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1.0 Introduction

Directed graphs, or digraphs, are an excellent means of conveying the structure and opera-

tion of many types of systems.  They are capable of representing not only the overall structure of 

such a system, but also the smallest details in a simple and effective way.  However, drawing 

digraphs by hand can be tedious and time consuming, especially if the number of vertices and arcs 

is large.  In addition, much time can be spent just trying to plan how the graph should be organized 

on the page.  These facts reveal the need for an automated system capable of converting a textual 

description of a digraph into a well organized and readable drawing of the digraph.

Many researchers have studied this problem and many graph drawing systems have been 

developed [see 3 for complete list].  The aesthetic criteria of the systems vary. The objectives  may 

include requirements of uniform edge length, minimum number of edge crossings, straight edges, 

grid drawings (edges are either horizontal or vertical), minimal bends in the edges, minimum area 

covered, and display of symmetries.  Some limit the input graphs to a particular class such as 

planar graphs,  trees,  graphs with maximum degree of four, or some application-specific graphs 

such as petri nets, network representation, digital system schematic diagrams, PERT diagrams, 

flowcharts, etc.  CG (Clan-based Graph Drawing Tool) is a tool we use for our work with program 

dependency graphs.  Like dot [10] and its predecessor DAG [9], CG takes a textual description of 

an arbitrary directed graph and produces a visual representation of it.  CG uses a unique graph 

parsing method to determine intrinsic substructures in the graph and to produce a parse tree.  The 



tree is given attributes that specify the node layout.  One example attribute set is presented in this 

paper, but the layout can be tailored to suit different aesthetic criteria.  CG then uses tree properties 

and adapts the work of Suigyama [12], Warfield[ 13], Eens [7] and Farin [8] in routing the edges. 

The objectives of the system are to provide an aesthetically pleasing visual layout for arbitrary 

directed graphs.  CG incorporates techniques to reduce edge crossings,  guarantee few bends in 

long arcs, and to shorten long arcs whenever possible. 

CG is the first graph drawing tool to use a graph grammar as the fundamental structure that 

describes the node layout.  Brandenburg [1] defines a layout graph grammar as a graph grammar 

together with a layout specification.  The layout specification associates a finite set of layout 

constraints with each production.  Our approach is to classify the productions of the graph parse 

and associate layout attributes with each production type in the parse tree of the graph.

2.0 Node Layout

The node layout is determined by the combination of (1) parsing of the graph into logically 

cohesive subgraphs and (2) defining layout attributes to apply to the resulting parse tree.  The parse 

is based on a simple graph grammar, and the attributes that are now programmed into CG produce 

a layout whose nodes are balanced both vertically and horizontally.

2.1 Graph Decomposition

Clan-based graph decomposition (CGD) is a parse of a directed acyclic graph (DAG) into 

a hierarchy of subgraphs.  The subgraphs defined by our graph grammar and parse are called clans.  

Let G be a DAG.  A subset X ! G is a clan iff for all x, y " X and all z " G - X, (a) z is an ancestor 

of x iff z is an ancestor of y, and (b) z is a descendant of x iff z is a descendant of y.  An alternate 

description of a clan depicts it as a subset of vertices where every element not in the subset is 

related in the same way (i.e. ancestor, descendant or neither) to each member in the subset.  Trivial 

clans include singleton sets and the entire graph.  In Figure  1, sets {2,3}, {2,3,4,5,6}, 



{1,2,3,4,5,6}, and {2,3,4,5,6,7} are the nontrivial clans.  C={2,3} is a clan since vertex 1 is an 

ancestor of each element of C and 5 and 7 are descendants of each element of C.  The set {2,3,4} 

is not a clan since 6 is a descendant of only vertex 4.
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Figure 1. Clans

A simple clan C, with more than three vertices, is classified as one of three types. It is (i) 

primitive if the only clans in C are the trivial clans; (ii) independent if every subgraph of C is a 

clan; or (iii) linear if for every pair of vertices x and y in C, x is an ancestor or descendant of y.  

Independent clans are sets of isolated vertices.  Linear clans  are sequences of one or more vertices 

vi,vi+1,...,vj-1,vj where for i < k, vi is an ancestor of vk.  Any graph can be constructed from these 

simple clans.

 Graph-grammars

String grammars are a special case of graph-grammars.  A string is isomorphic to a linear 

graph, and in a production of the string grammar, the replacement string is connected to the host 

string in a natural way.  

