
The Icon Analyst 39 / 1

2.␣ The Java Virtual Machine Specification (The Java
Series), Tim Lindholm and Frank Yellin, Addison-
Wesley, 1996.

3.␣ “The Mechanical Evaluation of Expressions”, P.
J. Landin, Computer Journal, Vol. 6, 1964, pp. 308-
320.

December 1996
Number 39

In this issue …

Glossary...1
A Framework for Monitoring1
The Kaleidoscope 5
Versum Bimorphs 10
Program Size13
From the Library15
What’s Coming Up16

In-Depth Coverage of the Icon Programming Language

TThhee IIccoonn AAnnaallyyssttThe Icon Analyst

Icon Glossary

A copy of the completed glossary is enclosed
with this mailing of the Analyst. This glossary is
the same one that appears in the third edition of the
Icon Programming Language [1].

One thing we’ve done for this glossary is to
use the word “compiler” for both forms of the
implementation (formerly “interpreter” and “op-
timizing compiler”). The distinction is that one
form of the implementation produces code for a
virtual machine and the other produces native
code for a specific computer. The virtual machine
code is then interpreted, while the native code is
executed.

We recognize that there still is potential for
confusion, but we believe the new terminology
conforms more closely to the general understand-
ing of implementation techniques than the old
terminology.

It helps that Java has popularized the concept
of using a virtual machine as an implementation
technique [2]. The idea, however, is quite old — it
goes back to the 1960s [3].

References

1.␣ The Icon Programming Language, 3rd edition, Ralph
E. Griswold and Madge T. Griswold, Peer-to-Peer
Communications, Inc., 1996.

A Framework for Monitoring
Program Execution

In past articles in the Analyst, we’ve covered
various aspects of monitoring program execution
in Icon. We have more articles on the subject
planned, but before going on, we want to present
a framework for monitoring program execution.
The framework is sufficiently general to include
programs written in most programming languages.
It may be helpful, however, to consider how it
applies to Icon.

Events

This framework views program execution as
a sequence of events [1,2]. Within it, the concept of
an event is quite general. The event could be pro-
gram output, the execution of a particular lan-
guage construct, an implicit activity like garbage
collection, or even the execution of instructions in
the underlying hardware. We’ll generally be inter-
ested in events related to the source language and
its underlying implementation. In the case of Icon,
we’ll be interested in events like expression evalu-
ation, storage allocation, and possibly the work-
ings of the underlying virtual machine [3,4].

The information content of an event and the
form it takes can be most anything: a number, a
string, or even a complex structure. We generally
will characterize events as n-tuples. For example,
in monitoring string creation, the events might be
just sizes, pairs that identify the operation that

2 / The Icon Analyst 39

produced the string as well as the size, triples that
carry the source-code location of the operation as
well, quadruples that carry a time stamp, or larger
n-tuples with even more information.

For many monitoring purposes, pairs suffice,
as illustrated in Analyst articles on event monitor-
ing [5,6]. In fact, the instrumentation of the Icon
run-time system is based on pairs, consisting of a
type and a value. We’ll present more on that later,
but note that a n-tuple can always be represented
by a sequence of pairs that carry an identification
and one of the n values.

The Framework

Given the event model of program activity,
the monitoring process can be viewed as an event
source, ES, that sends a sequence of event reports
to a report processor, RP, that interprets the events.
See Figure 1.

This model is intentionally very general and
can be instantiated in many ways. The separation
of ES and RP into separate components is not
necessary, but it helps in describing various possi-
bilities. In an actual implementation, ES and RP
might be parts of the same program. Feedback for
RP to ES, as indicated by the dashed arrow, is a
possibility but not usually present.

We’ve used two models for Icon event sources
in earlier articles. One uses a program, P, and an
MT-Icon monitor, M, running in the same execu-
tion space [6]. See Figure 2.

In this model, M requests event reports about
P from the instrumentation in the run-time system.
M determines what events are to be reported.
When a requested event occurs in P, control is
transferred to M.

A model that we’ve used more recently in-
volves adding source-code instrumentation to the

event source

input P M

program monitor

event requests

events

event reports

Figure 2

event source

ES

report processor

RP interpretation input
event reports

feedback

Figure 1

The Icon Analyst 39 / 3

There are, of course, issues related to encod-
ing events and how much information may be lost
in the encoding.

We’ll come back to other possibilities for this
model in later articles, but note that event sources
need not produce real events. For example, events
can be fabricated to test ERs or for less serious
purposes such as driving a visualization ER with
random data.

event source

input P+I

program with instrumentation

event reports

Figure 3

program being moni-
tored [7]. This can be
depicted as shown in
Figure 3.

The event re-
porter also can take
many forms. It can
do anything from ac-
cumulating event re-
ports and producing
summary tabula-
tions at the end of the
execution of the
monitored program
to producing ani-
mated visualizations
[6,8-11].

There are many other possibilities for RP,
including simply recording reports in an “event
history” for subsequent processing, as shown in
Figure 4.

Using this scheme, the event history can be
converted to events by a “history player”, as shown
in Figure 5 .

history
player

event source report processor

event history
event reports

interpretationRP

Figure 5

event source

ES

report processor

report
recorder event history input

event reports

Figure 4

4 / The Icon Analyst 39

Event Spaces

An important concept in the framework we
are developing is that of an event space. An event
space characterizes the kinds of events that an ES
produces and an RP interprets.

