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1 OVERVIEW

SWRL-IQ (Semantic Web Rule Language Inference and Query tool) is a plugin for Protégé 3.x that allows
users to edit, save, and submit queries to an underlying inference engine based on XSB Prolog. The tool
has a number of features that distinguishes it from other query and reasoning tools, such as the Protégé
SQWRLQueryTab supported by the Jess rule engine:

– Goal-oriented backward-chaining Prolog-style reasoning (as opposed to the forward-chaining paradigm
used by Jess and the Protégé SWRL Bridge framework).

– Constraint-solving based on CLP(R) (Constraint Logic Programming with Reals). This allows for more
declarative and powerful rules and queries.

– Saving queries to XML or CSV format (the SQWRLQueryTab saves to CSV only).
– Tracing and debugging inference results.
– Exporting query results in different formats.
– No dependency on proprietary or closed-source components. Uses XSB Prolog, which is freely available

under the LGPL license.

SWRL-IQ also has powerful SWRL extensions and a Java procedural attachment mechanism, similar to
what the Jess query tab supports.

1.1 Project Home Page and Mailing List

The SWRL-IQ home page is http://www.onistt.org/display/swrliq/.

The user mailing list is swrl-iq-users@lists.esd.sri.com. If you wish to subscribe, send a message to
swrl-iq-users-request@lists.esd.sri.com with the word “subscribe” as subject. You will receive an auto
response that includes a link to confirm the subscription. You will then receive an email welcoming you to
the mailing list.

1.2 A Quick Tour

The rest of the Overview section provides a quick tour of the tool to illustrate some of its capabilities. The
following sections provide a more thorough reference manual, covering all the tool’s features.

All example queries can be seen and run in SwrlIq/owl/food/food_planning.owl.

Example query that uses only information directly expressed in OWL

vin:Wine(?wine) ∧ vin:hasSugar(?wine, ?sugar)

returns all the wines and their hasSugar properties (Dry, OffDry, or Sweet), as shown in Figure 1.

Example query using a pseudo-builtin defined by a SWRL rule

hasPrice(?wine, ?price) ∧ withinRange(?price,10, 50)

returns all the wines that have an average price between $10 and $50 according to
http://www.wine-searcher.com/ as in Figure 2. This query uses the “pseudo-builtin” (see Section 3.1.1)
3-argument predicate withinRange defined by the SWRL rule

swrlb:greaterThanOrEqual(?x, ?y) ∧
swrlb:lessThanOrEqual(?x, ?z)

→
withinRange(?x, ?y, ?z)

Example trace
You can see how the rule is used when you click the “Trace All” button, as shown in Figure 3. There is
more information about tracing in Section 3.2.

1

http://www.onistt.org/display/swrliq/
mailto:swrl-iq-users@lists.esd.sri.com
mailto:swrl-iq-users-request@lists.esd.sri.com
http://www.wine-searcher.com/


SWRL-IQ User Manual

Fig. 1. Wine sugar query

Fig. 2. Wine price range query
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Fig. 3. Price range query trace

Example of saving results to XML and transforming to HTML

vin:Wine(?wine) ∧ vin:hasMaker(?wine, ?maker) ∧ vin:hasColor(?wine, ?color) ∧
vin:madeFromGrape(?wine, ?grape) ∧ vin:hasSugar(?wine, ?sugar) ∧ hasPrice(?wine, ?price) ∧
priceReferenceURL(?wine, ?url) ∧ bottleImageURL(?wine, ?label)

returns various properties of the wines, as show in in figure 4. The query results can be saved to an XML
file and transformed to HTML (or other formats) using XSL transformations, as shown in Figure 5. For
more details, see Section 4.1.

Example of saving results to CSV and graphing
Query results can be saved to a .csv (comma separated values) file and graphed in your favorite
spreadsheet software, as shown in Figure 6. See Section 4.2 for more detail.

Example using reversible math
Many math builtins generate numerical constraints that are combined and if possible simplified away later.
This makes them reversible and able to solve systems of equations. For example, instead of using
swrlb:pow(?x,3,2) the usual way to determine what the result of 32 is, it can also be used to compute
square roots by providing the ‘output’ argument and leaving one of the ‘input’ arguments as a variable.
The query swrlb:pow(9,3,?x) returns ?x = 2.0. See Section 5.1 for more detail.

Example using allKnown

swrlex:allKnown(?regions, ?_region, vin:locatedIn, vin:BancroftChardonnay, ?_region)

produces a list of all regions satisfying the transitive vin:locatedIn property, as shown in Figure 7. The
allKnown predicate is used to aggregate query results into a list, and is described in more detail in Section
6. Also note the use of the anonymous variable _region, the values of which we are not interested in (see
Section 3.1.2).

3
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Fig. 4. Wine Properties Query result in Protege

Example using a predicate as an argument

swrlex:allKnown(?_listOfWinePricePairs, rdf:List(?_wine, ?_price), hasPrice, ?_wine,

?_price) ∧ swrlu:sort(?sortedListOfWines, ?_listOfWinePricePairs, winePairCheaperThan)

produces a list of the lists of all the wines and their prices sorted by price, as shown in Figure 8 (hover the
mouse pointer over the result to see the blue box tool-tip). The sort predicate is discussed in Section 7. It
takes a predicate (here winePairCheaperThan) as an argument, and sorts the list according to the ordering
defined by that predicate.

Example using a Java attachment

swrlex:callJavaStaticMethod(?r, "java.lang.Double", "toHexString", 14.432)

returns the result of executing the given Java method, as shown in Figure 9. Any static method from the
standard Java library can be used, and users can also call their own code. See Section 8 for more detail.

