleRecord(timestamp, samples, notesstring);

 // Simulate 30 minute passing

 startTime.Add(ChartObj.MINUTE, 30);

 }

}

[VB]

Private Sub SimulateData() '

 Dim notesstring As [String] = ""

 If Me.IsDesignMode Then

 Return

 End If

 Dim i As Integer

 For i = 0 To 199

 Dim timestamp As ChartCalendar = CType(startTime.Clone(), ChartCalendar)

 ' This simulates an assignable defect for each category, the last category

 ' is assigned the total number of defective parts, not defects.

 Dim samples As DoubleArray = Me.ChartData.SimulateDefectRecord(50 * 0.134, _

 SPCControlChartData.PERCENT_DEFECTIVE_PARTS_CHART)

 Dim r As Double = ChartSupport.GetRandomDouble()

 If r < 0.1 Then ' make a note on every tenth item, on average

 notesstring = "Note for sample subgroup #" + i.ToString() + _

 ". Spray paint nozzel clogged. Replaced with new, Enois nozzle."

 Else

 notesstring = ""

 End If

 ' Add new sample record

 Me.ChartData.AddNewSampleRecord(timestamp, samples, notesstring)

 ' Simulate 30 minute passing

SPC Attribute Control Charts 287

 startTime.Add(ChartObj.MINUTE, 30)

 Next i

End Sub 'SimulateData

Scatter Plots of the Actual Sampled Data

• This option is not applicable for attribute control charts.

Enable Chart ScrollBar

Set the EnableScrollBar property true to enable the chart scrollbar. You will then be
able to window in on 8-20 sample subgroups at a time, from a much larger collection of
measurement data representing hundreds or even thousands of subgroups, and use the
scrollbar to move through the data, similar to paging through a spreadsheet.

[C#]
// enable scroll bar

this.EnableScrollBar = true;

[VB]
' Enable scroll bar

Me.EnableScrollBar = True

288 SPC Attribute Control Charts

SPC Chart Histograms

Viewing frequency histograms of the variation in the primary variable side-by-side with
the SPC control chart makes it even easier to find out whether the variations are the result
of natural variations or the result of some systemic change in the process. You can turn
on integrated frequency histograms for either chart using the
PrimaryChart.DisplayFrequencyHistogram property of the chart.

[C#]
// frequency histogram for both charts

this.PrimaryChart.DisplayFrequencyHistogram = true;

[VB]
' frequency histogram for both charts

Me.PrimaryChart.DisplayFrequencyHistogram = True

SPC Attribute Control Charts 289

SPC Chart Data and Notes Tooltips

You can invoke two types of tooltips using the mouse. The first is a data tooltip. When
you hold the mouse button down over one of the data points in the primary chart, the x
and y values for that data point display in a popup tooltip..

Data Tooltip

If you are displaying the Notes line in the table portion of the chart, the Notes entry for a
sample subgroup displays “Y” if a note was recorded for that sample subgroup, or “N” if
no note was recorded. Notes are recorded using one of the
ChartData.AddNewSampleRecord overrides that include a notes parameter. See the
section Updating Chart Data. If you click on a “Y” in the Notes row for a sample
subgroup, the complete text of the note for that sample subgroup will display in a
RichTextBox, immediately above the “Y”. You can actually edit the notes in the
RichTextBox.

Notes Tooltip

290 SPC Attribute Control Charts

[C#]
private void SimulateData()

{ String notesstring = "";

 if (this.IsDesignMode) return;

 for (int i=0; i < 200; i++)

 {

 .

 .

 .

 // Add new sample record

 this.ChartData.AddNewSampleRecord(timestamp, samples, notesstring);

 // Simulate 30 minute passing

 startTime.Add(ChartObj.MINUTE, 30);

 }

}

[VB]
Private Sub SimulateData()

 Dim notesstring As [String] = ""

 If Me.IsDesignMode Then

 Return

 End If

 Dim i As Integer

 For i = 0 To 199

 .

SPC Attribute Control Charts 291

 .

 .

 ' Add new sample record

 Me.ChartData.AddNewSampleRecord(timestamp, samples, notesstring)

 ' Simulate 30 minute passing

 startTime.Add(ChartObj.MINUTE, 30)

 Next i

End Sub 'SimulateData

Both kinds of tooltips are on by default. Turn the tooltips on or off in the program using
the EnableDataToolTip and EnableNotesToolTip flags.

[C#]
// Enable data and notes tooltips

this.EnableDataToolTip = true;

this.EnableNotesToolTip = true;

[VB]
' Enable data and notes tooltips

Me.EnableDataToolTip = True

Me.EnableNotesToolTip = True

The notes tooltip has an additional option. In order to make the notes tooltip “editable”,
the tooltip, which is .Net RichEditBox, displays on the first click, and goes away on the
second click. You can click inside the RichTextBox and not worry the tooltip suddenly
disappearing. The notes tooltip works this way by default. If you wish to explicitly set it,
or change it so that the tooltip only displays while the mouse button is held down, as the
data tooltips do, set the ChartData.NotesToolTips.ToolTipMode property to
NotesToolTip.MOUSEDOWN_TOOLTIP, as in the example below.

[C#]
// Enable data and notes tooltips

this.EnableDataToolTip = true;

this.EnableNotesToolTip = true;

this.ChartData.NotesToolTips.ButtonMask = MouseButtons.Right;

// default is MOUSETOGGLE_TOOLTIP

this.ChartData.NotesToolTips.ToolTipMode= NotesToolTip.MOUSEDOWN_TOOLTIP;

[VB]
' Enable data and notes tooltips

Me.EnableDataToolTip = True

Me.EnableNotesToolTip = True

292 SPC Attribute Control Charts

Me.ChartData.NotesToolTips.ButtonMask = MouseButtons.Right

' default is MOUSETOGGLE_TOOLTIP

Me.ChartData.NotesToolTips.ToolTipMode = NotesToolTip.MOUSEDOWN_TOOLTIP

Enable Alarm Highlighting

EnableAlarmStatusValues

There are several alarm highlighting options you can turn on and off. The alarm status
line above is turned on/off using the EnableAlarmStatusValues property. We have set it
on by default, so you will have to turn it off if you don’t want it. Each sample interval has
two small boxes that are labeled using one of three different characters. An “H” signifies
a high alarm, a “L” signifies a low alarm, and a “-“ signifies that there is no alarm.

[C#]
// Alarm status line

this.EnableAlarmStatusValues = false;

[VB]
‘Alarm status line

Me.EnableAlarmStatusValues = False

SPC Attribute Control Charts 293

ChartAlarmEmphasisMode

[C#]
// Chart alarm emphasis mode

this.ChartAlarmEmphasisMode = SPCChartBase.ALARM_HIGHLIGHT_SYMBOL;

 [VB]
‘ Chart alarm emphasis mode

Me.ChartAlarmEmphasisMode = SPCChartBase.ALARM_HIGHLIGHT_SYMBOL

The scatter plot symbol used to plot a data point in the chart is normally a fixed color
circle. If you turn on the alarm highlighting for chart symbols the symbol color for a
sample interval that is in an alarm condition will change to reflect the color of the
associated alarm line. In the example above, a low alarm (blue circle) occurs at the
beginning of the chart and a high alarm (red circle) occurs at the end of the chart. Alarm
symbol highlighting is turned on by default. To turn it off use the
SPCChartBase.ALARM_NO_HIGHLIGHT_SYMBOL constants.

294 SPC Attribute Control Charts

TableAlarmEmphasisMode -

C#]
// Table alarm emphasis mode

this.TableAlarmEmphasisMode = SPCChartBase.ALARM_HIGHLIGHT_BAR;

 [VB]
‘ Table alarm emphasis mode

Me.TableAlarmEmphasisMode = SPCChartBase.ALARM_HIGHLIGHT_BAR

The entire column of the data table can be highlighted when an alarm occurs. There are
four modes associated with this property:

ALARM_HIGHLIGHT_NONE No alarm highlight
ALARM_HIGHLIGHT_TEXT Text alarm highlight
ALARM_HIGHLIGHT_OUTLINE Outline alarm highlight
ALARM_HIGHLIGHT_BAR Bar alarm highlight

The example above uses the ALARM_HIGHLIGHT_BAR mode.

SPC Attribute Control Charts 295

The example above uses the ALARM_HIGHLIGHT_TEXT mode

The example above uses the ALARM_HIGHLIGHT_OUTLINE mode. In the table
above, the column outlines in blue and red reflect what is actually displayed in the chart,
whereas in the other TableAlarmEmphasisMode examples the outline just shows where
the alarm highlighting occurs.

The default mode is ALARM_HIGHLIGHT_NONE mode.

AutoLogAlarmsAsNotes

When an alarm occurs, details of the alarm can be automatically logged as a Notes
record. Just set the AutoLogAlarmsAsNotes property to true.

[C#]
this.AutoLogAlarmsAsNotes = true;

[VB]
Me.AutoLogAlarmsAsNotes = True

Creating a Batch-Based Attribute Control Chart

296 SPC Attribute Control Charts

Both the SPCTimeAttributeContolChart and SPCBatchAttributeControlChart
derive from the SPCChartBase and as a result the two classes are very similar and share
95% of all properties in common. Creating and initializing a batch-based SPC chart is
much the same as that of a time-based SPC chart. Derive your base class from
SPCBatchAttributeControlChart class as seen in the
BatchAttributeControlChart.SimpleAttributeControlChart example program.

[C#]
public class SimpleAttributeControlChart:

 com.quinncurtis.spcchartnet.SPCBatchAttributeControlChart

 {

 private System.ComponentModel.IContainer components;

 ChartCalendar startTime = new ChartCalendar();

 int batchCounter = 0;

 // SPC attribute control chart type

 int charttype = SPCControlChartData.FRACTION_DEFECTIVE_PARTS_CHART;

 // Number of samples per sub group

 int numsamplespersubgroup = 50;

 // Number of defect categories

 int numcategories = 5;

 // Number of data points in the view

 int numdatapointsinview = 17;

 // The time increment between adjacent subgroups

 int timeincrementminutes = 30;

 public SimpleAttributeControlChart()

 {

 // This call is required by the Windows.Forms Form Designer.

