### Quantum with Unity Pro Modbus Plus Network Modules User Manual

ena

June 2005





### **Document Set**

### Presentation

This package contains the following manuals:

- Quantum and Premium Communication Architecture Reference Manual
- 140 EIA 921 00 Quantum AS-i-Bus Interface Module User Manual
- Quantum TCPIP/IP Configuration User Manual
- Quantum Modbus Plus Network Modules
- Quantum Ethernet Modules User Manual
- 140 ESI 062 10 Quantum ASCII Interface Module User Manual

### **Table of Contents**



|           | Safety Information                                                                                                                                                                                | 9                            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|           | About the Book                                                                                                                                                                                    | .11                          |
| Part I    | Modbus Plus Network                                                                                                                                                                               |                              |
| Chapter 1 | Intoducing the Modbus Plus Network  Overview  Introducing the Modbus Plus Network  Communication in Modbus Plus Networks  Example for a Modbus Plus network  Integration in a Modbus Plus Network | . 15<br>. 16<br>. 18         |
| Chapter 2 | Modbus Plus Communication Types                                                                                                                                                                   |                              |
| 2.1       | Overview DIO Drop Overview DIO Introduction Single-cable Configuration Dual-cable Configuration Peer Cop                                                                                          | . 24<br>. 24<br>. 25<br>. 26 |
| 2.2       | Overview                                                                                                                                                                                          | . 28<br>. 29                 |
| 2.3       | Application Specific Communication                                                                                                                                                                | . 32                         |
| Part II   | Modbus Plus Configuration with Unity Pro                                                                                                                                                          |                              |
| Chapter 3 | Configuring a Logical Network  Overview  Add a new network to the Communication folder  Configure Network.                                                                                        | . 35                         |

|           | Properties of a network                                   |    |
|-----------|-----------------------------------------------------------|----|
|           | Delete an existing network folder                         |    |
|           |                                                           |    |
| Chapter 4 | Configuring a Physical Network                            |    |
|           | Overview                                                  |    |
|           | Configuring a Quantum DIO Drop                            |    |
|           | Peer Cop Configuration                                    |    |
|           | Global Input Data Configuration                           |    |
|           | Configuring Specific Data                                 |    |
|           | Specific Input Data Configuration                         |    |
|           | Specific Output Data Configuration                        |    |
| Part III  | Application Specific Communication                        |    |
|           | At a Glance                                               | 55 |
| Chapter 5 | Introducing Application Specific Communication            | 57 |
|           | Overview                                                  |    |
|           | Overview of Function Blocks for Modbus Plus Communication |    |
|           | Data Exchange on a Local Segment                          |    |
|           | Global Data - Broadcast Services                          |    |
| Chantas C |                                                           |    |
| Chapter 6 | CREAD_REG: Continuous register reading                    |    |
|           | Description                                               |    |
|           | Derived Data Types                                        |    |
|           | Function mode                                             |    |
|           | Parameter description                                     | 74 |
| Chapter 7 | CWRITE_REG: Continuous register writing                   | 75 |
| -         | Overview                                                  | 75 |
|           | Description                                               |    |
|           | Derived Data Types                                        |    |
|           | Function mode                                             |    |
|           | Parameter description                                     | 80 |
| Chapter 8 | MBP_MSTR: Modbus Plus Master                              |    |
|           | Overview                                                  |    |
|           | Description                                               |    |
|           | Function mode                                             |    |
|           | Write data                                                |    |
|           | Read data                                                 |    |
|           | Read local statistics                                     |    |
|           |                                                           |    |

|            | Clear local statistics.                        |     |
|------------|------------------------------------------------|-----|
|            | Write Global Data (Peer Cop)                   |     |
|            | Read Global Data (Peer Cop)                    |     |
|            | Get remote statistics                          |     |
|            | Clear remote statistics  Peer cop health       |     |
|            | Optional module reset                          |     |
|            | Read CTE (Config extension table).             |     |
|            | Write CTE (Config extension table).            |     |
|            | Peer Cop Communications Health Status          | 107 |
|            | Modbus Plus network statistics                 |     |
|            | TCP/IP Ethernet Network Statistics             | 114 |
|            | Modbus Plus and SY/MAX Ethernet Error Codes    | _   |
|            | SY/MAX-specific error codes                    |     |
|            | TCP/IP Ethernet error codes                    |     |
|            | CTE error codes for SY/MAX and TCP/IP Ethernet | 122 |
| Chapter 9  | ModbusP ADDR: Modbus Plus Address              | 123 |
|            | Overview                                       |     |
|            | Description                                    |     |
|            | Detailed Description                           | 127 |
| Chapter 10 | READ_REG: Read register                        | 120 |
| Chapter 10 |                                                |     |
|            | Overview                                       |     |
|            | Derived Data Types.                            |     |
|            | Function mode.                                 |     |
|            | Parameter description                          |     |
| Chamter 11 | WRITE REC. Write register                      | 107 |
| Chapter 11 | WRITE_REG: Write register                      |     |
|            | Overview                                       |     |
|            | Description                                    |     |
|            | Function mode.                                 |     |
|            | Parameter description                          |     |
|            |                                                |     |
| Part IV    | Hardware                                       | 147 |
|            | At a Glance                                    |     |
| 01         |                                                |     |
| Chapter 12 | Modbus Plus Network Option Modules (NOM)       |     |
| 10.1       | Overview                                       |     |
| 12.1       | 140 NOM 211 00: Modbus Plus Option Module      |     |
|            | Presentation                                   |     |
|            | Indicators                                     | _   |
|            | Error Codes.                                   |     |
|            |                                                |     |

| Index      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter 13 | Hardware Installation.       191         Mounting Quantum Communication Modules       191                                                                                                                                                                                                                                                                                                                                                                                        |
| 12.2       | Specifications.       159         140 NOM 212 00: Modbus Plus Option Module       160         Overview       160         Presentation.       161         Indicators       166         Error Codes       167         Specifications       169         140 NOM 252 00: Modbus Plus Option Module       170         Overview       170         Presentation       171         Indicators       177         Fiber Optic Cable Connections       178         Specifications       188 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### **Safety Information**



### **Important Information**

#### NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.



The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.



This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

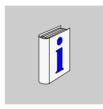
### A DANGER

DANGER indicates an imminently hazardous situation, which, if not avoided, **will result** in death, serious injury, or equipment damage.



WARNING indicates a potentially hazardous situation, which, if not avoided, **can result** in death, serious injury, or equipment damage.




CAUTION indicates a potentially hazardous situation, which, if not avoided, **can result** in injury or equipment damage.

### PLEASE NOTE

Electrical equipment should be serviced only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. This document is not intended as an instruction manual for untrained persons.

© 2005 Schneider Electric. All Rights Reserved.

### **About the Book**



### At a Glance

### **Document Scope**

This document describes the Modbus Plus networking and communication of the Quantum automation system with Unity Pro.

This document is valid for Unity Pro from version 2.0.

### **Validity Note**

The data and illustrations found in this documentation are not binding. We reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be construed as a commitment by Schneider Electric.

### Related Documents

| Title of Documentation                                                 | Reference Number     |
|------------------------------------------------------------------------|----------------------|
| Modbus Plus Planning and Installation Guide                            | 890USE10000          |
| Quantum and Premium Communication Architecture Reference Manual        | Part of this package |
| Quantum Experts and Communication Reference Manual                     | UNYUSE10010V20E      |
| Grounding and Electromagnetic Compatibility of PLC Systems User Manual | UNYUSE10010V20E      |
| Communication Library                                                  | UNYUSE40020V20E      |

**Note:** The above mentioned documents are only available in online form at this time.

# Product Related Warnings

Schneider Electric assumes no responsibility for any errors that may appear in this document. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When controllers are used for applications with technical safety requirements, please follow the relevant instructions.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this product related warning can result in injury or equipment damage.

### **User Comments**

We welcome your comments about this document. You can reach us by e-mail at techpub@schneider-electric.com

### **Modbus Plus Network**



### At a Glance

### Overview

This part of the document provides an introduction to the topic of Modbus Plus networks. It mainly deals with the communication types that can be found in Modbus Plus network application.

## What's in this Part?

This part contains the following chapters:

| Chapter | Chapter Name                       | Page |
|---------|------------------------------------|------|
| 1       | Intoducing the Modbus Plus Network | 15   |
| 2       | Modbus Plus Communication Types    | 23   |

# Intoducing the Modbus Plus Network

1

### Overview

### Introduction

This chapter contains general information about Modbus Plus Networks.

# What's in this Chapter?

This chapter contains the following topics:

| Topic                                 | Page |
|---------------------------------------|------|
| Introducing the Modbus Plus Network   | 16   |
| Communication in Modbus Plus Networks | 18   |
| Example for a Modbus Plus network     | 19   |
| Integration in a Modbus Plus Network  | 21   |

### **Introducing the Modbus Plus Network**

### Overview

Modbus Plus is a local area network system for industrial control applications. Networked devices can exchange messages for the control and monitoring of processes at remote locations in an industrial plant.

The network also provides an efficient means for servicing input/output subsystems. Modbus Plus Distributed I/O (DIO) Drop Adapters and I/O Blocks (Momentum and TIO) can be placed at remote I/O sites to allow the application to control field devices over the network link.

For a detailed description of the Modbus Plus Network consult the *Modbus Plus Network Planning and Installation Guide*.

### Types of Communication

The following table shows the 4 different types of communication available on a Modbus Plus Network:

| Communication<br>Type | Parameter Setup                                                                        | Remarks                                                                                                       |
|-----------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Distributed I/O       | During configuration                                                                   | Allows connection of standard Quantum I/O to the Modbus Plus. DIO is limited to the local Modbus Plus segment |
| Peer Cop              | During configuration                                                                   | Publisher/Subscriber service, limited to the local Modbus Plus segment                                        |
| Global Data           | During configuration                                                                   | Broadcasting service, limited to the local Modbus Plus segment                                                |
| Application driven    | Parameters handled through<br>Function Blocks under the<br>control of the User program | Allows routing and therefor not limited to the local Modbus Plus segment                                      |

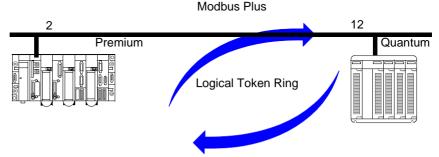
# Configuration of the Modbus Plus Network

The following table shows the 4 steps to configure a Modbus Plus Network

| Step | Action                                                                | Configuration Tool   |
|------|-----------------------------------------------------------------------|----------------------|
| 1    | creation of the Modbus Plus logic network(s)                          | Project browser      |
| 2    | configuration of the Modbus Plus logic network(s)                     |                      |
| 3    | adding NOM modules to the configuration (if required)                 | Hardware             |
| 4    | association of the communication module(s) with the logic network(s). | configuration window |

### Benefit

This configuration allows from the second step onwards, to design your communication application (you do not have to have the hardware to start working) and use the simulator to test its operation.

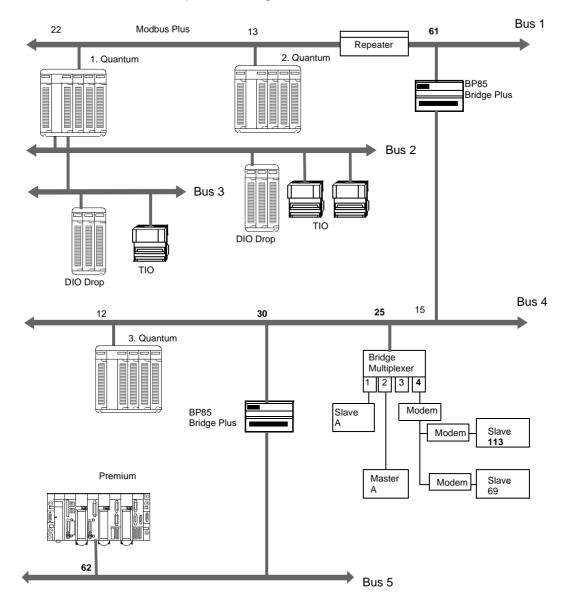

### Communication in Modbus Plus Networks

### Overview

Communication via Modbus Plus enables data exchange through all devices connected to the bus. Modbus Plus protocol is based on the principle of a Logical-Token-Bus (Logical Token passing). Every station in a network is identified using an address between 1 and 64, and accesses the network once a Token has been received. Double addresses are not permitted.

### Communication channel

Example for a Modbus Plus communication channel




A Modbus Plus communication channel has three main functions:

- Point-to-Point exchange via message service according to Modbus protocol.
- Broadcast exchange of global data between all nodes taking part in the exchange.
- Multi-point exchange of specific data via Peer Cop.

### **Example for a Modbus Plus network**

### **Overview** The example shows a segmented Modbus Plus network with 5 busses



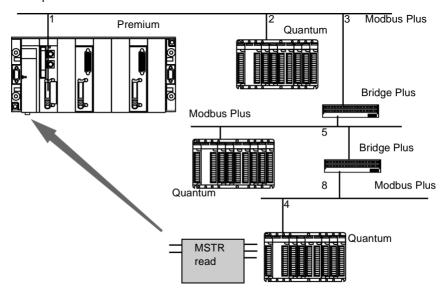
### The following table describes Modbus Plus network busses

| Bus | Description                                                                                                                                                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <ul> <li>connects the first Quantum via a NOM module in slot 4</li> <li>connects the second Quantum via a CPU module in slot 2</li> <li>contains a repeater for expansions</li> <li>contains a Bridge BP85 Plus as connection to bus segment 4</li> </ul> |
| 2   | <ul> <li>connects the first Quantum via the CPU module in slot 2 with a DIO Drop station<br/>and two TIOs</li> </ul>                                                                                                                                      |
| 3   | <ul> <li>connects the first Quantum via the NOM module in slot 3 with a DIO Drop station<br/>and one TIO</li> </ul>                                                                                                                                       |
| 4   | <ul> <li>connects the third Quantum via a CPU module in slot 2</li> <li>contains a Bridge BP85 Plus as connection to bus segment 5</li> <li>contains a Bridge Multiplexer as connection to the serial/Modbus nodes</li> </ul>                             |
| 5   | connects a Premium via a communication module                                                                                                                                                                                                             |

# Segment spanning data exchange

A Quantum controller can exchange data with all connected stations via a Modbus Plus network. The routing information must be entered additionally for every Bridge in the data path. This is done using the function block designed for this task. More detailed information can be found in *Data Exchange on Remote Modbus Plus Networks*, p. 63.

### Integration in a Modbus Plus Network


#### Introduction

In a Modbus Plus architecture, one Quantum PLC application can communicate with a Premium or Atrium PLC and visa-versa.

### Quantum with Premium

Quantum PLC communication with a Premium/Atrium PLC is available via a MSTR block. In this case, the Premium or Atrium serves as the server. Consequently all Modbus Plus stations that are connected to a network architecture, up to a maximum of 5 levels, can communicate with it.

Example



The Quantum station sends a read request to the Premium station and uses an address path for this: 8.5.1.0.0 (routing path). The MSTR function block enables the internal words of a Premium or Atrium station to be read or written. The slave register parameter of the MSTR function block gives the address of the internal words %MW directly to the PLC application. This function block also enables the read or RAZ of a Premium or Micro station statistical counter. This request is carried out by the PCMCIA card of the Premium station

**Note:** For Premium/Atrium PLC communication with a Quantum PLC the addressing must be offset. In order to access an address object n of a Quantum, the communication function of the Premium PLC must have the address n+1.

# **Modbus Plus Communication Types**

2

### Overview

### Introduction

This chapter describes the Modbus Plus communication types.

# What's in this Chapter?

This chapter contains the following sections:

| Section | Торіс                              | Page |
|---------|------------------------------------|------|
| 2.1     | DIO Drop                           | 24   |
| 2.2     | Peer Cop                           | 28   |
| 2.3     | Application Specific Communication | 32   |

23

### 2.1 DIO Drop

### Overview

### Introduction

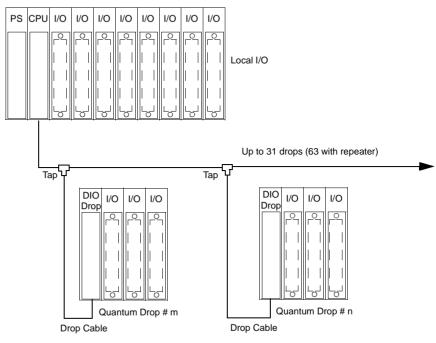
This section describes the DIO Drop communication type.

## What's in this Section?

This section contains the following topics:

| Topic                      | Page |
|----------------------------|------|
| DIO Introduction           | 25   |
| Single-cable Configuration | 26   |
| Dual-cable Configuration   | 27   |

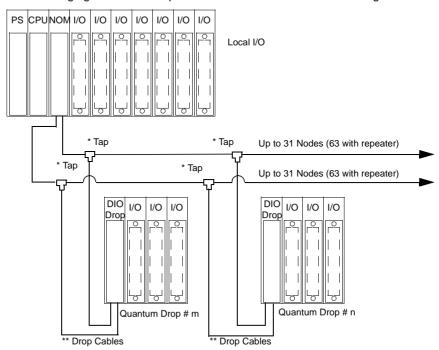
### **DIO Introduction**


### Overview

Quantum DIO is implemented over a Modbus Plus network. The CPU or NOMs module may be the network head via their Modbus Plus ports. Quantum DIO Modbus Plus drop adaptors are specifically designed to link Quantum I/O modules to the head via twisted pair shielded cable (Modbus Plus). The DIO drop modules also provide the I/O with power (maximum 3A) from a 24 VDC or a 115/230 VAC source. Each DIO network supports up to 63 distributed drops using repeaters.

### **Single-cable Configuration**

### Single-cable DIO Configuration Figure


The following figure is an example of a single-cable Quantum DIO configuration.



### **Dual-cable Configuration**

### Dual-cable DIO Configuration Figure

The following figure is an example of a dual-cable Quantum DIO configuration.



**Note:** Dual cables provide systems with added protection against cable breaks or damaged connectors. With two cables connected between the host and each node, no single cable break will disrupt communications.

### 2.2 Peer Cop

### Overview

### Introduction

This section describes the Peer Cop communication type.

## What's in this Section?

This section contains the following topics:

| Topic                       | Page |
|-----------------------------|------|
| Specific Inputs and Outputs | 29   |
| Global Data                 | 31   |

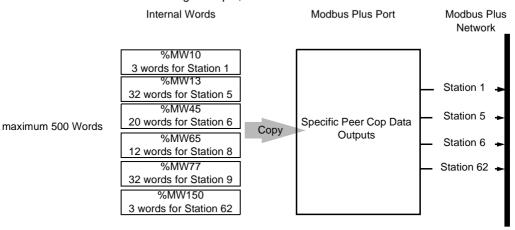

### **Specific Inputs and Outputs**

Specific inputs and outputs act as a Point-to-Point-Service, that use Multicast-Protocol (Multi-stations). Every message contains one or more receive addresses for transferring the data. This function enables data to be forwarded to several stations without repetition.

## Example for specific inputs

The data blocks are copied in their entirety from the Modbus Plus Port to the internal memory words.

In the following example, the address of the first internal word is %MW10:




maximum 500 Words

# Example for specific outputs

The data blocks are copied in their entirety from the memory words reserved in the configuration, to the Modbus Plus Port.

In the following example, the address of the first internal word is %MW10:



### Global Data

#### Overview

When a node passes the token, it can broadcast up to 32 words (16 bits each) of global information to all other nodes on the network. The information is contained in the token frame. The process of sending global data when transmitting the token is controlled independently by the application program in each node.

#### Global Data table

The global data is accessible to the application programs at the other nodes on the same network. Each node maintains a table of global data sent by every other node on the network. Although only one node accepts the token pass, all nodes monitor the token transmission and read its contents. All nodes receive and store the global data into the table. The table contains separate areas of storage for each node's global data. Each node's application program can selectively use the global data from specific nodes, while other applications can ignore the data. Each node's application determines when and how to use the global data.

#### Characteristics

Global database applications include

- Time synchronization
- · Rapid notification of alarm conditions
- Multicasting of setpoint values and constants to all devices in a common process
  This allows uniform and rapid transmission of global data without having to
  assemble and transmit separate messages to the individual devices. The user's
  application can determine which data items are useful to nodes on a remote
  network, and forward them as necessary.

**Note:** Access to a network's global database is available only to the nodes on that network, because the token is not passed through bridge devices to other networks

#### **Global Input Data**

Nodes using Peer Cop can be configured to receive up to 32 words of Global Input data from each of up to 64 source nodes, up to a maximum total of 500 words. Incoming data from each source node can be indexed into up to eight fields for delivery into separate data destinations in the receiving node.

### Global Output Data

Nodes using Peer Cop can be configured to send up to 32 words of Global Output data, which is globally broadcast to all active nodes on the network. Destination nodes can be configured to accept or ignore incoming data from specific source nodes.

### 2.3 Application Specific Communication

### Introduction

#### Overview

Application specific communication is based on function blocks that are integrated into the application program depending on the requirements

The following six function blocks are available:

- READ\_REG: Read register, p. 129
- WRITE REG: Write register, p. 137
- CREAD\_REG: Continuous register reading, p. 69
- CWRITE\_REG: Continuous register writing, p. 75
- MBP MSTR: Modbus Plus Master, p. 81
- ModbusP\_ADDR: Modbus Plus Address, p. 123

### Data exchange

In contrast to Peer Cop and DIO, application specific communication enables data exchange between stations in remote networks.

You can find examples for the following types of data exchange in the application specific communication section:

- Data Exchange on a Local Segment, p. 59
- Data Exchange on Remote Modbus Plus Networks, p. 63
- Global Data Broadcast Services, p. 66

# **Modbus Plus Configuration** with Unity Pro



### At a Glance

### Overview

This part of the document contains information about Modbus Plus Configuration with Unity Pro.

## What's in this Part?

This part contains the following chapters:

| Chapter | Chapter Name                   | Page |
|---------|--------------------------------|------|
| 3       | Configuring a Logical Network  | 35   |
| 4       | Configuring a Physical Network | 43   |

### **Configuring a Logical Network**

3

### Overview

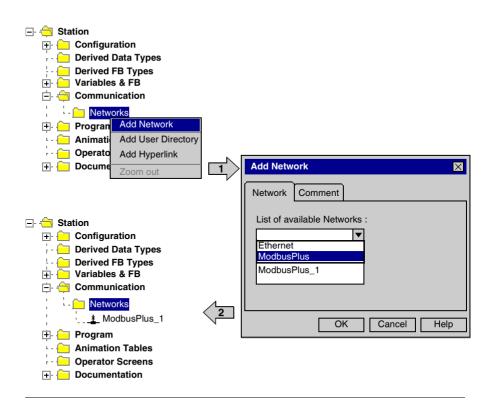
### Introduction

This chapter describes how to configure a logical network.

# What's in this Chapter?

This chapter contains the following topics:

| Торіс                                         | Page |
|-----------------------------------------------|------|
| Add a new network to the Communication folder | 36   |
| Configure Network                             | 37   |
| Properties of a network                       | 38   |
| Delete an existing network folder             | 39   |
| Link between logical and physical network     | 40   |

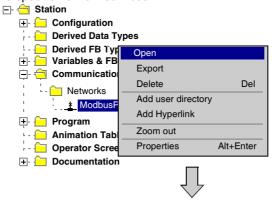

35

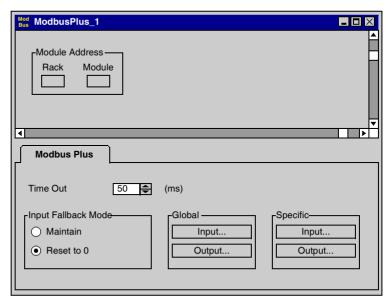
### Add a new network to the Communication folder

Add a new network to the Communication folder After starting a new application, the Communication folder under Station tree branches the Network folder. This folder is empty. Under the Network folder, the user can insert the networks by menu. A click on the right mouse-button above Network pops up a contextual menu. The user selects the type of network he wants to add. For easier use, a network name will be suggested with the prefix of the network type (Ethernet\_1 or Modbus+\_1). By choosing a new network the next available number for the network is chosen automatically like e.g. Modbus+\_1 then Modbus+\_2 and so on. At any moment, the user may rename any NetLink.

The user can also attach a comment that describes each configured network. The OK button adds the network as subfolder.

The names of network nodes are also called NetLink. These are the names of logical networks.



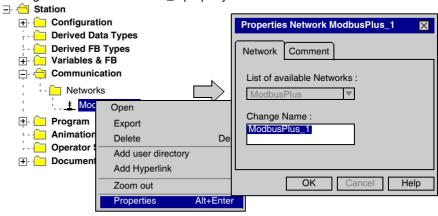


# **Configure Network**

#### Configure Network

On the network folder, by a double-clicking action or by the Open item on contextual menu, the editor of the corresponding communication screen is opened in order to set the specific network services.

The figure shows the contextual menu to start network properties and the window to set the specific network services

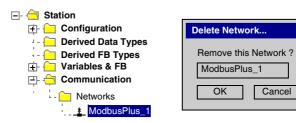





# Properties of a network

# Properties of a network

The contextual menu proposes the user to see again the properties of a configured network. Here, the user can change the NetLink name and the associated comment.


The figure shows the Modbus+ 1 property window



# Delete an existing network folder

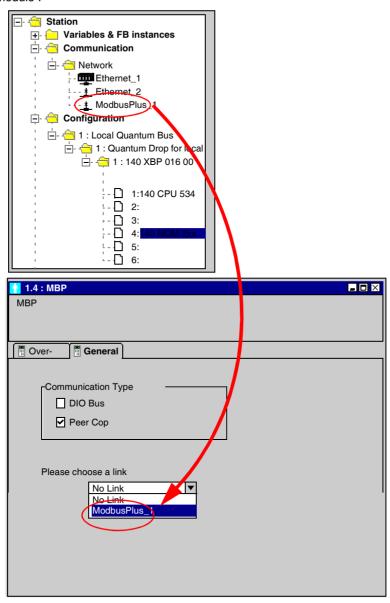
# Delete an existing network folder

With a right-mouse-click on the network folder, a contextual menu appears. Here the user is able to delete the network configuration. In this case, the subfolder of the network will also be removed in application browser.



**Note:** If this removed network was previously attached to a communication module, this module loses its link and it will work with its default parameters.

