

Code Generation from an Abstract State

Machine into Contracted C#

Supervisor: Joseph R. Kiniry

Thesis by: Asger Jensen

Date of birth: 10-11-82

Email: asje@itu.dk

Thesis start: 01-12-11

Thesis end: 01-06-12

mailto:asje@itu.dk

2

Abstract
In computer science designing systems, whether it is hardware or software, using an abstract state machine

diagram to model the system is a common approach. When using the diagram as a blueprint for

programming, it is possible to lose the equality between the diagram and the actual code, not to mention

the time that was spent creating the code.

Having a tool which generates skeleton code from a state machine is not a new idea. In 2003 Engelbert

Hubbers and Martijn Oostdijk created the AutoJML tool, which derives Java Modeling Language

specifications from UML state diagrams.

The same kind of tool does not exist in the .NET environment. Visual Studio 2010 does offer the possibilities

of creating state machine diagrams, but it is not possible to generate code from the diagram. This thesis is

about creating such a tool, based on Hubbers and Oostdijk work, where the user can create their abstract

state machine diagram and generate contracted skeleton C# code from it.

To accomplice this, a Domain Specific Language has been created, with an added feature to generate code.

The user can create their state machine by adding states and transitions, specify what states should be

initial-, normal- and final state, fill out the transition properties and initiate the validation and generation of

the code. Code Contracts is used in the generated code to keep the constraints of the abstract state

machine diagram.

The result of this thesis is a Visual Studio extension, which makes it possible to get generated contracted C#

code from an abstract state machine diagram.

3

Table of Contents

1 INTRODUCTION .. 5

2 ABSTRACT STATE MACHINES .. 5

2.1 CONTROL STATE ASMS ... 6

2.2 LINK BETWEEN ASM AND FSM .. 6

2.3 DFA AND NFA DEFINITION .. 7

3 HUBBERS AND OOSTDJIKS PAPER... 8

3.1 THE THESIS COMPARED TO THE PAPER .. 9

4 THE ASM EXTENSION...10

4.1 CURRENT FEATURES .. 10

4.2 FUTURE WORK .. 11

5 EXTENSION WALKTHROUGH ...11

6 CODE CONTRACTS ...14

6.1 PRECONDITION, POSTCONDITION AND INVARIANT .. 15

6.2 ISSUES WITH CODE CONTRACTS AND SOLUTIONS .. 15

7 BUILDING THE DSL ...17

7.1 THE META-MODEL ... 17

7.1.1 Embedding and Reference Relations .. 18

7.1.2 Allow Duplications .. 19

7.2 THE GRAPHICAL NOTATION .. 20

8 THE BUTTON ...20

8.1 DECLARING THE BUTTON AND FUNCTIONALITY ... 20

9 VALIDATION ..21

9.1 CHOSEN RULES .. 21

9.2 CONSIDERED RULES .. 22

9.3 THE CODE ... 22

10 GENERATING C# CODE...23

10.1 THE GENERATED CODE .. 24

11 TEST ..24

11.1 VALIDATION TEST ... 24

11.2 GENERATION TEST .. 25

12 CONCLUSION ...26

13 LITERATURE LIST..27

14 SOFTWARE ..28

4

Appendices

APPENDIX A ...29

APPENDIX B ...30

APPENDIX C ...31

APPENDIX D ...32

APPENDIX E ...34

APPENDIX F ...36

APPENDIX G ...45

APPENDIX H ...47

5

1 Introduction
Over the last 10 years there has been more interest in developing a way of using a state machine model

and generating a skeleton code from it. Engelbert Hubbers and Martijn Oostdijk from the University of

Nijmegen created AutoJML tool which automatically derives Java Modeling Language (JML) specifications

from UML1 state diagrams. This thesis is based on the paper “Generating JML Specifications from UML State

Diagrams” by Engelberg Hubbers and Martijn Oostdijk [1].

A way of achieving the goal of replicating Hubbers and Oostdijk’s earlier experiment in a new programming

language is to define a domain specific language (DSL), where it is possible for users to create an Abstract

State Machine (ASM) diagram. The DSL will also have a functionality to generate code from the created

state machine model, with a validation check of the model before the generation. The final product of the

thesis will be an extension containing the DSL to Visual Studio 2010 (VS2010).

VS2010 does contain a UML Activity Diagram extension to create ASMs it is not possible to generate any

code from the ASM. The possibility to generate skeleton code would boost production speed of software

development considerably. Also one can lose similarity between the ASM and the written code if there is

not a regular comparison, known as architecture drift [8]. So by generating skeleton code from an ASM, one

is sure that the code is equivalent to the ASM.

This report will cover topics, ASMs and how they link to Finite State Machines2 (FSMs), the paper by

Hubbers and Oostdijk, Code Contracts, a use case describing the extension, the meta-model of the

extension, the validation of ASMs, the code generation and the tests of the extension.

2 Abstract State Machines
Designing a system is difficult and can be the most error prone part of the system development [2].

Creating the system requirements is based on what the customer wants, but the customer does not have

the same insight into system design as the developers. This leads to a system description from the

customer that is perhaps incomplete, has misleading details or somewhat ambiguous. The ASM method is

machine- and programming language independent, which makes it a valid method for designing hardware

and software systems. This offers a way for customers and developers to design a system together, which is

precise enough to meet the customer’s wishes, but also abstract enough for the developer’s creative

thinking.

When the customer and developer create an ASM of a system, it is known as a ground model ASM for the

system. The ground model is based on the system description and requirements, and serves as a blueprint

for the project. Since the ground model is created by the customer together with the developer, it can

serve as the basis for the software contract, a documentation which binds the two involved parties.

Having a ground model of the system, it is possible to define a test plan for the system before the actual

coding starts. Furthermore it is also possible to create test cases for the actual ground model, to prevent

1
 Unified Modeling Language

2
 Finite State Machines are also known as Finite Automata (FA)

6

any major mishaps. These possibilities lower some of the project expenses, since the actual testing is

designed, and some also performed, before the later stages of the development.

The ground model is used as an overview of the entire system, but for the actual development more

specific ASMs are needed. Taking the ground model, a hierarchy of intermediate models can be designed.

The intermediate models, known as stepwise refining ASMs, are a deeper view into the different states in

the ground model ASM. Look at the stepwise refining ASMs as pieces of a bigger puzzle, seen in Fig. 2-1.

Fig. 2-1: Stepwise Refining ASMs from a Ground Model ASM

Using the stepwise refining ASMs the individual person responsible for the code has something more

specific to work with, without having to think about the entire system, just the one piece of the puzzle.

2.1 Control State ASMs
In this thesis a version of ASMs called control state ASM is used. The control state machine uses the

notation of the UML activity diagram, together with the structure of FSM to allow the possibility of

manipulating data structures.

The control state ASM contains finitely many control states, which resembles the internal states of FSM.

The states can be used to describe different modes of a system, example shown in Fig. 3-1. As with FSMs,

control state ASMs can be deterministic and non-deterministic. The non-deterministic can be used to

resolve possible conflicting updates of a state.

2.2 Link between ASM and FSM
FSM only holds the states or data structures which is within the boundary of the modeled machine, and

does not contain any variables which can be changed during a transition. The label of the transitions in a

7

FSM only holds a symbol or a letter from a set of inputs for the FSM, and it is not possible to use arbitrary

expressions as a label. The ASM takes the FSM as a foundation and builds upon it. The ASM has the same

notation of states and transitions, but one can attach variables to the ASM, which can be updated based on

the rules of the transitions. The definition of an ASM [2] is as follows

 Basic ASMs are a finite set of so-called transition rules of the form

 if Condition then Updates

 which transform abstract states…

With the control state ASM used in this thesis a transition has a label with the form

 Event(arguments)[Condition] /Action

The event is the trigger to update the current state, which can be thought of as a method call with possible

arguments. The condition3 for the transition determines whether or not the transition occurs, and the

action is what is going to happen, if the condition is true. The action can be an exception thrown or a

variable changing value.

2.3 DFA and NFA Definition
As written above, ASMs as well as FSMs can be deterministic and non-deterministic. Deterministic means

that there is one transition from a state for each possible input, whereas the input for a non-deterministic

can lead to one, more than one or no transitions from a state.

Hopcroft et al. [3] defines deterministic as

1. A finite set of states, often denoted with Q

2. A finite set of input symbols, often denoted 

3. A transition function that takes as arguments a state and an input symbol and returns a state. The

transition function will commonly be denoted 

4. A start state, one of the states in Q

5. A set of final or accepting states F. The set F is a subset of Q

Furthermore Hopcroft et al. defines non-deterministic as

1. Q is a finite set of states

2.  is a finite set of input symbols

3. q0, a member of Q, is the start state

4. F, a subset of Q, is the set of final (or accepting) states

5. , the transitions function is a function that takes a state in Q and an input symbol from  as

arguments and returns a subset of Q. Notice that the only difference between NFA4 and DFA5is in

3
 A condition in an ASM is also known as a guard

4
 Non-deterministic Finite Automata a.k.a. Non-deterministic State Machine

5
 Deterministic Finite Automata a.k.a. Deterministic State Machine

8

the type of value the  returns: a set of states in the case of an NFA and a single state in the case of

a DFA

These definitions will be used to build the arguments for the class that generates the skeleton C# code from

the ASM. This will be addressed in section 10.

3 Hubbers and Oostdjiks Paper
Hubbers and Oostdijk created a prototype tool, AutoJML, which automatically derives JML specifications

from UML state diagrams.