Events that consist of only a single value
constitute an event space, pairs constitute another,
triples another, and so on. Within any of these
event spaces there are subspaces. For example,
within the pair space there is a subspace in which
the first value is a category and the second is a
magnitude. Within this subspace, there is another
in which the categories are the string-creation op-
erations as described earlier. But the subspace of
category-magnitude pairs also contains another
subspace of allocation events within which the
values are data types and the magnitudes are
allocation sizes.

The reason this view is important is that RPs
can be designed to operate on an event space and
be used to, for example, visualize either string-
creation events or allocation events. In an earlier
Analyst article [11], we showed RPs that provided
different abstract visualizations of storage alloca-
tion. These RPs can just as well be used to visualize
string-creation events.

The question is interpretation: For the sub-
space of category-magnitude events, how are the
categories and magnitudes to be interpreted? The
RPs designed for abstract visualization of alloca-
tion events interpret categories (types of data) as
colors. Magnitudes are interpreted in various ways
such as width, length, area, and sometimes with
nonlinear scaling. Some of the tools ignore magni-
tudes and project the category-magnitude event
space onto a category event space.

To visualize string-creation events, catego-
ries (the creation operations) could be interpreted
as colors. The interpretation of magnitudes used
for allocation events generally suits string-creation
events just as well.

Of course, the number of different categories
and the range of magnitudes are serious consider-
ations. The human visual system can distinguish
among only a few colors at the same time, and
hence only a few categories when interpreted in
this way. And if the range of magnitudes is too
large, some forms of visualizations are inappropri-
ate.

The interpretation need not be built into the
RP; it can be provided by another process in a
pipeline or by a procedure called from the RP. One
way to view this is shown in Figure 6 below.

These are only a few examples. There are
many other ways of viewing event spaces and the
interpretation of events. The important point is
that event spaces provide a way of characterizing
events and abstracting essential characteristics from
them. This leads to the concept of RPs that can be
designed for event spaces without a priori self-
contained interpretation and hence be applicable
to many different kinds of program activity.

Conclusion

We’ve discussed the framework for monitor-
ing in terms of Icon programs. It is much more
general than that. The basic ideas apply to most
programming languages. In a specific case, the
instantiation, as well as what is possible and mean-
ingful may be different. I t also is possible to use the
same RPs to visualize program activity in different
programming languages. For example, the event

source might be a Prolog program
with the RP written in Java.

Note, however, that there
many tools, especially visualization
ones, already written in Icon. In
many cases, they can be used to
visualize events in programs writ-
ten in C, Prolog, Java, or other pro-
gramming languages. The catch is
that it may not be so easy to get
event reports from some languages.
Adding instrumentation to a source
program usually is the easiest route,
but some languages have ready
mechanisms for producing event

Figure 6

event reports visualizationRP

interpretation information

The Icon Analyst 39 / 5

The Kaleidoscope

This has been a long series of articles, starting
with Issue 31 of the Analyst [1]. We hope you’re
still with us — the end is in sight.

In the last article [2], we ran out of space while
describing the callbacks. We’ll finish that subject

and then take a look at the VIB code for the appli-
cation.

The Remaining Callbacks

The kaleidoscope application has only one
menu, File. Here’s its callback:

procedure file_cb(vidget, value)

 case value[1] of {
 "snapshot @S": snapshot(pane,
 –half, –half, size, size)
 "quit @Q": exit()
 }

 return

end

The value in a menu callback always is a list.
Its first element is the name of the selection. Its
second value, if any, is the selection from the
selected item’s submenu, and so on. There are no
submenus in the kaleidoscopes File menu, so value
is a one-element list.

There are two menu items, as shown in the
case expression. Note that the names of the items
appear exactly as they do on the interface, with the
keyboard shortcuts indicated. Showing the short-
cuts in this way is, of course, an optional part of the
interface design.

The snapshot item uses snapshot() from the
library module interact. This procedure provides a
dialog for the user to name a file in which to save
the image, warns the user if there already is a file
with that name, and so on. Notice that the origin of
the drawing area and its extent are taken into
account.

The quit item simply terminates program ex-
ecution. (There is nothing to save in this applica-
tion; in other applications there may be user work
that has not been saved, and the user should be
warned and given the opportunity to save the
work.)

Although not a direct callback, the procedure
that handles keyboard shortcuts is called as a result
of user actions for events that are not handled by a
vidget. The procedure itself is given as the third
argument of ProcessEvent():

ProcessEvent(root, , shortcuts)

The only keyboard shortcuts are those shown
in the File menu:

reports from the implementation. Hooks in Prolog
are an example [12].

References

1. “Event Definition Language: An Aid to Monitor-
ing Complex Software Systems”, P. C. Bates and J.
C. Wildeden, Proceedings of the 5th Hawaii Interna-
tional Conferences on System Sciences, 1982.

2. ␣ “A Framework for Dynamic Program Analy-
sis”, B. Bruegge, T. Gottschalk, and B. Luo, Proceed-
ings of the Eighth Annual ACM Conference on Object-
Oriented Programming Systems, Languages, and Ap-
plications, 1993, 65-82.

3.␣ “An Imaginary Icon Computer”, Icon Analyst
8, pp. 2-6.

4.␣ The Implementation of the Icon Programming Lan-
guage, Ralph E. Griswold and Madge T. Griswold,
Princeton University Press, Princeton, New Jersey,
1986.

5.␣ “Monitoring Icon Programs”, Icon Analyst 15,
pp. 6-10.

6.␣ “Dynamic Analysis of Icon Programs”, Icon
Analyst 28, pp. 9-12.

7.␣ “Dynamic Analysis — A Different Approach”,
Icon Analyst 37, pp. 3-9.