# Link between logical and physical network


#### **NetLinks**

DuringUnity Pro application design, the NetLinks are created and inserted on subfolder Communication under Network. These are the names of logical networks.

Under configuration folder, on the communication module node included in the current station, the list of existing NetLinks is proposed to select and attach one network to one module. Only the NetLink that can be managed by this module, are displayed in the list box on module configuration screen. No NetLink can be edited and created here (no edit box), but this list contains at least the No Link field.

#### Attaching a NetLink to a Module

The following figure shows how to attach a created Modbus Plus NetLink to a NOM module



When you open the Modbus Plus configuration screen, it could take a long time (some time about 11 s). This is a normal behaviour, you just have to wait a little.

When a network is attached to a module, the icon of the corresponding node is changed and the network editor displays the address of the module in the rack.

The Icon in the Network folder indicates whether the link is attached to a module or not:

| *        | Icon when no communication module is attached to the NetLink      |
|----------|-------------------------------------------------------------------|
| <b>T</b> | Icon when a communication module has been attached to the NetLink |

# **Configuring a Physical Network**

4

# Overview

### Introduction

This chapter describes how to configure a physical network.

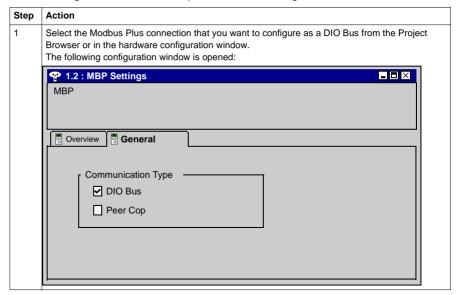
# What's in this Chapter?

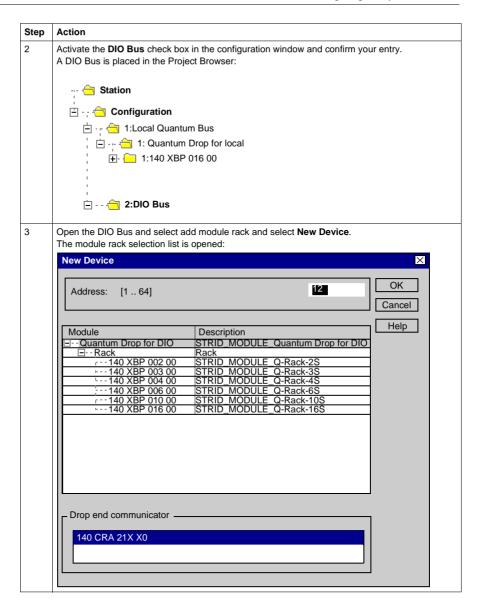
This chapter contains the following topics:

| Topic                              |    |
|------------------------------------|----|
| Configuring a Quantum DIO Drop     |    |
| Peer Cop Configuration             | 47 |
| Global Input Data Configuration    | 50 |
| Global Output Data Configuration   |    |
| Configuring Specific Data          |    |
| Specific Input Data Configuration  | 53 |
| Specific Output Data Configuration |    |

# **Configuring a Quantum DIO Drop**

#### Introduction


A Quantum DIO Drop consists of a standard module rack installed with I/O modules and a 140 CRA 21• •0 Modbus Plus communication module.


A DIO Bus can either be connected to the Modbus Plus connection on the CPU, or to a 140 NOM 2. 00 communication module.

**Note:** The Quantum DIO Drop Modules 140 CRA 2•• ••• have no health bits. For this reason the status for a properly functioning DIO Drop is always ZERO and not ONE as it is for other modules!

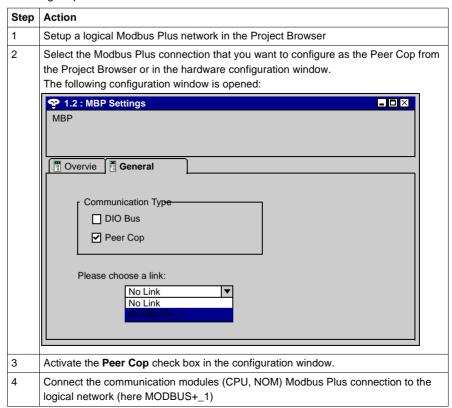
# Adding a DIO Bus

The following table describes the procedure for adding a DIO Bus.



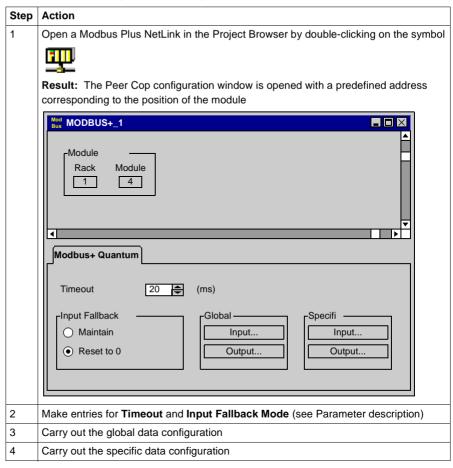


| Step | Action                                                                                                                                                                                                                                                                                                          |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4    | Select the desired module rack and enter the Modbus Plus address in the address field. Confirm with OK.  A DIO Drop is placed in the Project Browser. The number set, 12 in our example, states the Modbus Plus address of the Drop. The Modbus Plus Coupler 140 CRA 21X X0 is automatically entered in slot 1: |
|      | Station  Configuration  1:Local Quantum Bus  1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                                                                                                                                                 |
|      | ⊡ 칍 12: Quantum Drop for DIO                                                                                                                                                                                                                                                                                    |
|      | 1: 140 XBP 016 00  1: 140 CRA 21x x0 2: 3: 4: 5:                                                                                                                                                                                                                                                                |
| 5    | To continue configuring the RIO Drop you can carry on as with configuring a local I/O.                                                                                                                                                                                                                          |


### Modbus Plus Address

Ensure that the Modbus Plus Station Address that you have entered in the software configuration matches the hardware addresses of the modules used.

# **Peer Cop Configuration**


#### Requirements

Before configuring the **Peer Cop** communication type you must carry out the following steps:



# Peer Cop Configuration

Carry out the following steps to configure the Peer Cop:

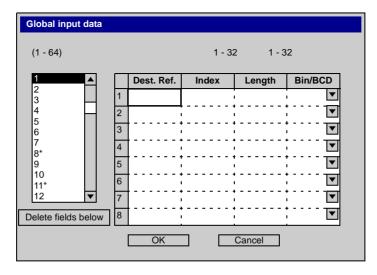


# Peer Cop parameter description

# The table gives a description of the Peer Cop parameter

| Parameter                 | Field / Button                                                                                                                       | Description                                                                                                                                                                                                                        |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module<br>Address         | Rack:1 Module: 2 (for example)                                                                                                       | The topological address of the module rack and the slot number with the connected communications module are shown here                                                                                                             |
| Timeout                   | <ul> <li>The default value is 500 ms.</li> <li>The values must be between 20 ms and 2 sec</li> <li>The increment is 20 ms</li> </ul> | Refresh time for the inputs in milliseconds. It enables the maximum time to be set in which the remote drop inputs must be refreshed on the Modbus Port. If the data is not refreshed in the specified time an error is generated. |
| Input<br>Fallback<br>Mode | Maintain<br>Reset to 0                                                                                                               | The input values can be maintained or reset to "0"                                                                                                                                                                                 |
| Specific                  | Inputs<br>Outputs                                                                                                                    | Buttons for specific data configuration (inputs and outputs)                                                                                                                                                                       |
| Global                    | Inputs<br>Outputs                                                                                                                    | Buttons for global data configuration (inputs and outputs)                                                                                                                                                                         |

# **Global Input Data Configuration**


#### Overview

The Peer Cop configuration window contains the following buttons for global data configuration:

- Global input data
- Global output data

### Global input data

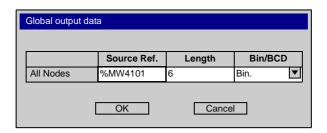
The diagram shows the global input data configuration window



The table shows the global input data configuration parameter

| Parameter             | Field / Button      | Description                                                      |
|-----------------------|---------------------|------------------------------------------------------------------|
| Station window (1-64) | 3                   | Station from which data is received                              |
| Dest. Ref.            | %IW10 (for example) | Address for saving the data received                             |
| Length (max. 32)      | 6 (for example)     | This means 6 words from station 3 are sent to all stations       |
| Index                 | 4 (for example)     | This means that the station receives the 4th word from station 3 |
| Bin/BCD               | Bin.<br>BCD         | Received data codes                                              |

# **Global Output Data Configuration**


#### Overview

The Peer Cop configuration window contains the following buttons for global data configuration:

- Global input data
- Global output data

# Global output data

The diagram shows the global output data configuration window



The table shows the global output data configuration parameter

| Parameter        | Field / Button        | Description                                           |
|------------------|-----------------------|-------------------------------------------------------|
| Source Ref.      | %MW4101 (for example) | Address from which data is sent to all other stations |
| Length (max. 32) | 6 (for example)       | This means 6 words are sent to all stations           |
| Bin/BCD          | Bin.<br>BCD           | Received data codes                                   |

# **Configuring Specific Data**

#### Overview

The Peer Cop configuration window contains the following buttons for specific data configuration:

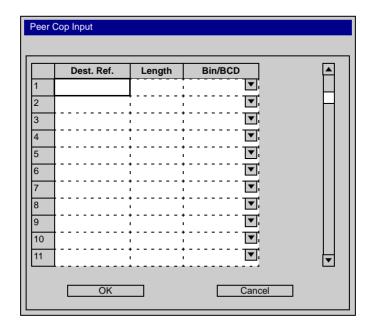
- Specific Input Data Configuration, p. 53
- Specific Output Data Configuration, p. 54

### Configuration

The specific input and output data is continuously placed as application internal words.

The user must define every local bus segment connection point as follows:

- Starting address in the table of internal words (%MW)
- Assignment of 0 to 32 words per station


The following restrictions/rules must be observed:

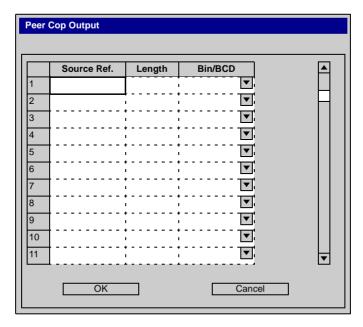
- The address area for input and output words must not overlap.
- The maximum size of the specific data may not exceed 1,000 words (500 words maximum for the input words and maximum 500 words for the output words).

# **Specific Input Data Configuration**

# Specific input data

The diagram shows the specific input data configuration window




The table shows the global input data configuration parameter

| Parameter        | Field / Button      | Description                                                |
|------------------|---------------------|------------------------------------------------------------|
| Dest. Ref.       | %IW10 (for example) | Address for saving the data received                       |
| Length (max. 32) | 6 (for example)     | This means 6 words from station 3 are sent to all stations |
| Bin/BCD          | Bin.<br>BCD         | Received data codes                                        |

# **Specific Output Data Configuration**

# Specific output data

The diagram shows the specific output data configuration window



The table shows the specific output data configuration parameter

| Parameter        | Field / Button        | Description                                           |
|------------------|-----------------------|-------------------------------------------------------|
| Source Ref.      | %MW4101 (for example) | Address from which data is sent to all other stations |
| Length (max. 32) | 6 (for example)       | This means 6 words are sent to all stations           |
| Bin/BCD          | Bin.<br>BCD           | Received data codes                                   |

# **Application Specific Communication**



### At a Glance

#### Overview

This part of the document contains information about Modbus Plus Application Specific Communication.

# What's in this Part?

This part contains the following chapters:

| Chapter | Chapter Name                                   |     |
|---------|------------------------------------------------|-----|
| 5       | Introducing Application Specific Communication | 57  |
| 6       | CREAD_REG: Continuous register reading         | 69  |
| 7       | CWRITE_REG: Continuous register writing        | 75  |
| 8       | MBP_MSTR: Modbus Plus Master                   | 81  |
| 9       | ModbusP_ADDR: Modbus Plus Address              | 123 |
| 10      | READ_REG: Read register                        | 129 |
| 11      | WRITE_REG: Write register                      | 137 |

# Introducing Application Specific Communication

5

### Overview

#### Introduction

The application specific communication function enables data exchange between Modbus Plus stations to be carried out under the control of the application program. Unity Pro-Soft provides a series of function blocks for this that are described in this section.

# What's in this Chapter?

This chapter contains the following topics:

| Торіс                                                     |    |  |
|-----------------------------------------------------------|----|--|
| Overview of Function Blocks for Modbus Plus Communication | 58 |  |
| Data Exchange on a Local Segment                          | 59 |  |
| Data Exchange on Remote Modbus Plus Networks              | 63 |  |
| Global Data - Broadcast Services                          |    |  |

#### Overview of Function Blocks for Modbus Plus Communication

#### Introduction

Unity Pro provides the following 6 function blocks for communication with Modbus Plus:

- READ REG
- WRITE REG
- CREAD REG
- CWRITE REG
- MBP MSTR
- ModbusP ADDR

In contrast to Peer Cop and DIO communication, application specific communication enables connections between stations that are connected from different Modbus Plus networks via Bridges.

**Note:** Application specific communication requires no specific configuration or programming on the respective slave. When writing registers to an other station, special attention must be made that the correct destination area is addressed to avoid unintentionally overwriting data.

**Note:** For Quantum PLC communication with a Premium/Atrium PLC the addressing must be made with an offset of 1. In order to access an address object **n** of a Premium PLC, the communication function of the Quantum PLC must use the **n+1** address.

The following is a brief overview of the individual function blocks. A detailed representation is found in the next chapters.

### READ\_REG/ WRITE\_REG

A rising edge at the REQ input reads or writes a register area to this function block once. It transfers data between the PLC and an addressed slave via Modbus Plus. The address and routing information is prepared by the **ModbusP\_ADDR** block.

### CREAD\_REG/ CWRITE\_REG

This function block continuously reads or writes a register area. It transfers data between the PLC and an addressed slave via Modbus Plus.

The address and routing information is prepared by the **ModbusP ADDR** block.

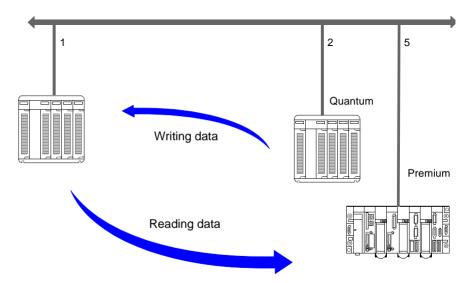
#### MBP MSTR

This Modbus Plus Master block is intended for universal application. It enables both data transfer between Modbus Plus stations including global data, as well as access to diagnostics and statistical data of the Modbus Plus network.

#### ModbusP ADDR

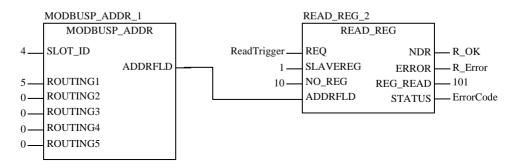
This block prepares the Modbus Plus address and routing information for the write and read blocks.

# **Data Exchange on a Local Segment**


#### Overview

A Quantum controller can exchange data with all connected stations via a Modbus Plus network.

Routing information is set to 0 in the local segment.

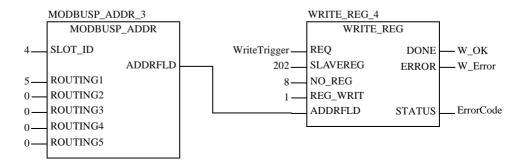

# Example for a local segment

In the following configuration, a Quantum is connected with a Modbus Plus network in slot 4 via a NOM module. Data is read from a Quantum (address 2) and data is sent to a Premium (address 5).



# Writing data

In the following example the 10 register %MW1 to %MW10 is read from a Quantum and placed as %MW101 to %MW110.




The following table describes the parameters of both blocks:

| Parameter | Content/<br>Variable | Description                                                                  |
|-----------|----------------------|------------------------------------------------------------------------------|
| Slot_ID   | 4                    | NOM Modbus Plus communication module slot (0 for the CPU's Modbus Plus Port) |
| ROUTING1  | 2                    | Modbus Plus address of the destination station                               |
| ROUTING2  | 0                    | Routing byte 2, 0 local segment                                              |
| ROUTING3  | 0                    | Routing byte 3, 0 local segment                                              |
| ROUTING4  | 0                    | Routing byte 4, 0 local segment                                              |
| ROUTING5  | 0                    | Routing byte 5, 0 local segment                                              |
| ADDRFLD   | WordArr5             | Data structure with the Modbus Plus address and routing information          |
| REQ       | ReadTrigger          | Trigger signal to start the read process                                     |
| SLAVEREG  | 201                  | Offset address of the first register in the slave to be read from.           |
| NO_REG    | 10                   | Number of registers to read                                                  |
| ADDRFLD   | WordArr5             | Data structure with the Modbus Plus address and routing information          |
| NDR       | R_OK                 | Set to "1" for one cycle after reading new data                              |
| ERROR     | R_Error              | Set to "1" for one cycle if an error occurs                                  |
| STATUS    | ErrorCode            | Error code                                                                   |
| REG_READ  | 1                    | Starting address of the destination data field                               |

### Reading data

In the following example, the 8 register %MW1 to %MW8 is read from a Premium and placed as %MW201 to %MW208.

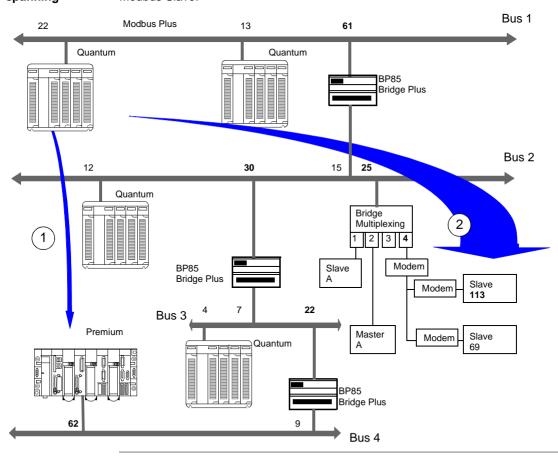


The following table describes the parameters of both blocks:

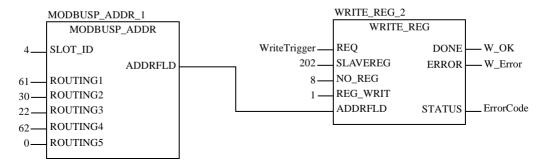
| Parameter | Content/<br>Variable | Description                                                                        |
|-----------|----------------------|------------------------------------------------------------------------------------|
| Slot_ID   | 4                    | NOM Modbus Plus communication module slot (0 for the CPU's Modbus Plus Port)       |
| ROUTING1  | 5                    | Modbus Plus address of the destination station                                     |
| ROUTING2  | 0                    | Routing byte 2, 0 local segment                                                    |
| ROUTING3  | 0                    | Routing byte 3, 0 local segment                                                    |
| ROUTING4  | 0                    | Routing byte 4, 0 local segment                                                    |
| ROUTING5  | 0                    | Routing byte 5, 0 local segment                                                    |
| ADDRFLD   | WordArr5             | Data structure with the Modbus Plus address and routing information                |
| REQ       | WriteTrigger         | Trigger signal to start the write process                                          |
| SLAVEREG  | 202                  | Offset address of the first register in the slave to be written. (see Information) |
| NO_REG    | 8                    | Number of registers to write                                                       |
| REG_WRIT  | 1                    | Start address of the source data field                                             |
| ADDRFLD   | WordArr5             | Data structure with the Modbus Plus address and routing information                |
| DONE      | W_OK                 | Set to "1" for one cycle after writing data                                        |
| ERROR     | W_Error              | Set to "1" for one cycle if an error occurs                                        |
| STATUS    | ErrorCode            | Error code                                                                         |

**Note:** For Quantum PLC communication with a Premium/Atrium PLC the addressing must be made with an offset of 1. In order to access an address object **n** of a Premium PLC, the communication function of the Quantum PLC must use the **n+1** address.

# **Data Exchange on Remote Modbus Plus Networks**


#### Overview

A Quantum controller can exchange data with all connected stations via a Modbus Plus network.

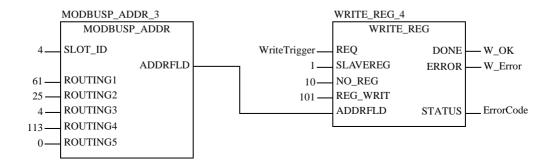

In remote networks, the routing information must be entered additionally for every Bridge in the data path.

# Example Segment spanning

In the following configuration, a Quantum is connected with a Modbus Plus network in slot 4 via a NOM module. Data is sent to a Premium (Bus 4, address 62) and a Modbus Slave.



# **Reading data (1)** In the following example, the 8 register %MW1 to %MW8 is read from a Premium and placed as %MW201 to %MW208.




The following table describes the parameters of both blocks:

| Parameter | Content/<br>Variable | Description                                                         |
|-----------|----------------------|---------------------------------------------------------------------|
| Slot_ID   | 4                    | Modbus Plus communication module slot                               |
| ROUTING1  | 61                   | Routing byte 1                                                      |
| ROUTING2  | 30                   | Routing byte 2                                                      |
| ROUTING3  | 22                   | Routing byte 3                                                      |
| ROUTING4  | 62                   | Routing byte 4                                                      |
| ROUTING5  | 0                    | Routing byte 5                                                      |
| ADDRFLD   | WordArr5             | Data structure with the Modbus Plus address and routing information |
| REQ       | WriteTrigger         | Trigger signal to start the write process                           |
| SLAVEREG  | 202                  | Offset address of the first register in the slave to be written.    |
| NO_REG    | 8                    | Number of registers to write                                        |
| REG_WRIT  | 1                    | Start address of the source data field                              |
| ADDRFLD   | WordArr5             | Data structure with the Modbus Plus address and routing information |
| DONE      | W_OK                 | Set to "1" for one cycle after writing data                         |
| ERROR     | W_Error              | Set to "1" for one cycle if an error occurs                         |
| STATUS    | ErrorCode            | Error code                                                          |

**Note:** For Quantum PLC communication with a Premium/Atrium PLC the addressing must be made with an offset of 1. In order to access an address object **n** of a Premium PLC, the communication function of the Quantum PLC must use the **n+1** address.

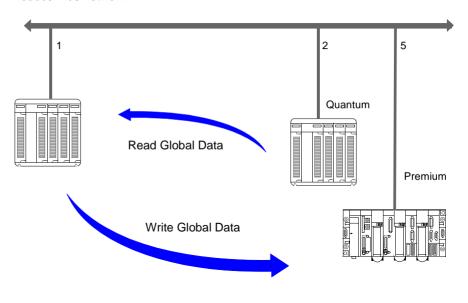
# **Reading data (2)** In the following example, the 10 registers %MW101 to %MW110 are sent to a Modbus Slave and placed as %MW1 to %MW10.



### The following table describes the parameters of both blocks:

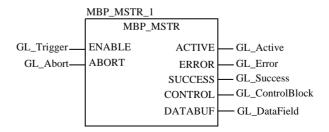
| Parameters | Content/<br>Variable | Description                                                                  |
|------------|----------------------|------------------------------------------------------------------------------|
| Slot_ID    | 4                    | NOM Modbus Plus communication module slot (0 for the CPU's Modbus Plus Port) |
| ROUTING1   | 61                   | Routing byte 1                                                               |
| ROUTING2   | 25                   | Routing byte 2                                                               |
| ROUTING3   | 4                    | Routing byte 3                                                               |
| ROUTING4   | 113                  | Routing byte 4                                                               |
| ROUTING5   | 0                    | Routing byte 5                                                               |
| ADDRFLD    | WordArr5             | Data structure with the Modbus Plus address and routing information          |
| REQ        | WriteTrigger         | Trigger signal to start the write process                                    |
| SLAVEREG   | 1                    | Offset address of the first register in the slave to be written.             |
| NO_REG     | 10                   | Number of registers to write                                                 |
| REG_WRIT   | 101                  | Start address of the source data field                                       |
| ADDRFLD    | WordArr5             | Data structure with the Modbus Plus address and routing information          |
| DONE       | W_OK                 | Set to "1" for one cycle after writing data                                  |
| ERROR      | W_Error              | Set to "1" for one cycle if an error occurs                                  |
| STATUS     | ErrorCode            | Error code                                                                   |

#### Global Data - Broadcast Services


#### Overview

A Quantum controller can exchange global data with all connected stations via a Modbus Plus network.

Global data is a Broadcast service that enables up to 16 registers to be sent to all connected stations with the transfer of Tokens. The sending and receiving of global data with a Quantum controller can be configured through the Peer Cop framework, and can also be activated in the application program with the help of the **MSTR** block.


# Example for Global Data

In the following configuration, a Quantum is connected with a Modbus Plus network in slot 4 via a NOM module. Global data is exchanged with the other stations in the Modbus Plus network.

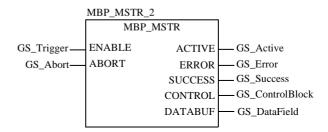


### Read global data

In the following example, the 10 register %MW1 to %MW10 is read from the Quantum with station address 2 as global data and placed in the GL\_DataField.