The AutoJML tool accepts UML state diagrams as input and generates skeleton Java code with JML

specifications. The JML adds the invariants, pre- and postconditions for each method, class wide. Using the

generated code the software engineer still has to create the actual program, but the program can be

verified against the generated specification.

Hubbers and Oostdijk use the following state diagram, Fig. 3-1, as an example to test their tool with.

Fig. 3-1: GSM authentication state diagram

The example is taken from the world of the Global System for Mobile communication (GSM). Hubbers and

Oostdijk describe the example as follows:

“GSM uses a cryptographic protocol to authenticate the Subscriber Identity Module (SIM), which is

embedded in the cell phone, to the network service provider…

… On a more concrete level the standard describes the protocol using two commands which can be

sent to the SIM: RUN_GSM_ALGORITHM and GET_RESPONSE. The key KI is a 16-byte number stored

in the SIM, the challenge RAND is a 16-byte number sent to the SIM in the data field of the byte

sequence representing the RUN_GSM_ALGORITHM command. The response (SRES, KC), a 12-byte

number (4 for SRES, 8 for KC) is the result of running the Comp128 algorithm with key KI and input

9

RAND. This is sent back in the data field of the response byte sequence after sending the

GET_RESPONSE command. The RUN_GSM_ALGORITHM command should be followed by a

GET_RESPONSE command.”

Using the AutoJML they produced the following code:

/*@ invariant
 mode==LOCKED || mode==CHALLENGED || mode==NORMAL;
*/

/*@ constraint
 (mode==LOCKED ==> \old(mode)==NORMAL || \old(mode)==LOCKED) &&
 (mode==CHALLENGED ==> \old(mode)==NORMAL) &&
 (mode==NORMAL ==> \old(mode)==CHALLENGED) &&
 (\old(mode)==LOCKED ==> mode == LOCKED) &&
 (\old(mode)==CHALLENGED ==> mode==NORMAL) &&
 (\old(mode)==NORMAL ==> mode==CHALLENGED || mode==LOCKED);
*/

/*@
 requires true;
 modifies mode, counter;
 ensures
 \old(mode)==NORMAL && counter < 10000 ==> mode==CHALLENGED;
 exsures (ISOException)
 \old(mode)==LOCKED ==> mode==LOCKED;
 exsures (ISOException)
 \old(mode)==NORMAL && counter >= 10000 ==> mode==LOCKED;
*/

private void processRUN_GSM_ALGORITHM(APDU apdu)
throws ISOException {
 if (mode==LOCKED) {
 mode = LOCKED;
 ISOException.throwIt(SW_UNKNOWN);
 } else if (mode==NORMAL && counter < 10000) {
 counter = (short)(counter + 1);
 mode = CHALLENGED;
 } else if (mode==NORMAL && counter >= 10000) {
 mode = LOCKED;
 ISOException.throwIt(SW_UNKNOWN);
 }
}

The postconditions are indicated with ensures and exsures. The exsures is similar to ensures but only

handles exceptions.

3.1 The Thesis compared to the Paper
At the current time there is no tool for the .NET environment which has the same functionality as the

AutoJML tool. There are extensions in VS2010 where it is possible to create ASM diagrams, but it is not

possible to generate code based on the model.

So the idea for the thesis is to create an extension/tool, where users can create an ASM diagram and

generate skeleton C# code. Clearly the JML is not part of .NET environment, so another way of adding the

10

pre- and postconditions, invariants, and the constraints has to be resolved. One solution is Code Contracts,

an overview of Code Contracts can be read in section 6.

The example state diagram that from Hubbers and Oostdijk, Fig. 3-1, and their generated code is going to

be used in this thesis as a base for testing the extension. The diagram has the needed elements for testing,

and their generated code is used for comparison with the ASM extensions generated code. Furthermore

their generated code is used for the Code Contracts section of this paper, to solve the issues regarding the

functionalities that JML has, but Code Contracts do not have.

4 The ASM Extension
Fig. 4-1 shows a use case, which explains how the user interacts with the ASM extension and the

functionality of it. The iterative process square is an indication that the users can do those processes over

and over before the validation of the ASM. The generated code file is placed on the user’s desktop on the

computer.

Fig. 4-1: Use Case for the ASM extension

4.1 Current Features
States can be set to different kinds of states, such as initial, normal or final, where normal is the default

kind. The transitions can be set to normal or epsilon kind. The epsilon transitions make it possible to create

NFAs. Bear in mind that setting the kind to epsilon means that no code is going to be generated based on

the info in the transition.

11

At the current time, with the ASM extension, it is only possible to generate skeleton C# code with added

Code Contracts. The Code Contracts contain postconditions, invariants and constraints for the code.

4.2 Future Work
Future work could be to add hard constraints to the transition property fields. The constraints add an

additional feature to the extension, making the property field’s dependant on each other. The fields Event,

Condition and Action generates the Label in the form of Event(possible argument) [Condition] / Action.

Furthermore the user can fill in the label, and the other three properties will be filled out based on the

label. The constraint on the actual label is that it has to be filled out in the form described above.

Prompting the user in case of an infinite loop in the ASM, could be a valid addition to features in the

extension. The prompt should be information about an infinite loop in the ASM, where the user can

acknowledge with pressing “OK” or “Cancel”.

Another possible feature could be to implement ASM generation from C# code, where the user can add an

existing .cs file to the ASM project, right click on it, select “Generate ASM”, and a .asm file will be created.

The DSL can show files in different formats, e.g. the .asm file can be shown as an ASM diagram but also as a

XML file, so the generated code would be in the form of XML language. The XML code for the GSM

authentication ASM diagram can be seen in appendix A. With this feature the user can see if the ASM is still

the same after they modified the generated code.

Another item which could be implemented is XML code generation for UPPAAL, a model-checking tool. The

UPPAAL tool can, among other things, check invariants and reachability properties of an ASM. The generate

button would be placed in the same group as the “Validate and Generate”–button is placed, when the user

right clicks on an empty space in the ASM diagram.

5 Extension Walkthrough
Installing the extension is done by ‘double clicking’ on the file AsgerJensen.ASM.DslPackage in the

ASM\DslPackage\bin\Debug directory and accepting to install it, when the installation window shows. To

use the extension the user needs to open up their VS2010 and create a standard project, seen in Fig. 5-1.

12

Fig. 5-1: Screenshot of a VS2010 project

From here the user has to ‘right click’ the project folder, choose Add -> New Item, pick an ASM file, name it

and ‘click’ Add. In this example the .asm file is named LightSwitch, shown in Fig. 5-2.

Fig. 5-2: Screenshot of a Add Item window

The newly added .asm file is now added to the project and opened up. Fig. 5-3 shows the opened .asm file.

To the right, is the toolbox containing the state- and transition tool. Here the user should fill in the name of

the ASM diagram, which is done in the properties window, in the lower right corner, that is displayed when

they ‘click’ on an empty space in the ASM diagram.

13

Fig. 5-3: Screenshot of the opened .asm file

Now the user can add states to the diagram by ‘clicking’ on the state tool and dragging it into the diagram.

In this example two states have been added Off and On, shown in Fig. 5-4. The properties for the state are

shown in the properties window in the lower right corner, which is shown when the user ‘clicks’ on a state.

Here the kind of the state can be set. Off is set to Initial and On is set to Final.

Fig. 5-4: Screenshot of two added states

14

Transitions between the states are added by ‘clicking’ on the transition tool, then ‘click’ on the state it

should go from, and then ‘click’ on the state it should go to. Fig. 5-5 shows the added transition between

the states. Its properties are also filled out in the lower right corner, when the user has selected the

transition. In the example the transition as the event/method call Switch, the condition counter >= 0 and

the action counter++.

Fig. 5-5: Screenshot of the added transition

To generate the C# skeleton code, the user ‘right clicks’ an empty space in the diagram and selects Validate

and Generate. The file can be found on the user’s desktop and can easily be shown in VS2010 by ‘double

clicking’ it. The generated code from the LightSwitch example can be seen in appendix B.

6 Code Contracts
Code Contracts is an extension to Visual Studio (VS) which brings the advantages of design-by-contract6

programming to all .NET languages. With Code Contracts it is possible to add preconditions, postconditions

and invariants to ones code. The contract is used to improve testing via runtime checking, enables static

contract verification, and documentation generation [7].

Using Code Contracts one restricts, in a good way, how the code can possibly behave. Other than helping

out the author of the code, the contract also helps other users of the code, whether they are working with

the actual code or working with a subclass of the code, since Code Contracts are inherited.

6
 “An approach for designing software. It prescribes that software designers should define formal, precise and

verifiable interface specifications for software components, which extend the ordinary definition of abstract data types
with preconditions, postconditions and invariants.” Ref. Wikipedia

http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Component-based_software_engineering#Software_component
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Precondition
http://en.wikipedia.org/wiki/Postcondition
http://en.wikipedia.org/wiki/Invariant_%28computer_science%29

15

6.1 Precondition, Postcondition and Invariant
Code Contracts contains a lot of functionalities, so will only address some of the functionalities of

precondition, postcondition and invariant, which were part of the solution to the issue with not having the

possibility of using JML.

Preconditions, expressed by Contract.Require(…), for methods are conditions that have to be valid when

the method is invoked. All the variables used in the preconditions have to be of same accessibility as the

method itself or the condition cannot be satisfied by the method callers.

Postconditions, on the other hand, are conditions that have to be valid just before exiting the method, and

is expressed by Contract.Ensures(…). If a particular exception should be thrown in the postcondition, the

Contract.EnsuresOnThrow<T> should be used. It is not recommended to use the type Exception for T, since

Exception is to “superficial”. The exception thrown will not address what the actual exception is, like stack

overflow or some other exception. T should be what a caller expects as part of the application

programming interface (API), e.g. FileNotFoundException. The last postcondition functionality that will be

addressed is OldValue. OldValue makes it possible to refer to the old value of an expression, expressed by

Contract.OldValue<T>(e) where T is the type of e.