8.␣ “Dynamic Analysis of Icon Programs”, Icon
Analyst 29, pp. 10-12.

9.␣ “Dynamic Analysis”, Icon Analyst 30, pp. 6-
11.

10.␣ “Dynamic Analysis”, Icon Analyst 33, pp. 3-
6.

11.␣ “Program Visualization”, Icon Analyst 16,
pp. 1-8.

12.␣ SICStus Prolog User’s Manual, Swedish Institute
of Computer Sciences, 1993.

6 / The Icon Analyst 39

procedure shortcuts(e)

 if &meta then case map(e) of { # fold case
 "q": exit()
 "s": snapshot(pane, –half, –half, size, size)
 }

 return

end

Note that the shortcuts only apply if the meta key
is depressed when a letter is entered. This is a
design decision and helps prevent accidental key-
strokes from having unintended effects.

In a more complicated application, there might
be many more shortcuts. Shortcuts also are handy
for features that have no visible manifestation on
the interface, such as undocumented “Easter eggs”
and debugging facilities. Hidden features can be
more difficult for an uninformed user to discover
by requiring two modifier keys or a modifier key in
combination with a mouse press instead of a char-
acter.

The remaining two callbacks control the maxi-
mum and minimum radii of circles:

procedure max_radius_cb(vidget, value)

 max_radius := value

 if max_radius < min_radius then {
 min_radius := max_radius
 VSetState(
 vidgets["sld_min_radius"], min_radius)
)
 }

 reset := 1

 return

end

procedure min_radius_cb(vidget, value)

 min_radius := value

 if min_radius > max_radius then {
 max_radius := min_radius
 VSetState(
 vidgets["sld_max_radius"],
 max_radius
)
 }

 reset := 1

 return

end

Here there is a need for communication be-
tween the two callbacks to prevent the possibility
of a logical inconsistency in which the maximum
radius is smaller than the minimum one. Each
callback checks the two radii and, if necessary, sets
the state of the other slider by calling VSetState() if
the specified value would violate the constraints.
This causes the two sliders to be set to the same
value. From a user’s viewpoint, trying the move
the thumb of slider to a disallowed value merely
moves the other slider along with it.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1996 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

The Icon Analyst 39 / 7

The VIB Section

Until now, we’ve let the
code produced by VIB remain
mysterious. It’s shown at the
the right.

The comment lines at the
beginning and end delimit the
code produced by VIB and are
used by VIB to find its code
segment in a program when
VIB is run again to modify the
interface.

The procedure ui_atts()
returns a list of attributes for
the interface window. It can be
used, for example, to find out
how big the window is. We’ll
mention other uses for ui_atts()
in a later article.

The procedure ui() initial-
izes the interface by calling the
library procedure vsetup(),
which opens the interface win-
dow, draws the vidgets, and so
on. The first two arguments of
vsetup() are optional and are
used in special situations. The
remaining arguments to
vsetup() describe the interface.
The first is a list that describes
the interface window. Follow-
ing this, there is a list for each
vidget.

It is not necessary to know
what all the values in these
lists are, although you prob-
ably can figure out most of
them.

Note: It is, of course, possible to modify the
code in the VIB section using a text editor. This is
risky; if the results are not valid, VIB may be unable
to process its code section. We confess, however,
that we’ve edited VIB code on occasion to, for
example, change the name of a callback procedure
without using VIB.

The Complete Application

We’ve presented the code for the kaleido-
scope application in pieces over two issues of the
Analyst. Here’s the complete program for refer-
ence (a luxury we afford now that we have more

pages available). The program layout has been
changed slightly to accommodate the constraints
of the Analyst layout.

link interact
link random
link vsetup

Interface globals

global vidgets # table of vidgets
global root # the root vidget
global size # size of view area (width & height)
global half # half size of view area
global pane # graphics context for viewing

Parameters that can be set from the interface

global delayval # delay between drawing circles

VIB Code for the Kaleidoscope Application

#===<<vib:begin>>=== modify using vib; do not remove this marker line
procedure ui_atts()
 return ["size=600,455", "bg=gray–white", "label=kaleido"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,
 [":Sizer:::0,0,600,455:kaleido",],
 ["file:Menu:pull::12,3,36,21:File",file_cb,
 ["snapshot @S","quit @Q"]],
 ["label01:Label:::13,180,21,13:min",],
 ["label02:Label:::152,180,21,13:max",],
 ["label03:Label:::13,240,21,13:min",],
 ["label04:Label:::152,240,21,13:max",],
 ["label05:Label:::13,300,21,13:min",],
 ["label06:Label:::152,300,21,13:max",],
 ["label07:Label:::7,120,28,13:slow",],
 ["label08:Label:::151,120,28,13:fast",],
 ["lbl_density:Label:::67,160,49,13:density",],
 ["lbl_max_radius:Label:::43,280,98,13:maximum radius",],
 ["lbl_min_radius:Label:::44,220,98,13:minimum radius",],
 ["lbl_speed:Label:::74,100,35,13:speed",],
 ["line:Line:::0,30,600,30:",],
 ["pause:Button:regular:1:33,55,45,20:pause",pause_cb],
 ["reset:Button:regular::111,55,45,20:reset",reset_cb],
 ["sld_density:Slider:h:1:42,180,100,15:1,100,50",density_cb],
 ["sld_max_radius:Slider:h:1:42,300,100,15:1,230,115",max_radius_cb],
 ["sld_min_radius:Slider:h:1:42,240,100,15:1,230,115",min_radius_cb],
 ["sld_shape:Choice::2:66,359,57,42:",shape_cb,
 ["discs","rings"]],
 ["sld_speed:Slider:h:1:42,120,100,15:500,0,250",speed_cb],
 ["region:Rect:raised::188,42,400,400:",],
)
end
#===<<vib:end>>=== end of section maintained by vib