 InitializeComponent();

 // Have the chart fill parent client area

 this.Dock = DockStyle.Fill;

 // Define and draw chart

 InitializeChart();

 }

 void InitializeChart()

 {

 // Initialize the SPCBatchAttributeControlChart

 this.InitSPCBatchAttributeControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview);

 .

 .

 .

 }

SPC Attribute Control Charts 297

}

[VB]
Public Class SimpleAttributeControlChart

 Inherits com.quinncurtis.spcchartnet.SPCBatchAttributeControlChart

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 ' Have the chart fill parent client area

 Me.Dock = DockStyle.Fill

 ' Define and draw chart

 InitializeChart ()

 End Sub

 .

 .

 .

#End Region

 Dim startTime As New ChartCalendar()

 Dim batchCounter As Integer = 0

 ' SPC attribute control chart type

 Dim charttype As Integer = SPCControlChartData.FRACTION_DEFECTIVE_PARTS_CHART

 ' Number of samples per sub group

 Dim numsamplespersubgroup As Integer = 50

 ' Number of defect categories

 Dim numcategories As Integer = 5

 ' Number of data points in the view

 Dim numdatapointsinview As Integer = 17

 ' The time increment between adjacent subgroups

 Dim timeincrementminutes As Integer = 30

 Sub InitializeChart ()

 ' Initialize the SPCBatchAttributeControlChart

298 SPC Attribute Control Charts

 Me.InitSPCBatchAttributeControlChart(charttype, numcategories, _

 numsamplespersubgroup, numdatapointsinview)

 .

 .

 .

 End Sub 'DrawChart

Establish the control chart type (p-, np-, c- or u-chart) using the attribute control charts
InitSPCBatchAttributeControlChart initialization routine.

SPCBatchAttributeControlChart.InitSPCBatchAttributeControlChart Method

This initialization method initializes the most important values in the creation of a SPC
chart.

[VB]
Overloads Public Sub InitSPCBatchAttributeControlChart(_
 ByVal charttype As Integer, _
 ByVal numcategories As Integer, _
 ByVal numsamplespersubgroup As Integer, _
 ByVal numdatapointsinview As Integer, _
)

[C#]
public void InitSPCBatchAttributeControlChart(
 int charttype,
 int numcategories,
 int numsamplespersubgroup,
 int numdatapointsinview,
);

Parameters
charttype

Specifies the chart type. Use one of the SPC Attribute Control chart types:
PERCENT_DEFECTIVE_PARTS_CHART,
FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTS_PERUNIT_CHART, NUMBER_DEFECTS_CHART.

numcategories
In Attribute Control Charts this value represents the number of defect categories
used to determine defect counts.

numsamplespersubgroup
In an Attribute Control chart it represents the total sample size per sample
subgroup from which the defect data is counted.

numdatapointsinview
Specifies the number of sample subgroups displayed in the graph at one time.

SPC Attribute Control Charts 299

Update the chart data using the ChartData.AddNewSampleRecord method, using an
override that has the batch number (batchCounter below) as the first parameter. Even
though a time stamp value is used in the AddNewSampleRecord method, it is not used
in the actual graph. Instead, it is used as the time stamp for the batch in the table portion
of the chart.

[C#]
private void SimulateData()

{

 if (this.IsDesignMode) return;

 for (int i=0; i < 200; i++)

 {

 double batchnumber = batchCounter;

 ChartCalendar timestamp = (ChartCalendar) startTime.Clone();

 // Simulate a new sample record

 DoubleArray samples = this.ChartData.SimulateDefectRecord(50 * 0.134,

 SPCControlChartData.PERCENT_DEFECTIVE_PARTS_CHART);

 // add a new sample record

 this.ChartData.AddNewSampleRecord(batchnumber, timestamp, samples);

 // Simulate timeincrementminutes minute passing

 startTime.Add(ChartObj.MINUTE, timeincrementminutes);

 batchCounter++;

 }

}

[VB]

 Private Sub SimulateData() '

 If Me.IsDesignMode Then

 Return

 End If

 Dim i As Integer

 For i = 0 To 199

 Dim group As Double = batchCounter

 Dim timestamp As ChartCalendar = _

 CType(startTime.Clone(), ChartCalendar)

 ' Simulate a new sample record

 Dim samples As DoubleArray = _

 Me.ChartData.SimulateDefectRecord(50 * 0.134, _

 SPCControlChartData.PERCENT_DEFECTIVE_PARTS_CHART)

 ' add a new sample record

 Me.ChartData.AddNewSampleRecord(group, timestamp, samples)

 ' Simulate timeincrementminutes minute passing

300 SPC Attribute Control Charts

 startTime.Add(ChartObj.MINUTE, timeincrementminutes)

 batchCounter += 1

 Next i

 End Sub 'SimulateData

Changing the Batch Control Chart X-Axis Labeling Mode

In revisions prior to 2.0, the x-axis tick marks of a batch control chart could only be
labeled with the numeric batch number of the sample subgroup. While batch number
labeling is still the default mode, it is now possible to label the sample subgroup tick
marks using the time stamp of the sample subgroup, or a user-defined string unique to
each sample subgroup.

You may find that labeling every subgroup tick mark with a time stamp, or a user-defined
string, causes the axis labels to stagger because there is not enough room to display the
tick mark label without overlapping its neighbor. In these cases you may wish to reduce
the number of sample subgroups you show on the page using the numdatapointsinview
variable found in all of the example programs.

// Number of datapoints in the view
int numdatapointsinview = 13;

Batch Control Chart X-Axis Time Stamp Labeling

SPC Attribute Control Charts 301

Fraction Defective Parts Chart using time stamp labeling of the x-axis

Set the x-axis labeling mode using the overall charts XAxisStringLabelMode property,
setting it SPCChartObjects.AXIS_LABEL_MODE_TIME.

[C#]

// Label the tick mark with time stamp of sample group

this.XAxisStringLabelMode = SPCChartObjects.AXIS_LABEL_MODE_TIME;

[VB]

‘ Label the tick mark with time stamp of sample group

Me.XAxisStringLabelMode = SPCChartObjects.AXIS_LABEL_MODE_TIME

When updating the chart with sample data, use AddNewSampleRecord overload that has
batch number and a time stamp parameters.

[C#]
this.ChartData.AddNewSampleRecord(batchCounter, timestamp, samples);

[VB]
Me.ChartData.AddNewSampleRecord(batchCounter, timestamp, samples)

302 SPC Attribute Control Charts

See the example program
BatchAttributeControlCharts.FractionDefectivePartsControlChart for a complete
example. Reset the axis labeling mode back to batch number labeling by assigning the
XAxisStringLabelMode property to
SPCChartObjects.AXIS_LABEL_MODE_DEFAULT.

Batch Control Chart X-Axis User-Defined String Labeling

Percent Defective Parts Chart using user-defined string labeling of the x-axis

Set the x-axis labeling mode using the overall charts XAxisStringLabelMode property,
setting it SPCChartObjects.AXIS_LABEL_MODE_STRING.

[C#]
// enable scroll bar

this.EnableScrollBar = true;

this.EnableCategoryValues = false;

// Label the tick mark with user-defined strings

this.XAxisStringLabelMode = SPCChartObjects.AXIS_LABEL_MODE_STRING;

[VB]
‘ enable scroll bar

Me.EnableScrollBar = True

SPC Attribute Control Charts 303

Me.EnableCategoryValues = False

‘ Label the tick mark with user-defined strings

Me.XAxisStringLabelMode = SPCChartObjects. AXIS_LABEL_MODE_STRING

Use the AddAxisUserDefinedString method to supply a new string for every new sample
subgroup. It must be called every time the AddNewSampleRecord method is called, or
the user-defined strings will get out of sync with their respective sample subgroup. Reset
the axis labeling mode back to batch number labeling by assigning the
XAxisStringLabelMode property to
SPCChartObjects.AXIS_LABEL_MODE_DEFAULT.

[C#]
this.ChartData.AddNewSampleRecord(batchCounter, timestamp, samples,
variableControlLimits);

// Make a random string to simulate some sort of batch sample group ID

int randomnum= (int) (1000 * ChartSupport.GetRandomDouble());

String batchidstring = "EC" + randomnum.ToString();

this.ChartData.AddAxisUserDefinedString(batchidstring);

[VB]
' Add a new sample record

Me.ChartData.AddNewSampleRecord(batchnumber, timestamp, samples)

Dim randomnum As Integer = CInt((1000 * ChartSupport.GetRandomDouble()))

Dim batchidstring As String = "EC" & randomnum.ToString()

Me.ChartData.AddAxisUserDefinedString(batchidstring)

See the example program
BatchAttributeControlCharts.PercentDefectivePartsControlChart for a complete example.

Changing Default Characteristics of the Chart

All Attribute Control Charts have one distinct graph with its own set of properties. This
graph is the Primary Chart.

304 SPC Attribute Control Charts

Logically enough, the properties of the objects that make up each of these graphs are
stored in a property named PrimaryChart. Once the graph is initialized (using the
InitSPCTimeAttributeControlChart, or InitSPCBatchAttributeControlChart
method), you can modify the default characteristics of each graph using these properties.

// Initialize the SPCTimeAttributeControlChart

this.InitSPCTimeAttributeControlChart(charttype, numcategories,

 numsamplespersubgroup, numdatapointsinview, timeincrementminutes);

.

.

.

.

this.GraphStartPosX = 0.2;

// Enable scroll bar

this.EnableScrollBar = true;

this.PrimaryChart.DisplayFrequencyHistogram = true;

this.PrimaryChart.XAxis.LineColor = Color.Blue;

this.PrimaryChart.XAxis.LineWidth = 3;

this.PrimaryChart.ProcessVariableData.LineMarkerPlot.LineColor = Color.Black;

this.PrimaryChart.ProcessVariableData.LineMarkerPlot.SymbolAttributes.PrimaryColor
= Color.BlueViolet;

SPC Attribute Control Charts 305

this.PrimaryChart.ProcessVariableData.LineMarkerPlot.SymbolAttributes.FillColor =
Color.Beige;

this.PrimaryChart.GraphBackground.FillColor = Color.LightGray;

this.PrimaryChart.PlotBackground.FillColor = Color.LightGoldenrodYellow;

this.PrimaryChart.FrequencyHistogramChart.PlotBackground.FillColor =
Color.LightGoldenrodYellow;

The PrimaryChart object is an instance of the SPCChartObjects class. The
SPCChartObjects class contains the objects needed to display a single graph. Below
you will find a summary of the class properties.

