# LTE910CF Terminus Plug-In Products User Manual





| Bulletin | JA03-UM-LTE |
|----------|-------------|
| Revision | P01         |
| Date     | 03 Aug 2015 |

# **TABLE OF CONTENTS**

| TABLE C | OF CONTENTS and DISCLAIMER                                        | 2     |
|---------|-------------------------------------------------------------------|-------|
| 1 APPLI | CABILITY TABLE                                                    | 3     |
| 2 REFEF | RENCES                                                            | 3     |
| 2.1     | Telit Document List                                               | 3     |
| 3 OVER  | VIEW                                                              | 4     |
| 3.1     | Introduction                                                      | 4     |
| 3.2     | Preview                                                           | 4     |
| 3.3     | LTE Features                                                      | 5     |
| 3.4     | LTE Block Diagram                                                 | 5     |
| 4 INTER | FACES                                                             | 6-15  |
| 4.1     | Inerface Voltage Selection                                        | 6     |
| 4.2     | Serial Interface                                                  | 7-8   |
| 4.3     | Power Supply                                                      | 9     |
| 4.4     | Audio Interface                                                   | 9     |
| 4.5     | Plug-In Pin-Out                                                   | 10    |
| 4.6     | VRTC Details                                                      | 11    |
| 4.7     | GPIO Details                                                      | 11-14 |
| 4.8     | Internal Interfaces                                               | 14    |
| 4.9     | LED Status Indicators                                             | 14    |
| 4.10    | RF Interface                                                      | 15    |
| 4.11    | SIM Card Interface                                                | 15    |
| 4.12    | Header Interface Mounting Options                                 | 15    |
| 4.13    | Screw Mounting                                                    | 15    |
| 5 LTE91 | 0CF TECHNICAL SPECIFICATIONS                                      | 16-23 |
| 5.1     | Electrical Specifications                                         | 15-19 |
| 5.2     | Mechanical Specifications                                         | 20    |
| 5.3     | Setting Up a Terminal Emulator for use with the LTE910CF Terminus | 21-23 |
| 6 DESIG | N CONSIDERATIONS                                                  | 24    |
| 6.1     | Minimum Required Module Pin Connects                              | 24    |
| 6.2     | Debug                                                             | 24    |
| APPEND  | DICES                                                             | 25    |
|         | Approvals                                                         | 25    |
|         | Safety                                                            | 25    |
|         | Antenna Care and Replacement                                      | 25    |
|         | Abbreviations                                                     | 25    |
|         | Ordering Information                                              | 26    |
|         | Revision History                                                  | 26    |

#### **DISCLAIMER**

The information contained in this document is the proprietary information of Connor-Winfield Corporation and its affiliates (Janus Remote Communication). The contents are confidential and any disclosure to persons other than the officers, employees, agents or subcontractors of the owner or licensee of this document, without the prior written consent of Connor-Winfield, is strictly prohibited. Connor-Winfield makes every effort to ensure the quality of the information it makes available. Notwithstanding the foregoing, Connor-Winfield does not make any warranty as to the information contained herein, and does not accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the information. Connor-Winfield disclaims any and all responsibility for the application of the devices characterized in this document, and notes that the application of the device must comply with the safety standards of the applicable country, and where applicable, with the relevant wiring rules. Connor-Winfield reserves the right to make modifications, additions and deletions to this document due to typographical errors, inaccurate information, or improvements to programs and/or equipment at any time and without notice. Such changes will, nevertheless be incorporated into new editions of this application note.

All rights reserved 2014 Connor-Winfield Corporation



## **1 APPLICABILITY TABLE**

| Product  | Part Number |  |
|----------|-------------|--|
| LTE910CF | v1.0        |  |
| LTE910CF | v3.0        |  |

# **2 REFERENCES**

## 2.1 Telit Document List

#### LTE910CF

Our terminal uses Telit module LE910.

Please refer to Telit's website at www.telit.com for the latest information on the LE910 Module.

Telit\_LE910\_AT\_Commands\_Reference\_Guide Telit\_LE910\_Hardware\_User\_Guide



#### **3 OVERVIEW**

#### 3.1 Introduction

The User Manual for the Plug-In Terminus devices is intended to illustrate how users can integrate and implement the features of each communication version of the device. The common factors are explained in detail, as well as special considerations and diagrams for each module. The module differences are highlighted in this manual for design considerations for future model placement.

#### 3.2 Preview

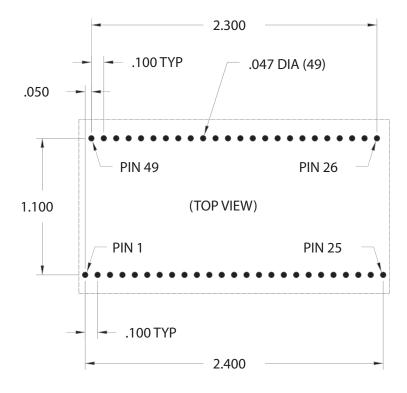
The Terminus Plug-In Modems are self-contained, multi-band, globally capable, M2M communication devices designed to provide a comprehensive solution to application problems for our M2M customers. They utilize the proven technology of Telit's certified modules for their core communications engines.

# 3.2.1 Functional Description

## **GPS** Functionality

An internal GPS solution is available via Telit AT command interface

#### Cellular


LTE/HSPA/UMTS/EDGE/GPRS/GSM

#### **USB**

• HS/FS USB 2.0 Device (480Mb/s)

#### Physical Dimensions

- Length and width of all Plug-In devices are equal
- Heights of different devices will vary





All Rights Reserved See website for latest revision. Not intended for life support applications.

#### 3 OVERVIEW continued

#### 3.3 Features

#### LTE910CF v1.0 (AT&T)

- Quad-Band Support
  - LTE Band 700 (B17), 850 (B5), AWS1700 (B4), 1900 (B2)
  - UMTS/HSPA+ Band 850 (B5), 1900 (B2)
  - GSM/GPRS/EDGE Band 850/1900
- Output Power
  - Class 4 (2W, 33dBm) @ GSM 850/900
  - Class 1 (1W, 30dBm) @ GSM 1800/1900
  - Class E2 (0.5W, 27dBm) @ EDGE 850/900
  - Class E2 (0.4W, 26dBm) @ EDGE 1800/1900
  - Class 3 (0.25W, 24dBm) @ UMTS
  - Class 3 (0.2W, 23dBm) @ LTE
- Data
  - UMTS: DL: Up to 384Kbps, UL: Up to 384Kbps
    HSPA: DL: Up to 42Mbps, UL: Up to 5.76 Mbps
    LTE: DL: Up to 100Mbps, UL: Up to 50Mbps

#### LTE910CF v3.0 (Verizon)

- Dual-Band Support
  - LTE Band 700 (B13), AWS7100 (B4)
- Output Power
  - Class 3 (0.2W, 23dBm) @ LTE
- Data
  - LTE: DL: Up to 100Mbps, UL: Up to 50Mbps