8 / The Icon Analyst 39

global density # number of circles in steady state
global draw_proc # drawing procedure
global max_off # maximum offset of circle
global min_off # minimum offset of circle
global max_radius # maximum radius of circle
global min_radius # minimum radius of circle

State information

global draw_list # list of pending drawing parameters
global reset # nonnull to reset display
global state # nonnull when display paused

Main procedure

procedure main(args)

 init()

 kaleidoscope()

end

initialization

procedure init()

 vidgets := ui()

 root := vidgets["root"]
 size := vidgets["region"].uw
 if vidgets["region"].uh ~= size then
 stop("∗∗∗ improper interface layout")

 # produce different display on every execution

 randomize()

 # set initial values

 delayval := 0
 density := 30
 max_radius := size / 4
 min_radius := 1
 draw_proc := FillCircle

 state := &null

 # initialize vidget values

 VSetState(vidgets["sld_speed"], delayval)
 VSetState(vidgets["sld_density"], density)
 VSetState(vidgets["sld_min_radius"], min_radius)
 VSetState(vidgets["sld_max_radius"], max_radius)
 VSetState(vidgets["sld_shape"], "discs")

 # get graphics context for drawing

 half := size / 2

 pane := Clone("bg=black", "dx=" ||
 (vidgets["region"].ux + half), "dy=" ||
 (vidgets["region"].uy + half), "drawop=reverse")

 return

end

The kaleidoscope

procedure kaleidoscope()

 # Each time through this loop, the display is cleared and a
 # new drawing is started.

 repeat {

 EraseArea(pane, –half, –half, size, size) # clear display
 draw_list := [] # new list
 reset := &null

 # In this loop a new circle is drawn and an old one erased,
 # once the specified density has been reached. This
 # maintains a steady state.

 repeat {
 while (∗Pending() > 0) | \state do {
 ProcessEvent(root, , shortcuts)
 if \reset then break break next
 }
 putcircle()
 WDelay(delayval)

 # Don't start clearing circles until the specified density
 # has reached. (The drawing list has four elements for
 # each circle.)

 if ∗draw_list > (4 ∗ density) then clrcircle()
 }
 }

end

Drawing procedures

procedure clrcircle()

 outcircle(
 get(draw_list), # off1
 get(draw_list), # off2
 get(draw_list), # radius
 get(draw_list) # color
)

 return

end

procedure outcircle(off1, off2, radius, color)

 Fg(pane, color)

 # Draw in symmetric positions.

 draw_proc(pane, off1, off2, radius)
 draw_proc(pane, off1, –off2, radius)
 draw_proc(pane, –off1, off2, radius)
 draw_proc(pane, –off1, –off2, radius)
 draw_proc(pane, off2, off1, radius)
 draw_proc(pane, off2, –off1, radius)
 draw_proc(pane, –off2, off1, radius)
 draw_proc(pane, –off2, –off1, radius)

 return

end

procedure putcircle()
 local off1, off2, radius, color

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

The Icon Analyst 39 / 9

 static colors

 initial colors := PaletteChars("c1")

 # get a random center point and radius

 off1 := ?size % half
 off2 := ?size % half
 radius := ((max_radius – min_radius) ∗ ?0 + min_radius) %
 (half – ((off1 < off2) | off1))

 color := PaletteColor("c1", ?colors)

 put(draw_list, off1, off2, radius, color)

 outcircle(off1, off2, radius, color)

 return

end

Callbacks

procedure density_cb(vidget, value)

 density := value

 reset := 1

end

procedure file_cb(vidget, value)

 case value[1] of {
 "snapshot @S": snapshot(pane, –half, –half, size, size)
 "quit @Q": exit()
 }

 return

end

procedure max_radius_cb(vidget, value)

 max_radius := value

 if max_radius < min_radius then {
 min_radius := max_radius
 VSetState(vidgets["sld_min_radius"], min_radius)
 }

 reset := 1

 return

end

procedure min_radius_cb(vidget, value)

 min_radius := value

 if min_radius > max_radius then {
 max_radius := min_radius
 VSetState(vidgets["sld_max_radius"], max_radius)
 }

 reset := 1

 return

end

procedure pause_cb(vidget, value)

 state := value

 return

end

procedure reset_cb(vidget, value)

 reset := 1

 return

end

procedure shape_cb(vidget, value)

 draw_proc := case value of {
 "discs": FillCircle
 "rings": DrawCircle
 }

 reset := 1

 return

end

procedure speed_cb(vidget, value)

 delayval := sqrt(value)

 return

end

Keyboard shortcuts

procedure shortcuts(e)

 if &meta then case map(e) of { # fold case
 "q": exit()
 "s": snapshot(pane, –half, –half, size, size)
 }