In a sequential graph rewriting system or graph-grammar, graphs are generated from some 

initial graph by productions where  the mother graph, a subgraph of the host graph, is replaced by 

another graph, the daughter graph.   The main problem of graph-grammars is specifying the edges  

that connect the daughter graph to the host graph.  The specification of the edges connecting the 
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daughter graph to the host graph is called the embedding rule.  More formally, a graph-grammar 

is a system GG = (N, T, z, P, H) where N and T are the nonterminal and terminal vertex labels, 

resp., z is a vertex called the axiom or start graph,  P is a set of productions and H is an embedding 

rule. The particular graph-grammar of the work in this paper is called the clan generation system, 

CGS.  All  host and daughter graphs in CGS are Hasse graphs, i.e. directed graphs with no 

transitive edges. The axiom is a single vertex.  P is a set of pairs (v,D) where v is any graph vertex 

and D is a primitive, independent or linear  clan. 

 For CGS, the reconnection rule or embedding rule is heredity.  All  host and daughter 

graphs in CGS are Hasse graphs, i.e. directed graphs with no transitive edges. An embedding is 

called hereditary when in-edges to the mother graph, a single vertex, are replaced with in-edges to 

the sources of the daughter graph and out-edges from the mother node are replaced with out-edges 

from the sinks of the daughter graph.  More formally, let the mother graph be vertex u.  For each 

vertex v in the set of source vertices in the daughter graph, (w,v) is an edge in the resultant graph 

whenever (w,u) is an edge in the host graph.  For sink vertices, t, of the daughter graph,(t,w) is an 

edge in the resultant graph whenever (u,w) is an edge in the host graph.
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Figure 2. Production examples
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Let us call a production of this system a CGS-production.  In applications of  

CGS-productions,  the daughter graph becomes a clan in the resultant graph. Figure  2 shows 

example productions with the mother vertex identified as vertex 3.

Quotient graph

The concept of a quotient graph is important because it permits the classification of 

complex clans into the categories of linear, primitive or independent.  Let C be a clan and with 

{C1,,...Ck} a partition of C where each Ci is a maximal proper subclan of C.  The quotient graph 

of C denoted C/C1...Ck, is the graph with vertices C1,...,Ck. Pair(Ci,Cj) is an edge of C/C1..Ck iff x 

" Ci, y " Cj, and (x,y) is an edge of C.  In Figure 1, the clans that partition the entire graph are: 

C1 = {1},  C2 =  {2,3,4,5,6}, C3 = {7}, and the quotient graph is linear.  The clans that partition C2 

are {2,3}, {4}, {5}, and {6} and the quotient graph is primitive.   Every clan can be identified as 

linear, primitive or independent according to the classification of its quotient graph.  Figure 3(a) 

shows the parse tree of the graph of Figure 1.

Theorem  1:  When the original graph is a Hasse graph, the graph generated by 

CGS is also a Hasse graph [11].

Theorem  2:  Any Hasse graph can be generated by a unique canonical sequence 

of productions from CGS [6].

Theorem  3:  For every Hasse graph there is a unique decomposition into quotient 

graphs that are identified as linear, primitive or independent [5,6].

Theorem 3 guarantees the existence of a unique parse tree from the clans of a graph.  In the graph 

layout algorithm, the parse tree is used to specify the graph node locations.  A bounding box 

attribute for each tree vertex, x, specifies the length and width of a rectangle containing the graph 

nodes in  x’s subtree.  The length and width are computed for each linear and each independent 

clan from the attributes of the clan’s children.  The children of a linear clan are displayed vertically 

and the children of a horizontal clan are displayed horizontally in our example layout.



Decomposing Primitives

Primitive clans represent a special challenge.  They do not fall into the clear-cut categories 

of vertices that should be laid out horizontally or laid out vertically.  In addition, primitive clans 

can be arbitrarily large, and there can be indefinitely many of them.  While this poses no special 

challenge to parsing, and every directed graph can be parsed into clans from the three clan types, 

arbitrary graph generation is a problem since a list of all primitive graphs must be included in the 

production possibilities to create any specific graph.  Our approach is to eliminate primitive clans 

by decomposing them further into a hierarchy of pseudo-independent and linear clans.  By adding 

edges from all the  source nodes of a primitive to the union of the children of the sources, linear 

clan L is formed.  L is composed of a clan of the source nodes (which is identified as 

pseudo-independent) and the remainder of the primitive clan.  The procedure then recursively 

parses the remainder of the primitive.  This method extracts series-parallel constructs from 

primitive clans and represents the serial and parallel structures in the parse tree.  The 

pseudo-independent clans are treated as independent clans for layout purposes since their nodes 

are not connected.  The parse tree of any completely decomposed graph is a bipartite tree where 

the internal vertices are classified as either linear or (pseudo-) independent.  For a connected graph, 

the root vertex is always linear.  In Figure 1, the primitive {2,3,4,5,6} decomposes into a linear 

connection between the independent clans {2,3,4} and {5,6}.  The fully decomposed parse tree is 

shown in Figure 3(b). The bipartite parse tree can be decorated with layout attributes that can be 

synthesized to produce an aesthetically pleasing drawing.