Invariants7 are also conditions. Invariants hold the terms for which an object of the class is in a “good”

state. So when an object of the class is visible to a client, these terms need to hold. Compared to the

conditions, the Invariants are declared in their own private void method. The method is identified with the

attribute [ContractInvariantMethod], and the individual invariants are specified with Contract.Invariant.

6.2 Issues with Code Contracts and Solutions
Comparing the generated JML specification from the paper [1] with the Code Contracts functionalities,

some issues occurred. The following example from the paper will be used to state the issues and solution.

 (mode==LOCKED ==> \old(mode)==NORMAL || \old(mode)==LOCKED)

Firstly, code Contracts does not have a way of modeling constraints as JML does. The solution is to model

the JML constraints as Code Contracts invariants, since the constraint is an expression that returns true or

false, which is what invariant expressions also should do.

The next issue was to figure out how to get the previous value of the state. The postconditions in Code

Contracts have the OldValue method, but that is only available in postconditions. The states from the ASM

are modeled in the generated code by declaring an enumeration with the Enum keyword, as follows.

 Enum State

 {

 State1,

 State2,

 …

 };

7
 Known as Object Invariants in Code Contracts, but will refer to them as Invariants in this paper

16

Using an enumeration like this, it is possible to hardcode8 two fields that contain the value of the current

state and the previous state in the generated code, named _curState and _preState. These two fields are

used throughout the generated code to symbolize the state changes and to handle postconditions,

conditions in the methods and also the invariants/constraints. The _preState field solved the issue with not

having an OldValue method in the invariants.

The Enum State cannot be a value other than what is declared in the enumeration, which means that the

actual invariant in the paper [1], declared

 mode==LOCKED || mode==CHALLENGED || mode==NORMAL

is not needed in the C# generated code. But since the current state and the previous state have to be one of

those three, what is the previous state of the initial state in the ASM? Hardcode an additional state, named

InvalidState, to the Enum State was the answer. So when an object of the class is created, the previous

state has the default value InvalidState. However, this means that one additional invariant needed to be

hardcoded, since the current state can possibly end up being InvalidState. Furthermore when the current

state is the initial state, the previous state can also be InvalidState or a valid state leading to the initial state.

The hardcoded invariants and the added InvalidState to initial state constraint are shown below.

 Contract.Invariant(_curState != State.InvalidState);

 Contract.Invariant(_curState == State.Normal ? (_preState == State.Challenged |
 _preState == State.InvalidState) : true);9

The last issue was to model the “implies” notation ==>, since Code Contracts does not have that

functionality. Looking at the example at the beginning of this section, and using states instead of modes,

the constraint is “if the state is LOCKED, that implies that the old value of the state was NORMAL or

LOCKED”. The conditional operator “?:” in C#, also known as the ternary operator, is used to solve the

predicament. The ternary operator is expressed as condition ? expression_1 : expression_2 and returns one

of the two expressions depending on outcome of the Boolean condition. In other words, the condition

decides what expressions will be evaluated and the expressions determine the outcome of the entire

ternary expression, which is true or false. So the conditions can be used to check what the current state is,

the first part of the JML constraint example. If the second expression is set to default true, then the first

expression can be used to define what should be implied, the last part of the JML constraint example.

Leading to a ternary expression looking like this

 _curState == State.Locked ? (_preState == State.Normal | _preState == State.Locked) : true

If current state is Locked, then the first expression will be evaluated, which states “Is the previous state

Normal or Locked?”. If the current state is not Locked then the second expression of the ternary will be

evaluated, which is true, hence the invariant will be not throw an error and move on to the next invariant in

the method.

8
 Meaning that the specific code will always be in the generated code, no matter how the ASM is designed

9
 This example code is from the generated code from the GSM authentication ASM

17

7 Building the DSL
When faced with a specific problem that occurs over and over e.g. designing an ASM, starting to code and

losing similarity between the code and the ASM. A way of solving the issue is to build a Domain Specific

Language (DSL) and add code generation to it.

The created extension contains two projects, Dsl and DslPackage. The Dsl contains the meta-model of the

extension, customized code by the use of the partial class mechanism and generated code. The DslPackage

contains; customized code, code that enables the DSL to be hosted and to interact with VS2010, where part

of the code is generated from the DslDefinition.dsl, which is the meta-model. Since there is a lot of

generated code, there will only be a walkthrough of the meta-model and a description of key points in the

customized code.

7.1 The Meta-model
The meta-model is shown in the DslDefinition.dsl in the Dsl project. The DslDefinition.dsl is in sense a “DSL

to create DSL’s”. There are two parts to it, shown in two “Swimlanes”, the meta-model10 in the left section

called “Classes and Relations”, and the graphical notation in the right section called “Diagram Elements”.

Fig. 7-1: Meta-model of the ASM extension

Fig. 7-1 shows the meta-model and graphical notation for the extension. The meta-model has two

concepts; StateMachine and State, and two domain relationships; StateMachineHasStates and Transition.

The link between the meta-model and the graphical notation is displayed by two connection lines from

State to StateShape and from Transition to TransitionConnector.

The StateMachine is the root concept, meaning that it is never really shown when the user designs an ASM,

since the root concept is the actual diagram. StateMachine has two domain properties, shown in Fig. 7-2.

Name for naming ones ASM which will be the name of the generated class, and Fields which are for adding

fields to the generated class.

10

 Also referred to as Domain Model

18

Fig. 7-2: The StateMachine element

Fig. 7-3: The State element

The State is the only true concept the user really works with within the extension. State also has two

domain properties, shown in Fig. 7-3. Name for naming the states, and Kind to specify what kind of state it

is Normal, Initial or Final.

StateMachineHasStates, shown in Fig. 7-4, is an embedding relationship that links State to State, which are

the elements in StateMachine. An explanation to embedded relationships can be seen in section 7.1.1

below.

Fig. 7-4: The StateMachineHasStates relation

Fig. 7-5: The Transition relation

Transition is a reference relationship that links two State classes, shown in Fig. 7-5. The Transition

relationship has several domain properties, since it is from the transitions most of the generated code

comes from.

Label is the shown label on the transition which should be in the form Event(possible argument) [Condition]

/ Action. At the current time it is not a hard constraint but can be added in future version of the extension,

explained in 4.2. Event can be viewed as the method call which changes the current state from one state to

another state. Condition should contain the condition which needs to be met before moving from one state

to another state. Action is a possible action that can happen in the transition from one state to another,

e.g. exception thrown. Kind works the same way as for State, except there are only two kinds of transition

Normal- and Epsilon transition.

An important aspect of the properties of Transition is that the “Allow duplications” field is set to true, since

it should be possible to have more than one transition between two states.

7.1.1 Embedding and Reference Relations

In a meta-model every domain class, except the root, must be in relationship with at least one embedding

relationship. Without the embedding it will not be possible to see the model explorer, serialization would

not work and it would not be possible to create a tree of model elements. In other words, embeddings

19

provide a path to navigate through the meta-model as a tree, where every element has exactly one parent

element.

With the embedding relationship some constraints follow. The multiplicity on the target role must be 1 or

0..1, because a model element can only be embedded once. Another constraint is, e.g. the root has several

embeddings to several targets, the targets have to have the multiplicity 0..1 because only one model

element can be embedded by one of those relationships at a time. Having one of the targets multiplicity as

1 would render all the other relationships impossible to instantiate. Furthermore the default deletion of a

parent of an embedding, deletes also the child of the embedding.

Reference relationships, on the other hand, represents any kind of relationship which is not embedded and

does not have constraints like embedded relationships. Generally a reference relationship can refer from

any model element to any other model element, and the multiplicity is often 0..* on the roles. It is even

possible to make a reference relation between two relationships, since links are themselves model

elements. By deletion of a parent of a reference relation, it is only the parent and the reference link that

gets deleted not the child of the relationship.

7.1.2 Allow Duplications

The transition allows duplications in the properties of Transition in the meta-model. Keeping this in mind,

one needs to be aware, when using the Successor and Predecessor methods for states. For example, having

two states with two transitions between them, shown in Fig. 7-6, gives the successor list from State 1

“State 2, State 2”, even though there is only State 2 as the successor.

Fig. 7-6: Two states with to transitions

If not aware of this, then the generated code will contain the double amount of constraints for the two

states in Fig. 2-1. When asking for the “link” between a state and a successor, another issue occurs. Below

is C# code for getting the “link” between each state in the ASM and each of their successors.

foreach (var state in sm.States)
{
 foreach (var successor in state.Successor)
 {
 ReadOnlyCollection<Transition> transitions = Transition.GetLinks(state, successor);
 }
}

If using the example of the two states in Fig. 2-1, then you will get two transitions for each successor,

meaning you will get four transitions in total, since there are two State2 in the successor list. This means,

that there will be double as many methods, conditions and postconditions in the generated code. Hence

there will be N2 as many methods with conditions and postconditions in the generated code, where N is the

number of transitions. These issues have been take care of in the extension.

20

7.2 The Graphical Notation
The graphical notation of the ASM is designed after the principle of a control state ASM. States are squares

with round corners. The initial and final state is indicated with an icon, in the upper left corner of the state.