#### Features for Both v1.0 & v3.0

- Control via standard and extended AT command set
- SIM application Tool Kits 3GPP TS 51.014
- SIM access profile
- IP stack with TCP/UDP protocol support
- SMS Support
- Through hole for screw mount
- Dimensions: 2.5" x 1.4" x 0.325"
- Operational Temperature Range: -40°C to 85°C
- Internal Switching Regulator:
  - Input Voltage Range: 4.75 to 5.25Vdc (5Vdc nominal)
  - Supply disable via terminal input pin
  - Variable logic level (UART/GPIO)
    - Adjustable from 1.8 5.0Vdc
    - Defaults to 2.85v
- SIM Card
  - Standard locking SIM card socket
  - Optional SIM chip
- Cellular, Rx Diversity & MIMO DL 2x2, and GPS/GLONASS via Hirose U.FL miniature RF connector

#### 3.4 Block Diagram

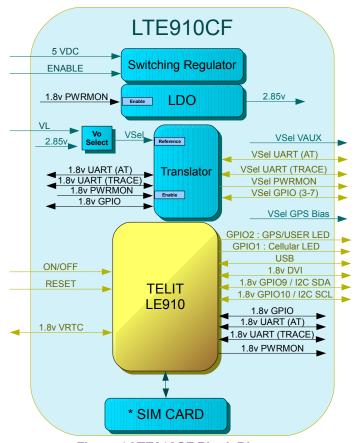



Figure 1 LTE910CF Block Diagram



#### **4 INTERFACES**

## 4.1 Interface Voltage Selection

The LTE910CF is equipped with a variable voltage interface solution. This allows the user to match the device to the system's level without extra hardware. Once a voltage has been injected, the unit will swap to the chosen voltage immediately for the affected I/O.

This is controlled via the VL IN signal, in which a user may inject a chosen interface voltage to utilize. This swap is done via a break-before-make mechanism when changing to or from the default voltage level, allowing for on the fly voltage changes if necessary.

The VL IN signal contains a 7M Ohm pull down resistor, and the operation of the voltage selection can be referenced as follows:

#### Truth Table:

| VL IN   | Floating | Ground | 1.5v - 5.5v |  |
|---------|----------|--------|-------------|--|
| VSelect | 2.85v    | 2.85v  | 1.5v - 5.5v |  |

#### Affected I/O:

- 1. UART (AT, TRACE)
- 2. GPIO (3-7)
- 3. VAUX
- 4. GPS Bias Voltage

VAUX Adjustment allows feedback as well as legacy access if previously utilizing a plug in implementation with VAUX as the reference. GPS Bias Voltage adjustment allows migration to a voltage that specific antennas may require that is higher than the default 2.85v.

Note to pay attention of these changes so there are no adverse effects on a previous Plug in Modern implementation.



#### **4 INTERFACES**

#### 4.2 Serial Interface

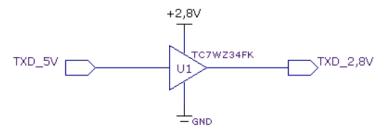
#### 4.2.1 UART Serial Port

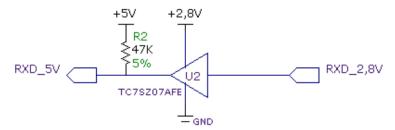
The serial interface is a CMOS level UART. Default Communications settings for this port are as follows:

• Baud Rate: 115.2 kbps

Bits: 8Stop Bits: 1Parity: None

· Hardware Handshaking: Yes


The LTE910CF does not support autobaud, and must be changed via the AT+IPR command. It is defaulted to 115200 bps


Note: If you are not using Hardware Handshaking, please note that RTS must be connected to GROUND for proper communications where flow control is unused.

#### 4.2.1.1 UART Level Translation

The electrical limits for the UART are listed in the electrical characteristics section. Please be aware of these limits, as operating outside of them may damage the unit. If the limits must be exceeded, level translation can be used.

An example of basic translation for RXD/TXD only is found below.



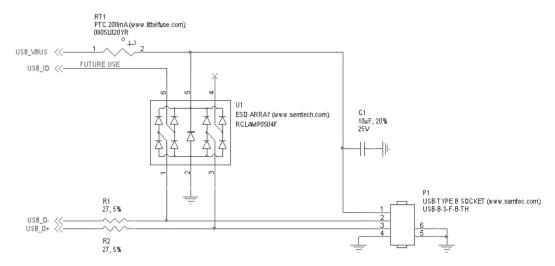


**Figure 2 UART Level Translation Example** 

Although an external source for the level translation can be used, VAUX can be used as the reference instead. However, because some Plug-In Modems require AT commands to control VAUX, PWRMON may be used as an enable to an external reference. Do not use PWRMON directly as the reference.

Note that the UART Level Translation example remains in this guide for legacy purposes when designing a system for multiple Plug in Modems. The LTE910CF is equipped with interface voltage adjustment, negating the need for translation.

#### 4.2.2 USB Port


The Plug-In modems that are USB ready include an integrated universal serial bus (USB) transceiver, compliant with USB 2.0 specifications. High data rates for the USB enabled modems are only available over the USB interface, as the UART has a maximum baud rate of <1Mbps. In order for proper power-up of the Plug-In Modems, the USB\_VBUS line MUST be disconnected until the unit is otherwise fully powered and on. If the USB\_VBUS line is attached and powered before the main power is brought up and the module turned on, power sequencing issues may occur.

Note: You must implement the USB interface in order to locally update radio firmware for CDMA/EV-DO applications. The GSM865CF does not have USB port available.



# 4.2.2 USB Port continued

# 4.2.2.1 USB Connection Diagram



**Figure 3 USB Connection Diagram** 

#### 4.2.2.2 USB VBUS Switch

USB\_VBUS is input, when VBUS\_ENABLE is HIGH the 5v signal will be passed to TERMINUS\_VBUS, turning the USB ON.

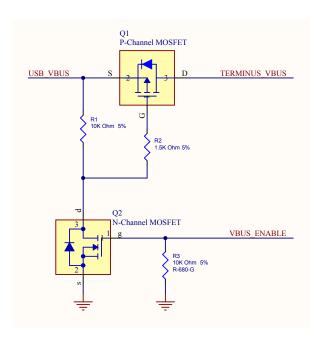



Figure 4 USB VBUS Switch Example



#### 4.3 Power Supply

The module's power supply accepts input voltages from 4.75Vdc to 5.25Vdc and requires a nominal current sourcing capacity of 5W (maximum 10W).

#### **Power Supply**

A good understanding of the load transients is required in order to meet the power requirements of a cellular radio. Power supply design, thermal management and layout are outside the scope of this document. Please refer to power supply manufacturers for product documentation and design application notes.

#### **Cellular Load Transients**

Cellular radios use a mix of modulation schemes including, but not limited to, TDMA and CDMA. In GSM/GPRS systems the transmission and reception of data is achieved via Time Division Multiple Access (TDMA). TDMA transmission is made up of RF bursts that cause 2A current pulses at the supply input of the cellular radio. These current pulses occur at a frequency of 216 Hz and can persist for 1.2 to 2.4ms.

# **On Board Regulator**

This Terminus Plug-In module is designed with a switching regulator to power the cellular radio. The regulator can receive an input voltage of 4.75 to 5.25VDC.

Note: The regulator input is capable of withstanding 6VDC Maximum. This is outside the recommended operating voltage of the Plug-In modules but but is helpful to know when designing input transient circuitry.