 return

end

#===<<vib:begin>>=== modify using vib; do not remove …
procedure ui_atts()
 return ["size=600,455", "bg=gray–white", "label=kaleido"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,
 [":Sizer:::0,0,600,455:kaleido",],
 ["file:Menu:pull::12,3,36,21:File",file_cb,
 ["snapshot @S","quit @Q"]],
 ["label01:Label:::13,180,21,13:min",],
 ["label02:Label:::152,180,21,13:max",],
 ["label03:Label:::13,240,21,13:min",],
 ["label04:Label:::152,240,21,13:max",],
 ["label05:Label:::13,300,21,13:min",],
 ["label06:Label:::152,300,21,13:max",],
 ["label07:Label:::7,120,28,13:slow",],
 ["label08:Label:::151,120,28,13:fast",],
 ["lbl_density:Label:::67,160,49,13:density",],
 ["lbl_max_radius:Label:::43,280,98,13:maximum radius",],
 ["lbl_min_radius:Label:::44,220,98,13:minimum radius",],
 ["lbl_speed:Label:::74,100,35,13:speed",],
 ["line:Line:::0,30,600,30:",],
 ["pause:Button:regular:1:33,55,45,20:pause",pause_cb],
 ["reset:Button:regular::111,55,45,20:reset",reset_cb],
 ["sld_density:Slider:h:1:42,180,100,15:1,100,50",
 density_cb],
 ["sld_max_radius:Slider:h:1:42,300,100,15:1,230,115",
 max_radius_cb],
 ["sld_min_radius:Slider:h:1:42,240,100,15:1,230,115",
 min_radius_cb],

10 / The Icon Analyst 39

 ["sld_shape:Choice::2:66,359,64,42:",shape_cb,
 ["discs","rings"]],
 ["sld_speed:Slider:h:1:42,120,100,15:2000,0,250",
 speed_cb],
 ["region:Rect:raised::188,42,400,400:",],
)
end
#===<<vib:end>>=== end of section maintained by vib

Next Time

That’s the end of the kaleidoscope applica-
tion. We have one other topic to cover before we
leave the subject of interface design altogether:
dialogs. We’ll start with that subject in the next
issue of the Analyst.

References

1.␣ “Visual Interfaces”, Icon Analyst 31, pp. 1-4.

2.␣ “The Kaleidoscope”, Icon Analyst 38, pp. 8-13.

Versum Bimorphs

In the last article on versum numbers [1], we
explored predecessors of versum numbers — num-
bers whose reverse sums produce versum num-
bers. We showed that a versum number has at
most two inequivalent predecessors and called
versum numbers with two predecessors bimorphs.
We also observed that there are very few bimorphs
among versum numbers.

We have a few more things related to bimorphs
before going on to other aspects of versum num-
bers.

Bimorph Correspondences

One aspect of bimorphs noted in the
last article is that there are the same num-
ber of bimorphs for successive odd/even
numbers of digits. For example, there are
200 13-digit bimorphs and 200 14-digit
bimorphs. We’ve found this to hold
through 16-digit bimorphs, but we haven’t
tried to prove it; take it as a conjecture.

We can easily compute the n-digit
bimorphs, n even, from the (n-1)-digit
bimorphs. The process involves working
with 2x9 predecessors of the (n-1)-digit
bimorphs.

A 2x9 predecessor of an (n-1)-digit
bimorph has (n-2) digits. Since the number
of digits is even, we can split the predeces-

sor in half and insert either a 0 or 9 in the center,
whichever makes the result divisible by 11 (and
one or the other will). The result is a 2x9 predeces-
sor of an n-digit bimorph. For example, the 2x9
predecessor of the 9-digit bimorph 119777801 is
20007799. Inserting a 9 in the middle of this prede-
cessor produces 200097799, which is divisible by
11 and is the predecessor of the 10-digit bimorph
1197887801. (Incidentally, this only works for n ≥
5.)

Witchcraft? Not entirely. Note that divisibil-
ity by 11 raises its head again. We’ll come back to
that. A 2x9 predecessor of a bimorph with an even
number of digits must be divisible by 11, as must a
1x0 predecessor of a bimorph with an odd number
of digits.

Here’s a procedure that “promotes” an (n-1)-
digit bimorph, n even, to an n-digit bimorph:

link vpred

procedure promoter(j)
 local i, j, try, lh, rh, count

 if (∗j % 2 = 0) | (∗j < 5) then fail
 count := 0
 every i := vpred(j) do # get 2x9 predecessor
 count +:= 1
 if count ~= 2 then fail # not bimorph
 lh := left(i, ∗i / 2)
 rh := right(i, ∗i / 2)
 every try := lh || ("0" | "9") || rh do
 if try % 11 = 0 then
 return try + reverse(try)

end

The Icon Analyst 39 / 11

(either of the form 1x0 or 2x9), all versum bimorphs
are divisible by 11.

Since all versum bimorphs are divisible by 11,
we can further improve vpred():

procedure vpred(i)
 local s, firstp

 if (i[1] == "1" == i[–1]) & (i % 11 = 0)) then {
 every s := integer(vpred_(i)) do {
 if (s + reverse(s)) = i then {
 s := vprimary(s)
 (/firstp := s) | {
 if s ~= firstp then {
 suspend firstp
 return s
 }
 }
 }
 }
 return \firstp # may be none
 }
 else { # not bimorph

…

The divisibility of bimorphs by 11 doesn’t
explain why the 2x9 predecessors of n-digit
bimorphs, n even, are divisible by 11 or why the 1x0
predecessors of such bimorphs also are divisible
by 11, but you probably get the feeling that there’s
a “connection”.

Palindromic Bimorphs

The versum problem originated because of
interest in palindromes [2], so it’s appropriate to
look at palindromic bimorphs.

Palindromic bimorphs seem quite remark-
able. For example, the number of palindromic n-
digit bimorphs is 2(n-1)/2 -1 (n > 2) where r is the
integer part of r. Consequently, there are the same
numbers of palindromes for successive odd/even
digit bimorphs, just as there are the same number
of bimorphs. In fact, that should not be so surpris-
ing, since you’d expect them to pair up. Here are
some numbers:

n palindromic bimorphs

3 1
4 1
5 2
6 2
7 4
8 4

…

The procedure vpred() is used to get the predeces-
sor. The section of code

every i := vpred(j) do # get 2x9 predecessor
 count +:= 1
if count ~= 2 then fail # not bimorph

is explained by the fact that vpred() is designed to
produce a 1x0 predecessor first.