The following table describes the parameters of the MSTR blocks:


| Parameters | Content/Variable                                 | Description                      |
|------------|--------------------------------------------------|----------------------------------|
| ENABLE     | GL_Trigger                                       | Enable MSTR function             |
| ABORT      | GL_Abort                                         | Enable active MSTR function      |
| ACTIVE     | GL_Active                                        | Operation is active              |
| ERROR      | GL_Error                                         | Operation is faulty              |
| SUCESS     | GL_Success                                       | Operation completed successfully |
| CONTROL    | ARRAY [08] OF WORD/<br>GL_ControlBlock           | Field for MSTR control block     |
| DATABUF    | ARRAY $[0n]$ OF WORD $(n \ge 10)$ / GL_DataField | Data field for the recieved data |

#### Contents of GL ControlBlock:

| Register           | Contents | Description                                                                                                                                     |
|--------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| GL_ControlBlock[0] | 6        | Read global data                                                                                                                                |
| GL_ControlBlock[1] | -        | indicates the error status                                                                                                                      |
| GL_ControlBlock[2] | 10       | Number of registers that should be read as global data                                                                                          |
| GL_ControlBlock[3] | -        | Display of registers available in scanned node (will be automatically updated).                                                                 |
| GL_ControlBlock[4] | x0402    | Least significant byte: Address of the station whose global data is to be read Most significant byte: Communication module slot (0 for the CPU) |

### Write global data

In the following example, the 8 registers %MW101 to %MW108 are sent from the Quantum with station address 1 as global data to all nodes in the Modbus Plus network



The following table describes the parameters of the MSTR block:

| Parameters | Content/Variable                          | Description                       |
|------------|-------------------------------------------|-----------------------------------|
| ENABLE     | GS_Trigger                                | Enable MSTR function              |
| ABORT      | GS_Abort                                  | Enable active MSTR function       |
| ACTIVE     | GS_Active                                 | Operation is active               |
| ERROR      | GS_Error                                  | Operation is faulty               |
| SUCESS     | GS_Success                                | Operation completed successfully  |
| CONTROL    | ARRAY [08] OF WORD/<br>GS_ControlBlock    | Field for MSTR control block      |
| DATABUF    | ARRAY [0n] OF WORD (n ≥ 10)/ GS_DataField | Data field of the data to be sent |

#### Contents of the GS\_ControlBlock:

| Register           | Contents | Description                                                            |
|--------------------|----------|------------------------------------------------------------------------|
| GS_ControlBlock[0] | 5        | Write global data                                                      |
| GS_ControlBlock[1] | -        | indicates the error status                                             |
| GS_ControlBlock[2] | 10       | Number of registers to be sent from the State RAM as global data (132) |
| GS_ControlBlock[3] | -        | Reserved                                                               |
| GS_ControlBlock[4] | x0400    | Most significant byte: Communication module slot (0 for the CPU)       |

# **CREAD\_REG: Continuous** register reading

6

### Overview

### Introduction

This chapter describes the CREAD\_REG block.

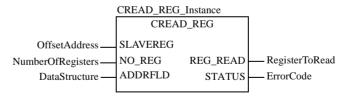
# What's in this Chapter?

This chapter contains the following topics:

| Торіс                 | Page |
|-----------------------|------|
| Description           | 70   |
| Derived Data Types    | 72   |
| Function mode         | 73   |
| Parameter description | 74   |

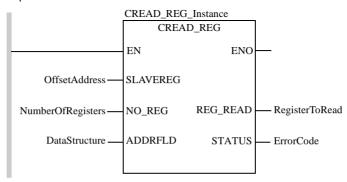
### **Description**

# Function description


This function block reads a register area continuously. It reads data from an addressed node via Modbus Plus, TCP/IP Ethernet or SY/MAX Ethernet. EN and ENO can be configured as additional parameters.

**Note:** When programming a CREAD\_REG function, you must be familiar with the routing procedures used by your network. Modbus Plus routing path structures are described in detail in the *Modbus Plus Network Planning and Installation Guide*. If TCP/IP or SY/MAX Ethernet routing is implemented, standard Ethernet IP router products must be used. A full description of the TCP/IP routing is provided in the *Quantum with Unity ProTCP/IP Configuration User Guide*.

**Note:** Several copies of this function block can be used in the program. However, multiple instancing of these copies is not possible.


# Representation in FBD

#### Representation:



# Representation in LD

#### Representation:



# Representation in II

#### Representation:

CAL CREAD\_REG\_Instance (SLAVEREG:=OffsetAddress,
NO\_REG:=NumberOfRegisters, ADDRFLD:=DataStructure,
REG\_READ=>RegisterToRead, STATUS=>ErrorCode)

# Representation in ST

#### Representation:

CREAD\_REG\_Instance (SLAVEREG:=OffsetAddress,
 NO\_REG:=NumberOfRegisters, ADDRFLD:=DataStructure,
 REG\_READ=>RegisterToRead, STATUS=>ErrorCode);

# Parameter description

#### Description of input parameters:

| Parameter | Data type | Description                                                      |
|-----------|-----------|------------------------------------------------------------------|
| SLAVEREG  | DINT      | Offset address of the first %MW register in the slave to be read |
|           |           | from.                                                            |
| NO_REG    | INT       | Number of addresses to be read from slave.                       |
| ADDRFLD   | WordArr   | Data structure describing the Modbus Plus address, TCI/IP        |
|           | 5         | address or SY/MAX IP address.                                    |

#### Description of output parameters:

| Parameter | Data type | Description                                                                                                                                                                                                                                                        |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REG_READ  | ANY       | Data to be read  For the file to be read a data structure must be declared as a located variable.                                                                                                                                                                  |
| STATUS    | WORD      | If an error occurs while the function is being executed, an error code remains at this output for one cycle.  Error code, see  • Modbus Plus and SY/MAX Ethernet Error Codes, p. 115  • SY/MAX-specific error codes, p. 117  • TCP/IP Ethernet error codes, p. 119 |

#### Runtime error

For a list of all block error codes and values, see .

# **Derived Data Types**

### Derived data typeWordArr5 in Modbus Plus

# Element descriptions:

| Element     | Data type | Description                                                                                                                                                                                                                                                                                                                            |
|-------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WordArr5[1] | WORD      | Least significant byte: Routing register 1 is used for address specification (routing path addresses one of five) of the destination node during network transfer. The last byte in the routing path that is not zero is the destination node. Most significant byte: Slot of the network adapter module (NOM), if any (only Quantum). |
| WordArr5[2] | WORD      | Routing register 2                                                                                                                                                                                                                                                                                                                     |
| WordArr5[3] | WORD      | Routing register 3                                                                                                                                                                                                                                                                                                                     |
| WordArr5[4] | WORD      | Routing register 4                                                                                                                                                                                                                                                                                                                     |
| WordArr5[5] | WORD      | Routing register 5                                                                                                                                                                                                                                                                                                                     |

### Element description for WordArr5 with TCP/IP Ethernet

### Element description for WordArr5 with TCP/IP Ethernet

| Element     | Data type | Description                                                                                                           |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------|
| WordArr5[1] | WORD      | Least significant byte: MBP on Ethernet Transporter (MET) mapping index Most significant byte: Slot of the NOE module |
| WordArr5[2] | WORD      | Byte 4 (MSB) of the 32-bit destination IP address                                                                     |
| WordArr5[3] | WORD      | Byte 3 of the 32-bit destination IP address                                                                           |
| WordArr5[4] | WORD      | Byte 2 of the 32-bit destination IP address                                                                           |
| WordArr5[5] | WORD      | Byte 1 (LSB) of the 32-bit destination IP address                                                                     |

### Element description for WordArr5 with SY/MAX Ethernet

### Element description for WordArr5 with SY/MAX Ethernet

| Element     | Data type | Description                                                                                                           |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------|
| WordArr5[1] | WORD      | Least significant byte: MBP on Ethernet Transporter (MET) mapping index Most significant byte: Slot of the NOE module |
| WordArr5[2] | WORD      | Destination drop number (or set to FF hex)                                                                            |
| WordArr5[3] | WORD      | Terminator (set to FF hex)                                                                                            |
| WordArr5[4] | WORD      | No significance                                                                                                       |
| WordArr5[5] | WORD      | No significance                                                                                                       |

#### **Function mode**

Function mode of the CREAD\_REG block Although a large number of CREAD\_REG function blocks can be programmed; only four read operations may be active at the same time. In this case it is irrelevant whether they are the result of this function block or others (e.g. MBP\_MSTR, MSTR, READ\_REG). All function blocks use one data transaction path and require multiple cycles to complete a job.

**Note:** A TCP/IP communication between a Quantum PLC (NOE 211 00) and a Momentum PLC (all TCP/IP CPUs and all TCP/IP I/O modules) is only possible, when only **one** read or write job is carried out in every cycle. If several jobs are sent per PLC cycle, the communication stops without generating an error message in the status register of the function block.

All routing information is contained in the <code>WordArr5</code> data structure of the <code>ADDRFLD</code> input. The type function block assigned to this input is defined by the network used. Please use:

- Modbus Plus for function block Modbus P ADDR
- TCP/IP Ethernet for function block TCP IP ADDR
- SY/MAX Ethernet for function block SYMAX IP ADDR

**Note:** The WordArr5 data structure can also be used with constants.

**Note:** This function block puts a heavy load on the network; therefore the network load must be carefully monitored. If the network load is too high, the program logic should be reorganized in order to work with the READ\_REG function block, a variation of this function block that does not operate in a continuous mode, but under command control.

# Parameter description

#### STAVEREG

Start of the area in the addressed slave from which the source data is read. The source area always resides within the %MW register area.

Note: For slaves for a non-Unity Pro PLC:

The source area always resides within the 4x register area. SLAVEREG expects the source reference as offset within the 4x area. The leading "4" must be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).

The parameter can be entered as an address, located variable, unlocated variable or literal

#### NO REG

Number of addresses to be read from the addressed slave (1 ... 100). The parameter can be entered as an address, located variable or unlocated variable

#### REG READ

An ARRAY that is the same size as the requested transmission must be agreed upon  $(\ge NO\_REG)$  for this parameter. The name of this array is defined as a parameter. If the array is defined too small, then only the amount of data is transmitted that is present in the array.

The parameter must be defined as a located variable.

#### STATUS

If an error occurs while the function is being executed, an error code remains at this output for one cycle.

Error code, see

- Modbus Plus and SY/MAX Ethernet Error Codes. p. 115
- SY/MAX-specific error codes, p. 117
- TCP/IP Ethernet error codes, p. 119

The parameter can be entered as an address, located variable or unlocated variable.

# **CWRITE\_REG: Continuous** register writing

7

### Overview

### Introduction

This chapter describes the CWRITE\_REG block.

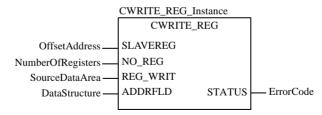
# What's in this Chapter?

This chapter contains the following topics:

| Topic                 | Page |
|-----------------------|------|
| Description           | 76   |
| Derived Data Types    | 78   |
| Function mode         | 79   |
| Parameter description | 80   |

### **Description**

# Function description


This function block writes continuously to the register area. It transfers data from the PLC via Modbus Plus, TCP/IP Ethernet or SY/MAX Ethernet to an addressed slave. EN and ENO can be configured as additional parameters.

**Note:** You must be familiar with the routing procedures of the network when programming a CWRITE\_REG function. Modbus Plus routing path structures are described in detail in the *Modbus Plus Network Planning and Installation Guide*. If TCP/IP or SY/MAX Ethernet routing is implemented, standard Ethernet IP router products must be used. A full description of the TCP/IP routing is provided in the *Quantum with Unity ProTCP/IP Configuration User Guide*.

**Note:** Several copies of this function block can be used in the program. However, multiple instancing of these copies is not possible.

# Representation in FBD

### Representation:



# Representation in LD

#### Representation:



# Representation in II

#### Representation:

CAL CWRITE\_REG\_Instance (SLAVEREG:=OffsetAddress,
 NO\_REG:=NumberOfRegisters, REG\_WRIT:=SourceDataArea,
 ADDRFLD:=DataStructure, STATUS=>ErrorCode)

# Representation in ST

#### Representation:

CWRITE\_REG\_Instance ( SLAVEREG:=OffsetAddress,
 NO\_REG:=NumberOfRegisters, REG\_WRIT:=SourceDataArea,
 ADDRFLD:=DataStructure, STATUS=>ErrorCode);

# Parameter description

#### Description of input parameters:

| Parameter | Data type | Description                                                                                 |
|-----------|-----------|---------------------------------------------------------------------------------------------|
| SLAVEREG  | DINT      | Offset address of the first %MW register in the slave to be written to.                     |
| NO_REG    | INT       | Number of addresses to be written from slave                                                |
| REG_WRIT  | ANY       | Source data (A data structure must be declared as a located variable for the source file .) |
| ADDRFLD   | WordArr5  | Data structure transferring the Modbus Plus-address, TCI/IP address or SY/MAX-IP address.   |

#### Description of output parameters:

| Parameter | Data type | Description                                                       |  |
|-----------|-----------|-------------------------------------------------------------------|--|
| STATUS    | WORD      | If an error occurs while the function is being executed, an error |  |
|           |           | code remains at this output for one cycle.                        |  |
|           |           | Error code, see                                                   |  |
|           |           | Modbus Plus and SY/MAX Ethernet Error Codes, p. 115               |  |
|           |           | SY/MAX-specific error codes, p. 117                               |  |
|           |           | TCP/IP Ethernet error codes, p. 119                               |  |

#### Runtime error

For a list of all block error codes and values, see .

# **Derived Data Types**

### Element description for WordArr5 in Modbus Plus

### Element description for WordArr5 in Modbus Plus:

| Element     | Data type | Description                                                                                                                                                                                                                                                                                                             |
|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WordArr5[1] | WORD      | Least significant byte: Routing register 1 is used for address specification (routing path addresses one of five) of the destination node during network transfer. The last byte in the routing path that is not zero is the destination node. Most significant byte: Slot of the network adapter module (NOM), if any. |
| WordArr5[2] | WORD      | Routing register 2                                                                                                                                                                                                                                                                                                      |
| WordArr5[3] | WORD      | Routing register 3                                                                                                                                                                                                                                                                                                      |
| WordArr5[4] | WORD      | Routing register 4                                                                                                                                                                                                                                                                                                      |
| WordArr5[5] | WORD      | Routing register 5                                                                                                                                                                                                                                                                                                      |

### Element description for WordArr5 with TCP/IP Ethernet

### Element description for WordArr5 with TCP/IP Ethernet

| Element     | Data type | Description                                                                                                            |
|-------------|-----------|------------------------------------------------------------------------------------------------------------------------|
| WordArr5[1] | WORD      | Least significant byte: MBP on Ethernet Transporter (MET) mapping index Most significant byte: Slots of the NOE module |
| WordArr5[2] | WORD      | Byte 4 (MSB) of the 32-bit destination IP address                                                                      |
| WordArr5[3] | WORD      | Byte 3 of the 32-bit destination IP address                                                                            |
| WordArr5[4] | WORD      | Byte 2 of the 32-bit destination IP address                                                                            |
| WordArr5[5] | WORD      | Byte 1 (LSB) of the 32-bit destination IP address                                                                      |

### Element description for WordArr5 with SY/MAX Ethernet

### Element description for WordArr5 with SY/MAX Ethernet

| Element     | Data type | Description                                                                                                           |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------|
| WordArr5[1] | WORD      | Least significant byte: MBP on Ethernet Transporter (MET) mapping index Most significant byte: Slot of the NOE module |
| WordArr5[2] | WORD      | Destination drop number (or set to FF hex)                                                                            |
| WordArr5[3] | WORD      | Terminator (set to FF hex)                                                                                            |
| WordArr5[4] | WORD      | No significance                                                                                                       |
| WordArr5[5] | WORD      | No significance                                                                                                       |

#### **Function mode**

Function mode of the CWRITE\_REG block

Although a large number of CWRITE\_REG function blocks can be programmed, only four write operations may be active at the same time. In this case it is irrelevant whether they are the result of this function block or others (e.g. MBP\_MSTR, MSTR, WRITE\_REG). All function blocks use one data transaction path and require multiple cycles to complete a job.

If several CWRITE\_REG function blocks are used within an application, they must at least differ in the values of their NO\_REG or REG\_WRIT parameters.

**Note:** A TCP/IP communication between a Quantum PLC (NOE 211 00) and a Momentum PLC (all TCP/IP CPUs and all TCP/IP I/O modules) is only possible, when only **one** read or write job is carried out in every cycle. If several jobs are sent per PLC cycle, the communication stops without generating an error message in the status register of the function block.

All routing information is contained in the <code>WordArr5</code> data structure of the <code>ADDRFLD</code> input. The type function block assigned to this input is defined by the network used. Please use:

- Modbus Plus for function block Modbus P ADDR
- TCP/IP Ethernet for function block TCP IP ADDR
- SY/MAX Ethernet for function block SYMAX IP ADDR

**Note:** The WordArr5 data structure can also be used with constants

**Note:** This function block puts a heavy load on the network; therefore the network load must be carefully monitored. If the network load is too high, the program logic should be reorganized, in order to work with the WRITE\_REG function block, a variation of this function block that does not operate in a continuous mode, but under command control.

### Parameter description

#### STAVEREG

Start of the area in the addressed slave to which the source data is written. The source area always resides within the %MW address area.

Note: For slaves for a non-Unity Pro PLC:

The destination area always resides within the 4x register area. SLAVEREG expects the target address as an offset within the 4x area. The leading "4" must be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).

The parameter can be entered as an address, located variable, unlocated variable or literal.

#### NO REG

Number of registers to be written to slave processor (1 ... 100). The parameter can be entered as an address, located variable, unlocated variable or literal.

#### STATUS

If an error occurs while the function is being executed, an error code remains at this output for one cycle.

Error code, see

- Modbus Plus and SY/MAX Ethernet Error Codes, p. 115
- SY/MAX-specific error codes, p. 117
- TCP/IP Ethernet error codes, p. 119

The parameter can be entered as an address, located variable or unlocated variable.

#### REG WRIT

An ARRAY that is the same size as the requested transmission must be agreed upon ( $\geq$  NO\_REG) for this parameter. The name of this array is defined as a parameter. If the array is defined too small, then only the amount of data is transmitted that is present in the array.

The parameter must be defined as a located variable.

# MBP\_MSTR: Modbus Plus Master

8

### Overview

#### Introduction

This chapter describes the MBP\_MSTR block.

# What's in this Chapter?

This chapter contains the following topics:

| Topic                                       | Page |
|---------------------------------------------|------|
| Description                                 | 83   |
| Function mode                               | 86   |
| Parameter description                       | 87   |
| Write data                                  | 91   |
| Read data                                   | 93   |
| Read local statistics                       | 95   |
| Clear local statistics                      | 96   |
| Write Global Data (Peer Cop)                | 97   |
| Read Global Data (Peer Cop)                 | 98   |
| Get remote statistics                       | 99   |
| Clear remote statistics                     | 100  |
| Peer cop health                             | 101  |
| Optional module reset                       | 102  |
| Read CTE (Config extension table)           | 103  |
| Write CTE (Config extension table)          | 105  |
| Peer Cop Communications Health Status       | 107  |
| Modbus Plus network statistics              | 109  |
| TCP/IP Ethernet Network Statistics          | 114  |
| Modbus Plus and SY/MAX Ethernet Error Codes | 115  |
| SY/MAX-specific error codes                 | 117  |
| TCP/IP Ethernet error codes                 | 119  |

| Торіс                                          | Page |
|------------------------------------------------|------|
| CTE error codes for SY/MAX and TCP/IP Ethernet | 122  |

### **Description**

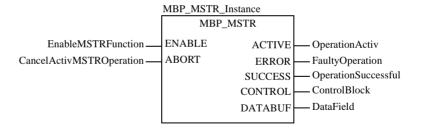
# Function description

It is possible to select one of 12 available network communication operations using this function block.

Although a large number of MBP\_MSTR function blocks can be programmed, only four of them can be active at the same time. All function blocks use one data transaction path and require multiple cycles to complete a job.

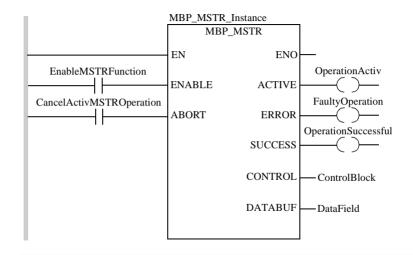
**Note:** A TCP/IP communication between a Quantum PLC and a Momentum PLC is only possible when only **one**read or write job is carried out in every cycle. If several jobs are sent per PLC cycle, the communication stops without generating an error message in the status register of the function block.

**Note:** The function block can only be used on the program level, i.e. not in Derived Function Blocks (DFBs).


**Note:** Several copies of this function block can be used in the program. However, multiple instancing of these copies is not possible.

EN and ENO can be configured as additional parameters.

**Note:** You must be familiar with the routing procedures of your network when programming an MSTR function. Modbus Plus routing path structures are described in detail in the *Modbus Plus Network Planning and Installation Guide*. If TCP/IP or SY/MAX Ethernet routing is implemented, standard Ethernet IP router products must be used. A full description of the TCP/IP routing is provided in the *Quantum with Unity Pro TCP/IP Configuration User Guide*.


# Representation in FRD

#### Representation:



# Representation in LD

#### Representation:



# Representation in IL

#### Representation:

CAL MBP\_MSTR\_Instance (ENABLE:=EnableMSTRFunction,
 ABORT:=CancelActivMSTROperation, ACTIVE=>OperationActiv,
 ERROR=>FaultyOperation, SUCCESS=>OperationSuccessful,
 CONTROL=>ControlBlock, DATABUF=>DataField)

# Representation in ST

#### Representation:

MBP\_MSTR\_Instance (ENABLE:=EnableMSTRFunction,
 ABORT:=CancelActivMSTROperation, ACTIVE=>OperationActiv,
 ERROR=>FaultyOperation, SUCCESS=>OperationSuccessful,
 CONTROL=>ControlBlock, DATABUF=>DataField);

# Parameter description

#### Description of input parameters:

| Parameter | Data type | Description                  |
|-----------|-----------|------------------------------|
| ENABLE    | BOOL      | Enable MSTR function         |
| ABORT     | BOOL      | Cancel active MSTR operation |

#### Description of output parameters:

| Parameter | Data type | Description                                                                                                   |
|-----------|-----------|---------------------------------------------------------------------------------------------------------------|
| ACTIVE    | BOOL      | Operation is active                                                                                           |
| ERROR     | BOOL      | Faulty operation                                                                                              |
| SUCCESS   | BOOL      | Operation completed successfully                                                                              |
| CONTROL   | ANY       | Field for MSTR control block (For the control block a data structure must be declared as a located variable.) |
| DATABUF   | ANY       | Data area (For the data area a data structure must be declared as a located variable.)                        |

#### Runtime error

In the event of an error occurring during an MSTR operation, a hexadecimal error code is displayed in the CONTROL[2] register of the control block for one cycle. Function error codes are network-specific:

- Modbus Plus and SY/MAX Ethernet error codes (See Modbus Plus and SY/MAX Ethernet Error Codes, p. 115)
- SY/MAX specific error codes (See SY/MAX-specific error codes, p. 117)
- TCP/IP Ethernet error codes (See TCP/IP Ethernet error codes, p. 119)
- CTE Error Codes for SY/MAX and TCP/IP Ethernet (See CTE error codes for SY/MAX and TCP/IP Ethernet, p. 122)

Note: For a list of all block error codes and values, see .

# **Function mode**

# Function mode of MBP\_MSTR blocks

Using the MBP\_MSTR block, one of 12 available network communication operations can be triggered via the network. Each operation receives a code. Whether the operations are available depends on the type of network used.

# Valid function codes

#### Valid function codes:

| Code | Function                                                      | Modbus<br>Plus | TCP/IP<br>Ethernet | SY/MAX<br>Ethernet |
|------|---------------------------------------------------------------|----------------|--------------------|--------------------|
| 1    | Write data                                                    | Х              | Х                  | Х                  |
| 2    | Read data                                                     | Х              | Х                  | Х                  |
| 3    | Get local statistics                                          | Х              | Х                  | -                  |
| 4    | Clear local statistics                                        | Х              | Х                  | -                  |
| 5    | Write global data, Peer Cop                                   | Х              | -                  | -                  |
| 6    | Read global data, Peer Cop                                    | Х              | -                  | -                  |
| 7    | Get remote statistics                                         | Х              | Х                  | -                  |
| 8    | Clear remote statistics (See Clear remote statistics, p. 100) | Х              | Х                  | -                  |
| 9    | Peer Cop Status (Peer Cop Health)                             | Х              | -                  | -                  |
| 10   | Reset optional module                                         | =              | Х                  | Х                  |
| 11   | Read CTE (Config extension)                                   | -              | Х                  | Х                  |
| 12   | Write CTE (Config extension)                                  | -              | Х                  | Х                  |

# Legend:

| Χ | Yes |
|---|-----|
| - | No  |

# Parameter description

**ENABLE** When ON, the operation specified in the first element of the CONTROL register is

enabled.

**ABORT** When ON, the currently active operation is aborted.

**ACTIVE** ON, if the operation is active.

**ERROR** ON, if the operation was aborted without success.

**SUCCESS** ON, if the operation concluded successfully.

**DATABUF** For operations providing data, e.g. the write operation, the data field is the data

source. For operations receiving data, e.g. the read operation, the data field is the data destination.

Varia Gestination.

With Ethernet CTE Read and Write operations, the data field holds the contents of the Ethernet configuration extension table.  ${\tt DATABUF}$  must be defined as an ARRAY

having at least 10 elements in this case.

The data field must be declared as a located variable.

**CONTROL**This field contains the control block. The first element CONTROL [1] contains a number from 1 to 12, which provides the operation code of the Modbus operation to be performed. The content of the sequence register is determined by the operation.

The data field must be declared as a located variable.