#### Plug-In Module Input Supply Requirements

The current values are given in average units due to the pulsed nature of the transmission scheme. It is recommended that your supply source the full peak current value of the transmission pulse in order to maintain proper cellular operation. The use of bulk output capacitors on your supply allows for a less powerful supply.

#### 4.4 Audio Interface

#### 4.4.1 LTE910CF

The 910CF modules use a DVI audio interface which will not work with the analog audio inerface of the other Terminus Plug-In modems. The LTE910CF supports PCM master mode and can use a CODEC to convert the interface to analog. Below is a block diagram based on DVI and the max 9867 CODEC with GPIO 9 and 10 being used for I2C control of the CODEC.

Please refer to the referenced DVI Application Notes for full information and example schematics utilizing the MAX9867 Audio CODEC.

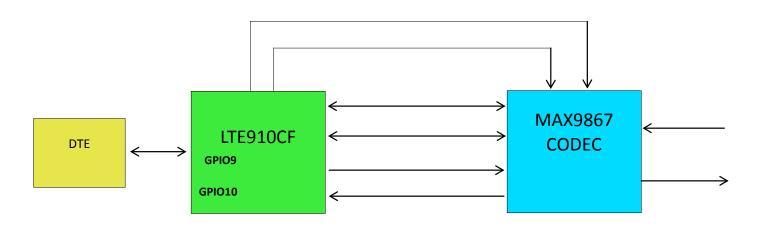



Figure 5 DVI Block Diagram



# 4.5 Plug-In Pin-Out

|        | PIN           |                                    | STANDARD          | POWER-   | PULL                 |      |
|--------|---------------|------------------------------------|-------------------|----------|----------------------|------|
| PIN    | NAME          | DESCRIPTION                        | I/O SIGNAL        | ON STATE | TYPE                 | NOTE |
| 1      | SUPPLY        | Positive Supply Input              | Power             | N/A      | N/A                  |      |
| 2      | SUPPLY        | Positive Supply Input              | Power             | N/A      | N/A                  |      |
| 3      | ENABLE SUPPLY | Enable/Disable Supply              | Input             | N/A      | PULL-UP to Vin: 681k | 1    |
| 4      | RXD           | UART - Transmit Line               | Output            | N/A      | N/A                  | 6    |
| 5      | DSR           | UART - Data Set Ready              | Output            | N/A      | N/A                  | 6    |
| 6      | CTS           | UART - Clear to Send               | Output            | N/A      | N/A                  | 6    |
| 7      | RING          | UART - Ring Indicator              | Output            | N/A      | N/A                  | 6    |
| 8      | DCD           | UART - Data Carrier Detect         | Output            | N/A      | N/A                  | 6    |
| 9      | TXD           | UART - Receive Line                | Input             | N/A      | N/A                  | 6    |
| 10     | DTR           | UART - Data Terminal Ready         | Input             | N/A      | N/A                  | 6    |
| 11     | RTS           | UART - Request to Send             | Input             | N/A      | N/A                  | 4    |
| 12     | GROUND        | Supply Reference                   | Power             | N/A      | N/A                  |      |
| 13     | TRACE_TX      | Debug UART - Transmit Line         | Output            | N/A      | N/A                  | 6    |
| 14     | TRACE_RX      | Debug UART - Receive Line          | Input             | N/A      | N/A                  | 6    |
| 15     | USER LED      | USER LED                           | Output            | N/A      | N/A                  | 6    |
| 16     | CELLULAR LED  | Cellular Status                    | Output            | N/A      | N/A                  | 6    |
| 17     | SERVICE       | Unused                             | N/A               | N/A      | N/A                  | 5    |
| 18     | PWRMON        | Power Monitor Output               | Output            | N/A      | PULL-DOWN:1M         | 6    |
| 19     | ON_OFF        | Toggle Cellular Radio On Off State | Input             | N/A      | PULL-UP to VTRC: 47k | 1    |
| 20     | RESET         | Reset Cellular Radio               | Input             | N/A      | PULL-UP: 47k         | 1    |
| 21     | DVI WAO       | DVI Word Alignment                 | WCLK              | N/A      | N/A                  | 6    |
| 22     | DVI RX        | DVI Received Data                  | SDIN              | N/A      | N/A                  | 6    |
| 23     | DVI TX        | DVI Transmitted Data               | SDOUT             | N/A      | N/A                  | 6    |
| 24     | DVI CLK       | NDVI Data Clock                    | BCLK              | N/A      | N/A                  | 6    |
| 25     | GROUND        | Supply Reference                   | Power             | N/A      | N/A                  |      |
| 26     | GROUND        | Supply Reference                   | Power             | N/A      | N/A                  |      |
| 27     | USB_D-        | USB Differential Data (-)          | CMOS Bi-Direction | N/A      | N/A                  |      |
| 28     | USB_D+        | USB Differential Data (+)          | CMOS Bi-Direction | N/A      | N/A                  |      |
| 29     | USB_VBUS      | USB Supply                         | Power             | N/A      | N/A                  |      |
| 30     | VL_IN         | Interface Voltage Reference        | Analog Input      | N/A      | PULL-DOWN: 7M        | 3    |
| 31     | I2C_SDA       | 12C Data                           | CMOS Bi-Direction | INPUT    | N/A                  |      |
| 32     | I2C_SCL       | 12C Clock                          | CMOS Bi-Direction | INPUT    | N/A                  |      |
| 33     | GPS_RX        | Unused                             | N/A               | N/A      | N/A                  | 5    |
| 34     | GPS_TX        | Unused                             | N/A               | N/A      | N/A                  | 5    |
| 35     | GPS_RESET     | Unused                             | N/A               | N/A      | N/A                  | 5    |
| 36     | GPIO_7        | General Purpose I/O                | Bi-Direction      | INPUT    | N/A                  | 6    |
| 37     | GPIO_6        | General Purpose I/O                | Bi-Direction      | INPUT    | N/A                  | 6    |
| 38     | GPIO_5        | General Purpose I/O                | Bi-Direction      | INPUT    | N/A                  | 6    |
| 39     | GROUND        | Supply Reference                   | Power             | N/A      | N/A                  |      |
| 40     | GPIO_4        | General Purpose I/O                | Bi-Direction      | INPUT    | N/A                  | 6    |
| 41     | GPIO_3        | General Purpose I/O                | Bi-Direction      | INPUT    | N/A                  | 6    |
| 42     | GPIO_2        | Unused                             | N/A               | N/A      | N/A                  | 5    |
| 43     | GPIO_1        | Unused                             | N/A               | N/A      | N/A                  | 5    |
| 44     | DAC           | Unused                             | N/A               | N/A      | N/A                  | 5    |
| 45     | ADC2          | Unused                             | N/A               | N/A      | N/A                  | 5    |
| 46     | ADC1          | Analog to Digital Converter        | Analog Input      | N/A      | N/A                  | 6    |
| 47     | VRTC          | Cellular Radio External RTC Supply | Power             | N/A      | N/A                  |      |
| 48     | VAUX          | Reference Voltage                  | Analog Output     | N/A      | N/A                  |      |
| 49     | GROUND        | Supply Reference                   | Power             | N/A      | N/A                  |      |
| Notes: |               | •                                  |                   |          |                      |      |

#### Notes:



<sup>1.</sup> It is required that this input be controlled by an Open Collector/Drain Output. Do not use an external pull-up resistor; a pull-up is included internal to the module.