Public Instance Properties

AnnotationArray
Get the array of TextObject objects,
representing the annotations of the chart.

AnnotationFont
Set/Get annotation font.

AnnotationNudge
Set/Get the x and y-values use to offset a
data points annotation with respect to the
actual data point.

AxisLabelFont
Set/Get the font used to label the x- and y-
axes.

AxisTitleFont
Set/Get the font used for the axes titles.

ControlLabelPosition
Set/Get that numeric label for a control limit
is placed inside, or outside the plot area
INSIDE_PLOTAREA.

ControlLimitData
Get the array of the plot objects associated
with control limits.

Datatooltip
Get a reference to the charts tooltip.

DefaultChartBackgroundColor
Get/Set the default background color for the
graph area.

DefaultNumberControlLimits
Set/Get the number of control limits in the
chart.

DefaultPlotBackgroundColor
Get/Set the default background color for the
plot area.

DisplayChart
Set to true to enable the drawing of this
chart.

DisplayFrequencyHistogram
Set to true to enable the drawing of the
frequency histogram attached to the chart.

FrequencyHistogramChart
Get a reference to the optional frequency
histogram attached to the chart.

306 SPC Attribute Control Charts

GraphBackground
Get a reference to the charts graph
background object.

BatchIncrement
Set/Get increment between adjacent samples
of Batch type charts that use a numeric x-
scale.

BatchStartValue
Set/Get the starting numeric value of the x-
scale for Batch type charts that use a
numeric x-scale.

BatchStopValue
Set/Get the ending numeric value of the x-
scale for Batch type charts that use a
numeric x-scale.

Header
Get a reference to the charts header.

HeaderFont
Set/Get the font used for the chart title.

HistogramStartPos
Set/Get the left edge, using normalized
coordinates, of the frequency histogram
plotting area.

HistogramOffset
Set/Get the offset of the histogram with
respect to the GraphStartPosX position,
using normalized coordinates, of the
frequency histogram plotting area.

MaxY
Set/Get the maximum value used to scale
the y-axis of the chart.

MinY
Set/Get the minimum value used to scale the
y-axis of the chart.

ParentSPCChartBase
Set/Get that parent SPCChartBase object.

PlotBackground
Get a reference to the charts plot
background object.

PlotMeasurementValues
Set to true to enable the plotting of all
sampled values, as a scatter plot, in addition
to the mean or median values.

PPhysTransform1
Gets a reference to the charts physical
coordinate system.

ProcessVariableData
Holds a reference to an object encapsulating
the plot object data associated with the main
variable of the chart.

SampledDataData
Get the array of the sample data.

SubHead
Get a reference to the charts subhead.

SubheadFont
Set/Get the font used for the chart subhead.

SPC Attribute Control Charts 307

TableFont
Set/Get the font used for the data table.

TextTemplate
Get/Set the text template for the data tooltip.

TimeIncrementMinutes
Get/Set the increment between adjacent
samples of charts that use a numeric x-scale.

ToolTipFont
Set/Get tooltip font.

ToolTipSymbol
Get a reference to the charts tooltip symbol.

XAxis
Get a reference to the charts x-axis.

XAxisLab
Get a reference to the charts x-axis labels.

XGrid
Get a reference to the charts x-axis grid.

XValueTemplate
Get/Set the x-value template for the data
tooltip.

YAxis1
Get a reference to the charts left y-axis.

YAxis2
Get a reference to the charts right y-axis.

YAxisLab
Get a reference to the charts left y-axis
labels.

YAxisTitle
Get a reference to the charts left y-axis title.

YGrid
Get a reference to the charts y-axis grid.

YValueTemplate
Get/Set the y-value template for the data
tooltip.

The main objects of the graph are labeled in the graph below.

SPC Attribute Control Charts 309

8. Frequency Histogram, Pareto Diagram and Normal-
Probability Charts.

FrequencyHistogramChart
ParetoChart
ProbabilityChart

Frequency Histogram Chart
An SPC control chart will allow you to track the trend of critical variables in a production
environment. It is important that the production engineer understand whether or not
changes or variation in the critical variables are natural variations due to the tolerances
inherent to the production machinery, or whether or not the variations are due to some
systemic, assignable cause that needs to be addressed. If the changes in critical variables
are due to the natural variations, then a frequency histogram of the variations will usually
follow one of the common continuous (normal, exponential, gamma, Weibull) or discrete
(binomial, Poisson, hypergeometric) distributions. It is the job of the SPC engineer to
know what distribution best models his process. Periodically plotting of the variation of
critical variables will give SPC engineer important information about the current state of
the process. A typical frequency histogram looks like:

Frequency Histogram Chart

312 Frequency Histograms, Pareto Diagrams, Probability Charts

Viewing frequency histograms of both the variation in the primary variable (Mean,
Median, count, or actual value), and the secondary variable (Range, Sigma or Moving
Range) side-by-side with the SPC control chart makes it even easier to find out whether
the variations are the result of natural variations or the result of some systemic change in
the process.

XBar-R Chart with Integral Frequency Histograms

Creating an Independent (not part of a SPC chart) Frequency
Histogram

The FrequencyHistogramChart class creates a standalone frequency histogram. It is a
simple template where you need only supply data and set a few properties to create a
proper frequency histogram. The example below extracted from the
FrequencyHistogram.FrequencyHistogramUserControl1 example program.

[C#]

public class FrequencyHistogramUserControl1:

 com.quinncurtis.spcchartnet.FrequencyHistogramChart

{

 public FrequencyHistogramUserControl1()

Frequency Histograms, Pareto Diagrams, Probability Charts 313

 {

 // This call is required by the Windows.Forms Form Designer.

 InitializeComponent();

 // Have the chart fill parent client area

 this.Dock = DockStyle.Fill;

 // Define and draw chart

 InitializeChart();

 }

 void InitializeChart()

 {

 // Frequency bins

 double [] freqLimits = {19.5, 24.5, 29.5, 34.5, 39.5, 44.5, 49.5, 54.5, 59.5};

 // data to be sorted into frequency bins

 double [] freqValues = {32,44,44,42,57,

 26,51,23,33,27,

 42,46,43,45,44,

 53,37,25,38,44,

 36,40,36,48,56,

 47,40,58,45,38,

 32,39,43,31,45,

 41,37,31,39,33,

 20,50,33,50,51,

 28,51,40,52,43};

 // Initialize histogram

 this.InitFrequencyHistogram(freqLimits, freqValues);

 // Set bar orientation

 this.chartOrientation = ChartObj.VERT_DIR;

 // Build chart

 this.BuildChart();

 }

 .

 .

 .

}

[VB]

Public Class FrequencyHistogramUserControl1

 Inherits com.quinncurtis.spcchartnet.FrequencyHistogramChart

#Region " Windows Form Designer generated code "

314 Frequency Histograms, Pareto Diagrams, Probability Charts

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 Me.Dock = DockStyle.Fill

 InitializeChart()

 End Sub

 .

 .

 .

#End Region

 Sub InitializeChart()

 ' Frequency bins

 Dim freqLimits() As Double = _

 {19.5, 24.5, 29.5, 34.5, 39.5, 44.5, 49.5, 54.5, 59.5}

 'data to be sorted into frequency bins

 Dim freqValues() As Double = _

 {32, 44, 44, 42, 57, 26, 51, 23, 33, _

 27, 42, 46, 43, 45, 44, 53, 37, 25, _

 38, 44, 36, 40, 36, 48, 56, 47, 40, _

 58, 45, 38, 32, 39, 43, 31, 45, 41, _

 37, 31, 39, 33, 20, 50, 33, 50, 51, _

 28, 51, 40, 52, 43}

 Me.InitFrequencyHistogram(freqLimits, freqValues) '

 Me.BuildChart()

 End Sub 'InitializeChart

End Class

All you have to do is supply the raw data, and the values of the frequency bins for which
you want to accumulate values. The FrequencyHistogramChart class auto-scale a
coordinate system, creates the proper x- and y-axes, and draws the resulting frequency
histogram as a bar plot.

FrequencyHistogramChart.InitFrequencyHistogram Method

Initializes the histogram frequency bin limits, and the data values for the histogram.

[VB]
Public Sub InitFrequencyHistogram(_

Frequency Histograms, Pareto Diagrams, Probability Charts 315

 ByVal frequencylimits As Double(), _
 ByVal frequencyvalues As Double() _
)
[C#]
public void InitFrequencyHistogram(
 double[] frequencylimits,
 double[] frequencyvalues
);

Parameters
frequencylimits

The frequency limits of the histogram bins.
frequencyvalues

An array the values that are counted with respect to the frequency bins.

The image below uses the following data:

[C#]
// Frequency bins

double [] freqLimits = {100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600};

// data to be sorted into frequency bins

double [] freqValues = {121, 349, 345, 322, 277,

 162, 218, 134, 133, 476,

 323, 367, 133, 354, 245,

 434, 476, 352, 185, 144,

 165, 105, 461, 386, 263,

 476, 304, 180, 557, 482,

 327, 293, 539, 318, 251,

 218, 472, 218, 199, 330,

 109, 101, 137, 300, 119,

 380, 410, 206, 122, 238};

[VB]
' Frequency bins

 Dim freqLimits() As Double = _

 {100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600} '

 ' data to be sorted into frequency bins

Dim freqValues() As Double = _

 {121, 349, 345, 322, 277, 162, 218, 134, 133, _

 476, 323, 367, 133, 354, 245, 434, 476, 352, _

 185, 144, 165, 105, 461, 386, 263, 476, 304, _

 180, 557, 482, 327, 293, 539, 318, 251, 218, _

 472, 218, 199, 330, 109, 101, 137, 300, 119, _

 380, 410, 206, 122, 238}

316 Frequency Histograms, Pareto Diagrams, Probability Charts

Once the Init routine is called, the chart can be further customized using the properties
and methods below.