4
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Fig. 5. Query result in html (using an xsl transformation)
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Fig. 6. Query result saved to CSV and graphed

Fig. 7. All known regions query

6
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Fig. 8. Sort wines by price query

Fig. 9. Java attachment

7
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2 INSTALLATION

2.1 Unzipping the plugin

SWRL-IQ is distributed in binary form, as a zipped archive. The first step of installing the tool is to unzip
this archive. This will create a folder named SwrlIq which contains this manual, some sample ontologies, a
sample java attachment, and a swrliq-plugin.zip file. Unzip swrliq-plugin.zip into the Protégé
plugins directory. This creates a com.sri.swrltab directory with a few files in it.

2.2 Installing XSB

SWRL-IQ needs a working installation of XSB Prolog1 to work. The main XSB site does not supply
sufficiently up-to-date binaries, so we provide instructions below for building it from the source code. We
also provide binaries for Windows at http://www.onistt.org/display/SWRLIQ. If you get those, you can
skip sections 2.3 through 2.6.

2.3 Getting the Source Code

First you need to get the XSB source code, either the latest stable release at
http://xsb.sourceforge.net/downloads/downloads.html or the latest version from CVS. To get it
from CVS, enter the commands

cvs -d:pserver:anonymous@xsb.cvs.sourceforge.net:/cvsroot/xsb login

Hit enter when asked for password. Then,

cvs -z3 -d:pserver:anonymous@xsb.cvs.sourceforge.net:/cvsroot/xsb co -P XSB

This should give you a XSB directory.

2.4 Compiling XSB on Mac/Linux

In a shell window, go into the XSB/build directory, and enter

./configure

./makexsb

You should now be able to run XSB/bin/xsb. If there are errors, first make sure you have the latest
versions of the build tools (e.g., Xcode on Mac).

2.5 Compiling XSB on Windows

First you need to install Microsoft Visual C++ Express, which is freely available at
http://www.microsoft.com/express/vc/. Then install the Microsoft Windows SDK, from
http://msdn.microsoft.com/en-us/windows/bb980924.aspx. Next, follow the instructions below,
depending on the type of machine that you are compiling for.

2.5.1 32-bit Windows

In a command window, run

C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\BIN\vcvars32.bat

Then, in XSB\build, run

1 http://xsb.sourceforge.net/

8
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makexsb.bat

You should now be able to run

XSB\config\x86-pc-windows\bin\xsb

2.5.2 64-bit Windows

In a command window, run

C:\Program Files\Microsoft SDKs\Windows\v7.1\bin\SetEnv.cmd

Then, in XSB\build, run

makexsb64.bat

You should now be able to run

XSB\config\x64-pc-windows\bin\xsb

2.5.3 Cygwin

Compiling under Cygwin basically works the same as compiling under Linux/Mac, with one caveat: The
space in the C:\Program Files directory which usually is part of the JAVA_HOME environment variable can
cause some problems. To solve this, introduce extra (escaped) quotes before running configure, e.g.

export JAVA_HOME="\"C:\Program Files\Java\jdk1.6.0_24\""

Note that Cygwin only supports 32 bits.

2.6 Compiling CLPR

Go to XSB/packages

Start XSB (e.g. ..\bin\xsb or ../bin/xsb)
Enter the command
[clpr].

Exit XSB by using the command halt.

Go to XSB/packages/clpqr.
Start XSB again (e.g. ..\..\bin\xsb or ../../bin/xsb)
Enter these commands:
[clpr_make].

make_clpr.

2.7 Setting the XSB environment variable

SWRL-IQ needs to know where to find XSB. This is done by setting up an XSB environment variable
pointing to the XSB executable. However, the variable must not point to the XSB/bin/xsb or
XSB/bin/xsb.bat file. This file is a script that in turn calls the real executable, which is located in
XSB/config/ARCH/bin/xsb, where ARCH is an architecture-dependent directory name. For example, on a
64-bit Linux system, the architecture directory is usually called x86_64-unknown-linux-gnu.

To set up the XSB environment variable on Windows 7,

1. Click on the Windows button in the lower left corner.
2. In the search field, type “environment”.
3. Click on “Edit the system environment variables”.

9
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4. Click the “Environment Variables” button.
5. Click one the the “New” buttons, depending on whether you want to make this a system-wide setting or

a user setting.
6. Enter “XSB” as the variable name and the appropriate executable (as discussed above) as the variable

value.

On Linux and Mac, one simple way to set up the XSB variable is to edit the run_protege.sh script in the
main Protégé folder. Add a line

export XSB=PATH

before the last line of the file, where PATH is the appropriate path to the executable. For example, the
whole line might be

export XSB=/homes/elenius/XSB/config/x86_64-unknown-linux-gnu/bin/xsb

2.8 Importing SWRL Utilities

SWRL-IQ comes with a few .owl files. One of them is swrl-utilities.owl. This file needs to be
imported in order to use SWRL-IQ. If it is not, the SWRL-IQ tab will show a text reminding the user of
this. It contains the definition of the swrlu:Query class, which is used to save queries. It also provides a
small library of useful predicates (see Section 7), and imports swrl-extensions.owl, which provides a
number of very useful new SWRL “built-ins,” (see Section 6).

2.9 Verifying the Installation

SWRL-IQ is a so-called Tab Widget. To use it, the widget must first be enabled under the
Project->Configure menu item. Checking the box for “SwrlIQTab” should make a new tab with that title
appear in Protégé. To test that the query engine works, create a new query individual by clicking the
“create instance” button in the instance browser on the top left of the SWRL-IQ tab. Then enter a simple
query into the query text field, e.g.,

swrlb:add(?x,3,2)

An answer to the query should appear on the bottom of the tab. Note that the first query always takes a
little while. This is because the entire knowledge base has to be loaded into the Prolog back-end.
Subsequent queries are much faster. This is discussed in more detail later in this manual.

If this does not work, look in the console window to see if there is any error message or Java exception. If
you need help solving the problem, send email to swrl-iq-users@lists.esd.sri.com.