It’s also possible to “demote” an n-digit
bimorph, n even, to an (n-1)-digit bimorph by
deleting the middle digit of its 2x9 predecessor,
which produces a 2x9 predecessor of an (n-1)-digit
bimorph. If we’d used demotion instead of promo-
tion above, the mysterious divisibility by 11
wouldn’t have appeared and the process would
have seemed simpler. In any event, promotion and
demotion produce a one-to-one correspondence
between (n-1)-digit bimorphs, n even, and n-digit
bimorphs.

Divisibility by 11

The divisibility of versum numbers by 11 has
come up several times. There’s nothing magic about
11 — it’s a consequence of representing numbers in
the base 10. In general, in base b, divisibility by b+1
applies in the same way.

Among various divisibility criteria, it’s known
that b+1 divides a number i represented in base b if
b+1 divides the difference of the sums of the odd
and even digits.

For example, consider the base-10 number
8827391431036289. The sum of the even-numbered
digits is 42 and the sum of the odd-numbered
digits is 31; the difference is 11, which of course is
divisible by 11, so 8827391431036289 is divisible by
11.

Divisibility by 11 is relevant to versum num-
bers because if you compute the reverse sum of a
number with an even number of digits, the odd
and even digits line up and the difference of the
sums is 0 and hence divisible by 11. In other words,
the reverse sum of a number with an even number
of digits is divisible by 11. Since all versum bimorphs
have a predecessor with an even number of digits

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/

12 / The Icon Analyst 39

The power of 2 suggests a doubling process in
which an n-digit palindromic bimorph “produces”
two (n-2)-digit ones. There’s a doubling process,
but it occurs in a different way.

Let’s start by looking at some palindromic
bimorphs. Here are the 9-digit ones:

110000011
110121011
111101111
111222111
121000121
121121121
122101221
122222221

As in other cases with bimorphs, it’s instructive to
look at their 2x9 predecessors, since we know how
to get corresponding 10-digit bimorphs from them:

20000009
20029009
20200909
20229909
22000099
22029099
22200999
22229999

These numbers have several interesting prop-
erties. They consist entirely of 2s, 9s, and 0s. All the
2s are in the left half and all the 9s are in the right
half. There are as many 2s as 9s in each number
(and hence all are divisible by 11). Furthermore, all
combinations of 2s and 0s, as well as 9s and 0s,
occur except for all 0s (which would not be of the
form 2x9). And if we replace all the 2s and 9s by, say
4s, the resulting patterns are palindromic:

400040004
400444004
404040404
404444404
440040044
440444044
444444444

And although we haven’t proved it, these regulari-
ties hold for the 2x9 predecessors of all n-digit
bimorphs, n odd, at least through n = 15.

Here’s a procedure to generates the n-digit
palindromic bimorphs, n even:

procedure bipalgen(n)
 local s, mid

 if n < 2 then fail

 if n % 2 = 0 then {
 mid := "0"
 n –:= 1
 }
 else mid := ""

 every s := allpat("02", (n – 3) / 2) do {
 s := "2" || s || mid ||
 map(reverse(s), "2", "9") || "9"
 suspend s + reverse(s)
 }

end

procedure allpat(s, i)

 if i = 0 then return ""

 suspend !s || allpat(s, i – 1)

end

The procedure allpat() is a recursive generator that
generates all patterns of the characters in its argu-
ment. See Reference 3.

One other observation: At least through n =
16, palindromic bimorphs contain only the digits 0,
1, and 2.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst 39 / 13

Next Time

Having brought up the issue of divisibility
by 11, we’ll go on to an exploration of the factors
of versum numbers, and, of course, prime versum
numbers.

References

1.␣ “Versum Predecessors”, Icon Analyst 37, pp.
11-15.

2.␣ “The Versum Problem”, Icon Analyst 37, pp.
1-4.

3.␣ The Icon Programming Language, 3rd edition,
Ralph E. Griswold and Madge T. Griswold, Peer-
to-Peer Communications, Inc., 1996, p. 210.

Program Size

In our courses on graphics programming
and string and list processing, each student does a
large individual programming project in lieu of a
final examination. The students are concerned,
quite naturally, about what is expected for their
projects — especially since the choice of topic and
the project design, implementation, and docu-
mentation is the individual responsibility of each
student.

Although we stress functionality, design, and
robustness as the main concerns, these are qualita-
tive measures and students want quantitative ones:
“How many lines of code do I have to write?”

Although code bulk is not our major criterion
in evaluating projects, it bears at least some rela-
tionship to effort and program functionality. We
usually end up placating anxious students by
saying something like “Well, in the past, the best
projects have ranged from 1,500 to 3,000 lines of
code”. (If the projects were done in, say, C instead
of Icon, the figure probably would be 5 to 10 times
larger. One of the reasons for using Icon in an
educational context is that much more can be done
in the course of a semester than if a more conven-
tional language were used.)

This brings us to the more fundamental ques-
tion of how to measure program size. In the From
the Library article in the last issue of the Analyst,
we pointed out that functionality may depend to
a large extent on linked procedures. Of course,
where student effort is an issue, it’s the code they

write themselves, not the library code they link,
that is of primary interest.