<sup>2.</sup> Not currently implemented

<sup>3.</sup> VL Input may be floating or grounded if not being used.

<sup>4.</sup> RTS must be connected to GROUND if flow control is not used.

<sup>5.</sup> Not used on the LTE910CF

<sup>6.</sup> Refer to the electrical specifications for I/O levels

#### 4.6 VRTC Details

The VRTC pin brings out the real time clock supply, which is separate from the rest of the part. This allows only the RTC to be ON when all other parts of the device are OFF. A backup capacitor can be added to this pin to increase RTC autonomy while powering the device from a battery. The CDMA910CF cannot take advantage of the VRTC functionality.

No devices should be powered from this pin.

Equations:

C = 3600 \* [(Btime \* IRTC)/(VRTC - VRTCmin)] Btime = [C \* (VRTC - VRTCmin)/(IRTC \* 3600)]

Where:

VRTC – The Starting voltage of the capacitor (Volt)
VRTCmin – The minimum voltage acceptable for the RTC circuit. (Volt)
IRTC (Ampere) – The current consumption of the RTC circuitry when VBATT = 0
Btime - Backup Time (Hours)
C = Capacitor value (Farads)

Values for the GSM865CF/CDMA864CF/UMTS864CF VRTC = 2.05v Nominal VRTC minimum input voltage to function = 1.1v IRTC = 10uA nominal

Values for the LTE910CF VRTC = 1.8v Nominal VRTC minimum input voltage to function = 1.1v IRTC = 2uA nominal

Values for the EVDO910CF VRTC = 3.1v Nominal VRTC minimum input voltage to function = 2.0v IRTC = 1.1uA nominal

Values for the CDMA910CF VRTC = N/A VRTC minimum input voltage to function = N/A IRTC = N/A

For Example, using the LTE910CF numbers: Btime = 96 hours (4 days)

C = 1.0F

#### 4.7 GPIO Details

Terminus GPIO are configurable as input, output, and special function. Configuration is controlled by the customer specific application via AT commands. The following table describes GPIO configuration options.

| GPIO | Configuration  | Alternate Function | ON_OFF State |
|------|----------------|--------------------|--------------|
| 1    | Input / Output | Status LED         | pull-up      |
| 2    | Input / Output | User LED           | pull-up      |
| 3    | Input / Output | N/A                | pull-down    |
| 4    | Input / Output | N/A                | pull-down    |
| 5    | Input / Output | N/A                | pull-down    |
| 6    | Input / Output | N/A                | pull-up      |
| 7    | Input / Output | N/A                | pull-down    |
|      |                |                    |              |



All Rights Reserved See website for latest revision. Not intended for life support applications.

#### 4.7 GPIO Details continued

#### 4.6.1 Using a GPIO Pad as INPUT

The GPIO pads, when used as inputs, can be connected to a digital output of another device and report its status, provided this device has interface levels compatible with the Voltage levels of the GPIO of the module.

#### 4.6.2 Using a GPIO Pad as OUTPUT

The GPIO pads, when used as outputs, can drive CMOS digital devices or compatible hardware. When set as outputs, the pads have a push-pull output.

#### 4.6.3 Analog to Digital Converter

| ADC | Description                       |
|-----|-----------------------------------|
| 1   | Analog to digital converter input |

# 4.7.4 I2C

The I2C interface is an alternate function of the modem's GPIO, for the LTE910CF, those two signals are designated for GPIO 9 (SDA) and GPIO 10 (SCL) and are 1.8V logic level to match the DVI interface for easy usage with a codec. The signals are not pulled up on the Plug-In module and must be pulled up externally as they may also be used as spare GPIO.

Please reference the Telit AT Command Guide for details on the I2C commands.

#### 4.7.5 ENABLE Pin

| Input Logic State | Description  |  |
|-------------------|--------------|--|
| High-Z            | Active state |  |
| 0                 | Shutdown     |  |

#### Notes:

- 1. It is required that this input be controlled by an open collector/drain output. Do not use an external pull-up resistor, a pull-up to VIN is included internal to the Terminus.
- 2. The ENABLE pin is offered as a means to turn off the on-board regulator for when a full power cycle is needed or an ultra low power state is required. The ENABLE pin is not intended to be used as a means of turning the Terminus off. use the ON/OFF pin to turn the Terminus on or off.
- 3. Shut down state must be held for 10ms before returning to active state.
- 4. The regulator is operational 2mS after active state is entered.

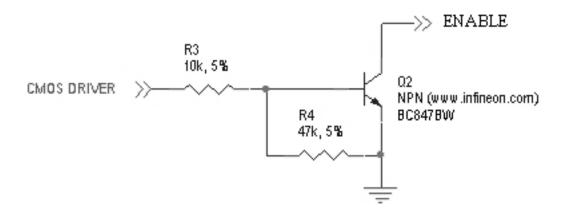



Figure 6 Enable Pin



#### 4.7 GPIO Details continued

#### 4.7.8 RESET Pin

| Input Logic State | Description  |  |
|-------------------|--------------|--|
| High-Z            | Active state |  |
| 0                 | Reset state  |  |

#### Notes:

- 1. It is required that this input be controlled by an open collector/drain output. Do not use an external pull-up resistor, a pull-up is included internal to the Terminus.
- 2. The RESET pin is offered as a means to reset the Terminus when and if the Terminus becomes unresponsive. The RESET pin is not intended to be used as a means of turning the Terminus off. Use the ON/OFF pin to turn the Terminus on or off.
- 3. RESET state must be held for at least 200ms before returning to active state.

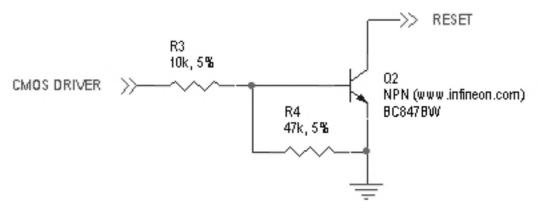



Figure 7 Reset Pin Diagram

#### 4.7.9 ON/OFF Pin

| Input Logic State | Description                                                  |
|-------------------|--------------------------------------------------------------|
| High-Z            | Terminus turned ON or OFF after input returns to this state. |
| 0                 | Toggle Terminus ON or OFF                                    |

#### Notes:

- 1. It is required that this input be controlled by an open collector/drain output. Do not use an external pull-up resistor, a pull-up is included internal to the Terminus.
- 2. The ON/OFF pin is offered as a means to power-on and power-down the Terminus. When the Terminus powers-down it informs the cell tower that it is powering down and will not be communicating with the tower any more. This is considered a controlled power-down.
- 3. After toggling the power state of the Terminus, wait until PWRMON indicates chosen state before toggling the power state again.
- 4. To turn ON the plug-in module, the ON\_OFF input must be tied low for 5 second then released.
- 5. To turn OFF the plug-in module, the ON\_OFF input must be tied low for 2 seconds then released.
- 6. Optionally the Terminus may be powered-down with the use of AT commands.
- 7. It is required to stop driving terminal inputs high when turning ON the Plug-In module by floating or bringing them low. If this is not done, power sequencing issues may occur.