The structure of the control block differs according to the network used:

- Modbus Plus
- TCP/IP Ethernet
- SY/MAX Ethernet

# Control block for Modbus Plus

# Control block for Modbus Plus:

| Register   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1] | indicates one of the Operations which are valid for Modbus Plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CONTROL[2] | indicates the Error status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CONTROL[3] | indicates the length (number of data transferred)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CONTROL[4] | indicates MSTR operation-dependent information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CONTROL[5] | Routing Register 1 Used for specification (routing path addresses one of five) of a destination node during network transfer.  Most significant byte: Source node address This is the slot for the Modbus Plus Network Options Module (NOM).  When using the Modbus Plus Port on the CPU, this byte must be set to "0" (independently of the CPU slot).  Least significant byte: Destination node address This value represents a direct or a bridge address. If there is no bridge, this value contains the destination node address. If there is a bridge, this value contains the address of the bridge.  If the NOM is inserted in slot 7 on the module rack, the most significant byte of routing register 1 looks as follows (value 0x0706):  most significant byte  Destination address (binary value between 1 and 64 (normal) or 65 to 255 (extended)) |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CONTROL[6] | Routing Register 2 This value contains the destination node address (further Bridge or Modbus Plus Modules). If addressing in the previous Routing Register has finished, the value is set to "0".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CONTROL[7] | Routing Register 3<br>see Routing Register 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CONTROL[8] | Routing Register 4 see Routing Register 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CONTROL[9] | Routing Register 5 see Routing Register 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# Control block for TCP/IP Ethernet

# Control block for Control block for TCP/IP Ethernet:

| Register   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1] | indicates one of the Operations which are valid for TCP/IP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CONTROL[2] | indicates the Error status (See STATUS, p. 74).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTROL[3] | indicates the length (number of data transferred)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CONTROL[4] | indicates MSTR operation-dependent information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CONTROL[5] | Routing Register Used for specification of a destination node during network transfer. Most significant byte: Source node address This is the NOE slot for the NOE module. When using an integrated Ethernet on the CPU, this byte must be set to "254" (0xFE) (independently of the CPU slot). Least significant byte: Destination node address The value in the least significant byte represents a direct or bridge address. If there is no bridge the value in the least significant byte is set to "0". If there is a bridge, this value contains the MBP for the Ethernet mapping index (MET).  If the NOM is inserted in slot 7 on the module rack and the Ethernet mapping index (MET) is 6, the routing register looks as follows (value 0x0706)::  most significant byte    Most significant byte Slots 1 16  Least significant byte MBP on Ethernet Transporter (MET) mapping index |
| CONTROL[6] | Byte 4 (MSB) of the 32bit destination IP address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CONTROL[7] | Byte 3 of the 32bit destination IP address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CONTROL[8] | Byte 2 of the 32bit destination IP address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CONTROL[9] | Byte 1 (LSB) of the 32bit destination IP address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Control block for SY/MAX Ethernet

# Control block for SY/MAX Ethernet:

| Register   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1] | indicates one of the Operations which are valid for SY/MAX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CONTROL[2] | indicates the Error status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CONTROL[3] | indicates the length (number of registers transferred)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTROL[4] | indicates MSTR operation-dependent information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CONTROL[5] | Routing Register Used for specification of a destination node during network transfer. Most significant byte: Source node address slot for the NOE module. Least significant byte: Destination node address The value in the least significant byte represents a direct or bridge address. If there is no bridge the value in the least significant byte is set to "0". If there is a bridge, this value contains the MBP for the Ethernet mapping index (MET).  If NOM is inserted in slot 7 on the module rack and the Ethernet mapping index (MET) is 6, the routing register looks as follows (value 0x0706)::  most significant byte    Most significant byte Slots 1 16  Least significant byte MBP on Ethernet Transporter (MET) mapping index |
| CONTROL[6] | Destination drop number (or set to FF hex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CONTROL[7] | Terminator (set to FF hex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Write data

#### Description

The write operation transfers data to an addressed node. The transaction utilizes a master transaction path and may require several cycles.

An attempt to program the MBP\_MSTR in such a way that it writes to its own drop address will generate an error in the CONTROL[2] register of the block. However, it is possible to perform a write operation to a non-existing slave register. The slave detects the status and logs it. This can last for several cycles.

# Network implementation

The write operation can be performed on Modbus Plus, TCP/IP Ethernet and SY/MAX Ethernet networks.

# Usage of control blocks for Modbus Plus (CONTROL)

Control block for Modbus Plus (CONTROL):

| Register              | Meaning                                                                                                                                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]            | 1 = Write data                                                                                                                                                                                            |
| CONTROL[2]            | indicates the Error status.                                                                                                                                                                               |
| CONTROL[3]            | Number of addresses sent to slave                                                                                                                                                                         |
| CONTROL[4]            | Determines the %MW starting register in the slave to which the data will be written (e.g. 1 = %MW1, 49 = %MW49)                                                                                           |
| CONTROL[5] CONTROL[9] | Routing register 1 is used to specify the address (routing path address one of five) of the node during a network transfer.  The last byte in the routing path that is not zero, is the destination mode. |

# Use of control blocks for TCP/IP Ethernet (CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

| Register              | Meaning                                                                                                                                     |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]            | 1 = Write data                                                                                                                              |
| CONTROL[2]            | indicates the Error status.                                                                                                                 |
| CONTROL[3]            | Number of addresses sent to slave                                                                                                           |
| CONTROL[4]            | Determines the CONTROL[]start address in the slave to which the data will be written.                                                       |
| CONTROL[5]            | Routing Register Most significant byte: Network adapter module slot Least significant byte: MBP on Ethernet Transporter (MET) mapping index |
| CONTROL[6] CONTROL[7] | Each address contains one byte of the 32bit IP address                                                                                      |

# Use of control blocks for SY/ MAX Ethernet (CONTROL)

# Control block for SY/MAX Ethernet (CONTROL):

| Register              | Meaning                                                                                                                |
|-----------------------|------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]            | 1 = Write data                                                                                                         |
| CONTROL[2]            | indicates the Error status.                                                                                            |
| CONTROL[3]            | Number of addresses sent to slave                                                                                      |
| CONTROL[4]            | Determines the %MW starting register in the slave to which the data will be written (e.g. 1 = %MW1, 49 = %MW49)        |
| CONTROL[5]            | Routing Register  Most significant byte: 'Network adapter module slot  Least significant byte: Destination drop number |
| CONTROL[6] CONTROL[9] | Terminator: FF hex                                                                                                     |

### Read data

#### Description

The read operation transfers data from a specified node on the network. The transaction utilizes a master transaction path and may require several cycles. An attempt to program the MBP\_MSTR in such a way that it reads from its own station address will generate an error in the CONTROL[2] register of the block. But it is possible to perform a read operation on a non-existing register of the slave. The slave detects the status and logs it. This can last for several cycles.

# Network implementation

The read operation can be performed on Modbus Plus, TCP/IP Ethernet and SY/ MAX Ethernet networks.

### Usage of control blocks for Modbus Plus (CONTROL)

Control block for Modbus Plus (CONTROL):

| Register              | Meaning                                                                                                                                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]            | 2 = Read data                                                                                                                                                                                             |
| CONTROL[2]            | indicates the Error status.                                                                                                                                                                               |
| CONTROL[3]            | Number of registers to be read from the slave                                                                                                                                                             |
| CONTROL[4]            | Determines the %MW starting register in the slave from which the data will be read (e.g. 1 = %MW1, 49 = %MW49).                                                                                           |
| CONTROL[5] CONTROL[6] | Routing register 1 is used to specify the address (routing path address one of five) of the node during a network transfer.  The last byte in the routing path that is not zero, is the destination node. |

# Use of control blocks for TCP/IP Ethernet (CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

| Register       | Meaning                                                                                                                                       |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]     | 2 = Read data                                                                                                                                 |
| CONTROL[2]     | indicates the Error status.                                                                                                                   |
| CONTROL[3]     | Number of addresses to be read from the slave                                                                                                 |
| CONTROL[4]     | Determines the %MW starting register in the slave from which the data will be read (e.g. 1 = %MW1, 49 = %MW49)                                |
| CONTROL[5]     | Routing Register  Most significant byte: Network adapter module slot  Least significant byte: MBP on Ethernet Transporter (MET) mapping index |
| CONTROL[6]     | Each address contains one byte of the 32bit IP address                                                                                        |
| <br>CONTROL[9] |                                                                                                                                               |

# Use of control blocks for SY/ MAX Ethernet (CONTROL)

# Control block for SY/MAX Ethernet (CONTROL):

| Register       | Meaning                                                                                                               |
|----------------|-----------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]     | 2 = Read data                                                                                                         |
| CONTROL[2]     | indicates the Error status.                                                                                           |
| CONTROL[3]     | Number of addresses to be read from the slave                                                                         |
| CONTROL[4]     | Determines the %MW starting register in the slave to which the data will be written (e.g. 1 = %MW1, 49 = %MW49).      |
| CONTROL[5]     | Routing Register  Most significant byte: Network adapter module slot  Least significant byte: Destination drop number |
| CONTROL[6]     | Terminator: FF hex                                                                                                    |
| <br>CONTROL[9] |                                                                                                                       |

#### Read local statistics

#### Description

This operation reads the data from the local node. The operation is carried out in one cycle and does not require a master transaction path.

# Network implementation

The write operation can be performed on Modbus Plus, TCP/IP Ethernet and SY/ MAX Ethernet networks:

- List of available Modbus Plus network statistics (See Modbus Plus network statistics, p. 109)
- List of TCP/IP Ethernet network statistics (See TCP/IP Ethernet Network Statistics, p. 114)

### Usage of control blocks for Modbus Plus (CONTROL)

Control block for Modbus Plus (CONTROL):

| Register   | Meaning                                                                                                                                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1] | 3 = Read local statistics                                                                                                                                                                                 |
| CONTROL[2] | indicates the Error status.                                                                                                                                                                               |
| CONTROL[3] | Number of addresses to be read from the local statistics (132)                                                                                                                                            |
| CONTROL[4] | First address from which the statistics table must be read (Reg1=0)                                                                                                                                       |
| CONTROL[5] | Routing register 1 is used to specify the address (routing path address one of five) of the node during a network transfer.  The last byte in the routing path that is not zero, is the destination mode. |

# Use of control blocks for TCP/IP Ethernet (CONTROL)

Control block for TCP/IP Ethernet (CONTROL)

| Register       | Meaning                                                             |
|----------------|---------------------------------------------------------------------|
| CONTROL[1]     | 3 = Read local statistics                                           |
| CONTROL[2]     | indicates the Error status.                                         |
| CONTROL[3]     | Number of addresses to be read from the local statistics (132)      |
| CONTROL[4]     | First address from which the statistics table must be read (Reg1=0) |
| CONTROL[5]     | Routing Register Most significant byte: Network adapter module slot |
| CONTROL[6]     | No significance                                                     |
| <br>CONTROL[9] |                                                                     |

#### Clear local statistics

#### Description

This operation deletes the statistics concerning the local node. The operation is carried out in one cycle and does not require a master transaction path.

**Note:** If you edit the "Clear local statistics" operation, only words 13 to 22 in the statistics table are cleared.

# Network implementation

The operation can be performed on Modbus Plus and TCP/IP Ethernet networks.

- List of available Modbus Plus network statistics (See Modbus Plus network statistics, p. 109)
- List of TCP/IP Ethernet network statistics (See TCP/IP Ethernet Network Statistics, p. 114)

# Usage of control blocks for Modbus Plus (CONTROL)

Control block for Modbus Plus (CONTROL):

| Register   | Meaning                                                                                                                                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1] | 4 = Clear local statistics                                                                                                                                                                                |
| CONTROL[2] | indicates the Error status.                                                                                                                                                                               |
| CONTROL[3] | Reserved                                                                                                                                                                                                  |
| CONTROL[4] | Reserved                                                                                                                                                                                                  |
| CONTROL[5] | Routing register 1 is used to specify the address (routing path address one of five) of the node during a network transfer.  The last byte in the routing path that is not zero, is the destination mode. |

## Use of control blocks for TCP/IP Ethernet (CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

| Register       | Meaning                                                             |
|----------------|---------------------------------------------------------------------|
| CONTROL[1]     | 4 = Clear local statistics                                          |
| CONTROL[2]     | indicates the Error status.                                         |
| CONTROL[3]     | Reserved                                                            |
| CONTROL[4]     | Reserved                                                            |
| CONTROL[5]     | Routing Register Most significant byte: Network adapter module slot |
| CONTROL[6]     | Reserved                                                            |
| <br>CONTROL[9] |                                                                     |

# Write Global Data (Peer Cop)

#### Description

This operation transfers data to the communication processor of the current node, so that it can be sent via the network as soon as the node receives the token. This data can be received by all nodes connected to the local network. The operation is carried out in one cycle and does not require a master transaction path.

# Network implementation

The operation can only be performed on Modbus Plus networks.

## Usage of control blocks for Modbus Plus (CONTROL)

Control block for Modbus Plus (CONTROL):

| Register   | Meaning                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------|
| CONTROL[1] | 5 = Write global data                                                                                              |
| CONTROL[2] | indicates the Error status.                                                                                        |
| CONTROL[3] | Number of addresses to be sent from State RAM into global data memory (comm processor) (132)                       |
| CONTROL[4] | Reserved                                                                                                           |
| CONTROL[5] | If global data is sent via a NOM, you must enter the NOM module slot in the most significant byte of the register. |

# Read Global Data (Peer Cop)

#### Description

This operation reads data from the communications processor of any node connected to the network that sends out global data. The operation can take several cycles if the global data is not currently available with the nodes called. If global data is available, the operation is executed in one cycle. A master transaction path is not required.

# Network implementation

The operation can only be performed on Modbus Plus networks.

### Usage of control blocks for Modbus Plus (CONTROL)

Control block for Modbus Plus (CONTROL):

| Register   | Meaning                                                                                                                                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1] | 6 = Read global data                                                                                                                                                                                                                      |
| CONTROL[2] | indicates the Error status.                                                                                                                                                                                                               |
| CONTROL[3] | Number of addresses to be sent from global data memory (comm processor) (132)                                                                                                                                                             |
| CONTROL[4] | Display of addresses available in scanned node (Is automatically updated)                                                                                                                                                                 |
| CONTROL[5] | The lowest significant byte idicates the address of the node (value from 1 to 64) whose global data is to be read.  If global data is received via a NOM, you must enter the NOM module slot in the most significant byte of the address. |

#### Get remote statistics

#### Description

This operation reads the data referring to remote nodes on the network (see *Modbus Plus network statistics*, p. 109 and TCP/IP Ethernet Network Statistics, p. 114). This operation can last for several cycles and does not require a master data transaction path.

With each query, the remote communications processor supplies a complete statistics table even if the query does not refer to the entire table. MBP\_MSTR will then copy only those words into the identified \$MW addresses that you queried.

# Network implementation

The operation can be performed on Modbus Plus and TCP/IP Ethernet networks.

### Usage of control blocks for Modbus Plus (CONTROL)

Control block for Modbus Plus (CONTROL):

| Register              | Meaning                                                                                                                      |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]            | 7 = Get remote statistics                                                                                                    |
| CONTROL[2]            | indicates the Error status.                                                                                                  |
| CONTROL[3]            | Number of addresses to be read from the statistics data field (154) The size of the data field may not be exceeded.          |
| CONTROL[4]            | First address from which the node statistics must be read. The number of available statistics registers may not be exceeded. |
| CONTROL[5] CONTROL[9] | Routing address 1 5 of the node.  The last byte in the routing path that is not zero is the destination node.                |

# Use of control blocks for TCP/IP Ethernet (CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

| Register              | Meaning                                                                                                                      |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]            | 7 = Get remote statistics                                                                                                    |
| CONTROL[2]            | indicates the Error status.                                                                                                  |
| CONTROL[3]            | Number of addresses to be read from the statistics data field (154) The size of the data field may not be exceeded.          |
| CONTROL[4]            | First address from which the node statistics must be read. The number of available statistics registers may not be exceeded. |
| CONTROL[5]            | Routing Register Most significant byte: Network adapter module slot                                                          |
| CONTROL[6] CONTROL[9] | Each address contains one byte of the 32bit IP address                                                                       |

#### Clear remote statistics

#### Description

This operation clears the statistics concerning remote nodes on the network from the data field of the local node. This operation can last for several cycles and employs one single master data transaction path.

**Note:** If the "Clear remote statistics" operation is edited, only the words 13 through 22 of the statistics table (see *Modbus Plus network statistics*, *p. 109* and *TCP/IP Ethernet Network Statistics*, *p. 114*) will be deleted.

# Network implementation

The write operation can be performed on Modbus Plus and TCP/IP Ethernet networks.

### Usage of control blocks for Modbus Plus (CONTROL)

Control block for Modbus Plus (CONTROL):

| Register              | Meaning                                                                                                                                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]            | 8 = Clear remote statistics                                                                                                                                                                                           |
| CONTROL[2]            | indicates the Error status.                                                                                                                                                                                           |
| CONTROL[3]            | Reserved                                                                                                                                                                                                              |
| CONTROL[4]            | Reserved                                                                                                                                                                                                              |
| CONTROL[5] CONTROL[9] | Routing register 1 is used to specify the address (routing path address one of five) of the destination node during a network transfer.  The last byte in the routing path that is not zero, is the destination mode. |

# Use of control blocks for TCP/IP Ethernet (CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

| Register              | Meaning                                                             |
|-----------------------|---------------------------------------------------------------------|
| CONTROL[1]            | 8 = Clear remote statistics                                         |
| CONTROL[2]            | indicates the Error status.                                         |
| CONTROL[3]            | Reserved                                                            |
| CONTROL[4]            | Reserved                                                            |
| CONTROL[5]            | Routing Register Most significant byte: Network adapter module slot |
| CONTROL[6] CONTROL[9] | Each address contains one byte of the 32bit IP address              |

# Peer cop health

#### Description

This operation reads the selected data from the peer cop communications health table and downloads the respective data into the specified %MW addresses registers of State RAM. The Peer cop communications health table is 12 words long, MBP\_MSTR indexes all words with 0 through 11.

# Network implementation

The operation can only be performed on Modbus Plus networks.

## Usage of control blocks for Modbus Plus (CONTROL)

Control block for Modbus Plus (CONTROL):

| Register   | Meaning                                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1] | 9 = Peer cop health                                                                                                    |
| CONTROL[2] | indicates the Error status.                                                                                            |
| CONTROL[3] | Number of words wanted by the peer cop table (112)                                                                     |
| CONTROL[4] | First word to be read from the peer cop table (011; 0=first word in peer cop table and 11=last word in peer cop table) |
| CONTROL[5] | Routing address 1 If this is the second of two local nodes, set the High value byte to 1.                              |

# **Optional module reset**

#### Description

The "Reset optional module" operation leads a Quantum NOE option module to start a reset cycle to reset its working environment.

# Network implementation

The write operation can be performed on TCP/IP Ethernet and SY/MAX Ethernet networks.

## Use of control blocks for TCP/IP Ethernet (CONTROL)

# Control block for TCP/IP Ethernet (CONTROL):

| Register       | Meaning                                                                                                                              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]     | 10 = Optional module reset                                                                                                           |
| CONTROL[2]     | indicates the Error status.                                                                                                          |
| CONTROL[3]     | No significance                                                                                                                      |
| CONTROL[4]     | No significance                                                                                                                      |
| CONTROL[5]     | Routing Register The number shown in the High value byte in area 1 through 16 indicates the slot where the option module is located. |
| CONTROL[6]     | No significance                                                                                                                      |
| <br>CONTROL[9] |                                                                                                                                      |

# Use of control blocks for SY/ MAX Ethernet (CONTROL)

### Control block for SY/MAX Ethernet (CONTROL):

| Register       | Meaning                                                             |
|----------------|---------------------------------------------------------------------|
| CONTROL[1]     | 10 = Optional module reset                                          |
| CONTROL[2]     | indicates the Error status.                                         |
| CONTROL[3]     | No significance                                                     |
| CONTROL[4]     | No significance                                                     |
| CONTROL[5]     | Routing Register Most significant byte: Network adapter module slot |
| CONTROL[6]     | No significance                                                     |
| <br>CONTROL[9] |                                                                     |

# Read CTE (Config extension table)

#### Description

The "Read CTE" operation reads a given number of bytes from the Ethernet configuration extension table in the specified buffer in the PLC memory. The bytes to be read start with a byte offset at the start of the CTE. The contents of the Ethernet CTE table is displayed on output DATABUF.

# Network implementation

The write operation can be performed on TCP/IP Ethernet and SY/MAX Ethernet networks.

## Use of control blocks for TCP/IP Ethernet (CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

| Register              | Meaning                                                                                                                                                                                 |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL[1]            | 11 = Read CTE (Config extension table)                                                                                                                                                  |
| CONTROL[2]            | indicates the Error status.                                                                                                                                                             |
| CONTROL[3]            | No significance                                                                                                                                                                         |
| CONTROL[4]            | No significance                                                                                                                                                                         |
| CONTROL[5]            | Routing Register  Least significant byte = mapping index  Either a value displayed in the byte of the register or is not used.  or  Most significant byte = network adapter module slot |
| CONTROL[6] CONTROL[9] | The number shown in the least significant byte in the area 1 through 16 indicates the slot where the optional module is located.                                                        |

### Use of control blocks for SY/ MAX Ethernet (CONTROL)

Control block for SY/MAX Ethernet (CONTROL):

| Register              | Meaning                                                                                  |
|-----------------------|------------------------------------------------------------------------------------------|
| CONTROL[1]            | 11 = Read CTE (Config extension table)                                                   |
| CONTROL[2]            | indicates the Error status.                                                              |
| CONTROL[3]            | Number of words transferred                                                              |
| CONTROL[4]            | Byte offset in the PLC register structure, specifying from where the CTE bytes are read. |
| CONTROL[5]            | Routing Register Most significant byte: Slot of the NOE module                           |
| CONTROL[6] CONTROL[9] | Terminator: FF hex                                                                       |

# CTE indicator implementation (DATABUF)

The values in the Ethernet configuration extension table (CTE) are displayed in a field on output DATABUF when a CTE read operation is implemented. The registers display the following CTE data:

CTE indicator implementation (DATABUF):

| Parameter        | Register    | Contents                      |
|------------------|-------------|-------------------------------|
| Frame type       | DATABUF[0]  | 1 = 802.3                     |
|                  |             | 2 = Ethernet                  |
| IP address       | DATABUF[1]  | First byte of the IP address  |
|                  | DATABUF[2]  | Second byte of the IP address |
|                  | DATABUF[3]  | Third byte of the IP address  |
|                  | DATABUF[4]  | Fourth byte of the IP address |
| Lower<br>netmask | DATABUF[5]  | Most significant word         |
|                  | DATABUF[6]  | Least significant word        |
| Gateway          | DATABUF[7]  | First byte of the gateway     |
|                  | DATABUF[8]  | Second byte of the gateway    |
|                  | DATABUF[9]  | Third byte of the gateway     |
|                  | DATABUF[10] | Fourth byte of the gateway    |

# Write CTE (Config extension table)

### Description

The "Write CTE" operation writes the CTE configuration table from the specified data (DATABUF) to a specified Ethernet configuration extension table or to a specific slot.

# Network implementation

The write operation can be performed on TCP/IP Ethernet and SY/MAX Ethernet networks.

## Use of control blocks for TCP/IP Ethernet (CONTROL)

Control block for TCP/IP Ethernet (CONTROL):

| Register              | Meaning                                                                                                                                                                            |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CONTROL[1]            | 12 = Write CTE (Config extension table)                                                                                                                                            |  |  |
| CONTROL[2]            | indicates the Error status.                                                                                                                                                        |  |  |
| CONTROL[3]            | No significance                                                                                                                                                                    |  |  |
| CONTROL[4]            | No significance                                                                                                                                                                    |  |  |
| CONTROL[5]            | Routing Register Least significant byte = mapping index Either a value displayed in the byte of the address or is not used. or Most significant byte = network adapter module slot |  |  |
| CONTROL[6] CONTROL[9] | The number shown in the least significant byte in the area 1 through 16 indicates the slot where the optional module is located.                                                   |  |  |

# Use of control blocks for SY/ MAX Ethernet (CONTROL)

Control block for SY/MAX Ethernet (CONTROL):

| Register              | Meaning                                                                                                     |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------|--|
| CONTROL[1]            | 12 = Write CTE (Config extension table)                                                                     |  |
| CONTROL[2]            | indicates the Error status.                                                                                 |  |
| CONTROL[3]            | Number of words transferred                                                                                 |  |
| CONTROL[4]            | Byte offset in the PLC address structure specifying where the CTE bytes are written.                        |  |
| CONTROL[5]            | Routing Register  Most significant byte = NOE module slot  Least significant byte = Destination drop number |  |
| CONTROL[6]            | Terminator: FF hex                                                                                          |  |
| CONTROL[7] CONTROL[9] | No significance                                                                                             |  |

# CTE indicator implementation (DATABUF)

The values in the Ethernet configuration extension table (CTE) are displayed in a field on output  $\mathtt{DATABUF}$  when a CTE write operation is implemented. The registers are used to transfer the following CTE data:

CTE indicator implementation (DATABUF):

| Parameter        | Register    | Contents                      |  |
|------------------|-------------|-------------------------------|--|
| Frame type       | DATABUF[0]  | 1 = 802.3                     |  |
|                  |             | 2 = Ethernet                  |  |
| IP address       | DATABUF[1]  | First byte of the IP address  |  |
|                  | DATABUF[2]  | Second byte of the IP address |  |
|                  | DATABUF[3]  | Third byte of the IP address  |  |
|                  | DATABUF[4]  | Fourth byte of the IP address |  |
| Lower<br>netmask | DATABUF[5]  | Most significant word         |  |
|                  | DATABUF[6]  | Least significant word        |  |
| Gateway          | DATABUF[7]  | First byte of the gateway     |  |
|                  | DATABUF[8]  | Second byte of the gateway    |  |
|                  | DATABUF[9]  | Third byte of the gateway     |  |
|                  | DATABUF[10] | Fourth byte of the gateway    |  |

# **Peer Cop Communications Health Status**

### Peer Cop Communications Health Status

The table containing the Peer Cop status information fills 12 consecutive registers, which can be indexed with the numbers 0 to 11 in an MBP\_MSTR operation. Each individual bit of the table words is used to present one aspect of communications health that refers to a specific node on the Modbus Plus network.

# Relation bit network node

The bits of the words 0 to 3 represent the health at the global communications input of nodes 1 to 64. The bits of words 4 ... 7 represent the health of the output of a specific node.

The bits in words 8 to 11 represent the health of the input of a specific node.

| Status type    | Word index | Relation bit network node                       |
|----------------|------------|-------------------------------------------------|
| Global receive | 0          | 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1          |
|                | 1          | 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 |
|                | 2          | 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 |
|                | 3          | 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 |
| Send direct    | 4          | 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1          |
|                | 5          | 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 |
|                | 6          | 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 |
|                | 7          | 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 |
| Receive direct | 8          | 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1          |
|                | 9          | 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 |
|                | 10         | 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 |
|                | 11         | 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 |

#### Health bit status

The status of the Peer Cop Health bit indicates the current communications status of its assigned node. A health bit will be set when the associated node accepts input for its Peer Cop data block or when it receives a signal that another node has accepted specific output data from its Peer Cop output data block. A health bit will be deleted if the associated data block did not accept any communication within the configured Peer Cop health timeout period.

All health bits will be deleted when interface command "Put Peer Cop" is executed during PLC startup. The table values become valid when the Token has been completely bypassed, after the interface command "Put Peer Cop" has been carried out. The health bit of a specific node is always zero when the assigned Peer Cop entry is zero.

## Modbus Plus network statistics

### Modbus Plus network statistics

The following table shows the statistics available on Modbus Plus. You can obtain this data by running the corresponding  $\mathtt{MBP\_MSTR}$  operation (Modbus function code 8).