The initial icon is a fully black colored circle, and the final icon is a fully black colored circle with a ring

around it, equivalent to how an initial- and final state looks in a FA. Transition is an arrow from one state to

another. The epsilon transition is marked with an epsilon icon at the state, where the transition starts. The

notations can be seen in Fig. 7-7.

Fig. 7-7: Example of the ASM notation for the ASM extension

8 The Button
To activate the validation and code generation, a menu command has been added to the DSL. The menu

command is found in the context menu when the user right clicks on an empty space in their ASM diagram.

The menu command is named Validate and Generate.

The menu command can be defined so it is visible in the context menu in specific circumstances, or be

visible but grayed out. For example, the menu command can be visible but grayed out when they right click

an object in their ASM.

The reasoning for making the menu command only visible, when the user right clicks on an empty space in

the diagram, is that the validation and the generation should be done for the entire ASM not for selected

objects.

8.1 Declaring the Button and Functionality
The command is declared in the Commmand.vsct by adding a section/group in the menu and adding a

button to that section/group. To be sure that the command is only loaded in the DSL, a visibility constraint

is added. The GUIDs and IDs for the group and the button are defined in the Symbol section at the end of

the Command.vsct file. Several sections/groups and buttons can have the same GUID, but must have

different IDs. For a more detailed view of the code, look in appendix C.

The DSL already has some commands in the generated partial class CommandSet.cs, so to add the behavior

of the command a new partial class11 was added. The added partial class contains two methods to handle

the visibility of the command and the functionality.

The OnMenuMyContextMenuCommand method handles the functionality of the command button. It builds

the needed sets for the validation and code generation, explained in section 2.3. Furthermore the method

creates an object of the validation- and the code generator class, and calls the methods that validate the

ASM and generate the code. For a more detailed view of the code, look in appendix D.

11

 Can be found in DslPackage\CustomCode

21

A set of final states and a set of input symbols have been created, based on the definition of an FA, but

these sets are not used in the validation or the generation, since the transitions functions set holds the

same information. These are still kept in the code for the possibility of future work on the extension.

9 Validation
To generate the skeleton C# code, some validation rules have to be created to make it possible to generate

valid code. These rules are chosen by the author of the VS 2010 extension, because the Abstract State

Machine has to be more concrete to generate code from. Even though a state machine with one state is in

theory a valid state machine, it does not generate more code than a class with two fields and an

enumerator.

9.1 Chosen Rules
The validation rules are as follows;

1. The state machine has to have states

2. There has to be one initial state, and only one

3. States have to have a name

4. States cannot have the same name

5. Every state, except initial state, has to have a predecessor

6. Every state, except final state, has to have a successor

7. Every transition, except epsilon transition, has to have a label

8. Transitions with the kind Normal cannot have the exact same event, condition and action

The rules have been created on the assumptions that the user actually wants to generate code, 1st rule.

There has to be an initial state, and only one, in state machines, 2nd rule. Without a name on states and

filled in properties on a normal transitions it is not possible to generate methods or the Code Contracts, 3rd

and 7th rule. States could have the same name, but to keep the user from making the ASM to confusing

with too many states with the same name the 4th rule was created. The 8th rule is in essence the definition

of a deterministic state machine, which is described in section 2.3.

The 5th and 6th rule makes sure that all the states in the ASM are connected, so it is not possible for the user

to create two ASMs in the same diagram. Furthermore the rules also say, together with 1st and 2nd rule, that

there has to be an initial state and a transition to one other state, shown in Fig. 9-1, which means that the

user has to create this as a minimum if they want to generate code.

Fig. 9-1: ASM diagram containing the minimum about of states and transitions

Also if the ASM’s last state is not a final state, there have to be a transition leading to itself, else it breaks

the 6th rule and an exception is thrown, example shown in Fig. 9-2.

22

Fig. 9-2: ASM diagram with accepted last state, not marked as final

9.2 Considered Rules
In the process of choosing the right rules for the ASM other rules have come up in discussions. Rules such

as;

 Must the ASM contain one final state?

 Should the ASM only have one final state?

 Should infinite loops be allowed in the ASM?

When designing state machines it is good practice to have an initial state and a final state, but sometimes it

is needed to design a system which should not stop running at any point, e.g. the state machine in the

Hubbers and Martijn paper [1], where the state Locked is the “final state” but it doesn’t shut down the

system. Therefore it should not be mandatory to have a final state.

With regards to having more than one final state, it is a matter of design and overview of the system. One

could argue that several final states would make the ASM look cluttered, but having transitions running

from several states to the final state through all the other transitions would cause the same issue. So, it is

possible to have more than one final state.

Most often infinite loops in systems, algorithms etc. are considered a bug. But there are situations where

users want to model a system, where there should be an infinite loop, such as reactive systems like

websites. So having the possibility of modelling an infinite loop in the ASM extension seems reasonable, but

there should be a prompt about an existing infinite loop. This feature can be implemented in future

versions of the extension, also written in section 4.2.

9.3 The Code
For validating the ASM the class Validation12 has been created, which takes three arguments; states,

inputSymbols and startState. They are all of type HashSet, since the same arguments are used in the code

generator. The code generating class takes arguments sets because of the DFA and NFA definition,

described in section 2.3.

One could argue against having the startState of type HashSet since there is only supposed to be one initial

state, but keeping all the validation together in one file, rather than several places trough out the DSL, was

the only reason for it.

Since the validation is based on the rules written in section 9.1, the solution for the validation are if-

statements where an exception is thrown, when the ASM does not adhere to the rules.

For a more in depth view of the code, see appendix E.

12

 Can be found in DslPackage\CustomCode

23

10 Generating C# Code
The C# code is generated in the CodeGenerator.cs13 class. The class uses the argument sets containing the

ASM states, the ASM name, the ASM fields, the transition function from the ASM and the initial state.

The process of generating the code is sequential where each bit of code is created in a “builder” method,

added to a StringBuilder and gets written to the .cs file with the name of the ASM. The sequence of how the

code is built and written to the file can be seen in Fig. 10-1. The sequence does not show the formatting

methods for the generated code.

DirectiveBuilder NameSpaceBuilder ClassBuilder FieldBuilder

ConstructorBuilderEnumBuilderMethodBuilder

ChangeState-

MethodBuilder
ConstraintBuilder ClosingBrackets

Postcondition-

Builder

ConditionBuilder

ActionBuilder

Fig. 10-1: The sequential flow of code generation

In Fig. 10-1 the black arrows symbolizes what is written to the file. The PostconditionBuilder, Condition-

Builder and ActionBuilder are not written directly to the file, but are part of what the MethodBuilder

creates, shown with light blue- and red arrows.

The idea of only using one String as the container for the created code was thought of, but since there is no

limitation to the size of the ASM, it could be possible to go over the maximum amount of bits a String has.

As a precaution a StringBuilder was chosen as a container instead, where at the beginning of each “build

method” the StringBuilder is cleared, since the code from the previous “build method” have already been

written to the .cs file.

While the code is being generated, formatting is added to it, so the code looks like standard C# code. To do

this some formatting methods were created, named Tab, StartBracket and EndBracket. These three

methods work together with the bracketCounter to keep track of how many tabs are in front of each line of

code. This is done by incrementing the bracketCounter each time a start bracket ‘{‘ is added to the code,

and decrementing the bracketCounter when an end bracket ‘}’ is added. Since the generated code is

13

 Can be found in DslPackage\CustomCode

24

written to the file as it gets build, there are a lack of end brackets at the end of the file. The ClosingBracket

method takes care of this together with the formatting methods and the bracketCounter.

The source code for CodeGenerator.cs can be seen in appendix F.

10.1 The Generated Code
An equivalent ASM to the GSM authentication state diagram, have been created to show what the

CodeGenerator class generates. The GSM authentication state diagram can be seen in section 3, where as

the equivalent ASM using the ASM extension, is shown in Fig. 10-2.

Fig. 10-2: GSM authentication ASM

The generated code from the ASM can be seen in appendix G.

In the generated code, one can see that transition Event is equivalent to a method call with the same name.

The transition Condition is an if-statement containing what the current state should be and what conditions

needs be met for the state change. The transition Action is what happens in the if-statement if it is true,

hence the conditions are met.

The accessibility of the class and the different methods are not written, which means that they are Private

by default in C#. It is up to the user of the code to add the appropriate accessibility.

11 Test
The test will be divided up into two, one that covers validation and one that covers code generation. The

validation test will be done with test cases, whereas test of the code generation will be done by creating an

ASM that has 100% code generation coverage.

11.1 Validation test
To test the validation code, test cases have been created to trigger the exception handlers. The test cases

are black box testing, so they are bases on the validation rules, described in the validation paragraph, and

not derived from the code.

25

Preconditions for the test cases are; operation system is Windows, using VS 2010 Ultimate and ASM

extension installed.

Postcondition for the test cases is; an exception is thrown.

Test Case Input Output

1 (Empty ASM)
Exception thrown:
“The ASM has to have states”

2

Exception thrown:
“There have to be one initial
state, and only one”

3

Exception thrown:
“States have to have a name”

4

Exception thrown:
“States can’t have the same
name”

5

Exception thrown:
“Every state, except initial state,
has to have a predecessor”

6

Exception thrown:
“Every state, except final state,
has to have a successor”

7

Exception thrown:
“Every transition, except epsilon
transition, has to have a label”

8

Exception thrown:
“Transitions cannot have same
event and condition and action”

11.2 Generation test
Test of the generation code is done with an ASM which will give 100% code coverage. To display the 100%

code coverage a Boolean array, with the length of the number of methods in the generation code, has been

created. A method called CheckMark have been created which changes the Boolean value in the array, at a

specific index, from 0 to 1 if it is not 1 already.