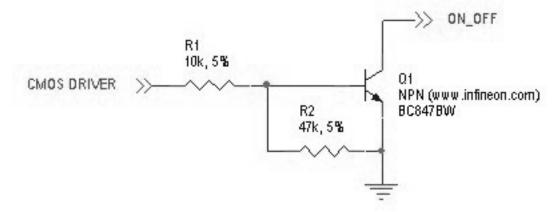



Figure 8 On / Off Pin Diagram



#### 4.7 GPIO Details continued

#### 4.7.10 PWRMON Pin

| Output Logic State | Description           |
|--------------------|-----------------------|
| 0                  | Terminus powered-down |
| 1                  | Terminus powered-on   |

#### Notes:

- 1. Used in conjunction with ON/OFF pin to control power-on and power-down state.
- 2. During a power down, it is required to stop driving terminal inputs high by floating or bringing them low. If this is not done, the PWRMON output will not transition low. On the GSM865CF and LTE910CF, this will cause the VAUX output to remain active.

#### 4.7.11 VAUX

A regulator power supply output that is provided in order to supply small devices from the module itself. When PWRMON is HIGH, VAUX will be ON. When PWRMON is LOW, VAUX will be OFF. On the LTE910CF, the VAUX signal voltage will match to the VL IN voltage if utilized.

#### 4.8 User LED

The LTE910CF comes equipped with GPS functionality that is built into the cellular radios. However, the cellular radios have no GPS status output for driving an LED. Instead, this module has GPIO2 connected to the User LED pin of the Terminus. The user application can use this to control an LED or act as an additional GPIO. See figure 10 for recommended connection of an LED.

#### 4.9 LED Status Indicators

The LED Status output is used to drive an external LED to give feedback on the current operation. See figure 10 for recommended connection of an LED. For the LTE910CF, this is an alternate function of GPIO1 and must be set via the AT#GPIO command. The status is defined below.

#### 4.9.1 Cellular LED Status (LTE910CF)

| LED Status                               | Device Status         |
|------------------------------------------|-----------------------|
| Permanently Off                          | Cellular radio is off |
| Permanently On                           | On/Searching          |
| Slow Blinking (0.3 sec on / 2.7 sec off) | Registered            |
| Fast Blinking (0.5 sec on / 0.5 sec off) | Shutting down         |

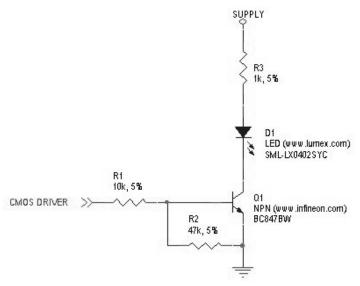



Figure 9 LED Indicators Diagram



#### 4.10 RF Interface

There are three RF interfaces on the LTE910CF. A cellular, GPS, and RX diversity connector. The specifications and requirements for these are as follows:

Note: You must access the RF connections via the SMT U.FL connections if they do not include a U.FL to SMA connector. These signals are NOT electrically connected elsewhere on the board.

#### 4.10.1 LTE910CF Antenna Interface

Type: Hirose U.FL - MALE (Part Number: U.FL-R-SMT(10))

| Pin             | Description   |
|-----------------|---------------|
| Center Pin      | RF signal     |
| Outer Conductor | Signal ground |

#### 4.11 SIM Card Interface

The SIM Card Interface allows the Terminus to accept the subscriber card provided by the cellular telephone provider. It can accommodate a 1.8v or 3.0v SIM card.

#### 4.12 Header Interface Mounting Options

The Plug-In Modules' header pin length has been chosen to allow for direct solder mount to a PCB of standard thickness. If the user wishes to socket the Plug-In Module, they may do so as well by using the below part numbers for reference:

Samtec 25 pin header: TSM-125-04-L-SV-A Samtec 24 pin header: TSM-124-04-L-SV-A Mating Samtec 25 pin connector: SLW-125-01-G-S Mating Samtec 24 pin connector: SLW-124-01-G-S

Please note there are no Samtec SMT single row mating connectors. The only mating connector available is the above listed THT version.

## 4.13 Screw Mounting

The LTE910CF allows for the use of a #4 machine screw to help keep a socketed module in place where environmental variables may cause problems otherwise. If the user wishes to have a stand-off underneath the module to help alleviate possible stress from mounting hardware, below are the Janus part numbers and associated drawings for an available solution.

4-40 Hex Female Stand-off: MC-0356-G

4-40 3/16" Pan Head Phillips Machine Screw: MC-0357-G

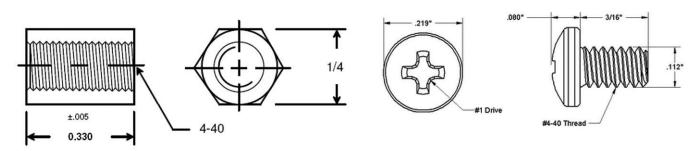



Figure 10 Screw Diagram



# **5 LTE910CF TECHNICAL SPECIFICATIONS**

# **5.1 Electrical Specification**

## **5.1.1 Absolute Maximum Ratings**

| Parameter                           | Min  | Тур | Max  | Unit | Note |
|-------------------------------------|------|-----|------|------|------|
| VIN (DIGITAL INPUTS 2.85V CMOS)     | -0.5 | -   | 3.35 | Volt |      |
| VIN (DIGITAL INPUTS 1.8V CMOS)      | -0.3 | -   | 3.1  | Volt |      |
| VIN (Digital Inputs VL Selected)    | -0.3 | -   | 5.5  | Volt |      |
| Storage Temperature                 | -40  | -   | 85   | °C   | _    |
| Supply (+) referenced to Supply (-) | 0    | -   | 6    | Volt |      |

Operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

# **5.1.2 Recommended Operating Conditions**

| Parameter                           | Min  | Тур  | Max  | Unit | Note |
|-------------------------------------|------|------|------|------|------|
| Temperature                         | -40  | -    | 85   | °C   |      |
| Supply (+) referenced to Supply (-) | 4.75 | 5.0  | 5.25 | Volt |      |
| VL IN Selection                     | 1.8  | -    | 5.0  | Volt |      |
| VAUX Output                         | -    | 2.85 | -    | Volt | 1    |
| VAUX Current                        | -    | -    | 100  | mA   | 1    |

Note: 1. When VL IN is utilized, VAUX will match VL.

# 5.1.3 Power Supply

| Mode               | Average (mA) | Mode Description                                                   |
|--------------------|--------------|--------------------------------------------------------------------|
| POWERED            | DOWN         |                                                                    |
| Terminal Disabled  | ≤ 15µA       | Terminal disabled (ENABLE SUPPLY = 0)                              |
| Cellular Radio Off | 0.4          | Cellular module powered but switched off via ON_OFF pin (PWRMON=0) |

| Mode      | Average (mA) | Mode Description                                                                                                     |
|-----------|--------------|----------------------------------------------------------------------------------------------------------------------|
| AT+CFUN=1 |              | Idle, no call in progress. full functionality of the module.                                                         |
| WCDMA     | 16           |                                                                                                                      |
| GSM       | 16           |                                                                                                                      |
| LTE       | 16           |                                                                                                                      |
| AT+CFUN=4 | 12           | Disabled TX and RX; module is not registered on the network                                                          |
| AT+CFUN=5 | 1.5          | CFUN=5 full functionality with power saving; Module registered on the network and can receive incoming calls and SMS |

<sup>\*</sup> except external active GPS antenna.