There’s a program in the Icon program li-
brary, isrcline, that counts the lines of code in a file
that contain actual code, as opposed to full-line
comments and blank lines. We use this program as
one of the preliminary parts of evaluating student
projects, primarily to identify programs that are
unusually small or large (it’s not a part of the
grading process). The program also counts non-
code lines, which gives an indication of program
layout and the amount of commentary.

Of course the number and percentage of code
lines is only a rough measure. The same program
can be laid out in different ways to give quite
different results. For example, any Icon program
can be written on a single line (there is no limit to
the length of line that the Icon translator can handle).
You’d never manage to write anything but a trivial
program on a single line by hand, and if you try,
you may discover some idiosyncracies of Icon’s
syntax, like situations in which whitespace but not
semicolons must be used to separate declarations
that normally would be written on separate lines
(try putting a semicolon after end).

As an amusement, we wrote an Icon meta-
translator [1] that converts any Icon program into
a one-line equivalent. This translator only has joke
value. We can, for example, advertise that an entire
relational database program can be written in one
line in Icon.

But what is a good measure of Icon program
size? You might think that the size of the icode file
produced by compiling a program would be a
good measure. There are two problems with this.
One is that it includes linked procedures, and
hence can only measure total program size, not, for
example, the amount of code a student writes for a
project. Another problem is that there are idiosyn-
cracies in the way icode files are laid out that can
give misleading information. For example, having
many records with many fields bloats icode files.
(One of Clint Jeffery’s students has provided modi-
fications to Icon to mitigate this problem, but those
changes currently are not enabled.)

The number of bytes in an Icon source-lan-
guage file often is a better measure of program size
than the number of source-code lines. But that size
is easily distorted, for example, by many long
string literals, as in built-in help information and
string images for graphics. Or on a more twisted

14 / The Icon Analyst 39

note, there is no limit on the length of an Icon
identifier, so the size of an otherwise “normal”
program can be bloated by using very long identi-
fiers.

But jokes and bogus programs aside, the mea-
sure of program size that we prefer is the number
of syntactic tokens it contains. Tokens are things
like identifiers, reserved words, literals, operators,
and so on. To count tokens, we use the meta-
translator described in the articles on static analy-
sis [2]. This meta-translator’s view of “token” is
somewhat different from a typical lexical analyzer’s
— the meta-translator, for example, views an if-
then-else control structure as one token, not three.
For our purposes, that’s preferable.

We applied these measures to the final projects
in a string-and-list-processing course given in the
spring of 1992 and described in Icon Newsletter 39
[3]. The course co-convened an upper-division
undergraduate section (450) and a graduate sec-
tion (550). There were 14 graduate students and
seven undergraduate students. All but one student
completed the course.

The results are shown below, with student
names converted to numbers to protect their iden-
tities. The results are ordered in terms of decreas-

ing numbers of tokens.
The project grades were based on the qualita-

tive factors mentioned earlier, as well as documen-
tation. Notice that although some of the top grades
are associated with large programs, the correlation
is relatively weak. Note, for example, that pro-
grams 1 and 13 received the same grade, although
the former is nearly four times as large as the latter.
(We’re not revealing anything embarrassing by
telling you that Mary Cameron wrote the largest
program, which was the precursor to the visual
interface builder, VIB.)

We find number of bytes per token to be
interesting. High values are suspect and usually
are due to many long string literals. These may
occur for good reasons, as mentioned earlier, but
they usually do not contribute much to program
functionality.

The number of tokens per code line usually is
related to program layout. Programs with high
values tend to be short on documentation and hard
to read. Incidentally, program 19 was very easy to
read — but it didn’t compile.

As another example, we applied these mea-
sures to the kaleidoscope application as shown on
pages 7 through 10 of this issue of the Analyst. We

number tokens code lines lines bytes bytes/token tokens/code line grade class

␣ ␣ 1 9670 1990 2682 73900 7.64 4.86 95 550
␣ ␣ 2 8659 1686 1896 54289 6.27 5.14 80 450
␣ ␣ 3 7645 1317 1903 50912 6.66 5.80 92 550
␣ ␣ 4 7586 761 1200 39063 5.15 9.97 92 550
␣ ␣ 5 7322 1547 2206 50476 6.89 4.73 85 550
␣ ␣ 6 6483 1450 2111 55776 8.06 4.47 90 550
␣ ␣ 7 5406 937 1574 44872 8.30 5.77 95 550
␣ ␣ 8 4455 931 1519 38897 8.73 4.79 90 550
␣ ␣ 9 4072 872 1740 54669 13.43 4.67 82 550

␣ ␣ 10 3364 751 1063 32586 9.69 4.48 90 550
␣ ␣ 11 2785 613 1065 25447 9.14 4.54 85 550
␣ ␣ 12 2540 695 1362 33759 13.29 3.65 83 550
␣ ␣ 13 2500 398 492 13929 5.57 6.28 95 550
␣ ␣ 14 2447 714 1476 41923 17.13 3.43 85 450
␣ ␣ 15 1958 265 472 12171 6.22 7.39 84 450
␣ ␣ 16 1815 402 686 24963 13.75 4.51 90 550
␣ ␣ 17 1205 375 590 10671 8.86 3.21 85 450
␣ ␣ 18 1098 223 486 14676 13.37 4.92 80 550
␣ ␣ 19 398 363 521 9871 24.80 1.10 30 450
␣ ␣ 20 209 62 79 1658 7.93 3.37 50 450