**Note:** If you edit the "Clear local statistics" or "Clear remote statistics" operation, only words 13 to 22 in the statistics table are cleared.

#### Modbus Plus network statistics:

| Word | Bits     | Description                                                                                                                                                                                                                  |
|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00   |          | Node type ID                                                                                                                                                                                                                 |
|      | 0        | Unknown node type                                                                                                                                                                                                            |
|      | 1        | PLC node                                                                                                                                                                                                                     |
|      | 2        | Modbus bridge node                                                                                                                                                                                                           |
|      | 3        | Host computer node                                                                                                                                                                                                           |
|      | 4        | Bridge Plus node                                                                                                                                                                                                             |
|      | 5        | Peer I/O node                                                                                                                                                                                                                |
| 01   | 0 11     | Software version number as hexadecimal value (to read this, isolate bits 12-15 from the word)                                                                                                                                |
|      | 12<br>14 | Reserved                                                                                                                                                                                                                     |
|      | 15       | Defines error counters from word 15. The most significant bit defines the use of error counters in word 15. The lower valued half of the most significant byte together with the least significant byte contain the software |
|      |          | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                        |
|      |          |                                                                                                                                                                                                                              |
|      |          | Software-Versionsnummer                                                                                                                                                                                                      |
|      |          | version. (in Hexadezimalwerten)                                                                                                                                                                                              |
|      |          | Fehlerzähler von Wort 15 (siehe Wort 15)                                                                                                                                                                                     |
| 02   |          | Network address of this station                                                                                                                                                                                              |

| Word | Bits | Description                                                                      |
|------|------|----------------------------------------------------------------------------------|
| 03   |      | MAC status variable:                                                             |
|      | 0    | Startup status                                                                   |
|      | 1    | Offline status indicator signals                                                 |
|      | 2    | Duplicated offline status                                                        |
|      | 3    | Idle status                                                                      |
|      | 4    | Token utilization status                                                         |
|      | 5    | Work response status                                                             |
|      | 6    | Token transfer status                                                            |
|      | 7    | Response request status                                                          |
|      | 8    | Status check of transfer                                                         |
|      | 9    | Token request status                                                             |
|      | 10   | Response request status                                                          |
| 04   |      | Peer status (LED code); indicates status of this device relative to the network: |
|      | 0    | Monitor connect operation                                                        |
|      | 32   | Normal connect operation                                                         |
|      | 64   | Never receives token                                                             |
|      | 96   | Single station                                                                   |
|      | 128  | Duplicate station                                                                |
| 05   |      | Token transfer counter; increments each time this station receives the token     |
| 06   |      | Token cycle time in ms                                                           |
| 07   | LOW  | Bit representation data master fail during token ownership                       |
|      | HIGH | Bit representation (bitmap) program master fail during token ownership           |
| 08   | LOW  | Bitmap activity token ownership of the data master                               |
|      | HIGH | Bitmap activity token ownership of the program master                            |
| 09   | LOW  | Bitmap activity token ownership of the data slave                                |
|      | HIGH | Bitmap activity token ownership of the program slave                             |
| 10   | LOW  |                                                                                  |
|      | HIGH | Bitmap transfer request command data slave/slave poll                            |
| 11   | LOW  | Bitmap response transfer request program master/master poll                      |
|      | HIGH | Bitmap transfer request command program slave/slave poll                         |
| 12   | LOW  | Bitmap connect status of the program master                                      |
|      | HIGH | Bitmap automatic log-off of program slave                                        |
| 13   | LOW  | Pretransfer delay error counter                                                  |
|      | HIGH | Receive buffer DMA overrun error counter                                         |
| 14   | LOW  | Receive counter repeat command                                                   |
|      | HIGH | Error counter data block size                                                    |

| Word | Bits | Description                                                             |
|------|------|-------------------------------------------------------------------------|
| 15   |      | If bit 15 of word 1 is not set, word 15 has the following significance: |
|      | LOW  | Error counter receiver collision abort                                  |
|      | HIGH | Error counter receiver alignment                                        |
|      |      | If bit 15 of word 1 is set, word 15 has the following significance:     |
|      | LOW  | Data block error on cable B                                             |
|      | HIGH | Data block error on cable B                                             |
| 16   | LOW  | Error counter CRC receiver                                              |
|      | HIGH | Error counter wrong packet length                                       |
| 17   | LOW  | Error counter wrong link address                                        |
|      | HIGH | Error counter DMA underflow transfer buffer storage                     |
| 18   | LOW  | Error counter wrong internal packet length                              |
|      | HIGH | Error counter wrong MAC function code                                   |
| 19   | LOW  | Communication retry counter                                             |
|      | HIGH | Error counter communication failed                                      |
| 20   | LOW  | Counter package receipt successful                                      |
|      | HIGH | Error counter no response receipt                                       |
| 21   | LOW  | Error counter unexpected response receipt                               |
|      | HIGH | Error counter unexpected path                                           |
| 22   | LOW  | Error counter unexpected response                                       |
|      | HIGH | Error counter skipped transaction                                       |
| 23   | LOW  | Bitmap active station table, nodes 1 through 8                          |
|      | HIGH | Bitmap active station table, nodes 9 through 16                         |
| 24   | LOW  | Bitmap active station table, nodes 17 through 24                        |
|      | HIGH | Bitmap active station table, nodes 25 through 32                        |
| 25   | LOW  | Bitmap active station table, nodes 33 through 40                        |
|      | HIGH | Bitmap active station table, nodes 41 through 48                        |
| 26   | LOW  | Bitmap active station table, nodes 49 through 56                        |
|      | HIGH | Bitmap active station table, nodes 57 through 64                        |
| 27   | LOW  | Bitmap token station table, nodes 1 through 8                           |
|      | HIGH | Bitmap token station table, nodes 9 through 16                          |
| 28   | LOW  | Bitmap token station table, nodes 17 through 24                         |
|      | HIGH | Bitmap token station table, nodes 25 through 32                         |
| 29   | LOW  | Bitmap token station table, nodes 33 through 40                         |
|      | HIGH | Bitmap token station table, nodes 41 through 48                         |
| 30   | LOW  | Bitmap token station table, nodes 49 through 56                         |
|      | HIGH | Bitmap token station table, nodes 57 through 64                         |

| Word | Bits | Description                                                          |
|------|------|----------------------------------------------------------------------|
| 31   | LOW  | Bitmap table regarding existence of global data, nodes 1 through 8   |
|      | HIGH | Bitmap table regarding existence of global data, nodes 9 through 16  |
| 32   | LOW  | Bitmap table regarding existence of global data, nodes 17 through 24 |
|      | HIGH | Bitmap table regarding existence of global data, nodes 25 through 32 |
| 33   | LOW  | Bitmap table regarding existence of global data, nodes 33 through 40 |
|      | HIGH | Bitmap table regarding existence of global data, nodes 41 through 48 |
| 34   | LOW  | Bitmap table regarding existence of global data, nodes 49 through 56 |
|      | HIGH | Bitmap table regarding existence of global data, nodes 57 through 64 |
| 35   | LOW  | Bitmap receive buffer used, buffers 1 through 8                      |
|      | HIGH | Bitmap receive buffer used, buffers 9 through 16                     |
| 36   | LOW  | Bitmap receive buffer used, buffers 17 through 24                    |
|      | HIGH | Bitmap receive buffer used, buffers 25 through 32                    |
| 37   | LOW  | Bitmap receive buffer used, buffers 33 through 40                    |
|      | HIGH | Counter of activated processed commands for station administration   |
| 38   | LOW  | Counter activation command output path 1 of the data master          |
|      | HIGH | Counter activation command output path 2 of the data master          |
| 39   | LOW  | Counter activation command output path 3 of the data master          |
|      | HIGH | Counter activation command output path 4 of the data master          |
| 40   | LOW  | Counter activation command output path 5 of the data master          |
|      | HIGH | Counter activation command output path 6 of the data master          |
| 41   | LOW  | Counter activation command output path 7 of the data master          |
|      | HIGH | Counter activation command output path 8 of the data master          |
| 42   | LOW  | Counter command processing input path 41 of the data slave           |
|      | HIGH | Counter command processing input path 42 of the data slave           |
| 43   | LOW  | Counter command processing input path 43 of the data slave           |
|      | HIGH | Counter command processing input path 44 of the data slave           |
| 44   | LOW  | Counter command processing input path 45 of the data slave           |
|      | HIGH | Counter command processing input path 46 of the data slave           |
| 45   | LOW  | Counter command processing input path 47 of the data slave           |
|      | HIGH | Counter command processing input path 48 of the data slave           |
| 46   | LOW  | Counter command activation output path 81 of the program master      |
|      | HIGH | Counter command activation output path 82 of the program master      |
| 47   | LOW  | Counter command activation output path 83 of the program master      |
|      | HIGH | Counter command activation output path 84 of the program master      |
| 48   | LOW  | Counter command activation output path 85 of the program master      |
|      | HIGH | Counter command activation output path 86 of the program master      |

| Word | Bits | Description                                                     |
|------|------|-----------------------------------------------------------------|
| 49   | LOW  | Counter command activation output path 87 of the program master |
|      | HIGH | Counter command activation output path 88 of the program master |
| 50   | LOW  | Counter command processing input path C1 of the program slave   |
|      | HIGH | Counter command processing input path C2 of the program slave   |
| 51   | LOW  | Counter command processing input path C3 of the program slave   |
|      | HIGH | Counter command processing input path C4 of the program slave   |
| 52   | LOW  | Counter command processing input path C5 of the program slave   |
|      | HIGH | Counter command processing input path C6 of the program slave   |
| 53   | LOW  | Counter command processing input path C7 of the program slave   |
|      | HIGH | Counter command processing input path C8 of the program slave   |

## TCP/IP Ethernet Network Statistics

## TCP/IP Ethernet Network Statistics

A TCP/IP Ethernet module replies to the "Get local statistics" and "Set local statistics" commands using the following information:

| Word      | Meaning                                                                                |
|-----------|----------------------------------------------------------------------------------------|
| 00 to 02  | MAC address                                                                            |
|           | e.g. MAC address 00 00 54 00 12 34 is displayed as follows:                            |
|           | Word Contents                                                                          |
|           | 01 00 54                                                                               |
|           | 02 34 12                                                                               |
| 03        | Module state                                                                           |
|           | • 0x0001 = Running                                                                     |
|           | <ul> <li>0x4000 = APPI LED (1=ON, 0 = OFF)</li> <li>0x8000 = LED connection</li> </ul> |
| 04 and 05 | Number of receiver interrupts                                                          |
| 06 and 07 | Number of transfer interrupts                                                          |
| 08 and 09 | Transfer timeout error count                                                           |
| 10 and 11 | Collision detection error count                                                        |
| 12 and 13 | Omitted packets                                                                        |
| 14 and 15 | Memory error count                                                                     |
| 16 and 17 | Number of restarts performed by the driver                                             |
| 18 and 19 | Receive framing error count                                                            |
| 20 and 21 | Overflow error count receiver                                                          |
| 22 and 23 | Receive CRC error counter                                                              |
| 24 and 25 | Receive buffer error counter                                                           |
| 26 and 27 | Transfer buffer error counter                                                          |
| 28 and 29 | Transfer bin underflow counter                                                         |
| 30 and 31 | Late collision counter                                                                 |
| 32 and 33 | Lost carrier counter                                                                   |
| 34 and 35 | Number of retries                                                                      |
| 36 and 37 | IP address                                                                             |
|           | e.g. the IP address 198.202.137.113 (or c6 CA 89 71) is represented as follows:        |
|           | Word Contents                                                                          |
|           | 36 89 71<br>37 C6 CA                                                                   |
|           | 0, 00 0,1                                                                              |

## Modbus Plus and SY/MAX Ethernet Error Codes

# Form of the function error code

Function error codes for Modbus Plus and SY/MAX Ethernet transactions appear as **Mmss.** where:

- M is the high code
- m is the low code
- ss is a subcode

# Hexadecimal error code

Hexadecimal error code for Modbus Plus and SY/MAX Ethernet:

| Hex.<br>Error Code | Description                                                                                                                                                                                                                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1001               | Abort by user                                                                                                                                                                                                                                 |
| 2001               | An operation type that is not supported has been specified in the control block                                                                                                                                                               |
| 2002               | One or more control block parameters were modified while the MSTR element was active (this only applies to operations which require several cycles for completion). Control block parameters my only be modified in inactive MSTR components. |
| 2003               | Invalid value in the length field of the control block                                                                                                                                                                                        |
| 2004               | Invalid value in the offset field of the control block                                                                                                                                                                                        |
| 2005               | Invalid value in the length and offset fields of the control block                                                                                                                                                                            |
| 2006               | Unauthorized data field on slave                                                                                                                                                                                                              |
| 2007               | Unauthorized network field on slave                                                                                                                                                                                                           |
| 2008               | Unauthorized network routing path on slave                                                                                                                                                                                                    |
| 2009               | Routing path equivalent to their own address                                                                                                                                                                                                  |
| 200A               | Attempt to get more global data words than available                                                                                                                                                                                          |
| 200E               | The control block is not assigned, or parts of the control block are located outside of the %MW (4x) range.                                                                                                                                   |
| 30ss               | Exceptional response by Modbus slave (See ss hexadecimal value in 30ss error code, p. 116)                                                                                                                                                    |
| 4001               | Inconsistent response by Modbus slave                                                                                                                                                                                                         |
| 5001               | Inconsistent response by the network                                                                                                                                                                                                          |
| 6mss               | Routing path error (See ss hexadecimal value in 6mss error code, p. 116) The subfield m shows where the error occurred (a 0 value means local node, 2 means 2nd device in route, etc).                                                        |

# ss hexadecimal value in 30ss error code

ss hexadecimal value in 30ss error code:

| ss hex.<br>Value | Description                                                       |
|------------------|-------------------------------------------------------------------|
| 01               | Slave does not support requested operation                        |
| 02               | Non-existing slave registers were requested                       |
| 03               | An unauthorized data value was requested                          |
| 05               | Slave has accepted a lengthy program command                      |
| 06               | Function cannot currently be carried out: lengthy command running |
| 07               | Slave has rejected lengthy program command                        |

# ss hexadecimal value in 6mss error code

**Note:** Subfield m in error code 6mss is an Index in the routing information that shows where an error has been detected (a 0 value indicates the local node, 2 means the second device in the route, etc.).

The ss subfield in error code 6mss is as follows:

| ss<br>hexadecimal | Description                                                 |
|-------------------|-------------------------------------------------------------|
| 01                | No response reception                                       |
| 02                | Access to program denied                                    |
| 03                | Node out of service and unable to communicate               |
| 04                | Unusual response received                                   |
| 05                | Router-node data path busy                                  |
| 06                | Slave out of order                                          |
| 07                | Wrong destination address                                   |
| 08                | Unauthorized node type in routing path                      |
| 10                | Slave has rejected the command                              |
| 20                | Slave has lost an activated transaction                     |
| 40                | Unexpected master output path received                      |
| 80                | Unexpected response received                                |
| F001              | Wrong destination node was specified for the MSTR operation |

## SY/MAX-specific error codes

# SY/MAX-specific error codes

When utilizing SY/MAX Ethernet, three additional types of errors may appear in the CONTROL[1] register of the control block ().

The error codes have the following meaning:

- 71xx Error: Errors found by the SY/MAX remote device
- 72xx Error: Errors found by the server
- 73xx Error: Errors found by the Quantum translator

# SY/MAX-specific HEX error code

## SY/MAX-specific HEX error code:

| Hex.<br>Error<br>Code | Description                                                                                                                            |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 7101                  | Invalid opcode found by the SY/MAX remote device                                                                                       |
| 7103                  | Invalid address found by the SY/MAX remote device                                                                                      |
| 7109                  | Attempt to write to a write protected register found by the SY/MAX remote device                                                       |
| F710                  | Receiver overflow found by the SY/MAX remote device                                                                                    |
| 7110                  | Invalid length found by the SY/MAX remote device                                                                                       |
| 7111                  | Remote device not active, no connection (occurs when retry attempts and time-out have been used up), found by the SY/MAX remote device |
| 7113                  | Invalid parameter in a read operation found by the SY/MAX remote device                                                                |
| 711D                  | Invalid route found by the SY/MAX remote device                                                                                        |
| 7149                  | Invalid parameter in a write operation found by the SY/MAX remote device                                                               |
| 714B                  | Invalid drop number found by the SY/MAX remote device                                                                                  |
| 7101                  | Invalid opcode found by the SY/MAX server                                                                                              |
| 7203                  | Invalid address found by the SY/MAX server                                                                                             |
| 7209                  | Attempt to write to a write protected register found by the SY/MAX server                                                              |
| F720                  | Receiver overflow found by the SY/MAX server                                                                                           |
| 7210                  | Invalid length found by the SY/MAX server                                                                                              |
| 7211                  | Remote device not active, no connection (occurs when retry attempts and time-out have been used up), found by the SY/MAX server        |
| 7213                  | Invalid parameter in a read operation found by the SY/MAX server                                                                       |
| 721D                  | Invalid route found by the SY/MAX server                                                                                               |
| 7249                  | Invalid parameter in a write operation found by the SY/MAX server                                                                      |
| 724B                  | Invalid drop number found by the SY/MAX server                                                                                         |
| 7301                  | Invalid opcode in an MSTR block request from the Quantum translator                                                                    |
| 7303                  | Read/Write QSE module status (200 route address out of range)                                                                          |
| 7309                  | Attempt to write to a write protected register when a status write is carried out (200 route)                                          |

| Hex.<br>Error<br>Code | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 731D                  | Invalid route found by the Quantum translator.  Valid routes:  dest_drop, 0xFF  200, dest_drop, 0xFF  100+drop, dest_drop, 0xFF  All other routing values produce an error                                                                                                                                                                                                                                                                                                                             |
| 734B                  | One of the following errors occurred:  No CTE (configuration extension table) has been configured  No CTE table entry has been made for the QSE model slot number  No valid drop has been specified  The QSE module has not been reset after the creation of the CTE.  Note: After writing and configuring the CTE and downloading to the QSE module, the QSE module must be reset for the modifications to become effective.  When using an MSTR instruction no valid slot or drop has been specified |

## TCP/IP Ethernet error codes

# TCP/IP Ethernet error codes

An error in an MSTR routine via TCP/IP Ethernet may produce one of the following errors in the MSTR control block:

The error code appears as **Mmss**, where:

- **M** is the high code
- m is the low code
- ss is a subcode

# HEX error codes TCP/IP Ethernet

### HEX error codes TCP/IP Ethernet:

| Hex. Error<br>Code | Meaning                                                                                                                                                                                                                                       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1001               | Abort by user                                                                                                                                                                                                                                 |
| 2001               | An operation type that is not supported has been specified in the control block                                                                                                                                                               |
| 2002               | One or more control block parameters were modified while the MSTR element was active (this only applies to operations which require several cycles for completion). Control block parameters my only be modified in inactive MSTR components. |
| 2003               | Invalid value in the length field of the control block                                                                                                                                                                                        |
| 2004               | Invalid value in the offset field of the control block                                                                                                                                                                                        |
| 2005               | Invalid value in the length and offset fields of the control block                                                                                                                                                                            |
| 2006               | Unauthorized data field on slave                                                                                                                                                                                                              |
| 200E               | The control block is not assigned, or parts of the control block are located outside of the %MW (4x) range.                                                                                                                                   |
| 3000               | Generic Modbus failure code                                                                                                                                                                                                                   |
| 30ss               | Exceptional response by Modbus slave (See ss hexadecimal value in 30ss error code, p. 119)                                                                                                                                                    |
| 4001               | Inconsistent response by Modbus slave                                                                                                                                                                                                         |

## ss hexadecimal value in 30ss error code

#### ss hexadecimal value in 30ss error code:

| ss hex.<br>Value | Meaning                                                           |
|------------------|-------------------------------------------------------------------|
| 01               | Slave does not support requested operation                        |
| 02               | Non-existing slave registers were requested                       |
| 03               | An unauthorized data value was requested                          |
| 05               | Slave has accepted a lengthy program command                      |
| 06               | Function cannot currently be carried out: lengthy command running |
| 07               | Slave has rejected lengthy program command                        |

## HEX error codes TCP/IP Ethernet network

An error on the TCP/IP Ethernet network itself may produce one of the following errors in the  ${\tt CONTROL\,[1]}$  register of the control block.

HEX error codes TCP/IP Ethernet network:

| Hex. Error<br>Code | Meaning                                                                             |
|--------------------|-------------------------------------------------------------------------------------|
| 5004               | Interrupted system invocation                                                       |
| 5005               | I/O error                                                                           |
| 5006               | No such address                                                                     |
| 5009               | The socket descriptor is not valid                                                  |
| 500C               | Not enough storage space                                                            |
| 500D               | Authorization denied                                                                |
| 5011               | Entry exists                                                                        |
| 5016               | An argument is not valid                                                            |
| 5017               | An internal table has no more space                                                 |
| 5020               | There is interference on the connection                                             |
| 5023               | This operation was blocked and the socket is non-blocking                           |
| 5024               | The socket is non-blocking and the connection cannot be closed down                 |
| 5025               | The socket is non-blocking and a previous connection attempt has not been concluded |
| 5026               | Socket operation on a non-socket                                                    |
| 5027               | The destination address is not valid                                                |
| 5028               | Message too long                                                                    |
| 5029               | Wrong type of protocol for the socket                                               |
| 502A               | Protocol not available                                                              |
| 502B               | Protocol not supported                                                              |
| 502C               | Socket type not supported                                                           |
| 502D               | Operation not supported at socket                                                   |
| 502E               | Protocol family not supported                                                       |
| F502               | Address family not supported                                                        |
| 5030               | Address is already in use                                                           |
| 5031               | Address not available                                                               |
| 5032               | Network is out of order                                                             |
| 5033               | Network cannot be reached                                                           |
| 5034               | Network shut down the connection during reset                                       |
| 5035               | The connection was terminated by the peer                                           |
| 5036               | The connection was reset by the peer                                                |

| Hex. Error<br>Code | Meaning                                                                                    |
|--------------------|--------------------------------------------------------------------------------------------|
| 5037               | An internal buffer is required, but cannot be assigned                                     |
| 5038               | The socket is already connected                                                            |
| 5039               | The socket is not connected                                                                |
| 503A               | Cannot transmit after the socket has been shut off                                         |
| 503B               | Too many references; cannot splice                                                         |
| 503C               | Connection timed out                                                                       |
| 503D               | The connection attempt was denied                                                          |
| 5040               | Host is out of order                                                                       |
| 5041               | The destination host could not be reached from this node                                   |
| 5042               | Directory not empty                                                                        |
| 5046               | NI_INIT returned -1                                                                        |
| 5047               | The MTU is not valid                                                                       |
| 5048               | The hardware length is not valid                                                           |
| 5049               | The route specified cannot be found                                                        |
| 504A               | Collision when invoking Select; these conditions have already been selected by another job |
| 504B               | The job ID is not valid                                                                    |
| 5050               | No Network Resource                                                                        |
| 5051               | Length Error                                                                               |
| 5052               | Addressing Error                                                                           |
| 5053               | Application Error                                                                          |
| 5054               | Client cannot process request                                                              |
| 5055               | No Network Resource                                                                        |
| 5056               | Non-Operational TCP connection                                                             |
| 5057               | Incoherent configuration                                                                   |
| 6003               | FIN or RST not expected                                                                    |
| F001               | In reset mode                                                                              |
| F002               | Component not fully initialized                                                            |

## CTE error codes for SY/MAX and TCP/IP Ethernet

## CTE error codes for SY/MAX and TCP/IP Ethernet

The following error codes are displayed in the  ${\tt CONTROL[1]}$  register of the control block, if there is a problem with the Ethernet configuration extension table (CTE) in your program configuration.

CTE error codes for SY/MAX and TCP/IP Ethernet:

| Hex. Error<br>Code | Description                                  |
|--------------------|----------------------------------------------|
| 7001               | There is no Ethernet configuration extension |
| 7002               | The CTE is not available for access          |
| 7003               | The offset is not valid                      |
| 7004               | Offset + length are not valid                |
| 7005               | Bad data field in the CTE                    |

# ModbusP\_ADDR: Modbus Plus Address

9

## Overview

## Introduction

This chapter describes the ModbusP\_ADDR block.

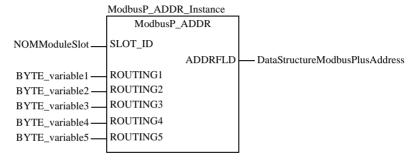
# What's in this Chapter?

This chapter contains the following topics:

| Topic                | Page |
|----------------------|------|
| Description          | 124  |
| Detailed Description | 127  |

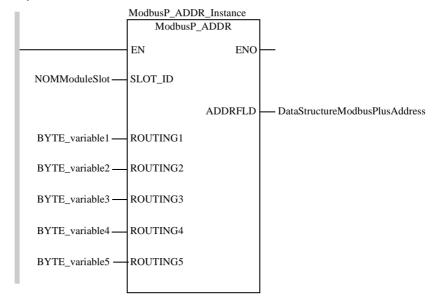
## **Description**

# Function description


This function block allows the entry of the Modbus Plus address for function blocks READ\_REG, CREAD\_REG, WRITE\_REG and CWRITE\_REG. The address is transferred as a data structure.

EN and ENO can be configured as additional parameters.

**Note:** You must be familiar with your network when programming the ModbusP\_ADDR function block. Modbus Plus routing path structures are described in detail in "Modbus Plus Network Planning and Installation Guide".