10
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3 BASIC USAGE

SWRL-IQ is a plugin to Protégé, and uses some of the same user interface elements. We recommend that
users who are new to Protégé first familiarize themselves with it. The Protégé web site contains a number
of guides and tutorials2. In addition, learning how to use Protégé’s SWRL rules tab3 will help in
understanding our SWRL query editor.

3.1 Queries

The SWRL-IQ user interface has three main parts: The query instance browser, the query editor, and the
query results panel (see Figure 10). The query instance browser is a standard Protégé component. Most
importantly, it allows you to create new query individuals, and to select among existing ones. Re-naming a
query currently requires double-clicking on a query individual, which brings up the standard Protégé
individual editor. For editing the actual query content, use the query editor to the right of the query
instance browser.

Example: a simple query

vin:Wine(?wine) ∧ vin:hasSugar(?wine, ?sugar)

This query returns all the wines and their hasSugar properties (Dry, OffDry, Sweet), as shown in Figure 10.

Fig. 10. Wine sugar query & Query UI

Note that you have to have a query individual to edit before you can change the content in the query
editor. Sometimes you just want to try different queries without saving them. This is most easily done by
just creating one “scratch pad” query individual for all such queries. The content of the scratch pad query

2 http://protege.stanford.edu/doc/users.html
3 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLEditorFAQ

11

http://protege.stanford.edu/doc/users.html
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLEditorFAQ


SWRL-IQ User Manual

in the query editor can be deleted before saving the OWL file so that it does not get saved unintentionally
(although saving it is not harmful, other than making the OWL file slightly larger).

The query editor works almost exactly like the Protégé SWRL rule editor. In terms of the user interface,
the main difference is the lack of the implication symbol (→ ). In other words, editing a query is much like
editing the body of a SWRL rule.

The main purpose of a query is to find values for all the variables in the query such that the query is
satisfied with respect to the current ontology, rules, and facts in the knowledge base.

Once a query is ready to run, click the “Submit query” button (the “Trace First,”“Trace All,” and “Debug”
buttons are discussed in Section 3.2). There are three types of possible answers to the query:
“SUCCEEDED”, “FAILED”, or a table of variable bindings. The first type can only happen when there are
no variables in the query (or when all variables are anonymous, see section 3.1.2).

The variable bindings table shows one row in the table for each solution to the query. The table header
shows the variable names, and the values in each column are the different bindings for the variable in
question. Double-clicking on a value in a cell containing an RDF resource opens up the standard Protégé
individual editor for that resource (double-clicking on numbers and strings does nothing). Clicking on a
column header sorts the table alphabetically according to the entries in that column.

Sometimes a query (or trace/debug) attempt takes a very long time. In fact, with recursive SWRL rules, it
is possible to create situations where the reasoning engine can run forever. In such cases, the “Stop” button
can be used to abort what the reasoner is doing and make it available for new queries.

The “Show SPARQL XML” and “Save as CSV” buttons are discussed in Section 4.

3.1.1 Pseudo-Built-Ins

There is a “hidden” (and possibly unintentional) feature of Protégé that makes SWRL rules much more
powerful. Regular SWRL supports only unary and binary predicates, except for the SWRL built-ins (see
Section 5) which can take an arbitrary number of arguments. This is because OWL classes and properties
are used for user-defined predicates. However, in Protégé there is a way to create new predicates with an
arbitrary number of arguments! Here’s how to do it:

1. In Project->Configure->Options, check “Display Hidden Frames”.
2. In the Individuals tab, select the swrlb:Builtin class.
3. Create a new individual of this class and give it the name you want for your new predicate.

You can now use your new predicate in SWRL rules and queries. Note that the arity is not defined, and the
SWRL rule and query editors will not display an error when you use the “wrong” number of arguments.
Thus, you must make sure to consistently use the same number of arguments.

Of course, your new predicate isn’t really “built-in,” i.e. it is not implemented by the reasoning engine. You
have to create the rules that define the semantics of the new predicate. Hence, we can refer to these
predicates as pseudo-built-ins.

Being able to use more than two arguments is extremely useful. When you are limited to two arguments,
one of which is often a “return value,” you essentially can only create functions of one argument. The other
solution is to use a list as an argument, and then pack the “real” arguments into this list. However, this
becomes very cumbersome, as most rules need lots of additional content to construct and deconstruct these
lists.

One word of caution: Using pseudo-builtins is a non-standard use of SWRL. Ontologies containing them
may not load or work properly in other ontology tools.
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3.1.2 Anonymous Variables

In many queries, there is a need to use “intermediate” variables, whose bindings are not interesting to the
user. Normally the bindings for all variables are reported in the query result.

Example: x=5*6+3

swrlb:multiply(?z,5,6) ∧
swrlb:add(?x,?z,3)

returns

?x = 33.0

?z = 30.0

However, we’re not interested in ?z. This is also indicated by the fact that it does not even appear in the
mathematical notation for the query. SWRL provides a relational encoding of mathematics and other
functional expressions, and this always involves the introduction of new variables.

The solution to this is a feature called Anonymous Variables. By prefixing a variable name with _

(underscore), it will not be reported in the query result. Thus,

Example: x=5*6+3

swrlb:multiply(?_z,5,6) ∧
swrlb:add(?x,?_z,3)

returns only

?x = 33.0

3.2 Tracing and Debugging

The tracing and debugging features of SWRL-IQ are used for explanation of reasoning results. They
answer the questions “why?” or “why not?” did a result happen. The user interface for both is similar. The
debug view adds a few elements that the trace view does not have, so we start by describing the trace view.

3.2.1 Tracing

Tracing is used to explain how and why a query succeeded. It can be used for example to learn why an
unexpected result happened, or to check that some SWRL rules got used in the intended way. There are
two versions of the tracer - “Trace First” and “Trace All”. The former returns the first proof of a given
query. The latter returns all proofs of the query. There are often multiple ways to reach the same result.
When many parts of a proof each have multiple proofs, the combination of possible proofs for the overall
query can become very large, and cause the tracing to take a very long time. In such cases, the tracing can
be aborted using the Stop button, and re-tried with the Trace First feature.