<sup>\*</sup> Data taken with USB disconnected.

# 5.1 Electrical Specification continued

#### 5.1.4 I/O Levels

## 5.1.4.1 1.8v Standard Interface Levels (DVI, I2C, GPS LED)

| Parameter                               | Min | Тур | Max  | Unit | Note |
|-----------------------------------------|-----|-----|------|------|------|
| Input Voltage High - Vih                | 1.5 | -   | 1.9  | Volt |      |
| Input Voltage Low - Vil                 | 0   | -   | 0.35 | Volt |      |
| Output Voltage High - Voh               | 1.6 | -   | 1.9  | Volt |      |
| Output Voltage Low - Vol                | 0   | -   | 0.2  | Volt |      |
| Typical Current Source/Sink = 100uA/1uA |     |     |      |      |      |

## 5.1.4.2 2.85v Standard Interface Levels (UART, GPIO)

| Parameter                          | Min  | Тур | Max  | Unit | Note |
|------------------------------------|------|-----|------|------|------|
| Input Voltage High - Vih           | 1.85 | -   | 2.85 | Volt |      |
| Input Voltage Low - Vil            | 0    | -   | 0.99 | Volt |      |
| Output Voltage High - Voh          | 2.45 | -   | 2.85 | Volt |      |
| Output Voltage Low - Vol           | 0    | -   | 0.4  | Volt |      |
| Typical Current Source = 100uA/1uA |      |     |      |      |      |

# 5.1.4.3 VL IN Selected Interface Levels (UART, GPIO)

| Parameter                 | Min     | Тур | Max     | Unit | Note |
|---------------------------|---------|-----|---------|------|------|
| Input Voltage High - Vih  | VL*0.65 | -   | VL      | Volt |      |
| Input Voltage Low - Vil   | 0       | -   | VL*0.35 | Volt |      |
| Output Voltage High - Voh | VL-0.4  | -   | VL      | Volt |      |
| Output Voltage Low - Vol  | 0       | -   | 0.4     | Volt |      |

# 5.1.4.4 Cellular LED Output Levels

| Parameter                      | Min | Тур | Max | Unit | Note |
|--------------------------------|-----|-----|-----|------|------|
| Output Voltage High - Voh      | 1.6 | -   | 1.9 | Volt |      |
| Output Voltage Low - Vol       | 0   | -   | 0.2 | Volt |      |
| Typical Current Source = 100uA |     |     |     |      |      |

#### 5.1.4.5 ADC Input Levels

| Parameter           | Min | Тур | Max | Unit | Note |
|---------------------|-----|-----|-----|------|------|
| Input Voltage Range | 0   | -   | 1.2 | Volt |      |
| AD Conversion       | -   | -   | 10  | Bits |      |
| Input Resistance    | 1M  | -   | -   | Ohm  |      |
| Input Capacitance   | -   | 1   | -   | pF   |      |

# 5.1.4.6 Reset Pin Input Levels

| Parameter                | Min | Тур | Max  | Unit | Note |
|--------------------------|-----|-----|------|------|------|
| Input Voltage High - Vih | 1.5 | -   | 1.9  | Volt |      |
| Input Voltage Low - Vil  | 0   | -   | 0.35 | Volt |      |

It is required that this input be controlled by an Open Collector/Drain Output. Do not use an external pull-up resistor, a pull-up is included internal to the Terminus.



# **5.1 Electrical Specification continued**

# **5.1.5 LTE Cellular Antenna Specifications:**

# 5.1.5.1 LTE910CF v1.0 (AT&T)

| Parameter         | Description                                                                 |
|-------------------|-----------------------------------------------------------------------------|
| Frequency Range   | Depending on frequency bands provided by the network operator, the customer |
|                   | should use the most suitable antenna for those frequencies.                 |
| Bandwidth         | GSM850: 70Mhz                                                               |
|                   | GSM1900 (PCS): 140Mhz                                                       |
|                   | WCDMA 1900 (B2): 140Mhz                                                     |
|                   | WCDMA 850 (B5): 70Mhz                                                       |
|                   | LTE 1900 (B2): 140Mhz                                                       |
|                   | LTE 1700 (B4): 445Mhz                                                       |
|                   | LTE 850 (B5): 70Mhz                                                         |
|                   | LTE 700 (B17): 42Mhz                                                        |
| Impedance         | $50\Omega$                                                                  |
| Input Power       | >33 dBm (2W) peak power in GSM                                              |
|                   | >24 dBm Average power in WCDMA & LTE                                        |
| VSWR Absolute Max | ≤ 10:1                                                                      |
| VSWR Recommended  | ≤2:1                                                                        |

# 5.1.5.2 LTE910CF v3.0 (Verizon) Antenna Specifications

| Parameter         | Description                                                                 |
|-------------------|-----------------------------------------------------------------------------|
| Frequency Range   | Depending on frequency bands provided by the network operator, the customer |
|                   | should use the most suitable antenna for those frequencies.                 |
| Bandwidth         | LTE 1700 (B4): 445Mhz                                                       |
|                   | LTE 700 (B13): 41Mhz                                                        |
| Impedance         | $50\Omega$                                                                  |
| Input Power       | >24dBm Average Power                                                        |
| VSWR Absolute Max | ≤ 10:1                                                                      |
| VSWR Recommended  | ≤ 2:1                                                                       |

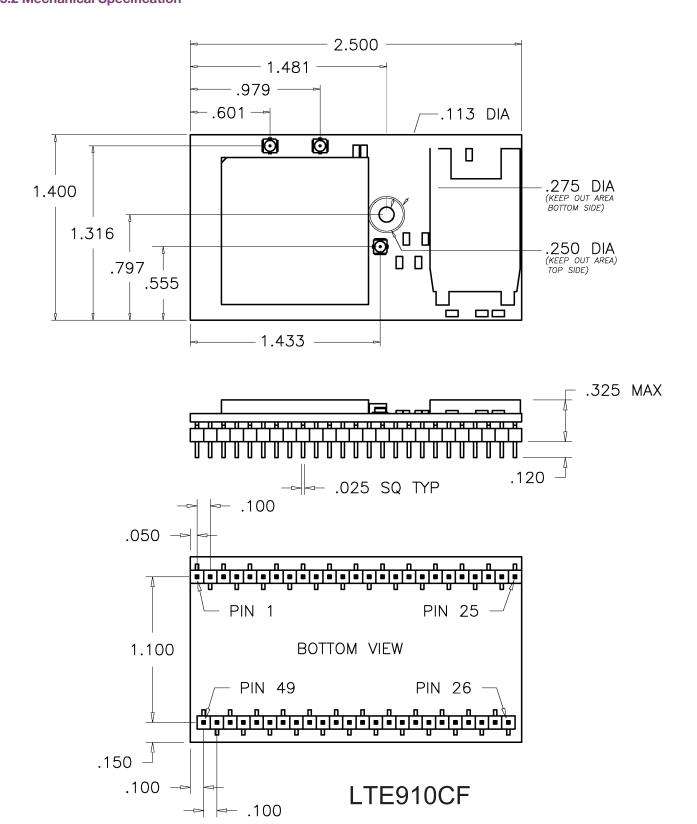
# **5.1.6 LTE910CF GPS/GLONASS Antenna Specifications:**

# 5.1.6.1 Antenna Specifications

| Parameter           | Description                                                  | Note |
|---------------------|--------------------------------------------------------------|------|
| Input Voltage Range | 2.85v or VL IN                                               | 1    |
| Frequency Range     | 1575.42± 2 MHz                                               |      |
| Gain                | =< 15dB overall at the connector (Antenna and LNA included). |      |
| Impedance           | 50 ohm                                                       |      |
| VSWR                | TBD                                                          |      |
| Current Consumption | 30mA Max, 20mA Typ.                                          |      |

Note: 1. When VL IN is utilized, GPS Bias Voltage will match VL.