Public Static (Shared) Properties

DefaultAxisLabelsFont
Get/Set the default font used for the axes
labels and axes titles.

DefaultChartFontString
Set/Get the default font used in the chart.
This is a string specifying the name of the
font.

DefaultDataValueFont
Get/Set the default font used for the numeric
values labeling the bars.

DefaultFooterFont
Get/Set the font used for the chart footer.

DefaultMainTitleFont
Get/Set the font used for the main title.

DefaultSubHeadFont
Get/Set the font used for the main title.

DefaultToolTipFont
Set/Get the default font object used for the
tooltip.

Frequency Histograms, Pareto Diagrams, Probability Charts 317

Public Instance Constructors

FrequencyHistogramChart
Overloaded. Initializes a new instance of the
FrequencyHistogramChart class.

Public Instance Properties

AutoNormalCurve
Set to true and a normal curve with the same
area as the histogram is plotted in the chart

BarAttrib
Get the primary bar attribute object for the
bars of the histogram.

BarDataValue
Get the numeric label template object used
to place numeric values on the bars.

BarFillColor
Sets the fill color for the chart object.

BarLineColor
Sets the line color for the chart object.

BarLineWidth
Sets the line width for the chart object.

ChartOrientation
Get/Set the orientation of the histogram bars
in the chart.

CoordinateSystem
Get the coordinate system object for the
histogram.

Datatooltip
Get the data tooltip object for the chart.

Footer
Get the footer object for the chart.

FrequencyHistogramPlot
Get the histogram plot object.

FrequencyLimits
Get the DoubleArray object that holds the
limit values for the frequency bins of the
histogram.

FrequencyValues
Get the DoubleArray object that holds the
values that are counted with respect to the
frequency bins.

GraphBackground
Get the graph background object.

GraphBorder
Get the default graph border for the chart.

HistogramDataset
Get the GroupDatset object that holds the
data used to plot the histogram.

MainTitle
Get the main title object for the chart.

PlotBackground
Get the plot background object.

318 Frequency Histograms, Pareto Diagrams, Probability Charts

ResetOnDraw
Set/Get True the ChartView object list is
cleared with each redraw

SubHead
Get the subhead title object for the chart.

XAxis
Get the x-axis object.

XAxisLab
Get the x-axis labels object.

XAxisTitle
Get the x-axis title object.

XGrid
Get the x-axis grid object.

YAxis
Get the y-axis object.

YAxisLab
Get the y-axis labels object. Accessible only
after BuildGraph

YAxisTitle
Get the y-axis title object.

YGrid
Get the y-axis grid object.

Public Instance Methods

AddFrequencyHistogramControlLine
Add a control limit line to the frequency
histogram

Copy
Overloaded. Copies the source
FrequencyHistogramChart object.

InitFrequencyHistogram
Initializes the histogram frequency bin
limits, and the data values to be analyzed for
the histogram.

InitFrequencyHistogramDataset
Builds the histogram dataset,
histogramDataset, using the values in
frequencyValues and frequencyLimits.

Changing Default Characteristics of the Chart

Frequency Histograms, Pareto Diagrams, Probability Charts 319

A FrequencyHistogramChart object has one distinct graph with its own set of
properties. Once the graph is initialized (using the InitFrequencyHistogram, or one of
the FrequencyHistogramChart constructors), you can modify the default characteristics
of each graph using these properties. For example, you can change the color of y-axis,
and the y-axis labels using the LineColor property of those objects.

[C#]

void InitializeChart()

{

 // Frequency bins

double [] freqLimits = {100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600};

 // data to be sorted into frequency bins

 double [] freqValues = {121, 349, 345, 322, 277,

 162, 218, 134, 133, 476,

 323, 367, 133, 354, 245,

 434, 476, 352, 185, 144,

 165, 105, 461, 386, 263,

 476, 304, 180, 557, 482,

 327, 293, 539, 318, 251,

320 Frequency Histograms, Pareto Diagrams, Probability Charts

 218, 472, 218, 199, 330,

 109, 101, 137, 300, 119,

// Initialize histogram

 this.InitFrequencyHistogram(freqLimits, freqValues);

 this.YAxis.LineColor = Color.Green;

 this.YAxis.LineWidth = 3;

 this.YAxisLab.LineColor = Color.DarkMagenta;

 this.BuildChart();

}

[VB]
 Sub InitializeChart()

 ' Frequency bins

 Dim freqLimits() As Double = _

 {100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600} '

 ' data to be sorted into frequency bins

 Dim freqValues() As Double = _

 {121, 349, 345, 322, 277, 162, 218, 134, 133, _

 476, 323, 367, 133, 354, 245, 434, 476, 352, _

 185, 144, 165, 105, 461, 386, 263, 476, 304, _

 180, 557, 482, 327, 293, 539, 318, 251, 218, _

 472, 218, 199, 330, 109, 101, 137, 300, 119, _

 380, 410, 206, 122, 238}

 Me.InitFrequencyHistogram(freqLimits, freqValues)

 Me.ChartOrientation = ChartObj.VERT_DIR

 Me.BarFillColor = Color.LightCoral

 Me.FrequencyHistogramPlot.SetSegmentFillColor(4, Color.Blue)

 Me.BuildChart()

 End Sub 'InitializeChart

Special Considerations

1. The FrequencyHistogramChart class uses the QCChart2D HistogramPlot plot
object class to draw the histogram bars. That class uses individually assignable
colors for each bar of the bar plot. The standard ChartObj.LineColor and
ChartObj.FillColor properties do not work to change the color of the histogram
bars in this case. Instead, you can change the histogram bar colors by calling
SetSegmentLineColor and SetSegmentFillColor.

Frequency Histograms, Pareto Diagrams, Probability Charts 321

[C#]
For (int i=0; i < 9; i++}

{

 this.FrequencyHistogramPlot.SetSegmentFillColor(i,Color.Blue);

 this.FrequencyHistogramPlot.SetSegmentLineColor(i,Color.Black);

}

[VB]
Dim i As Integer

For i = 0 To 8

 Me.FrequencyHistogramPlot.SetSegmentFillColor(i, Color.Blue)

 Me.FrequencyHistogramPlot.SetSegmentLineColor(i, Color.Black)

Next i}

You can also use the utility properties, BarFillColor, BarLineColor and
BarLineWidth, we added to the FrequencyHistogramPlot that will set all of the bars of
the histogram plot at once.

[C#]

 this.BarFillColor = Color.Blue;

 this.BarLineColor = Color.Black;

[VB]

 Me.BarFillColor = Color.Blue

 Me.BarLineColor = Color.Black

Adding Control Lines and Normal Curve to Histogram Plot

Revision 1.8 adds a couple of new features to the histogram plot. First, you can add
control limit alarm lines to the histogram plot. The control limit lines will be parallel to
the frequency axis. Second, a normal distribution curve can be overlaid on top of the
histogram data. The parameters are selected to give the normal distribution curve the
same mean, standard deviation and area as the underlying histogram data. If the
underlying data is normal, then there should be a relatively close fit between the normal
curve and the underlying frequency data.

322 Frequency Histograms, Pareto Diagrams, Probability Charts

Histogram Control Limit Lines and Normal Curve fit

[C#]
this.AddFrequencyHistogramControlLine(20.0,new ChartAttribute(Color.LightGreen,
2));

this.AddFrequencyHistogramControlLine(60.0,new ChartAttribute(Color.LightGreen,
2));

this.AutoNormalCurve = true;

[VB]
Me.AddFrequencyHistogramControlLine(20.0, new ChartAttribute(Color.LightGreen, 2))

Me.AddFrequencyHistogramControlLine(60.0, new ChartAttribute(Color.LightGreen, 2))

Me.AutoNormalCurve = True

Probability Plots
Another important tool the SPC engineer uses to model the process variation is the
probability plot. The probability plot is a simple way to test whether control chart
measurements fit a normal distribution. Usually probability plot graphs are plotted by
hand using special probability plot graph paper. We have added probability scale and axis
classes that enable you to plot probability plots directly on the computer. Control chart
measurements that follow a normal distribution curve will plot as a straight line when
plotted in a normal probability plot.

Frequency Histograms, Pareto Diagrams, Probability Charts 323

Creating a Probability Plot

Cumulative Normal Probability Chart

The ProbabilityChart class creates a standalone probability plot. It is a simple template
where you need only supply data and set a few properties to create a proper frequency
histogram. The example below is extracted from the
ProbabilityPlot.ProbabilityPlotUserControl1 example program.

[C#]

public class ProbabilityPlotUserControl1:

 com.quinncurtis.spcchartnet.ProbabilityChart

{

 public ProbabilityPlotUserControl1()

 {

 // This call is required by the Windows.Forms Form Designer.

 InitializeComponent();

 // Have the chart fill parent client area

 this.Dock = DockStyle.Fill;

 // Define and draw chart

324 Frequency Histograms, Pareto Diagrams, Probability Charts

 InitializeChart();

 }

 void InitializeChart()

 {

 // TODO: Add any initialization after the InitForm call

 double []x1 = {1,2,3,4,5,6,7,8,9};

 double []y1 = {2, 6, 13, 26, 58, 82, 93, 97,100};

 this.InitProbabilityChart(x1, y1);

 this.BuildChart();

 }

 .

 .

 .

}

[VB]

Public Class ProbabilityPlotUserControl1

 Inherits com.quinncurtis.spcchartnet.ProbabilityChart

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 Me.Dock = DockStyle.Fill

 InitializeChart()

 End Sub

 .

 .

 .

#End Region

 Sub InitializeChart()

 ' TODO: Add any initialization after the InitForm call

 Dim x1() As Double = {1.0, 2, 3, 4, 5, 6, 7, 8, 9}

 Dim y1() As Double = {2, 6, 13, 26, 58, 82, 93, 97, 100}

Frequency Histograms, Pareto Diagrams, Probability Charts 325

 Me.InitProbabilityChart(x1, y1)

 Me.BuildChart() '

 End Sub 'InitializeChart '

 .

 .

 .