The trace window contains a tree showing one or more proofs of the given query, as was shown in Figure 3.
Each node in the solutions tree has a context menu that can be accessed by right-clicking the node. The
context menu allows you to expand all nodes below the current one, copy the current node to the
clipboard, or copy the current node and all its children to the clipboard. The copy-to-clipboard options can
be useful for doing text searches on the proof trees, when the proofs are very large or numerous. In the
future, we intend to integrate search and filtering capabilities into the user interface in a more direct way.

Each “Solution” node shows the depth of its proof, which can sometimes be interesting. This corresponds to
the depth of the tree starting at the solution node.

13
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The Solution nodes have one or more child nodes, which we call atom nodes - One atom node for each
atom in the query. The atom nodes consist of an atom, a justification, and possibly a number of child atom
nodes. The atom nodes are color coded, as shown in Table 3.2.1.

Element Color

Class Yellow
Object Property Blue
Datatype Property, Literal Green
SWRL Builtin, Variable Red
Individual Purple
Other RDF Resource Pink

Table 1. Color-coding in the trace and debug trees

In tracing mode, each atom will have all its variables instantiated. In debug mode, this is not always the
case for failed sub-proofs (more on this below). The variable instantiations are different for different
solutions. The meaning of an atom node, along with its justification and its child atom nodes, is that the
atom was proved, using the inference rule given in the justification, and (if applicable) the child atoms,
which in turn have their own justifications, and so on. The possible justifications (inference rules) are
shown in Table 3.2.14.

Note that the class expressions can occur wherever a ‘C’, ‘C1’, or ‘Cn’ argument is indicated. This also
means that the justifications can be nested to an arbitrary depth (since class expressions can be nested in
such a way).

3.2.2 Debugging

Debug trees show attempted proofs rather than actual proofs, and add two types of nodes to the proof
trees: FAILED and ABORTED nodes. FAILED nodes occur as a child of an atom that was attempted, but
could not be proved. ABORT nodes occur subsequent to FAIL nodes, because sub-proofs where one part
has failed cannot succeed, so the sub-proof attempt is aborted.

Note that debug trees can have a very large number of “solutions”, because there can be a very large
number of ways to attempt to prove something. Often, many proof attempts will seem meaningless to the
human user, and failures will occur in “uninteresting” places. If the debug output is overwhelming, we
recommend breaking the query down into smaller parts to find the “interesting” failure.

3.3 Semantics and Limitations

The SWRL-IQ reasoner differs significantly from typical OWL reasoners such as Pellet and Fact++. Most
OWL reasoners are Description Logic reasoners, which are intended primarily for so-called T-box, or
terminological, reasoning. For example, they can be used to infer that class A is a subclass of class B.
These reasoners have no, or limited, support for SWRL rules.

SWRL-IQ, on the other hand, focuses on so-called A-box, or assertional, reasoning, i.e. reasoning about
facts in the knowledge base, while still taking into account terminological axioms in the ontology.
SWRL-IQ supports complex built-ins (see Section 5), advanced SWRL extensions (see Section 6), and
user-defined procedural attachments defined in Java (see Section 8).

4 Some of these, e.g. disj and differentFrom, will currently not appear due to limitations of the reasoner. See Section
3.3
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Justification entry Meaning

Axioms

assert Asserted fact
comp Computed as a built-in
rule(R) SWRL rule with name R
subcls(C1,C2) C1 is a sub-class of C2
eqvcls(C2,C2) C1 and C2 are equivalent classes
disj(C2,C2) C1 and C2 are disjoint classes
subprop(P1,P2) P1 is a sub-property of P2
eqvprop(P1,P2) P1 and P2 are equivalent properties
dom(P,C) Property P has domain C
rng(P,C) Property P has range C
invprop(P1,P2) P1 and P2 are inverse properties
sameAs(I1,I2) I1 is the same individual as I2
differentFrom(I1,I2) I1 is a different individual than I2
funcprop(P) P is a functional property
symprop(P) P is a symmetric property
transprop(P) P is a transitive property
invfuncprop(P) P is an inverse functional property

Class expressions

class name the named class itself
union(C1,...,Cn) Union class
int(C1,...,Cn) Intersection class
enum(I1,...,In) Enumerated class
compl(C) Complement class
all(P,C) allValuesFrom on property P, class C
some(P,C) someValuesFrom on property P, class C
has(P,I) hasValuesFrom on property P, individual I
maxCard(P,N) maxCardinality on property P, value N
minCard(P,N) minCardinality on property P, value N
card(P,N) cardinality on property P, value N

Table 2. Justifications in the trace and debug trees
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SWRL-IQ is a sound but not complete reasoner with regard to the OWL language. In other words, all
query answers are correct, but there could be additional answers that the reasoner is not able to infer. This
is because the reasoner sacrifices support for some OWL constructs in order to maintain computational
efficiency. Indeed, SWRL-IQ could be considered a “pure SWRL” reasoner, in the sense that all of the
OWL axioms that are supported could also be written as SWRL rules! For example5, the OWL axiom

SubClassOf(Wine, restriction(hasMaker, allValuesFrom(Winery)))

can be written as a SWRL rule

Wine(?x) ∧ hasMaker(?x,?y) → Winery(?y)

More precisely, the fragment of OWL that is supported is called DLP (Description Logic Programs)6.

SWRL-IQ does not support OWL class descriptions inside SWRL rules (and Protégé does not even let you
enter those, so most people will not miss this). However, defined classes can be used to achieve the same
effect, as long as the class definition is within the DLP fragment. Other than this limitation, arbitrary
SWRL rules are supported.