# Representation in FBD

#### Representation:



# Representation in I D

#### Representation:



# Representation in IL

#### Representation:

```
CAL ModbusP_ADDR_Instance (SLOT_ID:=NOMModuleSlot,
    ROUTING1:=BYTE_variable1, ROUTING2:=BYTE_variable2,
    ROUTING3:=BYTE_variable3, ROUTING4:=BYTE_variable4,
    ROUTING5:=BYTE_variable5,
    ADDRFLD=>DataStructureModbusPlusAddress)
```

# Representation in ST

#### Representation:

```
ModbusP_ADDR_Instance (SLOT_ID:=NOMModuleSlot,
    ROUTING1:=BYTE_variable1, ROUTING2:=BYTE_variable2,
    ROUTING3:=BYTE_variable3, ROUTING4:=BYTE_variable4,
    ROUTING5:=BYTE_variable5,
    ADDRFLD=>DataStructureModbusPlusAddress);
```

# Parameter description

## Description of input parameters:

| Parameter | Data type | Description                                                                                                                                                                                                    |
|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Slot_ID   | BYTE      | Slot ID<br>NOM module slot                                                                                                                                                                                     |
| ROUTING1  | ВУТЕ      | Routing 1 is used for address specification (routing path addresses one of five) of the destination node during network transfer.  The last byte in the routing path that is not zero is the destination node. |
| ROUTING2  | BYTE      | Routing 2                                                                                                                                                                                                      |
| ROUTING3  | BYTE      | Routing 3                                                                                                                                                                                                      |
| ROUTING4  | BYTE      | Routing 4                                                                                                                                                                                                      |
| ROUTING5  | BYTE      | Routing 5                                                                                                                                                                                                      |

## Description of output parameters:

| Parameter | Data type | Description                                             |
|-----------|-----------|---------------------------------------------------------|
| ADDRFLD   | WordArr5  | Data structure used to transfer the Modbus Plus address |

## **Detailed Description**

# Derived Data Types

Element description for WordArr5:

| Element     | Data type | Description                                                                                                                                                                                                                             |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WordArr5[1] | WORD      | Routing tab 1 Least significant byte: used for address specification (routing path addresses one of five) of a destination node during network transfer. Most significant byte: Slot of the network adapter module (NOM), if available. |
| WordArr5[2] | WORD      | Routing tab 2                                                                                                                                                                                                                           |
| WordArr5[3] | WORD      | Routing tab 3                                                                                                                                                                                                                           |
| WordArr5[4] | WORD      | Routing tab 4                                                                                                                                                                                                                           |
| WordArr5[5] | WORD      | Routing tab 5                                                                                                                                                                                                                           |

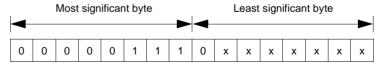
#### Slot ID

If a Modbus Plus network option module (NOM) in the rack of a Quantum controller is addressed as the destination node, the value at the Slot\_ID input represents the physical NOM slot, i.e. if the NOM is plugged in at Slot 7 of the rack, the value appears as follows:

| 0 0 0 0 0 1 1 1 |
|-----------------|
|-----------------|

#### Routing x

The Routing x input is used for address specification (routing path addresses one of five) of the destination node during network transfer. The last byte in the routing path that is not zero is the destination node.


| 0 | х | х | х | х | х | х | х |
|---|---|---|---|---|---|---|---|
| 0 | ^ | ^ | ^ | ^ | ^ | ^ | ^ |

Destination address (binary value between 1 and 64 (normal) or 65 to 249 (extended))

### Routing tab 1

If a Modbus Plus Network Options Module (NOM) is addressed as the destination node in a Quantum control module rack, the most significant byte represents the physical slot of the NOM. If the destination node is a CPU, the most significant byte (regardless of the CPU slot) is set to "0".

If NOM is inserted in slot 7 on the module rack, the most significant byte of routing tab 1 looks as follows:



Most significant byte Slots 1 ... 16

**Least significant byte** Destination address (binary value between 1 and 64 (normal) or 65 to 255 (extended))

## **READ\_REG:** Read register

10

## Overview

## Introduction

This chapter describes the READ\_REG block.

# What's in this Chapter?

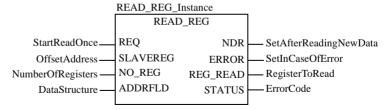
This chapter contains the following topics:

| Topic                 | Page |
|-----------------------|------|
| Description           | 130  |
| Derived Data Types    | 132  |
| Function mode         | 133  |
| Parameter description | 134  |

## **Description**

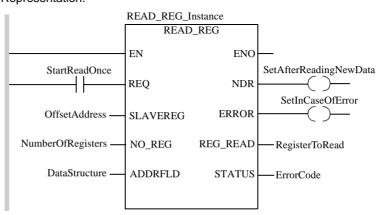
# Function description

With a rising edge at the REQ input, this function block reads a register area from an addressed slave via Modbus Plus. TCP/IP-Ethernet or SY/MAX-Ethernet.


**Note:** When programming a READ\_REG function, you must be familiar with the routing procedures used by your network. Modbus Plus routing path structures are described in detail in the *Modbus Plus Network Planning and Installation Guide*. If TCP/IP or SY/MAX Ethernet routing is implemented, standard Ethernet IP router products must be used. A full description of the TCP/IP routing is provided in the *Quantum with Unity Pro TCP/IP Configuration User Guide*.

**Note:** Several copies of this function block can be used in the program. However, multiple instancing of these copies is not possible.

EN and ENO can be configured as additional parameters.


# Representation in FBD

#### Representation:



# Representation in LD

#### Representation:



# Representation in II

#### Representation:

```
CAL READ_REG_Instance (REQ:=StartReadOnce,
    SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
    ADDRFLD:=DataStructure, NDR=>SetAfterReadingNewData,
    ERROR=>SetInCaseOfError, REG_READ=>RegisterToRead,
    STATUS=>ErrorCode)
```

# Representation in ST

#### Representation:

```
READ_REG_Instance (REQ:=StartReadOnce,
    SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
    ADDRFLD:=DataStructure, NDR=>SetAfterReadingNewData,
    ERROR=>SetInCaseOfError, REG_READ=>RegisterToRead,
    STATUS=>ErrorCode);
```

# Parameter description

#### Description of input parameters:

| Parameter | Data type | Meaning                                                                                                                                                     |
|-----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REQ       | BOOL,     | With a rising edge at the REQ input, this function block reads a register area from an addressed slave via Modbus Plus, TCP/IP-Ethernet or SY/MAX-Ethernet. |
| SLAVEREG  | DINT      | Offset address of the first %MW register in the slave to be read from.                                                                                      |
| NO_REG    | INT       | Number of addresses to be read from slave                                                                                                                   |
| ADDRFLD   | WordArr5  | Data structure describing the Modbus Plus-address, TCP/IP address or SY/MAX-IP address.                                                                     |

#### Description of output parameters:

| Parameter | Data type | Meaning                                                                                                                                                                                                                                                      |  |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NDR       | BOOL      | Set to "1" for one cycle after reading new data                                                                                                                                                                                                              |  |
| ERROR     | BOOL      | Set to "1" for one cycle if an error occurs                                                                                                                                                                                                                  |  |
| STATUS    | WORD,     | If an error occurs while the function is being executed, an error code remains at this output for one cycle.  Error code, see  Modbus Plus and SY/MAX Ethernet Error Codes, p. 115  SY/MAX-specific error codes, p. 117  TCP/IP Ethernet error codes, p. 119 |  |
| REG_READ  | ANY       | Writing data (For the file to be read a data structure must be declared as a located variable.)                                                                                                                                                              |  |

#### Runtime error

For a list of all block error codes and values, see .

## **Derived Data Types**

## Element description for WordArr5 in Modbus Plus

## Element description for WordArr5 in Modbus Plus:

| Element     | Data<br>type | Description                                                                                                                                                                                                                                                                                                             |  |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WordArr5[1] | WORD         | Least significant byte: Routing register 1 is used for address specification (routing path addresses one of five) of the destination node during network transfer. The last byte in the routing path that is not zero is the destination node. Most significant byte: Slot of the network adapter module (NOM), if any. |  |
| WordArr5[2] | WORD         | Routing register 2                                                                                                                                                                                                                                                                                                      |  |
| WordArr5[3] | WORD         | Routing register 3                                                                                                                                                                                                                                                                                                      |  |
| WordArr5[4] | WORD         | Routing register 4                                                                                                                                                                                                                                                                                                      |  |
| WordArr5[5] | WORD         | Routing register 5                                                                                                                                                                                                                                                                                                      |  |

## Element description for WordArr5 with TCP/IP Ethernet

## Element description for WordArr5 with TCP/IP Ethernet

| Element     | Data type | Description                                                                                                           |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------|
| WordArr5[1] | WORD      | Least significant byte: MBP on Ethernet Transporter (MET) mapping index Most significant byte: Slot of the NOE module |
| WordArr5[2] | WORD      | Byte 4 (MSB) of the 32-bit destination IP address                                                                     |
| WordArr5[3] | WORD      | Byte 3 of the 32-bit destination IP address                                                                           |
| WordArr5[4] | WORD      | Byte 2 of the 32-bit destination IP address                                                                           |
| WordArr5[5] | WORD      | Byte 1 (LSB) of the 32-bit destination IP address                                                                     |

## Element description for WordArr5 with SY/MAX Ethernet

### Element description for WordArr5 with SY/MAX Ethernet:

| Element     | Data type | Description                                                                                                           |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------|
| WordArr5[1] | WORD      | Least significant byte: MBP on Ethernet Transporter (MET) mapping index Most significant byte: Slot of the NOE module |
| WordArr5[2] | WORD      | Destination drop number (or set to FF hex)                                                                            |
| WordArr5[3] | WORD      | Terminator (set to FF hex)                                                                                            |
| WordArr5[4] | WORD      | No significance                                                                                                       |
| WordArr5[5] | WORD      | No significance                                                                                                       |

#### **Function mode**

# Function mode of READ\_REG blocks

Although a large number of READ\_REG function blocks can be programmed, only four read operations may be active at the same time. In such a case it is insignificant whether they are the result of this function block or others (e.g. MBP\_MSTR, CREAD\_REG). All function blocks use one data transaction path and require multiple cycles to complete a job.

**Note:** A TCP/IP communication between a Quantum PLC (NOE 211 00) and a Momentum PLC (all TCP/IP CPUs and all TCP/IP I/O modules) is only possible, when only **one** read or write job is carried out in every cycle. If several jobs are sent per PLC cycle, the communication stops without generating an error message in the status register of the function block.

All routing information is contained in the <code>WordArr5</code> data structure of the <code>ADDRFLD</code> input. The type function block assigned to this input is defined by the network used. Please use:

- Modbus Plus for function block Modbus P ADDR
- TCP/IP Ethernet for function block TCP IP ADDR
- SY/MAX Ethernet for function block SYMAX IP ADDR

**Note:** The WordArr5 data structure can also be used with constants.

## Parameter description

#### REO

A rising edge triggers the read transaction.

The parameter can be entered as a direct address, located variable, unlocated variable or literal.

#### STAVEREG

Start of the area in the addressed slave from which the source data is read. The source area always resides within the %MW register area.

Note: For slaves for a non-Unity Pro PLC:

The source area always resides within the 4x register area. SLAVEREG expects the source reference as offset within the 4x area. The leading "4" must be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).

The parameter can be entered as a direct address, located variable, unlocated variable or literal

#### NO REG

Number of addresses to be read from the addressed slave (1 ... 100).

The parameter can be entered as a direct address, located variable, unlocated variable or literal.

#### NDR

Transition to ON state for one program cycle signifies receipt of new data ready to be processed.

The parameter can be entered as a direct address, located variable or unlocated variable.

#### ERROR

Transition to ON state for one program cycle signifies the detection of a new error. The parameter can be entered as a direct address, located variable or unlocated variable.

#### REG READ

An ARRAY that is the same size as the requested transmission must be agreed upon  $(\ge NO_REG)$  for this parameter. The name of this array is defined as a parameter. If the array is defined too small, then only the amount of data is transmitted that is present in the array.

The parameter must be defined as a located variable.

#### STATUS

If an error occurs while the function is being executed, an error code remains at this output for one cycle.

Error code, see

- Modbus Plus and SY/MAX Ethernet Error Codes, p. 115
- SY/MAX-specific error codes, p. 117
- TCP/IP Ethernet error codes, p. 119

The parameter can be entered as an address, located variable or unlocated variable.

## WRITE\_REG: Write register

11

## Overview

## Introduction

This chapter describes the WRITE\_REG block.

# What's in this Chapter?

This chapter contains the following topics:

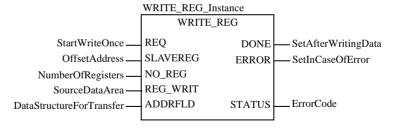
| Торіс                 | Page |
|-----------------------|------|
| Description           | 138  |
| Derived Data Types    | 141  |
| Function mode         | 143  |
| Parameter description | 144  |

137

## **Description**

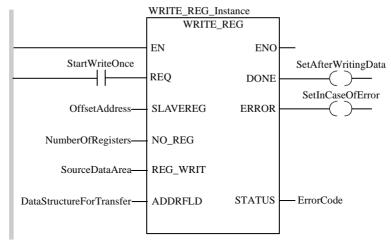
# Function description

With a rising edge at the REQ input, this function block writes a register area from a register area from the PLC via Modbus Plus, TCP/IP Ethernet or SY/MAX-Ethernet to an addressed slave.


EN and ENO can be configured as additional parameters.

**Note:** When programming a WRITE\_REG function, you must be familiar with the routing procedures used by your network. Modbus Plus routing path structures are described in detail in the *Modbus Plus Network Planning and Installation Guide*. If TCP/IP or SY/MAX Ethernet routing is implemented, standard Ethernet IP router products must be used. A full description of the TCP/IP routing is provided in the *Quantum with Unity ProTCP/IP Configuration User Guide*.

**Note:** Several copies of this function block can be used in the program. However, multiple instancing of these copies is not possible.


# Representation in FBD

#### Representation:



# Representation in I D

## Representation:



# Representation in IL

#### Representation:

```
CAL WRITE_REG_Instance (REQ:=StartWriteOnce,
    SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
    REG_WRIT:=SourceDataArea,
    ADDRFLD:=DataStructureForTransfer,
    DONE=>SetAfterWritingData, ERROR=>SetInCaseOfError,
    STATUS=>ErrorCode)
```

# Representation in ST

#### Representation:

```
WRITE_REG_Instance (REQ:=StartWriteOnce,
    SLAVEREG:=OffsetAddress, NO_REG:=NumberOfRegisters,
    REG_WRIT:=SourceDataArea,
    ADDRFLD:=DataStructureForTransfer,
    DONE=>SetAfterWritingData, ERROR=>SetInCaseOfError,
    STATUS=>ErrorCode);
```

# Parameter description

## Description of input parameters:

| Parameter | Data type | Meaning                                                                                                                                                                                      |  |
|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| REQ       | BOOL      | With a rising edge at the REQ input, this function block writes a register area from a register area from the PLC via Modbus Plus, TCP/IP Ethernet or SY/MAX-Ethernet to an addressed slave. |  |
| SLAVEREG  | DINT      | Offset address of the first %MW register in the slave to be written to.                                                                                                                      |  |
| NO_REG    | INT       | Number of addresses to be written from slave                                                                                                                                                 |  |
| REG_WRIT  | ANY       | Source data field (A data structure must be declared as a located variable for the source file .)                                                                                            |  |
| ADDRFLD   | WordArr5  | Data structure transferring the Modbus Plus-address, TCP/IP address or SY/MAX-IP address.                                                                                                    |  |

## Description of output parameters:

| Parameter | Data type | Meaning                                                                                                                                                                                                                                                      |  |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DONE      | BOOL      | Set to "1" for one cycle after writing data.                                                                                                                                                                                                                 |  |
| ERROR     | BOOL      | Set to "1" for one cycle if an error occurs.                                                                                                                                                                                                                 |  |
| STATUS    | WORD      | If an error occurs while the function is being executed, an error code remains at this output for one cycle.  Error code, see  Modbus Plus and SY/MAX Ethernet Error Codes, p. 115  SY/MAX-specific error codes, p. 117  TCP/IP Ethernet error codes, p. 119 |  |

## Runtime error

For a list of all block error codes and values, see .

## **Derived Data Types**

## Element description for WordArr5 in Modbus Plus

## Element description for WordArr5 in Modbus Plus:

| Element     | Data type | Description                                                                                                                                                                                                                                                                                                             |  |
|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WordArr5[1] | WORD      | Least significant byte: Routing register 1 is used for address specification (routing path addresses one of five) of the destination node during network transfer. The last byte in the routing path that is not zero is the destination node. Most significant byte: Slot of the network adapter module (NOM), if any. |  |
| WordArr5[2] | WORD      | Routing register 2                                                                                                                                                                                                                                                                                                      |  |
| WordArr5[3] | WORD      | Routing register 3                                                                                                                                                                                                                                                                                                      |  |
| WordArr5[4] | WORD      | Routing register 4                                                                                                                                                                                                                                                                                                      |  |
| WordArr5[5] | WORD      | Routing register 5                                                                                                                                                                                                                                                                                                      |  |

## Element description for WordArr5 with TCP/IP Ethernet

## Element description for WordArr5 with TCP/IP Ethernet

| Element     | Data type | Description                                       |
|-------------|-----------|---------------------------------------------------|
| WordArr5[1] | WORD      | Most significant byte:                            |
|             |           | Slot of the NOE module                            |
|             |           | Least significant byte:                           |
|             |           | MBP on Ethernet Transporter (MET) mapping index   |
| WordArr5[2] | WORD      | Byte 4 (MSB) of the 32-bit destination IP address |
| WordArr5[3] | WORD      | Byte 3 of the 32-bit destination IP address       |
| WordArr5[4] | WORD      | Byte 2 of the 32-bit destination IP address       |
| WordArr5[5] | WORD      | Byte 1 (LSB) of the 32-bit destination IP address |

## Element description for WordArr5 with SY/MAX Ethernet

## Element description for WordArr5 with SY/MAX Ethernet:

| Element     | Data type | Description                                     |
|-------------|-----------|-------------------------------------------------|
| WordArr5[1] | WORD      | Most significant byte:                          |
|             |           | Slot of the NOE module Least significant byte:  |
|             |           | MBP on Ethernet Transporter (MET) mapping index |
| WordArr5[2] | WORD      | Destination drop number (or set to FF hex)      |
| WordArr5[3] | WORD      | Terminator (set to FF hex)                      |
| WordArr5[4] | WORD      | No significance                                 |
| WordArr5[5] | WORD      | No significance                                 |
| WOLCALLO[3] | WORD      | No significance                                 |

#### **Function mode**

Function mode of the WRITE\_REG block

Although a large number of WRITE\_REG function blocks can be programmed, only four write operations may be active at the same time. In such a case it is insignificant whether they are the result of this function block or others (e.g. MBP\_MSTR, CWRITE\_REG). All function blocks use one data transaction path and require multiple cycles to complete a job.

If several WRITE\_REG function blocks are used within an application, they must at least differ in the values of their NO\_REG or REG\_WRIT parameters.

**Note:** A TCP/IP communication between a Quantum PLC (NOE 211 00) and a Momentum PLC (all TCP/IP CPUs and all TCP/IP I/O modules) is only possible, when only **one** read or write job is carried out in every cycle. If several jobs are sent per PLC cycle, the communication stops without generating an error message in the status register of the function block.

The status signals  ${\tt DONE}$  and  ${\tt ERROR}$  report the function block state to the user program.

All routing information is contained in the <code>WordArr5</code> data structure of the <code>ADDRFLD</code> input. The type function block assigned to this input is defined by the network used. Please use:

- Modbus Plus for function block ModbusP\_ADDR (See ModbusP\_ADDR: Modbus Plus Address, p. 123)
- TCP/IP Ethernet for function block TCP IP ADDR
- SY/MAX Ethernet for function block SYMAX IP ADDR

**Note:** The WordArr5 data structure can also be used with constants.

## Parameter description

#### REO

A rising edge triggers the write transaction.

The parameter can be entered as an address, located variable, unlocated variable or literal

#### STAVEREG

Start of the area in the addressed slave to which the source data is written. The source area always resides within the %MW address area.

Note: For slaves for a non-Unity Pro PLC:

The destination area always resides within the 4x register area. SLAVEREG expects the target address as an offset within the 4x area. The leading "4" must be omitted (e.g. 59 (contents of the variables or value of the literal) = 40059).

The parameter can be entered as an address, located variable, unlocated variable or literal

#### NO REG

Number of addresses to be written to slave processor (1 ... 100).

The parameter can be entered as an address, located variable, unlocated variable or literal.

#### REG WRIT

An ARRAY that is the same size as the planned transmission must be agreed upon  $(\ge NO_REG)$  for this parameter. The name of this array is defined as a parameter. If the array is defined too small, then only the amount of data is transmitted that is present in the array.

The parameter must be defined as a located variable.

#### DONE

Transition to ON state for one program scan signifies that the data has been transferred.

The parameter can be entered as an address, located variable or unlocated variable.

#### ERROR

Transition to ON state for one program cycle signifies the detection of a new error. The parameter can be entered as an address, located variable or unlocated variable.

#### STATUS

If an error occurs while the function is being executed, an error code remains at this output for one cycle.

Error code, see

- Modbus Plus and SY/MAX Ethernet Error Codes, p. 115
- SY/MAX-specific error codes, p. 117
- TCP/IP Ethernet error codes. p. 119

The parameter can be entered as an address, located variable or unlocated variable.

# Hardware



# At a Glance

### Overview

This part of the document contains information about Modbus Plus Networks

# What's in this Part?

This part contains the following chapters:

| Chapter | Chapter Name                             |     |
|---------|------------------------------------------|-----|
| 12      | Modbus Plus Network Option Modules (NOM) | 149 |
| 13      | Hardware Installation                    |     |

# **Modbus Plus Network Option Modules (NOM)**

### Overview

#### Introduction

This chapter provides information on the following Quantum network option modules:

| NOM     | Communication Channels                                                  |  |  |  |
|---------|-------------------------------------------------------------------------|--|--|--|
| 140 NOM | Modbus (RS-232) serial port                                             |  |  |  |
| 211 00  | 1 Modbus Plus network (RS-485) port                                     |  |  |  |
| 140 NOM | 1 Modbus (RS-232) serial port                                           |  |  |  |
| 212 00  | 2 Modbus Plus network (RS-485) port                                     |  |  |  |
| 140 NOM | 1 Modbus (RS-232) serial port                                           |  |  |  |
| 252 00  | 2 Modbus Plus on Fiber (consisting of optical receiver and transmitter) |  |  |  |

# What's in this Chapter?

This chapter contains the following sections:

| Section | Topic                                     |     |
|---------|-------------------------------------------|-----|
| 12.1    | 140 NOM 211 00: Modbus Plus Option Module | 150 |
| 12.2    | 140 NOM 212 00: Modbus Plus Option Module | 160 |
| 12.3    | 140 NOM 252 00: Modbus Plus Option Module | 170 |

# 12.1 140 NOM 211 00: Modbus Plus Option Module

### Overview

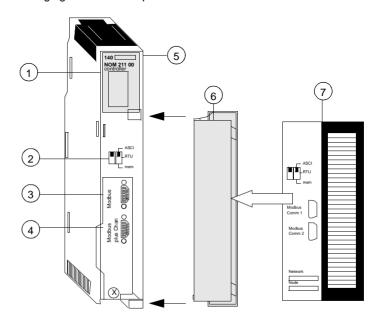
#### Introduction

This section describes the 140 NOM 211 00 Modbus Plus option module.

# What's in this Section?

This section contains the following topics:

| Topic          | Page |
|----------------|------|
| Presentation   | 151  |
| Indicators     | 156  |
| Error Codes    | 157  |
| Specifications | 159  |

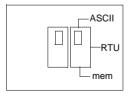

#### Presentation

#### **Function**

The 140 NOM 211 00 is a single channel Network Option Modul (NOM), connected via a twisted pair Modbus Plus cable network

#### Illustration

The following figure shows the parts of the Modbus Plus 140 NOM 211 00 modules.




- 1 LED Area
- 2 Comm Parameter Slide Switch
- 3 Modbus Connector
- 4 Modbus Plus Connector
- 5 Model Number, Module Description, Color Code
- 6 Removable door
- 7 Customer Identification Label, (Fold label and place it inside door)

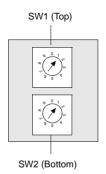
# Front Panel

Two, three-position slide switches are located on the front of the unit. The switch on the left is not used. The three-position slide switch on the right is used to select the comm parameter settings for the Modbus (RS-232) port provided with the Modbus Plus option module. Three options are available, as shown below.

The following figure shows the front panel switches.



**Note:** The NOM hardware defaults to bridge mode when the front panel switch is set to RTU or ASCII mode. When networking controllers, a panel device connected to the NOM Modbus port can communicate with the controller to which it is conected, as well as log into any nodes on the Modbus Plus network.


# Rear Panel Switches

Two rotary switches are located on the rear panel of the modules. They are used together to set the Modbus Plus node and Modbus port address for the unit.

**Note:** The highest address that may be set with these switches is 64. Rotary SW1 (top switch) sets the upper digit (tens), and rotary SW2 (bottom switch) sets the lower digit (ones) of the Modbus Plus node address. The illustration below shows the setting for an example address of 11.

### SW1 and SW2 Switches Figure

The following figure shows the SW1 and SW2 switches.



**Note:** If "0," or an address greater than 64 is selected, the Modbus + LED will be "on" steady, to indicate the selection of an invalid address.

### SW1 and SW2 Address Settings

The following table shows the address settings for the SW1 and SW2 switches.

| Node Address | SW1 | SW2 |
|--------------|-----|-----|
| 1 9          | 0   | 1 9 |
| 10 19        | 1   | 0 9 |
| 20 29        | 2   | 0 9 |
| 30 39        | 3   | 0 9 |
| 40 49        | 4   | 0 9 |
| 50 59        | 5   | 0 9 |
| 60 64        | 6   | 1 4 |

**Note:** If "0," or an address greater than 64 is selected, the Modbus + LED will be "on" steady, to indicate the selection of an invalid address.

# ASCII Comm Port Parameters

The following table shows the fixed setting of the ASCII comm port parameters.

| Baud           | 2,400                            |
|----------------|----------------------------------|
| Parity         | Even                             |
| Data Bits      | 7                                |
| Stop Bits      | 1                                |
| Device Address | Rear panel rotary switch setting |

Setting the slide switch to the middle position assigns remote terminal unit (RTU) functionality to the port; the following comm parameters are set and cannot be changed:

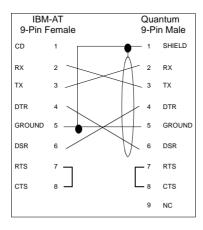
# RTU Comm Port Parameters

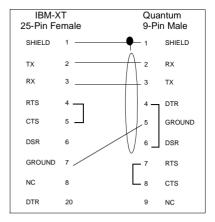
The following table shows the RTU comm port parameters.

| Baud              | 9,600                            |
|-------------------|----------------------------------|
| Parity            | Even                             |
| Data Bits         | 8                                |
| Stop Bits         | 1                                |
| Device<br>Address | Rear panel rotary switch setting |

Setting the slide switch to the bottom position gives you the ability to assign comm parameters to the port in software; the following parameters are valid.