End Class

All you have to do is supply the raw data, and the values of the frequency bins for which
you want to accumulate values. The ProbabilityChart class auto-scale a coordinate
system, creates the proper x- and y-axes, and draws the resulting probability plot as a
scatter plot.

ProbabilityChart.InitProbabilityChart Method

Initializes the x- and y-values of the data points plotted in the probability plot.

[VB]
Public Sub InitProbabilityChart(_
 ByVal xvalues As Double(), _
 ByVal yvalues As Double() _
)

[C#]
public void InitProbabilityChart(
 double[] xvalues,
 double[] yvalues
);

Parameters
xvalues

The x-values of the data points plotted in the probability plot.
yvalues

The y-values of the data points plotted in the probability plot.

Public Static (Shared) Properties

DefaultAxisLabelsFont
Set/Get default font object used for the axes
labels.

DefaultAxisTitleFont
Set/Get the default font object used for the
axes titles. Set this properties BuildGraph.

DefaultChartFontString
Set/Get the default font used in the chart.
This is a string specifying the name of the
font.

DefaultFooterFont
Set/Get the default font object used for the
chart footer.

326 Frequency Histograms, Pareto Diagrams, Probability Charts

DefaultMainTitleFont
Set/Get the default font object used for the
main chart title.

DefaultSigmaFont
Set/Get the default font object used for the
axis labels sigma character.

DefaultSubHeadFont
Set/Get the default font object used for the
subhead title.

DefaultToolTipFont
Set/Get the default font object used for the
tooltip.

Public Instance Constructors

ProbabilityChart
Overloaded. Initializes a new instance of the
ProbabilityChart class.

Public Instance Properties

CoordinateSystem
Get the probability coordinate system for
the chart.

Datatooltip
Get the chart data tooltip.

DefaultGraphBorder
Get/Set the default graph border object for
the chart.

Footer
Get the chart footer object.

GraphBackground
Get the graph background object.

MainTitle
Get the chart title object.

PlotAttrib
Get the default primary plot attribute object
for the plot of the chart. Set attributes before
BuildChart.

PlotBackground
Get the plot background object.

ProbabilityDataset
Get the dataset holding the data values of
the plot.

ProbabilityPlot
Get probability plot scatter plot object.

ResetOnDraw
Set/Get True the ChartView object list is
cleared with each redraw

SigmaAxis
Get the sigma y-axis object of the chart.

SigmaAxisLab
Get the sigma y-axis labels object of the
chart.

SubHead
Get the chart subhead object.

SymbolSize
Get/Set the default symbol size. Set
attributes before BuildChart.

Frequency Histograms, Pareto Diagrams, Probability Charts 327

TextTemplate
Get the default text object template for the
data tooltip.

ToolTipSymbol
Get the tooltip symbol object for the data
tooltip.

XAxis
Get the x-axis object of the chart.

XAxisLab
Get the x-axis labels object of the chart.

XAxisTitle
Get the x-axis title object of the of the chart.

XGrid
Get the x-axis grid object of the of the chart.

XValues
Get the DoubleArray of the x-values of the
data points plotted in the probability plot.

XValueTemplate
Get the default x-value object template for
the data tooltip.

YAxis1
Get the left probability y-axis object of the
chart.

YAxis2
Get the right probability y-axis object of the
chart.

YAxisLab1
Get the left probability y-axis labels object
of the chart.

YAxisLab2
Get the right probability y-axis labels object
of the chart.

YAxisTitle
Get the y-axis title object of the of the chart.

YGrid
Get the y-axis title object of the of the chart.

YValues
Get the DoubleArray of the y-values of the
data points plotted in the probability plot.

YValueTemplate
Get the default y-value object template for
the data tooltip.

Public Instance Methods

BuildChart
Overloaded. Builds the probability chart
using the base objects ChartView.

Copy
Overloaded. Copies the source
ProbabilityChart object.

InitProbabilityChart
Initializes the x- and y-values of the data
points plotted in the probability plot.

InitProbabilityDatasets
Builds the histogram dataset,
histogramDataset, using the values in
frequencyValues and frequencyLimits.

328 Frequency Histograms, Pareto Diagrams, Probability Charts

Changing Default Characteristics of the Chart

Once the graph is initialized (using the InitProbabilityChart , or one of the
ProbabilityChart constructors), you can modify the default characteristics of each graph
using these properties. For example, you can change the color of y-axis, and the y-axis
labels using the LineColor property of those objects.

[C#]
void InitializeChart()

{

 // TODO: Add any initialization after the InitForm call

 double []x1 = {1,2,3,4,5,6,7,8,9};

 double []y1 = {2, 6, 13, 26, 58, 82, 93, 97,100};

 this.InitProbabilityChart(x1, y1);

 this.ProbabilityPlot.LineColor = Color.Red;

 this.ProbabilityPlot.ChartObjAttributes.SymbolSize = 12;

 this.YAxis1.LineColor = Color.Green;

 this.YAxis1.LineWidth = 3;

Frequency Histograms, Pareto Diagrams, Probability Charts 329

 this.YAxis2.LineColor = Color.Blue;

 this.YAxis2.LineWidth = 3;

 this.YAxisLab1.LineColor = Color.DarkMagenta;

 this.BuildChart();

}

[VB]

 Sub InitializeChart()

 ' TODO: Add any initialization after the InitForm call

 Dim x1() As Double = {1.0, 2, 3, 4, 5, 6, 7, 8, 9}

 Dim y1() As Double = {2, 6, 13, 26, 58, 82, 93, 97, 100}

 Me.InitProbabilityChart(x1, y1)

 Me.ProbabilityPlot.SetColor(Color.Red) '

 ' sets both line and fill color

 Me.ProbabilityPlot.ChartObjAttributes.SymbolSize = 12

 Me.YAxis1.LineColor = Color.Green

 Me.YAxis1.LineWidth = 3

 Me.ProbabilityPlot.LineColor = Color.Red

 Me.ProbabilityPlot.ChartObjAttributes.SymbolSize = 12

 Me.YAxis2.LineColor = Color.Blue

 Me.YAxis2.LineWidth = 3

 Me.YAxisLab1.LineColor = Color.DarkMagenta

 Me.BuildChart() '

 End Sub 'InitializeChart '

Pareto Diagrams
The Pareto diagram is special type of bar graph combined with a line plot, plotted in a
chart that uses two different y-axis scales. The bar graph scale is a frequency scale that
measures the number of times a specific problem has occurred. The line plot scale is a
cumulative percentage scale.

330 Frequency Histograms, Pareto Diagrams, Probability Charts

Pareto Chart

The chart is easy to interpret. The tallest bar, the left-most one in a Pareto diagram, is the
problem that has the most frequent occurrence. The shortest bar, the right-most one, is the
problem that has the least frequent occurrence. Time spend on fixing the biggest problem
will have the greatest affect on the overall problem rate. This is a simplistic view of
actual Pareto analysis, which would usually take into account the cost effectiveness of
fixing a specific problem. Never less, it is powerful communication tool that the SPC
engineer can use in trying to identify and solve production problems.

Creating a Pareto Diagram

The ParetoChart class creates a standalone Pareto Diagram chart. It is a simple template
where you need only supply data and set a few properties to create a proper frequency
histogram. The example below is from the ParetoPlotUserControl1 file of the
ParetoDiagram example program.

[C#]
public class ParetoPlotUserControl1 : com.quinncurtis.spcchartnet.ParetoChart

{

 /// <summary>

 /// Required designer variable.

 /// </summary>

 private System.ComponentModel.Container components = null;

Frequency Histograms, Pareto Diagrams, Probability Charts 331

 public ParetoPlotUserControl1()

 {

 // This call is required by the Windows.Forms Form Designer.

 InitializeComponent();

 // Have the chart fill parent client area

 this.Dock = DockStyle.Fill;

 // Define and draw chart

 InitializeChart();

 }

 void InitializeChart()

 {

 // add Pareto chart categories, values and strings

 this.AddCategoryItem(5, "Torn");

 this.AddCategoryItem(7, "Not Enough\nComponent");

 this.AddCategoryItem(2, "Others");

 this.AddCategoryItem(11, "Poor Mix");

 this.AddCategoryItem(27, "Holes");

 this.AddCategoryItem(8, "Stains");

 // Build chart

 this.BuildChart();

 }

 .

 .

 .

}

[VB]
Public Class ParetoPlotUserControl1

 Inherits com.quinncurtis.spcchartnet.ParetoChart

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 'Add any initialization after the InitializeComponent() call

 Me.Dock = DockStyle.Fill

 InitializeChart()

 End Sub

332 Frequency Histograms, Pareto Diagrams, Probability Charts

 .

 .

 .

#End Region

 Sub InitializeChart()

 ' add Pareto chart categories, values and strings

 Me.AddCategoryItem(5, "Torn")

 Me.AddCategoryItem(7, "Not Enough" + ControlChars.Lf + "Component")

 Me.AddCategoryItem(2, "Others")

 Me.AddCategoryItem(11, "Poor Mix")

 Me.AddCategoryItem(27, "Holes")

 Me.AddCategoryItem(8, "Stains")

 ' Build chart

 Me.BuildChart()

 End Sub 'InitializeChart

End Class

All you have to do is supply the raw data, and the values of the frequency bins for which
you want to accumulate values. The ParetoChart class auto-scale a coordinate system,
creates the proper x- and y-axes, and draws the resulting probability plot as a scatter plot.

ParetoChart.InitParetoChart Method

Initializes the x- and y-values of the data points plotted in the probability plot.

[VB]
Public Sub InitParetoChart(_
 ByVal categoryitems As Double(), _
 ByVal stringitems As String() _
)

[C#]
public void InitParetoChart (
 double[] categoryitems,
 string[] stringitems
);

Parameters
categoryitems

The values for each category in the Pareto chart.
stringitems

The strings identifying each category in the Pareto chart.

Frequency Histograms, Pareto Diagrams, Probability Charts 333

You can add the category item values and string item strings one by one using the
AddCategoryItem method.

ParetoChart.AddCategoryItem Method

Add an item to the categoryValues and categoryStrings arrays.