26

Each index in the array is equivalent to a method in the generation code, so when the method is called, the

CheckMark method is called. The CheckMark method takes the method number as an argument and

changes the value at the index number in the array.

The used ASM for the test is the ASM shown in Fig. 10-2, above.

Below is the result of the test coverage.

Test Coverage Results:
True True True True True True True True True True True True True True True True True True True
True True

12 Conclusion
The outcome of this thesis is a VS2010 extension, where users have the possibility to create an ASM and

generate contracted C# skeleton code from it. The generated code uses Code Contracts to keep the

constraints of the ASM diagram.

ASMs are used to describe hardware and software systems. They help contractors and developers to create

a common view of how the system should be put together and what it should contain. The ground model of

the ASM can be split up into stepwise refining ASMs, which describes more in-depth how a state in the

ground model should work.

Programming the stepwise refining ASM is a time consuming process for programmers and they can easily

lose the equality between the ASM and the code they have created. The created extension would solve this

problem.

Using Code Contracts did raise some issues since it does not have the same features as JML specifications.

The issue with “implies” from the JML specifications was solved with the ternary operator. Constraints are

modeled as invariants with the ternary operator. The OldValue functionality cannot be used in other places

than postconditions, so hardcoding a previous state field in the code was necessary.

Future versions of the extension could hold features such as hard constraints to the transition properties, a

feature where the user gets prompted about an infinite loop in the created ASM, the possibility of

generating an ASM diagram from C# code, and the feature to generate XML code for third party software

like UPPAAL.

27

13 Literature List
[1] Engelbert Hubbers, Martijn Oostdijk. Generating JML Specification from UML State Diagrams.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.183.4351&rep=rep1&type=pdf

[2] Egon Börger, Robert Stärk. Abstract State Machines: A Method for High-Level System Design and

Analysis. ISBN 3-540-00702-4

[3] John E. Hobcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Second Edition. ISBN 0-201-44124-1

[4] Steve Cook, Gareth Jones, Stuart Kent, Alan Cameron Wills. Domain-Specific Development with Visual

Studio DSL Tools. ISBN-13: 978-0-321-39820-8

[5] Microsoft Corporation. Code Contracts User Manual. January 8, 2012

[6] Egon Börger. The Abstract State Machine Method for High-Level System Design and Analysis.

http://www.di.unipi.it/~boerger/Papers/Methodology/BcsFacs07.pdf

[7] Microsoft Research/Microsoft Corporation. Code Contracts.

 http://research.microsoft.com/en-us/projects/contracts/

[8] R. N. Taylor, N. Medvidovic, E. M. Dashofy. Software Architecture: Foundations, Theory, and Practice.

ISBN-10: 0470167742

[9] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language. Third Edition.

ISBN 0-321-19368-7

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.183.4351&rep=rep1&type=pdf
http://www.di.unipi.it/~boerger/Papers/Methodology/BcsFacs07.pdf
http://research.microsoft.com/en-us/projects/contracts/

28

14 Software
Product name: Microsoft Visual Studio 2010 Ultimate. Version: 10.0.30319.1 RTMRel.

Product name: Microsoft Code Contracts (academic) 1.4.40602.0 for .NET. Filename: Contracts.msr9.msi.

Authors: Microsoft Corporation. Revision number: {22366D81-6B52-4B5C-AD79-153DEFD6641D}

Product name: Visualization and Modeling SDK. Filename: vs_vmsdk.exe. Authors: Microsoft Corporation.

File version: 10.0.30319.2.

Product name: Visual Studio SDK. Filename: VsSDK_sfx.exe. Authors: Microsoft Corporation. File version:

10.0.30319.1.

29

Appendix A

XML code for the GSM authentication ASM
<?xml version="1.0" encoding="utf-8"?>
<stateMachine xmlns:dm0="http://schemas.microsoft.com/VisualStudio/2008/DslTools/Core" dslVersion="1.0.0.0"
Id="c01cec70-761c-4951-a22f-8e313498a675" name="GsmAuthenticator" fields="int counter = 0;"
xmlns="http://schemas.microsoft.com/dsltools/ASM">
 <states>
 <state Id="d557fb93-ef08-4aaf-b99e-c521c189967d" name="Normal" kind="Initial">
 <successor>
 <transition Id="a156ab27-b62d-4b08-b212-6c5a50dd590c" label="RunGsmAlgorithm() [counter < 10000] /
counter++" event="RunGsmAlgorithm()" condition="counter < 10000" action="counter++">
 <stateMoniker name="/c01cec70-761c-4951-a22f-8e313498a675/Challenged" />
 </transition>
 <transition Id="8d10e2dc-da3a-4d9c-9cc3-8808947339fc" label="RunGsmAlgorithm() [counter >= 10000]
/ Exception" event="RunGsmAlgorithm()" condition="counter >= 10000" action="Exception()">
 <stateMoniker name="/c01cec70-761c-4951-a22f-8e313498a675/Locked" />
 </transition>
 </successor>
 </state>
 <state Id="9b6c2a22-a768-43fd-81a4-02e46f166a00" name="Challenged" kind="Normal">
 <successor>
 <transition Id="4b39a648-9dcd-4eb5-91e9-a7a9d002996a" label="GetResponse() [response_incorrect] /
Exception()" event="GetResponse()" condition="response_incorrect" action="Exception()">
 <stateMoniker name="/c01cec70-761c-4951-a22f-8e313498a675/Normal" />
 </transition>
 <transition Id="59848c74-0d4f-43fa-b257-896e346f546f" label="GetResponse() [response_correct]"
event="GetResponse()" condition="response_correct">
 <stateMoniker name="/c01cec70-761c-4951-a22f-8e313498a675/Normal" />
 </transition>
 </successor>
 </state>
 <state Id="1c6e3594-0f98-40d4-a3de-edc1e254858b" name="Locked" kind="Normal">
 <successor>
 <transition Id="c992a49e-c99b-4c95-8558-34d0cf3f557b" label="RunGsmAlgorithm() / Exception()"
event="RunGsmAlgorithm()" action="Exception()">
 <stateMoniker name="/c01cec70-761c-4951-a22f-8e313498a675/Locked" />
 </transition>
 <transition Id="d57945c2-4979-43aa-9101-6045b6f2000b" label="GetResponse() / Exception()"
event="GetResponse()" action="Exception()">
 <stateMoniker name="/c01cec70-761c-4951-a22f-8e313498a675/Locked" />
 </transition>
 </successor>
 </state>
 </states>
</stateMachine>

30

Appendix B

Generated C# Code from Light Switch ASM
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics.Contracts;

namespace LightSwitch
{
 class LightSwitch
 {
 State _curState;
 State _preState;
 int counter = 0;

 LightSwitch()
 {
 _curState = State.Off;
 _preState = State.InvalidState;
 }

 enum State
 {
 InvalidState, // Do NOT remove this state, used in Code Contracts
 Off,
 On
 }

 void Switch()
 {
 Contract.Ensures((_preState == State.Off & counter >= 0) ? _curState == State.On : true);

 if (_curState == State.Off & counter >= 0)
 {
 StateChange(State.On);
 counter++;
 }
 }

 private void StateChange(State name)
 {
 _preState = _curState;
 _curState = name;
 }

 [ContractInvariantMethod]
 private void ObjectInvariantsAndConstraints()
 {
 Contract.Invariant(_curState != State.InvalidState);

 Contract.Invariant(_curState == State.Off ? _preState == State.InvalidState : true);
 Contract.Invariant(_curState == State.On ? _preState == State.Off : true);
 Contract.Invariant(_preState == State.Off ? _curState == State.On : true);
 }
 }
}

31

Appendix C

The Commands.vsct Code
<?xml version="1.0" encoding="utf-8"?>
<CommandTable xmlns="http://schemas.microsoft.com/VisualStudio/2005-10-
18/CommandTable" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- -->
 <!-- This file contains custom command definitions. -->
 <!-- -->
 <!-- NOTE: Each time commands are added or changed, the "version" parameter to the -->
 <!-- ProvideMenuResource attribute in Shell\Package.tt should be incremented. -->
 <!-- This causes Visual Studio to re-merge the menu definitions for the package. -->
 <!-- Otherwise, changes won't take effect until the next time devenv /setup is run. -->
 <!-- -->
 <Extern href="stdidcmd.h"/>
 <Extern href="vsshlids.h"/>
 <Extern href="msobtnid.h"/>
 <Extern href="virtkeys.h"/>
 <Extern href="DSLToolsCmdID.h"/>
 <Include href="GeneratedCode\GeneratedVsct.vsct"/>
 <Commands package="guidPkg">

 <!-- Define a group - a section in the menu -->
 <Groups>
 <Group guid="guidCustomMenuCmdSet" id="grpidMyMenuGroup" priority="0x0100">
 <!-- These symbols are defined in GeneratedVSCT.vsct -->
 <Parent guid="guidCmdSet" id="menuidContext" />
 </Group>
 </Groups>
 <!-- Define a button - a menu item - inside the Group -->
 <Buttons>
 <Button guid="guidCustomMenuCmdSet" id="cmdidMyContextMenuCommand"
 priority="0x0100" type="Button">
 <Parent guid="guidCustomMenuCmdSet" id="grpidMyMenuGroup"/>
 <!-- If you do not want to place the command in your own Group,
 use Parent guid="guidCmdSet" id="grpidContextMain".
 These symbols are defined in GeneratedVSCT.vsct -->
 <CommandFlag>DynamicVisibility</CommandFlag>
 <Strings>
 <ButtonText>Validate and Generate</ButtonText>
 </Strings>
 </Button>
 </Buttons>