5 This example is taken from the OWL Web Ontology Language Guide, http://www.w3.org/TR/2004/

REC-owl-guide-20040210
6 http://www2003.org/cdrom/papers/refereed/p117/p117-grosof.html
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4 EXPORTING AND PROCESSING QUERY RESULTS

SWRL-IQ can export query results in two different formats. These results can be further processed or
consumed by other tools. We describe the two export formats along with some example post-processing
below.

4.1 SPARQL Query XML Results

After a query has been submitted and results appear in SWRL-IQ, clicking the “Show SPARQL XML”
pops up a new window that shows the query result in the SPARQL XML Result format7. It may seem odd
that we export using a SPARQL format as we do not support SPARQL as a query language. However, the
motivation is that a) exporting to some XML format can come in handy, since it allows us to process the
result using XML tools, and b) the SPARQL query result format already exists, and there is no reason to
define a new format.

We make one addition to the SPARQL XML format. In order to allow lists in query results, we add a new
sri:list element for the variable bindings, where sri is a prefix for the namespace
http://www.onistt.org/sparql.

When the SPARQL XML result window is showing, the “Save...” button allows you to save the result to a
file, as shown in Figure 11.

Fig. 11. Saving XML

7 http://www.w3.org/TR/rdf-sparql-XMLres/
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4.1.1 Post-Processing XML Query Results with XSLT

The XML query results can be post-processed with XSLT8 to produce output in other formats, such as
HTML. To try this out yourself, save the output of the WineProperties query from food_planning.owl

into your SwrlIq/html directory and name it query_result.xml (this file name is hard coded into the
query_result.html file provided)9 Then look at the query_result.html page in an XSL-capable web
browser, such as Firefox. It should look as in Figure 5 in the Overview Section. The query_result.xsl

stylesheet takes the query output and formats it as a table, stripping prefixes like vin:, showing .jpg

URLs as inline images, making other URLs clickable, and formatting decimals as prices in dollars. This is
just a simple and not very robust example that can be modified for your own purposes.

4.2 CSV Query Results

The “Save as CSV” button allows you to save query results to a comma-separated values (CSV) file. The
file will have the variable names in the first row, and the bindings in subsequent rows, similarly to the
query results table in the main SWRL-IQ tab.

The main usefulness of CSV files is that they can be opened directly in Excel and other spreadsheet
applications, and are automatically rendered into cells appropriately. This can be used to generate graphs,
export to other formats, etc. An example of this was shown in Figure 6 in the Overview Section.

8 XSL Transformations, http://www.w3.org/TR/xslt
9 Alternatively you could create an html page that reads in path names dynamically and/or calls an XSLT Processor

like SAXON instead of relying on the browser.
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5 SWRL BUILT-INS

SWRL-IQ supports most of the standard SWRL Built-ins10. Table 3 summarizes our level of support for
these built-ins, with more detailed notes and examples in the following sections. We do not repeat the
standard definitions of all the predicates here.

5.1 Constraints

Many of the built-ins can generate numerical constraints, and are implemented to do so in a very flexible
way. Constraints are maintained throughout the query and simplified as much as possible. If any
constraints cannot be simplified away, they are returned in the query result. One consequence of this is
that these built-ins can be used “backwards,” and in effect to solve systems of equations. This often makes
rules that use these built-ins more declarative and powerful. The constraint mechanism is best understood
through examples (see Table 4).

Note that the built-ins integerDivide, mod, ceiling, floor, and round cannot be used “backwards” for
obvious reasons: The results are not uniquely defined in the reverse direction. These predicates do not
generate constraints. If the input arguments to these predicates are not instantiated, the query will simply
fail.

5.2 Lists

A few things are worth pointing out when it comes to our implementation of list operations:

– rdf:Lists can be created on-the-fly in SWRL queries, using the syntax rdf:List(m1,m2...), where
m1,m2... are the list members.

– The list built-ins can be used to generate lists, not just to check properties or retrieve values of existing
lists.

– The reasoner can operate on (and return) partially instantiated lists, e.g. a list of three elements where
the second element is unknown.

– Lists in the variable bindings returned by queries are presented in a different syntax, using square
brackets for brevity (as in Prolog), i.e. [m1,m2..]. If the tail of the list is unspecified (i.e., the list has
unknown size), the Prolog bar syntax is used, e.g., [m1,m2|tail].

These features are illustrated in Table 5.

5.3 Strings

String literals can be typed directly in a query by enclosing them in double quotes. For example,

Example:

swrlb:upperCase(?s,"foo")

returns

?s = "FOO"

5.4 Dates, Times, and Durations

These can be used both to generate and to “disassemble” the corresponding units.

Example:

swrlb:dateTime(?dt,2011,11,11,11,11,11,?tz)

10 http://www.w3.org/Submission/SWRL/#8
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Built-in predicate Support Constr. Notes

swrlb:equal, swrlb:notEqual Yes Yes Only for numerical datatypes

swrlb:lessThan,

swrlb:lessThanOrEqual,

swrlb:greaterThan,

swrlb:greaterThanOrEqual

Yes Yes

swrlb:add, swrlb:subtract,

swrlb:multiply, swrlb:divide,

swrlb:pow, swrlb:unaryPlus,

swrlb:unaryPlus, swrlb:unaryMinus,

swrlb:abs, swrlb:sin, swrlb:cos,

swrlb:tan

Yes Yes

swrlm:sqrt, swrlm:log Yes Yes

swrlb:integerDivide, swrlb:mod,

swrlb:ceiling, swrlb:floor,

swrlb:round

Yes No

swrlb:roundHalfToEven No No

swrlb:booleanNot Yes No

swrlb:stringConcat,

swrlb:stringLength,

swrlb:startsWith, swrlb:endsWith,

swrlb:upperCase, swrlb:lowerCase,

swrlb:contains,

swrlb:containsIgnoreCase,

swrlb:stringEqualIgnoreCase,

swrlb:matches, swrlb:replace

Yes No

swrlb:normalizeSpace,

swrlb:translate,

swrlb:substringBefore,

swrlb:substringAfter,

swrlb:tokenize

No No

swrlb:date, swrlb:time, and

swrlb:dateTime

Yes No date/time/dateTime types can-
not be entered directly in a
query

Other SWRL time built-ins No No

swrlb:resolveURI, swrlb:anyURI No No

swrlb:listConcat,

swrlb:listIntersection,

swrlb:listSubtraction,

swrlb:member, swrlb:length,

swrlb:first, swrlb:rest,

swrlb:sublist, swrlb:empty

Yes No

Table 3. Summary of support for SWRL built-ins
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Query Bindings returned Constraints returned

swrlb:equal(?x,3) ?x = 3 none

swrlb:notEqual(?x,3) ?x = ?Var0 ?Var0=\=3

swrlb:lessThan(?x,3) ∧
swrlb:lessThan(?y,?x)