[VB]
Public Sub AddCategoryItem(_
 ByVal itemfreq As Double, _
 ByVal itemstring As String _
)

[C#]
public void AddCategoryItem(
 double itemfreq,
 string itemstring
);

Parameters
itemfreq

The count of how many times this category has occurred.
itemstring

The string identifying the category item.

Public Static (Shared) Properties

DefaultAxisLabelsFont
Set/Get default font object used for the axes
labels and axes titles. Set attributes before
BuildChart.

DefaultChartFontString
Set/Get the default font used in the chart.
This is a string specifying the name of the
font.

DefaultFooterFont
Set/Get the default footer font. Set attributes
before BuildChart.

DefaultMainTitleFont
Get/Set the default chart title font. Set
attributes before BuildChart.

DefaultSubHeadFont
Get/Set the default chart title font. Set
attributes before BuildChart.

DefaultToolTipFont
Set/Get the default font object used for the
tooltip.

Public Instance Constructors

ParetoChart
Overloaded. Initializes a new instance of the
ParetoChart class.

334 Frequency Histograms, Pareto Diagrams, Probability Charts

Public Instance Properties

BarAttrib
Get the default primary bar attribute object
for the bars of the chart. Set attributes before
BuildChart.

BarDataValue
Get the default numeric label template used
to label the values of bar plot of the
frequency histogram part of the chart. Set
attributes before BuildChart.

BarPlot
Get the histogram bar plot object of the
frequency histogram part of the chart.

BarWidth
Get the default width value of the frequency
histogram bars. Set attributes before
BuildChart.

CategoryStrings
Get the StringArray object holding the
strings used to label the categories of the
Pareto plot. Set attributes before BuildChart.

CategoryValues
Get the DoubleArray object holding the
category values used in building the Pareto
plot. Set attributes before BuildChart.

CoordinateSystem1
Get the coordinate system object of the
frequency histogram part of the chart.

CoordinateSystem2
Get the coordinate system object of the
cumulative frequency part of the chart.

CumulativeFreqDataset
Get the dataset object used to hold the
cumulative frequency values of the data
plot.

Datatooltip
Get the data tooltip object for the chart.

DefaultGraphBorder
Get/Set the default graph border object for
the chart. Set attributes before BuildChart.

Footer
Get the footer of the chart.

FrequencyDataset
Get the dataset object used to hold the
frequency histogram values of the bar plot.

GraphBackground
Get the graph background object.

LineAttrib
Get the default primary line attribute object
for the line plot of the chart. Set attributes
before BuildChart.

LineMarkerPlot
Get the line marker plot object displaying
the cumulative frequency part of the chart.

LineMarkerPlotDataValue
Get the default numeric template object used
to label the line marker plot of the
cumulative frequency part of the chart. Set
attributes before BuildChart.

Frequency Histograms, Pareto Diagrams, Probability Charts 335

MainTitle
Get main title object of the chart.

PlotBackground
Get the plot background object.

ResetOnDraw
Set/Get True the ChartView object list is
cleared with each redraw

Scale2StartY
Set/Get the starting y-value for the
cumulative frequency scale.

Scale2StopY
Get/Set the ending y-value for the
cumulative frequency scale.

SymbolAttrib
Get the default symbolAttrib attribute object
for the symbols of the chart. Set attributes
before BuildChart.

XAxis
Get the x-axis of the chart object.

XAxisLab
Get the x-axis string labels object of the
chart.

XAxisTitle
Get the x-axis title object of the of the chart.

YAxis1
Get the y-axis object of the frequency
histogram part of the chart.

YAxis2
Get the y-axis object of the cumulative
frequency part of the chart.

YAxisLab1
Get the y-axis labels object of the frequency
histogram part of the chart.

YAxisLab2
Get the y-axis numeric labels object of the
cumulative frequency part of the chart.

YAxisTitle1
Get the y-axis title object of the frequency
histogram part of the chart.

YAxisTitle2
Get the y-axis title object of the cumulative
frequency part of the chart.

YGrid
Get the y-axis grid object of the chart.

Public Instance Methods

AddCategoryItem
Add an item to the categoryValues and
categoryStrings arrays.

BuildChart
Overloaded. Builds the Pareto chart using
the base objects ChartView.

Copy
Overloaded. Copies the source ParetoChart
object.

InitParetoChart
Initializes the category values, and the
category strings for the Pareto chart.

InitParetoChartsDatasets
Builds the histogram dataset,

336 Frequency Histograms, Pareto Diagrams, Probability Charts

histogramDataset, using the values in
frequencyValues and frequencyLimits.

SortCategoryItems
Sort the category values and category
strings.

Changing Default Characteristics of the Chart

Once the graph is initialized (using the InitParetoChart , or one of the ParetoChart
constructors), you can modify the default characteristics of each graph using these
properties. For example, you can change the color of y-axis, and the y-axis labels using
the LineColor property of those objects.

[C#]

void InitializeChart()

{

 this.AddCategoryItem(5, "Torn");

 this.AddCategoryItem(7, "Not Enough\nComponent");

 this.AddCategoryItem(2, "Others");

 this.AddCategoryItem(11, "Poor Mix");

Frequency Histograms, Pareto Diagrams, Probability Charts 337

 this.AddCategoryItem(27, "Holes");

 this.AddCategoryItem(8, "Stains");

 this.LineMarkerPlot.LineColor = Color.Blue;

 this.LineMarkerPlot.SymbolAttributes.PrimaryColor = Color.Black;

 this.YAxis1.LineColor = Color.Green;

 this.YAxis1.LineWidth = 3;

 this.YAxis2.LineColor = Color.Blue;

 this.YAxis2.LineWidth = 3;

 this.YAxisLab1.LineColor = Color.DarkMagenta;

 this.BuildChart();

}

[VB]

 Sub InitializeChart()

 ' add Pareto chart categories, values and strings

 Me.AddCategoryItem(5, "Torn")

 Me.AddCategoryItem(7, "Not Enough" + ControlChars.Lf + "Component")

 Me.AddCategoryItem(2, "Others")

 Me.AddCategoryItem(11, "Poor Mix")

 Me.AddCategoryItem(27, "Holes")

 Me.AddCategoryItem(8, "Stains")

 ' Build chart

 Me.LineMarkerPlot.LineColor = Color.Blue

 Me.LineMarkerPlot.SymbolAttributes.PrimaryColor = Color.Black

 Me.YAxis1.LineColor = Color.Green

 Me.YAxis1.LineWidth = 3

 Me.YAxis2.LineColor = Color.Blue

 Me.YAxis2.LineWidth = 3

 Me.YAxisLab1.LineColor = Color.DarkMagenta

 Me.BuildChart()

 End Sub 'InitializeChart

9. Using SPC Control Chart Tools for .Net CF to Create
Windows Applications

 (*** Critical Note ***) Running the Example Programs
The example programs for SPC Control Chart Tools for .Net CF software are supplied
in complete source. In order to save space, they have not been pre-compiled which means
that many of the intermediate object files needed to view the main form are not present.
This means that ChartView derived control will not be visible on the main Form if you
attempt to view the main form before the project has been compiled. The default state for
all of the example projects should be the Start Page. Before you do view any other file or
form, do a build of the project. This will cause the intermediate files to be built. If you
attempt to view the main Form before building the project, Visual Studio sometimes
decides that the ChartView control placed on the main form does not exist and deletes it
from the project.

The primary view class of the QCSPCChart library is the ChartView class. The
ChartView class derives from the .Net System.Windows.Forms.UserControl class. It
has the properties and methods of the underlying UserControl class.

Follow the following steps in order to incorporate the QCSPCChart classes into your
program. This is not the only way to add charts to an application. In general, any
technique that works with UserControl derived classes will work. We found the
technique described below to be the most flexible.

.Net Compact Framework Devices and Emulators
It is very difficult to make SPC chart displays small enough to fit on the Windows
Mobile, PDA, PC Phone and other emulators that ship with Windows Visual Studio.
Those emulators have tiny, tiny screens. Visual Studio 2003 shipped with a Windows CE
emulator, with a larger screen resolution, but it has been removed in subsequent versions
of Visual Studio. It is assumed you want this software to run on dedicated Windows CE
devices with a minimum screen resolution of 640 x 480. If you already have hardware
that meets this requirement, you can use your actual hardware device as your
development environment. If you have an emulator for your hardware (usually supplied
by the hardware manufacturer as part of a development kit they may sell), you can use
that. We can’t tell you how to connect your emulator to Visual Studio though. You will
need to contact your hardware manufacturer.

We use a generic, standalone, Windows CE emulator from Microsoft. It can be
downloaded from Microsoft here:
http://www.microsoft.com/downloads/details.aspx?FamilyID=A120E012-CA31-4BE9-
A3BF-B9BF4F64CE72&displaylang=en

342 Creating SPC Charts in Windows Applications

Please notify us if this link stops working. The emulator has one supremely useful
feature; you can easily set the size of the display in the command line that starts the
emulator. Refer to this discussion: http://social.msdn.microsoft.com/forums/en-
US/microsoftdeviceemu/thread/1d035a8d-ac8d-476c-940c-ea331e80a226/

Carefully follow the steps needed to connect this emulator to Visual Studio. It’s long and
a little complicated, but it works.

In step one, where it says:

"C:\Program Files\Windows CE 5.0 Emulator\Emulator_500.exe" nk.cem
/video 640x480x16
/Ethernet virtualswitch
/sharedfolder "C:\CE5SharedFolder"

set the display size to 800 x 600 using the \video switch

"C:\Program Files\Windows CE 5.0 Emulator\Emulator_500.exe" nk.cem
/video 800x600x16
/Ethernet virtualswitch
/sharedfolder "C:\CE5SharedFolder"

Otherwise, you can follow the discussion pretty much as is. You will end up with a
Windows CE emulator that looks like this:

Creating SPC Charts in Windows Applications 343

One counterintuitive thing to watch out for is that when you connect to the Windows CE
Emulator following these instructions, it actually looks like a physical Win CE device to
Visual Studio.

When you create the shell of a .Net Compact Framework application and run it, you will
first be faced with a choice of where to deploy your application.

344 Creating SPC Charts in Windows Applications

Choose the Windows CE 5.0 Device from the list.