2.2 Extension to Cyclic Graphs

A simple transformation is required to apply the graph decomposition method to cyclic 

graphs.  Cycles can be found in a depth-first graph traversal.  To break a cycle, the arc that identifies 

the cycle is given the reverse orientation.  When the layout is ready, its orientation will be corrected.
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Figure 3. Parse trees

2.3  Spatial Analysis 

The parse tree of the graph can be given a variety of geometric interpretations.   For exam-

ple, a rectangle or bounding box with known width and length can be associated with each clan.  

Synthetic attributes can be associated with the parse tree hierarchy to show the embedding of the 

bounding boxes.  For illustrative purposes we choose attributes we call natural that give a 

balanced layout, both vertically and horizontally.

2.3.1   Bounding Boxes

A simple two-dimensional algebra defines the synthetic attributes that specify the 

bounding boxes.  The intrinsic attributes of singleton DAG nodes (or equivalently parse tree 

leaves) describe unit square bounding boxes.  Linear clans require an area whose length is the sum 

of the lengths of the component clans and whose width is the maximum width of the component 

clans.  Independent clans require an area whose width is the sum of the widths of the component 

clans and whose length is the maximum of the lengths of the component clans. 
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Definition:   Denote the bounding box attribute of node N in parse tree T by (L.N,W.N). 

We define the natural values of the attribute to be:  (1) (L.N, W.N) = (1,1), if N has no children; 

(2) (L.N, W.N) <-- (L.C1+...+L.Ck, Max(W.C1,...,W.Ck)), if N is a linear node with children 

C1...Ck;  

(3) (L.N, W.N) <--- ( Max(L.C1+...+L.Ck,W.C1,...,W.Ck)),  if N is an independent  node with 

children C1 ...Ck.

As an example consider the parse tree in Figure 4.  The bounding box dimensions are 

indicated by the (i,j) pairs.  
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2.3.2   Node Placement

To achieve an aesthetically pleasing layout, the nodes are centered within the bounding 

boxes.  For child C of linear node N, the actual rectangle in which the node is to be centered has 

length L.C and width W.N.  For child D of independent node I, the rectangle in which D is to be 

centered has length L.I and width W.D.  In Figure 4, for example, clan c3 is centered in a (3,1) 

bounding box and vertex v0 is centered in a (1,2) bounding box.  Figure 5 shows the node layout 

for the parse tree of Figure 4.
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Figure 5. Bounding boxes

2.3.3  Clan Expansion and Contraction

Since clans are defined as groups of nodes with identical connections to the rest of the 

graph, clans can easily be contracted to a single node.  Any node not in the clan that was connected 

to a clan source or sink will be connected to the contracted node.  By allowing segments of the 

graph to be contacted, the user can simplify graphs for viewing by contracting those parts which 

are not relevant to the investigation.  Contracted nodes can be expanded to show the original clan 

configuration.  Similarly, it is possible to display only the clan, ignoring the rest of the graph.

One of the major differences between the graphs drawn by the naturally attributed CG and 

hierarchial systems [12][2]  is that the nodes in CG's graphs are spaced in a balanced way both 

vertically and horizontally.  Hierarchical drawings partition nodes into levels, and all nodes of the 

same level are placed on the same horizontal axis.  Nodes tend to bunch toward the top of the graph 

is these systems.  By using our graph decomposition technique, CG is able to determine balanced 

vertical spacing as well as balanced horizontal spacing.

3.0 Drawing Arcs

 An important consideration that went into the formulation of the arc drawing algorithm 

was the question of which pairs of vertices can have arcs between them.  The answer lies in the 

definition of linear and independent clans.  The vertices of a linear clan can have arcs between 
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them even if the vertices are not consecutive in the clans.  Within independent clans no two verti-

ces may be connected by an arc.  For these reasons, the algorithm need only consider routing arcs 

between vertices within a common linear clan.