# 5.1 Electrical Specification continued

# **5.1.7 USB Transceiver Specifications**

| Parameter                           | Comments                                             | Min   | Тур | Max   | Unit      |
|-------------------------------------|------------------------------------------------------|-------|-----|-------|-----------|
| USB_VBUS                            |                                                      |       |     |       |           |
| Supply voltage                      |                                                      | 4.5   | 5.0 | 5.25  | Volt      |
| Input levels for low-/full speed    |                                                      |       |     |       |           |
| Receiver threshold (single-end)     |                                                      | 0.8   | -   | 2.0   | Volt      |
| Differential input sensitivity      | D+ - D- , Vin = 0.8V to 2.5V                         | 0.2   | -   | -     | Volt      |
| Differential common-mode range      | Includes VDI                                         | 0.8   | -   | 2.5   | Volt      |
| Output levels for low-/full speed   |                                                      |       |     |       |           |
| Low                                 | $RL = 1.5 \text{ k}\Omega \text{ to } 3.6 \text{ V}$ | -     | -   | 0.3   | Volt      |
| High                                | RL – 15 k $\Omega$ to GND                            | 2.8   | -   | 3.6   | Volt      |
| Output signal crossover voltage     |                                                      | 1.3   | -   | 2.0   | Volt      |
| Terminations                        |                                                      |       |     |       |           |
| Internal pull-up resistor           | VTRM to D+, VTRM to D-                               | 1.425 | 1.5 | 1.575 | $k\Omega$ |
| Internal pull-down resistor         | D= to GND, D- to GND                                 | 14.3  | 15  | 24.8  | $k\Omega$ |
| High-Z state output impedance       | 0 V< VDD< 3.6 V; measured                            |       |     |       |           |
|                                     | at D+ and D- pins to GND                             | 300   | -   | -     | $k\Omega$ |
| Termination voltage                 | An internal supply voltage, VTRM                     | 3.0   | 3.3 | 3.6   | Volt      |
| Driver characteristics - full speed |                                                      |       |     |       |           |
| Transition time:                    |                                                      |       |     |       |           |
| Rise time                           | CL = 50 to 125 pF                                    | 4     | -   | 20    | ns        |
| Fall time                           | CL - 50 to 125 pF                                    | 4     | -   | 20    | ns        |
| Rise/fall time matching             |                                                      | 90    | -   | 111   | %         |
| Series output resistance            | D+, D-                                               | 28    | 33  | 44    | Ω         |
| Driver characteristics - low speed  |                                                      |       |     |       |           |
| Transition time:                    |                                                      |       |     |       |           |
| Rise time                           | CL = 50  to  600  pF                                 | 75    | -   | 300   | ns        |
| Fall time                           | CL - 50 to 600 F                                     | 75    | -   | 30    | ns        |
| Rise/fall time matching             |                                                      | 80    | -   | 125   | %         |



# 5 LTE910CF TECHNICAL SPECIFICATIONS continued 5.2 Mechanical Specification



**Figure 11 LTE910CF Mechanical Dimensions** 



#### 5.3 Setting Up a Terminal Emulator for Use With the LTE910CF Terminus

#### 5.3.1 Set Up

To interface with the module, connect the serial interface to a PC and use a terminal emulation program such as Microsoft® Hyperterminal. Set the interface parameters as follows:

- Baud Rate: 115.2 kbps
- Bits: 8
- Stop Bits: 1
- · Parity: None
- Hardware Handshaking: Yes

#### 5.3.1.1 Test the Emulator Set Up

• Enter AT<cr>> from terminal and wait for OK

Note that Autobaud is not supported on the LTE910CF Terminus. If you are utilizing the serial interface and you wish to change the baud rate on the module, you must use AT+IPR. You must also change the rate in the host UART (i.e. HyperTerminal) to match the new baud rate. If these do not match you will not be able to send AT commands to the module through the serial port. The Terminus is by default set to 115.2 kbps.

# **5.3.1.2 Verify Your Terminal and Firmware Version**

- Enter AT+CGMM and wait for the response

  The response will be the Telit module's model number without a command echo.
- Enter AT+CGMR and wait for the response

  The response will be the Telit module's current firmware without a command echo.

Please confirm your model and firmware with the one listed in section 2.1

#### 5.3.2 Powering ON/OFF

#### 5.3.2.1 Turn the module ON through the following method:

• Pull ON/OFF signal (Pin 19) to ground for three (5) seconds, then release.

The Terminus module is fully operational after 4 seconds. Logging onto a network may take longer than this and is outside the control of the Terminus.

#### 5.3.2.2 There are two ways to switch OFF the module as described below.

- Use the appropriate AT command (AT#SHDN)
- Pull ON/OFF signal (Pin 19) to ground for three (3) seconds, then release.



#### **5.3 LTE910CF GETTING STARTED continued**

#### 5.3 Setting Up a Terminal Emulator for Use With the LTE910CF Terminus continued

# 5.3.3 Setting Up Service - Network Settings

#### 5.3.3.1 Set Up

The network settings for the Terminus will vary depending on the cellular carrier you are using. Below are two of the North American Cases for these settings.

- AT#SELINT=2 //use of most recent AT command set
- AT#ENS=1 // Set autoband and enable SIM toolkit.

AT&P0 //Save profile

AT&W //Save settings

If Terminus is being used in a different country or with a different carrier please refer to Telit AT command refer-ence document regarding the use of the AT#BND command to set the proper frequency band).

## 5.3.3.2 Check Network Status (assuming you have a valid SIM card installed)

Enter AT+CGREG? <cr> And wait for response.

Response will be +CGREG:0,1 or +CGREG:0,5 meaning the device is registered to the home network or roaming, respectively. If response is different than this, please refer to the Telit AT command reference document for more information.

#### 5.3.3.3 Check Signal Quality

Enter AT+CSQ<cr> And wait for response +CSQ:<rssi>,<ber>

<rssi> Signal Strength

99 Not known or not detectable

0-31 dBm = (rssi \* 2) -113

Example: A result of 31 indicates -51dBm or greater.

An rssi value of >=10 in typical applications is fine and you will usually see about 12-20 in normal to good signal, but note that worst case it can be lower, still register and perform normal functions.

# 5.3.4 Sending an SMS

#### 5.3.4.1 Set Up

SMS (Select Message Service) mode allows you to send a text message (max 160 characters) to a SMS capable subscriber unit.