The Icon Analyst 39 / 15

did three measurements: the body of the program,
the VIB segment, and the whole program combin-
ing the two. Here are the results, where we’ve
abbreviated the labels on the last two columns so
that they would fit in the space:

 tokens code lines lines bytes b/t t/cl

body 500 151 293 6065 8.41 3.31
VIB 74 32 35 1487 18.43 2.31
all 574 183 329 7553 9.70 3.13

We explained earlier why we didn’t use icode
file sizes to measure the size of student projects.
For what it’s worth, here they are, built with Ver-
sion 9 of Icon on an Alpha with 64-bit words (for
which icode file sizes are considerably larger than
for platforms with 32-bit words):

1 220664 11 53710

2 201150 12 65587

3 176577 13 60735

4 97429 14 65074

5 77226 15 24857

6 118225 16 38672

7 121031 17 46384

8 119840 18 30073

9 68096 19 —␣ ␣

10 90606 20 7253

Are you prepared for this? The size of the
icode file for the kaleidoscope application is 563479
bytes. The explanation for this much-larger size
lies in the functionality of the application: a visual
interface and all that goes with it. With Icon’s run-
time system and storage regions, the kaleidoscope
application requires more than 1MB of RAM.

Not many years ago, we would have been
horrified by an application of this size. When we
developed ProIcon for the Macinoth in 1989, we
worried that the 400KB of RAM required and the
1MB recommended would exclude many poten-
tial users. It’s hard to comprehend how quickly
things related to computers change. Now many
applications require 10 to 20MB.

References

1.␣ “Meta-Variant Translators”, Icon Analyst 23,
pp. 8-10.

2.␣ “Static Analysis of Icon Programs”, Icon Ana-
lyst 27, pp. 5-11.

In an earlier article [1], we described a very
general and powerful library procedure for encod-
ing values as strings so that they could be saved in
files and restored later. In the cases where the
values are not structures or other complicated
values, there are simpler methods.

An example occurred when we were moni-
toring string concatenation [2]. In one experiment,
we wanted to know the actual strings produced so
that we could determine how many duplicates
there were, the distributions of individual charac-
ters, and so forth. In the monitoring model we were
using, the strings were written out and processed
later in various ways.

Since Icon allows any character to occur in a
string, the result of a concatenation might include
line terminators and hence split a single result into
more than one, producing erroneous results.

Writing and reading in “binary” mode with-
out terminators wouldn’t help, since it was impor-
tant to distinguish each string resulting from con-
catenation and there was no separator that might
not appear in the data itself.

From the Library

Encoding Values

3.␣ “Icon Class Projects”, Icon Newsletter␣ 39, pp. 11-
12.

16 / The Icon Analyst 39

What’s Coming UpWhat’s Coming UpWhat’s Coming UpWhat’s Coming UpWhat’s Coming Up

In the next issue of the Analyst, we plan to
have the first of a short series of articles on dialog
windows. We also have an article on the factors of
versum numbers waiting in the wings, as it were.
And we have material on dynamic analysis backed
up.

It’s time, however, to do something different
from what we’ve had in recent issues. For this,
we’ll start a series of articles on debugging.

The solution to such a problem is to use im-
age(), which provides escape sequences for char-
acters that are “unprintable”. The function image()
also produces surrounding quotes, double for
strings and single for csets. This allows, for ex-
ample, the values 1, "1", and '1' to be distinguished.

That takes care of encoding the data. The
problem then is the decoding. This is rather messy,
since there are many escape sequences. Although
image() uses hexadecimal escapes for most charac-
ters that need encoding, it uses the more mne-
monic escapes, like \l for the linefeed character,
where they are available.

Once again, the Icon program library can
come to the rescue (if asked). It contains a proce-
dure escape() that interprets escape sequences
and produces appropriate characters for them. We
won’t show escape() here; it has to handle a lot of
possibilities and the code is not very illuminating,
but if you’re curious, check the library.

With escape(), it’s easy to decode an imaged
string:

decode := escape(encode[2:–1]))

In some situations, you may want to encode
other data like numbers, the null value, keywords,
and so forth on a line-per-value basis. The library
procedure ivalue() expands on the capabilities of
escape() to handle numbers, keywords, non-local
variables, functions, procedures, and, in a limited
way, structures.

Instances of non-local variables, functions,
and procedures must, of course, exist in the con-
text in which ivalue() is evaluated. This generally is
the case for functions. For example, image(upto)
produces "function upto" and ivalue("function upto")
produces the function upto.

For the imaged value of a structure, ivalue()
produces a value of the right types and sizes, but
the contents, of course, generally are not correct,
since that information is not provided by image().
For example, if vector is a list with 1000 elements,
image(vector) produces a string such as
"list_21(1000)" (where the 21 is the serial number
for the list), and ivalue("list_21(1000)") produces a
list of 1000 elements (all of which happen to be
null).

A few facts about keywords deserve mention.
For some keywords, image() produces the name of
the keyword, not the value. For example,
image(&cset) produces "&cset". (Pop quiz: For

what keywords does image() produce the key-
word name?)

The procedure ivalue() handles these cases.
And, for keywords that are variables, ivalue() pro-
duces a variable. You can do things like

ivalue("&subject") := "Hello world."

Although we motivated this article by encod-
ing and decoding arbitrary strings, there are other
uses for ivalue(). See the description of icalc.icn in
Reference 3.

We’ll show the code for ivalue() in a later
article.

References

1.␣ “From the Library”, Icon Analyst 34, pp. 9-12.

2.␣ “Dynamic Analysis — A Different Approach”,
Icon Analyst 37, pp. 3-9.

3.␣ “Anatomy of a Program”, Icon Analyst 12, pp.
2-4.