Until you can get a simple .Net Compact Framework application to run on the device or
emulator of your choice, do not try and add the Quinn-Curtis software to your
application.

We have found that the network connection to the Windows CE emulator times out if it
remains inactive for a length of time. If that happens you can restart it by running the
Windows CE emulator CMAccept.exe program using the emulators Start | Run option, as
described in the emulator setup discussion, previously referenced. Once you do that, you
have a couple of minutes to try and connect to the emulator again.

Visual Basic for .Net

First, if this is the first .Net Compact Framework program you have every created,
make a few practice application programs using the Visual Studio defaults. Don’t try to
add graphics to an application until you are able to create, modify and run a simple .Net
Compact Framework applications using the New Project (File | New | Project)
application wizard.

• You start the New Project application wizard by selecting File | New | Project,
bringing up the New Project dialog box.

• From this dialog, select Visual Basic Projects | Smart Device | Windows CE
5.0 folder on the left, and the Device Application template on the right. The
default Device Application targets a .Net CF 2.0 device. Do NOT target a .Net

Creating SPC Charts in Windows Applications 345

1.0 device by selecting the Device Application (1.0), since this software is not
compatible with .Net 1.0 and 1.1.

• Assign a name to the application in the name box, either the default
(DeviceApplication1), or your own pick (SPCApplication11 in the example
below). Select a location, which for our examples is the folder C:\Quinn-
Curtis\DotNet\QCSPCChart\Visual Basic\CF examples.

• Right click on project name in the Solution Explorer window and select Add
Reference. Browse to the Quinn-Curtis/DotNet/lib subdirectory and select BOTH
the QCChart2DNetCF.DLL and QCSPCChartNetCF.DLL.

346 Creating SPC Charts in Windows Applications

• SPCApplication1 - Add the QCSPCChartNetCF.DLL to the Toolbox by right
clicking on the Toolbox and selecting Choose Items. Browse to the c:\Quinn-
Curtis\DotNet\lib folder and select the QCSPCChartNetCF.DLL file. This will
add all of the SPC charts controls in the DLL to the toolbox:

SPCTimeVariableControlChart
SPCTimeAttributeControlChart
SPCBatchVariableControlChart
SPCBatchAttributeControlChart
FrequencyHistogramChart
ProbabilityChart
ParetoChart

Creating SPC Charts in Windows Applications 347

• From that, point on you can select the appropriate SPC Chart control from the
Toolbox and drop in on the form. The SPCApplication1 example program uses
the SPCTimeVariableControlChart control. The code that instantiates the
control, sizes it and places on the form is automatically placed in the
Form.Designer.vb file. You don’t need to monkey around with that.

• The code needed to customize the chart for your application is placed in the
Form1.vb file. In the SPCApplication1 example, it is placed in the
Form1.InitializeChart method.

348 Creating SPC Charts in Windows Applications

• Critical Step: Make sure you add the following lines to the top of the Form1.vb
code to resolve the QCChart2D CF, QCSPCChart CF and other graphics
classes used in the example.

 Imports com.quinncurtis.chart2dnetcf

 Imports com.quinncurtis.spcchartnetcf

• You should view the complete source of the
SPCApplication1.Form1.InitializeChart method by loading the
SPCApplication1.Form1.vb file in the VS editor.

• You should now be able to compile, run and view the entire project. Any changes
you make in the InitializeChart method form is reflected in the application. If you
still have, problems go back and study the many example programs we have
provided.

• Here is what the resulting SPC chart looks like.

• SPCApplication2 - There are other ways to achieve the same result. We
actually prefer the technique used in the SPCApplication2 example, and that is
what most of our other example programs use. In that example, we added a
UserControl (name XBarRChart) to the project (Add UserControl). We then
changed the inheritance of the control in the user controls
XBarRChart.Designer.vb file from UserControl to one of our SPC chart types:

SPCTimeVariableControlChart
SPCTimeAttributeControlChart
SPCBatchVariableControlChart
SPCBatchAttributeControlChart
FrequencyHistogramChart
ProbabilityChart
ParetoChart

• Unlike C#, the inheritance for the class is not set in the main XBarRChart.vb
file. Instead, it is set in the normally hidden XBarRChart.Designer.vb file.
You must go to icons of the toolbar at the top of the Solution Explorer, and
select the second from the left, which will turn on the “Show All Files”
option.

350 Creating SPC Charts in Windows Applications

.

• Right click the XBarRChart.Designer.vb node and select View Code. Change
the UserControl inheritance to
com.quinncurtis.spcchartnetcf.SPCTimeVariableControlChart. Don’t
change anything else in the file.

 <Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

 Partial Public Class XBarRChart

 Inherits com.quinncurtis.spcchartnetcf.SPCTimeVariableControlChart

• The chart customization code is placed in the XBarRChart.vb file. Once
compiled, the XBarRChart control appears in the projects Toolbox, and you
will see it if you display the projects main form. You can select the
XBarRChart control from the Toolbox and drop it on the main form.

• SPCApplication3 – A third technique skips adding any of the SPC controls to
the toolbox. Instead, you can instantiate the SPC control directly in the
Form.vb file. In this example, a simple Panel control has been dropped onto
the form. This provides a simple means to position and size the SPC control it
will hold. Add the SPC chart control to the panel in the Form1.vb file.

Creating SPC Charts in Windows Applications 351

 Dim spcchart As SPCTimeVariableControlChart = Nothing

 Public Sub InitializeChart()

 spcchart = New SPCTimeVariableControlChart()

 ' Have the chart fill parent client area

 spcchart.Dock = DockStyle.Fill

 Panel1.Controls.Add(spcchart)

The rest of the chart customization code is placed in the Form1.InitializeChart method.

Visual C# for .Net

First, if this is the first .Net Compact Framework program you have every created,
make a few practice application programs using the Visual Studio defaults. Don’t try to
add graphics to an application until you are able to create a simple .Net Compact
Framework applications using the New Project (File | New | Project) application
wizard.

• You start the New Project application wizard by selecting File | New | Project,
bringing up the New Project dialog box.

• From this dialog, select Visual C# Projects | Smart Device | Windows CE 5.0
folder on the left, and the Device Application template on the right. The default
Device Application targets a .Net CF 2.0 device. Do NOT target a .Net 1.0 device
by selecting the Device Application (1.0), since this software is not compatible
with .Net 1.0 and 1.1.

• Assign a name to the application in the name box, either the default
(DeviceApplication1), or your own pick (SPCApplication11 in the example
below). Select a location, which for our examples is the folder C:\Quinn-
Curtis\DotNet\QCSPCChart\Visual CSharp\CF examples.

352 Creating SPC Charts in Windows Applications

• Right click on project name in the Solution Explorer window and select Add
Reference. Browse to the Quinn-Curtis/DotNet/lib subdirectory and select BOTH
the QCChart2DNetCF.DLL and QCSPCChartNetCF.DLL.

Creating SPC Charts in Windows Applications 353

• SPCApplication1 - Add the QCSPCChartNetCF.DLL to the Toolbox by right
clicking on the Toolbox and selecting Choose Items. Browse to the c:\Quinn-
Curtis\DotNet\lib folder and select the QCSPCChartNetCF.DLL file. This will
add all of the SPC charts controls in the DLL to the toolbox:

SPCTimeVariableControlChart
SPCTimeAttributeControlChart
SPCBatchVariableControlChart
SPCBatchAttributeControlChart
FrequencyHistogramChart
ProbabilityChart
ParetoChart

354 Creating SPC Charts in Windows Applications

• From that point on you can select the appropriate SPC Chart control from the
Toolbox and drop in on the form. The SPCApplication1 example program uses
the SPCTimeVariableControlChart control. The code that instantiates the
control, sizes it and places on the from, is automatically placed in the
Form.Designer.cs file. You don’t need to monkey around with that.

• The code needed to customize the chart for your application is placed in the
Form1.cs file. In the SPCApplication1 example it is placed in the
Form1.InitializeChart method.

Creating SPC Charts in Windows Applications 355

• Critical Step: Make sure you add the following lines to the top of the Form1.cs
code to resolve the QCChart2D CF, QCSPCChart CF and other graphics
classes used in the example.

 using com.quinncurtis.chart2dnetcf;

 using com.quinncurtis.spcchartnetcf;

• You should view the complete source of the
SPCApplication1.Form1.InitializeChart method by loading the
SPCApplication1.Form1.cs file in the VS editor.

• You should now be able to compile, run and view the entire project. Any changes
you make in the InitializeChart method form is reflected in the application. If you
still have problems go back and study the many example programs we have
provided.

• Here is what the resulting SPC chart looks like.

• SPCApplication2 - There are other ways to achieve the same result. We
actually prefer the technique used in the SPCApplication2 example, and that is
what most of our other example programs use. In that example we added a
UserControl (name XBarRChart) to the project (Add UserControl). We then
changed the inheritance of the control in the user controls XBarRChart.cs file
from UserControl to one of our SPC chart types:

SPCTimeVariableControlChart
SPCTimeAttributeControlChart
SPCBatchVariableControlChart
SPCBatchAttributeControlChart
FrequencyHistogramChart
ProbabilityChart
ParetoChart

 public partial class XBarRChart : SPCTimeVariableControlChart

 {

 ChartCalendar startTime = new ChartCalendar();

 // The time increment between adjacent subgroups

 int timeincrementminutes = 15;

 // Number of samples per sub group

357

 int numsamplespersubgroup = 5;

 public XBarRChart()

 {

 InitializeComponent();

 InitializeChart();

 }

• The chart customization code is placed in the XBarRChart.cs file. Once
compiled, the XBarRChart control appears in the projects Toolbox, and you
will see it if you display the projects main form. You can select the
XBarRChart control from the Toolbox and drop it on the main form.

• SPCApplication3 – A third technique skips adding any of the SPC controls to
the toolbox. Instead, you can instantiate the SPC control directly in the
Form.cs file. In this example, a simple Panel control has been dropped onto
the form. This provides a simple means to position and size the SPC control it
will hold. Add the SPC chart control to the panel in the Form1.cs file.

 SPCTimeVariableControlChart spcchart = null;

 .

 .