# Valid Comm Port Parameters

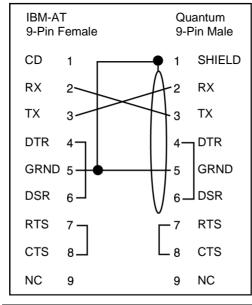

The following table shows the valid comm port parameters.


| Baud           | 19,200    | 1,200                    |
|----------------|-----------|--------------------------|
|                | 9,600     | 600                      |
|                | 7,200     | 300                      |
|                | 4,800     | 150                      |
|                | 3,600     | 134.5                    |
|                | 2,400     | 110                      |
|                | 2,000     | 75                       |
|                | 1,800     | 50                       |
| Data Bits      | 7/8       |                          |
| Stop Bits      | 1/2       |                          |
| Parity         | Enable/Di | isable Odd/Even          |
| Device Address | Rear pan  | el rotary switch setting |

### Modbus Connector Pinouts

The NOM modules are equipped with a nine-pin RS-232C connector that supports Modicon's proprietary Modbus communication protocol. The following is the Modbus port pinout connections for 9-pin and 25-pin connections.

The following figures show the Modbus port pinout connections for 9-pin (left) and 25-pin (right).






The following is the abbreviation key for the above figure.

| TX: Transmitted Data | DTR: Data Terminal Ready |
|----------------------|--------------------------|
| RX: Received Data    | CTS: Clear to Send       |
| RTS: Request to Send | N/C: No Connection       |
| DSR: Data Set Ready  | CD: Carrier Detect       |

Modbus Ports Pinout Connections for Portable Computers The following figure shows the Modbus port pinout connections for 9-pin portable computers.



### **Indicators**

### Illustration

The following figure shows the Modbus Plus NOM LED indicators.



# Description

The following table shows the Modbus Plus NOM LED Descriptions.

| LEDs    | Color | Indication when On                                                                       |
|---------|-------|------------------------------------------------------------------------------------------|
| Ready   | Green | The module has passed powerup diagnostics.                                               |
| Run     | Green | Indicates that the unit is in kernel mode—should always be OFF during normal operations. |
| Modbus  | Green | Indicates communication is active on the single RS-232 serial port.                      |
| Modbus+ | Green | Indicates communication is active on the Modbus Plus port.                               |

### **Error Codes**

### Error Codes Table

The blinking run LED error codes for the NOM module shows the number of times the Run LED on the NOM module blinks for each type of error and the crash codes for each (all codes are in hex).

The following table shows the blinking run LED error codes for the NOM module.

| Number of<br>Blinks | Code | Error                                                        |
|---------------------|------|--------------------------------------------------------------|
| Steady              | 014H | normal power down event                                      |
| 2                   | 815  | RAM sequence error                                           |
| 3                   | 49H  | illegal data command received by bypass code                 |
|                     | 4BH  | diagnostics test pattern invalid in the icb block            |
|                     | 4CH  | diagnostics test pattern invalid in the page 0               |
|                     | 4DH  | icb address not the same as found in hcb                     |
|                     | 4EH  | bad code selected for mstrout_sel proc                       |
|                     | 52H  | config table exec_id is different than the sys table exec_id |
|                     | 53H  | got a pupinit hook for neither S985 nor S975 addr            |
|                     | 56H  | did not get bus ack form 984 interface within 400 ms         |
|                     | 59H  | unexpected modbus port state in send command to 680 proc     |
|                     | 5AH  | system table missing                                         |
|                     | 5BH  | bad DPM critical byte write                                  |
| 4                   | 616H | bad or unexpected interrupt                                  |
|                     | 617H | loopback error on modbus port 1                              |
|                     | 618H | parity error                                                 |
|                     | 619H | set port greater than 21                                     |
|                     | 61AH | controller ram size is less than 8k                          |
|                     | 621H | modbus cmd-buffer overflow                                   |
|                     | 622H | modbus cmd-length is zero                                    |
|                     | 623H | modbus abort command error                                   |
|                     | 624H | bad modbus state trn-int                                     |
|                     | 625H | bad modbus state rcv-int                                     |
|                     | 626H | bad comm state trn_asc                                       |
|                     | 627H | transmit underflow error                                     |
|                     | 628H | bad comm state trn_tru                                       |
|                     | 629H | bad comm state rcv_asc                                       |
|                     | 62AH | bad comm state rcv_rtu                                       |
|                     | 62BH | bad transmit comm state                                      |
|                     | 62CH | bad receive comm state                                       |

| 62EH bad uart interrupt 631H UPI timeout error 632H bad UPI response opcode 633H UPI bus diagnostic error 633H mbp bus interference error 634H mbp bus interference error 635H bad mbp response opcode 636H timeout waiting for mbp 637H mbp out of synchronization 638H mbp invalid path 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 682H bad slave state 683H unknown routing failure to send 684H bad port number in seet () proc 685H bad port number in seet () proc 686H bad port number in lippos () proc 687H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_transmit_interrupt () proc                                                                                                                                                                          |   |      |                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|---------------------------------------------------------|
| 631H UPI timeout error 632H bad UPI response opcode 633H UPI bus diagnostic error 634H mbp bus interference error 635H bad mbp response opcode 636H timeout waiting for mbp 637H mbp out of synchronization 638H mbp invalid path 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 631H bad master state 682H bad slave state 682H bad port number in set () proc 685H bad port number in reset () proc 685H bad port number in getport () proc 686H bad port number in lester () proc 687H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in enable_transmit_interrupt () proc 688H bad port number in chkmst_hdw () proc 692H bad port number in chkmst_hdw () proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                    |   | 62DH | bad modbus state tmr0_evt                               |
| 632H bad UPI response opcode 633H UPI bus diagnostic error 634H mbp bus interference error 635H bad mbp response opcode 636H timeout waiting for mbp 637H mbp out of synchronization 638H mbp invalid path 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 682H bad port number in set () proc 685H bad port number in reset () proc 686H bad port number in getport () proc 687H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in chkmst_hdw () proc 689H bad port number in chkmst_hdw () proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 62EH | bad uart interrupt                                      |
| 633H UPI bus diagnostic error 634H mbp bus interference error 635H bad mbp response opcode 636H timeout waiting for mbp 637H mbp out of synchronization 638H mbp invalid path 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 683H unknown routing failure to send 684H bad port number in set () proc 685H bad port number in reset () proc 686H bad port number in bitpos () proc 687H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in his bit of the session timeout proc 68BH bad port number in chkmst_hdw () proc 68BH bad port number in chkmst_hdw () proc 681H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 631H | UPI timeout error                                       |
| 634H mbp bus interference error 635H bad mbp response opcode 636H timeout waiting for mbp 637H mbp out of synchronization 638H mbp invalid path 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 682H bad port number in set () proc 685H bad port number in reset () proc 685H bad port number in getport () proc 686H bad port number in bitpos () proc 687H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_receive_interrupt () proc 689H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in in set () proc 688H bad port number in enable_receive_interrupt () proc 688H bad port number in enable_receive_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 681H bad port number in disable_transmit_interrupt () proc 682H bad port number in chkmst_hdw () proc 692H bad port number in chkmst_hdw () proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 632H | bad UPI response opcode                                 |
| 635H bad mbp response opcode 636H timeout waiting for mbp 637H mbp out of synchronization 638H mbp invalid path 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 682H bad slave state 683H unknown routing failure to send 684H bad port number in set () proc 685H bad port number in getport () proc 686H bad port number in enable_transmit_interrupt () proc 687H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_receive_interrupt () proc 689H bad port number in disable_transmit_interrupt () proc 688H bad port number in chkmst_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in enable_receive_interrupt () proc 68BH bad port number in enable_receive_interrupt () proc |   | 633H | UPI bus diagnostic error                                |
| 636H timeout waiting for mbp 637H mbp out of synchronization 638H mbp invalid path 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 683H unknown routing failure to send 684H bad port number in set () proc 685H bad port number in getport () proc 686H bad port number in getport () proc 687H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in disable_transmit_interrupt () proc 688H bad port number in set in the session timeout proc 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_poll_cmd () proc 6A3H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 634H | mbp bus interference error                              |
| 637H mbp out of synchronization 638H mbp invalid path 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 682H bad port number in set () proc 685H bad port number in reset () proc 685H bad port number in getport () proc 686H bad port number in bitpos () proc 687H bad port number in enable_transmit_interrupt () proc 688H bad port number in enable_receive_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in chkmst_hdw () proc 681H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 635H | bad mbp response opcode                                 |
| 638H mbp invalid path 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 683H unknown routing failure to send 684H bad port number in set () proc 685H bad port number in reset () proc 686H bad port number in getport () proc 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 680H bad port number in disable_transmit_interrupt () proc 681H bad port number in disable_transmit_interrupt () proc 682H bad port number in disable_transmit_interrupt () proc 683H bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 636H | timeout waiting for mbp                                 |
| 639H peer did not respond with complement of the opcode 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 683H unknown routing failure to send 684H bad port number in set () proc 685H bad port number in reset () proc 686H bad port number in getport () proc 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_transmit_interrupt () proc 689H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 68BH bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 637H | mbp out of synchronization                              |
| 63AH peer unable to come out of transitions at powerup 681H bad master state 682H bad slave state 683H unknown routing failure to send 684H bad port number in set () proc 685H bad port number in reset () proc 686H bad port number in getport () proc 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 689H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 68BH bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 638H | mbp invalid path                                        |
| 681H bad master state 682H bad slave state 683H unknown routing failure to send 684H bad port number in set () proc 685H bad port number in reset () proc 686H bad port number in getport () proc 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 68BH bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 639H | peer did not respond with complement of the opcode      |
| 682H bad slave state 683H unknown routing failure to send 684H bad port number in set () proc 685H bad port number in reset () proc 686H bad port number in getport () proc 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 689H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 63AH | peer unable to come out of transitions at powerup       |
| 683H unknown routing failure to send 684H bad port number in set () proc 685H bad port number in reset () proc 686H bad port number in getport () proc 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 68BH bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 681H | bad master state                                        |
| 684H bad port number in set () proc 685H bad port number in reset () proc 686H bad port number in getport () proc 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 689H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 688H bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 682H | bad slave state                                         |
| 685H bad port number in reset () proc 686H bad port number in getport () proc 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 684H bad port number in disable_transmit_interrupt () proc 684H bad port number in disable_transmit_interrupt () proc 688H bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 683H | unknown routing failure to send                         |
| 686H bad port number in getport () proc 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 689H bad port number in disable_transmit_interrupt () proc 688H bad port number in disable_transmit_interrupt () proc 689H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 692H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 684H | bad port number in set () proc                          |
| 687H bad port number in bitpos () proc 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 68AH bad port number in disable_transmit_interrupt () proc 68BH bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 685H | bad port number in reset () proc                        |
| 688H bad port number in enable_transmit_interrupt () proc 689H bad port number in enable_receive_interrupt () proc 68AH bad port number in disable_transmit_interrupt () proc 68BH bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 686H | bad port number in getport () proc                      |
| 689H bad port number in enable_receive_interrupt () proc 68AH bad port number in disable_transmit_interrupt () proc 68BH bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 687H | bad port number in bitpos () proc                       |
| 68AH bad port number in disable_transmit_interrupt () proc 68BH bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 688H | bad port number in enable_transmit_interrupt () proc    |
| 68BH bad port number in 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 689H | bad port number in enable_receive_interrupt () proc     |
| 691H privilege flag is not reset in the session timeout proc 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 68AH | bad port number in disable_transmit_interrupt () proc   |
| 692H bad port number in chkmst_hdw () proc 6A1H unknown controller type in reset busy flag 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 68BH | bad port number in                                      |
| 6A1H unknown controller type in reset busy flag  6A2H unknown function code in generate_poll_cmd () proc  6A3H unknown function code in generate_logout_msg () proc  6A4H slave link timeout on port other than port #9  6A5H illegal bypass command received by bypass code  5 513H RAM address test error  6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 691H | privilege flag is not reset in the session timeout proc |
| 6A2H unknown function code in generate_poll_cmd () proc 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 692H | bad port number in chkmst_hdw () proc                   |
| 6A3H unknown function code in generate_logout_msg () proc 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 6A1H | unknown controller type in reset busy flag              |
| 6A4H slave link timeout on port other than port #9 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 6A2H | unknown function code in generate_poll_cmd () proc      |
| 6A5H illegal bypass command received by bypass code 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 6A3H | unknown function code in generate_logout_msg () proc    |
| 5 513H RAM address test error 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 6A4H | slave link timeout on port other than port #9           |
| 6 412H RAM data test error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 6A5H | illegal bypass command received by bypass code          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 | 513H | RAM address test error                                  |
| 7 311H PROM checksum error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 | 412H | RAM data test error                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 | 311H | PROM checksum error                                     |

# **Specifications**

### General Specifications

# General Specifications

| Power Dissipation    | 4 W           |
|----------------------|---------------|
| Bus Current required | 750 mA (max.) |

# Communication Ports

### Communication Ports

| 1 Modbus Plus network<br>(RS-485) port (9-pin<br>connector) |                                                                                                                                                                                                                |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Modbus (RS-232) serial port (9-pin connector)             | A bridge mode capability in the module permits a panel device connected to this port to access nodes on the Modbus Plus network or to access the local PLC directly without having to go out onto the network. |

# **Diagnostics**

### Diagnostics

| Power Up | RAM                |  |  |
|----------|--------------------|--|--|
|          | RAM Address        |  |  |
|          | Executive Checksum |  |  |
|          | Processor          |  |  |
| Runtime  | RAM                |  |  |
|          | RAM Address        |  |  |
|          | Executive Checksum |  |  |
|          | Processor          |  |  |

# 12.2 140 NOM 212 00: Modbus Plus Option Module

### Overview

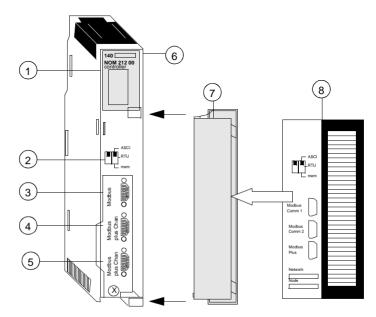
#### Introduction

This section describes the 140 NOM 212 00 Modbus Plus option module.

# What's in this Section?

This section contains the following topics:

| Topic          | Page |
|----------------|------|
| Presentation   | 161  |
| Indicators     | 166  |
| Error Codes    | 167  |
| Specifications | 169  |

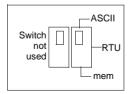

### Presentation

#### **Function**

The 140 NOM 212 00 is a dual channel Network Option Modul (NOM), connected via a twisted pair Modbus Plus cable network

#### Illustration

The following figure shows the parts of the Modbus Plus 140 NOM 212 00 modules.




- 1 LED Area
- 2 Comm Parameter Slide Switch
- 3 Modbus Connector
- 4 Modbus Plus Connector (Chan A)
- 5 Modbus Plus Connector (Chan B)
- 6 Model Number, Module Description, Color Code
- 7 Removable door
- 8 Customer Identification Label, (Fold label and place it inside door)

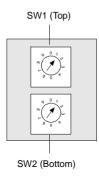
# Front Panel

Two, three-position slide switches are located on the front of the unit. The switch on the left is not used. The three-position slide switch on the right is used to select the comm parameter settings for the Modbus (RS-232) port provided with the Modbus Plus option module. Three options are available, as shown below.

The following figure shows the front panel switches.



**Note:** The NOM hardware defaults to bridge mode when the front panel switch is set to RTU or ASCII mode. When networking controllers, a panel device connected to the NOM Modbus port can communicate with the controller to which it is conected, as well as log into any nodes on the Modbus Plus network.


#### Rear Panel Switches

Two rotary switches are located on the rear panel of the modules. They are used together to set the Modbus Plus node and Modbus port address for the unit.

**Note:** The highest address that may be set with these switches is 64. Rotary SW1 (top switch) sets the upper digit (tens), and rotary SW2 (bottom switch) sets the lower digit (ones) of the Modbus Plus node address. The illustration below shows the setting for an example address of 11.

### SW1 and SW2 Switches Figure

The following figure shows the SW1 and SW2 switches.



**Note:** If "0," or an address greater than 64 is selected, the Modbus + LED will be "on" steady, to indicate the selection of an invalid address.

### SW1 and SW2 Address Settings

The following table shows the address settings for the SW1 and SW2 switches.

| Node Address | SW1 | SW2 |
|--------------|-----|-----|
| 1 9          | 0   | 1 9 |
| 10 19        | 1   | 0 9 |
| 20 29        | 2   | 0 9 |
| 30 39        | 3   | 0 9 |
| 40 49        | 4   | 0 9 |
| 50 59        | 5   | 0 9 |
| 60 64        | 6   | 1 4 |

**Note:** If "0," or an address greater than 64 is selected, the Modbus + LED will be "on" steady, to indicate the selection of an invalid address.

# ASCII Comm Port Parameters

The following table shows the fixed setting of the ASCII comm port parameters.

| Baud              | 2,400                            |
|-------------------|----------------------------------|
| Parity            | Even                             |
| Data Bits         | 7                                |
| Stop Bits         | 1                                |
| Device<br>Address | Rear panel rotary switch setting |

Setting the slide switch to the middle position assigns remote terminal unit (RTU) functionality to the port; the following comm parameters are set and cannot be changed:

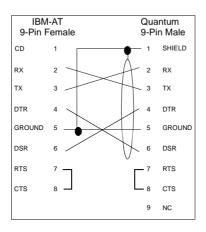
# RTU Comm Port Parameters

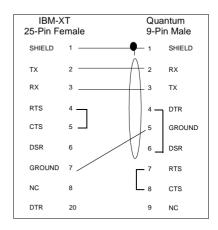
The following table shows the RTU comm port parameters.

| Baud              | 9,600                            |
|-------------------|----------------------------------|
| Parity            | Even                             |
| Data Bits         | 8                                |
| Stop Bits         | 1                                |
| Device<br>Address | Rear panel rotary switch setting |

Setting the slide switch to the bottom position gives you the ability to assign comm parameters to the port in software; the following parameters are valid.

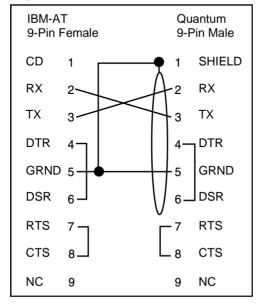
# Valid Comm Port Parameters


The following table shows the valid comm port parameters.


| Baud              | 19,200                           | 1,200 |  |
|-------------------|----------------------------------|-------|--|
|                   | 9,600                            | 600   |  |
|                   | 7,200                            | 300   |  |
|                   | 4,800                            | 150   |  |
|                   | 3,600                            | 134.5 |  |
|                   | 2,400                            | 110   |  |
|                   | 2,000                            | 75    |  |
|                   | 1,800                            | 50    |  |
| Data Bits         | Bits 7 / 8                       |       |  |
| Stop Bits         | 1/2                              |       |  |
| Parity            | Enable/Disable Odd/Even          |       |  |
| Device<br>Address | Rear panel rotary switch setting |       |  |

### Modbus Connector Pinouts

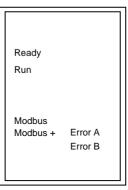
The NOM modules are equipped with a nine-pin RS-232C connector that supports Modicon's proprietary Modbus communication protocol. The following is the Modbus port pinout connections for 9-pin and 25-pin connections.


The following figures show the Modbus port pinout connections for 9-pin (left) and 25-pin (right).





Modbus Ports Pinout Connections for Portable Computers


The following figure shows the Modbus port pinout connections for 9-pin portable computers.



# Indicators

#### Illustration

The following figure shows the Modbus Plus NOM LED indicators.



# Description

The following table shows the Modbus Plus NOM LED Descriptions.

| LEDs    | Color | Indication when On                                                                       |  |
|---------|-------|------------------------------------------------------------------------------------------|--|
| Ready   | Green | The module has passed powerup diagnostics.                                               |  |
| Run     | Green | Indicates that the unit is in kernel mode–should always be OFF during normal operations. |  |
| Modbus  | Green | Indicates communication is active on the single RS-232 serial port.                      |  |
| Modbus+ | Green | Indicates communication is active on the Modbus Plus port.                               |  |
| Error A | Red   | There is an error condition on Cable A                                                   |  |
| Error B | Red   | There is an error condition on Cable B                                                   |  |

### **Error Codes**

### Error Codes Table

The blinking run LED error codes for the NOM module shows the number of times the Run LED on the NOM module blinks for each type of error and the crash codes for each (all codes are in hex).

The following table shows the blinking run LED error codes for the NOM module.

| Number of Blinks | Code | Error                                                        |
|------------------|------|--------------------------------------------------------------|
| Steady           | 014H | normal power down event                                      |
| 2                | 815  | RAM sequence error                                           |
| 3                | 49H  | illegal data command received by bypass code                 |
|                  | 4BH  | diagnostics test pattern invalid in the icb block            |
|                  | 4CH  | diagnostics test pattern invalid in the page 0               |
|                  | 4DH  | icb address not the same as found in hcb                     |
|                  | 4EH  | bad code selected for mstrout_sel proc                       |
|                  | 52H  | config table exec_id is different than the sys table exec_id |
|                  | 53H  | got a pupinit hook for neither S985 nor S975 addr            |
|                  | 56H  | did not get bus ack form 984 interface within 400 ms         |
|                  | 59H  | unexpected modbus port state in send command to 680 proc     |
|                  | 5AH  | system table missing                                         |
|                  | 5BH  | bad DPM critical byte write                                  |
| 4                | 616H | bad or unexpected interrupt                                  |
|                  | 617H | loopback error on modbus port 1                              |
|                  | 618H | parity error                                                 |
|                  | 619H | set port greater than 21                                     |
|                  | 61AH | controller ram size is less than 8k                          |
|                  | 621H | modbus cmd-buffer overflow                                   |
|                  | 622H | modbus cmd-length is zero                                    |
|                  | 623H | modbus abort command error                                   |
|                  | 624H | bad modbus state trn-int                                     |
|                  | 625H | bad modbus state rcv-int                                     |
|                  | 626H | bad comm state trn_asc                                       |
|                  | 627H | transmit underflow error                                     |
|                  | 628H | bad comm state trn_tru                                       |
|                  | 629H | bad comm state rcv_asc                                       |
|                  | 62AH | bad comm state rcv_rtu                                       |
|                  | 62BH | bad transmit comm state                                      |
|                  | 62CH | bad receive comm state                                       |

|   | 00011 |                                                         |
|---|-------|---------------------------------------------------------|
|   | 62DH  | bad modbus state tmr0_evt                               |
|   | 62EH  | bad uart interrupt                                      |
|   | 631H  | UPI timeout error                                       |
|   | 632H  | bad UPI response opcode                                 |
|   | 633H  | UPI bus diagnostic error                                |
|   | 634H  | mbp bus interference error                              |
|   | 635H  | bad mbp response opcode                                 |
|   | 636H  | timeout waiting for mbp                                 |
|   | 637H  | mbp out of synchronization                              |
|   | 638H  | mbp invalid path                                        |
|   | 639H  | peer did not respond with complement of the opcode      |
|   | 63AH  | peer unable to come out of transitions at powerup       |
|   | 681H  | bad master state                                        |
|   | 682H  | bad slave state                                         |
|   | 683H  | unknown routing failure to send                         |
|   | 684H  | bad port number in set () proc                          |
|   | 685H  | bad port number in reset () proc                        |
|   | 686H  | bad port number in getport () proc                      |
|   | 687H  | bad port number in bitpos () proc                       |
|   | 688H  | bad port number in enable_transmit_interrupt () proc    |
|   | 689H  | bad port number in enable_receive_interrupt () proc     |
|   | 68AH  | bad port number in disable_transmit_interrupt () proc   |
|   | 68BH  | bad port number in                                      |
|   | 691H  | privilege flag is not reset in the session timeout proc |
|   | 692H  | bad port number in chkmst_hdw () proc                   |
|   | 6A1H  | unknown controller type in reset busy flag              |
|   | 6A2H  | unknown function code in generate_poll_cmd () proc      |
|   | 6A3H  | unknown function code in generate_logout_msg () proc    |
|   | 6A4H  | slave link timeout on port other than port #9           |
|   | 6A5H  | illegal bypass command received by bypass code          |
| 5 | 513H  | RAM address test error                                  |
| 6 | 412H  | RAM data test error                                     |
| 7 | 311H  | PROM checksum error                                     |
|   | 1     |                                                         |

# **Specifications**

### General Specifications

# General Specifications

| Power Dissipation    | 4 W (typical) |
|----------------------|---------------|
| Bus Current required | 780 mA        |

# Communication Ports

### Communication Ports

| 2 Modbus Plus network<br>(RS-485) port (9-pin<br>connector) | For dual connectivity on a single Modbus Plus network. These ports handle identical versions of all inbound and outbound transactions and keep track of the data paths used for these transactions             |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Modbus (RS-232) serial port (9-pin connector)             | A bridge mode capability in the module permits a panel device connected to this port to access nodes on the Modbus Plus network or to access the local PLC directly without having to go out onto the network. |

# Diagnostics

### Diagnostics

| Power Up | RAM                |
|----------|--------------------|
|          | RAM Address        |
|          | Executive Checksum |
|          | Processor          |
| Runtime  | RAM                |
|          | RAM Address        |
|          | Executive Checksum |
|          | Processor          |

# 12.3 140 NOM 252 00: Modbus Plus Option Module

### Overview

#### Introduction

This section describes the 140 NOM 252 00 Modbus Plus option module.

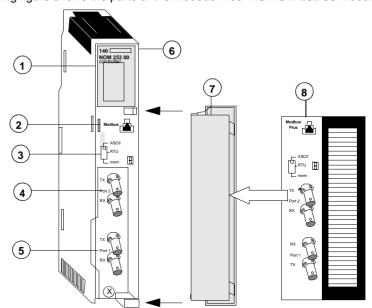
# What's in this Section?