?x = Var0, ?y = ?Var1 ?Var0<3.0, ?Var1-?Var0<0.0

swrlb:lessThanOrEqual(?x,3) ∧
swrlb:greaterThanOrEqual(?x,3)

?x = 3 none

swrlb:pow(?_sq,?x,2) ∧
swrlb:multiply(10,?_sq,5)

?x = 1.4142135623730951,
?x = -1.4142135623730951

none

swrlb:pow(?_sq,?x,2) ∧
swrlb:multiply(10,?_sq,5) ∧
swrlb:greaterThanOrEqual(?x,0)

?x = 1.4142135623730951 none

Table 4. Examples of SWRL queries with constraints

Query Bindings returned

swrlb:listConcat(?l,rdf:List(1,2),rdf:List(3,4)) ?l = [1,2,3,4]

swrlb:length(2,?l) ∧ swrlb:first(1,?l) ∧
swrlb:rest(?r,?l) ∧ swrlb:first(2,?r)

?l = [1,2]

swrlb:length(2,?l) ∧ swrlb:member(1,?l) ?l = [1,?Var0], ?l = [?Var1,1]

swrlb:first(1,?l) ?l = [1|?Var0]

Table 5. Examples of SWRL queries with lists

returns

?dt = 2011-11-11T11:11:11

Note that Protégé does not have a way to store timezone information (the last argument). Also note that
there is no way to directly write a xsd:date, dateTime, or xsd:time value in a SWRL query or rule. E.g.
the query

swrlb:dateTime(2011-11-11T11:11:11,?y,?m,?d,?h,?m,?s,?tz)

is not syntactically correct (you will get an “invalid literal” error in the SWRL query editor). If you put
quotes around the first argument, the query is syntactically correct, but the first argument is treated as a
plain string, and therefore the query fails. However, a date/time term can be created dynamically using
these predicates as shown above. If a value of one of these types exists in the ontology (e.g., as the value of
a datatype property assertion), it can be retrieved by an appropriate query, and the different parts of the
date/time value can then be extracted using these predicates.

The “time arithmetic” built-ins are not implemented, mainly because they operate on non-standard XSD
data types that cannot actually be used in Protégé.

5.5 Protégé Extensions

Protégé adds a number of SWRL built-ins11. SWRL-IQ does not support most of these. The ones we do
support are described below. Note that you need to import the relevant ontology (i.e. rdfb.owl or
swrlm.owl, respectively) to use these built-ins.

rdfb:hasLabel(?s,?l)
Satisfied iff rdfs:label(?s,?l) is satisfied. This predicate is needed because SWRL does not accept RDF
predicates in queries. This lets us “call” the rdfs:label predicate from a SWRL rule or query.

11 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTabBuiltInLibraries
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swrlm:log(?s,?l)
Satisfied iff the first argument is equal to the natural logarithm (base e) of the second argument.

swrlm:sqrt(?s,?l)
Satisfied iff the first argument is equal to the square root of the second argument. This can also be
achieved with the swrlb:pow built-in.
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6 SWRL EXTENSIONS

SWRL-IQ comes with an swrl-extensions.owl ontology, which contains a number of new SWRL
“built-ins”. These built-ins all have dedicated implementations in the Prolog reasoner core. Remember to
use the prefix for the SWRL Extensions ontology when using these predicates in queries outside of that file,
e.g. swrlex:pi rather than just pi. Keep in mind that these extensions are non-standard, and will not
work in other reasoning engines besides SWRL-IQ (unless others decide to implements the same
extensions). The examples below are all kept very simple, and can be executed with no ontology loaded
other than swrl-extensions.owl.

The first several predicates (ignore, pi, string_number, string_resource, and value) are relatively
simple utility predicates. The last few predicates (apply, allKnown, firstMatch and
callJavaStaticMethod) offer more radical extensions to SWRL. They go beyond the semantics of SWRL,
and should be used sparingly if a pristine model theory is considered critical.

ignore(?x1,?x2,...)
Takes an arbitrary number of arguments and is always satisfied. This is useful when creating queries,
because SWRL requires all variables that are in the rule head to also be in the rule body. However, there is
often a need to have “extra variables” in the rule head, e.g., when there are several rules that define a
predicate, and some of the arguments are not used in some of the rules. Inserting an ignore atom into the
rule body accomplishes this without unwanted side-effects.

Example: A predicate that adds a number to all numbers in a list

swrlb:empty(?l2) ∧
swrlb:empty(?l1) ∧
swrlex:ignore(?n)

→
addN(?l1,?l2,?n)

swrlb:first(?f2,?l2) ∧
swrlb:add(?f1,?f2,?n) ∧
swrlb:first(?f1,?l1) ∧
swrlb:rest(?r2,?l2) ∧
swrlb:rest(?r1,?l1) ∧
addN(?r1,?r2,?n)

→
addN(?l1,?l2,?n)

In the first rule, ignore is needed since the variable ?n would otherwise appear in the rule head but not in
the rule body.

The ignore predicate is not useful in queries.

pi(?x)
Takes one argument, which is unified with the constant π (as a decimal up to the precision that the
underlying Prolog engine supports).