 .

 public void InitializeChart()

 {

 spcchart = new SPCTimeVariableControlChart();

 // Have the chart fill parent client area

 spcchart.Dock = DockStyle.Fill;

 panel1.Controls.Add(spcchart);

 .

 .

 .

 }

• The rest of the chart customization code is placed in the Form1.InitializeChart
method.

358 Using QCChart3D for .Net to Create Web Applications

Index
Adding new new data using AddNewSampleRecord,

105, 112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 134, 159, 161,
184, 185, 197, 198, 199, 209, 210, 211, 212, 219,
220, 228, 229, 230, 232, 234, 254, 255, 256, 273,
277, 278, 279, 283, 284, 285, 286, 289, 290, 291,
299, 301, 303

Alarm Event Handling, v, 134
Attribute Control Chart, v, vi, 4, 13, 27, 28, 32, 39, 47,

48, 52, 97, 98, 112, 243, 244, 245, 248, 253, 273,
295, 298, 303

AutoLogAlarmsAsNotes, 155, 225, 249, 295
AutoScale, 43, 61
Axis, 40, 43, 45, 46, 47, 48, 62, 63, 68, 69, 230, 231,

233, 300, 302
AxisLabels, 68, 69
AxisTitle, 90, 91
Background, v, 2, 5, 62
CartesianCoordinates, 51, 59, 60
c-Chart, 5, 13, 30, 39, 243
Chart Fonts, 173, 174, 265, 266
Chart Position, 179, 269
ChartAlarmEmphasisMode, 155, 178, 179, 223, 250,

293
ChartAttribute, 60, 61, 62, 322
ChartCalendar, 58, 61, 66, 91, 94, 111, 112, 113, 114,

115, 116, 119, 120, 121, 122, 123, 124, 125, 132,
133, 151, 152, 158, 159, 160, 161, 205, 206, 209,
210, 211, 212, 213, 214, 225, 227, 229, 230, 245,
246, 254, 255, 256, 283, 284, 285, 286, 296, 297,
299, 356

ChartImage, 91, 92
ChartLabel, 90, 91, 145
ChartPlot, 70, 71
ChartScale, 58, 59, 60
ChartShape, 91, 92
ChartSymbol, 91, 92
ChartText, 53, 90, 91, 97, 143, 176, 268
ChartTitle, 90, 91
ChartView, 10, 42, 57, 62, 92, 94, 157, 252, 318, 326,

327, 335, 341
Control Limit Alarms, v, 129
Control Limits, 181, 185, 186, 187, 188, 189, 192,

196, 198, 199, 270, 273, 276, 278, 279
Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu, and Ppk, 5, 40,

141
CSV, 40, 94, 102, 105, 107, 108, 125
Customer Support, v, 2
CuSum chart, 9, 11, 14, 22, 148, 194, 195
Data logging, 40
DataCursor, 92, 93
Dataset, 57, 70, 71
DataToolTip, 43, 92, 93
Developer License, ii
EWMA chart, 20, 21, 148, 189, 190

FindObj, 92, 93
FloatingBarPlot, 72, 76
Frequency Histogram, 9, 312
FrequencyHistogramChart, 9, 12, 42, 49, 237, 305,

311, 312, 313, 314, 317, 318, 319, 320, 346, 349,
353, 356

GraphObj, 61, 62, 82
Grid, 89, 90
GroupBarPlot, 72, 77
GroupDataset, 57, 58, 61
GroupPlot, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81
HistogramPlot, 72, 78, 320
Individual Range, 3, 4, 13, 14, 19, 39, 46, 99, 111,

147, 148, 153, 188, 227
Initializing the SPCControlChartData Class, 109
Legend, 88, 89
LegendItem, 88, 89
LinearAxis, 43, 62, 64, 69, 90
LinearScale, 58
LineGapPlot, 72, 79
LogAxis, 62, 65, 69, 90
LogScale, 58, 59
MA chart, 21, 22, 148, 159, 192, 193
Markers, 91, 93
MouseListener, 43, 92, 93, 94
MoveData, 92, 93
MoveObj, 92, 93
MultiLinePlot, 72, 80
MultiMouseListener, 92, 94, 156, 251
Multiple SPC Control Limits, 200, 279
Notes Tooltips, 216, 289
NotesLabel, 43, 52, 176, 269
NotesToolTip, 43, 52, 221, 291, 292
np-Chart, 29, 243
NumericAxisLabels, 68, 69
NumericLabel, 53, 90, 91, 143, 175, 176, 268, 269
OHLCPlot, 72, 80
Pareto Chart, 9, 12, 42, 50, 311, 330, 331, 332, 333,

335, 336, 346, 349, 353, 356
ParetoChart, 9, 12, 42, 50, 311, 330, 331, 332, 333,

335, 336, 346, 349, 353, 356
p-Chart, 13, 28, 29, 39, 47, 48, 243
PhysicalCoordinates, 43, 52, 58, 59, 60, 62, 63
Probability Chart, 9, 12, 42, 51, 311, 323, 324, 325,

326, 327, 328, 346, 349, 353, 356
ProbabilityChart, 9, 12, 42, 51, 311, 323, 324, 325,

326, 327, 328, 346, 349, 353, 356
ProbabilityCoordinates, 43, 51, 52
ProbabilityScale, 43, 51
ProbabilitySigmaAxis, 43, 51, 52
Process Capability, 5, 40, 165, 166, 167, 168
Redistributable License, ii
Scatter Plots, 24, 214, 287
SimpleBarPlot, 85, 86
SimpleDataset, 57, 58, 61

359

SimpleLineMarkerPlot, 85, 87
SimpleLinePlot, 85, 88
SimplePlot, 70, 85, 86, 87, 88, 92, 93
SimpleScatterPlot, 85, 88
SPCArrayStatistics, 52
SPCBatchAttributeControlChart, 1, 9, 11, 42, 44, 47,

243, 245, 296, 297, 298, 346, 349, 353, 356
SPCBatchVariableControlChart, 1, 9, 11, 42, 44, 45,

98, 147, 148, 150, 174, 225, 226, 227, 266, 346,
349, 353, 356

SPCCalculatedValueRecord, v, 44, 97, 98, 107, 129,
130, 132, 133, 135, 139, 140, 205, 206, 213

SPCChartBase, 42, 44, 98, 128, 137, 154, 155, 157,
178, 179, 223, 224, 225, 238, 249, 250, 251, 293,
294, 296, 306

SPCChartObjects, 43, 174, 175, 176, 182, 196, 197,
198, 199, 201, 202, 231, 232, 233, 234, 236, 266,
267, 268, 276, 277, 278, 279, 280, 281, 301, 302,
303, 305

SPCControlChartData, v, 43, 97, 98, 99, 100, 102,
104, 109, 110, 111, 117, 118, 122, 125, 126, 127,
128, 129, 132, 133, 134, 151, 152, 153, 156, 168,
169, 170, 177, 178, 182, 183, 191, 193, 195, 196,
205, 206, 207, 213, 226, 227, 228, 245, 246, 251,
254, 255, 259, 260, 271, 272, 283, 284, 285, 286,
296, 297, 299

SPCControlLimitAlarmArgs, 43, 53, 97, 132, 133,
134, 135, 136, 205, 206, 213

SPCControlLimitRecord, v, 43, 44, 97, 98, 129, 130,
131, 132, 133, 134, 135, 137, 138, 181, 182, 183,
200, 201, 202, 205, 206, 213, 271, 272, 280, 281

SPCControlParameters, 43, 52
SPCGeneralizedTableDisplay, v, 43, 53, 97, 143, 171,

172, 173, 174, 176, 263, 264, 265, 266, 268
SPCTimeAttributeControlChart, 9, 11, 42, 44, 48,

243, 245, 246, 247, 257, 258, 304, 346, 349, 353,
356

SPCTimeVariableControlChart, 9, 10, 11, 42, 44, 46,
98, 110, 111, 124, 132, 133, 147, 148, 150, 151,
152, 153, 175, 178, 191, 193, 195, 196, 235, 236,
346, 347, 349, 350, 351, 353, 354, 356, 357

StackedBarPlot, 72, 77
StackedLinePlot, 72, 81
StandardLegend, 89

StringAxisLabels, 68, 69
StringLabel, 43, 53, 90, 91, 143, 176, 269
Table Background Colors, 171
Table Fonts, 173, 265
Table Strings, 168
TableAlarmEmphasisMode, 157, 224, 225, 251, 294,

295
Templates, 4, 5, 175, 268
TickMark, 94, 95
TimeAxis, 63, 66, 70, 90
TimeAxisLabels, 69, 70
TimeCoordinates, 59, 60
TimeGroupDataset, 57, 58, 61
TimeLabel, 53, 90, 91, 143, 145, 175, 176, 268
TimeScale, 58, 59
TimeSimpleDataset, 57, 58, 61
ToolTips, 43, 92, 93
Trial License, ii
u-Chart, 5, 13, 31, 39, 243
UseNoTable, 158, 176, 178, 179
UserControl, 7, 41, 56, 57, 341, 349, 350, 356
UserCoordinates, 59
Variable Control Chart, v, 4, 5, 13, 14, 15, 23, 32, 39,

40, 45, 46, 98, 99, 100, 104, 110, 111, 112, 132,
147, 149, 150, 158, 163, 164, 169, 185, 225, 234,
245

variable sample subgroup, 10, 117, 119, 147
Visual Basic, vi, 5, 10, 12, 344, 345
Visual C#, vi, 12, 351
WE rules, 10, 203
Windows Applications, vi, 341
WorkingCoordinates, 59, 60
WorldCoordinates, 59
XAxisLabelRotation, 230, 231
XAxisStringLabelMode, 231, 232, 233, 234, 301, 302,

303
X-Bar R, 3, 4, 5, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21,

39, 45, 53, 100, 113, 147, 148, 153, 158, 178, 185,
186, 203, 204, 206, 207, 227, 231, 233

X-Bar Sigma, 4, 5, 9, 10, 11, 13, 14, 16, 17, 39, 53,
100, 113, 114, 147, 153, 158, 159, 160, 185, 187,
227

X-R, 4, 5, 9, 10, 11, 13, 14, 19, 39, 53, 147, 148, 188
Zooming, 2