 </Commands>

 <VisibilityConstraints>
 <!-- Ensures the command is only loaded for this DSL -->
 <VisibilityItem guid="guidCustomMenuCmdSet" id="cmdidMyContextMenuCommand"
 context="guidEditor"/>
 </VisibilityConstraints>

 <Symbols>
 <!-- Substitute a unique GUID for the placeholder: -->
 <GuidSymbol name="guidCustomMenuCmdSet"
 value="{3B0B0E1E-A694-4CAF-BF50-2DE073E7BC36}" >
 <IDSymbol name="grpidMyMenuGroup" value="0x01001"/>
 <IDSymbol name="cmdidMyContextMenuCommand" value="0x00001"/>
 </GuidSymbol>
 </Symbols>

</CommandTable>

32

Appendix D

The Partial ASMCommandSet Class
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ComponentModel.Design;
using System.Linq;
using AsgerJensen.ASM.Custom_Code;
using Microsoft.VisualStudio.Modeling;
using Microsoft.VisualStudio.Modeling.Shell;

namespace AsgerJensen.ASM
{
 /// <summary>
 /// Partial class, which add the command menu and functionality to the button
 /// </summary>
 internal partial class ASMCommandSet
 {
 // Declaration of the GUID and ID
 private Guid guidCustomMenuCmdSet = new Guid("3B0B0E1E-A694-4CAF-BF50-2DE073E7BC36");
 private const int grpidMyMenuGroup = 0x01001;
 private const int cmdidMyContextMenuCommand = 0x00001;

 // For each command define a OnStatus... method
 private void OnStatusMyContextMenuCommand(object sender, EventArgs e)
 {
 // The command is not visible all the time
 var command = sender as MenuCommand;
 command.Visible = command.Enabled = false;

 // If the diagram, itself, is selected, then the command is visible
 if (IsDiagramSelected())
 command.Visible = command.Enabled = true;
 }

 // For each command define a OnMenu... method
 private void OnMenuMyContextMenuCommand(object sender, EventArgs e)
 {
 var command = sender as MenuCommand;
 Store store = this.CurrentDocData.Store;

 // State machine variable to get hold of the different elements in the current diagram
 var sm = (StateMachine) CurrentDocView.DocData.RootElement;

 // smInitStates is only a set because the validation check is in another class
 var smInitStates = new HashSet<State>();
 var smFinalStates = new HashSet<State>(); // For future work
 var smInputSymbols = new HashSet<String>(); // For future work
 var smTransitionsFunctions = new HashSet<Pair<Pair<State, Transition>, State>>();
 var smStates = new HashSet<State>();

 // Used for validation
 var smTransitions = new HashSet<Transition>();

 foreach (var state in sm.States)
 {
 // Adds the states to a hashset
 smStates.Add(state);

 // Adds initial states to a hashset
 if (state.Kind == StateKind.Initial)
 smInitStates.Add(state);

 // Adds final states to a hashset
 if (state.Kind == StateKind.Final)
 smFinalStates.Add(state);

33

 // Used to prevent duplicate states, which can occur
 // when using "successor" and "predecessor" method on a state
 var preventDuplicateList = new List<State>();

 if (state.Successor.Any())
 {
 foreach (var successor in state.Successor)
 {
 ReadOnlyCollection<Transition> transitions = Transition.GetLinks(state, successor);

 if (!preventDuplicateList.Contains(successor))
 {
 preventDuplicateList.Add(successor);

 foreach (var transition in transitions)
 {
 // Temp variables to help build the hashset of transition functions
 var tempSet = new Pair<State, Transition>(state, transition);
 var transitionFunction = new Pair<Pair<State, Transition>, State>(tempSet, su
ccessor);

 if (!smTransitions.Contains(transition))
 {
 smTransitions.Add(transition);

 // Adds input symbols to a hashset
 smInputSymbols.Add(transition.Event);
 }

 // Adds to the hashset the transition function in the form of ((StateA, input
), StateB)
 if (!smTransitionsFunctions.Contains(transitionFunction))
 smTransitionsFunctions.Add(transitionFunction);
 }
 }
 }
 }
 }

 // Initializes the validation checker and does the validation check
 var valid = new Validation(smStates, smTransitions, smInitStates);
 valid.Check();

 // Initializes the code generator and generates the file
 var code = new CodeGenerator(smStates, sm.Name, sm.Fields, smTransitionsFunctions, smInitStates.F
irst());
 code.GenerateFile();
 }

 protected override IList<MenuCommand> GetMenuCommands()
 {
 // Get the list of generated commands.
 IList<MenuCommand> commands = base.GetMenuCommands();
 // Add a custom command:
 var myContextMenuCommand =
 new DynamicStatusMenuCommand(
 new EventHandler(OnStatusMyContextMenuCommand),
 new EventHandler(OnMenuMyContextMenuCommand),
 new CommandID(guidCustomMenuCmdSet, cmdidMyContextMenuCommand));
 commands.Add(myContextMenuCommand);
 // Add more commands here.
 return commands;
 }
 }
}

34

Appendix E

The Validation Class
using System;
using System.Collections.Generic;
using System.Linq;

namespace AsgerJensen.ASM
{
 /// <summary>
 /// Class intended for validation of a state machine before code generation
 /// </summary>
 public class Validation
 {
 // State machine fields to hold of the different elements in the current diagram
 private readonly HashSet<State> _states;
 private readonly HashSet<Transition> _transitions;
 private readonly HashSet<State> _startState;

 /// <summary>
 /// The contructor
 /// </summary>
 /// <param name="states"></param>
 /// <param name="transitions"></param>
 /// <param name="startState"></param>
 public Validation(HashSet<State> states, HashSet<Transition> transitions, HashSet<State> startState)
 {
 _states = states;
 _transitions = transitions;
 _startState = startState;
 }

 /// <summary>
 /// Validation method, used for the ASM to see if it passes the validation rules
 /// </summary>
 public void Check()
 {
 // Temporary list - default string
 var temp = new List<String>();

 // Rule: The ASM must contain states
 if (!_states.Any())
 throw new Exception("Your ASM must contain states.");

 // Rule: There have to be one initial state, and only one
 if (_startState.Count() != 1)
 throw new Exception("There have to be one initial state, and only one.");

 foreach (var state in _states)
 {
 // Rule: States must have a name
 if (!state.Name.Any())
 throw new Exception("States have to have a name.");

 // Rule: States can not have the same name
 if (!temp.Contains(state.Name))
 temp.Add(state.Name);
 else
 throw new Exception("States can not have same name.");

 // Rule: All states, except end state, must have a successor
 if (state.Successor.Count == 0 && state.Kind != StateKind.Final)
 throw new Exception("Every state, except final state, has to have a successor.");

 // Rule: All states, except start state, must have a predecessor
 if (state.Predecessor.Count == 0 && state.Kind != StateKind.Initial)
 throw new Exception("Every state, except initial state, has to have a predecessor.");
 }

35

 // Cleares temp list for use later on
 temp.Clear();

 foreach (var transition in _transitions)
 {
 if (transition.Kind != TransitionKind.Epsilon)
 {
 // Rule: Transitions must have a label, except epsilon
 if (!transition.Label.Any())
 throw new Exception("Every transition, except epsilon transition, has to have a label
.");
 }
 }

 // Used to check for transitions which has the same Event, Condition and Action
 IList<Transition> transitionList = _transitions.ToList();

 // Compares with the next transition
 for (int i = 0; i < transitionList.Count; i++)
 {
 if (transitionList[i].Kind != TransitionKind.Epsilon)
 {
 for (int j = i + 1; j < transitionList.Count; j++)
 {
 if (transitionList[j].Kind != TransitionKind.Epsilon)
 {
 // Rule: There cannot be transitions with same Event, Condition and Action
 if (transitionList[i].Event.Equals(transitionList[j].Event) &&
 transitionList[i].Condition.Equals(transitionList[j].Condition) &&
 transitionList[i].Action.Equals(transitionList[j].Action))
 throw new Exception("Transitions with the kind Normal cannot have the exact s
ame Event, Condition and Action.");
 }
 }
 }
 }
 }
 }
}

36

Appendix F

The CodeGenerator Class
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace AsgerJensen.ASM.Custom_Code
{
 /// <summary>
 /// Class for generating C# code from an ASM diagram build in the DSL environment
 /// </summary>
 public class CodeGenerator
 {
 private readonly HashSet<State> _states;
 private readonly String _stateMachineName;
 private readonly List<String> _fields;
 private readonly HashSet<Pair<Pair<State, Transition>,State>> _transitionsSet;
 private readonly State _initialState;
 private int _bracketCounter = 0;
 private StringBuilder _sb = new StringBuilder();

 // Used for displaying the test coverage
 private bool[] testCoverage = new bool[21];

 /// <summary>
 /// Contructor
 /// </summary>
 /// <param name="states"></param>
 /// <param name="stateMachineName"></param>
 /// <param name="fields"></param>
 /// <param name="transitionsSet"></param>
 /// <param name="initialState"></param>
 public CodeGenerator(HashSet<State> states, String stateMachineName, String fields, HashSet<Pair<Pair
<State, Transition>, State>> transitionsSet, State initialState)
 {
 CheckMark(0); // For testing

 _states = states;
 _stateMachineName = stateMachineName;
 _fields = fields.Split(',').ToList();
 _transitionsSet = transitionsSet;
 _initialState = initialState;
 }