Example:

swrlex:pi(?pi) ∧
swrlb:divide(?_cf,?pi,180) ∧
swrlb:multiply(?radians,90,?_cf)

returns

?pi = 3.141592653589793

?radians = 1.5707963267948966
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string number(?str,?num)
Takes two arguments, a string and a number. Satisfied when the string is a recognized string representation
of the number. Can be used in both directions to convert between numbers and strings. Note that the
exact representation may be changed e.g., between scientific and decimal notations.

Example:

swrlex:string_number("5.0e-3",?x)

returns

?x = 0.005

Example:

swrlex:string_number(?x,0.00000001)

returns

?x = 1.000000e-08

string resource(?str,?res)
Takes two argument, a string and an RDF resource (i.e., an OWL individual, class, etc). Satisfied when the
string is the full name of the resource (including the full URI). Like string_number, this predicate can be
used in both directions.

Example:

swrlex:string_resource(?s,owl:Thing)

returns

?s = "http://www.w3.org/2002/07/owl#Thing"

value(?s,?o)
Satisfied when rdf:value(?s,?o) is satisfied. This predicate is needed because SWRL does not accept
RDF predicates in queries. This lets us “call” the rdf:value predicate from a SWRL rule or query.

apply(?p,?x1,?x2,...)
Satisfied when the atom with the predicate ?p and arguments ?x1,?x2,... is satisfied. This predicate lets
us use predicates as arguments, and have variables that bind to predicates. This gives us a limited
higher-order logic, which can be quite useful sometimes. Note that queries using this predicate may take a
very long time if ?p is not instantiated, i.e., if you ask for all predicates that satisfy given arguments.

As an example, consider a predicate minimum(?min,?x,?y,?p) which returns the smallest value ?min out
of two values ?x and ?y, according to some ordering predicate p. Think of the ordering predicate as “less
than or equal”. The minimum predicate is defined by the following two rules in swrl-utilities.owl and
also documented in Section 7.

swrlex:apply(?p,?x,?y)

→
minimum(?x,?x,?y,?p)

swrlex:apply(?p,?y,?x)

→
minimum(?y,?x,?y,?p)

The minimum predicate can now be used to determine the minimum of any types of numbers or
individuals, as long as the appropriate ordering predicate can be supplied. This in itself may not seem that
useful, but the value of this predicate becomes clear when we consider that it is the basis for the more

24



SWRL-IQ User Manual

complex predicates min_list and sort. The latter can be used to sort a list of arbitrary types of RDF
resources, for example to sort a list of wines according to their price by passing a properly defined
predicate wineCheaperThan as the parameter ?p. Note that if the two values are “equal” according to ?p,
i.e. both p(?x,?y) and p(?y,?x) are true, then we get two solutions. This is useful - for example the sort

predicate produces all valid sortings of the “equal” elements.

All of these predicates can be used on plain numbers by passing swrlb:lessThanOrEqual as the parameter
?p. Section 7 contains examples of this.

allKnown(?res,?x,?p,?x1,?x2,...)
Returns a list ?res containing all values for ?x such that p(?x1,?x2,...) is satisfied.

Example: All solutions to x2 = 4

swrlex:allKnown(?res,?x,swrlb:pow,4,?x,2)

returns

?x = [-2.0, 2.0]

Note the difference with the first example for swrlb:pow in Table 3. In that case we got two different
solutions. When we use allKnown, we get all the solutions gathered into a list.

The ?x parameter can also be a list of variables, as in the wine example from Section 1:

swrlex:allKnown(?_listOfWinePricePairs,

rdf:List(?_wine, ?_price), hasPrice, ?_wine, ?_price)

When used in this way, the result is a list of lists of bindings of all the variables in the variable list.

If the goal contains additional variables that are not in the second parameter, they are treated existentially.
For example

swrlex:allKnown(?wines,?wine,hasPrice,?wine,?price)

in the food-planning.owl ontology returns one list containing all the wines that have some value for the
hasPrice property.

This built-in significantly extends the power of the language/reasoner. It provides a kind of “local
closed-world assumption”. As the name of this predicate implies, it returns all “known” solutions to a query.
The open-world assumption of OWL and SWRL means that there could be additional solutions.

firstMatch(?res,?list,?p,?x1,?x2,..)
Returns the first element in the list that satisfies p(?x1,?x2,...). The variable ?res is normally one of
the arguments ?x1,?x2,....

Example:

swrlex:firstMatch(?x,rdf:List(1,2,3,4),swrlb:greaterThan,?x,2)

returns

?x = 3

callJavaStaticMethod(?ret,?cls,?mthd,?arg1,?arg2,...)
This predicate is the hook to the Java Attachment mechanism. This is described in detail in Section 8.
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7 SWRL UTILITIES

Besides containing the ontological elements for saving queries, as discussed in Section 3,
swrl-utilities.owl also contains a number of predicates, defined in SWRL rules, that are generally
useful. The rules for these predicates can also serve as nice, small examples of how to write SWRL rules.

Remember to use the prefix for the SWRL Utilities ontology when using these predicates in queries outside
of that file, e.g. swrlu:nth rather than just nth.

disjointWith(?l1,?l2)
Satisfied if the two lists ?l1 and ?l1 do not have any common elements.

intersectsWith(?l1,?l2)
Satisfied iff the two lists have at least one element in common.

subsetOf(?l1,?l2)
Satisfied iff the list ?l1 is a subset of the list ?l2.

nth(?n,?l,?res)
Satisfied iff ?res is the ?nth element of the list ?l, starting at ?n = 0 for the first element.

first(?x,?l), second(?x,?l), third(?x,?l), fourth(?x,?l)
Satisfied iff ?x is the first/second/third/fourth element in the list ?l. Use nth for higher indices, or define
additional short-cut predicates like these.

logn(?x,?y,?n)
Satisfied iff ?x is the base ?n-logarithm of ?y.

log10(?x,?y)
Satisfied iff ?x is the base 10 logarithm of ?y (i.e., just a short-cut for logn).

dB(?x,?y)
Satisfied iff ?x is the decibel value of ?y.

notMember(?el,?l)
Satisfied iff ?el is not a member of the list ?l.

minimum(?min,?x,?y,?p)
Satisfied iff ?min is the smaller of the elements ?x and ?y according to the ordering predicate ?p.