This section contains the following topics:

| Topic                         | Page |
|-------------------------------|------|
| Presentation                  | 171  |
| Indicators                    | 177  |
| Fiber Optic Cable Connections |      |
| Specifications                |      |

#### Presentation

#### Overview


The Modbus Plus on Fiber module provides connectivity to Modbus Plus nodes by fiber cable.

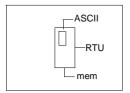
There are many benefits that result from the use of fiber optics. Some of these benefits include:

- Longer distances between nodes (up to 3 km), thereby, increasing the total length
  of the network.
- Fiber optic medium is not susceptible to the effects of electromagnetic interference. RF interference, and lightning.
- Intrinsically safe links that are required in many hazardous industrial environments.
- Total electrical isolation between terminal points on the link

#### Illustration

The following figure shows the parts of the Modbus Plus 140 NOM 252 00 module.




- 1 LED Area
- 2 Modbus Connector
- 3 Comm Parameter Slide Switch
- 4 Port 2 TX and RX Connectors
- 5 Port 1 TX and RX Connectors

- 6 Model Number, Module Description, Color Code
- 7 Removable door
- 8 Customer Identification Label, (Fold label and place it inside door)

# Front Panel Switch

A three-position slide switch is located on the front of the unit. This switch is used to select the comm parameter settings for the Modbus (RS-232) port. Three options are available, as shown below.

The following figure shows the front panel switch.



Setting the slide switch to the top position assigns ASCII functionality to the port; the following comm parameters are set and cannot be changed.

# ASCII Comm Port Parameters

The following table shows the fixed setting of the ASCII comm port parameters.

| Baud           | 2,400                            |
|----------------|----------------------------------|
| Parity         | Even                             |
| Data Bits      | 7                                |
| Stop Bits      | 1                                |
| Device Address | Rear panel rotary switch setting |

Setting the slide switch to the middle position assigns remote terminal unit (RTU) functionality to the port; the following comm parameters are set and cannot be changed:

# RTU Comm Port Parameters

The following table shows the RTU comm port parameters.

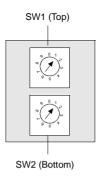
| Baud           | 9,600                            |
|----------------|----------------------------------|
| Parity         | Even                             |
| Data Bits      | 8                                |
| Stop Bits      | 1                                |
| Device Address | Rear panel rotary switch setting |

Setting the slide switch to the bottom position gives you the ability to assign comm parameters to the port in software; the following parameters are valid.

# Valid Comm Port

The following table shows the valid comm port parameters.

| Baud           | 19,200                           | 1,200 |  |
|----------------|----------------------------------|-------|--|
|                | 9,600                            | 600   |  |
|                | 7,200                            | 300   |  |
|                | 4,800                            | 150   |  |
|                | 3,600                            | 134.5 |  |
|                | 2,400                            | 110   |  |
|                | 2,000                            | 75    |  |
|                | 1,800                            | 50    |  |
| Data Bits      | 7/8                              |       |  |
| Stop Bits      | 1/2                              |       |  |
| Parity         | Enable/Disable Odd/Even          |       |  |
| Device Address | Rear panel rotary switch setting |       |  |


#### Rear Panel Switches

Two rotary switches are located on the rear panel of the modules. They are used together to set the Modbus Plus node and Modbus port address for the unit.

**Note:** The highest address that may be set with these switches is 64. Rotary SW1 (top switch) sets the upper digit (tens), and rotary SW2 (bottom switch) sets the lower digit (ones) of the Modbus Plus node address. The illustration below shows the setting for an example address of 11.

### SW1 and SW2 Switches Figure

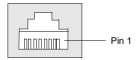
The following figure shows the SW1 (top) and SW2 (bottom) switches.



### SW1 and SW2 Address Settings

The following figure shows the node address settings for the SW1 and SW2 switches.

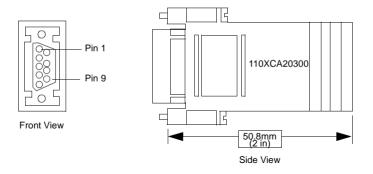
| Node Address | SW1 | SW2 |
|--------------|-----|-----|
| 1 9          | 0   | 1 9 |
| 10 19        | 1   | 0 9 |
| 20 29        | 2   | 0 9 |
| 30 39        | 3   | 0 9 |
| 40 49        | 4   | 0 9 |
| 50 59        | 5   | 0 9 |
| 60 64        | 6   | 1 4 |


**Note:** If "0" or an address greater than 64 is selected, the Modbus + LED will be "on" steady, to indicate the selection of an invalid address.

### Modbus Connector

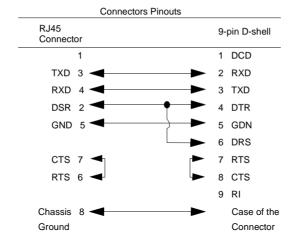
The NOM 252 00 module is equipped with an RS-232 port (see below) located on the front of the module. This port uses an eight-position RJ45 (phone jack-type) connector.

# Modbus pin 1 Figure


The following figure shows the NOM 252 00 Pin 1 connector.



**Note:** A D-shell adapter is available from Modicon for NOM 252 00-to-computer connections: a (110 XCA 20 300) 9-pin adapter for PC-AT type computers (see the illustration pinout table below).

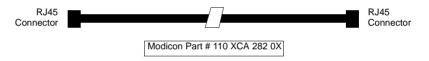

### **Pinouts Figures**

The following figures show the 9-pin adapter front view (left) and side view (right).



# Connector Pinouts Figure

The following figure shows the 9-pin RJ45 connector schematic.




# BJ45 Cable Types

This following shows an example of the 110 XCA 282 0X cable. A table is also provided which includes part numbers and cable lengths.

# RJ45 Connector Figure

The following figure shows the RJ45 connector (Modicon Part # 110 XCA 282 OX).



### BJ45 Cable Part Numbers Table

| Cable Part Numbers | Cable Lengths  |
|--------------------|----------------|
| 110 XCA 282 01     | 3 ft. (0.91 m) |
| 110 XCA 282 02     | 10 ft. (3 m)   |
| 110 XCA 282 03     | 20 ft. (6 m)   |

### **Indicators**

#### Illustration

The following figure shows the Modbus Plus on Fiber LED indicators.

Ready
Run

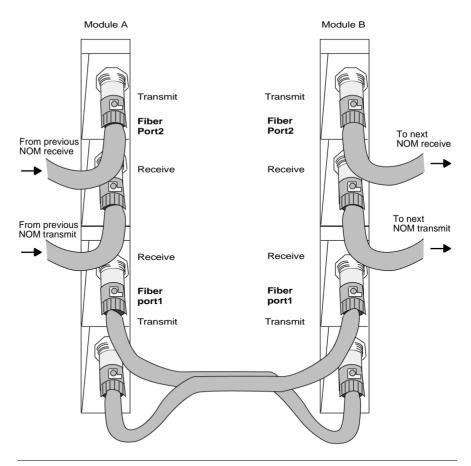
Modbus
Modbus + FRNGoff
Fport 1
Fport 2

### Description

The following table shows the Modbus Plus on fiber LED descriptions.

| LEDs    | Color | Indication when On                                                                                                                                                                                                                                                                        |
|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ready   | Green | The module has passed powerup diagnostics.                                                                                                                                                                                                                                                |
| Run     | Green | Indicates that the unit is in kernel mode – should always be OFF during normal operations. Note: The table for the NOM 21X 00 shows the number of times the RUN LED on the Modbus Plus on Fiber Module blinks for each type of error and the crash codes for each (all codes are in hex). |
| Modbus  | Green | Indicates communication is active on the single RS-232 serial port.                                                                                                                                                                                                                       |
| Modbus+ | Green | Indicates communication is active on the Modbus Plus port.                                                                                                                                                                                                                                |
| Fport1  | Green | Indicates an optical signal has been received on fiber optic Port 1.                                                                                                                                                                                                                      |
| Fport2  | Green | Indicates an optical signal has been received on fiber optic Port 2.                                                                                                                                                                                                                      |
| FRNGoff | Red   | Indicates the first break in a self healing ring.                                                                                                                                                                                                                                         |

# **Fiber Optic Cable Connections**


# Fiber Optic Cable Connections

The NOM 252 00 module is connected in the Quantum system by a fiber optic cable (see below). The cable has two strands. Each module transmits a uni-directional signal. For this reason, each strand must be connected to the transmit port on one module and the receive port on the other.

One strand of the fiber optic cable is marked at 10-inch (25 cm) intervals with the manufacturer's name and the cable specifications. This is the only way to distinguish the two strands.

### Fiber Optic Cable Connections Figure

The following figure shows the fiber optic cable connections.



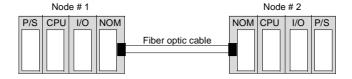
# Connecting the Fiber Optic Cable

The following steps show how to connect the fiber optic cable.

# Step Action 1 Remove the protective plastic coverings from the cable ports and the tips of the cable. Snap one of the fiber cable clasps (shipped with the module) over the cable so that the wider end of the tool is closest to the cable end. Protective coverings Cable Fiber cable clasp 2 Turn the connection ring so that one of the arrows on the side of the ring lines up with the ridge inside. Cable connection ring Cable tip Ridae Arrow 3 a. Slide the tool up to the connection ring. b. Gripping the cable with the plastic cable clasp, slide the cable end onto the lower cable port. The arrow and the ridge on the connection ring should line up with the slot on the left of the cable port. c. Use the clasp to push the cable over the tab on top of the port. d. Turn the cable to the right, so that the tab locks securely e. Remove the clasp. f. Repeat this process with the remaining strand of cable. Cable port Tab Cable connection ring Fiber cable clasp 3 m cable (Part # 990 XCA 565 09 09)

# Fiber Optic Configurations

Here are four typical configurations that show the wide range of the network architecture:


- Point-to-point connection
- Bus configuration
- Tree configuration
- Self-healing ring configuration

# Point-to-Point Configuration

This type of configuration (see below) allows communication over the distance of up to 3 km through harsh industrial environments.

### Point-to-Point Configuration Example Figure

The following figure shows the point-to-point configuration.



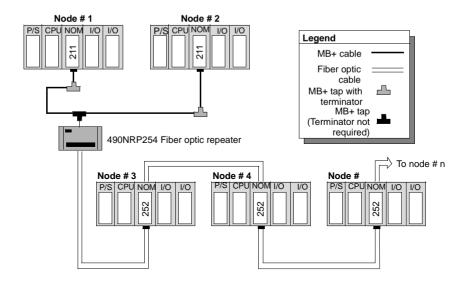
# Bus Configuration

This type of configuration is used when it is required to connect a number of fiber nodes and can be used to increase the distance of a standard Modbus Plus network by changing to a fiber medium. This kind of network allows the connection of up to 32 Quantum NOM 252 nodes over the distance of 5 km.

The following illustrations show the NOM 252 00 module in a mixed fiber optic/twisted pairs bus configuration network and a straight fiber optic bus configuration network.

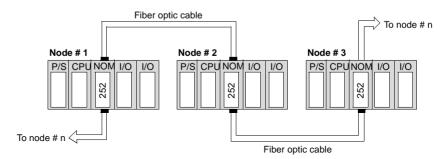
#### CAUTION

### **Equipment Failure**




The loss of a single node in this configuration disables the rest of the network.

Failure to follow this precaution can result in injury or equipment damage.


### Bus Configuration Example 1

The following figure shows the mixed fiber optic/copper network.

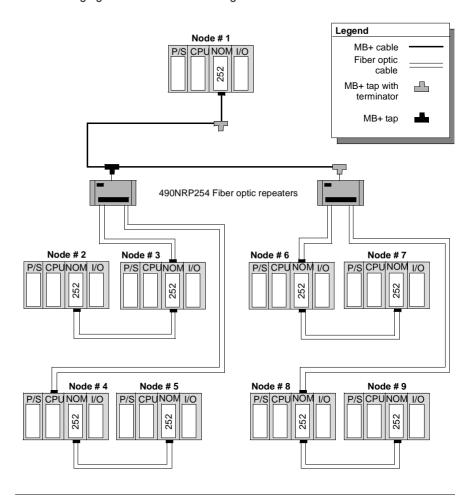


### Bus Configuration Example 2

The following figure shows the straight fiber optic network.



**Note:** The distance between nodes on fiber is limited by the maximum allowable power loss from end-to-end (3 km over 62.5 mm fiber). Power loss includes the fiber optic cable attenuation, connector losses at the Fiber Optic Receiver and Transmitter ports, and the system margin of 3 dB.

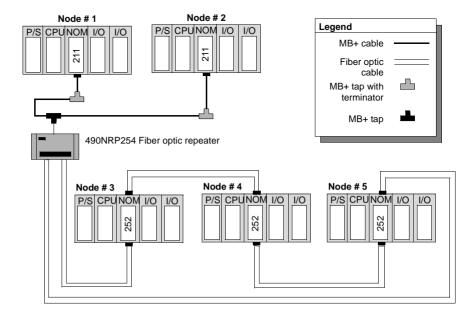

In this configuration, the end NOM 252 00 in this configuration will have the FRNGoff LED active. It also displays the Cable B Framing error in the MBPSTAT (in ladder logic).

### Tree Configuration

Using tree configurations allows for greater flexibility in the layout of Modbus Plus and NOM 252 00 networks. The following illustrations are samples tree configurations. Additional repeaters may be connected in order to extend communication between electrical links.

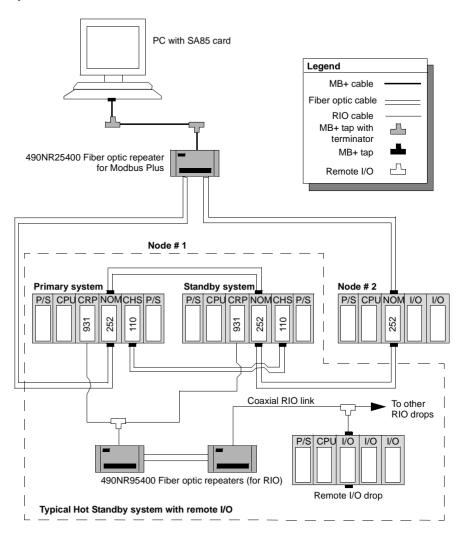
### Tree Configuration Example

The following figure shows the tree configuration.




## Self-healing Ring Configuration

This configuration can be achieved by connecting the unused fiber optic ports of the first and last NOM 252 00 directly or through the fiber optic repeater, if a mixed fiber optic/twisted pairs network is used. This type of connection has all the advantages of the previously described configurations, along with built-in redundancy. A broken connection between any two Quantum modules in the ring will automatically reconfigure the network to the bus configuration, and maintain communication.


### Self-healing Ring Configuration Example

The following figure shows a self-healing ring configuration example.



### Hot Standby Systems Figure

The following figure shows the self-healing ring configuration for hot standby systems.



#### Network Status

The information about the condition of the network is presented in the form of Network Status. This information indicates the loss of connection (the first break in the self-healing ring) and is similar to the way the existing 140 NOM 212 00 reports the loss of the redundant cable.

The break in the fiber cable will be detected by the module not receiving the signal from the cable break side. The incident will be reported by MBPSTAT as a Cable B Framing error. This condition also activates the FRNGoff LED on the module front.

### Recommended Materials for Fiber Optic Links

Modicon does not manufacture fiber optic products such as cables, connectors, or special tools. However, we have experience with third party suppliers of materials, and are able to provide guidelines on product compatibility.

### Connectors

### The following table shows the connector types

| Connector type                             | Part number          | Operating temperature |
|--------------------------------------------|----------------------|-----------------------|
| ST bayonet (epoxy)                         | 3M 6105              | -40 +80 °C            |
| ST bayonet (hot melt)                      | 3M 6100              | -40 +60 °C            |
| ST bayonet (epoxy)                         | AMP 501380-5 series  | -30 +70 °C            |
| ST bayonet (epoxy)                         | AMP 503415-1 series  | -20 +75 °C            |
| Light crimp ST-style                       | AMP 503453-1 series  | -20 + 60 °C           |
| Mechanical line splice (one size fits all) | 3M 2529 Fiberlok1 II | -40 +80 °C            |

Note: All connectors must have a short boot for strain relief

### **Termination Kits**

### The following table shows the termination kits.

| Kit type               | Part number  | Description                                        |
|------------------------|--------------|----------------------------------------------------|
| Bayonet ST (eoxy)      | AMP 503746-1 | For all epoxy type ST style                        |
| Light crimp XTC        | AMP 50330-2  | For all light crimp                                |
| Mechanical line splice | 3M 2530      | Fiber splice prep kit, complete with cleaving tool |
| 3M hot melt            | 3M 05-00185  | 110 V termination kit                              |
|                        | 3M 05-00187  | 220 V termination kit                              |

## Other Tools

The following table shows other tools that may be needed for fiber optic links.

| Product                                     | Part number   | Description/use                                                           |
|---------------------------------------------|---------------|---------------------------------------------------------------------------|
| 3M (Photodyne) optical source driver        | 9XT           | Hand-held optical source driver (requires a light source)                 |
| 3M (Photodyne) optical light source         | 1700-0850-T   | 850 nm Light Source, ST Connectors for 9XT                                |
| 3M (Photodyne) power meter                  | 17XTA-2041    | Hand-held fiber optic power meter                                         |
| 3M optical light source,<br>660 nm, visible | 7XE-0660-J    | Use with 9XT to troubleshoot raw fiber, requires FC/ST patch cord         |
| 3M FC/ST patch cord                         | BANAV-FS-0001 | Connects FC connector on 7XE to ST                                        |
| 3M bare fiber adapter,<br>ST-compatible     | 8194          | Allows the use of above source and meter to test raw fiber (two required) |

#### Cables

It is recommended that you use 62.5/125 mm cable (such as AMP 503016-1, AMP 502986-1, or equivalent) with a maximum attenuation of 3.5 dB/km in most of the configurations.

Note: Modicon recommends using the 990 XCA 656 09 cable.

**Note:** All cables must have a maximum cable diameter of not more than 3 mm at the terminal side.

#### Connections

The following information discusses connecting the NOM 252 00 on fiber cable, adding a new mode to the network, and repairing the break in the cable.

**Note:** When a new network is assembled, it is recommended that you connect all cables before powering up the system. Connect fiber optic cables as described previously in this section.

# Adding a New Node to the Network

If a new node is added to an existing network in order to extend the network (at the end of any configuration), then a new node may be connected first by fiber cable and then hot-swapped to the backplane to avoid errors to the existing network. If a new node is added to the middle of the network, disconnect the fiber optic cables from one side of the existing NOM 252 module, and connect to port 1 or 2 of the new node. Additional fiber optic cable then needs to be connected to the second port of the new NOM 252 and to the next NOM 252 in the network. Finally, hot-swap the new NOM 252 to the backplane.

### Repairing the Break in the Cable

Because the NOM 252 00 will stop transmitting in the direction from which it receives no signal, replaceing a broken fiber optic cable and reconnectioning do not suffice to re-establish communication over that segment. Hot-swapping only one NOM 252 at the repaired connections is required to complete the connection.

**Note:** Breakage of any fiber connectors or fiber optic cables is the equivalent to breaking the trunk cable in a copper-based Modbus Plus network.

For the self-healing ring configuration, repairing the first break in the fiber optic network has to be scheduled when one of the units on either side of the repaired break can be hot-swapped, without creating further problems by disconnecting the node

**Note:** Self-healing configurations are not considered as redundant networks. Redundant networks yield a high system availability.

#### Calculations

Use the following formula to calculate the number of NOM 252 00 modules in a fiber network:

| Step | Action                                                                                                                                                                                                                      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | The total allowable pulse width distortions and jitter are limited to 20% of the bit period and is 200 nsec for the full fiber optic network.                                                                               |
| 2    | The jitter contributed by the NOM 252 is 5 nsec max.                                                                                                                                                                        |
| 3    | Jitter contributed by fiber optic repeaters (if used) is 40 nsec.                                                                                                                                                           |
| 4    | Use the following formula to determine the number (N) of chained repeaters: $N = \frac{200 nsec - X(L) nsec - 40 nsec}{5 nsec} + 1$                                                                                         |
|      | where "L" is the total cable length (km), and "X" is the jitter (added by the fiber optic cable) in nsec/km:  X = 3 ns/km for 50/125 micron meters  5 ns/km for 62.5/125 micron meters  7.5 ns/km for 100/140 micron meters |

## **Specifications**

### General Specifications

### **General Specifications**

| Power Dissipation    | 4 W (typical) |
|----------------------|---------------|
| Bus Current required | 780 mA        |
| External Power       | Not required  |

## Communication Ports

### Communication Ports

| Optical Ports | 2 (consisting of an optical receiver and transmitter) |
|---------------|-------------------------------------------------------|
| Modbus Port   | 1 RJ45 (phone jack-type) connector                    |

### **Diagnostics**

### Diagnostics

| Power Up | RAM                |
|----------|--------------------|
|          | RAM Address        |
|          | Executive Checksum |
|          | Processor          |
| Runtime  | RAM                |
|          | RAM Address        |
|          | Executive Checksum |

### Optical Transmission

### **Optical Transmission**

| Interface                                                 | ST-Type connector                                                                            |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|
| PulseWidth Disstortion and Jitter                         | 5 ns or better                                                                               |
| Wavelength                                                | 820 nm                                                                                       |
| Power Loss Budget<br>(includes 3 dB of system<br>margins) | 50/125 micron fiber -6.5 dB<br>62.5/125 micron fiber -11 dB<br>100/140 micron fiber -16.5 dB |
| Maximum distance for point-to- point connection           | 2 km over 50 micron fiber 3 km over 62.5 micron fiber 3 km over 100 micron fiber             |
| Maximum System Length in Self Healing Ring Configuration  | 10 km over 62.5 micron fiber                                                                 |

### Optical Transmitter Specifications

### **Optical Transmitter Specifications**

| Optical Power (Measured with 1 m test fiber) | -12.819.8 dBm average power in 50/125 micron fiber cable -9.016 dBm average power in 62.5/125 micron fiber cable -3.510.5 dBm average power in 100/140 micron fiber cable |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rise/Fall Time                               | 20 ns or better                                                                                                                                                           |
| Silence (OFF leakage)                        | -43 dBm                                                                                                                                                                   |

## Optical Receiver Specifications

### **Optical Receiver Specifications**

| Receiver Sensitivity | -30 dBm average power |
|----------------------|-----------------------|
| Dynamik range        | -20 dB                |
| Detected Silence     | -36 dBm               |

### **Hardware Installation**

13

### **Mounting Quantum Communication Modules**

#### Overview

Quantum communication modules (NOMs, HE-CPUs) can be inserted into any slot of any backplane. Although Power supply modules should be installed in the first or last slots, to have a cooling effect. The modules can be removed under power (hot swapped) without damaging modules or the backplane.

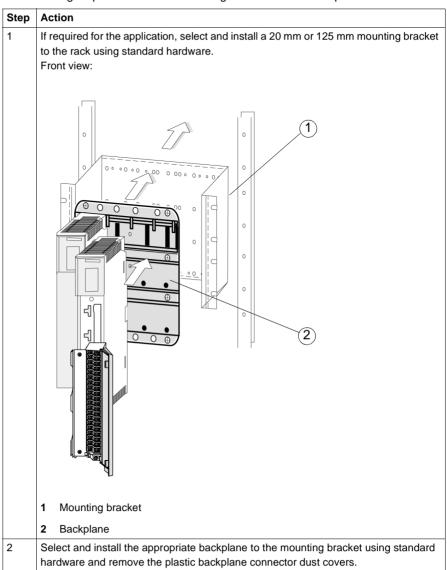
Refer to the following figures and procedure when mounting modules.

### **CAUTION**

## Possible danger to personnel or equipment.



An I/O module can only be hot swapped with the field side terminal strip


It is possible, that a hot swapped controller module stops with an error code.

Failure to follow this precaution can result in injury or equipment damage.

**Note:** To ensure EMC level , the mounting area of the CPU has to provide metallic contact. Therefore remove any labels in the affected area and clean the surface using solvent.

### Mounting Bracket and Backplane

The following steps describe the mounting of bracket and backplane



## Mounting a Module

## The following steps describe the mounting of a module

| Step | Illustration                            | Action                                                                                                                                                           |
|------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Side view:                              | Mount the module at an angle on to the two hooks located near the top of the backplane.                                                                          |
| 2    | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Swing the module down to make an electrical connection with the backplane I/O bus connector.                                                                     |
|      | 1 Module Hooks                          |                                                                                                                                                                  |
|      | 2 I/O Bus Connector                     |                                                                                                                                                                  |
| 3    | Side view:                              | Tighten the screw at the bottom of the module to fasten it to the backplane.  Note: The maximum tightening torque for this screw is 2-4 in-lbs (0.23 - 0.45 Nm). |
|      | 1 Mounting screw                        |                                                                                                                                                                  |



### Index

## **Numerics**

140 NOM 211 00, 150 140 NOM 212 00, 160 140 NOM 252 00, 170

### Α

Application Specific, 57
Application Specific Communication, 32

### C

Communication folder, 36
Configuration
DIO, Dual Cable, 27
DIO, Single Cable, 26
Configure Network, 37
Configuring a Logical Network, 35
Configuring a Physical Network, 43
Continuous register reading
CREAD\_REG, 69
Continuous register writing
CWRITE\_REG, 75
CREAD\_REG, 69
CWRITE\_REG, 75

### D

DIO

Dual-cable Configuration, 27 Single-cable Configuration, 26 DIO Drop, 24

### E

Expanded
ModbusP\_ADDR, 123
Extended
CREAD\_REG, 69
CWRITE\_REG, 75
MBP\_MSTR, 81
READ\_REG, 129
WRITE\_REG, 137

### G

Global Input Data, 50 Global Output Data, 51

## Н

Hardware Installation, 191

### I

Input Data
Global, 50
Specific, 53
Intoducing the Modbus Plus Network, 15

### M

MBP\_MSTR, 81

Modbus Plus Address
ModbusP\_ADDR, 123
Modbus Plus Communication Types, 23
Modbus Plus Master
MBP\_MSTR, 81
ModbusP\_ADDR, 123

## Ν

NetLink, 36 Network Option Modules, 149 NOM, 149

### 0

Output Data Global, 51 Specific, 54

### Ρ

Peer Cop, 28

### R

Read Register READ\_REG, 129 READ\_REG, 129

## S

Specific Input Data, 53 Specific Output Data, 54

## W

Write Register WRITE\_REG, 137 WRITE\_REG, 137