 /// <summary>
 /// Method which calls the write to the different creates items in the .cs file
 /// </summary>
 public void GenerateFile()
 {
 CheckMark(1); // For testing

 string strPath = Environment.GetFolderPath(Environment.SpecialFolder.DesktopDirectory);

 using (StreamWriter w = File.AppendText(strPath + "\\" + _stateMachineName + ".cs"))
 {
 Write(DirectiveBuilder(), w);
 Write(NameSpaceBuilder(), w);
 Write(ClassBuilder(), w);
 Write(FieldBuilder(),w);
 Write(ConstructorBuilder(), w);
 Write(EnumBuilder(), w);
 Write(MethodBuilder(), w);
 Write(ChangeStateMethodBuilder(), w);
 Write(ConstraintBuilder(), w);
 Write(ClosingBrackets(),w);
 w.Close();

37

 }

 PrintTestCoverage(); // Shows the test coverage results
 }

 /// <summary>
 /// Is the writer, who writes the creates code to the file
 /// </summary>
 /// <param name="s"></param>
 /// <param name="w"></param>
 private void Write(String s, TextWriter w)
 {
 CheckMark(2); // For testing

 w.Write(s);
 w.Flush();
 }

 /// <summary>
 /// Creates the standard directives used, together with the ones needed
 /// for Code Contracts
 /// </summary>
 /// <returns></returns>
 private String DirectiveBuilder()
 {
 CheckMark(3); // For testing

 _sb.AppendLine("using System;\r\n" +
 "using System.Collections.Generic;\r\n" +
 "using System.Linq;\r\n" +
 "using System.Text;\r\n" +
 "using System.Diagnostics.Contracts;\r\n");
 return _sb.ToString();
 }

 /// <summary>
 /// Creates the namespace
 /// </summary>
 /// <returns></returns>
 private String NameSpaceBuilder()
 {
 CheckMark(4); // For testing

 _sb.Clear();
 _sb.AppendLine("namespace " + _stateMachineName);
 _sb.AppendLine(StartBracket());
 return _sb.ToString();
 }

 /// <summary>
 /// Creates the class from the name of the ASM
 /// </summary>
 /// <returns></returns>
 private String ClassBuilder()
 {
 CheckMark(5); // For testing

 _sb.Clear();
 _sb.AppendLine(Tab() + "class " + _stateMachineName);
 _sb.AppendLine(Tab() + StartBracket());
 return _sb.ToString();
 }

 /// <summary>
 /// Creates the fields in the class
 /// </summary>
 /// <returns></returns>
 private String FieldBuilder()
 {
 CheckMark(6); // For testing

38

 _sb.Clear();
 _sb.AppendLine(Tab() + "State _curState;");
 _sb.AppendLine(Tab() + "State _preState;");

 foreach (var field in _fields)
 {
 _sb.AppendLine(Tab() + field);
 }

 _sb.AppendLine();
 return _sb.ToString();
 }

 /// <summary>
 /// Creates the contructor in the class
 /// </summary>
 /// <returns></returns>
 private String ConstructorBuilder()
 {
 CheckMark(7); // For testing

 _sb.Clear();
 _sb.AppendLine(Tab() + _stateMachineName + "()");
 _sb.AppendLine(Tab() + StartBracket());
 _sb.AppendLine(Tab() + "_curState = State." + _initialState.Name + ";");
 _sb.AppendLine(Tab() + "_preState = State.InvalidState;");
 _sb.AppendLine(EndBracket() + "\r\n");
 return _sb.ToString();
 }

 /// <summary>
 /// Creates the Enum containing the states of the ASM
 /// </summary>
 /// <returns></returns>
 private String EnumBuilder()
 {
 CheckMark(8); // For testing

 _sb.Clear();
 _sb.AppendLine(Tab() + "enum State");
 _sb.AppendLine(Tab() + StartBracket());
 _sb.AppendLine(Tab() + "InvalidState," + "\t\t // Do NOT remove this state, used in Code Contract
s");

 var temp = _states.ToList(); //Casting it to List to remove "," after last state
 foreach (var state in temp)
 {
 _sb.Append(Tab() + state.Name);
 if (!state.Equals(temp.Last()))
 _sb.AppendLine(",");
 else
 _sb.AppendLine();
 }
 _sb.AppendLine(EndBracket() + "\r\n");
 return _sb.ToString();
 }

 /// <summary>
 /// Creates the methods in the class
 /// </summary>
 /// <returns></returns>
 private String MethodBuilder()
 {
 CheckMark(9); // For testing

 _sb.Clear();

 // Method is key value and value is a list of states and transition between them
 var methodsWithTransitionSets = new Dictionary<String, List<Pair<Pair<State, Transition>,State>>>
();

39

 foreach (var set in _transitionsSet)
 {
 // If the transition between two states is an epsilon transition
 // then there will not be created any code for it
 if (set.First.Second.Kind != TransitionKind.Epsilon)
 {
 if (!methodsWithTransitionSets.ContainsKey(set.First.Second.Event))
 {
 var conditionList = new List<Pair<Pair<State, Transition>,State>>();
 conditionList.Add(set);
 methodsWithTransitionSets.Add(set.First.Second.Event, conditionList);
 }
 else
 methodsWithTransitionSets[set.First.Second.Event].Add(set);
 }
 }

 // Builds the postcondition(s) and condition(s) for each method
 foreach (var method in methodsWithTransitionSets)
 {
 _sb.AppendLine(Tab() + "void " + method.Key);
 _sb.AppendLine(Tab() + StartBracket());

 _sb.AppendLine(PostconditionBuilder(method.Value));

 _sb.AppendLine(ConditionBuilder(method.Value));

 _sb.AppendLine(EndBracket() + "\r\n");
 }
 return _sb.ToString();
 }

 /// <summary>
 /// Creates the postconditions in each method
 /// </summary>
 /// <param name="list"></param>
 /// <returns></returns>
 private String PostconditionBuilder(List<Pair<Pair<State, Transition>, State>> list)
 {
 CheckMark(10); // For testing

 var tempSb = new StringBuilder();

 foreach (var transition in list)
 {
 if (!Contains(transition.First.Second.Action, "exception", StringComparison.CurrentCultureIgn
oreCase))
 {
 if (transition.First.Second.Condition.Any())
 {
 tempSb.Append(Tab() + "Contract.Ensures((_preState == State." + transition.First.Firs
t.Name);
 tempSb.Append(" & " + transition.First.Second.Condition + ")");
 } else
 tempSb.Append(Tab() + "Contract.Ensures(_preState == State." + transition.First.First
.Name);

 tempSb.AppendLine(" ? _curState == State." + transition.Second.Name + " : true);");
 } else
 {
 if (transition.First.Second.Condition.Any())
 {
 tempSb.Append(Tab() + "Contract.EnsuresOnThrow<" + transition.First.Second.Action);
 tempSb.Append(">((_preState == State." + transition.First.First.Name);
 tempSb.Append(" & " + transition.First.Second.Condition + ")");
 } else
 {
 tempSb.Append(Tab() + "Contract.EnsuresOnThrow<" + transition.First.Second.Action);
 tempSb.Append(">(_preState == State." + transition.First.First.Name);
 }

40

 tempSb.AppendLine(" ? _curState == State." + transition.Second.Name + " : true);");
 }
 }

 return tempSb.ToString();
 }

 /// <summary>
 /// Creates the conditions for the state change in the methods
 /// </summary>
 /// <param name="conditionList"></param>
 /// <returns></returns>
 private String ConditionBuilder(List<Pair<Pair<State, Transition>, State>> conditionList)
 {
 CheckMark(11); // For testing

 var tempSb = new StringBuilder();

 foreach (var condition in conditionList)
 {
 if (condition.Equals(conditionList.First()))
 {
 tempSb.Append(Tab() + "if (" + "_curState == State." + condition.First.First.Name);
 if (condition.First.Second.Condition.Any())
 tempSb.Append(" & " + condition.First.Second.Condition);

 tempSb.AppendLine(")");
 tempSb.AppendLine(Tab() + StartBracket());
 tempSb.Append(ActionBuilder(condition));
 tempSb.Append(EndBracket());
 }

 if (!condition.Equals(conditionList.First()))
 {
 tempSb.AppendLine();
 tempSb.Append(Tab() + "else if (" + "_curState == State." + condition.First.First.Name);
 if (condition.First.Second.Condition.Any())
 tempSb.Append(" & " + condition.First.Second.Condition);

 tempSb.AppendLine(")");
 tempSb.AppendLine(Tab() + StartBracket());
 tempSb.Append(ActionBuilder(condition));
 tempSb.Append(EndBracket());
 }
 }
 return tempSb.ToString();
 }

 /// <summary>
 /// Creates the actions upon state change in the methods
 /// </summary>
 /// <param name="transition"></param>
 /// <returns></returns>
 private String ActionBuilder(Pair<Pair<State, Transition>, State> transition)
 {
 CheckMark(12); // For testing

 var tempSb = new StringBuilder();

 tempSb.AppendLine(Tab() + "StateChange(State." + transition.Second.Name + ");");

 if (Contains(transition.First.Second.Action, "exception", StringComparison.CurrentCultureIgnoreCa
se))
 tempSb.AppendLine(Tab() + "throw new " + transition.First.Second.Action + "();");
 else if (transition.First.Second.Action.Any())
 tempSb.AppendLine(Tab() + transition.First.Second.Action + ";");
 return tempSb.ToString();
 }

 /// <summary>
 /// Creates a hardcoded method for changing states in the

41

 /// generated code
 /// </summary>
 /// <returns></returns>
 private String ChangeStateMethodBuilder()
 {
 CheckMark(13); // For testing