Example:

swrlu:minimum(?min,4,3,swrlb:lessThanOrEqual)

returns

?x = 3

The rules defining this predicate are discussed in Section 6.

min list(?x,?l,?p)
Satisfied iff ?x is the smallest element in the non-empty list ?l according to the ordering predicate ?p.

Example:

swrlu:min_list(?x,rdf:List(4,17,3,20),swrlb:lessThanOrEqual)

returns

?x = 3

There are also the corresponding predicates:
maximum(?max,?x,?y,?p)
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max list(?x,?l,?p)
and these convenient shortcuts for numerical values:
min num(?min,?x,?y)
min num list(?x,?l)
max num(?max,?x,?y)
max num list(?x,?l)

sort(?sl,?l,?p)
Satisfied iff ?sl is the version of the list ?l sorted in ascending order using the ordering predicate ?p.

Example: Sorting numbers

swrlu:sort(?sl,rdf:List(4,17,3,20),swrlb:lessThanOrEqual)

returns

?x = [3,4,17,20]

Example: Sorting wines by their price
First we define a predicate wineCheaperThan using a SWRL rule:

hasPrice(?w1, ?p1) ∧ hasPrice(?w2, ?p2) ∧ swrlb:lessThanOrEqual(?p1, ?p2)

→
wineCheaperThan(?w1, ?w2)

Then we can run the query

swrlex:allKnown(?wines,?wine,hasPrice,?wine,?price) ∧
swrlu:sort(?sortedWines,?wines,wineCheaperThan)

which will return a list of wines (that have a price) sorted by price, in the ?sortedWines variable.
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8 JAVA ATTACHMENTS

Like many reasoning systems, SWRL-IQ has a mechanism for calling arbitrary programming code from
within the reasoner. This is traditionally called procedural attachments. In our implementation, the code to
be called has to be written in Java. We call our mechanism Java Attachments.

Most computations can be performed in SWRL, especially with our extensions (see Section 6). One might
wonder why an external procedural attachment mechanism is needed. Indeed, SWRL rules are in many
ways more powerful and flexible (see Section 8.3 below). However, there are situations where it does not
make sense to use SWRL rules. One such case is when a large and complicated function has already been
implemented in programming code, and perhaps certified. Re-implementing and re-certifying in SWRL
may not be feasible. Indeed, if the source code is not available and the algorithm is not known, there is no
choice in the matter.

The hook to the Java attachments mechanism is the following built-in predicate (defined in
swrl-extensions.owl).

callJavaStaticMethod(?ret,?cls,?mthd,?arg1,?arg2,...)
?ret is the return value, ?cls is a string representing the class, including the full package name, ?mthd is a
string for the static method to call, and ?arg1,?arg2,... are the arguments to the method.

Example:

swrlex:callJavaStaticMethod(?r,"java.lang.Math","random")

returns

?r = a random number from 0.0 to 1.0

As seen here, any static method of the standard Java library can be used. However, user-defined or
third-party code can also be called as explained below.

8.1 Argument Conversions

Java and OWL/SWRL have vastly different type systems. Java Attachments support neither all Java types
nor all OWL “types”. In fact, we support what might be considered the intersection of the two, viz. the
basic types of both, with some obvious conversions. Table 8.1 summarizes the supported types for the two
sides, and their conversions:

SWRL/OWL type Java type

xsd:int, xsd:integer, etc int

xsd:float, xsd:double, xsd:decimal, etc double

xsd:boolean boolean

xsd:string String

rdf:List Object[]

Table 6. OWL-Java type conversions

If integers, floats, etc, are inside a rdf:List, they are mapped to the corresponding “boxed” Java type, i.e.
Integer, Double, or Boolean.

Note that there is no way to pass RDF resources (individuals, classes, and properties) to Java Attachments.
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8.2 Writing and Installing a Java Attachment

Creating a new Java Attachment involves creating a new class with the new method to call, compiling it,
and putting the .jar file in the com.sri.swrltab directory under Protégé’s plugins directory.

As an example, see the java/test/BuiltinTest.java file distributed with SWRL-IQ. Its full contents are
shown below.

package test.builtins;

public class BuiltinTest {

public static String helloWorld(String firstname, String lastname){

return "Hello " + firstname + " " + lastname + "!";

}

}

To install this Java attachment, first compile it into a jar file. On Windows, enter the following commands
in the main SwrlIq/java directory:

javac test\*.java

jar cf hello.jar test\*.class

On Linux or Mac, use these commands:

javac test/*.java

jar -cf hello.jar test/*.class

Next, copy hello.jar to the SwrlIq plugin directory under Protégé. Restart Protégé. Now enter the query

swrlex:callJavaStaticMethod(?res,"test.BuiltinTest",

"helloWorld","John","Doe")

This should return one result:

?res = "Hello John Doe!"

This is all it takes to create your own Java Attachments.

8.3 Limitations and Caveats

Java Attachments have a number of limitations when compared to predicates defined using SWRL rules.
Generally speaking, Java Attachments do not have a well-defined semantics, and make things more
procedural and less declarative. They cannot be used “backwards,” and all the input arguments must be
fully instantiated before the attachment is called. The user must understand the operational semantics of
the reasoner to make sure this happens, and rules containing Java Attachment calls must be written with
the atoms in a certain order. Java Attachments will not work with OWL/SWRL reasoners other than
SWRL-IQ, since they are our own extension. Despite all this, for some purposes they can be quite useful.
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