• Set the SMS mode to text. This must be entered every power cycle.

AT+CMGF=1<cr>

• To enter the receiving subscriber unit phone number and message enter:

AT+CMGS="8885551234"

Wait for response">" then enter message text

Enter "ctrl z" <cr> to end the message



#### 5.3 LTE910CF GETTING STARTED continued

## 5.3 Setting Up a Terminal Emulator for Use With the LTE910CF Terminus continued

## 5.3.5 Making a GPRS Data Call

#### 5.3.5.1 Set Up

GPRS is a data service that uses Packet Data Protocol (PDP).

• You can try to activate the context using the default parameters in the modem first.

Enter AT#SGACT=3,1,"v","p"

Where v is your user ID and p is your password.

If these are not applicable to your account, you may replace them with "","" or simply enter AT#SGACT=3,1

If you receive an ERROR, pleas ensure your account is data ready. If you know your account requires a specific APN you will want to adjust it with the following.

Enter AT+CGDCONT=3,"IP","APN","0.0.0.0",0,0

Where APN is the desired one, given by your carrier.

• Open the socket connection

Enter AT#SD=1,0,IPP,IPA,0,0,0

Look for response "CONNECT". This opens a remote connection via socket

IPP = the remote host port of the server you are trying to connect to. (0 to 65535)

IPA = the IP address of the server hyou are trying to connect to in the format:

"XXX.XXX.XXX.XXX"

- At this point a data session is active and data can be sent from the Terminus to the remote device and visa versa.
- To exit the data session and return to command mode, send the characters"+++" and wait for the OK response
- Enter AT#SH=1 to close the socket

#### 5.3.6 GPS

The GPS data can be acquired over the AT Command port with the following methods.

#### Method 1:

Send command AT\$GPSSLSR=2,3

Send command AT\$GPSACP<cr>

\$GPSACP can retrieve GPS data at any point when AT&GPSP? returns 1

#### Method 2:

Configure Unsolicited NMEA Data:

Send command to enable NMEA stream

AT\$GPSNMUN=<enable><gga><gll><gsa><gsv><rmc><vtg><cr>

Select parameter "1" to enable or "0" to disable for your NMEA stream requirements

EXAMPLE: AT\$GPSNMUN=3,1,1,1,1,1,1

Send command AT\$GPSSLSR=2,3

You'll receive a CONNECT and the NMEA stream will begin.

At this point the stream controls the port and requires an escape before AT entry can begin again.

End NMEA Stream:

Enter "+++" (without quotes)

Wait for the OK response

Send command to disable the receiver

AT\$GPSP=0

#### 5.3.7 Further Instructions

On utilizing different commands for other applications than those described here, please refer to the reference documents, listed in section 2.1



#### **6 DESIGN CONSIDERATIONS**

## **6.1 Minimum Required Module Pin Connects**

#### **HSPA+ Pin Functions**

| Pin | Signal | Function                                                    | Note |
|-----|--------|-------------------------------------------------------------|------|
| 1   | VBATT  | Main power supply                                           |      |
| 2   | VBATT  | Main power supply                                           |      |
| 12  | GND    | Ground                                                      |      |
| 25  | GND    | Ground                                                      |      |
| 26  | GND    | Ground                                                      |      |
| 39  | GND    | Ground                                                      |      |
| 49  | GND    | Ground                                                      |      |
| 9   | TXD    | Serial data input (TXD) from DTE                            |      |
| 4   | RXD    | Serial data output to DTE                                   |      |
| 11  | RTS    | Input for request to send signal (RTS) from DTE             | 2    |
| 19  | ON/OFF | Input command for switching power ON or OFF(toggle command) |      |
| 20  | RESET  | Reset input                                                 |      |

#### Note:

#### 6.2 Debug:

Debug of the Plug-In Modems in production

To test and debug the mounting of the module, we strongly recommend test pads on the host PCB. This will allow verification of the connection between the module itself and the application and to test the performance of the module connecting it with an external computer.

Depending on the customer application, these pads include, but are not limited to the following signals:

- TXD
- RXD
- ON/OFF
- RESET
- GND
- VBATT
- TX TRACE
- RX\_TRACE
- PWRMON
- USB D+
- USB D-
- USB V\_BUS
- USB\_ID



<sup>1.</sup> If the application uses USB as the main interface to the module, this is sufficient to capture any debug or trace data, provided the application can export the diagnostic port externally.

<sup>2.</sup> RTS must be connected to ground if flow control is not used.

# **APPENDICES**

# **Approvals**

FCC Certified CE Certified

# Safety Recommendations (for Information only)

# **Antenna Care and Replacement**

Do not use the Terminus with a damaged antenna.

Buy the antenna from an approved suppliers list. Using unauthorized antennas, modifications, or attachments could damage the Terminus and may violate local RF emission regulations or invalidate type approval.

## **Abbreviations**

| 3GPP | 3rd Generation Partnership Project |       |                                            |
|------|------------------------------------|-------|--------------------------------------------|
| AC   | Alternating Current                |       |                                            |
| ADC  | Analog To Digital Converter        | ITAR  | International Traffic In Arm Regulation    |
| BER  | Bit Error Rate                     | LED   | Light Emitting Diode                       |
| CD   | Carrier Detect                     | M2M   | Machine To Machine                         |
| CDMA | Code Division Multiple Access      | PBCCH | Packet Broadcast Control Channel           |
| CSD  | Circuit Switched Data              | PDU   | Protocol Data Unit                         |
| CTS  | Clear To Send                      | RF    | Radio Frequency                            |
| DB   | Decibel                            | RI    | Ring Indicator                             |
| DBFS | Decibels Full Scale                | RSSI  | Received Signal Strength Indication        |
| DC   | Direct Current                     | RTS   | Request To Send                            |
| DCE  | Data Communications Equipment      | RxD   | Received Data                              |
| DSR  | Data Set Ready                     | SMS   | Short Message Service                      |
| DTMF | Dual-tone multi-frequency          | TTFF  | Time To First Fix                          |
| DTR  | DTE Ready                          | TxD   | Transmitted Data                           |
| FDN  | Fixed Dialing Number               | UICC  | Universal Integrated Circuit Card          |
| GPIO | General Purpose Input Output       | UMTS  | Universal Mobile Telecommunications System |
| GPRS | General Packet Radio Service       | USIM  | Universal Subscriber Identity Module       |
| GSM  | Global System Mobile               | USSD  | Unstructured Supplementary Service Data    |
|      | -                                  | VSWR  | Voltage Standing Wave Ratio                |
|      |                                    | WAAS  | Wide Area Augmentation System              |



# **Terminus Plug-In Products User Manual**



# **Ordering Information**

| Ordering Information | Description                              |
|----------------------|------------------------------------------|
| LTE910CF v1.00       | Terminus LTE Plug-In Modem - GPS Enabled |

# **Revision History**

| Revision | <b>Revision Date</b> | Note                                                |
|----------|----------------------|-----------------------------------------------------|
| P00      | 04/08/15             | Preliminary LTE910CF Individual Plug-In User Manual |
| P01      | 08/03/15             | Update to 5.3.5 Making a GPS Data Call              |