There are two major problems to be solved in routing arcs: reducing edge crossings and 

“long arc problems”.  Producing optimal edge crossings is NP-hard, even for nodes in only two 

levels [4].  CG modifies the Barycentric ordering technique of Warfield [13] to be applied to clans, 

as well as individual nodes.  

The long arc problems include reducing arc lengths whenever possible and the proper 

routing of arcs that connect nodes not placed on adjacent levels. To avoid visual conflicts, long 

arcs may have to be routed around nodes from intermediate levels. Bends in the arcs are often 

necessary for this routing, but may cause visual confusion.  Bends should be minimized.  

3.1 Routing Long Arcs 

Before nodes assume their final position in the layout, their location is determined by con-

sidering placement that will shorten long arcs when possible or straighten arcs for those that 

cannot be shortened.  To describe the method, several definitions are required.  The level of node 

x, l(x),  in DAG G is the length of the longest path from a source to x.  The height of node x, h(x),  

is the length of the longest path from a sink of the graph to x.  The height of DAG G, H(G),  is the 

maximum of the node heights or, equivalently, the maximum of the node levels.  The length of arc 

(x,y), L(x,y) = l(y) - l(x).  An arc, (x,y),is called long if L(x,y)  > 1.   Otherwise, it is called short.  

Theorem 4:  In DAG G, if l(x) + h(x) = H(G),  then there exist a path from source 

z1 to sink zk,  z1,...x=zi,...zk,  such that L(zj,zj+1)= 1 for 1 # j < k. 

We say a node x is specified if l(x) + h(x) = H(G).  The vertical positioning of a specified 

node is determined since it is contained in a path whose arcs are all of length 1.  Short edges are 



routed directly to vertices while long arcs are routed through false vertices embedded in clans 

between the two vertices.  Since bends are hard to follow and distracting to the eye, our strategy 

guarantees that transitive arcs will have at most two bends.  Furthermore, no edges will cross long 

arcs except possibly at either end of the arc.

3.1.1   Recognizing Long Arcs

A long arc is incident to node x iff there exists node y such that (x,y) "E or (y,x)  "E and 

$l(y)-l(x)$> 1.  If the the long arc, (x,y), is a transitive arc, it is replace by a dummy node z and arcs 

(x,z) and (z,y).  When the augmented graph is parsed,  z is a component in an independent subclan 

of the clan containing x and y.    The example graph in Figure 6 illustrates this situation. The only 

transitive arc is (a,d).  Here, node z and arcs (a,z) and (z,d) are added, and arc (a,d) is deleted.  The 

augmented parse includes new independent clan, {b,c, z} with components {b,c} and {z}.  The 

augmented parse tree is shown in figure 6d.  Since the only role of z is that of place holder for the 

dummy node, a reasonable modification of the attribute grammar would be to give the dummy 

node a smaller width.  The layout in 6(e) illustrates the case where the bounding box of z is 

assigned the dimensions (1, 0.5). 
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3.1.2    Positioning Nodes Incident with Long Arcs

For non-transitive long arcs incident at x, if l(x) + h(x) < H(G), then some flexibility exists 

for adjusting the vertical positioning of x.  The vertical positioning will be modified in one of three 

ways: (i)  x will be centered between predecessor and successor, (ii) x will be placed one level 

below its predecessor, or (iii) x will be placed one level above its successor.  If there is a successor 

of x and a predecessor of x that are both specified, then x will be placed midway between, separat-

ing two long arcs.  If only a successor or a predecessor, y, is specified, x will be moved as close as 

possible to y.  These modifications are made by inserting dummy nodes into the parse tree, 

completing the normal layout, routing the edges through the dummy nodes and then removing the 

unnecessary nodes.  The dummy nodes are included with x in a linear clan.  The addition of the 

linear clans insures the nodes with be placed in vertically adjacent positions.  Specifically, the 

parse tree transformations will be:

(i)  if all predecessors, w, and all successors, z, of x are satisfied, let  

d = min %[l(z) - l(w) - 2] / 2&, where the minimum is taken over all w,z adjacent to x.  Node x 

is replaced in the parse tree by a linear with l(z) - l(w) -1 nodes:   d dummy nodes are placed to the 

left of x and l(z) - l(w) - d - 2 dummy nodes are placed to the right of x.  Figure 7 illustrates the 

process.  In the figure, arc (a,z) is a transitive arc.  The graph is augmented with node x to remove 

the transitive edge.   Now arcs (x,z) and (e,z) are long.  Furthermore all predecessors and 

successors of x and e are satisfied.  Node x in the parse tree is replaced by a linear clan with 

d = (5-0-2)/2 = 1 dummy node to the left of x and l(z) - l(a) - d - 2 = 2 dummy nodes to the right 

of x.  Similarly, e is replaced by a linear clan with 2 nodes.