 _sb.Clear();
 _sb.AppendLine(Tab() + "private void StateChange(State name)");
 _sb.AppendLine(Tab() + StartBracket());
 _sb.AppendLine(Tab() + "_preState = _curState;");
 _sb.AppendLine(Tab() + "_curState = name;");
 _sb.AppendLine(EndBracket() + "\r\n");
 return _sb.ToString();
 }

 /// <summary>
 /// Creates the invariants and contraints for the Code Contracts
 /// </summary>
 /// <returns></returns>
 private String ConstraintBuilder()
 {
 CheckMark(14); // For testing

 _sb.Clear();
 _sb.AppendLine(Tab() + "[ContractInvariantMethod]");
 _sb.AppendLine(Tab() + "private void ObjectInvariantsAndConstraints()");
 _sb.AppendLine(Tab() + StartBracket());
 _sb.AppendLine(Tab() + "Contract.Invariant(_curState != State.InvalidState);\r\n");

 // Creates all the constraints, current state => previous state
 foreach (var state in _states)
 {
 _sb.Append(Tab() + "Contract.Invariant(_curState == State." + state.Name + " ? ");

 if (state.Predecessor.Any())
 {
 if (state.Predecessor.Count() == 1)
 {
 if (state.Kind == StateKind.Initial)
 {
 _sb.Append("(_preState == State." + state.Predecessor.First().Name);
 _sb.AppendLine(" | _preState == State.InvalidState) : true);");
 }
 else
 _sb.AppendLine("_preState == State." + state.Predecessor.First().Name + " : true)
;");
 }
 else if (state.Predecessor.Count() > 1)
 {
 var purgedList = new List<State>(DuplicationPurge(new List<State>(state.Predecessor))
);

 if (purgedList.Count() == 1)
 {
 if (state.Kind == StateKind.Initial)
 {
 _sb.Append("(_preState == State." + state.Predecessor.First().Name);
 _sb.AppendLine(" | _preState == State.InvalidState) : true);");
 }
 else
 _sb.AppendLine("_preState == State." + state.Predecessor.First().Name + " : t
rue);");
 }
 else
 {
 _sb.Append("(");
 foreach (var element in purgedList)
 {
 _sb.Append("_preState == State." + element.Name);
 if (!element.Equals(purgedList.Last()))

42

 _sb.Append(" | ");
 }
 if (state.Kind == StateKind.Initial)
 _sb.Append(" | _preState == State.InvalidState");
 _sb.AppendLine(") : true);");
 }
 }
 } else // Initial state does not have a predecessor
 {
 _sb.AppendLine("_preState == State.InvalidState : true);");
 }
 }

 // Creates all the constraints, previous state => current state
 foreach (var state in _states)
 {
 if (state.Successor.Any())
 {
 _sb.Append(Tab() + "Contract.Invariant(_preState == State." + state.Name + " ? ");

 if (state.Successor.Count() == 1)
 _sb.AppendLine("_curState == State." + state.Successor.First().Name + " : true);");
 else
 {
 var purgedList = new List<State>(DuplicationPurge(new List<State>(state.Successor)));

 if (purgedList.Count == 1)
 _sb.AppendLine("_curState == State." + state.Successor.First().Name + " : true);"
);
 else
 {
 _sb.Append("(");
 foreach (var item in purgedList)
 {
 _sb.Append("_curState == State." + item.Name);
 if (!item.Equals(purgedList.Last()))
 _sb.Append(" | ");
 else
 _sb.AppendLine(") : true);");
 }
 }
 }
 }
 }
 _sb.AppendLine(EndBracket());
 return _sb.ToString();
 }

 /// <summary>
 /// Adds the last end brackets to the generated code,
 /// based on the amount of start brackets used minus the
 /// amount of end brackets used
 /// </summary>
 /// <returns></returns>
 private String ClosingBrackets()
 {
 CheckMark(15); // For testing

 _sb.Clear();
 for (int i = 0; i <= _bracketCounter; i++)
 {
 _sb.AppendLine(EndBracket());
 }
 return _sb.ToString();
 }

 /// <summary>
 /// Help method for formatting the generated code.
 /// Keeps track of start brackets added in the generated code,
 /// so there will be the same amount of end brackets
 /// </summary>

43

 /// <returns></returns>
 private String StartBracket()
 {
 CheckMark(16); // For testing

 _bracketCounter++;
 return "{";
 }

 /// <summary>
 /// Help method for formatting the generated code.
 /// Keeps track of start- and end brackets used.
 /// If an end bracket is used, then the overall bracket count is reduced
 /// </summary>
 /// <returns></returns>
 private String EndBracket()
 {
 CheckMark(17); // For testing

 if (_bracketCounter != 0)
 _bracketCounter--;
 return Tab() + "}";
 }

 /// <summary>
 /// Help method for formatting the generated code.
 /// Keeps track of the amount of 'Tab' is needed on each line of
 /// the generated code. The Tab method is dependent on the overall
 /// bracket count
 /// </summary>
 /// <returns></returns>
 private String Tab()
 {
 CheckMark(18); // For testing

 var sb = new StringBuilder();
 for (int i = 0; i < _bracketCounter; i++)
 {
 sb.Append("\t");
 }
 return sb.ToString();
 }

 /// <summary>
 /// Removes equal items in the list,
 /// e.g. removing 2 of the 3 equal states in a successor list,
 /// if state 1 has three transitions to state 2
 /// </summary>
 /// <typeparam name="T"></typeparam>
 /// <param name="list"></param>
 /// <returns></returns>
 private List<T> DuplicationPurge<T>(IEnumerable<T> list)
 {
 CheckMark(19); // For testing

 var purgedList = new List<T>();
 foreach (var element in list)
 {
 if (!purgedList.Contains(element))
 purgedList.Add(element);
 }
 return purgedList;
 }

 /// <summary>
 /// Help method for seeing if a string contains another string, ignores case
 /// </summary>
 /// <param name="original"></param>
 /// <param name="value"></param>
 /// <param name="comparisionType"></param>
 /// <returns></returns>

44

 private bool Contains(string original, string value, StringComparison comparisionType)
 {
 CheckMark(20); // For testing

 return original.IndexOf(value, comparisionType) >= 0;
 }

 /// <summary>
 /// Used for testing, so display the test coverage
 /// of this code
 /// </summary>
 /// <param name="index"></param>
 private void CheckMark(int index)
 {
 if (!testCoverage[index].Equals(true))
 testCoverage[index] = true;
 }

 /// <summary>
 /// Prints out the result of the test coverage
 /// </summary>
 private void PrintTestCoverage()
 {
 Output.WriteLine("Test Coverage Results: ");
 for (int i = 0; i < testCoverage.Length; i++)
 {
 Output.Write(testCoverage[i] + " ");
 }
 }
 }
}

45

Appendix G

Generated C# Code from the GSM authentication ASM
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics.Contracts;

namespace GsmAuthenticator
{
 class GsmAuthenticator
 {
 State _curState;
 State _preState;
 int counter = 0;

 GsmAuthenticator()
 {
 _curState = State.Normal;
 _preState = State.InvalidState;
 }

 enum State
 {
 InvalidState, // Do NOT remove this state, used in Code Contracts
 Normal,
 Challenged,
 Locked
 }

 void RunGsmAlgorithm()
 {

Contract.Ensures((_preState == State.Normal & counter < 10000) ? _curState == State.Challenged : tr
ue);
Contract.EnsuresOnThrow<Exception>((_preState == State.Normal & counter >= 10000) ? _curState == St
ate.Locked : true);
Contract.EnsuresOnThrow<Exception>(_preState == State.Locked ? _curState == State.Locked : true);

 if (_curState == State.Normal & counter < 10000)
 {
 StateChange(State.Challenged);
 counter++;
 }
 else if (_curState == State.Normal & counter >= 10000)
 {
 StateChange(State.Locked);
 throw new Exception();
 }
 else if (_curState == State.Locked)
 {
 StateChange(State.Locked);
 throw new Exception();
 }
 }

 void GetResponse()
 {

Contract.EnsuresOnThrow<Exception>((_preState == State.Challenged & response_incorrect) ? _curState
 == State.Normal : true);
Contract.Ensures((_preState == State.Challenged & response_correct) ? _curState == State.Normal : t
rue);
Contract.EnsuresOnThrow<Exception>(_preState == State.Locked ? _curState == State.Locked : true);

 if (_curState == State.Challenged & response_incorrect)
 {
 StateChange(State.Normal);

46

 throw new Exception();
 }
 else if (_curState == State.Challenged & response_correct)
 {
 StateChange(State.Normal);
 }
 else if (_curState == State.Locked)
 {
 StateChange(State.Locked);
 throw new Exception();
 }
 }

 private void StateChange(State name)
 {
 _preState = _curState;
 _curState = name;
 }

 [ContractInvariantMethod]
 private void ObjectInvariantsAndConstraints()
 {
 Contract.Invariant(_curState != State.InvalidState);

Contract.Invariant(_curState == State.Normal ? (_preState == State.Challenged | _preState == State.
InvalidState) : true);

 Contract.Invariant(_curState == State.Challenged ? _preState == State.Normal : true);
Contract.Invariant(_curState == State.Locked ? (_preState == State.Normal | _preState == State.Lock
ed) : true);
Contract.Invariant(_preState == State.Normal ? (_curState == State.Challenged | _curState == State.
Locked) : true);

 Contract.Invariant(_preState == State.Challenged ? _curState == State.Normal : true);
 Contract.Invariant(_preState == State.Locked ? _curState == State.Normal : true);
 }
 }
}

47

Appendix H

CD containing the DSL project and a PDF of the report