(ii)  if there exists a y such that y is specified, (x,y) "E,  and l(y) - l(x) > 1, let 

d = min[l(y)-l(x)-1], where the min is taken over all y adjacent to x.  Replace node x in the parse 

tree by a linear node with d + 1 children: d dummy nodes to the left of x.  Figure 8 illustrates this 



solution.  Here (a,z) is a long arc that is not transitive.  d = 3, and parse tree node a is replaced by 

a linear clan with 3 dummy nodes followed by x. (See Figure 8(c)).   Note that neither the dummy 

nodes nor the potential edges between them are required for the layout.
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Figure 7. Layout for long transitive edge

(iii) if there exists a node y such that y is specified, (y,x) "E, and l(x) - l(y) > 1, let d = 

min[(l(y)- l(x)-2].  Replace node x in the parse tree by a linear node with d+1 children: node x is 

the left-most child and d dummy nodes are to its right. Though the parse tree changes and larger 

bounding boxes are assigned to these linear nodes, it is important to leave the bounding boxes of 

the ancestors unchanged.  No additional space is required for the dummy nodes.  They are placed 

in the graph only for the purpose of routing edges.  Once all nodes and dummy nodes are placed, 

all arcs are short and their placement follows.
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(c) transformed parse tree
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3.2  The Barycentric Method and its Adaptation to Clans

The Barycentric method is a heuristic for reducing the number of edge crossings in two 

consecutive levels of a graph.  Two values called the row barycenter and the column barycenter 

quantify the horizontal distance between adjacent vertices.  Reducing these distances produces 

fewer edge crossings.  The method traverses the levels of the graph and recursively computes the 

barycenter for adjacent  levels starting with level zero.  With each computation, the nodes on one 

level are permuted to reduce the row barycenter value.  The process is repeated between top and 

bottom layers until no reordering occurs or a limit on the number of computations has been 

reached.    
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Adapting barycenters to clans involves replacing the adjacent levels of a hierarchy by 

adjacent independent clan components of linear clans.  The process first inspects the smallest 

linear clans in the parse tree (those closest to the leaves). The barycenter method is used on 

non-trivial adjacent independent subclans of these linear clans.  Once the proper ordering has been 

established for the nodes within that linear clan, that ordering remains fixed.  The process 

continues with the quotient graph where the linear node has been contracted. 

Identifying and using only the linear clans results in a significant reduction in the amount 

of computation required to perform the barycentric method.  In the original barycenter method, the 

barycenters are computed on matrices of size ri*ri+1 where  ri is the number of vertices in level i 

and the computation requires  ri*ri+1  multiplications and  (ri-1)*ri+1  additions at each level for each 

iteration between the top and  bottom levels.  With the application to the parse tree, after the proper 

placement of the independent clans within a linear, there is only one node that represents the entire 

structure of the linear clan.

3.3 Smoothing Arcs.

The CG system eliminates sharp corners by using B-splines.  When an arc connects an 

actual vertex with a dummy vertex, the spline technique described by Enns [7] and Farin [8]  is 

used. See Figures 9, 10 and 11..

4.0 The Implementation

The CG system has been implemented on a Sun Microsystems SPARCstation running the 

SunOS 4.1.2 operating system.  It was written in C++ and uses the InterViews  toolkit developed 

at Stanford University.  This toolkit provides an object-oriented interface to the X Window 

System.  Using this interface, the system generates a drawing of a directed graph from a textual 

description.  The windows in Figures 9, 10, and 11  contain  the digraph displays generated by the 



CG system.  The vertices of the digraph are represented by circles, each of which contains the 

number of the vertex.  Vertices can be selected by clicking on them with the left mouse button.  

This action highlights the vertex by reversing its foreground and background colors.   When all the 

components of a clan have been selected, the user may then contract the clan.  Figure 9 shows a 

layout and the results of contracting clans {1, 2} ' {3, 4, 5}, and {6, 7, 8, 9, 10}.

The contracted clans can be selected exactly like the vertices.  The expand button can then 

be used to expand selected clans to reveal their contents.  This expansion and contraction of clans 

allows the user to concentrate on specific subgraphs while browsing the digraph.  

Figure 9. Graph with 15 nodes and contractions



Figure 10. Random DAG with 33 Nodes



Figure 11.  Random DAG with 31 nodes.
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